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Second sound shock waves have been used to examine the breakdown of 

superfiuidity in bulk He Il. The maximum counterflow velocity achieved in this 

manner was measured at  a variety of temperatures and pressures. The results 

are found to agree with predictions of vortex nucleation theories (Langer & 

Fisher, 1967) in their pressure and temperature dependences although it was 

shown that dissipation occurred only near the heater. A simple scaling argu- 

ment is suggested, assuming breakdo-wn occurs near the heater. A vortex 

dynamics model of breakdown (following the method of Turner, private com- 

munication) is developed. 

To examine the effect of vorticity on breakdown, second sound shocks were 

produced in rotating helium. Experiments were performed in which the shocks 

propagated either along or normal to the axis of rotation, called "axial" and 

'transverse" cases, respectively. In both cases the decay was seen to increase 

monotonically with the rotation rate. Furthermore, the decay was ongoing, 

rather than being c~nElned to a narrow region near the heater. However, the 

extraordinary dissipation in the transverse case seemed to be related primarily 

to the arrival of secondary waves from the heater-sidewall boundary. An expla- 

nation of this difference is put forth in terms of vortex nucleation in the bulk 

fluid, using ideas similar to Crocco's Theorem. 

In order to examine the breakdown of superfluidity away from walls in nonro- 

tating fluid, spherically converging second sound shocks were produced. The 

temperature jumps of the waves were measured, and exact numerical solutions 

of the two-fluid jump conditions (Moody, 1983) were used to calcuIate the rela- 

tive velocity in each case. The experiments show that the processes limiting the 



counterflow velocity still occur a t  the heater although the strongest final waves 

m produced have relative velocities in excess of 10 - . These are  the largest 
se c 

relative velocities ever produced in the bulk fluid. 
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Chapter 1 

BEHAVIOR OF SECOND SOUND SHOCK WAVES 

The breakdown of superfluidity remains one of the most interesting aspects 

of the physics of Helium 11. M principal concern is the occurrence of additional 

dissipation during counterflow experiments with large heat fluxes. When the 

relative velocity between normal and super components exceeds a certain value, 

the  two components can no longer be thought of as noninteracting fluids. 

Rather, new dissipative mechanisms come into play and limit the maximum 

counterflow velocity obtained. 

This 'kritieal" dissipation can be characterized by a fundamental, or intrinsic, 

critical velocity. By fundamental or intrinsic, it is meant that this critical velo- 

city is geometry independent (and frame invariant). Previous investigators had 

studied critical velocities, but their experiments were performed in constricted 

geometries, such as closely packed powders (Clow and Reppy, 1967), porous 

materials (Notarys, 1969), and thin films of helium on glass cylinders (Hess, 

1971). However, since it is intrinsic, this critical velocity should be able to be 

observed out in the bulk fluid (away from walls). 

A second sound shock wave is the ideal method for setting up counterflows 

and studying the intrinsic critical velocity in bulk fluid. Planar second sound 

shocks provide an abrupt change of flow state, impulsively accelerating quies- 

cent fluid to a finite uniform relative velocity. This change is accomplished in 

less than a microsecond, the length of time required for a shock to travel its 

own thickness. Furthermore, wall effects can be eliminated by time resolution 

because they require a finite amount of time to propagate inward from the 

walls. Moreover, the wave fronts remain extremely planar even with the 



strongest shocks, as schlieren photography has revealed, so the motion remains 

one-dimensional, 

1.1. Weak W a v e s  

Second sound shocks have been used by investigators (Turner, 1979) to study 

the breakdown of superfluidity. Before a discussion of the breakdown process, it 

is best to recall the nonlinear evolution of a temperature wave in superfluid 

helium. Suppose an arbitrary one-dimensional heat pulse is introduced into the 

fluid by means of a wall heater. At  an instant in time the pulse may appear as in 

Figure 1.1. 

Figure 1 .l. Propagation of an arbitrary temperature 
profile at time t , .  

Each point on the profile travels without decaying at its characteristic velo- 

city, which in the limit of small perturbations is the following, 

AT where a is the unperturbed speed of second sound, -is the normalized 
T 



temperature rise above the ambient temperature, and B = B ( p  ,T) is the non- 

linear steepening coefficient. This result is due to Khalatnikov, who derived B 

explicitly. 

It is worth noting that 3 is positive from 0.95 K to 1.88 K and negative from 1.00 

K to TA. 

Suppose that B > 0 for the profile in Figure 1.1. Thus, the higher points of 

the profile move more rapidly than the lower points, as  shown. However, the 

area under the profile is preserved. Let A ( t )  be the ares of the pulse a t  time t  , 

where x , ( t )  and z z ( t )  are chosen so that A T ( x , , t )  = A T ( x z , t )  = AT,. Therefore 

u ( x 1 , t )  = u ( x 2 , t ) .  

Now the boundary term vanishes by choice of x 1 and z z .  Since each point of the 

profile travels at its characteristic velocity, we have 



Thus 

so A ( t )  is constant in time (Whitham, 1974). 

Although the area of the profile is invariant, the shape is modified since 

points on the profile with large values of AT move more quickly than points with 

small values of AT . Hence, the profile steepens and, in fact, will become mul- 

tivalued at some later time, as shown in Figure 1.2. 

Figure 1.2. The temperature profile a t  a later time t . 

Clearly this multivaluedness is unphysical. What actually occurs is that a shock 

is formed in each multivalued region (indicated by bold lines in Figure 1.2). 

This shock may be thought of as a discontinuity propagating at some inter- 

mediate velocity determined by integrating the conservation equations across 

the shock. In practice, however, since second sound shocks are quite weak, 



[y << 1 end M - 1  << 1. 

and the shock velocity is found to an excellent approximation to be the average 

characteristic velocity of the lopped-off regions. In cases where B may be 

regarded as constant (away from T = 1.88 K. at  which B passes through 0 ), the 

shock velocity us is the average of the characteristic velocities at the bottom 

and top. Thus we have 

and 

or in terns  of the Mach number 

which is Khalatnikov's result. In regions where B varies rapidly with tempera- 

ture, the averaging must be carried out in detail. The location of the shock is 

determined by the area preservation property already discussed. Since the area 



Fig 

1 Heater 
Locat ion 

I 
Sensor 
Location 

;ure 1.3. An initially rectangular heat pulse evolves into a shock 
front, a region of uniform counterflow, and an expansion fan 



of the pulse is preserved, the shock is fitted in so that the areas of the two 

lopped-off regions are equal (this also determines its velocity). 

Figure 1.3 shows the evolution of a square pulse of heat propagating in 

superfluid helium when B > 0. The leading edge remains sharp, limited in 

steepness by balancing the nonlinear steepening with dissipation, but the trail- 

ing edge expands, the lowest point traveling at the unperturbed speed of second 

sound. The highest point travels faster than the shock by m, and even- 
T 

tually catches up with it. At  this time, referred to as the shock-expansion coin- 

cidence, the amplitude of the shock begins decreasing according to triangular 

wave decay, in which the area remains constant (Fig. 1.4). 

Figure 1.4. Regular decay of an initially square pulse. 

It should be strongly emphasized that what has been said here is not exclusive 

to superfluid helium. Rather, it is valid for any type of weak wave with a linear 

relationship between the characteristic velocity and the perturbed quantity (AT 

for second sound in He 11). 



1- 2. Breakdown Stages 

It is important to keep in mind the fact that the polnts of the temperature 

profile propagate a t  their characteristic velocity without decaying (except for 

t h e  triangular wave decay as mentioned). This provides a criterion for recogniz- 

ing anomalous behavior in a second sound shock experiment. 

A typical second sound shock experiment is described below. First, a point 

(IPolTo) in the pressure-temperature plane (see Fig. 1.5) is selected for the exper- 

iment. 

40- 

- 

30 - 

h 
- 

Liquid He I 

' 0 -  Liquid H e n  
Critical point 

point (T = 5.20°K. 2.264 arm.) - 
IT a 2.172OK. 0.0497 atmJ 

0 
0 1 .O 2.0 3.0 4.0 5.0 6.0 

Figure 1.5. Phase diagram of helium (after Putterman, 1974). 

Next, a rectangular voltage pulse is fired across the endwall heater, producing a 

rectangular heat pulse. This rectangular temperature profile propagates down 

the shock tube, evolving as discussed above, and is recorded a t  an endwall 

superconducting sensor (recall Fig. 1.3 and see Appendix C for a detailed 

description of the shock tube). Data taken include the arrival time, the tem- 

perature rise a t  the shock front, and a polaroid or digital recording of the entire 

pulse. 



The arrival time is related to the average Mach number by 

where L is the shock tube length. Assuming that the pulse has not decayed 

while propagating, the average and instantaneous Mach numbers are equal, and 

the above relation may be combined with (1.3) to yield 

where AT is the measured temperature jump. A slight difficulty arises in the 

application of this result. The shock tube length L is quite difficult to determine 

because of the differing cryogenic contraction of materials (for Turner's variable 

length second sound shock tube one can guess the length to no better than a 

1 a few millimeters). However, Turner noted that as AT -, 0, -+ - A linear fit of tA L ' 

1 - us. AT for a few points with small AT uniquely determines the intercept, 
t A  

Q, 
which is - Then for much larger AT, Turner verified (1.5), showing that the 

L ' 

A T  was ' B  (po,~o), as did Osborne (1951). slope of M-1 vs. - 
T 2 

1 AT Figure 1.6 is a plot of BB- us. M-1 at  T = 1.609 K. The pressure is 
T 

slightly larger than saturated vapor pressure due to the hydrostatic head of 

helium above the shock tube. With the data displayed in this way, the Khalatni- 

kov solution falls along the 45" line. As the heater power is increased, the Mach 

number and temperature jump follow the Khalatnikov solution until M fil 1.03. 

