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ABSTRACT

This thesis considers the long distance motion of waves in a
random mediuﬁ. Using the geometrical optics approximation and a
stochastic limit theorem, we find evolution equations for rays
and for energy correlations, in two and three dimensions.

Our equations are valid on a long distance scale, well after
the focusing of rays has become significant. We construct
asymptotic expansions of the two point energy correlation
function in two and three dimensions.

In two dimensions we numerically solve the partial
differential equation that determines the two point energy
correlation function. We also perform Monte-Carlo simulations to
calculate the same quantity. There is good agreement between the
two solutions.

We present the solution for the two point energy correlation
function obtained by regular perturbation techniques. This
solution agrees with our solution until focusing becomes
significant. Then our solution is valid (as shown by the Monte-
Carlo simulations), while the regular perturbation solution
becomes invalid.

Also presented are the equations that describe energy
correlations after a wave has gone through a weakly stochastic

plane layered medium,
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I.1 Rays in Random Media

In the thesis we deal with the problem of wave propagation
through a random medium. Examples of wave propagation through
random media are given by: microwave and optical propagation in
atmospheric turbulence, acoustic wave propagation through a
biological medium, and stress waves through the earth's crust.

When a wave is impingent upon a medium in which the local
wave speed varies randomly, the amplitude and phase of the wave
experience random fluctuations. For example, in transmitting an
optical beam through the atmosphere, the random fluctuations of
the refractive index cause a spreading of the beam, a decrease in
the temporal and spatial coherence, a beam wandering, and
scintillations of the received intensity.

The motion of waves in a weakly inhomogeneous medium has
been extensively studied (see, for example, Ishimaru (1), Keller
(2), Chernov (3), Uscinski (4), Tatarski (5)). Up until recently
only regular perturbation methods have been employed to predict
the motion and properties of these waves. The solutions that are
obtained can not be valid for long distances, because an
essential assumption in using a regular perturbation expansion is
that large fluctuations have not occurred. Even before the
fluctuations become very large, we expect a regular perturbation
series to lose its validity.

Chernov (3) assumed that the position of a single ray was a
Markov process, and obtained the position of a ray after it had

travelled a long distance.
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1.2 Previous Results Using A Stochastic Limit Theorem

Suppose a wave enters a medium with a random wave
velocity. We assume the wave velocity is nearly deterministic,
the random component being homogeneous, isotropic and small, If
the standard deviation of the velocity variations is o (o<<1),
then a typical velocity inhomogeneity will produce a small
deflection.

If the wave length of the wave is much smaller than the
characteristic size of the velocity inhomogeneities, then the
approximation of geometric optics can be used. Geometrical
optics has been used previously, together with linearization of
the equations of motion (for small o), to find fluctuations in
ray direction, phase and wave intensity. It is known that these
results are not valid for long distances.

Recently, Kulkarny and White (6) have used a stochastic
limit theorem, in two dimensions, to determine the long distance
motion and properties of high frequency waves in a random
medium. They do this by considering the rays as continuous
Markov processes. They have determined that large fluctuations
occur on a distance scale of o-2/3. The technique they used does
not require the linearization of any quantities, and it allows
focusing of raytubes to occur (such focusing points are called

caustics).

Let u(t) be the probability density that a ray travels a

distance t before it focuses for the first time. Kulkarny and
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White showed that if t is measured in "universal time" then, for
all sufficiently differentiable and mixing random media, there is
a universal representation for u(z1).

A major result of (6) is the approximation of u(r) given by:

4

aZT_S/Z (-(6!:-_3_ -.281'1’)
w(t)= {2 4,314} e (1.1.1)

vV2n
where «=K(1/2)=1.854+, A graph of u(t) is given in Figure I.1.
The only way the actual medium under consideration changes
the statistical location of the caustics, is by the scaling to

"universal time". This scaling is given by

T=(yzo)2/3s (1.2.2)
2 T 108 2
Y, =6 {) (= 5=) B(r) dr (I.2.3)

where s is the physical distance a ray travels and B(r) is the
covariance function for the random velocity field. From (I1.2.2)
and (I.2.3) we see that if o is made smaller, a ray must go
further to have the same probability of focusing.

Other results for the evolution of a single ray and its
associated raytube area, as well as the transformation to
physical coordinates, are given in Kulkarny and White (6).

White (7) has extended the above results to a three
dimensibna1 random medium. Once again there is a "universal

focusing curve". The scaling to this universal time also depends
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on a single constant, derivable from the random field.

1.3 Results In Thesis

This thesis continues the investigation of the motion and
properties of waves on the 0‘2/3 scale. We do this primarily by
the construction of infinitesimal generators that describe the
evolution of physical quantities. We consider the system of
equations that describe the evolution of energy correlations in
detail.

The salient features of the assumptions in our work are

that:

1) The random medium that the wave enters is only weakly

stochastic, and the randomness is homogeneous and isotropic.

2) When the wave enters the random medium, the wavefront is
nearly flat (the deviation from a planar wavefront may only be of

order 02/3).

3) We study the high frequency phenomena that occur, that is we
use the geometrical optics approximation. Therefore, we can

consider the wavefront as advancing by the motion of rays.

Qur technique is an "honest" technique in the sense of
Keller (2). 1In an "honest" technique, no assumptions are made

that could be derived from previous assumptions.
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The two major approximations in our work are due to the high
frequency of the wave and the smallness of the departure from a
deterministic velocity field. The stochasticity of the medium
only enters when applying the Papanicolaou and Kohler theorem.

In chapter one, we derive the equations of motion for rays
and their associated raytubes in a random medium using the
geometrical optics approximations. Then we assume the medium is
only weakly stochastic and scale the equations of motion to be on
the 0-2/3 scale.

Chapter two is concerned with the Papanicolaou and Kohler
theorem. We describe the theorem, and then simplify its
requirements by restricting its applicability to dynamical
systems.

Using the theorem we then find £ﬁ, the generator that
describes the evolution of N rays and their associated raytubes
in two dimensions. We also find £y the generator that describes
the evolution of N rays in two dimensions.

2/3

To obtain these results we show that, on the o~ scale,

the vertical deviation of ray positions is 0(1) while horizontal

2/3). This suggests using the

deviation of ray positions is 0(o
variation in vertical ray position with respect to the initial
conditions as a definition of raytube area.

We cannot, however, assume a priori that the variation in a
horizontal rays position, with respect to the initial conditions,

is small. We have shown, though, that fﬁ

is derivable from £2N
and the assumption that the raytube area is approximated by the

variation of the vertical ray positions (see section 2.6). This
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leads us to believe that we can use variations in vertical ray
position as a definition of raytube area, in calculations
performed on the 6=2/3 scale.

In chapter three we study the g{z) function used
in fﬁ and Eone This function, which depends on the random
medium, is the only way different random media change the
evolution of rays (analogous to the yp constant in (I1.2.2)).

Chapter four begins by relating expectations in physical
space to expectations taken raywise. On the 6=2/3 scale the
waves in a random medium have become very wrinkled and have
developed loops in their wavefronts. However, the width of'these
lToops is small. Because of the looped structure of the
wavefront, a fixed physical recording device sees different
pieces of the wavefront at different instances of time. This was
observed experimentally by Hesselink (9).

The simple transformation that relates statistics in
physical space to statistics taken ray-wise was used in (6) for
the motion of a single ray. We generalize this transformation to
account for N rays.

Then we find the system of equations that describes the N
point energy correlation function (see (4.3.8)). When we refer
to energy in physical space, we shall mean the total wave energy
passing through a point in physical space.

When the wavefront has developed loops, the total energy is
the sum of the energy from each of the pieces of the wavefront
that passes through the physical point (we assume that the energy

adds incoherently). This is the energy that a physical device



would record.

To find the energy correlation system, we had to assume that
raytube area is well approximated by the variation of vertical
ray positions. It is for this derivation that we belabored the
discussion of raytube areas in chapter two.

Now we specialize to the two point energy correlation
function (with a plane initial wavefront). If Rz(t,M) represents
this correlation function for two observing points separated by a
distance M, at an upstream distance of to'2/3 then we find (see

(4.4.20)):

U = 2 (g(0)-g(M)) Uyy - W Uy

U(O,M,H) = (W)

-

Ry (t,M) = [ U(L,M, M) dW (1.3.1)

- 00

Lastly, we find a short distance approximation to Rz(t,M)
(using two different methods) and show that Rz(t,M) has a
logarithmic singularity in M as M+0. A short distance, on our
long distance scale, now means that large amplitude fluctuations
have not yet occurred. This means we are in the regime where the
u(t) curve is nearly flat (see Figure I.1).

Chapter five derives a system of equations that determines
the two point energy correlation function after a wave has

travelled through N plane layered media. For a plane initial
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wavefront the resulting equations are quite simple (see (5.3.8)).

We use these results to determine the equations for the two
dimensional analogue of the shadowgraph problem (see Taylor
(10)). We solve these equations for a "thin" stochastic medium,
and are then able to explain the experimental results of
Hesselink and White (11).

Chapter six finds the generator 3&y which describes the
evolution of N rays in three dimensions. In a manner exactly
analogous to chapter four we relate expectations in space to
expectations taken raywise and find a system that describes the N
point energy correlation function in three dimensions.

Let 3Ro(t,r) be the two point energy correlation function
when the two observing points are at an upstream distance of

to"2/3 and have a separation of r. From (6.3.19) we have:

P, = 2(G'(0)-6""(r)] Py , +2[6''(0)- ELrlyp

191 r UsU,
u,2 Uy,
-U,P_- P + P
1'r r U1 r U2
P(0,r,U,,0,) = 6(U;)8(U,)
Rp(t,r) = [ dUy [ du, P(t,r,Up,U,) (1.3.2)

where G(r) is a function obtainable from the random medium
(analogous to g(M) in (I.3.1)).
Finally we find a short distance approximation to 3Ry(t,r)

(not using (I1.3.2), though); and then discuss the G(r) function



(section 6.5).

In chapter seven we solve the system (I.3.1) numerically.

We determine from this calculation that the regular perturbation
results for R,(t,M) become invalid at the "onset of focusing"
(where p(t) becomes significantly different from zero, at about
t=.6 on Figure I.1).

In chapter eight we describe the Monte-Carlo calculations we
performed to find R,(t,M). We found good agreement between the
simulation results and the numerical solution to (I.3.1), for
universal times up to t=1.4. For universal times after the onset
of focusing (t=.6) the simulation results do not agree with the
regular perturbation results. We conclude that (I.3.1) correctly
describes the two point energy correlation function for far
longer distances than the regular perturbation method does.

The appendix contains the regular perturbation technique
used to find R,o(t,r) and 3R2(t,r). We also use this technique to
solve the shadow graph problem. The solutions we obtain here are
the same solutions that we obtained by taking a short distance
approximation to our systems in sections 4.5, 4.6, 5.5 and 6.4.

Since a short distance approximation to our (long distance)
equations produces the same answer as the regular perturbation
technique; our equations are truly an extension of the
linearization technique.

Finally we derive a bound on o, which limits the
applicability of the regular perturbation method. From (A.3.4)

we require that
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o < 43%37? (1.3.3)

Y

where I is the correlation length of the random medium. If
(1.3.3) is violated, then the regular perturbation solution for

Ro(t,M) can not be valid.

1.4 Review Of Ito Calculus

To read this thesis, we require some familiarity with the
forward Kolmogorov equation. We will often use the Ito equations
associated with a given forward Kolmogorov equation. We now give
a quick review,

Consider the vector Ito equation
dX = b(X,t) dt + o(X,t) dg (1.4.1)

where B is a vector of standard Brownian motions, so that E[si]so

and dsidsj=51jdt. Corresponding to (l.4.1) is the infinitesimal

generator

1
where %— > g g .

The forward Kolmogorov equation associated with (I.4.1) is

£ P(t,X) = 5 P(t,X) (1.4.3)
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where a star represents the adjoint operator. If P(0,X) is the
initial probability density of the variables {X;}, then P(t,X)
will be the probability density of the variables {X;} at time
t. If the intial values of X were known exactly (say X(0)=Y)
then the initial conditon for (1.4.3) is:

P(0,X)= 6(X-Y) = 1 8(X.-Y,) (1.4.4)
1
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1.1 Equation Of Motion For Rays

In this section we obtain the equations of motion for rays
in a random medium using the geometrical optics approximation.

We start with the wave equation
2
Qpp = € (X) 0 (1.1.1)

where C(X) is the local wave velocity. We represent a solution

of (1.1.1) as

TK[T+e(X)] (1.1.2)

A wavefront is a surface of constant phase, or
¢(X)=constant. The geometric optics assumption is to take K
large and assume that ¥ has an expansion of the form:

o (X) (ik)™" (1.1.3)

‘P(_X_sK) ~ 0 m(

he 8

m

Using (1.1.2), (1.1.3) in (1.1.1) and equating the

coefficients of powers of K yields:

0(k?): e,=c? @0[V¢|2 C (1.1.4)

0(K): ®,= C2[¢1|V¢|2 +{2V¢-V®O + ¢0A¢}] (1.1.5)

We now assume that:
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| (1.1.6)

(1.1.7)

Using (1.1.6), (1.1.7) in (1.1.4), (1.1.5) we find the

eikonal equation:

cZ(x) |ve|? =1 (1.1.8)
and the transport equation:
2V¢-V¢0 + 0,84=0 (1.1.9)
we define
]
P, = ﬁ? (1.1.10)
and rewrite (1.1.8) using (1.1.10) as
1 C(X) P, P,- 1 1 =0 (1.1.11)
2 i'iT 2 T(X)
The

We solve (1.1.11) by the method of characteristics.

characteristic equations corresponding to (1.1.11) are:

)
1
')
——~
{><
g
o
.
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%i - 1 (1.1.12)

N ¢9)

We define X(s,a) to be the position of a ray which, at s=0,
started from a position X(0,a). The variable a is used to
parametrize the inital wavefront.

We consider a continuum of rays leaving the initial
wavefront. Later we will consider only N rays, and specify o295
Qoseees QGne

We assume we are working in a three dimensional rectangular
coordinate system. The projection of X(s,a) along the three
coordinate axes is given by

X(s,o) = ( X3(s,a), Xp(s,a), X3(s,0) )T (1.1.13)

We also define

P(s,a) = ( Py(s,a), Pp(s,a), P3(s,a) )T (1.1.14)
V(s,a) = C(X(s,a)) P(s,a)
= (Vy(s,a), Vy(s,a), Ya(s,a) )T (1.1.15)

From (1.1.12), (1.1.13), (1.1.14), (1.1.15) we find
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d_ W) = 1 (1.1.16)
75 ¢(s»2) )

From (1.1.8), (1.1.10), (1.1.15a) we have
1=c2|vg|2= c2|p|2=|v|2 (1.1.17)
So we see that s represents arc-length along a ray and V(s,a) is
the unit tangent to X(s,a).

From (1.1.16a) we have

dX
%g C(X(s,a)) = Fg *VC(X) = V-vC(X) (1.1.18)

Using (1.1.15a), (1.1.16b), (1.1.18) we compute

q -VC+V(V.VC)

(1.1.19)
T T

Equations (1.1.16a), (l1.1.16¢c), (1.1.19) are the equations of
motion for the position, velocity and phase of a ray in a random

medium.

1.2 Raytube Area in Two Dimensions

Here we obtain the equations of motion for raytube area in
two dimensions.

In this section we restrict ourselves to a two dimensional
geometry. We define a=a to be arc-length along the initial

wavefront. We define the unit vector perpendicular to_!(shg),
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where

From (1.2.1), (1.2.2) we find

vhevt e
ey =o
Because o is arc-length we have
] 1
a—a-)-(-(o’a) =V (0,(1)
We define t by:
d _1 d
ds T dt

Using (1.2.5) in (1.1.16c¢)

9 ¢(s,a) = 1

Therefore a value of t specifies the location of a

(1.2.1)

(1.2.2)

(1.2.3)

(1.2.4)

(1.2.5)

(1.2.6)
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wavefront. Since o is arc-length along the wavefront, o and =t
are independent variables.
We write (1.1.16a), (1.1.19) using (1.2.5) as
d _ (1.2.7)
Trocu
%? Vo= -VCHV(VeVC) = _li(li.vc) (1.2.8)
From (1.2.2) and (1.2.8) we have
(1.2.9)

d 1 _ 1

We differentiate (1.2.7), (1.2.8) with respect to o for

%_T_ X" (VC-La)l/_ +C.\ia (1.2.10)
d _ . . (1.2.11)
o V= -vVCX 4V (VevC)+V[V.vC]
Now we compute (using (1.2.10), (1.2.8), (1.1.17))
By = ) (@) (1.2.12)
From (1.2.3), (1.2.4) we have
(1.2.13)

X(0,a)+¥(0,a) = 0

The solution to (1.2.12) with (1.2.13) is
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L(S,a)’_y_(s,d) = 0 (1.2.14)
So we see that lﬂ has a component only in the direction of V l.
To find this component we compute (using (1.2.10), (1.2.8),
(1.1'17))

g (xevt) = o (v, evt) (1.2.15)
We define

A(s,a) = X (s,a)+ V' (s,q)

X
B(s,a) = V_(s,a)s V' (s,a) (1.2.16)

In two dimensions, the distance between two rays, divided by
their initial separation, in the limit of an infinitesimal
initial separation, is defined to be the area of the raytube
associated with the bounding rays. Hence, the area is defined to

be |X,(s,a)|. From (1.2.13) and (1.2.16) we have

v =B V! (1.2.17)

and so

[A(s,a)] = |X (s,a)l (1.2.18)
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We therefore recognize A(s,a) as the signed raytube area
corresponding to the ray X(s,a). When a focus occurs, and
adjacent rays intersect, the sign of the area changes. This is
how A(s,a) can be negative as well as positive. This corresponds
to the phase jump described by Sommerfeld ((12), page 318).

We find from (1.2.3), (1.2.4), (1.2.16)

A(O,a) = 1 (1.2.19)
From (1.2.5), (1.2.7) and (1.2.16) we have
d
-a-S—A(S,a) = B(s,a) (1.2.20)

A propagation equation for B(s,a) can be found by
differentiating (1.2.16b) with respect to r and using (1.2.3),
(1.2.8), (1.2.9), (1.1.17). The result is

dB

T =V {-vVC X 4V (Veve)] (1.2.21)

Using (1.2.5), (1.2.17) in (1.2.21) we obtain

dB _
ds

(vh)Twvey + ¢ (veve) (1.2.22)

o

This is the final form of the propagation equation for B.

We now interpret B(0,a) as the initial curvature of the
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wavefront. The first of the Frenet-Serret formulae is

v (0,a) = «(a) ¥V'(0,a) (1.2.23)

where «(a) is the curvature of the initial wavefront, at a
position‘of X(0,a). Comparing (1.2.17) (at s=0) with (1.2.23) we
conclude

B(0,a) = k(a) (1.2.24)

So the initial value of B(s,a) is just the curvature of the
initial wavefront.

We have found, in (1.2.20) and (1.2.22), the equations of
motion for raytube area. The initial conditions for these

equations are (1.2.19) and (1.2.24).

1.3 Energy Associated With a Ray

Here we will find an expression for energy along a ray.
We define the energy, Ez(l) of the wave to be the squared

magnitude of the field intensity. From (1.1.1) therefore
£x) = 102(x.7)| (1.3.1)

To leading order in K (see (1.1.2), (1.1.3)) we have

£ = o5(0)° (1.3.2)
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If we multiply (1.1.9) by ¢, we find

V-(®02V¢)=0 (1.3.3)

Now consider a tube of rays going from the wavefront at =0
to the wavefront at t=T (recall (1.2.5)). We define the
intersection of the raytube with the wavefront at =0 (7=T) to be
Sg (St). The sides of the raytube are defined to be I.

From (1.2.6), ¢=constant is the equation of a wavefront, so
V¢ is normal to the wavefronts. Now we integrate (1.3.3) over

the volume of the raytube and use the divergence theorem to find:

0= [ v(e,” Vo) dV = [ o,%(n-ve) dS (1.3.4)
S

where n is the outward normal to the surface of the tube of

rays. Because the rays are parallel to V¢:
10V¢=0 on Z (1.3.5)

On Sy (S7) the rays and n are in opposite (the same)

directions so
nev¢ = -|Vve| on S,
nevy = |v¢| on Sy (1.3.6)

From (1.1.8) we can write (1.3.6) as
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e
*

<]
©-
"

-1/C on SO

3
L]

<1
hig
1]

1/C on Sy (1.3.7)

Using (1.3.5) and (1.3.7) in (1.3.4)
f Foeglds v [ £ e lds = 0 (1.3.8)

For a very narrow tube of rays, (1.3.8) becomes

5.2 (X) .2 (X.)
0T 15yl = oy IS (1.3.9)
ClXy) — 700 " T(Xy) 17T e

where |Sg| (|St|) is the area of Sy (St). In the limit of [Sgyl,
|S7]+0 we have

i |8 X)X c1)
= = 1.3.10
d ,S(XO)‘ “’02(1) C(l(_g) E(l) C(-X—O) ( )

where we have used (1.3.2). Equation (1.3.10) is valid in two or
three dimensions. We now restrict ourselves to two dimensions.
Let B represent arc-length on S;. The ratio d|S|[/d|Sy| now

becomes dg/da (recall a is arc-length on SO). We compute from

(1.2.18)

X

)
3B da

(1.3.11)
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where

=1 because B is arc-length. Therefore (1.3.10)

becomes

£(xg) €(x)
g T

Since é;>0 and C>0 we invert (1.3.11) and write it as

£(X) c(x)
£T5,7 = TXT TAT (1.3.12)

At the occurrence of a focus, A changes sign, hence the
absolute value of A is needed in (1.3.12). As A passes through
zero, é: becomes infinite. This is due to the breakdown of
geometric optics at a focus. What really happens at the focal
points is that diffraction effects become important, and keep the
energy finite.

