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ABSTRACT

Supersonic, steady laminar boundary layers exhibiting
"strong" local interaction with the outer flow are con-
sidered. The general behavior of such flows on a flat
adiabatic plate are studied by means of the "moment method"
equations and by finite difference solutions of the full
boundary layer equations, including the transverse momentum
equation. A one-parameter family of "free interaction"
solutions is generated with the finite difference approach.
These include separated reverse flow solutions. The in-
finite plate solution is established from the leading edge
through weak interaction by both techniques. Expansive
corner flow solutions are developed usfng both methods. 1In
the "moment method" study the nature of the leading edge,
Blasius point and "critical" line singularities is devel-

oped by numerical investigation.
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1. INTRODUCTION

This investigation is directed toward . the study of
supersonic, steady, laminar boundary layer mechanics. The
emphasis is placed on those situations for which there is
a strong coupling between the outer and boundary layer
flows. This coupling is characterized by the fact that the
"induced" pressure in the outer flow, due to the presence
of the boundary layer, is of such a magnitude that it has
an effect on the dominant boundary layer behavior. Hence
the development of both the outer and boundary layer solu-
tions must be carried out simultaneously. Such "strong
local interaction” will be initiated, for example, when the
boundary layer approaches a compression or expansion
corner.

Particular attention is placed on the so called "free
interactions". The name stems from the fact that for this
class of interaction phenomena, the boundary layer responds
to a stimulus which is entirely a consequence of the up-
stream propagation from some downstream disturbance. No
wall induced disturbance or impinging disturbance waves
from the outside are present. These are the "upstream in-

fluence” solutions.
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"Interaction" between the boundary layer and outer
flow is, of course, always present to some extent. It
can be categorized both by the degree to which it is present
and by the manner in which it enters the mathematical for-
mulations. If the dominant boundary layer behavior can be
established by consideration of a known outer flow solu-
tion in the absence of a viscous layer, then the inter-
action is said to be "weak".

There is another important class of strong interac-
tion solutions for which, again, there are no locally im-
pinging waves from the outside and no local disturbances
emanating from the wall. These correspond to those situ-
ations in which the boundary layer, having experienced and
passed through a zone of disturbance, relaxes back into a
weak interaction regime, e.g. toward the Blasius solution
on an adiabatic flat plate. )

One distinguishing feature of strong interaction
phenomena is the attendant short characteristic length
relative to that for "weak" interaction. Thus, as one
would expect, abrupt physical‘disturbances will generate
this type of behavior. In addition, and especially for

expansive interaction, there can be a first order effect

due to the presence of lateral pressure gradients.
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The general features of interaction phenomena were
first investigated using the "moment method" as developed
by Lees and Reeves (l). This formulation allows great
simplification of the governing equations, but with an
attendant reduction in information content of the variables
describing the layer. The method and the numerical inves-
tigation are presented in Section 3. The general mathe-
matical behavior of the solutions for this formulation was
obtained by numerical experimentation. In addition, an
expansive corner flow was investigated using the moment
method technique.

In Section 4 the full partial differential equations
appropriate to interacting boundary layers are numerically
integrated. These equations differ from the usual Prandtl
formulation primarily in the inclusion of the lateral
pressure gradient in addition to the interaction coupling.
Free interactions and corner flow solutions are presented.
In conjunction with the latter, separation behavior is ob-
tained.

The primary goal for the finite difference study of
Section 4 is to establish the feasibility of such an

approach and to set forth some tentative guide lines for

its implementation.
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Section 2 introduces the general subject by means of
a brief discussion of order of magnitude considerations
and a review of Lighthill's (2) treatment of the linear-

ized interaction problem.
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2. PRELIMINARY CONSIDERATIONS

2.1. General

The primary emphasis in this investigation has been
on the "moment method" and the finite difference represen-
tation of the boundary layer field equations. However, be-
fore embarking on those aspecﬁs of the study, it is worth-
while to establish a few gualitative ideas about such boun-

dary layer behavior.

2.2. Order Of Magnitude Estimates

Consider a boundary layer of height & expanding over
a corner located a distance L from the leading edge of a
flat plate. See Figure 1 for a schematic. It is possible
with simple order of magnitude arguments, and a little
foreknowledge of the actual behavior, to conjecture with
some confidence about the general behaviof in various re-
gions. First of all, consider a region adjacent to the
wall of the order of a boundary layer thickness in lateral

extent, and assume that %5 within this region is 0(1).