For larger heater powers, the data rapidly diverge from the theoretical 



prediction. Exact numerical solutions to the jump conditions (Moody, 1983) 

show that this curvature results in part from higher order terms (see Fig. 1.7). 

However, the apparent retrograde effect (increasing heater power reduces shock 

strength and Mach number) around M 1.05 is in no way explained. 

It  is useful to examine the waveforms produced in this experiment. Recall 

that for T < 1.88 K a rectangular temperature pulse will remain steep at  the 

leading edge but flatten at the trailing edge. The region in between remains uni- 

form. Indeed, in the experiment shown, this was found for low heater powers. 

As the Mach number neared 1.03, it was observed that the uniform region 

started to tilt (Fig. 1.8), indicating that some sort of decay had occurred. More- 

over, a 'karm tail" appeared following the pulse. Further increasing the heater 

power increased the tipping and raised the warm tail, obliterating the expansion 

fan. Finally a shock limit is reached, at which further increases of heater power 

lead only to reductions in shock strength and Mach number. It must be 

emphasized that the Mach number is an average value and that the temperature 

jump is what is measured at  the sensor. The breakdown steps are slightly more 

complicated for a back-steepened shock and will not be discussed here. 

1.3. Iacation of Decay Region 

It has been stressed that second sound shock waves are useful for examining 

the fundamental critical velocity and associated dissipative mechanisms in the 

bulk fluid (away from walls). It therefore becomes necessary to find out whether 

dissipation occurs out in the bulk fluid or at  the walls, primarily at  the heater. 

If the dissipation is ongoing as the pulse propagates along the shock tube, the 

amplitudes of points on the profile would decrease monotonically with propaga- 

tion distance. If the dissipation occurs in a thin region near the heater, the 

pulse would undergo all of its decay while passing through this region and pro- 

pagate Bvithout suffering further decay thereafter. 



Figure 1.6. Scaled temperature jump vs. average Mach number at 
T = 1.609 K and p = s . v . p .  (experiment H5). The 
line is the Khalatnikov solution. 



TEMPERATURE SHOCK 

TO (K) = 1.6090 
PO (BAR) = 0.0079 

Figure 1.7. Numerical solution of jump conditions for 
experiment H5 (after Moody,1983). The straight 
line is the Khalatnikov solution. 



Figure 1.8. Variation of waveform with increasing heater power. 

To examine this idea Turner used his variable length second sound shock 

tube (Turner, 1979) to observe the evolution of a decayed pulse. He found that 

even strongly decayed pulses did not decay further in amplitude while propagat- 

ing. Note, however, that a wave with a tilted top does undergo the standard tri- 

angular wave decay typical of a shock-expansion coincidence. The significance 

of this result is that all of the limiting phenomena are occurring a t  or near the 

heater. In other words, the difficulty is getting heat into the fluid rather than 

propagating it by counterflow. 



Chapter 2 

It has long been hypothesized that production of quantized vortices in the 

super component is responsible for the observed decay (Langer and Fisher, 

1967). It is thought that, when the fundamental critical velocity is exceeded, 

vorticity (particularly quantized line and ring vortices) is produced in the super 

component. These vortices provide the means for momentum transfer between 

the normal and swrper components, so in their presence the relative velocity will 

decay. This momentum transfer occurs principally through the scattering of 

the excitations making up the normal fluid from the vortex core (Goodman, 

1971). 

2.1. Ianger-Fisher Y ode1 

Langer and Fisher (1967) have put forth the idea that counterfiow in 

superfluid helium should in some sense be considered a metastable state in 

much the same way that a supersaturated vapor is. 

For a given macroscopic sample of the metastable phase, there is a 
k i t e  probablility per unit time for homogenous nucleation of the stable 
phase. But for a sufficiently small superflow (or supersaturation), this 
probability rate is too small to be observable, so the system appears to 
be stable. Conversely, the critical superflow (or supersaturation) is 
achieved when the probability of nucleation becomes appreciable within 
experimental times. 

For the supersaturated vapor, the route to the stable phase involves the 

homogeneous nucleation of a droplet exceeding some critical size. This droplet 

then grows without bound. For counterflowing helium, the route to the "stable" 

state involves the production of a quantized ring vortex with radius exceeding 



some critical radius, determined by the relative velocity. This vortex then grows 

and in a m i t e  geometry is presumably annihilated a t  the walls, thus reducing 

the superfluid velocity. 

Recall for a classical ring vortex of circulation n , radius R ,  and core radius 

a << R in an incompressible fluid of density p, 

It should be noted in passing that these formulas are  slightly dependent on a 

model for the core. In the above case a fluid-filled core in solid body rotation 

was assumed. Taking, for example, a hollow core vortex does not greatly affect 

(2.1) and (2.2). It is found that 7/4 -, 2 in (2.1) and 1 / 4  -, 1/2  in (2.2) (Putter- 

man, 1974). Since in some sense the core radius is empirically determined, this 

slight difference is rather unimportant, changing most results by only a few per- 

cent. 

Langer and Fisher consider a vortex ring in a uniform superflow GS. The 

energy of an excitation is just 

where E., is the "rest" energy of the vortex ring and 5, is the momentum added 



to the flow by its creation. The momentum 3, of the vortex ring is calculated by 

Langer and Fisher in the following manner. 

where the small logarithmic variations have been ignored. Note that integrating 

this relation yields 

po = n q s  R* = I, 

which is the result for the impulse of the vortex ring. 

Suppose such a vortex is traveling opposite to i j ,  . Then it is found that 

Ignoring the logarithmic term as weak, one finds that E(R) is quadratic in R 

dE with a maximum at  some critical R,. For R > Rc, -is negative, so the vortex 
d R  

ring will grow outward, losing energy while doing so. If, on the other hand, 

R < R,, the vortex ring will collapse to lose energy. Rc is found by setting 



Comparing this with equation (2.5). it is seen that the critical radius is given by 

v, = Vo (Rc). 

So according to the Langer-Fisher argument, production of a vortex ring of 

radius Rc as given above will allow reduction of v,. 

It is hypothesized that these rings are hsmogeneouslp nucleated by fluctua- 

tions in the fluid. Due to their scarcity, the Boltzmann distribution function 

e-E/kT is used to describe the probability of ring production, In order to pro- 

duce a ring of radius Rc or larger, 

Again ignoring the logarithmic dependences, this result yields: 

where f is a weak logarithmic function of Rc . What is important to notice is 

P s  that the critical velocity v,, .c - 
T '  



2.2. Results of Critical Velocity Experiments 

The Langer-Fisher theory produces a result v , ,  .c - , a relation easily 
T 

checked experimentally, Figure 2.1 shows shows results from two very different 

sorts of experiments. The flrst, included for comparison, employs pressure- 

driven superflow (Notarys, 1969). Notarys forced superfluid helium through 

mica sheet with small pores (typically BOO A or less in diameter) and measured 

the superfluid velocity produced with a 1pm pressure difference. He found that 

Ps 
us, P 7 with the appropriate numerical constant multiplying about an T 

order of magnitude lower than predicted by the Langer-Fisher theory. 

The second experiment involved measuring the maximum counterflow velo- 

city produced by a second sound shock, following Turner's technique. Results 

from many such experiments closely follow the predicted &functional depen- 
T 

dence for w,. The fact that the two numerical constants obtained are not the 

same is not significant since in both cases arbitrary (but easily reproducible) 

criteria were selected to determine the "critical" velocity. 

2.3. Problems with huger-Fisher Theory 

Both experimental and theoretical considerations pose difficulties for the 

Langer-Fisher theory although, interestingly enough, both experiments give the 

required k- dependence for the critical velocity. Notarys notes an obvious 
T 

shortcoming of the Langer-Fisher theory -in many cases the presumed vortex 

rings are larger than the pore size through which the super component flows. 

His conclusion from this observation is that although the vortex rings in the 

pores are quantitatively different from free rings, they are qualitatively the 

same. Second sound shock experiments show that the decay occurs only near 

the heater wall, not out in the bulk fluid, where one envisions the Langer-Fisher 



t 6.7 -- - PT 
Ps 4.6 - 
P T 

(Notorys, 1969) 

o Front Steepened Shock 
Front Steepened Shock I - I 

Temperature (OK) ' A  

Figure 2.1. Temperature dependence of the maximum relative 
velocity. Open symbols are Turner's data (1979). 
Notarys' data (1969) are included for comparison. 



model as being most applicable. In both cases the presence of solid boundaries 

(the pores in the mica or the endwall heater) are connected with the observed 

decay. 

A simple scaling argument suggests why this is so. Near a wall, the superfluid 

density goes smoothly to zero (see Fig. 2.2) over some characteristic length, 

called the healing length (Tilley and Tilley, 1974). 

Figure 2.2 Variations of p, near a wall. 

To produce vorticity near a wall, we expect from dimensional analysis that 

where wc is the critical relative velocity. Experimentally it is found that 

over a wide range of temperatures and pressures (Putterman, 1974). Combining 



these two results yields: 

P s  Thus, again it is seen that wc oc - the Langer-Fisher result, when the process is 
T' 

occurring near solid boundaries. Again the numerical factor is an  order of mag- 

nitude larger than observed. 

The Langer-Fisher analysis runs into more serious problems when looked a t  

theoretically. Of chief concern is the use of the impulse I, required to  produce a 

vortex ring for the momentum p,. Consider for a moment a vortex ring with a 

fluid-filled core (ffc) in a large box (not a domain of infinite extent) of 

incompressible fluid. The momentum of this excitation is given by: 

$,,. = f j f 4 dV = P V i Z J i Z  

boz 

so if the box is stationary, the  momentum of such an excitation is zero (Wilks, 

1967). Consider a hollow core vortex ring in a stationary box. 