Equation (1.3.12) describes energy propagation along a ray

as a function of A and C.

1.4 Scaling of Two Dimensional Equations

We now restrict ourselves to a two dimensional coordinate
system with basis vectors (i, j). We define f(X;, X,)
f(Xy i + X, j) for any space-varying function f.

We assume that the velocity field C(X) is weakly

inhomogeneous. That is, we assume C(X) can be represented as

C(X) = Cg (140 C (X)) (1.4.1)
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~

where C(X) is mean zero and

0<o<<1 (1.4.2)
C and all of its derivatives are bounded (1.4.3)

We define the initial wavefront by

X(0,a) = a j - 02/3n(a) i + 0(o*/3) (1.4.4)

where h(a) is arbitrary but bounded, and has bounded
derivatives. We assume that the derivatives of the 0(04/3) term
in (1.4.4) are also of order 0(04/3).

What (1.4.4) represents is a slighty wavy initial
wavefront. If h(a)=0, then the wavefront defined by (1.4.4) is
planar.

From X(0,a) we can compute V(0,a), ll(O,a) and B(0,a) using
(1.2.4), (1.2.1), (1.2.16). We find

Vi(0,a) = X (0,a) =3 - o2/3n'(a) i + 0(o*/3) (1.4.5)
V(0,0) = -M V (0,a) = i + o2/3n"(a) 4 + 0(c*/3) (1.4.6)
B(0,a) = ¥, (0,a)+¥"(0,a) = 62/3h" (a) + 0(c*/3) (1.4.7)

From (1.2.24), (1.4.7) we see that the initial wavefront has
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a curvature of order 0(02/3).

Now we investigate the two dimensional equations on a long

length scale, t, defined by

S (1.4.8)

We scale X, V, A, B to form the new variables

Ld(t’a) =_)_(_(S,a)- S_i_

G( ) X(S,a) - _1_
Vi(t,a) =
- 02/3
AC(t,a) = A(s,a)
B (t,a) = = ;;g (1.4.9)
g

If 6=0 in (1.4.1) so the medium is uniform, then we would

find from (1.1.16a), (1.1.19) and (1.4.4), (1.4.6):

X(s,a) = s i

V(s,a) =1 (1.4.10)

That is, a ray would travel in a straight line along the i
axis. The change of variable in (1.4.9) centers X, V by removing
this leading order value.

We note from (1.4.9b)
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lvel < =2, (1.4.11)
(¢
We now use (1.4.1), (1.4.8), (1.4.9), (1.4.11) on our two
dimensional equations of motion: (1l.1.16a), (1.1.19), (1.2.20),
(1.2.22).
From (1.1.16b), (1.2.20) we find

o}

AC = BO (1.4.13)

"
<
Q

(1.4.12)

a ola
ot
]

Q.
o+

From (1.1.19) we have

0_2/3 %T (02/3_V_0+_1:_)= %{ —VC+(_L+02/3_\_I_0)[_l_+02/3_V_U]'VC }

d o 1 . . "
-— V- = — [ -j (j-vC )
dt = ;1/3(144C)
+0(°2/3Ilcl+°4/3’lo|2) ]
J - :
d = - = 2/3|yo
a-f_V_G = ;'1-7'3' sz + 0(0 |l l) (1-4-14)
From (1.2.22) we obtain:
3 dB° 1 2/3u0, 1T 2/3,0,
ot/ g - " T (g{U / Vo+i} VVC(% {o / vo+i} )
2/3,0
+ ._.C_" B (52/31°+_1_)-vc
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dB’ A A 1/3 573
dt - " 173 Cxzx2 + 00t/ 3B+ A VO 1402/ 3 A0 ] (1.4.15)

Now we decompose X% and V° into scalar functions along the

coordinate axes by
X%(s,a) = X{(s,a) i + X3(s,a) J

VO (s,a) = Vi(s,a) i + VI(s,a) § (1.4.16)

~

The argument to C in (1.4.14), (1.4.15) is X(s,a). Using
(1.4.9a), (1.4.16) we can write

C(X) = COXO(t) + —57g 1) = COXTAL) + s XJ(E) ) (1.4.17)

Now we use (1.4.16), (1.4.17) in (1.4.12)-(1.4.15) to find
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X \ 'H
X5 v
%E Vs - 0 + 0(s2/3)
v - _171_5 Cx, (=273 * X7 X9+ 0(o?/?)
AG BO
\BG - ;%;3 EXZXZ (;?gg + Xg, Xg) + 0(02/3v

(1.4.18)

Equation (1.4.18) has the final form of the two dimensional
equations of motion. To find the initial conditions for (1.4.18)

we use (1.4.9), (1.4.16) in (1.2.19), (1.4.4), (1.4.6), (1.4.7)

to find

(xg\ (b + 0(02/3;\
XS _ o + 0(c2/3)
ve 0 v 0(a2/3)
v h(a) o+ 0(a2)7)
AS 1
8° \h"(a) ' 0(02/3’/

t=0 (1.4.19)
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1.5 Scaling of Three Dimensional Equations

In this section we scale the three dimensional equations of
motion (1.1.16a), (1.1.19).
We take a three dimensional rectangular coordinate system

with basis vectors (i, j, k). We define f(X X

10 %o X3) =
f(XLl + le + X3&) for any space varying function f.
We now need two scalars to parametrize the initial

wavefront: a=(aj, ap). We define the initial wavefront by

X(0,0) = ap j + a3 k- 62/3n(ap,a3) i+ 0(c/3)  (1.5.1)
where h(ap,a3) is arbitrary but bounded, and has bounded
derivatives. We assume that the a derivatives of the 0(04/3)
term in (1.5.1) are also of order 0(04/3).

These conditions insure that the initial wavefront has only
0(02/3) deviations from a plane wave. If h(ajp, a3)=0 then the
initial wavefront is planar.

The vector V(0,a) = ai+bj+ck is of unit magnitude and is

normal to the wavefront.

If we define

3X(0,qa)

Jo = 3-&2—: =J - 02/3ha2_j_+ 0(04/3)
a_)_(_(o:ﬁ)
Iy = o - k- 0?/3h,, 1+ 0(s*/3)  (1.5.2)
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then
V(s,a)eTp = 0 =b - o/ 3ah, 4 0(ct/3)
V(s,a):T3 =10 =c - 02/3aha3 + 0(c%/3) (1.5.3)
If we take
a2 + b2 + ¢c2 =1 (1.5.4)

so that |V(0,a)|=1 then we can solve (1.5.3), (1.5.4) for

a =1+ 0(c%3)

_ 2/3 4/3
b = 0®/3hy+ 0(o /3)

¢ = o?/3n_ .+ 0(c*/3) (1.5.5)

3

So that

We now take
C(X) = Co (14 o C(X)) (1.5.7)

and assume (1.4.2), (1.4.3). We define new variables by
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t = 02/35
X%(t,a) = X(s,a)-si
(tya) = oot (1.5.8)
Vi(t,a) = 1.5.8
Ftes) = =775
We now use (1.5.7), (1.5.8) in (1.1.16a), (1.1.19).
Equation (l.1.16a) becomes
d o _ yo
T X0 =y (1.5.9)
Equation (1.1.19) becomes
04/3 %T lc = % (-vC +(1002/3+ l)[(1002/3 + i)-VC]
d - 1 a . A 1/3 2/3
i3 ve 173 ['sz 3 - Cx3 k ]+ 0o / [V ]+o /3) (1.5.10)

We decomgose X9 and V° into scalar functions along the

coordinate axes by:

_)_(_G(t ’2)=

!0 (t sﬁ)=

The C function

this as:

in (1.5.10) is a function of X.

| =

(1.5.11)

We can write
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C(X) = C( X%+ _?§§ i) = O 573 +X{. X5, X§) (1.5.12)

(o] (o)
X Vo
ag g
X3 ve
i 4 -
at | v8 0
-1/32 273
Vg -0 1/3CX2(tc 2/3.x3, x5, X9) + n
vgl -0‘1/36X3(to'2/3+x§, X3, X3) + n (1.5.13)

where n=0(cl/3ljf|+oz/3). Equation (1.5.13) has the final form
of the three dimensional equations of motion., We obtain the
initial conditions for (1.5.13) by using (1.5.11) in (1.5.1) and
(1.5.6). We find

/xg 0 + 0(c2/3)
Xg Qz + 0(02/3)
X3 ay + 0(o2/3)
Vg 0 + 0(62/3)
Vg h (az,a3)+ 0(02/3)

&2
\Vg \ha3(azs“3)+ 0(02/3)/

t=0 (1.5.14)
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2.1 Papanicolaou and Kohler Limit Theorem

In this section we state the Papanicolaou and Kohler (8)
limit theorem.

Define CKsP(RN) to be the collection of functions on RN with
continuous derivatives up to order k for which there exists an

integer p>0 with

3%f (X)
<C (1+]X|P)
BX1 ...8XN
0 < agt ayteeet op= a < k (2.1.1)

1l o = L) T s e,

0<o<t<T , €€ (0,1]

x{e)(6,0,%) = x € RN (2.1.2)
If three conditions hold then the process X(e) (the solution
of (2.1.2)) converges weakly as e+0 to a diffusion Markov process

with infinitesimal generator (backward operator), £, ¢

Ny a2 Nk 2
f,= L a(e.X) gyx7 + I b (X)) 5
s. i 7J - k
193‘1 k 1

s€[0,T] (2.1.3)
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where £ _is defined on c2sP(rNy,
We now specify the three conditions and give the definitions

for aij and bi.

Condition I: Mixing

Let (9, LP) be a probability space with

all continuous vector valued functions
Q = N N (2.1.4)
F(r,X,t): [O,T] x R x [O,w) + R

Let 3§ be a family of sub-sigma algebras, contained in Q

and defined for 0<s<t<e, such that
t t
1 2 .
‘E}Slc 3‘52 for  0<s,<s <t <t < (2.1.5)
The mixing rate p(t) is defined by
o(t) = sup sup | P(AIB)-P(A)
s>0 A €F7
B €3 (2.1.6)
We require p(t) to satisfy the rate condition:

? Ye(t) dt < = (2.1.7)
0

We denote integration over @ relative to P by E[.].

The variables F and G are elements of @, however, we will
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not always include w in the argument lists of F and G.

Condition II: Conditions on F and G

We require

E[ F(t,X,t) ] =0 (2.1.8)

The following conditions apply to F and G, we state then

just for F.

F must be jointly measurable with respect to its

arguments. For fixed 7, X, t, F(r,X,t,w) is }:

measurable as a function we& Q. (2.1.9)
' Fo(tXot,0) ’ <C (1+ |X]) (2.1.10)
3F . (1, X,t,w)
! - < C
2r
i,5 = 1,250 N (2.1.11)

There exists an integer r>0 such that

BaF-(T,l,t,w)
! <c (1+]x1")

o Qa
1 N
aX .‘.aXN

1

2< ata,eeatay = o <4 (2.1.12)

and

gﬂq {Fi(s+h,5,t)-F1(s,1,t)}2 ] <Ch (1+]X])
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for s, s+h [0,T] (2.1.13)
1 aF ; (s+h,X,t) - 8F.(s,X,t)
5/2[ 3x— S } 1 <Ch (2.1.14)
J J

Condition IIIl: Requirements of the Generator

Define

1 T+¢ o]
L[-] =25 [ do [ ds - (2.1.15)

£ T T

1 T+¢
L'[-] =2 [ as - (2.1.16)

T
ald(e,X) = vim L[ E[ F (1,X, &) F (1,X, &) ] ] (2.1.17)
- e+0 T e J - g

S

j(r, X, —5)] ] (2.1.}8)
€

We require that:

Iaij(T’L) - L[ E{ Fi(Ts _)i’z_z) Fj(T’—X-’SZ )} ] | <eC (1+'£l2)
(2.1.19)



- L' E[ 65(n.X25) ] ]I < e C (1+]X])

aij(r,l) is non-negative definite

and that ald has a symmetric square root cid

such that:

|63 (0, x) ]« ¢ (1+]x])

ab (1,X)

Xy

< C

and also

a3 (e, x)-a 3 (evn, )| < ¢ n (1o)X

b3 (2, x)-b% (e, )| < € oho(1e)x))

(2.1.20)

(2.1.21)

(2.1.22)

(2.1.23)

(2.1.24)

(2.1.25)

(2.1.26)

(2.1.27)

(2.1.28)

Lastly we need to assume there exists an integer r such that
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ciie c4sr(rMy (2.1.29)
bd e ctor(rM) (2.1.30)

2.2 Applying the Papanicolaou and Kohler Theorem to Dynamical

Systems

In this thesis we will only use the Papanicolaou and Kohler

theorem on vector ordinary differential equations of the form:

T alt) = T k(p, &) (2.2.1)

where p, g and K are vectors with M components.
Equation (2.2.1) can be obtained from dynamical systems of

the form

Yy w1 k(¥(t), ) = 0 (2.2.2)

To use the Papanicolaou and Kohler theorem on (2.2.1) we

define

x(&)=(p, 9T (2.2.3)
N=2M (2.2.4)
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0 121,2,...,M
F1(t,l(€), E?) =
€ t .
Ki_M(B, ;7) i=M+1,...,2M (2.2.5)
. q. 1=1,2,000,M
6, (t.x(e), Ly - L (2.2.6)
- € 0 i=M+1,...,2M

Because G is non-stochastic and does not depend on t or
t/ez, and F does not depend on t, many of the Papanicolaou and
Kohler requirements will simplify. In this section we will write
the requirements of the Papanicolaou and Kohler theorem in terms

of p, g and K.

From (2.1.8) we require

E[ K(p,t) ] =0 (2.2.7)

Conditions (2.1.10), (2.1.11), (2.1.12) are valid for G,
since G is linear in X. These conditions, applied to F, give us

the following conditions on K:

| k@) | < oasipD)

3K1 (_p_,t)

55
Pj

< C

3%K; (,t)

a s}
M
apl 1oooapM

< C (1+]p]") (2.2.8)
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2< ajtasteeatay = a <4 (2.2.9)

Conditions (2.1.13), (2.1.14) are valid for F and G since
neither F nor jidepends.on t (the slow time scale).
Now we must check the conditions on the generator. From

(2.2.3), (2.2.5) we have

F. =0 i=1,2,...,M

3F . ,
L =0 i=M+1,...,2M; all j (2.2.10)

Hence, the sum in (2.1.18) is vacuous, Also, the L' operator has

no effect on the (2.2.6) definition of G. Therefore, (2.1.18)

becomes

; q;  1=1,2,...,M
b’ (X) = 6= (2.2.11)
0 i=M+1,...,2M

With (2.2.11), conditions (2.1.20), (2.1.25), (2.1.26), (2.1.28),
(2.1.30) are all true (b is linear in X).

Using (2.2.5) in (2.1.17) we have

. S g
vim L[E [K;_o(2s 25) Ks_y(2s S]]
i ] e>0 €
a " (X)= M+l < i,j < 2M
0 otherwise

(o]

(2.2.12)

From (2.1.22) we observe ald = adi, This simplies the

calculation of (2.2.12). Equation (2.1.19) becomes
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la™ 3 (X)-L[ E[ K,_ (p»s ) K. (pso )] ]I < ecC (1+[p]?)

s
7 I

€

M+ 1< i, < 2M (2.2.13)

Equation (2.1.27) is vacuously true, since aij does not
depend on t. However, equations (2.1.21), (2.1.22), (2.1.23),
(2.1.24), (2.1.29) must still be verified. They cannot be
verified without more knowledge of K.

T (in (2.2.11) and

To summarize, we have found a’J, b

(2.2.12)). the conditions that must still be checked are:

Mixing rate: (2.1.7)
Conditions on K: (2.2.7), (2.2.9)

Conditions on a'd: (2.2.13), (2.1.21), (2.1.22),
(2.1.23), (2.1.24), (2.1.29) (2.2.14)

2.3 Applying the Papanicolaou and Kohler Theorem to the Two

Dimensional Equations of Motion: Deriving the Generator (fﬁ)

In this section we will use the Papanicolaou and Kohler
theorem on the two dimensional equations of motion we have found:
(1.4.18), (1.4.19). These equations are of the form (2.2.1) so
we can use the results ofbsection 2.2.

We will need the following fact to compute the infinitesimal

generator: if

ITOdc z H(Z,z) | < C < = (2.3.1)
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then

L[H(Z, 2% )] = }, H(Z,Y) dY + 0(e) (2.3.2)
0

€
To show this we take (2.1.13) (the definition of L[.])

T+e o}

-5 1 -
I = L[H(Z, F52)] = =5 [ do [ ds H(Z,%3)
€ [ T T €
and change variables to
Y= g-S X= g=-T
I 4
€ €
for
1/¢
I = ¢ [ dX J(X) (2.3.3)
0
where
n
J(n) = [ dY H(Z,Y) (2.3.4)
0
we expand I as
1/¢ 5 1/¢ 2
I = Time [ dX 9(X) + e {1im 5e € [ dX 9(X)} + 0(e“)
e+0 0 e+0 0

(2.3.5)

Using L'Hopitals rule in the first term of (2.3.5) we obtain
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1/e
I = Tim J(1/e) - e { Tim [ dX [J(X)-d(1/e)] } + O(e?)
e+0 e+0 g
= }o H(Z,Y) - ¢ 7 dY Y H(Z,Y) + 0(e?) (2.3.6)
0 0

From (2.3.6) we conclude that (2.3.1) implies (2.3.2).
Now we copy (1.4.18), (1.4.19) for the case of N rays and

keep only those terms that are order one or larger:

XS (t, o) Vi (t, o)
Xg (t, QL) Vg (t, aL)
v‘l’ (t, a) 0
%{ A° (t, aL) = BY (t9 aL)
o 1 2 t o o] o
Vo (t, o) - 73 sz (_,[7.30 + X7, %3, x3)
B (t, a ) LA (—ir + X%, X9, X9)
> Y 173 “X,X, ‘273 1* "2 "3
o 2°2 o
L=1,2,...,N (2.3.7)
X7 (0, aL)\ 0 \
o
X2 (0, aL) o
(o]
A~ (0, aL) 1
v‘l’ (0, a) = 0
o ]
Vo (0, o) h' (e ) (2.3.8)
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Neglecting the terms in (1.4.18), (1.4.19) that are smaller
than 0(1) is the only non-rigorous step in the derivation of £ﬁ.
To this order of approximation, the solution for Xf and Vf

is clearly

!
o

Xg(t,aL)

Vg(t,a

1
o

L) (2.3.9)

If we use (2.3.9) in (2.3.7) the system reduces to the 4N
variables {Xg(t,aL), Vg(t,aL) > A%(t,op)s B9(t,a )}, for L=1,

2,...,N. We use the new variables

X (t,aL) = X5(t,a)

VE(ta) = VE(ta))

A (t,aL) = A%(t,op)
BY(t,a ) = B9(t,ap) (2.3.10)

and (2.3.9) in (2.3.7) to find:
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xL\ vL
(L=1,2,500,N)
L L
% A ) B
el L = 1 A t L
v - 173 O, Uz XD
o 2 o
L/ . (2.3.11)
n t L
B - g AN C (<75 X
o XZXZ o]

at 1
vt h' (e, )
\BL/1 n (ay)
-0 (2.3.12)

We now use the Papanicolaou and Kohler theorem on
(2.3.11). Equation (2.3.11) has the same form as (2.2.1) if we

identify:
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t L A t 1
K(p, ) = -A- C ( , XH)
o2/3 { X2X2 o2/3
A t N
‘C( ,X)
X2 o2/3
N 2 t N
{ - A" ¢y (= XD
\ XoXo V27
(2.3.13)
We also define 2 to be the smallest sigma algebra with
respect to which {6X (t,X), EX X (t,X)] for all X and s<t<t} are
2 - 2%2 T -

measurable.
First we will find the infinitesimal generator, and then

verify the requirements of the Papanicolaou and Kohler theorem.