<0
{Computational and experimental evidence confirm this for
all but very small angles). Then it can be shown from the

Navier-Stokes equations that three possible distinguished

limits exist, depending upon the order of the character-
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istic length in the x-direction. If the x-characteristic
length is the order of L then we recover the usual Prandtl
boundary layer formulation. If it is intermediate between
L and & , the limit corresponds to the inviscid Prandtl
equations; that is, the flow is inviscid but cannot support
a lateral pressure gradient. And finally, if the x-length
is 0( &), the governing equations are fully inviscid and
an 0(l) lateral pressure gradient exists. Again, we know
from experimental and computational evidence that a sub-
stantial lateral pressure gradient can indeed exist at the
corner and the observed characteristic length is 0(§ ).
Then to conclude, we note the need for still another limit
near the wall for which viscous forces are comparable to
inertia terms. Such a limit will fhus be able to handle
the no-slip boundary condition.

= 0(1l) and viscous

The limit sought, for which %E

terms are comparable to inertia tergi, has a Prandtl-like
behavior. This viscous sublayer is of 0f 6%' } in lateral
extent.

The schematic of Figure 1 evolved from the considera-
tion of these several limits. It shows, in addition, a

very small Stokes-like region right at the corner.

It should perhaps be emphasized at this point that in



7
referring‘to an "inviscid" region, it does not imply the
vanishing of viscous stresses. Indeed, shearing stresses
exist to the same order as in the fully Prandtl-like layer
upstream. The implication of an "inviscid" distinguished

limit is that the dominant behavior of the perturbation

quantities is inviscid. The flow, of course, achieved its
general vortical nature through the action of viscosity up-
stream.

2.3. The Inviscid Interaction Model

On the basis of the above arguments, suppose for the
moment that a laminar boundary layer responds to a down-
stream disturfance in a completely inviscid manner. Sup-
pose further, that the region under consideration is suffi-
ciently far upstream that the lateral pressure gradient
vanishes. The one-dimensional isentrop}c pressure-area

relation for a stream tube is

dp ( M? ) dA
Y A
1-M2

Let n Dbe the streamline inclination. Then, linearizing
the above relation about a base Mach number profile M(y)

and pressure Pl’ we obtain

0P p M) 0n
9% 1- M (y) Y (2.1)



Integration gives

g = _L_ apr 6 <1"Nﬁ(Y)>dy
Y Pdx Jp N vy

where @ is the "edge" inclination at y= & . The integral
diverges if M(y)~y near y=0. For this approach to be
meaningful, an "effective" M(0) must be established from
considerations of the inner viscous sublayer.

Now, using the Prandtl-Meyer relation at the edge, we

have
5 = 1 db
- K dx
where
3
(K)-l- Me 1 Sa (M}d
(M2-1)2 Yo M?(y)
Hence
8 = C exp [K(x-xo)]

or, defining a mean Mach number by

1 L
M = (Soj@ a) °

gives

3 _ -
§ = C exp [_(_1\./{.6_...__;_ . <1-;M9><X6x0>]

Thus for the boundary layer to be able to respond with pos-

itive exponential solutions, the mean Mach number must be
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subsonic. There is a direct correspondence between this
and the subcritical-supercritical distinction made in the

moment method formulationz

2.4. Lighthill's Approach

Lighthill (2) treats the problem of supersonic bound-
ary layers subject to weak disturbance imposed either at
the wall or from outside the boundary layer. He linearizes
what appear to be appropriate limits of the Navier-Stokes
equations and numerically patches the solutions in such a
manner as to give a hopefully valid solution throughout the
regions of interest. He argues, in effect, that the per-
turbation quantities, associated with a local disturbance,
will have a sufficiently short characteristic length to be
governed by the inviscid perturbation equations. The ex-
ception to this is a very thin sublayer near the wall where
viscous effects must be retained in order tq satisfy the
no-slip condition. The argument thus parallels that of 2.2
except that the perturbations here are of smaller order.

In addition to equation (2.1) in 2.3 above, Lighthill

introduces the lateral momentum equation
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where '"'n'"' is the normal coordinate and R is the streamline
radius of curvature. Linearizing, we have

op
dy

| 3
"YPI MB(Y)'a{{l (2.2)

Solving this set of equations for the upstream influence

length QQ'I , he obtained

2 3 _
(K)'l = __...N_I.?_..._;_ [Sé (.L:_Mj.(.y..))dy + (Me 1)8: Mz(y)dy]

(M2-1)% | Yo ° M*(y) M

The deviation between this and the result obtained in 2.3.
is in the second term. Its presence eliminates the arbi-
trariness associated with defining an "edge" location.
Notice that the contribution of the integrals in the outer
region cancel.