K Now VTing 2 n 2 a 2 ~  and vfiW - 
4nR ' Thus, ph,lb - - rcpa . 



Thus, the momentum of the ring is srnalIer than the impulse of the ring by a 

factor of which is quite small. One may well wonder what has happened 

to the impulse originally used to create the ring. Clearly the momentum has 

propagated to the walls of the box, which absorb it. This propagation occurs a t  

the speed of sound (which in our case is effectively infinite - compressibility is 

assumed to be unimportant). Therefore, no energy maximum exists now since 

which is monotonic increasing in  R . Reversing the Langer-Fisher argument, we 

conclude that counterflowing helium is not metastable in the same way that a 

supersaturated vapor is. 

2.4. Putual Friction 

Although the Langer-Fisher theory breaks down under close scrutiny, it is not 

necessary to abandon the idea that quantized vortices play a crucial role in 

momentum exchange between normal and super components. Rather, one must 

look for interactions between the vortices and normal component that may 

cause vortices to grow or distort at the expense of the normal component. Such 

an interaction, known as mutual friction, has been postulated to occur between 

the normal fluid and has been used quite successfully to interpret experimental 



results (Hall and Vinen, 1956). An interaction force of the form 

works to reduce the relative velocity w (?m acts on the normal component while 

-k acts on the super component). Here B and 3' are the coefficients of 

mutual friction, weak functions of the thermodynamic state. Also, 
-b us = < V x &> , where the average is taken over a region of space large com- 

pared to the vortex spacing but small compared to the scale on which that spac- 

ing changes. 

This force seems to result from the scattering of excitations (mainly totons 

for T > 1.2 K) comprising the normal component from quantized superfluid 

vortices and has been studied numerically (Goodman, 1971). It was found that 

the scattering was asymmetric with respect to the forward direction as expected 

(see Fig. 2.3). In fact, some rotons interacted with the vortex by very nearly rev- 

ersing their trajectories (refewed to as a "snap-back" by Goodman). Analysis of 

many scattering events allowed the calculation of B and B', which agree reason- 

ably well with experimental results. 

Applying the mutual friction idea to a single quantized vortex line, one finds 

the force per unit length to be given by 

where D and D' are dimensionless, R is the unit vector tangent to the vortex, 

and gL is the vortex velocity. Note that GL # < Gs > , the mean superfluid velocity 

at  the core. Therefore, this vortex will experience another force arising from 



Figure 2.3. Typical roton trajectories (after Goodman, 1971)~ 

the interaction of its circulation and the mean superfluid velocity 

jm=Ps(%, - G L ) x E  

which is the Magnus force (or lift). To relate these two forces it is assumed that 

there are no unbalanced forces. 



2.5. A Simple Vortex Model  of Breakdown 

Before facing up to the three-dimensional problem of vortex rings, we con- 

sider first a two-dimensional problem in which there exist a finite number of 

parallel line vortices all of circulation i n. An equation of motion will be 

deduced from the force balancing principle of the previous section (Turner, 

private communication). These equations will then be solved exactly for a sim- 

ple model problem, demonstrating the breakdown mechanism. 

Suppose this collection of vortices is in a counterflow w .  Writing the force 

balance for each line yields the following set of equations describing the vor- 

tices' motion. 

Note that iJsj - $%j # - Gj but also contains the velocity induced on the j f h  vor- 

tex by each of the other vortices. The form of equation (2.25) suggests that the 

logical (local) frame of reference to use in studying these equations is the frame 

moving with Gj. Redefining the variables leads to the following equations. 

These equations are much more easily solved using complex variables rather 

than vector formalism. Let the position of each vortex be zj. Then its velocity 

vj = ij and 



zj  (1 +Dl + iD sgn (q)) = u j  (2.29) 

where u j  is found b y  superimposing the background superfiow luf with the 

induced flow from the other vortices. 

in 
zj  (l+D' + iD sgn (9)) = - wj + - s9n (h) 

2 7 ~  m;tj Ej -Em ' 

The two-dimensional analog to a vortex ring is a pair of counter-rotating line 

vortices. In this case, the two coupled equations reduce to 

kg (l+D1 -iD) = - w  + i t c  1 
2?T rrz, - z, 

i Call zc = L ( z  +ze) and ZR = - (zZ-z Thus, z, is the motion of the "center of 
2 2 

vorticity," while z~ describes the relative motion (see Fig. 2.4). Note here 

z, = reiP and z~ = ~ e ~ ~ ,  so O is the direction that the 'king" points. 

Eliminating 54, and rescaling the time yields 



where 

Figure 2.4 Two-dimensional analog of a vortex ring. 

increases with time since D > 0 (it is the drag). 

Using the polar form for ZR allows the separation of equations (2.34) into real 

and imaginary parts. 



The time variable s does not appear explicitly in the equations, so it can be elim- 

inated to give a phase plane equation. 

This may be solved analytically to yield 

It RsinO - R, sin@, = -(0 - 0,) 
4nw 

where R, and 0, are the initial conditions. 

Figure 2.5 shows a phase plane plot of these trajectories with R scaled by R, 

where 

Note that this is analogous to uniform flow and a potential sink. If a line pair is 

generated with initial conditions within the separatrix, it will collapse into the 

sink (R+ 0 as t increases). However, if it is created with initial conditions lying 

outside the separatrix, it will ultimately expand along one of the trajectories 

with R+m and O-, 0. Note w is chosen positive, so the vortex pair is opposing 

the counterflow, and the flow decays as a result. Furthermore, any vortex pair 

with R, < Rc will collapse. Thus, it is the creation of vortex pairs of R, > Rc 

that will lead to decay of superflow. 

Solving the above problem for a vortex ring rather than a vortex pair is quite 

difficult since the ring will certainly distort from its plane circular form as it 



Figure 2.5. Phase space of vor t ex  p a i r  " t r a j e c t o r i e s " .  The flow i n  
time i s  from l e f t  t o  r i g h t  and i n t o  t h e  sink.  A l l  
i n i t i a l  s t a t e s  wi th  R<Rc (dashed c i r c l e )  col lapse .  
I n i t i a l  s t a t e s  ou t s ide  of t h e  s e p a r a t r i x  grow without 
bound ( a f t e r  c ross ing t h e  dashed l i n e ) .  



evolves. One would have to solve equations such as (2.25) numerically for small 

elements of the vortex ring. at  each step using the Biot-Savart law to determine 

the induced superfluid velocity from each element. This procedure wouId be 

cumbersome and not very enlightening. One case, however, due to high syrn- 

metry may be solved almost exactly (see Fig. 2.6). 

Figure 2.6. A circular vortex ring propagating along a uniform 
counterflow (against the super component). 

It is suggested (Wiks, 1967) that a curvature force must be included in the force 

balance of equation (2.24). 

Here B(R) is a weak, positive, monotonic increasing function of R. Weak is taken 

to mean m+ 0 as R -. m . Following the same approach as above yields 
R 



where 

For R, such that w > f ( R o b  , the vortex ring will grow without bound, and for 
47TRo 

w <  f (Ro)x , the ring will collapse, transferring no momentum. So in this case 4n R, 

a critical radius arises. 

If thermal fluctuations are the source of such vortex rings, to generate an 

appreciable number in the flow requires 

Neglecting logarithmic dependences leads to the following 

Ps w, = A  - 
T 

where A is a numerical constant determined primarily by how much smaller 

E(Rc) must be than kT. The important observation to make is that vortex 

dynamics yields a critical velocity of the proper thermodynamic dependence. 



2.6. Vortices Near W a l l s  

Another observation to note is that this vortex model of breakdown predicts 

a vortex-free region in the vicinity of walls when counterflow is taking place. 

Consider a line vortex next to an infinite planar wall (see Fig. 2.7). 

Figure 2.7. A vortex of circulation n at  distance R from a wall. 
The image vortex is shown at its (virtual) location. 

If an adiabatic wall is assumed, v', must be parallel to the wall at  all points. This 

boundary condition is satisfied by placing an image vortex of opposite circula- 

tion equidistant from the wall along the normal. This forces the wall to be a 

streamline for the flow, and hence the wall itself may be removed from further 

consideration. 

We now have the case that has been discussed above and solved completely, a 

K: vortex line pair. If R < Rc = - the vortex pair will collapse. Therefore, if 
4nw ' 

n R <  - the vortex will collide with the wall and be annihilated. It is instruc- 
4nw ' 

M tive to examine a few numerical values. For w = 1 ---; R, = 80& which is much 
sec 

greater than the core radius. This distance should be compared to the thick- 

ness of the normal fluid boundary layer created following a shock. 



m 
Looking 1 cm behind a shock producing a relative velocity of 1 ---7 6, - 30 pm. 

sec 

Thus, 

Therefore, for most counterflow processes, 3- fil -t&, which is less than the 

free stream value for 4 by a factor of k.  Thus. Rc is increased by a factor of 
P 

roughly L. It is in this manner that a vortex line near a wall is absorbed. 
Pn 



Chapter 3 

3.1. Flow Disturbmces Produced by a Shock 

It has been shown in previous sections that the presence of quantized vor- 

tices permits momentum exchange between the normal and super components 

(breakdown). To examine this idea, it is useful to study the flows behind shocks 

to see whether any such excitations remain in the fluid. One way to do this is to 

probe the shock-processed fluid with another shock wave. In this way it is possi- 

ble to see whether the second (successhe) shock will be modified in any way by 

excitations produced by the initial shock. 

A typical experiment takes place in the following manner. A shock pulse of 

prescribed amplitude and duration is fired and travels along the shock tube. 

After a certain time interval (the separation time t ,),  a second shock pulse 

identical to the first is fired. The two profiles are recorded digitally when they 

are received at  an endwall sensor located at a fixed distance from the heater. 