From (2.2.11) we have:

q
b =(0) =ovi, et v BN oL, )T (2.3.10)

Now we calculate a'J from (2.2.12) and (2.3.6) to obtain:



2N + 2K-1, j = 2N + 2L-1

s
i

1j . . KA s ¢Ky A o yL
a Tim L[E{A CX2X2(—?,X ) CXZ(—?,X )}
8'*0 € €
i = 2N + 2K, j = 2N + 2L-1
i = 2N + 2K-1, j = 2N + 2L
. K 2 s K L = L
Tim L[E{ A" Cy y (—3.X°) A" Cy y (=2,X)}]
e+0 22 ¢ 272 ¢
i = 2N + 2K, j = 2N + 2L
_ 0 otherwise (2.3.15)
We define the correlation function for 6 to be
R(XS.Y) = E[C(n,C) C(X+n,.Y+C)] (2-3.16)

We assume that c is homogeneous and isotropic so that
B(r)= B(Y x%+y%)= R(x,y) (2.3.17)
From (2.3.8) we compute

- Ry Xz(x,y) = E{ sz(n,C) CXZ(X+n,y+c) }

2
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R (x,y) = E{ 6 (n’C) 6 (X+n,)’+C) }
X2X2X2 X2X2 X2

R = E{ Cy y (n,r) €y y (x+n,y+z) }  (2.3.18)

(x,y)
X X XX ) X,

2% 2% 5%, X

2

Using (2.1.18) and the homogeneity of 6, (2.3.15) becomes

- 1lim [R
ex0 - *2Xo

s

(25, xbx®) ]

i = 2N + 2K-1, j = 2N + 2L-1

ati(n) = AR vim[ Ry o (255, xbaxK)
€

<J >0 27272

i = 2N + 2K, j = 2N + 2L-1
j = 2N + 2K-1, j = 2N + 2L
Kal 13 g-S L vk
ATAS Tim L[ Ry ooy oy (S5 XE-XK) ]
27272%2 ¢
e+0
i = 2N + 2K, J - 2N + 2L
\ 0 otherwise (2.3.19)

Using (2.3.1), (2.3.2) we can evaluate (2.3.19) as

g(xb -xX) i= 2N + 2K-1, j= 2N + 2L-1

-aKgrxt -xKy i= 2N + 2K,  j= 2N + 2L-1
ald(x) = i= 2N + 2K-1, j= 2N + 2L
-aKaLgrr(xb -xK) i= 2N + 2K, j= 2N + 2L

0 otherwise (2.3.20)
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where we have defined

9(z) = - [ Ry y (y,2) dy (2.3.21)
o el

and we have the requirements from (2.3.1)

-]

*
lécR(c,Z)dc|<c<w

R™ = { R , R (2.3.22)

R
2 XX, X5 X |

XoX XoXoKo® "X XoXoX,

X

2 272

Chapter four of this thesis has representations, properties

and examples of the g(z) function.

From (2.3.14), (2.3.20) we have found the infinitesimal

generator corresponding to (2.3.7). It is (see (2.1.3))

N N 2
g= LIV ef iy ] ety
K=1 3 X 3 A L kel sviav
K\ yLeyKy 82 K,L L K, 3% '
-ATg'(X"7X )—K—L-AA g''(X =X )_K_L} (2.3.23)
a8Kav asfapl

Now we must check the conditions of the Papanicolaou and
Kohler theorem (see (2.2.14)). First we must check the mixing
condition (2.1.7). At a minimum we must have that the
correlation function of K decays to zero as the argument goes to
infinity. This insures a weak form of mixing (see (13), p. 78,
exercise 3) but not (2.1.7). We will assume the (stronger)
required mixing rate. Equation (2.3.22) already assures us that

the correlation function of K goes to zero, so no new conditions



-51-
are required.

Because we assumed C had mean zero in (1.4.1), equation
(2.2.8) is satisifed. We also required C to have bounded
derivatives in (1.4.3). Therefore (2.2.9) is satisfied (see
(2.3.13)) if

Probability [Al

>M}-0 as Mre (2.3.24)

We are only interested in applying the Papanicolaou and
Kohler theorem to (2.3.7) when ¢ is small. Therefore we need
only verify (2.2.13) for small €. For small e, (2.2.13) is
verified by virtue of (2.3.2).

Equations (2.1.21), (2.1.22), (2.1.23), (2.1.24) and
(2.1.29) must still be verified. We have not yet been able to
show they are satisfied in the general case.

In conclusion, we have found the génerator for the motion of
N rays and their associated raytubes, £ﬁ (in (2.3.23)). The
unverified requirements for the derivation are: (2.3.22),
(2.3.24), (2.1.21) - (2.1.24), (2.1.29).

*
2.4 Forward Operator for N Rays, £,

*
Here we find £y > the forward operator for N rays.

To find the evaluation of the quantities {XL, vh, ab, BL} we

must solve the forward Kolmogorov equation



N N 2
A K 3 K 2 L oK 3
Q=" 0 =[ -1 {V v SR e b+ 3 g(xm-x")
- 3 A avKayt
K=1 L,K=1
K o oL oK 52 K. L 1ol oK 52
- afgr by S - Attty 21 10 (2.4.1)
aB a3V 0B 3B

where a "*" of an operator will always mean the formal adjoint of

that operator.

The value of Q, at a distance of t, will be the probability
density for the variables {XL(t), VL(t), AL(t), BL(t)}. From
(2.3.12) we know the initial values of {xL, vt, al, sl)
exactly. Therefore the correct initial conditions for (2.4.1)

are

N
Q(0,X,¥,A,8;0) = 1 8(xt-ab)s(vh-nt oty )e(ab-1)s(8 -0t (o))
L=1 (2.4.2)

In (2.4.2) we introduce the practice of separating the
initial conditions from the forward variables in the argument
list by a semicolon.

If the initial wavefront was planar, so h=0, then (2.4.2)
becomes
Nl L L L L
I 8(X =a") 8(V~) 8(A"-1) &(B") (2.4.3)
1

L

From iﬁ we can find the generator for N rays without their

associated raytube areas. Because of the special form of £ﬁ we
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can do this by integrating (2.4.1) and (2.4.2) with respect to A

and B. Define

H(t,X,Via) = [ dA [ dB Q(t,X,V,A,Bia)  (2.4.4)

Then, by integrating (2.4.1), (2.4.2) with respect to A and

B, we obtain

*
Iy H = H (2.4.5)
H(0,X,V;a) = §(X-a) 6(V-h'(a)) (2.4.6)
where (see (2.3.23))

N N 2

S T A e (2.4.7)
N X syRayt
K=1 K,L=1

To obtain (2.4.5) from (2.4.1) we had to assume that Q and

EQT are zero at IAL[=co and |Bl|==. Alternately, we could have
oV

derived (2.4.7) from applying the Papanicolaou and Kohler theorem
directly to (2.3.11a) and (2.3.11lc).

The solution H(t,X,V;a) of (2.4.5) will be the joint density
of {X, V} at a distance t.

We define gp=9g(0). Since R(X,Y) is even, g(z) is even (see
(2.3.17), (2.3.21)). Therefore g'(0)=0. Using this we write

A* * * *
out £1 . il s £2 s £3 for later reference.

1 9 1 2 2 52

7= a v 2o o 204 g oAt grr(0) (2.4.8)
3 A oyl .

1
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e * o yla . 2f
1 1 %0 T/ 7~
3 X 1
avV
2 2
£, = v A y2 A +9n1 2 M } o+ 29(X2-X1)
2 ax! axe 0 12 2?
3V aV
2 2 2
PURFRRYS S SV MR I NP S I S
3 ax1 3 X2 ax3 00 42,2 32
oV aV oV
2 .1, 32 3,1, 32 3,2
+ 2 {g(X5-x1) 2+ g(X7-x") T + g(x°-Xx?)
avV~-avV av avy
The initial conditions for (2.4.9) through (2.4.11)

given in (2.4.6). For the case of a plane

(h=0) the initial conditions become:

2.5 Taking Limits in the Initial Conditions

In this section we take limits in the

£2.

(2.4.9)

52

1,2

oV~ aV

(2.4.10)

52

~—5 I

3V avV
(2.4.11)

are

initial wavefront

(2.4.12)

initial conditions of

We obtain the same answer that we would have obtained had we

taken the 1limits in the initial conditions of the equations of

motion and then applied the Papanicolaou and Kohler theorem.

We start with a plane initial wavefront and use i, to find

the generator for:
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I) 2 rays coalescing into one ray (i.e., £1)
IT) 2 rays starting infinitely far apart

ITT) 1 ray with its associated raytube area (i.e., £1)

For a plane initial wavefront the

f,H = Hy are (see (2.3.12) or (2.4.12))

at t=0: xl=al, x2-

=Q

to simplify notation, define

h=a1-a2
I: 2 Rays coalescing into one ray
We change variables in (2.4.10), (2.5.1) by
N= X1+X2 V= V1+V2
— 2 -2
e XL-x2ono o vlov?
Z 2
to find
g = v wl o+ ligs (2M+h)}32 + g -g(2M+h)}32
2 7 "V 3N "M am t 719979 2 2% P
1,
at t=0: N== 2“ , M=0, V=0, W=0

initial conditions for

(2.5.1)

(2.5.2)

(2.5.3)

(2.5.4)

(2.5.5)
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The Ito equations corresponding to (2.5.4) are:

dN = V dt
dM = W dt

dV = v gg + g(2M + h) dg;

dW = v/ gg - g(2M + h) dgy (2.5.6)

where B1s Bo are independent standard Brownian motions. In the

limit of h»0, the two rays described by £, coalesce into one

ray. Taking h»0 in (2.5.6) gives

dN = V dt
dM = W dt

dv = v gy + g(2M) ds,

dW = /g, - a(2M) ds, (2.5.7)

Recalling that gp=g(0) we see from (2.5.5), (2.5.7) that

M =0, W=0 (2.5.8)

is the solution for (M,W). Using (2.5.8) in (2.5.7) we find

dN = v dt
dv = /2g, ds; (2.5.9)

The forward operator associated with (2.5.9) is
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2
3 3
Vgt 9 (2.5.10)

3V2

*

which is £ (see (2.4.9)).
The result could also have been obtained by scaling the Ito

equations corresponding to i, directly. These equations are

dxl = vl 4t
dx2 = v2 dt
avi = 1 (B+p) dg, + 1. (B-D) dB
Ve 3 V7 4
av = 1 (B-D) dg, + L. (B+D) ds (2.5.11)
V2 3 Y2 4 *o
where
B =/ gy *+ g(x2x1)
D = /gy - g(x2-x1) sgn(x®-x1) (2.5.12)

and B3, By are independent standard Brownian motions (see section
3.4 for a derivation of (2.5.11), (2.5.12)).
Using (2.5.3) in (2.5.11) we find

dN vV dt

dM

W dt

_ B
dV = =% (d53+d64)

dW

o (dB3-dg,) (2.5.13)
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where (2.5.12) has become:

B =+ gg + g(2M+h)

D = ¥/ gg - g(2M+h) sgn(2M+h)

Now we define

(B3 - Bg)/V2
(B3 + Bg)/Y2

Bs

Be

(2.5.14)

(2.5.15)

Since deidsj=51jdt, Bg and Bg are independent standard

Brownian motions. Using (2.5.14), (2.5.15) in (2.5.13) we find

dN = V dt
dM = W dt

dv = ¥ gy + g(2M+h) dgg

dW = ¥ gg - g(2M+h) sgn(2M+h) dBg

= v gg - g(2M+h) dgy

Equations (2.5.16) are identical to (2.5.6)

IT: 2 Rays starting infinitely far apart

We take the new variables

Y, = /2N U; = /2 v

(2.5.16)
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Y, = /2 M Up = Y2 W (2.5.17)
in (2.5.6) to find
dY, = Up dt
dY, = U, dt

du; = /Z /g, + 9(72 Y, + h) dg,

/2 /g, - 9(72 Y, + h) de, (2.5.18)

dU2

Taking h+e= in (2.5.18) we obtain the Ito equations for the

motion of two rays that start infinitely far apart. Taking this

limit in (2.5.18) and using g(=)=0 (see chapter 3) we obtain

dYy = Up dt
dY, = U, dt
duy = /Tg dey
dUp = /35 d8y (2.5.19)

From (2.5.19), the {Ul’ Yl} variables are independent of the
{U2, YZ} variables, and vice-versa. The forward operator

corresponding to (2.5.19) is

{-u . ? } o+ {-U S+ g QE——} (2.5.20)
1 3Y 90 2 2 3y 0 2 <3
1 3V, 2 3u,

which has the same form as two independent rays (see (2.4.9)).
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II1: Recovering ie from £,

Now we will let two rays coalesce in such a way that we will

obtain i? from £2. We do this by changing variables in £2 to

e XEx% o vloy?
—h “h

1,2
x1+x
N= __;_ Ve (2.5.21)

Observe that, as h+0, A will become the vertical distance
between two very close rays, normalized by their initial
separation. We anticipate that horizontal deviations between two
rays will be much smaller than vertical deviations (see
(2.3.9)). Hence, we can approximate the area of a raytube by
considering only vertical deviations. In this sense, as h»0, A
becomes the approximate area of the raytube determined by rays 1
and 2. We will use this approximation again.

We can use (2.5.21) in , by changing variables in (2.5.6)
to (see (2.5.3)):

M =h (A-1)/2
W =h B/2 (2.5.22)
We find:
dN = V dt
dA = B dt

dv = Vg + 9(A h) ds;
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B = &/ 55 - 9(A h) ds, (2.5.23)

Taking the 1imit of h+0 in (2.5.23) yields (recall g(z) is

an even function of z):

dN

V dt
dA

B dt

dB=/-29"(0)A2 dg, (2.5.24)

The forward generator corresponding to 2.5.24 is

2
) 3 )
-V an * 99 2t * (B ggp - A

2
g''(0) ggf} (2.5.25)

2

. . . A X
which is precisely £, (see (2.4.8)). From (2.5.24) or (2.5.25)

we also see that for one ray,

(A,B) are independent of (N,V), and vice-versa (2.5.26)

2.6 Deriving iﬁ From £,

In this section we derive £N from £2N for a plane initial
wavefront. This shows that all of the probabilistic information
about raytube areas that can be derived from iﬁ can also be found
from £on° The technique used will confirm that the area of a
raytube is well approximated by variations in the vertical

position of a ray with respect to the initial conditions.
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We write £,, from (2.4.7) as

_(oT
foy = (Vl) 9 Vl + '!.V.Y. (2.6.1)
where
Vo= (v gL, v T (2.6.2)
Y= (vl v2, L., 2T (2.6.3)
9 = g(yi-yd) 1<i,j<2N (2.6.4)

*
The initial conditions for £, H = Hy are (from (2.4.12))

H(0,V,Y:a) = 6(Y-a) 6(V) (2.6.5)
where
o = (al, a2,..., aZN)T (2.6.6)
We choose
o2 o G2mtl oy, m=1,2,c00,N (2.6.7)

so that pairs of rays have an initial separation of h. Now

define the following 2N x 2N matrices:

o %5, 2i-1 1=1,2,..0,N
ij -
1 . _
'H (Gj,z('i—N)-Gj’Z(i—N)—l) 1"N+1,coo,2N
(2.6.8)
\ 51,2j+6i,2j-1 J=1,2,¢0e,N
Kij =

h 85, 2(5-N) j=N+1,e..,2n



-63-

For example, when N=2:

1
h O
R = “1/h -1/h
= 0 0
] 0
1 0
K" =1 o 1
- 0 1
Note that (Bh)'l h
n=R"Y
"y

Using (2.6.8) in (2.6.9) we have:

Y21-1
n. - .- -- -
i Y2(1 N)_Y2(1 N)-1
h
V21-1
i T . .
V2(1-N)_V2(1-N)-1

h

0 0
1 0
0 0
1/h 1/h
0 0
h 0
0 0
0 h

=K+ We now define the new variables:

(2.6.9)
i21,2,000,N
(2.6.10)
1=N+1,.."2N
i=1,2,000,N
(2.6.11)

i=N+1,...,2N
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We define
N AR
A
y2i_y2i-1
81=T (2.6-12)

As h+0, A will become the approximate area of the raytube
bounded by rays 2i and 2i-1. See the comments after (2.5.21).

From (2.6.5), (2.6.7), (2.6.12) the initial conditions for

Ai and Bi are

at t=0: Ai =1
B; =0 (2.6.13)

The chain rule gives (from (2.6.9))

Y! = (éh)TVE
Ty = (gh)TVﬂ (2.6.14)
Using (2.6.14) in (2.6.1)
oy = (7 Tg (V) + &7, (2.6.15)

where

p=Rr"g (RM)T (2.6.16)
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We would like to take the limit as h»0 in (2.6.15). First,

we need to compute 1im D. Using (2.6.8) in (2.6.16) we find

h+0
o (08)]
D - Ez EB (2.6.17)
where
Di§ = 92i-1,2j-1
01§ (92i-1,25-1 - 92i,25-1) /h (2.6.18)

<
1

i 2
ij = (92i-1,25-1 = 92i-1,25 * 929,25-1 * 92i,25)/h

and we have used 973595 (since g(z) is an even function).

We define:

A= (Ags ApaeeenAy)T

B = (By, Bp,ens,By)T (2.6.19)
X = (Xys XpseoosXy)T= (Y1, ¥3,0 0, y2N-1)T

U= (Ug, Up,enn,Uy)T= (vl w3,000, v2N-1HT

From (2.6.10) - (2.6.12), (2.6.19)

u
5] (2.6.20)

Therefore (using (2.6.9))
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We use (2.6.21) to evaluate 9ij = g(Yi-Yj) in the X, A

variables. We find:

921,25 © g(X; - Xy +h Ay - h Ay)

92i,25-1 = 90Xy = X5 - h Ay)
92i-1,25 ~ g(X; = X5 + h A)
92i-1,25-1 = 9(X5 - X5) (2.6.22)
We define
ALI M (2.6.23)
h+0
and use (2.6.18), (2.6.22) to find
Eial' " 9ly - )
E1.§ = - Aj 97 (X5 - Xy
3 [ §



N 9 0 N 82
fon.h=0 = L By aa- * Yy 9% )+ I (9(%5-%3) 5730,
j=1 ! VoooiLgel v
32 %
ALgt(Xi=Xy) 30, 95 - Aing"(Xj-Xi) 3§?3§;J (2.6.25)

We recognize (2.6.25) as being the same as £ﬁ (2.3.23). The
initial conditions for (2.6.25) come from (2.6.5), (2.6.13),

(2.6.19):
at t=0: X; = a24.1
V1' =0
A'i = ]
B. = 0 (2.6.26)

and are the same as (2.4.3).



-68~

3.1 g(z): Definition, Assumptions, Representations

In (2.3.21) we defined

g(z)=-J Ry y (y,z) dy (3.1.1)
0

where (see (2.3.16), (2.3.17))

B(r)=B(/X2+Y2)=R(X,Y)=E[C(X,¥) C(0,0)]  (3.1.2)

We have assumed that (see (2.3.22), (2.3.20)):

© *
[ ¢ R (g,z) dg < C < =
0

*—
R™={Ry y »R

,R } (3.1.3)
2y X, X X XX

X 2" KoXkoXoXy

X

272

g(z) is twice differentiable (3.1.4)
We now give two alternative representations for g(z). We
can write (3.1.1) for B(r) to find

2
g(z)= £ {B''(r) f— + B'(r) lg} dy (3.1.5)

~N

We can find a third formula for g(z) by taking Fourier

Transforms. First write (3.1.1) as

9(z)= - Y | Ry x, (¥>2) Y (3.1.6)
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since R is an even function. Then define the Fourier Transform

pair:

dow (3.1.7)

1 1

R(y.z)= %? f? e1(¥w1+zw) S :_E::EB i
S ‘*’12’“‘”2)= %; f? e-(ywl+zw)8(/y2+zz) dy dz (3.1.8)

now use (3.1.7) in (3.1.6) for

g(z) = wl 179 5(4y) du (3.1.9)

o
g§+— 8

If we use y=r cos 6, z = r sin 6 for 0<g<w, 0<6<2m, then (3.1.8)

with w1=0 becomes

S(lwl) = [ dr r B(r) Jo(ur) (3.1.10)

o “— 8

where we have used ((14), 9.1.18a). So S{w) is the Hankel power

spectrum of B(r).

3.2 g{(z): Properties

Since S(w)>0 (being the power spectrum of a correlation
function), wZS(w)>0. Therefore, from (3.1.9), g(z) has all the
properties of a correlation function. This gives us two

immediate facts:
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1) the matrix 9y5= g(Xi-Xj) is non-negative definite (3.2.1)
2) g(0) » g(m) (3.2.2)

Equation (3.2.2) can be strengthened to
g(0) > g(m) for m#0 (3.2.3)

because if g(0)=g(m) and m#%*0 then S(w) must be a sum of delta
functions, which violates the mixing condition.

From (4.2.1) we can classify £yP=Py as degenerate
parabolic. It is degenerate because the principal part of iN has

(at least) N zero eigenvalues. From (3.2.2) we can classify the

two point energy correlation equation (which we derive in section
4.4) as also being degenerate parabolic (see (4.4.20)).

From (3.1.9) we can compute

oo

[ g(z) dz = %? [ dz [ dw iz [waS(w)]

= 7wlS(w) =0 (3.2.4)
Since g(z) is an even function of z, (3.2.4) becomes
[ g9(z) dz =0 (3.2.5)
0

For use in the other chapters we define

2 4 6
9(z) = 94- 9,2 + 9,z + 0(z") (3.2.6)
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From (3.1.1), (3.1.2), (3.1.9) and (3.2.6) we find

90° - J (‘,1: %) B(r) dr = %- / wsz(w) dw
0 - 00

0,5 3 1 (F20%8(r) dr = [ w*s(u) do
0 - 00

_ 5% 13 43
T (+ 57

For comparison with (6), they defined

¥, = -29''(0) = 4g, (3.2.8)
Recall that we use Y, to scale to universal time (see (I.2.2)).
If we define f(z)=2(go-g(z)) then the expansion of f(z)
about z=0 is:

f(z)= 29,2%- 29,27+ 0(z°) (3.2.9)

3.3 g(z): Examples

For all of the examples of g(z) that we give, equations
(3.1.3), (3.1.4) have been verified.
Our first example is for a velocity correlation function of

the form:



-r2 M N
Bl(r) = e NZO ay r (3.3.1)
with M finite. For (3.3.1) to be a legitimate correlation
function, the power spectral density must be non-negative. Using

(3.1.10) this condition becomes (using (15) 6.631.1 and (19)
13.1.32, 13.6.9)

(3.3.2)

for all positive X, where Ly(X) is the Nth Laguerre polynomial.