Lighthill goes on to point out that this result is
only descriptive at best without a knowledge of the appro-
priate value of M(0), the wall-side boundary condition for
the inviscid flow. In order to establish this value, he
linearizes the Navier-Stokes equations about the upstream
undisturbed linear velocity distribution near the wall.
This results in the time independent Orr-Sommerfeld equa-

tion. Matching of the inner and outer regions is accomp-
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lished by matching the respective Fourier transformations
of the solutions.
Lighthill's estimate, using this approach, of the
appropriate wall-side Mach number for a laminar layer on a

flat plate is

L
s
M(0) = 0.63 6(-)
1
where ¥ is the interaction parameter k&:/ﬂiex)a .

Comparison of this estimate of upstream influence
with a moment method estimate is given in Section 3.3.3.
The major assumptions of Lighthill's approach are
that 1) the sublayer is incompressible; 2) the "base" pfo—
file in the sublayer is linear; and 3) his method of match-
ing the solutions is valid. He shows by an a posteriori
check that all of his assumptions are self consistant with

his. results.
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3. MOMENT METHODS

3.1. General Remarks

The "moment method" technique has been utilized in
this section to study the general nature of laminar boun-
dary layer interaction on a flat plate. For general back-
ground information on the method, derivation of the equa-
tions, discussion of the critical point and application
the reader is referred to Lees and Reeves (1).

In the course of this investigation the infinite flat
plate solution is obtained starting at the leading edge.
The solution so obtained is one of a one-parameter family
of solutions that represent all solutions which eventually
decay to the Blasius solution downstream. The guestion of
analyzing expansive corner flows is then pursued. This
raises the guestion of the existence of solutions which
pass smoothly through the "critical point" from supercriti-
cal to subcritical. It is found that indeed such solutions

exist,

3.2. The Differential Egquations
In the moment method of Lees and Reeves (1), the boun-

dary layer is completely described by three variables; the
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outer edge Mach number and two velocity profile parameters,

e
"a" which is directly related to the wall shear and 65

E
which is a measure of the displacement thickness. If 6i
v
and x are normalized with respect to ( a(gd ), then a
(S oI o]

single parameter Moo enters the equations for flat plate
flow; if the wall is curved the wall curvature distribution,
normalized in the same manner, also enters the description.
All other quantities such as physical boundary layer

height, wall shear, etc. can be determined by auxiliary
célculation in terms of the variables and parameters men-
tioned.

The principal assumptions of the method are: 1) the
family of velocity profiles can be adequately described by
a single shape parameter, 2) the lateral pressure gradient
can be assumed zero, 3) an appropriate choice of the boun-
dary layer "edge" definition can be made, and 4) the par-
ticular choice of governing equations is satisfactory.
Assumptions 2) and 3) are directly related and common to
Prandtl type boundary layer analysis in any form, not just
the moment‘method approach. Each of these assumptions will
be discussed later. The equations in their most convenient

form for numerical treatment are:

A4
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6i dMe _ BC Nl (Me, a, h)
Me dx Kea 3 D(Me: a‘)
i
6.* gﬁ{ - pc N2 (Me: a, h)
1 dx ?(66 5 D(Me, a) (3.1)
3 i
ds _ e Ny (M_, a, h)
dx Xe D(Me’ a)
i
where

dJ
dy

Ny (M_,a,h)= (J ¥

>h + R-PJ) + (P %-R)B

Nz (M_, a, h) = J(¥-1)h + (PJ-¥R)f + [(+1)R-3JP]B

N (M_, 3, h) = [(Z&Hl) W - 3J]h + (R~ P f + [3JP (2:&’+1)R]

DM ,a) = <J2{j;>f+ w-1) J+Bw+1)g§ . 3J]B

e

The variables &, J, P, R and Z are functions of "a"
alone, the specific functional dependegpe depending on the
profile family that has been selected. In the derivation
of the equations, a Howarth transformation was applied so
that the Falkner-Skan similitude solutions could be effec-
tively adopted as the one-parameter family. Klineberg
(3) has obtained the above functions of "a" corresponding
to this family. These relations, along with additional
definitions for other functions appearing in the equations,

are given in Appendix 1. The interaction equation relating
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the streamline inclination at the outer edge to the pres-
sure is taken either as the Prandtl-Meyer or tangent-wedge

relation. These are also given in Appendix 1.