The separation time t ,  is varied, and the resulting profiles are compared. It 

turns out that effects in such experiments are most dramatically displayed for 

shocks at the breakpoint, the strength a t  which arrival times begin to deviate 

from the Khalatnikov prediction. For significantly weaker shocks the effects are 

negligible. 

Shown in Figure 3.1 are the results from one such experiment. For separa- 

tion times greater than a few minutes, the profiles of the initial and successive 

shocks are indistinguishable. However, as the separation time is reduced, the 

profile of the successive shock takes on the appearance of a profile having 



undergone breakdown. With t, around 10 seconds, it is observed that the region 

of uniform counterflow has decayed (it appears tilted). This decay increases 

monotonically with decreasing t,, and the profile changes curvature from con- 

vex to concave. Following behind the shock pulse is a warm tail, in which the 

geometric noise (see Appendix D) is smoothed out. As t, is reduced, this warm 

tail rises rapidly to an asymptotic level. Further reductions in t, do not affect 

the tail although the tilting continues to increase. 

In light of the vortex model for breakdown, this result is interpreted as fol- 

lows. The initial shock produces some sort of excitations in the fluid, presum- 

ably quantized line and ring vortices. Some of them remain in the fluid long 

after the initial shock pulse has decayed (decay time for shocks is typically on 

the order of 20 msec). The successive shock interacts with these vortices 

already present in the flow since their presence allows exchange of momentum 

between the components and generation of additional vorticity (see Chapter 4). 

Thus, decay for the successive shock is greatly enhanced. 

3.2. hcation of Disturbances in the Fluid 

It is possible to use successive shock experiments to study the spatial distri- 

bution of these disturbances in the shock tube. If the disturbances are distri- 

buted uniformly throughout the shock tube, then the decay will be ongoing, and 

the points of the temperature profile should decrease in amplitude as the wave 

propagates. If the disturbances are localized, then the decay regions will be 

similarly localized. In this way, observing the evolution of the successive shock 

will reveal the distribution of disturbances in the fluid. 

To observe this profile evolution, the variable length second sound shock tube 

(Turner, 1979) was used. This shock tube is conceptually similar to the shock 

tube described in Appendix C except that the endwall sensor may be positioned 

from 2 to 20 cm from the heater. Although it is not possible to observe the 



evolution of a single pulse with this shock tube, it can be used to view identical 

waves at  different locations along the shock tube. With the sensor a t  a fixed 

location, a successive shock experiment is run as described above. After record- 

ing the successive shock profiles for a variety of separation times, the endwall 

sensor is moved to a new position along the shock tube. Another successive 

shock experiment is done at this station as above with all other conditions 

unchanged. In this way, the wave profiles may be observed at many locations 

along the tube. 

Figures 3.2-4 show a few results from such an experiment. The three sensor 

locations are a t  7.2 cm, 9.6 cm, and 14.4 cm with separation times of 20 

seconds. Note that the expected nonlinear evolution of the profile is observed 

(the expansion fan broadens, for example). A convenient point on the profile to 

examine for amplitude decay is the corner point on the expansion, indicated by 

small arrows in the figures. After comparing these three cases, it is seen that 

the amplitude of this point is unchanged to within experimental error. Simi- 

larly, in all cases examined experimentally, it is found that the pulses do not 

decay while propagating between stations. Thus, the results show that these dis- 

turbances are confined to a region near the heater and decay before getting 

more than a few diameters away. 

The successive shock technique provides a powerful method with which to 

study the spatial distribution of this disturbance layer as a function of time, by 

varying both sensor location and separation time. The principal conclusions are 

threefold. A shock near the breakpoint produces disturbances in the fluid. A 

second shock passing through these disturbances undergoes enhanced decay. 

These disturbances have lifetimes on the order of minutes, remain near the 

heater, and probably have vortical character. 
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Figure  3.1. Success ive  shock d a t a  f o r  s e p a r a t i o n  t imes  m, 20, 10,  5, 2,  1, 0.5, 
and 0.2 seconds. The decay i n c r e a s e s  as t h e  s e p a r a t i o n  time decreases .  
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Figure  3.2.  Successive shock d a t a  f o r  s e p a r a t i o n  t imes  of = and 20 seconds 
w i t h  senso r  7.2 c m  from h e a t e r .  
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Figure  3 . 3 .  Successive shock d a t a  f o r  s e p a r a t i o n  t imes of co and 20 seconds 
w i t h  sensor  9.6 cm from hea te r .  

Figure 3 . 4 .  Successive shock d a t a  f o r  s e p a r a t i o n  t imes of and 20 seconds 
w i t h  sensor  1 4 . 4  cm from h e a t e r .  



Chapter 4 

ROTATING SHOCK m T S  

4.1. Eqyilibrium of a Rotating Fluid 

Before discussing second sound shocks in rotating superfluid helium, it is 

instructive to review briefly the equilibrium state of a rotating fluid. Consider 

first a closed arbitrary volume of a nonideal fluid with equation of state 

where 

de = Tds + % d p .  
P 

Suppose this closed container is rotated a t  a constant angular velocity fi . Thus, 

the boundary condition for velocity is 

6 (boundary)  = 6 x T' ( b o u n d a q ) .  (4 .3)  

Presumably after a long time all transients have died out, and the fluid has 

reached its equilibrium state which is described by the Second Law of Thermo- 

dynamics. 



When the problem is posed in this manner, it immediately suggests a calculation 

of variations approach (Putterman, 1974). Thus, the variation of the entropy 

integral must vanish. 

In this problem three integral constraints occur. The final state has a specified 

mass, angular momentum, and energy. 

One solves this problem with Lagrange multipliers, so the actual problem to 

solve is 

where 



from equation (4.2) and A,,  A2, and x3 are undetermined constants. After carry- 

ing out the variations, the following result is obtained. 

Since 6e, 6p, and all components of 62 may be varied independently, the expres- 

sions multiplying them must be 0. 

T = - A g l  = constant (4.92) 

-. 2 = [-A,-' a,] ; = n x ; 

1 p - -u2 = - hcl A,  = constant 
2 

where 

has been used. 

So the equilibrium state of a classical rotating fluid has solid body rotation, 

constant temperature, and constant p - Lu2. This Iatter equation is more 
2 



clearly understood by taking its differential and combining it  with the other two 

equations. 

This is just the pressure force balancing the 'fictitious" force, and by analogy 

equation (4.15) is just the chemical potential cancelling the "fictitious" potential 

so that the total potential is constant. 

4.2. Ecpilibrium of a Rotating Superfiuid 

To find the equilibrium of a rotating superfluid, the same method as above is 

employed (Putterman, 1974). The entropy is maximized subject to the integral 

constraints of mass, energy, and angular momentum. Of course, in this case 

Pn there are the additional variables = -and = 5, - v', . One point to keep in 
P 

mind, however, is the irrotationality of the super component, which must be 

taken into account during the variation. Thus, the variational principle 

becomes 

where now 



Varying alI quantities independently except Gs yields the following relationships. 

T = -Azf =cmtant (4.20) 

Note that for +3 = 0 these conditions are the same as (4.12-14). Now we assume 

that the superfluid is irrotational. 

where $ is the super component potential. Hence, all three components of $s 

may not be varied independently. 

Carrying out the $ variations in equation (4.17) over all 61C/ such that the boun- 

dary terms vanish yields 



Thus, equations (4.20-23, 26) provide a complete description of the dynamics 

and thermodynamics of rotating superfluid helium. 

I t  is possible, however, to maintain the irrotationality of the super component 

in the bulk fiuid without requiring the super component to be motionless when 

rotated. Onsager (1949) and Feynman (1955) suggested that the free energy of 

the fluid would be reduced by allowing line singularities (potential vortices) to 

exist in i j ,  . A quantum mechanical argument then implies the quantization of 

the circulation K. I t  is assumed that the super component is described by a 

L 
wave function $s = p: eiV . The momentum and vorticity operators in quantum 

mechanics are given by the following. 

It is assumed that p", and v", are related by the mass of the helium atom. 

p> m4 u", (4.29) 

Thus, 

i7i q = - - V  x v .  
m4 

Applying this operation to a nonsingular wavefunction yields 0. Thus, away from 



singularities, i& is irrotational and may be expressed as the gradient of a poten- 

tial. The circulation may be found by integrating 3, around a closed loop. If 

this loop does not pass through a singularity the result is 

where h is Planck's constant and N is an integer. Thus, the circulation around 

any closed loop C is 

Free energy calculations (Feynman, 1955) show that  the equilibrium 

configuration of line vortices in rotating helium has the vortices aligned with the 

axis of rotation, having a n  areal density 

7 L  = lines /cm2 2m4" h 
[2000 ,-In rad  fsec 

which mimics solid body rotation. This result breaks down in the vicinity of 

walls or with small numbers of vortices. 

4.3. Motivation and Method of Rotating Experiments 

From the successive shock experiments it has been seen that  shocks of 

strength near the breakpoint produce long-lived disturbances in the fluid. The 

presence of these disturbances enhances decay in a similar shock propagating 

through fluid containing them. As discussed in the previous chapter, it is 

thought that  such disturbances have vortical character, perhaps being com- 

posed primarily of the quantized line and ring vortices mentioned above. Direct 



measurement of vorticity in classical fiuids is by no means trivial, and in many 

ways it is even more subtle in superfluid helium. Much more straightforward 

would be to send a second sound shock wave through a known vorticity field and 

see how the waveform is modified by the vorticity. 