If (3.3.2) holds then the g(z) function corresponding to (3.3.1)
is

(V) r(n-0x by 220 g

2z%- (40+1)22 + 9(20-1)} ] (3.3.3)

For illustrations of (3.3.1), (3.3.3), consider:

2
r
- T
Bz(r)= e 2a

L2
By(r)= e {rf-6r+7} (3.3.4)
for which
22
2 T2
1 z 2a
g,(z) = f-‘}-a— {1-=5} e



g5(z)= y& e? [39-1622%+722%-82°%) (3.3.5)
Another choice of B(r) might be
_ 1 ry’ r
B4(r) = E;TT;?:; (g) Kv(E) (3.3.6)

where Ky s the modified Bessel function of order v. A

correlation function of the form (3.3.6) was used by Von Karman

to fit turbulence measurements. Using (3.1.1) we find (using

(15) 6.592.4, 9.311.6, 9.34.3)

= _ V2 a-2 z
94(2) o) () z 2(5) (3.3.7)
where a=v+ Y,
£(n) = K (n) [4aven?] - 2vn K_,;(n) (3.3.8)

and we require v>1/2.

Another way to construct examples for g(z) is to choose a

non-negative power spectrum and then use (3.1.9). If we take

Sglw) = w' e (3.3.9)

with N a non-negative even integer, then we find (using (15) p.
121, #23)



2 e H (3.3.10)

N+2(27)

where H_ is the mth Hermite polynomial. For N=0, N=2 we find

from (3.3.10):

22Y2
96(2) = Y3 jg'(l_y222) e Z
) 22Y2
g7(z = Jg- 3- 67 z +y4z4) e 2 (3.3.11)

We observe that g,(z) has the same form as ggl(z). This is
because the Hankel transform of a gaussian is another gaussian
(so the spectrum of B,(r) has the same form as Sg(w), for N=0)

In Figures 3.1-3.4 we have graphs of: g,(z) (with a=1),
g3(Z), 94(2) (with v=2/3 and a=1) and 97(2) (with y=.85).

3.4 Final Verification Of Papanicolaou and Kohler Requirements

For £2

We can now finish verifying the remaining requirements for
the Papanicolaou and Kohler theorem, for £,. At the end of
section 2.3 is a list of the remaining requirements: (2.3.22),
(2.1.21) - (2.1.24), (2.1.29).

Equation (2.3.22) says that R and its derivatives must be
properly bounded. This was verified for all the examples in
section 3.3. Equation (2.1.21) requifes the principal part
of £2 to be non-negative definite; this is assured by (3.2.1).

Equation (2.1.22) requires the principal part of £, to have
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a symmetric square root we find (see (2.4.10)):

i (90 g(n)
227 \aln) gq

oo (22 83)

where

B= V90+9(n)
D= vVgy-g9(n) sgn(n)

>0
sgn (n) ={% e (3.4.1)

Note that (3.4.1) was used in (2.5.11), (2.5.12), to write

the Ito equations corresponding to iz.

The remaining conditions to be verified can be combined in

the statement:

(3.4.2)

o is bounded and has bounded, continuous
derivatives up to order 4.

The examples we gave in section 3.3 are for g(z) functions

that are bounded, and have 4 bounded, continuous derivatives.
From (3.2.3) we have gp>g(n) for n#0. Hence every element

in g is bounded by 290+ Likewise we see B>0 and that B and D are

bounded. The only place then that ¢ could be discontinuous or

have an unbounded derivative is where D=0, or (equivalently)



-76-
where n=0.

Around z=0, g{z) has the expansion (see (3.2.6)):

g(z)=gy - 9222+ g4z4+ 0(z°) (3.4.3)

Using (3.4.3) we can compute D as:

D= sgn(n) Yg,-9(2)

T - A 3 o) (3.4.4)
92 2vg, " " e

From (3.4.4) we see that D has 4 bounded, continuous

derivations at n=0. So (3.4.2) is satisfied.
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4.1 Transformation To Physical Coordinates

For this entire chapter we restrict ourselves to two
dimensions. Consider a continuum of rays leaving the initial
wavefront. Let X(t,a) (Xp(t,a)) be the scaled vertical

(horizontal) position of a ray. From (1.2.18), (1.4.9):

2 X, 2
At 122 |5 )%= (G3) +550) (4.1.1)

—a

~N

We will approximate (4.1.1) by
A(t,a)= %é(t’“) (4.1.2)

We have shown in section 2.6 that (4.1.2) is a good

approximation in the sense that iﬁ can be recovered from

£ and (4.1.2).

2N

Now we write the obvious identity

[ da K(A(t,a)) 8(X(t,a)-Xg) =

(4.1.3)

{Zl K(A(t,a;)) lg%%{j;j
*
X(tsai)=xo}

a—a.i

If we take K(A) = f(A)|A| and use (4.1.2) in (4.1.3) we find:



) f(A(t,a,)) (4.1.4)
X(t,a,)=X}

Because we are tracking rays in a random medium, more than
one ray may arrive at the same point in physical space. If we
wish to sum a function of raytube area over all the rays that
arrive at a fixed point in physical space then (4.1.4) tells us

how.

We can generalize (4.1.4) to account for N fixed points in

physical space. We have:

N
J do [ T lA(t,aj)| 6(X(t,aj)-2j) ] f(A(t,al),...,A(t,aN))
i=1
= y f(A(t,alj),...,A(t,aNj)) (4.1.5)
{ajjl
X(t,aij)=z1}

4.2 Expectations Taken in Physical Coordinates

In this section we relate statistics taken ray wise and
statistics taken in physical space. We work out the case of one
ray in detail.

Let 1? be a fixed point in physical space with coordinates
(t/02/3, Xg). We define the expectation of a function of raytube

area in physical space by:
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E;O[f(A(t,a))] = Ef {z l f(A(t,a;))] (4.2.1)
%3

X(t,ai)=XO}
The summation in (4.2.1) is over all those rays that arrive at

the fixed point lp. We use (4.1.4) in the last expression for
Exo[f(A(t,a))} = E[ [ do [A{t,a)| f(A(t,a)) &(X(t,a)-Xy) ]
(4.2.2)
For one ray, raytube area and ray position are independent
random variables, see (2.5.26). Therefore, the expectation of

the product in (4.2.2) is the product of the expectations:

Eio[f(A(t,a)J] = [ da E[[A(t,a)| f(A(t,a))] E[6(X(t,a)-Xy)]
' (4.2.3)

If the wave started with a planar initial wavefront then
E[|A(t,a)|f(A(t,a))] is independent of «, and can be removed from

under the integral in (4.2.3). This yields

Exo[f(A(t,a))] = E[|A(t,a)lf(A(t,a))] f da E[G(X(t,a)-XOJ]
(4.2.4)

To compute the second expectation in the right hand side of
(4.2.4) we need to multiply by the probability density of X(t,a)
and integrate over all possible valves for X. We do not know the
probability density of X(t,a) alone, but we do know an equation

for the joint probability density of X(t,a) and V(t,a); it is
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*

described by il .

The joint probability density is given by P(t,X,V;a) where

P(O,X,V;a) = 6(X-a) 6(V) (4.2.5)

Equation (4.2.5) can be solved by writing the Ito equations

for (4.2.5):

dx = V dt
dv = ngO dB
at t=0: X=a, V=0 (4.2.6)

We solve (4.2.6) as

t
V(t) = /?go ] B(s) ds
0

t
X(t)= o + JZgO [ (t-s) 8(s) ds (4.2.7)
0

Since V and X are integrals of the Wiener process, we expect

them to have gaussian distributions. We calculate, from (4.2.7):

E[X]=a
E[V]=0
t

t ot
E[V2]=2905[I [ 8(s) g(u) ds dul= 29, [ du = 2g4t
0 0 0



3
E[(X-a)?]=29y L5
2
E[V(X-a)]= 29y 55 (4.2.8)

where we have used E[B(s)B(u)]=6(s-u) and E[B(s)]J=0. Knowing the
means and covariances of a joint gaussian process allows us to

write the probability density as:
1 1 1 (X-a T ~-1,/X-
P(t,X,V;a) = Zr VICT exp{- Vi ( Va) Y 1( va)} (4.2.9)

where C is the covariance matrix. Using (4.2.8) we find the

solution;

5 exp|- ——1—-3-[t2v2-3tV(x-a)+3(x-a)z]}

9ot

P(t,X,V,a) = %% 1

9ot

(4.2.10)

Now we can evaluate
[ da E[G(X(t,a)-xo)}= [ da [ dX [ dV P(t,X,V;a) G(X-XO)
=[ da [ dV P(t,XO,V;a) = f dX0 [ dv P(t,XO,V;a) = 1 (4.2.11)

The third equality follows from the symmetry of (4.2.10) in
the a,X variables. The fourth equality comes from the fact that
P(t,X,V;a) is a probability density, so it must integrate to one.

Using (4.2.11) in (4.2.4) we find

E;(O[f(A(t,a))] = E[|A(t,a)|f(A(t,a))] (4.2.12)
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when the initial wavefront is planar. The expectation on the
right (left) hand side of (4.2.12) is the expectation taken
raywise (in physical space).

We view the |A(t,a)| in (4.2.12) as the Jacobian of the
mapping from a-space to X-space. That is, it relates the
statistics along the initial wavefront to the statistics along
the deformed wavefront in physical space.

Equation (4.2.12) and its derivation are essentially the
same as in (6). Now we generalize (4.2.1) to account for N fixed
points in physical space. We define

Eél,...,ZN[f(A(t,al),...,A(t,aN)]

= E[ Y f(A(t,a
{ajjl
X(t,a.ij)=z,i}

i) seesAltiays))] (4.2.13)

Using (4.1.5) in (4.2.13) we find

E [f(A(t,al),...,A(t,aN))] =

Zyseensly
E[ [ de { g IA(t,aj)l G(X(t,aj)-Zj) f[A(t,al),...,A(t,aN))]
=1 (4.2.14)
To evaluate the expectation on the right hand side of
(4.2.14) we need to multiply by the joint density of {X(t,aj),
A(t,aj)} and integrate over all possible values. We do not know
the joint density of {X(t,aj), A(t,aj)}, alone but we do know an

equation for the joint density of {X(t,aj), A(t,aj), V(t,aj),
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, L . . A
B(t,aj)} - it is described by .

So we evaluate (4.2.14) as

EZI,...,ZN[f(A(t’al)""A(t’“N))] = j dX j av f dA j dB ] do
N
P(t’l,!’A’_B_;_a_) f(Al,ooa,AN) H 'Ajl S(XJ‘-ZJ)
=1
N
= [ dV [ dA [ dB [ du P(t,Z,V,A,B5a) f(A ,.euuAy) T (A
j=1
(4.2.15)
where
A*x
iN P = Pt

P(O,X,V,A,B3a) = 8(X-a) 8(V-h'(a)) s(A-1) 8(B-h''(a)) (4.2.16)

where

Q(0,X,V,A,B) = §(V-h'(X)) &(A-1) &(B-h'"'(X)) (4.2.18)
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4,3 N-Point Energy Correlations

In this section we derive equations that describe the
N-point energy correlation function.
Recall é;(t,a) was defined to be the energy associated with
the ray X(t,a) (see section 1.3). Equation (1.3.12) with (1.4.1)

gives

£l0.q) CX(t.a)) 0.q) 1toC(X(t.a))
E(ts0)- TA(t,o)] t

p =)
(qp]
—

_£00) 140(6)) (4.3.1)

We define E(O,a)=1, so the initial wavefront has a uniform
energy density. We discard the 0(¢) term in (4.3.1) and do not

investigate the effects of this error. We now have:
Eltio) = e (4.3.2)
s t,a . .

We define the N point energy correlation function, at an

upstream distance of to~2/3, and at the points {Z1,...,Zy} to be

~ N
Ry(tsZyseeesZy) = E] y i Q(t,au) ]
{og ;] i=1
N
- g ) I (4.3.3)
{a1 | i=1 1]
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Now (4.3.3) is of the form (4.1.5) with

N
FIA(t,aq)seeesA(t,ay)) = T 1a (4.3.4)
1 N o TATE, o1
so we have (using (4.1.5)
N
Ry(t,2)= E [ [da -Hla(X(t’aJ)-Zj) ] (4.3.5)
J=

To evaluate the expectation in (4.3.3) we multiply by the

probability density of {X(t,aj), V(t,aj)} and integrate over all

possible valves. The forward Kolmogorov equation for £, gives

the joint probability density of {X(t,qj), V(t,aj)}. We have:

= [ dV [ da P(t,Z,V;a) (4.3.6)
where
£N*P = P,
P(0,X,V5a) = §(X-a) §(V-h'(a)) (4.3.7)

We can carry out the o integration in (4.3.6), (4.3.7) for
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Q(0,X,¥) = §(¥-h'(X)) (4.3.8)
Equation (4.3.8) is the main result of this section.

If we use f(A)=1/|A] in (4.2.12) then we find (using
(4.3.2)):

E;(O[E(t,a)] = By [ Tare ) ] = E[1] =1 (4.3.9)

Equation (4.3.9) says that energy is conserved. We used
(4.3.9) as a partial check on our computer routines when we
simulated the motion of rays in a random medium.

If we use f(A) = 1/A2 in (4.2.12) then we find (using

(4.3.2)):

] (4.3.10)

=

2 s O =El 1 = E
XO[E: (tha)] XO[Z??ETEY] [

s O

The last quantity in (4.3.10) is infinite, because the
probability density to first focus, wu(t), is positive for >0
(see (I.2.1)). Hence, the two point energy correlation function
is infinite at the origin. We will discuss this fact in more

detail later.



-89-
4.4 N-Point Energy Correlations,

Plane Initial Wavefront

For a plane

mass" of the N rays from (4.3.8).

where

and X, V are vectors with N components.

We define the new variables

My = X9-X,
My = Xp-Xj3
My.1 = Xn-1-X

N
MN = X1+X2+...+XN

or

where

initial wavefront we can remove the

"center of

For h=0 we write (4.3.8) as

(4.4.1)

(4.4.2)

(4.4.3)

(4.4.4)

(4.4.5)
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Ti‘]‘= '1 1+1=j (404.6)
0 otherwise

For example, for N=4, T is

1 -1 0 0
0 -1 0
I-= o 0 1 -1
1 1 1
We also define

(
S(t,M,W)= —m— (4.4.7)

We use (4.4.5), (4.4.7) in (4.4.1), (4.4.2) to find (see
(2.6.14))

S, = (VE)T(:T__%:T:T) Ty S - Hemy S
S(0,M,W) = &(W) (4.4.8)
RN(t,ﬂ) = [ dW S(t,M,W) (4.4.9)
Now assume j>i to write
gij = 9(X5-X5) = 9 (Xy=X5 1)+ (X5 =X p)4eeet



-91-

From (4.4.10) (and gijzgji) we conclude that 9ijs when
written in the 'M' variables, does not depend on My. The

variable My represents the "center of mass" of the N rays.

We will remove My, Wy from (4.4.8), (4.4.9). First define

*
ﬂ_=(M1’M2""’MN-1)T

W= (W My s iy )T (4.4.11)

and write (4.4.8) as

_ T T * 35
er T EEID s - s - gy
S(O,M,W) = 6&(N) (4.4.12)
Now consider the new equation:
T T *
0 = ()" (L 21N Ty QW
*
Q(0,M ,W) = &(M) (4.4.13)

If (4.4.13) has a solution, then that solution satisfies
(4.4.12). If the solution to (4.4.12) is unique, then the
solution to (4.4.13) is the unique solution to (4.4.12). We

assume the required existence and uniqueness so we can write (see

(4.4.9)):
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*

Ry(tsM) = Ry(t,M%) = [ dW Q(0,M W) (4.4.14)

We will very often use this type of uniqueness and existence

argument.

Now we define:

U(t,ﬁ_,ﬂ_)=] dWy Q(t,M ,W) (4.4.15)
If we assume that

*
3Q(t,M LK) “0 (4.4.16)
W

: | ¥n|==

for j=1,2,...,N, then we can integrate the system (4.4.13),
(4.4.14) with respect to Wy to obtain:

ML) (4.4.17)

The equations in (4.4.17) are the final form for the N point

correlation function.

We expand (3.4.17) for N=2 to find

Up = 2(gp-9(My)) ”wlwl' w1UM1
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U(O,Ml,wl) = 5(W1)

Rz(t,Ml) = f dwl U(t,Ml,wl) (4.4.18)
To simplify notation we define
f(z) = 2(gg - 9(2z)) (4.4.19)

so that (4.4.18) becomes:

Ro(t,M) = [ U(t,M,W) dW (4.4.20)

The system in (4.4.20) is the basis for the rest of this
chapter. In chapter 7 we solve (4.4.20) numerically. Because
the variable 't' in (4.4.20) looks so much like a 'time', we will
refer to 't' as both 'time' and 'distance'’.

Note that R, (in (4.4.20)) only depends on {t,M}. The
variable M (=M1=X1-X2) is the distance between the two points at
which the energy is being received. This agrees with our
intuition: 1in an isotropic and homogeneous random medium it is
only the relative position of the observing points that is
important. The "center of mass" of the two rays should not
affect the correlation function.

For N=3, (4.4.17) becomes (with (4.4.19)):



-94-

U(O,Ml,Mz,wl,w2)=5(wl)6(wZ)

R3(t,M1,M2)=de1fdw2 U(t,Ml,MZ,Wl,Wz)
(4.4.21)
For N=4, (4.4.17) becomes (with (4.4.19)):

Up= = Wily ~ Woly - Waly +f(My)U + (M, U + f(My U
t 1°M, 7 "27M,7 T30, 170 Wy 277U M (M3) Wl g

+ [f(Ml)+f(M2)-f(Ml+M2)] uwlw O [E(My (Mg )-F(MeMa) Uy, y

2 273

(M )T (M MM )= F (MM, )= F (MM ) TU,

)
2 1"3

1
R4(t,M1,Mz,M3)=de1de2de3 U(t,Ml,Mz,M3,W1,W2,W3)

(4.4.22)

4,5 Short Distance Approximation To The Two Point Energy

Correlation Function: Parametrix Method

In this section we find the short distance approximation to
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(4.4.20) using the parametrix method. We copy (4.4.20) as

Ut = f(M) wa - W UM
U(O,M,W) = &(W)

Ro(t,M) = [ dW U(t,M,W) (4.5.1)
We write (4.5.1) as

Vi = F(M) Vg - WYy
V(O,M,W;a) = 6(W) 8(M-q) (4.5.2)
Ry(t,M) = [ da [ dW V(t,M,W;a) (4.5.3)

The systems in (4.5.1) and (4.5.2), (4.5.3) are exactly
equivalent.

The Ito equations corresponding to (4.5.2) are

dM = W dt (4.5.4)
dW = /2f (M) dg (4.5.5)
at t=0: M=q, W=0 (4.5.6)

In a short time, we do not expect W to vary much from its
initial value since (see (4.5.5)) f(M) is bounded and E[g]=0. So
W will be "close" to zero for short times. If |W|<<1 then we
expect M to remain close to its initial value for short times
(from (4.5.4)). We conclude that M will be "close" to a for
short times.

OQur approximation then is to approximate f(M) in (4.5.5) by
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f(a). This is equivalent to approximating f(M) by f(a)
(4.5.2). For short times, our approximation is to use the

solution of

V(O,M,W;a) = 6(W) &§(M-a) (4.5.7)

in (4.5.3). This approximation is really the first step of the
parametrix method (see (17)).

We have solved equation (4.5.7) in section 4.2. We compare
(4.5.7) to (4.2.5) and so the solution from (4.2.10) becomes:
202 3tH (M-a)+3(M-a)?]]}

1
V(t ,M,W;a t
(mbie) = 5 g g |

(4.5.8)
We use (4.5.8) in (4.5.3) and carry out the W integration

for:

Rp(ts)= (= )/2f 78y exnl -

We define X=3/4t3, C=/YX/n and write (4.5.9) as
T{M+u)

R, (t,M)= C [ du e (4.5.10)

-0

If we fix M>0 and take t<<1 then X+~ and (4.5.10) is easy to
approximate using by Laplace's method. To compute several terms

it is easier to use theorem 8.1 of Olver (18) with A=1, yu=2, a=0,
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We write (4.5.10) as
Rz(t,M) = C ( Jp + Jz)

da /h(Mta) e Xalh(M+a)

= J
0
- 2

J,= [ da /(W-a) e7’® h(M-a) (4.5.11)
0

where h(a) = 1/f(a). Now we can apply Olver's theorem to each of
the two integrals in (4.5.11).

Since g(z) is even, f(z) is even (see(4.4.19)). We showed
in chapter 3 that gp=g(0) > |g(z)| for z#0 (see (3.2.3)). Hence
f(z)=0 only at z=0. Therefore, the point of dominant
contribution to J; and J, comes from the region about a=0.