3.3. Some Preliminary Analytical Considerations

3.3.1. The Singularities

3.3.1.1. The Leading Edge

The leading edge is an isolated node-
saddle singularity in the three-dimensional phase space M,
a,IReﬁ.* . The tangent-wedge interaction equation is em-
1
ployed along with the hypersonic approximation for the
isentropic pressure-Mach number relation in the neighbor-

hood of this point. The singularity is characterized by

5 ¥, M, and N,. The gen-
i

eral character can be established by the linearization

the simultaneous vanishing of Re
method of Poincard, but the only solution of physical in-
terest is the exceptional path passing through the point
tangent to all the nodal solutions. The behavior of this
solution can be obtained by an algebraic coordinate expan-
sion in small x. This was done by Lees (4) who showed that

Ju— —— Mooa o0
the appropriate expansion is in large ¥ wherey = ————.

. vRey

The expansion describes the exceptional trajectory quite

well down to a X of 5 or so. The other nodal solutions



16
are not represented because of their exponential nature
near the singular point.

Klineberg (3) has carried the leading-edge expansion
to third order and this expansion has been compared to the
numerical solutions obtained in this study. The expansion
is given in Appendix 2.

3.3.1.2. The "Blasius" Point and The "Relaxa-
tion" Surface

The Blasius point will be defined as the

point 6_*= w , a=a ’Me= M in the phase space. A one-
1

B o0

parameter family of solutions, forming a surface in the
phase space, relaxes to this point. The behavior of Ny,
N,, N3 and D near the Blasius point cannot be described by
a linear appfoximation and hence an analytical study would
be very difficult. An asymptotic coordinate expansion for
large x can be obtained -~ the so called "weak interaction"
expansion. Again, the appropriate expansion variable is

X + Such an expansion has recently been carried out
with retention of third order terms by Klineberg (3). His
results are given in Appendix 2. This expansion has been
used in this study for comparison against numerical re-

sults. Such an expansion has the same limitations as men-

tioned for the small-X coordinate expansion at the leading
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edge. It cannot describe the general nature of the singu-
larity, but only the common asymptotic nature of the inte-
gral paths going into the singular point.

The nature of the solution curves in the neighborhood
of this point have been found by numerical investigation.
A general description follows of the integral paths which
go to Blasius. The justification for these conclusions and
the method of establishing them will be presented later.

Figures 3 and 4 show integral paths in the M—a,Re6 * -
i

a planes respectively. There is a one-to-one correspond-
ence between the curves in the two Figures. The surface
generated by these integral paths can be appropriately
called the "relaxation" surface, for all integrals which
do relax to the Blasius point lie in this surface. Figure
2 gives a rough schematic of a portion pf this surface.

The level lines are indicated by light lines, the integral
paths by heavy lines. Figure 5 shows level curves in the

M-a plane for constant values of Re6 ¥,
i

Consider the integral curves in the surface for large
Re6 * for which the deviation of M and "a" from the Bla-
i
sius values is small. The infinite plate solution is one

such curve and the others can be envisioned as "perturbed"

infinite plate solutions, i.e. infinite plate solutions
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which have experienced a perturbation due to some "exter-
nal" disturbance such as wall blowing or an incident wave
impinging on the layer. Such solutions are precisely those
sought by Libby and Fox (5) in their treatment of the full
boundary layer equations. Their analysis ignores the weak
interaction coupling with the outer flow and the question
then arises as to whether this is a valid omission. The
momentum and moment of momentum equations can be used to

establish a(x) and Re. ¥x) in the absence of interaction,

5.
i

i.e. under the constraint that Me is constant. However,

. . . . . . dM |,
an examination of the equations indicates that if Iz~ 1s

larger than about .03, interaction coupling is significant.
Now it is not clear from Figure 5 what the asymptotic value

of %%g is for the surface solutions as }Ke6 *% goes to in-
dM 1
finity. If I3 Joes to some finite limit greater than

.03 as Reéﬁ‘goes to infinity, then the Libby-Fox treatment
is not Val;d for hypersonic flows even in the large Re&.*
limit, and one must include the weak interaction termsa1
A few more calculations should be made to define this por-
tion of the surface and resolve the guestion.

Relaxing boundary layers characterized by points ly-

ing on the surface well removed from the Blasius point,

can descriptively be referred to as strong interaction
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relaxation solutions. Examples would be the relaxation to
Blasius following a shock induced separation or following
a rapid expansion around a corner.

The "relaxation" surface also contains a line of
singularities, the "critical line", to be discussed in
the next section. All points in the surface on the
Blasius point side of the critical line are the so called
"subcritical"” points. On this "subcritical" side, all
points not on the surface lie on integral paths which di-
verge from it as x increases. On the opposite or "super-
critical” side, the integral curves which pass through the
critical line into the subcritical surface do not form a
single surface. However, these paths do relax to a well
defined surface which is a continuous extension of the sub-
critical "relaxation" surface. The disfinction here is
that while on the subcritical side the paths diverge from
the surface, on the supercritical side they converge to-
ward a surface as x increases. With this distinction in
mind, it is conceptually helpful to consider a single re-
laxation surface spanning the critical line.