As discussed above, rotation of superfluid helium will send the normal com- 

ponent into solid body rotation, whereas the super component will form quan- 

tized line vortices roughly mimicking solid body rotation. For practical experi- 

mentation two orientations are convenient. The shock tube may be oriented nor- 

mal to the axis of rotation so that the line vortices are pqendicular  to the 

direction of propagation (but are parallel to the wave front). This case is 

referred to as the transverse orientation (see Fig. 4.1). Another possibility is to 

have the shock tube aligned with the axis of rotation. In this situation the vor- 

tices are parallel to the direction of propagation (but are perpendicular to the 

wavefront). This case is referred to as the a&l orientation (see Fig. 4.1). 

Transverse Case Axial Case 

Figure 4.1 Transverse and axial orientations 
of the rotatlng shock tube. 



A full description of the rotating apparatus is presented in Appendix B. 

The experimental procedure is quite similar to that of the successive shock 

experiments for both the axial and transverse cases. First, the endwall sensor is 

positioned a t  a desired location. For the axial case, this is quite easily done in 

situ since the variable length second sound shock tube (Turner, 1979) was used. 

The transverse case was much more diacult experimentally since the entire 

shock tube had to be removed from the dewar and fitted with channels of 

different length for 'each run (see Appendix C). With the sensor positioned, a 

shock strength near the break point was selected. Then for various rotation 

rates shocks of this strength were fired and recorded digitally from the endwall 

sensor. Practice suggested a waiting time of several minutes between shocks or 

variations of the rotation rate to avoid hysteresis (recall the successive shock 

experiments). After all desired data at  this station had been taken, the sensor 

was moved to a new location and the process was repeated. 

4.4. Results of the Axial Case 

Shown in Figure 4.2 are results of an experiment performed a t  

T = 1.605 K and p = s.v.p. = 5.03 T o m .  In this experiment the sensor was 

located 2.65 cm frcm the heater. Note that as the angular velocity is increased, 

the region of uniform counterflow begins to tilt, indicating that decay has 

occurred. This decay increases almost linearly with R. Furthermore, a warm 

tail appears behind the shack pulse. As hZ is increased, this tail quickly reaches 

its asymptotic level. Further increases in Q do not affect the tail. All of these 

profiles bear a strong resemblance to profiles of shocks having undergone 

breakdown. Note particularly the striking similarity to the successive shock 

experiments, especially the fact that the decay region begins directly a t  the 

leading edge of the shocks. 
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Figure 4.2. Axial shock d a t ~  for experiment AXISO1. The rotation rate is from 
0 /see to 420 Isec in increments of 60 '/see. 

ROTATION RATE (DEG/SEC) 

F i ~ u r e  4.3. Normalized slope vs. rotation rate for experiment A.ISO1. 



It is of interest to examine the relationship between It and the decay. To do 

this it is useful to characterize the profile modification in terms of the slope a t  

the leading edge. This slope was calculated by fitting a quadratic polynomial 

through the decayed part of the profile. For experiment AXISO1, the polynomial 

was fit between 280 p e c  and 850 p e c  , yielding 1141 points through which to fit 

the curve. The slope was obtained by evaluating the derivative a t  the leading 

edge and normalizing this by the height. This normalized slope is plotted in Fig- 

ure 4.3. 

Even if the slope decay were proportional to n ,  one would not expect to 

observe this directly. The reason for this is that the profile propagates non- 

linearly -slopes fiatten or steepen because the characteristic velocity is a func- 

tion of amplitude. In the case above, the slopes will be flattened by the nonlinear 

wave propagation and thus should not be quite proportional to hZ . The effect will 

be more pronounced as the slope becomes steeper. Thus, for large values of R , 

the measured slope should begin to undershoot the value predicted by a linear 

proportionality. Moreover, at  the shock front the characteristics are propagat- 

ing into the shock, so the shock undergoes triangular wave decay. Nevertheless, 

for small R the slope decay is linear in R . 

As discussed above, it is of interest to know whether the profile decays as the 

shock pulse propagates. Experiments as discussed above were run at three sen- 

sor locations: 2.65 cm, 5.81 cm, and 10.52 cm. In all three cases the wave 

strength was kept constant. Shown in Figure 4.4-6 are results for a rotation rate 

of 60 "/sec. The nonrotating case is shown for reference. That the pulses 

undergo decay while propagating is easily seen. The clearest manifestation is 

the decrease in amplitude at the corner point (the point at  which the expansion 

and the "uniform" regions are coincident). Again to quantify this result, it is 

useful to calculate the slope a t  the leading edge. Define the decay parameter A 



Figure 4.4.  Axial  shocks wi th  0 '/set and 60 O/sec located  2.65 cm f ron  hea re r .  
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Figure 4.5. Axial  shocks wi th  0 O/sec and 60 O/sec located  5.81 cm from hea te r .  
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Figure 4.6. Axial shocks with 0 O/sec and 60 O/sec located 10.52 cm from heater. 

ROT. RATE X LENGTH (CM-REVISEC) 

Figure 4.7. Decay parameter for AX1 e eriments. 0's are at 2.65 cm, 
0's are at 5.81 an, and x's are at 10.52 cmLl 
Decay parameter is in units of (1.8.10~1~) cm . 



where S is the slope in msec'l, CI the rotation rate in O/sec, and L is the length 

in cm. Figure 4.7 is a plot of A for a variety of different lengths and rotation 

rates. In all cases, however, the shock strength is held constant. It is quite clear 

from Figure 4.7 that the slope decay is proportional both to the rotation rate 

and to the distance traveled by the shock front. Deviations from this are in the 

direction predicted by the nonlinear wave speed. 

Figures 4.8-10 show results for R = 300 "/set, which correspond to points in 

the right half of Figure 4.7. That the nonlinear wave speed and triangular wave 

decay are having an effect is seen in that the shock itself is being weakened by 

these effects. It is t o  be emphasized that these profiles are qualitative similar to 

pulses in which breakdown is occurring. 
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Figure 4.8. Axial shocks with 0 and 300 '/see located 2.65 cm from heater. 



Figu re  4.9. Axial shocks with 0 and 300 O/sec located 5.81 cm from heater. 
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Figure 4.10. Axial shocks with 0 and 300 O/sec located 10.52 crn from heater. 



4.5. Results of the Transverse Case 

Shown in Figure 4.11 are results of an  experiment with the shocks propagat- 

ing normal to the rotation axis. This experiment was done at the same thermo- 

dynamic conditions as the experiments in the axial case although here the 

shock strength was slightly greater. The rotation rate was again varied from 

OO/sec to 420°/sec in increments of 60a/sec. The results are qualitatively simi- 

lar to those in the axial case with one important difference. The onset of decay 

is delayed by about 100 psec rather than occurring immediately behind the 

shock. The significance of this point will be discussed in a later section. 

MILLISECONDS 

Figure 4.11. Transverse shock data fsr experiment TRALO1. The rotation rate 
0 0 

is from 0 Isec to 420 Isec in increments of 60 Isec. 
The discontinuity around 1.4 msec is the shock after reflecting 
from both endwalls (3 transits of the shock tube length). 



As in the axial case the question arises as to whether the decay is ongoing 

while the shock propagates (as it is for the axial experiments) or whether it 

occurs only in a small region near the heater (as it does for the successive 

shock experiments). The initial guess would be that since the vortices are uni- 

formly distributed in the shock tube, the pulse would decay while propagating. 

Although the results are neither as visually striking nor as easily quantified, 

measurements of the corner point height show unambiguously that the pulses 

have decayed while propagating. Figures 4.12-13 show some results performed in 

shock tubes of length 0.99 cm and 1.34 cm. All four shocks are of the same 

strength, and two rotation rates (180°/sec and 420a/sec) are shown for com- 

parison. The corner heights, normalized by the height of the leading edge, are 

shown in Table 4.1. 

Table 4.1. Decay of Transverse Shocks 

4.6. Local and Global Quantities 

Before a discussion of the results, it is worth mentioning that certain 

features of the shock pulses are local while other features are global. By this it 

is meant that certain features are found to depend only upon their distance 

behind the shock front while certain other features depend on the length and 

height of the pulse. The profile of the shock and the decay region are quite 

invariant with respect to the length of the pulse. Figure 4.14 shows three pulses 

Normalized Corner Height 
0.07 
0.80 
0.71 
0.63 

Position (cm) 
0.99 
1.34 
0.99 
1.34 

R ("/set) 
180 
180 
42 0 
420 
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Figure 4.12. Transverse shocks with 180 O/sec and 420 O/sec 0.99 cm from heater. 
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Figure 4.13. Transverse shocks with 180 O/sec and 420 O/sec 1.34 cm from heater. 



of lengths 200 p see, 300 p eec, and 400 psec. In all cases the profiles lie atop 

one another until the expansion fans, which parallel each other very closely. 
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Figure 4.14. Decay does n o t  depend on pulselength. 

By contrast, the warm tails following these shocks are quite different. These 

traces show a feature typical of such experiments. As the pulse length is 

increased, the tail height rises. Conversely, it is possible to produce strong 

shocks (undergoing strong breakdown) with virtually no tail simply by reducing 

the pulse length. Recall from previous discussions that the tail height rapidly 

reached an asymptotic level when the rotation rate was increased. Further 

increases of rotation rate left this "mature" tail unaffected (see F'g. 4.11 as 

another example). The height of this mature tail may be varied in two ways. 



One is to increase the pulse length since the height of the mature tail is found to 

be proportional to the pulse length. Moreover, increasing the voltage V across 

the heater produces a mature tail of height proportional to IF. Thus, the 

mature tail height is proportional to the energy put into the pulse. Define the 

amplitude ratio to be 

where A is the amplitude of the mature tail in volts, V is the heater voltage in 

volts, and T is the pulse length in seconds. Thus, R should remain approxi- 

mately constant. Shown in Table 4.2 are values of R for several different shocks. 