If we expand

2

h(Mta) = hy + ahy + a®hy+ 0(al) (4.5.12)

we find after some fairly routine calculations

2
h
1 1 1
Ry (t,M) ~ C /§ (1 + 5 [+ - hy] )+ 0(~§) (4.5.13)
2Xh 0 X
0
If we expand
- 2 4
f(M+a) = fO + afl + «a f2+ 0(a™) (4.5.14)

then (4.5.13) becomes
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f
Ry(t,M) ~ C /T (1 + % )+ o(%) (4.5.15)

Using (4.4.19) and (4.5.14) we find that f,=-g''(M), so (4.5.15)

becomes

Ry (£,M) ~ ¢ % (1 - Sy o(%) (4.5.16)

substituting for C and X in (4.5.16) we obtain our final result:

Ry (taM) ~ 1 - & g'r(m) £3 + 0(t9) (4.5.17)

valid for M fixed and greater than zero, and t+0. Equation
(4.5.17) agrees with the result obtained by regular perturbation
techniques, see the appendix (A.1.32).

If M=0 in (4.5.10) then

Xt
e H
Rz(t,M) > C f du m
lul((S((l
X
ful<s

since f(u)~292u2 for |p|<<1.
The fact that we can not evaluate Rz(t,M) at M=0 is not

surprising. What Ry(t,0) evaluates is

1
: 4,5.19
| {algazl [ATt,ay )] TA(t,ay)] ] ( )

X(t,a1)=X(t,a2)=Z}
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which is greater than or equal to

] (4.5.20)

but (4.5.20) is infinite, see the end of section 4.3.
Our application of Olver's theorem does not work at M=0
because the correct expansion for h{(a) is now (see (4.5.12),

(3.2.9)):

2
In section 4.7 we start with equation (4.5.10) and
demonstrate that Ro(t,M) varies as log M as M+0, for all (finite)

t.

4,6 Short Distance Approximation to The Two Point Energy

Correlation Function: Fourier Transform Method

Another way of obtaining the short distance approximation to
(4.4.20), which also turns out to be easier for computing higher
order correction terms, is by Fourier Transforms.

We define the Fourier Transforms:

v(t.x,y)= [ f et OMIYN) g mLu) am aw
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R(t,x) = [ elXM R, (t,M) dM
a(x) = [ ™M g(m) am
f(x) = ™M £(m) am (4.6.1)

From (4.4.20c) and (4.6.1) we have
R(t,M) = v(t,x,0) (4.6.2)
From (4.4.19) and (4.6.1)
F(x) = 4n gg8(x) - 29(x) (4.6.3)

We take the Fourier Transform of (4.4.20a,b) to find

o©
A

2
Vgs X V- %? J db f(x-b) v(t,b,y)

-

v(0,x,y) = 2% 8(x) (4.6.4)
To obtain (4.6.4) we had to assume

=0, =0, U =0 (4.6.5)

I FTTE e [T YR

Using (4.6.3) in (4.6.4) gives

2 @© ~
Vs X V- %? { 4ngov -2 [ db g(x-b) v(t,b,y) }

- 00
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v(0,x,y) = 21 &(x) (4.6.6)

Now we make the change of dependent varijable

2

- Zgoty
v(t,x,y) = 2n e §(x) + ¢(t,x,y) (4.6.7)

in (4.6.6), (4.2.6) to find
) -29,ty?, 2 .

by = x o - 2y"[gp¢ e g(x)] + == [ db g(x-b) ¢(t,b,y)
$(0,x,y)=0 (4.6.8)
R(t,x)= 2n §(x) + o(t,x,0) (4.6.9)

So we see that changing variables from V to ¢ has removed the
delta function from the initial conditions.

The system (4.6.8), (4.6.9) is still exact. Now we look for
a short distance approximation. We suppose that, for short
times, ¢ can be expanded in a Taylor series in t:

N

o(tsx,y) = E opn(xsy) t (4.6.10)

N=0

Using (4.6.10) in (4.6.8b) gives

$g(x,y)=0 (4.6.11)
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Using (4.6.10) and (4.6.11) in (4.6.8a) and taking a Taylor

series in t gives the sequence of algebraic equations:

61 = 2 y° g(x) (4.6.12)
(N+1)¢ = X ¢ - 2y29 oyt 2 y2 g(x) (-2g szN
N+1 N,y 0°NT NT 0

+ " Koyl (4.6.13)
for N>1 where
K[a(x)] = L [ ab 3(x-b) q(b) (4.6.14)
If/we define
hy(x) = K[ §(x) ]
hy(x) = K[ x §(x) ]
ha(x) = K[ x% g(x) ] (4.6.15)

then we find

6, = 2xy a(x) + y*{ - 4g,a(x) + 2n (x)}

-

x? a(x) + ¥ [ 3 x[2h) ()-5g59(x)] + 5 h, ()} + o(yh

wlro
wiro

$3=



2

1 ~
be= S5 [ 3 ha(x) + xh,(x)+ 4x g

hi(x)- 3 9,9(x)]} + 0(y)
(4.6.16)
We use (4.6.10), (4.6.11), (4.6.12), (4.6.16) in (4.6.9) to find

R(t,x) = 2m 6(x) + % x2 g(x) t3

+ o0 [hg(x)+3xh,(x)+4x7[3h, (x)-8g,9(x) ] }+ 0(t/)

(4.6.17)

We recognize the first two terms in (4.6.17) as being the same as
(4.5.17).

Since ¢ has powers of Y in its short distance expansion,
then U (see (4.6.1), (4.6.7)) has generalized functions in the
variable W in its short distance expansion. When we form R, (see
(4.4.20)) the generalized functions are integrated out, and we

obtain a result containing only ordinary functions.

4.7 Singularity In The Two Point Correlation Function

Here we show that
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3\ t
3) &
2t

892

R, (t,M) ~(

lTog M as M+0 (4.7.1)
w2g

First we show (4.7.1) to be valid for short times, then for
all (finite) time.
We start with equation (4.5.10), valid for short times,

which can be put in the form:

R

,(tM) = C f mdu — (4.7.2)

where X = 3/4t3, ¢ = /X/n . We fix &, 0<6<<1, and write (4.7.2)

as
X (u=M)°
u
e
Rz(t,M) =C{ [du+ [ du } 7T00) (4.7.3)
lul<s  [u]>s
The second integral in (4.7.3) is easy to approximate (and
bound):
2
X (u-m)? _ X(u-M)
G < 4 [due i
ALY AT
lul>8 |ul>s8
_Xu-M
<—£——de9 H
/Fo-e
nfy 1 fui
. _C )l = ()72 ¢ = (4.7.4)
L L

where
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f. = min

f(a) >0
la]>s8

f, = max fla) < =
H |a|>6

The first integral in (4.7.3) is

2
X(u-M
8 T f(u
C fdu e
-6 VT{u)

For small |u| we approximate f(u) ~ 292u2

(4.7.6) becomes

_ X{u-M 2
8 9o1r
C 2H C
o [ due = (I1+13)
92 -5 i /29,
where
X My2
8 - e (1- =)
1, =/ du o 29 s
0 u
X My2
0 T 79, (1‘ 3)
I = - fi‘i e 2
2 u
-8

We change variables in (4.7.8) by z=1- % to obtain

2
I-M _ Xz
§ d 292
Il = f 1-; e
- 00 2
. Xe
_ b dz g2
12 = -fM -I—_T- e
1+E

Recall that 6§ is fixed.

(4.7.5)

(4.7.6)

(see (3.2.9)) so

(4.7.7)

(4.7.8)

(4.7.9)

As M+0, both Iy and I, are singular. We
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can show they each have a logarithmic singularity by using

L'Hopitals rule:

5 X
i LI 292 (4.7.10)
im g = 1im = - e
og a L ] *
M+0 M+0 =W log M
Likewise X
Y 29,
Tim TEE—M = - € (4.7.11)

Combining (4.7.4), (4.7.7), (4.7.10), (4.7.11) in (4.7.3) we

have:
2
- X%u-M!
§ e flu
sM) =
Rz(t ) C-é du /f(u) + O(l)
= U (1,+1,)+0(1)
/292 1 2
_ X
-2C 29
~—_—_ e log M as My0
29, 3
3 W 39,t
~ (—=3)%e log M as My0
292ﬂt

(4.7.12)

Hence, we have demonstrated (4.7.1) for short times. We now
argue that (4.7.1) is valid for all times.

The singularity is present because (from (4.5.1))
U(t,0,0)==. This is true because U(t,0,0) starts at infinity due

to the delta function initial conditions. At W=0, M=0 the
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equation in (4.5.1) becomes Uy (t,0,0)=0, because f(0)=0.
Therefore we conclude U(t,0,0)=w,

When we write (4.5.1) in the form

Ve = F(M) Vyy - W Vy

V(O,M,W;a) = &(W) 8(M-a) (4.7.13)

Rp(t,M) = [ da [ dW V(t,M,W;a) (4.7.14)

the singularity now comes from the o integration (in (4.7.14)),

around a=0. We write (4.7.14) as

Ro(t,M) = { [ da + [ da} [ dW V(t,M,W;a) (4.7.15)
|al]>6 || <8
where § is fixed and much smaller than one. Because the

singularity comes from the region around «=0 we write (4.7.15) as

Ro(t,M) = [ da [ dW V(t,M,W;a) + 0(1) (4.7.16)
|o]<s
We now show that, to evaluate (4.7.16), we can use f{a) for
f(M) in (4.7.13).
We write the Ito equations corresponding to (4.7.13) as (see

(4.2.5), (4.2.6)):

dM = W dt
dW = v2f (M) d8

at t=0: M=q, W=0 (4.7.17)
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If we approximate f(M) by f(a), which is tantamount to
saying M stays "near" «, then we can approximate the error made

by computing E[(M-a)2]. Doing this and using (4.2.8c) we find
(4.7.18)

In section 4.5 we assumed E[(MFQ)ZJ was small if 0<t<«l.
Now we have o at our disposal. Note that in (4.7.16) we want the
solution for small values of a. For |a| small, we can expand
f(a)=292a2+0(a4). Therefore, for |a|<8<<1 we can bound (4.7.18)
by

4
E[(M-a)?] < -%3 52¢3 (4.7.19)

For any (finite) value of t, we can make (4.7.19)
arbitrarily small by choosing & small enough. Therefore, for
small enough 8, we can use f(a) for f(M) in (4.7.13) to obtain a
good approximation to (4.7.16).

Carrying this out we obtain

Ry(t,M) = C [ du c
|ul<s

+ 0(1) (4.7.20)

which gives the same result as (4.7.3).

We conclude that (4.7.1) is valid for all (finite) time.
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5.1 Interpretation 0f Ray Angle, Interface Conditions

In the generators iﬁ, N (see (2.3.23), (2.4.7)) we used the
variab]es XL, vL.  Here we interpret vl as the scaled angle that
ray L makes with the horizontal.

Let ¥, be the angle that ray L makes with the horizontal.
For ray number L, let V% (V;) be the velocity in the i (j)

direction on the 's' scale.

The angle of the ray is then given by:

L
1,72
¥ = tan (VT) (5.1.1)
From (1.4.9) and (1.4.16)
VO(t) = vi(t) 1+ vo(t) 3 (5.1.2)

= g vg (5.1.3)

Using (5.1.3) in (5.1.1),
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We scale WL to form eL and

02/3V0
‘PL = tan-l —ﬂ—zg—
l1+¢ Vg
= 02/3v§ s 0(s¥ 3 (5.1.4)
then use (5.1.4) for:
8, £ —27-3“
L_ o
B 0(s%/3) (5.1.5)

So o, the scaled angle

Vg (to leading order). It

with the Vg variable in (2

(2.3.10). So the Vb in 2

N
makes with the horizontal.

This fact will enable
media.

makes with the horizontal)

(5.1.5)).

relative to the horizontal,

.3.9)

is given by
will be recalled that we dispensed
and then defined Vg as VL in

represents the scaled angle that ray L

us to trace rays through successive

Since vl is order one, then ¥ (the actual angle a ray

2/3

is very small (of order o , see

Using the geometric optics approximation to the wave

equation, across an interface the rays must satisfy Snell's law

(see (19), Al2.11):

where C; (aj) is the local

¢,

sin o) = CT sin a, (5.1.6)

wave speed (angle to the normal) in
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medium i.

If the interface is along the j axis (so it is parallel to
the mean initial wavefront), then the angles to the normal (aj)
will be the angle a ray makes with the horizontal (¥5).
Therefore we take C;=1+0(0) (or Cp=1 in (1.4.1)), and
a1=0(02/3). Then (5.1.6) becomes

@y = a2Q+ 0(o )) (5.1.7)

This says that the angle of incidence equals the angle of
refraction, for small angles.

Define S to be the interface between two media and let N be
normal to S. Let U1 be the solution to the wave equation (1.1.1)
in medium i, If we require

N.vU, = N.VU,
U, = U, (5.1.8)
on S then we need not consider reflected rays. If the parameter

'Z' is defined by (see (19), Al2.13)

Clcos ay

Z = W (5.1.9)

then the leading order reflection (r) and transmission (t)

coefficients are given by ((19), Al2.16, Al12.17)

oy
]
™~

-
1]

2
. t= 157 (5.1.10)

oy
+
N

-

Using C;=1+0(o) , a;=0(c?/3) we find Z=1+0(c)  and so
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r=0(o) ,» t=1+0(0o) . Therefore, to first order, there are no

reflected rays.

Now suppose we find the probability density fdr the
positions and scaled angles of N rays. From Snell's law, when
the rays arrive at an interface, we use the value of vL.in the
preceeding medium as the starting value for VL in the new
medium. That is (see (2.4.2), (2.4.6)):

h' (o) =yt on S (5.1.11)

new medium last medium

5.2 Two Point Energy Correlations, N Media

In this section we find the equations that describe the two
point energy correlation for a wave that has travelled through N
media, with planar and parallel interfaces.

We take the velocity field in medium i to be
Ci(l)=1+°61(l)- We define gi(z) (fi(z)) to be the g(z) (f(z))
function in medium i. We suppose that medium i has a width of
si=t;62/3, and define ty=(t1, to,...,ty). |

We require the boundary between the media to be planar and
parallel (to each other and the mean initial wavefront). This is
required to ensure that all the rays described by iN reach each
medium at the same time (to leading order). This follows from
the scaling in chapter one.

From (1.4.9), (1.4.8), (1.4.16), (2.3.9):
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= —573 +XJ(2) = g+ o(1) (5.2.1)

Therefore,all the rays will be at a horizontal distance of t/cz/3
to leading order, independent of their starting angles.
To find the two point energy correlation for rays going

through N media we can still use (4.3.6):

Rp(ty,2) = [ dX [ dV Py(ty.Z,V5a) (5.2.2)

where Py(tys,Z,V;a) is the probability density of two rays
starting from a wavefront at positions (al,az), travelling a
scaled distance t; in medium i (i=1, 2,..., N); and then the rays
have positions (Zy, Z,) and scaled angles (Vy, Vj).

Clearly the initial condition for Py(ty.Z,V;a) is:

PN(QN,23J}2) = 5(21‘a1)5(22‘a2)5(vl‘h'(Gl))G(Vl'h'(ag))
(5.2.3)

Define 1.£ to be £

P 5 with g(z) replaced by gi(z). While the

rays are in medium i, i€9 describes the motion of the rays.

Define q;(t;,X,V;n,z) to be the solution of:

(qi)t = 1£2*(qi) (5.2.4)



Hence, q;(t;,X,V;n,z) is the density for the position and
angles of two rays travelling in medium i, that started from
‘(nysnp) with scaled angles (c1-2p). We will now find
Py(tysZ,Vsa) in terms of the {qi}w_l- by tracing two rays
through the successive media. "

The probability density for the -positions, (X;) and
scaled angles (Vjy) in the first medium is given by
q1(ty,Xy5Vysa,h'(a)). When the rays arrive at the second medium

(i.e., the first interface) we continue the motion of the rays by
finding q,(ty,X9,V53X1,V1). What qo(tosXo,Vp3X1,Vy) represents
is the probability density for the positions (12) and scaled
angles (V,) of two rays which started at the positions Qll) and
the scaled angles (Vy).

Now the Chapman-Kolmogorov equation can be used. To find
the probability density for two rays that have gone through two
media we integrate over all possible values of positions and

scaled angles on the interface (X; and JJ). This yields:

Palta:Xp:Vp50) = [ dXy [ dVy

ay(ty,X1,Vys50.h' (a)) ap(tp,Xp.Vps5Xy,Yy)  (5.2.5)

Now we must solve (5.2.4) to find q3(t3,X3,V3:X0,Vo).
Since P, has the probability density of two rays going through

two media, and q3 has the probability density of two rays going
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through the third medium, we can again apply the Chapman-

Kolmogorov equation to obtain:

P3(t3,X3,V350) = [ dXp [ dVp

-

PZ(LZ’AZ’_\LZ;&) Q3(t3sL3,l3,l(_2,_V_2) (5.2.6)

In general we find:
PrlloXyYysa) = [ dXy g [ dYy

Pror s XYy ogse) ap (b XX 1Yy )

(for k=2,3,...,N) (5.2.7)

P].(L]_sllsl]_s_(}_) = q]_(t]_si]_,_\il;_&sh'(_a_)) (5'2'8)
where we still have to evaluate (5.2.2) to find Rpo(ty,Z).
We now simplify (5.2.7), (5.2.8). Note that KEp s a
differential operator with respect to the variables (ﬁkaﬁk)'
Applying k£2* to (5.2.7) and using (5.2.4) we find

*

*
B2 Pk = gy Xy SV P9y

*

Jd¥pfdhr Peor 9

L]

JdXgo1 JdVye 1 Proa (qk)tk
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9
= at JdX 1 fdVy 1 Py19

= (Pk)tk (for k = 2, 3,..., N) (5.2.9)

To find the initial conditions for (5.2.9) we evaluate

(6.2.7) at t =0 and use (5.2.4) for

Pk(ik_lsoglks_y_k;_g_) jdlk-l fd—v-k-l

Pro1(ty 1o Xk o1 Vg o1s5e) 8(Xe-Xp_1)8( Yy -Vy_ 1)

Pro1 (B o1 Xk s Vysa) (for k=2,3,...,N)
(5.2.10)

From (5.2.8) and (5.2.4) we clearly have

Pl(O,IJ,XJ;g) = 5(142&) 5(!1'“'(L&)) (5.2.11)

To find Rp(ty,Z) we solve (5.2.11) and then solve (5.2.9),
(5.2.10) sucessively for k=2, 3,..., N. Then we can evaluate
(5.2.2).

One further simplification is possible. We can integrate
out the o in (5.2.11), (5.2.9), (5.2.10), (5.2.2) to obtain the

final form of our equations:
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*
kiz Qk = (Ok) (for k=1,2’oco,N)

ty

Qk(ik-lsos_x_ks_!k) = Qk_l(lk_]_a_x_kslk) (for k=2339"'9N)

[ dVy QtysZsYy) (5.2.12)

-3
~N
——
Lﬁ-
>
~
g
I

5.3 Two Point Energy Correlations, Plane Initial Wavefront

We can simplify the final formulae in section 5.2 if we have

a plane initial wavefront. Using h=0 in (5.2.12) we have

Pk=(Pk) (for k=1,2,...,N)

Pk(_t_:_k-l:oslk,_y_j() = Pk-l(_EJ(-]_s_X_k’_!k) (fOl" k=2s3s°°‘9N)

Pl(oax s_y_l) = ‘5(_\_/_1)

Ro(tysXy) = [ dVy Py(tysXysVy) (5.3.1)

We change variables in (5.3.1) by

1 -1

Y= T X, = X

e L& L
Y= I Y
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Q (Lo XV ) = Yo Pty X, n Yy ) (5.3.2)

This is the same change of variables we used in section
3.4, Once again we will remove the "center of mass" coordinates

from the system (5.3.1). Using (5.3.2) in (5.3.1) produces:

(@), Eo Q= -u,f(ok)Y2 +2(g% +g*(v])) (0] 2,2
k k™ k
+ £k+ 0, (for k=1,2,...,N)

Qk(ik-]soslka_u_k) = Qk-]_(ik-]_slk,_u_k) (fO!" k=253s°"sN)

" fk(vi)u (5.3.4)

1
K kY

Kk

We can now remove the (YE, UE) variables from (5.3.3). The

procedure is as follows: (for k=1,2,...,N)

1) Define QF(t,,Y},U, ) to be the solution of:

(), = 2(gg+a*(Y})) (o) , , + £ O  (5.3.5)
k UTh
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with the initial conditions

if k=1 OI(O,Y&,QI) = 8(Y,)
Pf k> 0 (ty_100:YsU, ) = Qp 1 (Ey 1s¥y oY) (5.3.6)

Note that (5.3.5) and (5.3.6) do not depend on the variable

2
k.
(5.3.3) has a unique solution for every k, then Qk=0:‘ We assume

Y Observe that if (5.3.5), (5.3.6) has a solution, and if

the required existence and uniqueness.
1 1

. 1, _ 2 .+
2) Define Wk(Lk,Yk,UK) = | dUk Qk(Lk,Yk,gk).

Now integrate (5.3.5), (5.3.6) with respect to UE. We assume

that (Q )| , =0 so that (5.3.5), (5.3.6) become
Vi ==
_ +
(wk)tk— e %
if k=1: wl(o,vi,ui) = s(ul)
if k>1: v (t, .,0,vi,uly = v (¢, ..vi,uly (5.3.7)
' o1 0 Vi Uy k-1 1 T Yk -3.