If an appropriate interaction equation is used such
as the tangent-wedge relation, then the surface alsoc con-

tains the leading edge singularity and hence the complete
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semi-infinite plate integral curve.

The "departure" integrals will be defined as those
paths diverging from the subcritical relaxation surface.
An integral path which is close to the relaxation surface
at some point does not remain close. In general, it has a
characteristic length for departure which is much smaller
than the local characteristic length of curves in the sur-
face. Again, integral paths near the relaxation surface
on the supercritical side do not depart from it but rather

decay toward it.

3.3.1.3. The "Critical Line"

Referring again to equations (3.1), the
"critical line" is a line of singularities in the phase
space associated with the simultaneous vanishing of D, Nj,

N, and N When D=0, the vanishing of %ny one of the N's

3.
implies the vanishing of the other two, hence the locus of
critical points is a line. This is a consequence of the
fact that the N's and D are not unrelated, but result from
inverting a set of equations of the form

wd =
Ay = b

The Poincard method of analyzing singular point be-

havior may fail to fully describe the behavior in the
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neighborhood of a line singularity. Functions N;, Ny and
N, are regular with dominant linear behavior and generally
well behaved in the neighborhood of the critical line.
However, it has been shown by Poincaré and Liapunov (6)
that the above behavior in itself is not sufficient to
guarantee that the linearized system of equations will have
solutions representative of the nonlinear system. In order
to guarantee that nonlinear effects will be negligible, the
linear system must have neither a zero eigenvalue nor a
pair of pure imaginary complex conjugate eigenvalues. The
latter case often occurs with isolated singularities asso-
ciated with dynamical systems. The eigenvalues cited
correspond to a center-type singularity, i.e. a periodic
motion, whereas the nonlinear systém may well possess a
spiral-type behavior with the paths driying into or out of
the origin.

Any system with a line of singularities possesses a
zero eigenvalue with the associated eigenvector tangent to
that line; i.e., in this direction the linearized functions
Nl' NZ' N4 and D all remain zero. The writer has carried

out the linear analysis of this singular behavior without

success.
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Physical intuition, on the other hand, leads one to expect
smooth relaxation from highly expanded states to the
Blasius point. Further, one feels that the fundamental
moment method assumptions are probably not seriously vio-
lated in those physical situations which exhibit such
"smooth" behavior. Hence a numerical investigation of the
critical line was undertaken.

The picture resulting from the numerical investiga-
tion is as follows. The singularity has a nodal character.
The nodal paths represent solutions passing smoothly
through the critical line from supercritical to subcritical
with increasing x. There is an exceptional nodal path
which lies in the relaxation surface whereas all other node
paths converge towards it on the supercritical side and di-
verge from it on the subcritical side. _The nodal paths at
the critical line are characterized by increasing M and

" "

Reg * and decreasing "a".
i

3.3.2. The "Departure" Solutions

Integrating forward in x, all integral paths
initially near the subcritical relaxation surface "depart"
from it; and in general their characteristic length is much

smaller than for curves in the surface itself. For any
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point on the surface this depérture length can be deter-
mined by linearizing the equations about the known solution
on the surface and seeking the solutions which lie close to
but not on the surface. If one further invokes the "de-
parture" characteristic that the perturbation derivatives
will be much larger than the surface solution derivatives,
one obtains a linear system with a single eigenvalue,
namely that one associated with rapid divergence from the
surface. The eigen solutions associated with integrals in
the surface itself are suppressed. This simplification can
not be made near the leading edge singularity where the
large surface derivatives must also be retained in order to
adequately describe the departure. Kubota (7) carried out
such a linearization for the weak interaction regime. The
results he obtained are general, howeve;, and should apply
over a major portion of the surface with the exception of
regions near the leading edge. From Kubota's analysis,
which invoked the hypersonic limit, one can deduce that the

characteristic departure length L is given by

3vy-1

dJ dJ 2 y+1
Lo ye1,2 e (M NV @t T W - ey vt
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(If required, the hypersonic restriction can be removed
without difficulty.) If the weak interaction expansion is

used, we obtain

L -1V -

R = (3.3)
or

L . Y-l)

5 = 3.22 <“2“ M.

where X is the length from the leading edge and § is the
physical boundary layer height.

If the strong interaction expansion is used, one might
expect the procedure to fail since the surface derivatives
are also going to infinity. Nevertheless, it probably
gives the qualitatively correct picture of how the L/§
ratio varies as the strong interaction regime is approached.