The transverse rotating shock tube was used (length 1.34 cm) and the rotation 

rate was 420°/sec to ensure a mature tail in all cases. I t  is seen that R is indeed 

constant, showing that the tail amplitude is proportional to the amount of 

energy originally in the shock pulse. 

Table 4.2. Amplitude Ratio of mature tails 

R 
4.33 
4.27 
4.39 
4.40 
4.32 
4.23 
4.37 
4.38 
4.36 

Pulse Length (T) 
500pec 
400pec 
300pec 
200pec 
6OOpec 
600pec 
600pec 
600pec 
600pec 

Pulse Height (A) 
2.57 
2.03 
1.57 
1.05 
3.18 
2.68 
2.36 
3.70 
4.18 

Heater Voltage (V) 
34.5 
34.5 
34.5 
34.5 
3.50 
32.5 
30.0 
37.5 
40.0 



4.7. An Explanation of the Rotating Results 

To explain the results of the rotating experiments, the following facts should 

be kept in mind. First, recall that if quantized vortices, particularly rings, a re  

present in the fluid, counterflow may decay by the mechanism proposed by 

Turner (discussed in Chapter 2). In fact, the maximum counterflow velocity has 

the thermodynamic dependence predicted by this theory. Second, in the axial 

case the decay was proportional to the rotation rate and to  the distance that 

the shock traveled. Third, the axial and the successive shock experiments were 

similar in that  the decay began sharply a t  the leading edge, whereas in the 

transverse case the onset of decay was delayed significantly. 

Consider for a moment a weak shock wave in an ordinary fluid traveling along 

a heated wall (Thompson, 1972). For an inviscid, incompressible fluid the 

Crocco-Vazsonyi theorem becomes 

where $ = V x 5 is the vorticity. In the above two-dimensional case, 

(a V ) d = 0, so equation (4.36) reduces to  

Thus, the vorticity produced in the fluid behind the shock is found by integrat- 

ing this equation in time for each fluid element as the shock passes over it. 

Here c is the wave speed. Another way of looking a t  this example is that due to 



the entropy gradient near the wall, the wave speed c is modified. Because of this, 

the shock strength varies along the front. Thus, the shock front becomes 

slightly curved, and vorticity is produced (see Fig. 4.15). It should be said, how- 

ever, that a curved wavefront will not produce vorticity if the shock strength is 

constant along the front. The best examples of this are cylindrically and spheri- 

cally converging waves. Nevertheless, wavefronts that are curved because of 

nonuniform shock strength always imply the creation of vorticity. 

Consider the case of a second sound shock propagating axially along a quan- 

tized vortex line. Jn the vicinity of the line, the thermodynamic state is slightly 

different than it is at  m . Although the temperature remains constant, the pres- 

sure falls near the line according to the relation 

which may be integrated if p, does not vary much to yield 

1 P + vP = P.. 

which is a Bernoulli theorem. Thus, near any vortex line there are radial gra- 

dients in the thermodynamic variables. These gradients cannot be determined 

explicitly since the canonical equation of state f i  = p (p, T, zu2) is not known. 

Moreover, near the core, there must be strong radial gradients because p,+ 0 

over a few angstroms. 

It is plausible that these radial gradients allow the production of azimuthal 

vorticity (vortex rings) around the vortex line (see Fig. 4.16). All of the gradients 

produced by the shock are parallel to the vortex line, so taking the cross 



Figure  4.15. A weak shock wave propagat ing  along a  hea t ed  wal l .  
V o r t i c i t y  i s  produced n e a r  t h e  wa l l .  

Front  View (en larged)  S ide  View 

Figure  4.16. A second sound shock c r e a t e s  az imutha l  v o r t i c i t y  wh i l e  
propagat ing  a long  a  quant ized  vor tex .  I n  t h e  f r o n t  view, 
t h e  v o r t e x  g r a d i e n t s  a r e  r a d i a l ,  t h e  shock g r a d i e n t s  a r e  
out  of t h e  paper ,  and t h e  c r o s s  p roduc t s  a r e  azimuthal .  



product of shock gradients (2,) and vortex gradients (&) yields azimuthal vorti- 

city production (2,). Needless to say, this description cannot be completely 

correct - circulation in the super component is quantized. However, one can 

imagine some nonsteady process periodically producing vortex rings as the 

shock propagates along the vortex line. In this view the vortices are important 

in that they provide nucleation sites for rings rather than being tangled, 

stretched, or torn. These vortex rings then expand against the flow as discussed 

in Chapter 2. 

The transverse case presents a rather different picture than the axial case. 

Although the gradient cross product is not zero everywhere, the effect is 

lessened since the gradients are no longer perpendicular. Moreover, the shock 

encounters each vortex line only briefiy rather than continuously as in the axial 

case, and the ring-producing symmetry of the axial case is lacking during these 

encounters. In any case, it seems that the effect should be reduced in the 

transverse case. 

Yet this is not exactly what happens. The decay is delayed in the transverse 

case, appearing quite dramatically around 100 psec or so behind the shock 

front. This fact, however, actually lends support to the above ideas when it is 

realized that the onset of decay is coincident with the arrival of secondary 

wavelets (see Fig. 4.17). Secondary wavelets are produced at the heater seal: 

gaps or irregularities in the seal produce perturbations in the flow (see Fg. 

4.18). These wavelets propagate radially outward from the corners and arrive 

shghtly later than the main pulse since their path length is longer. More impor- 

tant, however, is the fact that they introduce a mean component of the thermo- 

dynamic gradients along the vortex lines, as is the situation in the axial case. 

The decay may then proceed as above. 



MILLISECONDS 

Figure 4.17. Decay i n  t r a n s v e r s e  shocks  b e g i n s  w i t h  a r r i v a l  of secondary  
0 w a v e l e t s  ( a t  a r row) .  R o t a t i o n  rates ars 0 / s e c  and 360 O/sec.  

F i g u r e  4.18. Secondary w a v e l e t s  are  produced a t  t h e  h e a t e r  s e a l  
when a second sound shock i s  f i r e d .  



These results lend an interesting interpretation to the successive shock 

experiments. Recall that as the separation time was reduced, the successive 

shock exhibited decay beginning directly at the leading edge (see Figs. 3.1-4). 

Comparison with the axial experiments suggests that any vorticity remaining in 

the fluid has a significant mean square component perpendicular to the heater. 

Although this sounds unusual, it is really not so since walls tend to attract and 

absorb vortices parallel to them (see Fig. 2.7). However, the remaining vorticity 

is not all axial; rather, the convexity of the successive shocks suggests a distri- 

bution (tangle) of vorticity (compare the successive and transverse shocks). 



Chapter 5 

CONYERGING SHOCK EXPERIMENTS 

5.1. Motivation 

It has been shown that the presence of vorticity enhances the breakdown 

phenomena. Specifically, ongoing decay is observed when vorticity is present in 

the bulk fluid. However, no progress has been made toward observing spontane- 

ous breakdown out in the bulk fluid. It was mentioned above that the primary 

difficulty in making strong second sound shocks lay in getting the heat into the 

liquid, not in transporting it by counterflow. In order to observe breakdown in 

the bulk, it is therefore necessary to introduce a strong heat flux away from 

boundaries (say, with a laser sheet) or to strengthen a weaker second sound 

shock. 

The latter method was found to be amenable to investigation with equipment 

on hand and proven techniques, so it was pursued. There are several ways to 

strengthen a wave. Two waves may merge to form one stronger wave as shown in 

Figure 5.1. This merging could be accomplished in space rather than time (see 

Fig. 5.2). A mach stem could be produced by having a planar shock incident on 

a wedge (see Fig. 5.3). 

Perhaps the simplest way to produce a larger relative velocity is to use a con- 

verging channel to strengthen a shock. It is a well known result of acoustics 

that a weak wave in a channel will have a strength s (x) given by 



Figure  5.1. Two shocks co inc ide  i n  t ime t o  form a s t r o n g e r  shock. 

Figure  5.2. Two shocks co inc ide  i n  space t o  form a s t r o n g e r  shock. 

F igure  5 . 3 .  A Mach stem i s  s t r o n g e r  t han  t h e  i n c i d e n t  shock. 



where A ( x )  is the area of the channel (Whitham, 1974). For weak waves, 

M - 1  = s , s o  

If a spherically converging channel is chosen, equation (5.2) reduces to 

I t  should be emphasized that this relation retains its validity only so long as 

M(r)  - 1<< 1. If a shock wave travels a distance L down a spherically converg- 

ing shock tube of initial radius r,, this relation may be integrated to yield 

where tA is the arrival time. Since 

this may be combined with equation (5.4). 

It is this expression which for weak waves relates the average and final Mach 



numbers or the arrival time and Anal temperature jump where 

5.2. Difl5culties Associated with Converging Shocks 

There are a few difficulties in producing spherically converging shocks. When- 

ever a curved shock is produced, the question of stability arises. In many cases 

strong converging shocks have been shown to be unstable to perturbations on 

the shock front (Vhitham, 1974). In these cases the perturbations on the front 

are strengthened by the converging geometry faster than the nonlinear wave 

speed can smooth them out (as occurs for a plane shock). However, experi- 

ments by Perry and Kantrowitz (1951) on weak cylindrically converging shocks 

yield very symmetric wave fronts. Experiments such as these give reason to 

hope that stability considerations for weak spherically converging second sound 

shocks will be unimportant. 

A far more important problem occurs in the experimental realm. For all 

other second sound shock experiments, the heat fluxes were produced by 

planar thin film Nichrome heaters of uniform thickness. These heaters were 

(easily) fabricated by vacuum deposition of Nichrome on to a planar substrate, 

either quartz or glass, sufficiently far removed from the Nichrome source so as 

to produce a film of uniform thickness. Producing a curved uniform heater is 

much more difficult since placing the substrate at  a large distance from the 



source will guarantee a naun%jwm heater. Moreover, getting sharp boundaries 

for the heater and leads requires spherical masks conforming exactly to the 

substrate curvature. In due time all of these problems were overcome. 