The final equations we obtain are:
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_ + _ 1 1
(v )y =87 4= - Uy ) g+ f M) () g g
k Y U u
k k "k
(for k=1,2,...,N)
1 1 1 1 _
wk(ik—l’O’Yk’Uk) - ‘yk-l(ik—l,Yk,Uk) (fOf‘ k-2’3’ouo,N)
1,1 1
wl(o’Yl’Ul) = ‘S(Ul)
1y _ 1 1 ,,1
RZ(EN’YN) = dUN WN(EN,YN,UN) (5.3.8)

The equations in (5.3.8) are the final form we obtain.
Numerically they are no more difficult to solve than (4.4.20).
We can use the computer code described in chapter 7 to solve for
¥1, for 0<t<t1. We use the results of this computation for ¥, as
the initial conditions for ¥,. To find ¥, we change the f(z)
function from fl(z) to fz(z), and solve for 0<t<t,. Then the
value of ¥o is used as the initial condition for ¥q, etc.

The only change required in the code described in chapter 7
is to permit different f(z) functions to be used at different

times.

5.4 Shadowgraph Problem

The shadowgraph problem is to find the correlation of energy
after a plane wave passes through a random medium and then a

uniform medium. This is the way many experiments are set up; the
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recording device is not in the random medium but separated by
some distance. The shadowgraph method has been extensively
employed in the analysis of the turbulent wakes of models of
hypersonic vehicles.

In the shadowgraph problem, focusing of raytubes can occur
either inside the random medium (this is what Kulkarny and White
(6) investigated.) or outside the random medium, by purely
geometrical considerations. This is because the rays leaving the
random medium will have random angles.

Weyl (20) was one of the first investigators of the
shadowgraph problem. Later results can be found in Uberoi and
Kovasznay (21) and Taylor (10). A1l these results are restricted
to regimes where focusing has not occurred in either the random
medium or the uniform medium.

It is straightforward to use the regular perturbation
method with geometrical optics to find the energy correlation,
when focusing occurs either in the random medium or in the
uniform medium. In section A.2 we present this method, which is
just an extension of Tatarski's (5) analysis. Hesselink and
White (11) analyzed their experimental data using an inversion
scheme based on a procedure similiar to that of section A.2.

We can use the results of section 5.3 (with N=2) to obtain
an expression for the correlation of energy obtained by the
shadowgraph method.

We assume the random medium has a velocity field of the fofm
C=1+4C and has a width of t;6"2/3. The second medium, which is

uniform and has C=1, is of width t20‘2/3 (see Figure 5.1).
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We copy (5.3.8) for N=2 and remove the superscripts from the

variables for:

WI(O,YI,Ul) = G(Ul)

Yoo o= = Ug ¥, oy o+ Fo(Y) ¥ (5.4.1)
]_,tl 1 l,Y1 1V'1 19U1U1
wz(tlyosyzsuz) = Wl(tlsyz’uz)

v = U, ¥ + f o (Y,) ¥ (5.4.2)
2,t2 2 2,Y2 242 2’U2U2

Ro(tystp,Yo) = [ dUp ¥p(tystssYy,Us) (5.4.3)

The second medium is uniform, so that gz(x)=0 and f,(x)=0.

Using this in (5.4.2) we have

= - U
2

¥

Yoot 2 Yoy

2

wz(tl,O,YZ,Uz) = wl(tl’YZ’UZ) (5.4.4)

The equation in (5.4.4) is a wave equation. We have
¥,=constant on lines where Yo-Usty=constant. Hence, the solution
of (5.4.4) is

Wz(tlatZ.Yz,Uz) = wl(tl’YZ'UZtZ’UZ) (5-4.5)

Using (5.4.5) in (5.4.3):
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Rp(tyaty)y) = [ dUp ¥ (t1,Y,-Upty,Uy)  (5.4.6)

When equation (5.4.1) is solved for ¥1, and the result used
in (5.4.6) we obtain the shadowgraph energy correlation. In

general, we can proceed no further.

5.5 Short distance approximation for the shadowgraph problem

In the special case when t;<<1 we can approximate the
solution to (5.4.1), (5.4.6) and so find the energy correlation
function for the shadowgraph problem.

We write equations (5.4.1), (5.4.6) in the equivalent form
(with t for t):

ve = £(Y) ¥y, - U ¥y
¥(0,Y,U3a) = 6(U) 8(Y-a) (5.5.1)

Rp(tst,,Y) = [ da [ dU ¥(t,Y-Ut,,Usa) (5.5.2)

For short times we approximate f(Y) by f(a) in (5.5.1) (see

section 4.5). The equation for ¥ becomes

Yt = f(a) WUU - U WY
¥(0,Y,U;a) = 8(U) 8(Y-a) (5.5.3)

The solution to (5.5.3) is in (4.2.5), (4.2.10). MWe have



¥(t,Y,U50)= 5 ?%:7;?-exp{- ?%:7;3 [£20%-3tu(Y-a)+3(Y-a) 2]}
(5.5.4)

Using (5.5.4) in (5.5.2) we can evaluate the integral with

respect to U exactly (the integrand is only a gaussian in U). We

obtain:
R (1, 1)e (22 ] de gy (=)l 3 (5.5.5)
2{tst, A 7T (o) @) 21e3
where
t t
L=1+3 (£)+3 (-£)% (5.5.6)

For t<<1, we have t3L>>1 and we can use Laplace's method on
(5.5.5). In fact, (5.5.5) is the exact same integral as (4.5.9),
with t replaced by tL1/3. Therefore we can use the answer we

obtained before, (4.5.17), with t=tL1/3. We find

Ry (tatpat) = 1 -2 gt (1) £(103(22)s3(2207) + 0284, M)
(5.5.7)

Equation (5.5.7) is the same answer we obtain by regular
perturbation methods (see (A.2.20)).

Note that (5.5.7) is valid for arbitrarily large t,, if t is
sufficiently small. This explains the experimental results of
Hesselink and White (11).

In their experiment, t is small enough for (5.5.7) to be
valid. They used (5.5.7) to find the spectrum of the medium
(which is the same as knowing g(Y), see (3.1.9)) at two values of

t,. They were concerned that they obtained the same spectrum, at
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each value of t,, while the shadowgraphs showed that much more
focusing had occurred for larger values of ty. We know now that
(5.5.7) is valid for large t,, and the increased focusing they

observed must have been due to the geometrical focusing in the

uniform medium.
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6.1 Applying The Papanicolaou and Kohler Theorem To The Three

Dimensional Equations Of Motion: Deriving The Generator .&,

BAS

In this section we will use the Papanicolaou and Kohler
theorem on the three dimensional equations of motion: (1.5.13),
(1.5.14). These equations are of the form (2.2.1) so we can use
the results of section 2.2.

We copy (1.5.13), (1.5.14) for the case of N rays, and only

keep only those terms that are of order one or larger:

g (t, ob) Ve (e, ab)
X9 (t, ab) Vg (¢, oh)
X9 (t, ob) Vi (t, &)
%f‘ V({ (t’ EL) = 0
vo (t 0‘L) _ 1 6 ( t L xo o x9)
2 \tr 2 ~I73 “x, ‘2273 1° "2 73
g L 1 2 t g o o
V3 (ts a”) \' 173 Cx3 (02/3 + X X X3))
L =1, 2, ..., N.
’xi’ (0, ab) 0
Xg (0, EL) a3
vi o, = o
v (0 aL) h (o an)
2 ‘Y & a, ‘%2 %3 (6.1.1)
Vg (Oa gL) ha3 (‘123 33)
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To this order of approximation, the solution for Xg and Vg

is clearly

<
Q
———
()
w
Ie
-
S
it
jon)

(6.1.2)

We use (6.1.2) in (6.1.1) and write the remaining equations as:

L L
X, \ v,
L L
Xq Vs
d L N ¢ L oL
Tl Y 173 sz (02/3’ Xo7s X37)
L 1 - t L . L
v - C ( s Xo s Xgo)
3 173 Cx, 273 Xae s
L=1, 2, «ou, N (6.1.3)
L L
/ X5 ‘ o5
L i L
X3 = g
L L
V2 ha2 (az, a3)
L L L
\ V3 / ha3 (az, a3) (6.1.4)
t =0
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Equation (6.1.3) has the same form as (2.2.1) if we identify:

1 1 2 2 N Ny T
_p_ (XZ’ X3, Xz, X3, LI Y X2 (Y X3 )
1 1 2 2 N Ny T
g_ - (v2’ VB, V2, V3, LI Y VZ . VS )
t ~ t 1 1
.'S. (B’ ) = (' c ( s Xy X )
5273 X, ‘273 "2* 73
" t 1 1
- C ( s X s X )
« X3 G2/3 2 3
~ t N N
-C ( s Kos X )
X2 02/3 2 3

\

We also define ?}E to be the smallest sigma algebra with
respect to which {C, (t:%,,X3), Cy (t:X,,X5) | for all
2 3
X,, X5 and s<t<t} are measurable.
First we will find the infinitesimal generator, and then
verify the requirements of the Papanicolaou and Kohler theorem.

From (2.2.11) we have

-_— 0 2:

q
b = ( ) = (vl vé,..., vg , vg, 0,..., 0)7

(6.1.6)

We define the three dimensional correlation function of C by

R(X,Y,Z) = E [C(X,Y,Z) €(0,0,0)] (6.1.7)
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We assume that 6 is homogeneous and isotropic so that
R(X,Y,Z) = R(IX[, |Y], |Z]) (6.1.8)
From (6.1.7) we find

-R (XgY,Z) = E [éx (X,Y,Z) éx (03090)]
2 2

YY

'RZZ (X’Y’Z) = E [Cx3(X3YsZ) CXB(OaOsO)]

Ryy (X,Y,2) = E {6X2(x,v,2) 6X3(o,o,o)] (6.1.9)

Using (6.1.5) and (6.1.9) we find:

3 € 3 €
_ S=-0 i i3
= - RZZ( > X2-X2, X3—X3) (6.1.10)

Similarly,

S g _ S-0
E [KZ'i(-E’ ?) sz_l(ﬂa “2‘)] - "Ryz(‘s"z_s X2

S o _ _' i_j
B DKpio1(Re =) kg (2o 2 = Ry Kot Xy X3)

(6.1.11)
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We define (analogous to (2.3.21))

[ <}

G(Y,Z) = -f R(X,Y,Z) dX (6.1.12)
0

By the isotropy of 6,

G(Y,Z) = H( v v2 + 72 ) (6.1.13)

Now we apply (2.3.1), (2.3.2) to (6.1.10) and (6.1.11) to
calculate a by (2.2.12). We find

i J i J _ . _ .
(’GZZ (Xp = X35 X3 = XJ) L = 2N + 21, K = 2N + 2
LK i Jioyiod ] . ) :
atk - By (Xp = X3o X3 = XJ) L= 2N + 2i-1, K = 2N + 2
L= 2N + 2§, K = 2N + 2j-1
i iy Ly _ . _ .
Gyy (X3 - X3, X3 - xd) L= 2N« 2121, K = 2N 4+ 25-1
L 0 otherwise (6.1.14)

for 1 < i,j < N. For this we had to require (from (2.3.2)):

[

| [ R*(X,Y,Z) X dX | < C < =
0

R R

vz R77] (6.1.15)

* =

R {RYY’
From (6.1.6), (6.1.14) we can immediately write the

generator, 3£N , for the evolution of the 4N quantities

{Xé, X;, V;, Vé}. We have (see (2.1.3)):
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2
L 3 ) 3
P Ve —=— o+ {6 ()
N T L=1,N Yy 2V avh
L=2,3 K=1,N
2 2 2
— —_9 W) —S
t ey, () I v 1 v Gy () ¢ ]
3V, 3V, avy av, a3V, 3V
16.1.16)
where the argument to the G function is
L K L K
(X5 - X5 X3 - X3) (6.1.17)

When 3&N is used in the forward Kolmogorov equation,

*
3%y Q = Qt, the initial conditions for Q come from (6.1.4). We

have

-h (25, 23)) (6.1.18)

For an initially plane wavefront, h=z=0 (see (1.5.1)), so
(6.1.18) becomes

,l/_3,323_0_t3) = 5(_&2“22) 6(13'23) 6(12) 6(_\1_3)

0(0,X,,X5,Y,
(6.1.19)

Now we must check the requirements of the Papanicolaou and
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Kohler theorem (see (2.2.14). We cannot check the strong mixing
rate, but (6.1.15) does insure a weak form of mixing.

If we assume E[E] = 0, then (2.2.7) is satisfied. We
assumed that 6 is bounded and has bounded derivatives in (1.4.3),
so (2.2.9) is satisfied.

Because we used (2.3.1), (2.3.2) to evaluate the all
coefficients, conditions (2.2.13) is satisfied.

We have not verified conditions (2.1.21) - (2.1.24),
(2.1.29) for 3Ey> but believe them to be satisfied. These are
conditions on the continuity and differentiability of the

principal part of 3y

6.2 N-Point Energy Correlations

In this section we will find the equations that describe the
N-point energy correlation in three dimensions.

We define J(t,a to be the Jacobian of the mapping from

2%3)
the wavefront to physical space. We assume that variations in
the i direction are small compared to variations in the (j, k)
directions. This is the same assumption we made in two

dimensions. With this assumption, we can approximate the

Jacobian by:

3(Xps Xg)
J(t,a,,a5) = oy ey (6.2.1)

The Jacobian is the ratio of infinitesimal areas, So we use

J(t,az,a3) (defined by (6.2.1)) as the approximate raytube area
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in three dimensions.
We define the expectation in physical space, the same way we
did in two dimensions (see (3.2.1)):
oL f(I(t,ay,a3)) T = E [ (o ! ) If(J(t,a25a3)) ]
2° 73
Xz(t,az,a3) = 22
X3(t,a2,a3) = 23} (6.2.2)

We generalize (6.2.2) to N points in physical space as follows:

£(z,,2,) L TOahad)s cons 3(6alal)) 3

= EL §  f(I(t,az,az)s «ees flt,ah,a}))]  (6.2.3)
22’E3I

Xp(tiapsa3) = Zp
£3(t;22:23) = 23}

Since J(t,aé,ag) is an approximate area of the Lth raytube,
and ray energy is approximately the reciprocal of the raytube

area (see (4.3.1)), we define

N 1

Ry (ts2,,25) Bz, ,z,) [T ] (6.2.4)
2°23/ L=1 L L
J(t’029a3)

to be the energy correlation function for N points in three

dimensions. Using (6.2.3) in (6.2.4)



-135-

N 1
Ry(ts2,,2,) = E[ ¥ i ]
3RNItLp0L3 ,
EPRLEY =1 (t,ap,ab)
Xo(tsap,a3) = 7,
X3(tsap,a3) = Z3}
N B(az,a3)
=E[ i —r— |1
{22s33l L=1 3(X2,X3)
Xp(tsagsa3) = Zp
13(ts22’23) = 13}
= b [[da, [das 6(X,-Z,) 8(X3-Z3)] (6.2.5)

where we have used (6.2.1) for the second equality. The third
equality is a generalization of (4.1.3).

We can evaluate the right hand side of (6.2.5) by
multiplying by the joint probability density of {iz, X35 Vo, 13}
(which we can find from 3£N) and integrating over all values of
{12, X35 Vs !3}. Carrying this out we find:

Ry (tsZ,0Z3) = [dayfday [dX,[dXa[dV,[dVa P(t,X,,Xq,Y,,V 50,,0,)

8(Xp-25)8(X3-23) = [dap[daz[dV,[dVs P(t,Z5,23,V5.V35a,,03)
(6.2.6)

where

P(O,ﬁz,l3,_\’_2,l3;gz,g3) = 6(_),(_2"22) 6(_)23'23) s(lz‘ha2(£2323))
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5(13'ha3(22,33)) (6.2.7)

We can carry out the a5, a3 integrations in (6.2.6), (6.2.7)

because ,£, does not depend on a, Or aj. We find

R

Ry (taX0X5) = [dV, [dV, S(t,X,.X;3,V,,V,) (6.2.8)

*22°=3 520230~

(6.2.9)

$(0,X5:X3,¥5,V3) = 5(l2'ha2(52’i3)) 5(l3-ha3(12,l3))
' (6.2.10)

For a plane initial wavefront, (6.2.10) is replaced by
S(0,X5,X3,¥05,V3) = 8(V,) 6(V3) (6.2.11)

Equations (6.2.8) through (6.2.11) are the main results of

this section.

6.3 Two Point Energy Correlations, Plane Inital Wavefront

Here we simplify the two point energy corre]atibn equations
when the intial wavefront is planar (equations (6.2.8), (6.2.9),
(6.2.11)).

We know G(Y,Z) is a function of (Y2+22) from (6.1.13), so we
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have

6y7(0,0) = 0

We define G, by:

Gh = G

0 yy(oso) = GZZ(O,O)

using (6.3.1), (6.3.2) and N=2 in (6.1.16) we find

£, = ) vE 2 ) G 2
372 1,2 axE L=1,2 ° 3VL2
i=2.3 i=2.3 i
32 32
t 26y (+) =g+ 2655 (0) —y—
2V10V5 aviave

265 () { ) h J

+ . +

YZ | T2
3V28V3 8V33V2

where the argument to G(«) in (6.3.3) is

1.2 1.2
(Xp-X5, X3-X3)

(6.3.1)

(6.3.2)

(6.3.3)

(6.3.4)

We copy equations (6.2.8), (6.2.9), (6.2.11) for reference:

Ro(tdpeky) = [ 6y J dly S(E.Xp X300



S(0,X,,XasV, V) = §(V

2 XpsXqs ¥,y (6.3.5)

We now change variables in (6.3.3) and (6.3.5). In analogy
with what we did in two dimensions, we choose new variables to be

the sum and difference of the old variables. We define

_ oyl 2 _ oyl y2
Y1 = X2-X2 ry = X2+X2
- yl_y?2 _ oyl 2
1.2 1.2
V1 = V2--V2 P1 = V2+V2
_ oyl 2 _ yl.,y2
V2 = V3-V3 P2 = V3+V3

H(tS.Y.s_V.sL’B.) = 4 S(ta_).(.z’.).(_:;’lls_v.z)

Routine calculations give

2

* + 9 ° 9
2, 0o 2 i [P g op, b 206046y (V],Y,)]
| ] 2 apf
32 32
+ 206465, (Yy,Y5)] vy Gyz (Y15Yp) 33;33;} H = Hy
2

where



Ayl
3V1
32 32
] 2
2
and
sR,(t,Y,r) = [dV [dP H(0,Y,r,V,P) (6.3.8)
H(0,Y.r,V,P) = §(V) &(P) (6.3.9)

Now we will eliminate r, P from (6.3.6) - (6.3.9) the same
way we removed My, Wy in two dimensions (see section 3.4).

Consider the equation:

2
3
Qt = £+ Q + { Z[GO'FGYY(YI,YZ)} a?-
1
[ 120 ( ) 2°
2[GA+Go o (Y, ,Y -4 Gy, (Y,,Y Q
0+677(Yy5Y5) ;;g yz\'i:'2 3p 0P,
Q(0,Y,V,P) = &(V) &(P) (6.3.10)

If (6.3.10) has a solution, then it satisfies (6.3.6),
(6.3.9). If (6.3.6), (6.3.9) has a unique solution, then the
solution to (6.3.10) is the unique solution to (6.3.6), (6.3.9).

We assume existence and uniqueness so H=Q and we can write

(6.3.8) as:

gR,(t,Y) = fdV [dP Q(t,Y,V,P) (6.3.11)
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Now we define

S(ts_Y_9

j=<

) = [dP Q(t,

|-=<

.V,

|©
e

(6.3.12)

If we assume

Qp

1]
L0
e

= O (6.3-13)
1 2
|£l = '.P.I = o

then (6.3.10), (6.3.11) become (using (6.3.7),(6.3.12)):

SV Sy VoS, 2[60-6yy (Y1LY,)1Sy 4 2[64-6,,(Y1,Y,)] Sy
1 2 11 27
+ 4 Gy, (Y,,Y,) S -t s =5
vz(Y1sY¥2) Sy y =S¢
12
5(0,Y,¥) = 8(V) (6.3.14)
Rp(t,Y) = [dV S(t,Y,V) (6.3.15)

The system {(6.3.14), (6.3.14), (6.3.15)} is the three
dimensional analog of the system in (4.4.20).
The equation (6.3.14) depends on four space variables and

t. By taking the new variables
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U1 cos © -sin © V1

U2 sin © cos © VZ

(6.3.16)

we can reduce the system to only three space variables. Using

(6.3.16) in (6.3.14), (6.3.15) we find

Pt = Z[GO-ZB ] {PU1U1+ PU U }

2°2

2

U U
2,""' ? 2
-8 r°8 Pulul' UiPr- 7 Pom —+ PU1

u,u

+ 1 2 PU

r 2
PO,r,0,U5,U,) = 8(U;) 8(U,)
where
= 2y 2. .vly _
H(r) = B(rc) = B(X“+Y%) = G(X,Y) (6.3.18)

The dependence of 3R, on © is artificial. We can remove ©

from (6.3.17) the same way we removed r from (6.3.6) to obtain:

= 2[H (0)-H (r)] P, , +2[H (0)- B (el Py

p
t 12 2V

2
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P(0,r, U ,U,) = 8(Uy) 8(U,)

BRo(t,r) = [ dUy [ dU, P(t,r,U,,U,) (6.3.19)

In the system (6.3.19) we see that 3Ro only depends on

{t,r}. Here,

r =/§§+v§ - /x1x2y2 L (x

is the distance between the two points at which the energy is
being received. This agrees with our intuition: 1in an isotropic
and homogeneous random field the correlation function should only
depend on the distance between the observation points.