Thus, using the strong interaction expansion, we find

yrz |3
;

or approximately,

L 1
5 —
. VX .
It 1s concluded then, that the L/§ ratio goes to a
constant as the Blasius point is approached and tends to

zero as the leading edge is approached. These qualitative

results have particular significance in regard to the pro-
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per numerical procedures for boundary iayer analysis. 1In
particular, if the departure solutioné are to be "sup-
pressed", the integration must be done implicitly with a
step size larger than L. If the departure solutions are
desired, then the step size must be much smaller than L.
Before leaving this point,-it should be mentioned that the
implicit numerical integration procedure used in this study
will give, at each step of the calculation, the three eig-
enValﬁes associated with the linearized problem. If the
point in question is on the relaxation surface then one
eigenvalue is generally much smaller than the other two
and corresponds to the above departure lengths. It may
well be that for certain problems a preliminary survey via
the moment method of the L/&§ ratio would be of help in
attempts at numerical integration of the full partial dif-
ferential equations.

3.3.3. The "Departure" Integrals And "Upstream In-—
fluence"

The "departure" solutions form a two-parameter
family ~ the parameters locating the departure point on the
relaxation surface. Or more precisely, since the depar-
ture is exponential, one can assign one parameter to tag

the integral curves in the surface and the other to measure
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the extent of departure from any arbitrarily chosen point
on the surface. If one considers only those solutions de-
parting from the surface integral which passes through the
leading edge singularity, then the departure solutions are
characterized by only a single parameter. It is this
latter family that is usually referred to as the "free in-
teraction" solutions - although the entire two-parameter
family will be implied herein by "free interaction" unless
specifically referred to as "leading edge free interaction".
The name "free interaction" is chosen to convey the idea
that the boundary layer can respond to a downstream distur-
bance without the need for stimulus from the wall or from
an incident wave impinging from the outside. Physically,
of course, this reflects the fact that the downstream dis-
turbance can propagate upstream throughgthe subsonic por-
tion of the layer. The lack of departure solutions on the
supercritical side is a consequence of an effective cut off
of the subsonic channel.

All solutions corresponding to the upstream influence
of any arbitrary disturbance on a flat plate must fall in
this two-parameter class. The eventual return to Blasius
is accomplished through a mechanism not described by the

flat plate equations with a waves-of-one-family (Prandtl-
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Meyer) interaction equation. The only way the moment
method equations can yield a smooth return to Blasius after
"departure" has taken place, is for one or both of the
above constraints to be dropped, i.e. either wall curvature
or incident waves at the outer edge must come into play.

To conclude this section some estimates for the length
of upstream influence are given. For the expansive "free
interactions" the "departure length" L is probably a fairly
close estimate for upstream influence for all expansive dis-
turbances. It is likely that nonlinear effects on the per-
turbation occur over only a short distance of the order of
a boundary layer height in the immediate neighborhood of
the disturbance. Hence a linear theory such as Lighthill's
should adequately give the upstream behavior up to a point
very close to the disturbance. Further, one anticipates
that the linear departure solution given earlier (equation
3.3) should agree with Lighthill's result. For comparison
purposes we take p U= constant and paT , then Lighthill's

result is

3
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and comparing, we have for small y
L
Linear-Prandtl equations v-1Y

_1
Linear-moment method - 0'63< 2 X

4

)

which for ¥ = 0.5 equals 1.67.
Hence, good agreement exists between the two results con-
sidering the roughness of the estimate.

For compressive disturbances the linear theory will
fail to predict the upstream influence length since here
the nonlinear aspects persist over many boundary layer
heights upstream of the disturbance. The length of the
upstream influence will, unlike the expansive case, depend
on the nature and strength of the disturbance. Lewis (8)
has reviewed the estimates of this length made by Chapman,
Curle and Lees. He finds general agreement between the
three estimates, which indicate that if the disturbance
strength (fractional pressure rise) is scaled by Ja? .
then L/x also is proportional to Jaf .

3.4. A Review Of The Fundamental Assumptions Of The
Moment Method

Some questions which reflect the fundamental assump-
tions can be put as:

1) Is the one-~parameter family of profiles chosen to
represent the flow adequate?

2) Is the choice of governing equations adequate?



29

3) 1Is the omission of a lateral pressure gradient
reasonable?

4) 1Is the boundary layer edge definition adequate?