5.3. Apparatus 

The converging channel shown in Figure 5.4 was designed to fit in the rotating 

shock tube (see Appendix C). In this way building another complete shock tube 

could be avoided. 

Frgure 5.4 The spherically converging shock tube. 

The shock 'tube" itself was a conical channel with half-angle 15" in a cylindrical 

piece of teflon. This channel had a length L = 1.14 cm at superfluid helium tem- 

peratures and an area contraction of approximately 3:l. The channel cross sec- 

tion was 1.7% of the surface area of a sphere of the same raidus. The edges of 

the channel are perpendicular to the heater and sensor. For the heater, a 

plano-concave lens with radius of curvature T,  = 2.70 crn was used, whereas the 

sensor was deposited on a plano-convex lens with radius of curvature T, = 1.30 

cm. Pressure loading kept the parts in contact. 



5.4. Results 

Experiments run with this shock tube were similar to those of Chapter 1. A 

thermodynamic point @, ,To)  was selected, and a series of shock pulses were 

fired with a suitable waiting time between them to avoid hysteresis. Measured 

quantities are the arrival time, which corresponds to < M >  , and the final tem- 

perature jump. It should be noted in passing that an endwall sensor was used. 

Therefore, the temperature jump recorded was approximately double that of the 

incoming wave (for weak waves this is exact). Since the waves are fairly weak 

and for lack of a better assumption, the incident wave is taken to have half of 

the measured temperature jump. 

Three such experiments were performed a t  temperatures of 1.605 K, 1.571 K, 

and 1.463 K. In all cases the pressure was the saturated vapor pressure plus the 

hydrostatic head from several inches of helium (1 Torr 4 in He). Figure 5.5 

shows the results of these experiments with the right hand side of equation (5.8) 

plotted vs. the left hand side. These curves are typical of those in Chapter 1 

with one important difference. The Mach numbers involved here are much 

higher in all cases. It is seen in these experiments that the weak wave equation 

relating < M >  and A TL is remarkably well obeyed until there is an abrupt diver- 

gence from the prediction. Shown in Table 5.1 are values associated with the 

maximum A TL in each case. The Khalatnikov values and exact numerical calcu- 

m lations (Moody, 1983) of Mach number and relative velocity in - are given for 
se c 

comparison. 

The values for M, were determined by using the Khalatnikov relation relating 

A TL to ML and the weak wave area relation. 



Figure 5.5. Final temperature jump (scaled) vs. average Mach number. 
0 are at T = 1.605 K, A are at T = 1.571 K,  0 are 
at T = 1.463 K. 



Table 5.1. Strong Converging Shocks 

To A TL $4) Mo ML(Khal.) ML(Moody) w (Khal.) ~(Moody) 
1.605 0.071 1.084 1.057 1.098 1.148 6.0 7.6 
1.571 0.076 1.095 1.067 1.115 1.182 6.5 8.3 
1.463 0.087 1,139 1.093 1.161 1.302 7.6 10.7 

In each of the three experiments above, the calculated Mo values are in good 

agreement with maximum values of < M> for the straight channel experiments 

of Chapter 1 and for those of Turner (1979). 

One purpose of these converging experiments was to produce breakdown in 

the bulk fluid. If this had occurred, however, the temperature jumps a t  the sen- 

sor would have been far less, so in view of the data, it seems likely that break- 

down is still occurring at the heater. To evaluate this hypothesis, it is instruc- 
\ 

tive to compare calculations of A To and Mo from the above experiments with 

straight channel data a t  similar thermodynamic conditions. It is unfortunate 

that Mo and A To data are not available for the straight channel experiments. 

Instead, one can only make use of < M >  and A TL for these experiments. This is 

no real hindrance, however, since in a straight channel < M> and ATL are 

changed only by triangular wave decay, a relatively weak effect. Thus, if 



Figure 5.6. Calculated initial quantities from converging experiment 
(0) at T = 1.605 K compared with straight channel 
experiment H5 (0) at T = 1.609 R. 



breakdown occurs at the heater, one expects these two data sets to lie almost 

atop one another, with the straight channel points slightly beneath the converg- 

ing points. Figure 5.6 shows that this is indeed the case. It is concluded that 

the breakdown occurs principally at  the heater. 

5.5. Metastability 

Associated with a second sound shockwave are jumps in all thermodynamic 

parameters, not just the temperature, although most attention is focused on it. 

Khalatnikov worked out the pressure perturbation across a second sound shock, 

neglecting the coefficient of thermal expansion. If this is not neglected (Lifshitz, 

19441, the pressure jump becomes 

where f?, the coefficient of thermal expansion, is negative. The coefficient of the 

PsPn quadratic term is dominated by - , so Ap increases slightly and then 
P 

becomes negative as the quadratic term begins to dominate. Exact numerical 

calculations (Moody, 1983) bear this out, Ap starting out initially positive, going 

through 0 typically by M 1.002, and becoming increasingly negative 

thereafter. 

This raises the possibility of using a second sakmd shock wave to produce a 

phase change, but not in the way typically considered. Since the pressure jump 

across such a shook is negative for any reasonable strength, it is possible to 

cross the coexistence curve by a d e c ~ e a s e  of p r e s s w e  rather than by an 

increase in temperature. 



It is of interest to compare the pressure jumps produced across the strongest 

converging shocks mentioned above. 

Table 5.2. Pressure Jumps Across Second Sound Shocks 

T P(s,v,p .) AP(Kha1.) Ap (Moody) 
1.605 5.83 -4.65 -10.05 
1.571 5.00 -4.96 -1 1.61 
1.463 3.00 -5.55 -14.71 

Table 5.2 shows pressure data in Torr for the strongest shocks in the converging 

experiments, The actual starting pressure for these experiments is about 2 Torr 

higher than saturated vapor pressure (1 Torr a 4 in He). In all cases above, 

given a reasonable hydrostatic head, the coexistence curve is crossed. More- 

over, the exact numerical calculations of Moody suggest that tensile stress was 

put on the liquid (the pressure became negative). I t  is possible that this effect 

may be exploited to study metastable liquid. 



Chapter 6 

CONCLUSIONS 

Two conclusions can be made based upon the above experiments. It has been 

clearly shown that the presence of vorticity enhances the breakdown of 

superfluidity. However, in the nonrotating experiments it is found that all of the 

interaction occurs near the heater, rather than out in the bulk fluid. 

Both experiment and theory attest to the role that vorticity plays in the 

breakdown of superfluidity. Theories of thermally nucleated quantized vortices 

predict a critical velocity 

This thermodynamic dependence has been verified experimentally although the 

numerical constant required to make the above proportionality an equality is 

approximately an  order of magnitude lower than predicted. Nevertheless, the 

above two facts taken together provide strong evidence that the production of 

quantized vortex rings is intimately connected with breakdown. 

Successive shock experiments demonstrate that a shock that has undergone 

breakdown leaves disturbances in the fluid after its passage. These distur- 

bances never travel far away from the heater and decay after a few minutes. 

Note in passing that vortex dynamics predicts that, in the absence of 

counterflow, vortices will be attracted to and ultimately absorbed by the nearest 

wall. The presence of these perturbations in the fluid enhances breakdown in a 

second shock (the successive shock) passing through them. It has also been 



shown that the radial thermodynamic gradients of a line vortex, when crossed 

into the gradients of the shock front, will produce azimuthal vorticity (like 

Crocco's Theorem). 

The rotating experiments demonstrate that decay is enhanced by the pres- 

ence of vorticity. The axial experiments show that the decay is proportional to 

the rotation rate (the density of line vortices) and to the distance traveled by 

the shock. Thus, the decay occurs wherever axial vorticity is located, rather 

than only near the heater. This decay is qualitatively similar to that observed in 

the successive shock experiments. 

One important difference is observed between the transverse and axial cases. 

In the transverse case, decay does not begin until the arrival of secondary waves 

produced by leaks in the heater seal. An analogy with Crocco's Theorem sug- 

gests that vorticity should be much more easily produced in the axiaI case than 

in the transverse case. It is extremely suggestive that in the transverse case 

decay does not begin until the secondary waves introduce thermodynamic gra- 

dients along the vortices (as they do in the axial case), 

It seems well established that the production of vortices is involved in the 

breakdown process. It is interesting to note, however, that in all stationary 

experiments breakdown occurred near the heater. In straight channel experi- 

ments the pulses did not decay anomalously while propagating. The successive 

shock experiments indicated that disturbances were produced only near the 

heater and remained there until they decayed away. 

That the region of decay is near the heater was shown most dramatically by 

the spherically converging shock experiments. In these experiments relative 

velocities greater than l 0 E . w e r e  produced in the bulk fluid. However, when 
se c 

compared with the straight channel experiments, back calculation of the 



conditions at the heater in the converging experiments unmistakably shows that 

the limiting phenomena occur there. Thus, the difficulty is getting the heat into 

the he1iu.m rather than propagating it by counterflow. 



Appendix A 

COmCTED HELIUM EQUATIONS 

k 1. The Landau TwFluid Equations w i t h  Dissipation 

MASS CONSERVATION: 

MOMENTUM CONSERVATION: 

a r 
I PnPs + + -pv' + v . pu'v' + - 

at 
w + P I  +T* = o  

P I 
ENERGY CONSERVATION: 

i I 1 1 P ~ P S  wr] + V .  v ' p e  + p  + + v 2 + - -  
2 2 P 



SUPERFL UID EQUA TIOW 

where 

I = identity ten so^ 

T*, G*, h* are the dissipative fluxes 

NOTE: All thermodynamic variables have an intrinsic dependence on w2. 