The system in (6.3.19) is the main result of this section.

6.4 Short Distance Approximation to the Two Point Energy

Correlation Function: Fourier Transform Method

In the section we use Fourier Transforms to obtain a short
distance approximation to the two point energy correlation
function. We use the system {(6.3.14), (6.3.15)} instead of
(6.3.18) because the former exhibits greater symmetry. The
techniques used in this section are completely analogous to the
techniques used in section 4.6.

We define the Fourier Transforms:
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Q(t,X,Y,U,V) = [[[] dY  dY, dv, dV,

e1'(XY1+YY2+UV1+VV2) Pt,Y,,Y

Y1s¥2: Vs V)
R(t,X,Y) = {Z dv, dv, o1 (XY +YY5) Ry(t, Y ,Y,)
G(X,Y) = {Z dv, dv, o1 (XY +YY5) 6(Y.Y,)  (6.4.1)
If we assume that
pl . PV1' - PVz‘ . Pl - 0 (6.4.2)
| V]=e |V]=2 |V]== |Y]|==

then the system (6.3.14), (6.3.15) becomes (using (6.4.1))

. 2.2
0, = -XQ, -YQ, -26,(U+v<)Q

2
-2(XU+YV)
> [fdby db, G(x=by,Y¥=by) Q(t,by,b,,U,V)

4

~

R(t,X,Y) = Q(t,X,Y,0,0) (6.4.3)

We subtract out the delta functions in the intial conditions

of Q by forming:
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5 -ZGO(U2+V2)t
Q(t,X,Y,U,V) = ¢(t,X,Y,U,V) + &8(X) &(Y) 42" e

(6.4.4)

Using (6.4.4) in (6.4.3) and setting all terms with X&§(X)

or Y§(Y) to zero we obtain:

2 2
o = = Xy - Yoy - 2G65(UT+VT) ¢
) s -26,(u%+v2)t
-2 (XU+YV)2 G(X,Y) e
_ (xusvv)? [/ db. db, G(X-by,Y=b_) ¢(tsb,sb,,U,V)
I 1 P2 APy T=ba ) 01t 5y505, 0,
$(0,X,Y,U,V) =0 (6.4.5)
- 2

R(t,X,Y) = ¢(t,X,Y,0,0) + 40 &(X) &(Y) (6.4.6)

The system (6.4.5), (6.4.6) is still exact. To approximate

this system we look for a solution of the form

o(t,X,Y,U,V) (6.4.7)

]
e~ 8

From (6.4.5) we conclude

¢g = O (6.4.8)

If we substitute (6.4.7), (6.4.8) in (6.4.5), take a Taylor
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series in t, and equate powers of t, we obtain the sequence of

algebraic equations:

(N+1) by,q = =X oy y =Y oy y -26,(V2+v2) o,
(XU+YV)2 -
- [ dby db, G(X=by,Y-b,) oy (bysby,U,V)
- Er (xuevn)? B(x,Y) [-265(uZsv2)7" (6.4.9)
for N=0,1,2 . . . . It is straightforward to find:
by = -2(XU+YV)2 G(X,Y)
by = 260X,Y) (xUxvv) (xZ+¥%) + 4 G G(x,v) (UBsvE) (xusvy)
+ iilillli Jfdby db, G(X-by,Y=b,) G(by,b,) (b U+b,V)?
03(X,¥,0,0) = £ G(x,v) (x2+y?)? (6.4.10)

Using (6.4.7), (6.4.8), (6.4.10) in (6.4.6) we obtain

-~

R(t,X,Y) = 4n% &(X) &(Y) - % G(X,Y) (x2+v2)2 + o(th) (6.4.11)

Taking the inverse transform of (6.4.11) yields (see (6.4.1))

2 2

) 2 .3, 3 3.2 4

R (Y ,Y,) = 1 - 3 t7 (=S5 + —5)° 6(Y,,¥,) + 0(t")  (6.4.12)
1

2
Y 8Y2
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Equation (6.4.12) is the same as (A.1.30) which was derived

by regular perturbation techniques.

6.5 G(Y,Z)

Here we give an alternate representation for G(Y,Z), give an
example of G(Y,Z), and check the requirements from section 6.1.

In section 6.1 we defined G(Y,Z) by (see (6.1.12))
G(Y,Z) = -f R(X,Y,Z) dX (6.5.1)
0

where R(X,Y,Z) is the three dimensional correlation of C. From

the homogeneity and isotropy of C, we have (see (6.1.13),

(6.3.18)):
R(X,Y,Z) = B(/X% + Y2 + 22) (6.5.2)
G(Y,Z) = H(/Y2 + 22) (6.5.3)
We define the Fourier Transform of B by:
' o =i (Xw i+ Yo+ Zw,)
S(/f; 240 240,2) = - L e L 2 3
1 T2 Y43 3
bl - 00
B(/x2+v2+22) dx dY dz (6.5.4)

so that
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2 2 2
s(/ﬁ1 "+ wy®) dejduwydug (6.5.5)

Using (6.5.1) (note the range of integration is [0,=)) with
(6.5.2) and (6.5.5) produces

G(Y,Z) = El f? e T(Yuy + Zu,) 5(/ 2y dw,duw, (6.5.6)

In (6.5.6) we change to polar coordinates,

w; = w CoS 0, wy = W sin ©, and set Z = 0 to find

© 27
G(Y,0) = ?% [ de [ do e'® Y €S8 5(w)
0 0
= [ do w S(w) Jy(a¥) (6.5.7)
0
From (6.5.3), (6.5.7)
o 2 2
G(Y,Z) = [ do w S(w) Jo(w Y® + 727) (6.5.8)
0
To simplify (6.5.4) we change to spherical polar
coordinates, X = r sin © cos ¢, Y = r sin © sin &, Z = r cos O,
and set w; = wy = 0 to find:
1,7 2 m =i P w,c0s® _, 2T
(lugl) = - — [ dr r" B(r) [ do e 3 sine [ de¢
81" ¢ 0 0
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T‘w3

5%7 o r2B(r) ()% 0y, (-reg)) (2m)
= - %? [ dr re B(r) 30(-rw3)
0
?_i— [ dror B(r) sin(ru,) (6.5.9)

where we have used (15) 3.715.21.
Given a correlation function for 5, we can compute the power

spectrum by (6.5.9). Then, by using (6.5.8), we can find G(Y,Z).

For example, if we take

-rz
B(r) = e 2a2 (6.5.10)
then we find:
Y2472
rr— 2a2
G(Y,Z) = - 2“ a e (6.5.11)

For this example the conditions in (6.1.15) are satisfied.
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7.1 Numerical Technique

In this section we describe the numerical technique used to
solve the two point energy correlation system, (3.4.20).
We place (4.4.20) on the universal time scale (see (I1.2.2))

by the change of variables:

T = (Y2)2/3t
X = M
v o= u/(y,)2l3 (7.1.1)

V(t,X,Y) = U(t,M,W) (72)2/3

to obtain:

_f(X
v = T vy - vy (7.1.2)

V(0,X,Y) = &(Y) (7.1.3)

R, (7,X) = ? V(t,X,Y) dY (7.1.4)

- 00

Up until now we have solved (4.4.20) with no real regard for
what the correct boundary conditions for (4.4.20). To calculate
the solution numerically, we need to know the "proper" boundary
conditions because we must adapt (7.1.2) to a numerical grid, and
the information on the boundaries of the grid will greatly

determine the solution.
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Fichera (22) has given results for the existence of a weak
solution for an equation of the form (7.1.2), if the initial
conditions and boundary conditions are L2 and some estimates on
the solution can be found. Also, in such cases, he states what
the proper initial conditions and boundary conditions are.

The initial conditions to (7.1.2) are not L2, but we can
stil1l use Fichera's result to suggest the proper conditions. His
results suggest that V or its first derivative should be given on

I, where I is defined by:

(1 =0
] = X = w Y <0 (7.1.5)
< X = - Y >0
Y = te X %0

The reason that conditions need to be given on (X=e, Y>0)
and (X=-=, Y<0) is because these are the entrance boundaries of
the problem. This can be realized by considering the
subcharacteristics of (7.1.2) (that is, (7.1.2) with the
diffusion term removed). The solution to this new equation is
V=h(X-Yt), where h is an arbitrary function.

For Y<0 this represents a wave traveling to the left in the
(X,Y) plane, whose inital value must be given at X=«=. For Y<O0,
the initial condition must be prescribed at X=-«.

For Y<0, X>0 and Y>0, X<0 the subcharacteristics are
pointing into the region surrounding (X=0, Y=0). Hence, the

upstream solution is convected into the region of the numerical
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grid. Upstream, with |X|>>1, we can approximate f(X) by
fo=f(*). The solution of (7.1.2), (7.1.3) with f(X) replaced by
fo. is given by integrating (4.2.5), (4.2.10) with respect to a.
We find
V(t,X,Y) = (;:—T)l/Z exp{- IZT} (7.1.6)

L]

This solution is independent of X or, VX

0. Hence, for
the boundaries Y<0, X<<0 and Y>0, X<<0, we used Vy = 0.

The f(X) function we used in (7.1.2) corresponded to a

A~

gaussian correlation function for C. Using (3.3.4.a) (3.3.5.a)

with a=1, and (4.4.19) we have:

2
B(r) = e" /2
2
9(z) = /g (1-2%) &7/
2
f(z) = /27 [1-(1-2%) e72 /2] (7.1.7)
From (3.28), (3.2.7) we compute from (7.1.7):
(v,)? = 3/Z7 = 7.52 (7.1.8)

Let 86X, 8Y be the grid spacings in the X, Y directions. Let
§t be the time separation between grids. To solve (7.1.2)
numerically we used a uniform grid with 131 points in the X

direction (with |X|[<6, so §X=.092) and 60 points in the Y
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direction (with -3 <Y < 2 §Y, so 8Y=.053). Since equation
(7.1.2) is invariant under the change of variables (X,Y)>(-X,-Y)
we only solved the equation, at each time step, for Y<O0 and then
reflected the solution to the upper half plane. We choose |X|<6
since the f(X) we used is essentially constant at X=+6,

The delta function initial condition in (7.1.3) is hard to
implement. We approximated the delta function by a gaussian with
a standard deviation (e) of .20. If the standard deviation of a
gaussian is very small, then it "simulates" a delta function.
The grid spacing puts a constraint on the width of the gaussian:
there must be enough grid points to resolve the gaussian or the
‘form of the inital conditions will be lost. For our uniform
grid, we have 3.8 grid points per correlation length and the
(simulated) mesh has a width of of 30 correlation lengths.

To solve (7.1.2) we used an explicit method in time. For
increased accuracy we used a second order Runge-Kutta method
((14), 25.5.6) in time. That is, if L[V] represents a discrete

approximaton to f(X)Uyy - YUy we found

I>
i’

V(t) + (8t) L[v(t)]

joe)
1}

A+ 6t L[A] (7.1.9)

and then formed

V(t+st) (A + B) (7.1.10)

i
o=
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This produces errors of order (6t)3. We choose &t =1h (sY)?
= .0014,

Now we describe what L[V] looks like. In the center of the
grid we used a third order accurate formula for Vyy ((14),
25.3.24, 32/0Y2= (4D,D_, - DpuD_5p)/3 + O(h*) where DLV(Y)=
{V(Y+h)-V(Y-h)}/2h, h=8Y) and a third order accurate method for
Vy (3/8X=(Dy-4D,,)/3 + 0(h%), h=sx).

For Y<0 and X<<1, the subcharacteristics of the equation are
pointing out of the numerical domain. For X=-6, -3<Y<0 we used
centered differencing for the Vyy term ((14), 25.3.23, 32/3Y2=
DpD_y O(hz), h=8Y) and upstream differencing for the Vy term
(Vy= (V(X+h)-V(X))/h + 0(h?), h=6X). For X=-6+8X, -3+8Y < Y < 0
and X=6-8X, -3+8Y < Y < 0 we used centered differencing for both
the Vyy ((14), 25.3.24) and the Vy ((14), 25.3.21, 3/08X= D, +
0(h?), h=s6X) terms.

For Y=-3+48Y, X=-6+68x and Y=-3+8Y, X=6-8X, we used centered
formulae for both Vy and Vyy ((14), 25.3.21 and 25.3.23). For
Y=-3+48Y, -6+6X < X < 6-8X we again used centered formulae ((14),
25.3.23 for Vyy and Vy=(1/3 D, - 4/3 Dpp) V + 0(h%), h=sx).

A boundary condition must also be imposed for |Y|>>1.
Because of the analogy of (17.1.2) with the heat equation, we
expect that the delta function initial conditions will quickly
téke on a gaussian appearance. In the heat equation these
gaussians will have finite mass beyond any fixed value IY|=YO,
but the total mass will be exponentially small for a large value
of Y, (if © is order one). We took V=0 at Y=-3 and only found the

solution for t=0(1). To integrate (7.1.2) to a larger value of =
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would necessitate a wider grid in the Y direction.

For Y>0 we reflected the values obtained for Y<O.

It will be noticed that the approximations made to Vx and
vYY are of different orders in different regions of the numerical
grid. This is not efficient programming (the order of the
solution will be the worst order used in approximating the
derivatives). This was done in our calculation because we did
not know a priori what accuracy requirements would be required.
We had planned to increase the accuracy of the inaccurate
approximations, if it was needed. As it turned out the program
executed as written, in double precision on the IBM 4341,

Since the solution of (7.1.2) is the integral of a
probability density, the solution V(1,X,Y) must never be
negative. Local roundoff errors could cause V to be negative, so

2, (6x)4 +

we adopted the following scheme. Let n = (6t)
(64)4. If, during execution, a value V occurred with -n < V < 0,
then that value was set to zero. No value was ever smaller than

-n during execution.

7.2 Checks of the Numerical Solution

The program described in the last section was checked by
varying the parameters. We did two checks.

In the first check we reduced &t from .0014 to .0007, and
kept all the other parameters as they were.

For the second check we used 180 points in the X direction,

with |X|[<7.5 and used 100 points in the Y direction, with |Y|<4
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(so 6X = .083 and §Y = .04). We took &t = 1/2 (sY)2=.00085 and
took e€=.18. In this run there were 4.5 grids points per
correlation length of the gaussian, and the grid had a width of
44 correlation lengths.
In each case the program was run for 1 < 1.6, and the

results agreed with the results obtained in the last section.

7.3 Numerical Results

Figures 7.1 through 7.3 contain pictures of the values
contained by the numerical grid at different instants of time.
The peak around the point X=0, Y=0 is due to the singularity of
the two point energy correlation system. The value is finite in
our pictures because of the gaussian approximation used for the
initial conditions.

From an investigation of the universal focusing curve
(Figure I.1) we find u(t) < .001 for 7 < .62. We define t* =.62
to be the "onset of focusing". After t=t*, the u(t) curve rises
sharply and focusing becomes significant. Before the onset of
focusing, when focusing is not significant, we anticipate that
the short distance approximations (in sections 4.5 and 4.6) will
be a good approximation to Rz(r,X). After the onset of focusing
we anticipate that the short distance approximaton will no longer
be accurate.

In Figures 7.4 through 7.8 we have graphed the numerical
solution for R,(7,X)-1 (using squares) versus the short time

approximation (3.5.17) minus one (using circles). Figures 7.4
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through 7.8 show these curves for = .4, .6, .8, 1.2, 1.6.

These pictures show that the regular perturbation solution
(i.e., the solution in (3.5.17) or (A.1.32)) is a good
approximation only before the onset of focusing.

After the onset of focusing, the RZ(T,X)-l curve retains the
same general shape, but appears to flatten out. This means that
the energy distribution is becoming less well correlated with

itself.

7.4 Loss of singularity in the numerical solution

In section 4.7 we found that the two point energy
correlation system had a logarithmic singularity in M, as M+O0.
We do not observe from Figures 7.4 - 7.8 any such singularity.
This is consistent with our numerical technique.

The equation we solved numerically was

Ve o= F(M) Vg, - WV

t W M
2
1 W
V(O,M,W) = Tore exp{- 5 }
2¢
Rz(t,M,e) = f V(t,M,W) dw (7.4.1)

which is exactly equivalent to:



w2
U(O,M,W;a) = I exp{- 2—5} §(M-a)
R,(t,M,e) = [ da [ dW U(t,M,W;a) (7.4.2)

The difference between (7.4.2) and (3.5.2) (which is what we
wanted to solve), is that a gaussian was used in the initial
conditions for (7.4.2) instead of a delta function. We claimed
in section 7.1 that, for e small, the gaussian would "simulate" a
delta function and so Pz(t,M) would be a good approximation to
Ro(t,M).

However, using (7.4.2) instead of (3.5.2), removes the
singularity at M=0 and creates a singularity in e {(for M=0), for
all time. We now show this.

For short times we approximate the solution of (7.4.2) by

replacing f(M) by f(a) (see section 4.7). We obtain

U = f(a) wa - w UM

t

U(O,M,W;a) = —=— exp{- W } 5(M-a) (7.4.3)
ITr e 262
Rz(t,M,e) = [ dW [ da U(t,M,W;a) (7.4.4)

If we now define q(t,M,W;a,8) to be the solution of

qt = f(a) qu - W qM

q(0,M,W;a,8) = §(W-8) &(M-a) (7.4.5)
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then we can write U (from (7.4.3)) as:

© 2
U(t,M,W5a) = [ 98— exp{- £} q(0.M,W;0a,8) (7.4.6)

€

~N

-0

So g is the Green's function for (7.4.3). The change of

variables:

M' = M - gt (7.4.7)

w
—~
o
-
=
-
=
Q
~
1}

q(tsMsw;aaB)

changes (7.4.5) into

(7.4.8)

The solution to (7.4.8) is in section 7.2 (see (7.2.5) and
(4.2.10)). The solution is:

/3 1 1
7 Tz exrl- —3

[+ 242
9ot 9ot

£ 2022 3tW(M-a) + 3(M-a)?]}
(7.4.9)

S(t,M,W;a) =

Now we use (7.4.9) to find q from (7.4.7) and then use q in
(7.4.6) to find U. Since U is only a gaussian in W, we use U in

(7.4.4) to find
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}
a)t3+€2t3

(7.4.10)

For any value of M (including M=0), the value of (7.4.10) is

finite for e#0. This is why there is no singularity near M=0

observed in Figures 7.4 through 7.8.

Since f(a) » 0, it is easy to bound Rz(t,M,e) (for €#0) by:

o 2
1 1 1 (M-a)
R(t,M,e) < [ da exp{- -
V2n [et] §f0t3+52t3

- 00

! 2¢ 3 3% { « (7.4.11)

= TE¥T (3f0t +g t )

where f,= ma x fla) .

The singularity in (7.4.10) is a logarithmic singularity in

e, when M=0. To show this we fix & (0<8<<1) and write (7.4.10)
as:
R(t,0,e) = o5— [ [ da + [ da 1 exp|
? ’ 7-2_‘!1'— f 3
la|>6 |a|<s fla)t +e t
1 a2

5 fla)t o +elt

The first integral in (7.4.12) can be bounded by:
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2
1 1
7'2——'_" f do ﬁf EXp{- Vi -2-——3——-2-—-'3f &
PR R 3Tt tet
2
3 1
(143 ?dt)&( - (7.4.13)
where f6 = max f(a) > 0 . We conclude the singularity in

la]>8
(7.4.12) comes from the region around «=0.

In the second integral of (7.4.12), we expand
2 4

fla) = gpa” + O(a' ) (from (3.2.9)) for:
5 1,0 1
R(0,t,e) = 0(1) + 7o f da exp{
s 4 t3 2, 2.2
- 1 0.2 }
2 4 t3 2, 2,2
392 a +e t
§/et
2
2 d 1
= 0(1) + )-;j —B exp{- 5 E5—} (7.4.14)
0 %62+1 Cg“+1

3
where C = 4g2t , B=a/et. We now use L'Hopitals rule to show
—

R(t,0,e) varies as log € as e+0:

N 1
im gzo(g,z,e) . (_1_5)/2 exp|- s} (7.4.15)
40 Zgzwt 892t

We conclude from (7.4.14), (7.4.15):

R(t,0,e) ~ - (——)2exp{- —2—} Tog ¢ as e+0  (7.4.16)
292nt 892t
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Since the dominant contribution to R(t,0,e) comes from the
region around a=0 as e+0, the expression in (7.4.16) is valid for
all time. This is because the approximation of using f(a) for
f(M) is valid for large times, if a is sufficiently small (see
section 4.7).

Conceivably we could observe this singularity in e by taking
e very small in section 7.1. But, as we mentioned there, taking

e very small puts a constraint on the grid spacing.
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8.1 Simulation Techiuque

As a check of our analysis, we simulated the mbtion of rays
in a random medium for o=.01.

We took a grid of 256 x 256 points, representing a physical
region of size 17.2 x 17.2. We used the IMSL (23) routine GGUBFS
(and then subtracted M@ to determine random numbers at the grid
points.

Using fast Fourier Transforms (FFTs), we convolved the grid
of random numbers with a two dimensional gaussian having a
correlation length of 1//?7 This produced a random field having
approximately a gaussian correlation with an expected standard
deviation of one. All the numbers were scaled by a constant, so
that the correlation at the origin had a value of one. This was
our c field.