In each case it is hard to assess the effect of the
assumptions, especially those reflected by 1) and 2) above.
The ultimate justification, of course, lies with the
method's ability to satisfactorily predict experimentally
verified behavior. The correlation with experiment of the
expansive corner solution contained in this study is not
completely satisfactory on the downstream side of the cor-
ner. The trouble may rest with any one of the implied
assumptions. For example, in the expansion process the
stream tubes in the outer portion of the layer are, rela-
tive to the inner stream tubes, accelerated very little in
the neighborhood of the corner. The consequence is a
"sinking" of the profile with an attendant large increase
in wall shear but small change in the outer nature. The
Falkner-Skan family does not contain such profiles. Fur-
thermore, in order to achieve the high wall shear with the
Falkner-Skan family, the physical location of the "edge"
has a tendency to come nearer the wall. If the edge comes
in too close it amounts to allowing fluid to leave the

boundary layer. Such fluid is vortical and hence the
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the Prandtl-Meyer interaction equation may be inadequate.
The. whole question of edge definition is linked to the ab-
sence of and relative importance of the lateral pressure
gradient at the edge. If the lateral pressure gradient is
retained, the location of the edge is immaterial provided
the outer flow is truly inviscid.

The choice of governing equations may be the most sub-
tle of all. If the profile family were absolutely complete
in the sense of containing all the exact solution profiles
for the problem at hand, then any independant set of gov-
erning equations compatible with the full boundary layer
equations would be satisfactory. The profile family is not
complete, of course, but hopefully the deviation occurs
only in small, relatively unimportant details of the pro-
files. The general rule for selecting the constraining
equations then, is that they must not be too restrictive
with respect to the behavior of "small details" of the pro-
files. An excellent example is pointed out by Lees and
Reeves (1) in regard to separation flows. If the boundary
layer differential equation is invoked at the wall, it in-

sists on a very special detail behavior, namely that

3
2—.}-1. — 0 if 'a"Ij - 09
8y3
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Hence it eliminates the possibility of being able to gener-
ate with the Falkner-Skan family a reverse flow profile in
the pressure plateau region of separation. The Falkner-
Skan family cannot satisfy that detailed requirement.

One anticipates that the inclusion of the lateral
pressure gradient is probably crucial in situations of very
rapid expansion such as sharp corner flow.

As discussed in Section 2, a highly expanded full
boundary layer with a large mean Mach number responds to
a downstream disturbance with a very short length scale
and with a significant lateral pressure gradient. The mo-
ment equations cannot predict such a response of a super-
critical layer because of the absence of the lateral pres-
sure gradient. The suggested procedure (1) in such situ-
ations is to allow a discontinuous "jump" to a subcritical
state. The "jump"” conditions are established by conserv-
ing mass and momentum between the jump stations, and by
assuming the scale is sufficiently short that the flow re-
sponds isentropically. The latter is equivalent to the
assumption that the dissipation terms in the energy equa-
tion can be ignored. The question remains open as to how

satisfactory this approach is.
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3.5. The Numerical Approach

The set of equations (3.1) were approximated by an
implicit finite difference set of equations which in turn
were programmed for solution on an IBM 7094 electronic
computer. The implicit method consists of locally linear-
izing the RHS of the equations at each step. The differ-
ence formulation of the resulting linear set is such that
the RHS is evaluated at the next, as yet unknown, step.
The derivatives on the LHS were represented by the usual
simple-Euler difference, or as an option for greater accur-
acy, a back point was incorporated in this difference rep-
resentation. The resulting set of three coupled algebraic
equations is then solved for the new solution vector at
the forward step. The great drawback to such an approach
is that it is tedious to program. Explicit integration
such as Adams-~Moulton is, of course, much faster. However,
typical problems involve only a fraction of a minute with
either method so this is not an issue.

The motivation for implicit integration was to be
able to integrate the equations starting near the leading
edge singularity much as had already been done implicitly
by Flligge~Lotz and Blottner (9) and Mann and Bradley (10)

with the full boundary layer equations.
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Systems which possess an exceptional integral path,
from which neighboring solutions diverge rapidly, are dif-
ficult to handle numerica}ly if one wants to pursue the
exceptional path. Such a situation is usually considered
as poorly posed as an initial value problem. If one knows
or can establish the downstream boundary conditions, it is
often desirable to treat the problem as a boundary value
problem. However, if circumstances compel one to treat it
as an initial value problem, implicit methods offer a pow-
erfgl technique. This was first pointed out by Curtiss
and Hirschfelder (11) who were motivated by problems in
the chemical kinetics of detonation. In effect, if one
takes step sizes larger than the "departure" scale, the
"departure" solutions are suppressed. And since the char-
acteristic length associated with the exceptional path is
large, the truncation error will generaaly be small. If
it is desired at some station to pursue a departure path
it is only necessary to decrease the step size until it is
well below the "departure" scale.