From the Onsager symmetry principle C4 = tl; also, the requirement that 

entropy production be positive-definite ensures that q, t2, t 3 ,  and K are positive 

and (;2 < C i t 3 .  



k2. Other Assorted Equations and Identities 

ENTROPY CONSERVATION (ignores dissipation): 

a -ps + V . p d ,  = 0 at  

CHEMICAL POTENTrAL DIFFERENTIA: 

d p  = 1 Pn a- s d ~  - - -d (we) 
P 2 P 



VELOCITY R ELATIONS: 

k3. Weak Wave Results 

FIRST SOUND SHOCK: 

SECOND SOUND SHOCK: 



Appendix B 

THE ROTATING DMAR 

The rotating liquid helium apparatus consists of three main parts: the dewar 

assembly, the rotating table, and its controlling electronics. The dewar system 

itself is contained in an aluminum framework about 3-1 /2  feet high (see Fig. 

B.1). The outer liquid nitrogen dewar is encased in a protective lucite cylinder 

which is kept in place by padded wooden supports. The inner vacuum-jacketed 

liquid helium dewar, which seals to the aluminum top plate, is held there by a 

padded aluminum collar. The collar was designed so that the position of the 

helium dewar might be shifted for centering purposes. The "arm" of the helium 

dewar is plugged with a rubber stopper: evaporated helium is removed through 

the twin 1-5/B inch vacuum lines which are connected to the ''cap" that seals to 

the top of the aluminum support plate. The "cap" has four other ports, three of 

which are available for vacuum-tight BNC feed throughs. The fourth port is 

reserved for the barocel manometer so that absolute pressure measurements 

may be made (and hence the temperature determined). Pressure tests on the 

T o m  -Zit er  whole system indicate a leak rate of approximately 50 , about two 
see 

orders of magnitude smaller than that of the large GALCIT research dewar. 

The entire dewar apparatus is bolted to the stainless steel table top. The top 

is 24 inches in diameter and 1/2 inch thick, with degree markings ruled on the 

edge, and has a load capacity of about 1000 lbs. This limit is well above the 

actual weight of the dewar. The twin vacuum lines pass through the table top 

and underneath it to rejoin in a coupling which is sealed to the rotating axial 

vacuum line (1.9?' inches in diameter). Inside the base of the table, the rotating 

vacuum line is joined through a Ferrofluidics rotary shaft seal to a stationary 



line, which is connected to the main lab vacuum line after passing through a 

pressure regulator. Also mounted on axis are 24 Fabricast slip rings, rated a t  20 

amps. Signals may be transmitted to and from the dewar apparatus through 

these slip rings, which are accessed through 24-pin connectors mounted on the 

table top and the base. An optical encoder disc for direct angular velocity meas- 

urements is attached to the axis (see below for discussion). 

The table is operated by a control panel which permits the selection of 

different modes and rates. The two modes that can be chosen involve using an 

external voltage reference to move the table to a prescribed angular location 

(program mode) or selecting a constant turn rate and direction, either clock- 

wise or counter-clockwise (rate mode). The velocity ranges available are as fol- 

lows for the rate mode: 

Table B.1, 

Full Scale Range Rate Selection 
10,00O"/second 0 to 2000"/second 
l,OOO"/second 0 to 99$.9'/second 

100" /second 0 to 99,99"/second 
10" /second 0 to 9.999O/second 
lo /second 0 to .9999"/second 

The resolution is 0.01% of the full scale range, with an accuracy of 0.1% of the 

selected rate or 0.01% of the full scale range, whichever is greater. A more accu- 

rate value for the rate may be obtained using the optical encoder, a disk with 

6000 lines equidistantly spaced around its edge. This disk is attached to the 

rotating axis, and a photodiode above senses the alternating light and dark pat- 

tern produced by lines blocking out the light from a small lightbulb below the 



disk. Very accurate velocities can be calculated by counting the number of sha- 

dows (lines) that pass the photodiode in a set time interval. p he table will reach 

a selected velocity in a matter of seconds since the angular acceleration is 

approximately 500"/sec2. The HOLD feature of the table allows smooth shifting 

from one rate to another without stopping when a new rate is selected. 

The entire apparatus is 8-1/2 feet high and 2 feet wide. Because of the height, 

a special Janis flexible helium transfer tube is used to fill the inner dewar with 

helium. About five liters of helium are required to cool and fill the inner dewar, 

and the time for each run is about five hours. The inner diameter of the helium 

dewar is 2.486 inches at the vacuum jacket (the minimum value), so experi- 

ments must fit within a foot-long cylinder of this diameter, 

Figure B.1. A schematic of the rotating dewar. 



Appendix C 

THE SECOND SOUND SHOCK TUBE 

Shown in Figure C.1 is a schematic diagram of the rotating second sound 

shock tube. The shock is produced by impulsively heating a Nichrome thin film 

evaporated on a planar quartz substrate. The shock propagates down a cylindri- 

cal teflon channel, to which the heater is tightly sealed by spring loading. The 

channel is terminated by another quartz disk, in the center of which is a scribed 

tin-on-gold superconducting transition edge bolometer. Since the sensor is an 

endwall sensor, the measured temperature jump is approximately double that of 

the incident wave. Located behind the sensor is a 7800 turn superconducting 

magnet, which is used to shift the sensor transition temperature (typically 

around 2.2 K) to the desired value for the experiment. The heater, sensor, chan- 

nel, and magnet are contained in a pressurizable brass housing. This housing 

may be oriented so that the shocks travel along or normal to the axis of rota- 

tion. 

Fignre C.2 shows a typical sensor transition curve. With 1m.A of current this 

sensor has a maximum sensitivity of about l.GV/K. Greater sensitivity may be 

achieved by increasing the resistance. 



SECOND SOUND SHOCK TUBE 

c 
1.0 inch 

Figure  C . 1 .  Second sound shock tube.  Labeled p a r t s  a r e :  

1. Brass  housing.  
2 .  Spr ing  load ing  f o r  h e a t e r .  
3. Quartz  s u b s t r a t e  of h e a t e r .  
4. Q u a r t z  s u b s t r a t e  of s enso r .  
5. Sensor b i a s i n g  magnet (superconduct ing) .  
6. Te f lon  channel ,  through which t h e  shock propaga tes .  
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Figure C.2. A typical superconducting sensor transition curve. 



Appendix D 

TRACE cxmmlNG 

In many cases it is possible to bring out more clearly the features of a second 

sound shock pulse by a systematic removal of geometric noise (trace cleaning). 

This correction rests on two basic principles. First, the noise bumps on a shock 

pulse profile are extremely reproducible from pulse to pulse. Thus, they are not 

random; rather, they are geometric in that they result from leaks, corners, and 

irregularities in the shock tube. 

To determine the geometric noise at  any location in the shock tube, one sub- 

tracts from a shock trace its "idealization," a perfect shock, a flat region of uni- 

form counterflow, and so forth. What is left is the geometric noise trace. If this 

noise trace is then subtracted from other shocks of the same strength a t  the 

same location, the cleaned trace is almost identical to the idealization. 

The real benefit from such a technique, however, is found in processing 

decayed shocks. The second principle of trace cleaning is that the noise decays 

just as the amplitude does for a decayed pulse. In the case of axial rotating 

experiments, for example, the nonrotating case and its idealization provide the 

noise trace. To remove the noise from each rotating trace, the noise trace is 

scaled by the ratio of rotating to nonrotating traces. This scaled noise trace is 

then subtracted from the rotating trace. 



Symbolically this is represented as follows: 

S = stationary real trace 

SI = stationary idealization 

S N  = stationary geometric noise 

R = rotating real trace 

RI = rotating idealization 

RN = rotating geometric noise 

SN = S-SI 

RN = R-RI 

R Assume: RN = -SN 
S 

Conclude: RI = R 1 - I d 
Practically, this algorithm is only useful in the "uniform" region. Elsewhere the 

SN 0 situation --, - often occurs, but this is no real problem since both 
S 0 

SN -, 0 and RN -r 0 in these regions. 

Figures D.l-2 show typical before and after pictures. Figures that have been 

so processed in the text are Figures 3.1-4 and 4.2,4-6,8-10,17. 
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Figure D.l. Two axial shocks that have not been cleaned. 
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Figure D.2. The same two shocks after cleaning. 



Appendix E 

ADDITIONAL SHOCK TRACES 

Contained in the:following pages are more traces of rotating and successive 

shocks. They are included here for the sake of completeness, at the same time 

allowing Chapters 3 and 4 to  remain uncluttered. 
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Figure E.1. Transverse shock data for experiment TRASOl (compare with Figure 
4.11). oThe shock tube length is 0.99 cm. The rotation rate is 
from 0 /see to 420 Olsec in increments of 60 O/sec. 
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Figure E.2. Axial shock data for experimgnt AXIMO2 (cgmpare with Figure 4 . 2 ) .  
The rotation rate is from 0 /see to 420 /sec in increments of 
60 '/see. The shock tube length is 5.81 cm. 
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Figure E.3. Axial shock data for experimgnt AXIL03 (c~mpare with Figure 4.2). 
The rotation rate is from 0 /sec to 300 /see in increments of 
60 '/see. The shock tube length is 10.52 cm. 
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Figure E.4. Successive shock data  f o r  experiment SUCM02 (compare with Figure 
3.1). The separation times a r e  03, 20, 10, 5, 2, 1, 0.5, and 0.2 
seconds. The shock tube length  i s  9.6 cm. 

3. 0 

. 5  1.0 1.5 

MILLISECONDS 

Figure E.5. Successive shock da t a  f o r  experiment SUCLOl (compare with Figure 
3.1). The separation times a r e  a, 20, 10, 5, 2, 0.5, and 0.2 
seconds. The shock tube length i s  14.4 cm. 
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