As we calculated C , we used FFTs to also calculate

A A ~ ~

Cys Cys Cxxs Cyxys Cyy-

The random field had 256 points over a distance of 17.2
correlation lengths. This means there were almost 15 points per
correlation length; hence, the random field should have been well
sampled. We calculated the correlation of 6, it is shown in
Figure 8.1. It looks very much like a gaussian.

We traced the path of 200 rays in the random medium. The
wavefront was taken to be initially planar. To find the ray
positions, the raytube areas, and the phase (¢) along each ray we

integrated equations (1.1.12), (1.2.20) and (1.2.22) using a
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variable order Runge-Kutta-Verner integrator (IMSL (23) routine
DVERK).
We 1ist the equations we integrated (1.1.12), (1.2.20),

(1.2.22):
x\ C Py
Y c Py
2
Pyl | -Cx/C
) 2
%E Pyl | -Cy/C
6 1/¢C
A B » )
B A [Cyy (Py) = 2 CyyPyPy + Cyy(Py)°]

+ B [P,C, + P,CT (8.1.1)

where C=1+gC. We always have |P|2 = sz + PYZ = l/C2 (see

(1.1.17)) so we took as initial conditions for (8.1.1):

X Xq
Y Yo

Py 0

¢ 0

A 1

LB t=0 |0

Because the position of a ray was never exactly at a'grid
point, we interpolated C, Cy, Cy, Cyy, Cyy» Cyy from the four

points closest to the ray position (using (14), 25.2.66).
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Since we took:

r2
B(r) = e 2 (8.1.3)
we have (see (7.1.7), (7.1.8))
Yp = 2.82 (8.1.4)

To scale the region of the grid to be on universal time, we
multiply the length of the grid by (ov,)2/3. wWith ¢=0.1,

)2/3 = 0.93 and the grid has a universal length of

(ovy
snay (07,0273 = (17.2) (0.93) = 1.6.

From the ray positions, the values of ¢, and the areas of
the raytubes, we calculated the two point energy correlation
function, to compare with the solution of (4.4.20), and the short
distance approximation calculated in section 4.5.

To calculate the correlation, we divided the numerical
region width wise into 200 equally spaced points. We discarded
the 20 points closest to the top and bottom of the box to remove
"end effects." Then we choose 6 different values of universal
time (.4, .6, .., 1.4).

At each of these universal times, we constructed the
wavefront using the ¢ values. We then investigated each of the
160 equally spaced points, along the calculated wavefront. For
each point we found those pairs of rays that surrounded the

point. From each pair we interpolated the raytube area at the

point. We approximated the energy at a point to be the sum of
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the recipricals of the areas at that point. KXnowing the energy
at the 160 points we calculated the average energy and the two
point correlation.

This describes the steps that occurred to obtain one sample
of Rp(t,M). We repeated this calculation 15 times, each
identical except for the seed for the random number generator.
We then averaged the 15 curves to obtain our final estimate of

Rp(t,M).

8.2 Agreement of Simulations With Assumptions

A typical picture of the rays is shown in Figure 8.2. A
series of wavefronts is shown in Figure 8.3. For the most part
the rays are straight and the wavefronts are planar and parallel.

This is what we had assumed in the scaling in chapter one.

Recall (1.4.9), (1.4.8), (1.4.16) which together give:

t . o
X(s) = i+ X
2 5273
_ t oy o
= (3573 +X{) i+ X g (8.2.1)

From (2.3.9) we know Xg = 0(1). The horizontal location of
)

the wavefronts, given by X(s).i, then satisfies

X cio= ot 0(1 8.2.2)
X (s)e i _273+() (

(o]
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From (8.2.2) the wavefronts are flat to leading order. From
(8.2.1) we also find that the total angle that a ray subtends is
given by

(s)-1 _7§3 + 0(1)

o]

(s)ed X3 X5
2 23 4 03 (8.2.3)

I><] |><

From (8.2.3) the total angular deviation is small (of order
02/3).

The wavefront also forms loops at the occurrence of a focus,
as predicted in (6). Figure 8.4 is a blown up portion of the
waves and wavefronts shown in Figures 8.2 and 8.3. In Figure
8.4, is a very narrow loop of the type predicted.

In (3.3.9) we stated that ElXOEE;(t’“)] = 1, or that energy
is conserved. For each of the 15 trials we ran, we computed the
expected value of energy along every wavefront (v = .4, .6, ...,
1.4). In Table 8.1, we summarize these numbers, they are all

very close to one.

8.3 Agreement of Simulations With Numerical Solution

In Figures 8.5 through 8.10 are graphs of the simulated
covariance function (with all 15 samples averaged), the numerical
solution from chapter 7 (Ry(t,a)-1), and the short distance

approximation (A.1.32).

For universal times of .8, 1.0, 1.2, 1.4 there is very good
agreement between the simulation results and the numerical

solution of equation (4.4.20). Because the short time solution
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is only correct up to the onset of focusing (t < 6.2) the
simulations do not agree with the short time solution in this
range.

The agreement at universal times of .4 and .6 is not very
good. This 1is because the two point correlation system (3.4.20)
and the regular perturbation result both required the rays to go
through many correlation lengths (see the comment after

_.—12—/3— = 4,4 units

(YZT )

(A.3.1)). For v = .4, a ray has only gone

in physical space; or 4.4 correlation lengths. This is not a
long enough distance for a "central limit theorem" to be valid.
In particular, (A.2.15) is not a good approximation when P,Q are
not large.

From Figures 8.5 through 8.10 we see that the simulated
Rp(t,M)-1 has a large value near M=0. This is the logarithmic
singularity we found in Section 3.7.

We conclude that the system in (3.4.20) accurately predicts

the two point energy correlation function.

8.4 Spacing of Caustic Bundles

From Figure 8.2, the "caustic bundles" (regions surrounding
each focus) appear to be quite regularly spaced. This was to
have been expected.

The short time solution of (4.4.20) says that Rp(t,M)-1 is
proportional to the fourth derivative of [ R(M,Y) dY. If R has a

gaussian form then Rz(t,M)-l is proportional to the fourth
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derivative of a gaussian.

The fourth derivative of a gaussian (with unit standard
deviation), has a large negative dip at x = 1.4, This means that
there is a "regular" spacing of alternately high and low
energies, with a spacing of about 1.4.

Within the caustic bundles the rays are close together, the
areas are small, and the energies are large. Between the caustic
bundles the energies are‘low because the rays are further
apart. Hence, for the correlation function to have a dip at
X=1.4, we anticipate the distance between caustic bundles to be
about 2.8. This is approximately the average distance we find

between caustic bundles in the simulations.
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Table 8.1

Average value of €(1,a)

T Average value

.00018
.00056
.00196
. 00496
1.0 .99508
1.2 1.01255
1.4 . 99052

o o N
- ot ed ed
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A.1 Two Point Energy Correlation Function: Plane Initial

Wavefront

In this section we will use reglar perturbation techniques

to find the two point energy correlation function. The
development here is modeled after Tatarski (5).

We start with the wave equation (see (1.1.1)):
= sz AQ

QOry

and look for a solution of the form

where:

We choose a plane wave entering the medium at X=0.

Therefore, the initial conditions for ¥ and ¢ are:
at X=0: v=1, ¢=0

Using (A.1.2), (A.1.3) in (A.1l.1) and equating the

coefficients of powers of K yields:

(A.1.1)

(A.1.2)

(A.1.3)

(A.1.4)

(A.1.5)
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2V¢-V<I>m t 0Ap = A0 m=0,1,2,... (A.1.6)
where ¢_;=0. We now assume:
C(X) =1 + o C(X) (A.1.7)

where C is mean zero, homogeneous and isotropic. We also expand

¢, ¢y in a regular perturbation series in o:

$ = ¢g * 0 ¢q t 0(0‘2)
(A.1.8)
0 1 2
@m= ‘Dm + o (Pm + O(a )
Using (A.1.7), (A.1.8) in (A.1.5) produces
2
0(1): (V¢)O =1
(A.1.9)
0(0): V¢O' V¢1 = "C(L)
Using (A.1.8) in (A.1.6) for m=0 produces
0(1): 2 v o700 + 00 a4, = 0 (A.1.10)
’ 0 0 0 0 °et
0(o): 2 (V¢D-V®é + V¢1-V®8 ) + (@8 By ¥ @é A¢O) =0

Using (A.1.3), (A.1.8) in (A.1.4) gives the initial
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conditions for ¢éq and ¢h:

at X=0: ¢y = 0 m >0
°O = 1 (Aol.ll)
¢; =0 m>0;m=0, k>0

From (A.1.9), (A.1.10), (A.1.11) it is easy to find the

solutions:
¢g = X
X
¢1 = 'f dC C(C!Y’Z)
0
¢ = 1 (A.1.12)
X n
1 1 2 - -
6 = 5 [ dn [ dz A, C(g,¥,7) + %[C(X,Y,Z)-C(O,Y,Z)]
0 0
where
2 2 2
d 3 3
Ay = —, + —, = A - — (A.1.13)
27 v 972 ax°
The solution ¢35 = X says the wave is propagating along the X

axis to first order.

Now we write (A.1.2) as, using (A.1.3), (A.1.8)

Q = [ey + o0l + 0(c?,1/K)] e1K(T+9) (A.1.14)
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Since Q is the amplitude of the wave, |02| is the local

energy of the wave. From (A.1.4)

2 2 0 1 2
| = ° +t 20 0y o5 + 0(s ,1/K) (A.1.15)

Suppressing the 0(02,1/K) terms and using (A.1.12), expression
(A.1.15) becomes

X n
102 = 1 -0 { [ dn [ dc A, C(z,Y,2) + (A.1.16)
0 0

[C(X,Y,Z) - €(0,Y,2)]}

Y

We are interested in the correlation of energy. Since C has
mean zero, IQZ] has mean one to first order. We define

1Q2]=1+A(X,Y,Z) to find:

X n
A(X,Y,Z) = - U{f dn f dC Az C(CsY’Z) + [C(X3Y,Z) = C(0,0,0)]}
0 0
(A.1.17)
Since E[E] = 0 we have, to first order,
correlation of energy = 1 + correlation of A (A.1.18)

Now we will use (A.1.17) to find the correlation of A. Then
we use (A.1.18) for the correlation of energy. First we neglect

the C terms in (A.1.17), in comparison with the ffAze term to
find
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X n
A(X,Y,Z) = -of dn f dg A2 C(z,Y,2) (A.1.19)
0 0

~

We define the correlation of C by (see (2.3.16)):
R(z-¢',Y,2) = E[E(;,Y,Z) 6(;',0,0)] (A.1.20)

and we define the transverse correlation of A, at a distance X

into the medium, by:

R, (X,Y,2) = E [A(X,Y,Z) A(X,0,0)] (A.1.21)

Now we use (A.1.19), (A.1.20) in (A.1.21) to find

X n
) .
Ry (X,Y,2) = E[ o° [ dn [ dg 8, C(g,Y,2Z)
0 0
X n'
[ dn' [ d¢' AZC(c‘,O,O) ]
0 0
X n X n'
= 0% [ dn [ dg [ dn' [ dg' E[C(z,¥,2)C(2',0,0)]
0 0 0 0
X X n n'
2 2 1 ] 1
=0 A, [dn [ dn' [ dg [ dz' R(z-z',Y,Z)
0 0 0 0

(A.1.22)

Now we assume X>>1 and approximate (A.1.22). Since R is a
correlation function for a mixing process, we anticipate that
R(X,Y,Z) will "quickly" go to zero as X2+v247250.  If X>>1, then

n and n' will generally be large in (A.1.22). We approximate
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(A.1.22) by

X X Y Y
2 2 ] ] [ ]
Ro(X,Y,Z) = 0" 85 [ dn [ dn' [ dg [ dg' R(z-z',Y,Z)
0 0 0 0

(A.1.23)

where y=min(n,n'). Now R(X,Y,Z) is an even function with respect

to all of its arguments since € is homogeneous and isotropic.

We note the formula

a a a
[ dX [ dY H(X-Y) = 2 [ du (a-u) H(w) (A.1.24)
0 0 0

valid for all even functions H.

Using (A.1.24) in (A.1.23) yields

R,(X,Y,Z) = 2¢° A du (y-u) R(u,Y,Z) (A.1.25)

X
2( fdn fdﬂ.
0 0

o <

If X>>1 then n,n' will generally be "large" in (A.1.25).
Hence, y=min(n,n') will generally be "large." Therefore, we
approximate (y-u) by y. When p is "large", so (y-u) is not well

approximated by y, then R{u,Y,Z) will be "small" (if R(X,Y,Z)
goes to zero "quickly" as X2+Y2+Zz+w).

This gives

X X Y
Rp(X,Y,2) = 26% A5 [ dn [ dn' vy [ du R(w,Y,Z)  (A.1.26)
0 0 0

Now we increase the upper limit of the yu integral from y to

o to find:
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X X
Ry (X,Y,2) = 207 a5 (£ dn £ dn' min(n,n')) (J du R(u,Y¥,Z))
3 ° (A.1.27)
2 2 X
- 2022 (&) (- 6(r.2))
2 2
2 2 .3 32,2
.2 A 32 g(y,z A.1.28
3 o (BYZ +822) ( ) ( )

where we have used (6.1.12)

If we scale X to be our long distance scale (see (1.4.8)) we

have

t = ¢2/3 ¥ (A.1.29)

Using (A.1.29) in (A.1.28) gives

~N
N

Rp(t,¥,2) = - & ¢332+ 2% 6(v,7)  (A.1.30)
oY 9z
When (A.1.30) is used with (A.1.18) we have the same answer
we found in (6.4.12)

In two dimensions, (A.1.27) becomes (see (2.3.21))

2 w
Ry (X,¥) = 26° (25)% (f dn [ dn’ min(n,n') (/ du R(n,Y))
3y 0 0 0
2 3
= 20’2 -a_YZ -X—3- f YY(‘J’Y)
0
2 2.3 3l 2 2.3 .,
= - -g o X 7 g(Y) = - 3‘ g X g (Y) (Ao1.31)
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Using (A.1.29) in (A.1.31):

3

R,(E,Y) = - £t (1) (A.1.32)

5
Equation (A.1.32), with (A.1.18), is the same answer we

obtained in (4.5.17). Note that there is no singularity in

(A.1.32) as Y+0, as we found in the solution of (4.4.20) (see

section 4.7).

A.2 Two Part Energy Correlation Function in Two Media

In this section, we use regqgular perturbation methods to find
the two point energy correlation function, after rays have gone
through two media. We require the initial wavefront to be plane
and the interface between the two media to be parallel to the

initial wavefront.

! t
The first medium extends from X = 0 to X = —3%3 = X1 and
o

has a wave velocity of C(X) = 1+06(l) (where 6 is mean zero,

homogeneous and isotropic). The second medium extends from X
t -t
2 1
02/3

identically one.

X1 to X = In the second medium the wave speed is

What we have described is the shadowgraph problem (see
section 5.4). We will obtain the same answer here, using regular
perturbation techiques, as we obtained using Papanicolaou and
Kohler theorem (see (5.5.7)).

To solve the shadowgraph problem we look for a geometrical
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optics solution in each of the two media. In the first media we

Took for a solution of the wave equation.
- 2 - ~ 2
Qpp = C (X) a0 = (1+0C(X))° AQ (A.2.1)
in the form

. 2
Q = [og + o of + 0(c%,1/k)] & K(THog + 06y + 0(a%)) (4 5 5y

From (A.1.12), (A.1.14) we have

X .
bg = X, $1 = - C(z,Y,Z) dt
0
X n
2 = 1 ol =X [ dn [ dr o, C(z,Y.Z)  (A.2.3)
o = s o T2/, 2 tlests -2
+ 5 [E(X,Y,2) - C(X,0,0)]

In the second medium we look for a solution of the wave

equation
(X) aQ = aAQ (A.2.4)

in the form

. 2
K(T + 05 + 00 +0(c%))

(A.2.5)

Substituting (A.2.5) in (A.2.4) we find (analogous to
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(A.1.9), (A.1.10)):

—
<1
©

[ane)
g
~nNo
|
et

Vo,eve, = -1 (A.2.6)
0 0 _
2 Voge VI + Ty 48, = 0
1 0 0 1 _
2(ve0-vr0 + vol-vro) + (T a0 + Iy 46,) =0 (A.2.7)

The initial conditions for 60, Ol’ rg, ré come from the

boundary, at X = X;. If we require, continuity of Q

and %% across the boundary then, from (A.2.4), (A.2.5)

0| _ .0 _
%5, = o] to| = O
Xy Xy X Xy
(A.2.8)
1] .1 i
°0,X - FO'X ¢1'X - el'x
1 1 1 1

Using (A.2.3), (A.2.8) we can solve (A.2.6) for

09 = X
X1
el = 'f dg C(C!Y’Z) - (X'Xl)

rg = 1 (A.2.9)



-198-
Using (A.2.9), equation (A.2.7) becomes:

[-+]
e |
O =

1 ~
dz A, Clz,Y,) (A.2.10)

~nN
Q
>
]
o Y X

The solution of (A.2.10) with (A.2.3), (A.2.8) is

, exp o ST .
ry = —p—— { dg 8,C(z,Y,2) + % [ dn [ dc 8, C(z,Y,Z)
0 0
+ 2 [C(X,Y,2) - €(0,Y,2,)] (A.2.11)

From (A.2.5), (A.2.9), (A.2.11) we have E []Q%]] = 1 to

first order. We define |02| = 1 + A(X,Y,Z) so that
1 2
M(X,Y,Z) = 20Ty + 0(c”,1/K) (A.2.12)

and (A.1.18) follows.

Now we use (A.2.11) in (A.2.12) and neglect the 0(02,1/K)

terms and the C terms in comparison with jAZE for:

Xl Xl n .
A(X,Y,Z) = o© [(X-Xl) f dg + fdn f dC] A2 C(z,Y,Z) (A.2.13)
0 0 0

Now the procedure we follow is identical to what we did in
section A.1. We assume the definitions of R and R, given in

(A.1.20), (A.1.21) to find (from (A.2.13)):
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X X
1
2 2 2 ‘
RZ(X,Y,Z) = g A2 [ (X-Xl) f dz f dg
0 0
X1 X1 n'
+ 2(X1-X ) J dz [ dn' [ d¢'
0 0 0
X1 n X1 n'
+ [ dn [ dg [ dn' [ dz' ] R(z-z',Y,Z) (A.2.14)
0 0 0 0

We assume X, Xy >2 1 and approximate the integrals in
(A.2.14) the same way we approximated (A.1.22). The
approximations used in going from (A.1.23) to (A.1.27) can be

summarized by

Q .
f dg f dz' R(z-z',Y,2Z) = 2 min(P,Q) f du R{(u,Y,Z) (A.2.15)
0 0 "0

when P, Q are "large." Using (A.2.15) in (A.2.14) we obtain our

approximation to Rj:

Ry (X,¥,2) = o222 [ 2(X-X{)2 min(X;,X;)
X, X, X |
+ 4(X-X;)f dn' min(X;,n') + 2 [ dn [ dn' min(n,n") ]
0 0 0
[ odu R(u,¥,2) = o 8% [ 2 (x-x))% x; + 2 (X=X))X,°
0
+ 23 ] [md R(u,Y,Z) (A.2.16)
3 M H Ha Ty o le

0

Now we scale X, Xy to be on our long distance scale. We

define:
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ty = o X (A.2.17)

= 23 (x-x)) = ¥ x - t,

From (A.2.17) the rays travel a scaled distance t, in the
first medium and then a scaled distance ts in the second

medium. Using (A.2.17) in (A.2.16):

oo

_ 2 3 2 2 2
Rz(tl,tz,Y,Z) =3 (t1 3t Tt 3 gt ) Ay [ du R(u,Y,Z)
(A.2.18)
In three dimensions (A.2.18) becomes
Ro(t,,t,Y,2) = - & (.34 3 t.%¢.+ 3 t.t,2) (-3-E L 28 )2 6(v,1)
2 V"1*272 7 -3 1 1 72 172 3Y2 aX2 ’
(A.2.19)

In two dimensions (A.2.18) becomes

3 2 2

2 [ I}
: + 36,5, + 3 £.t,%) gt (Y) (A.2.20)

Rz(tl’tst) =73 (tl

Equation (A.2.20) (with (A.1.18)) is the same answer we

obtained in section 5.5 (see 5.5.7).

A.3 Restriction on the Regular Perturbation Method

As we have seen in section 7.3, the short time approximation
is not valid for © > t*. This enables us to restrict the regime

for ¢ for which the regular perturbation method is valid.
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To have T < 1* requires (see (7.1.1.a), (1.4.8)):

2/3

(1,0)273s = v,2/3 ¢ =+ < <" = L62 (A.3.1)

Now the regular perturbation solution (presented in section
A.1) requires a rdy to go a long distance for (A.2.15) to be
valid. Suppose we have a random velocity field 6 whose
correlation function has a standard deviation of ). For a
“central limit theorem" to apply, the distance travelled, s, must
be much larger than }.

If we suppose that 5 correlation lengths is sufficient, then

we need:

Py
]
g

> 5 (A.3.2)

We can combine (A.3.1) and (A.3.2.) for:

.62

52 <5 < —0 (A.3.3)
(YZU)
or
¢ < -L9§77 (A.3.4)

YZZ

We conclude that the regular perturbation solution will not
be valid unless o satisfies (A.3.4). For the typical numbers

(see (7.1.7), (7.1.8)): ]=1, yp=2.7, we require o < 0.1.
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