As it turns out, however, the moment equations still
will no£ yield to numerical integration out of the leading
edge. " The approach was to get somewhat removed from the

leading edge by means of the leading edge expansion and



34
then procede via an implicit method. The RHS of equations
(3.1) are so strongly nonlinear near the leading edge that
when a step size large enough to suppress the departu:e
solutions is attempted, the resulting nonlinear algebraic
set of equations appears to be impossible to solve. All
manner of attempts at finding a "predictor" to establish
a good first guess for this solution failed. The Newton-
Raphson iteration procedure simply would not converge under
any amount of prodding.

Although it was known that the leading edge had a
strong saddle as well as node character, it was decided to
try and brute force one's way into the leading edge by
starting downstream and integrating backwards. The ques-
tion then was what represented a legitimate family of in-
itial conditions which could be used ingan iteration pro-
cedure to locate the leading edge. It was‘in the process
of numerically experimenting with various initial condi-
tions that it became apparent that, regardless of the in-
itial choice, the paths relaxed to a single surface upon
backward integration. The surface was then developed in
some detail and the integral path approaching the leading
edge was established. 1In establishing the leading edge

integral it was found that the saddle-like behavior was
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entirely too severe to belable to penetrate into the lead-
ing edge by iterating on the initial location in the sur-
face far downstream. However, with the surface now par-
tially defined, it was possible to push towards the leading
edge until the path started to diverge and then iterate in
that neighborhood on the surface for new initial data which
would allow a still closer approach to the leading edge.
Aftér several cycles of such a procedure the desired solu-
tion was obtained.

Hence the implicit feature of the integration pro-
cedure was never really utilized. It has been mentioned
here primarily as background for the implicit integration
employed with the full partial differential equations in
Section 4.

The surface thus generated by backward integration
was found to contain the "critical line".& Backward inte-
gration could not be pushed, even implicitiy, beyond the
critical line. Apparently, again, the nonlinearity of the
RHS of eqguations (3.l1) is too severe.

Again by experimentation it was found that forward
integration on the supercritical side from essentially ar-
bitrary initial points produced a rapid decay to a well de-

fined surface and from there the integrals eventually
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passed into the critical line. The paths which meet from
both sides at the critical line are continuous, well be-
haved, and clearly represent the same integral.

Verification that the subcritical relaxation surface,
as generated, is truly what is being claimed, was made by
integrating forward from various randomly chosen points on
the surface. The result, as expected, was rapid divergence
from the surface on one side or the other. If one allows
a small departure of this sort and then "reflects" the per-
turbation about the departure point and takes that condi-
tion as the initial value then the departure is to the
opposite side,

Finally, as an example of continuous expansion from
supercritical to subcritical, the flow around a relatively
sharp corner was analyzed. No specificﬂphysical problem
was studied but rather the calculation was performed in a

way that minimized the computational effort.

3.6. The Results

3.6.1. The "Relaxation" Surface

Figures 3,4 and 5 describe the subcritical
surface generated by using the Prandtl-Meyer interaction

equation. This surface does not contain the leading edge
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singularity because of the use of the Prandtl-Meyer inter-
action equation. The question, then, is which of the in-
tegral curves would pass through the leading edge singular-
ity if it was continued at some appropriate matching point
by a solution generated using the tangent-wedge interaction
equation: Such an integral curve was established by 1),
assuming the tangent-wedge extension would be a straight

line in the Re6 * -a plane, and 2), by taking the leading
i

edge value of a=2.29, which results from the strong inter-
action expansion.

Figures 6 and 7 describe the surface as generated
using the tangent-wedge interaction equation. The solu-
tions here include a portion of the supercritical surface.
The surface contains the leading edge solution which was

extended below Re = 125 by extrapolation.

2¢
5.
1

3.6.2. The Infinite Flat Plate Solution

Figures 8 and 9 give the infinite flat plate
solutions with Prandtl-Meyer and tangent-wedge interaction

equations respectively. Re. * , M and "a" are given as a
8y

function of ¥ . Comparison is made with the "weak inter-
action" expansion in Figure 8 and the "strong interaction”

expansion in Figure 9.
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P/P vs. ¥ is given in Figure 10 and compared to

[e¢]

the data of Reference (12). The agreement is good.

3.6.3. Expansion Corner Solution

The corner results are presented in Figures
11,12 and 13. The hypersonic pressure-Mach number relation
was used which may be the source of some error. It has
been found by K. Victoria (13) that experimental data in
this general M, Reé.* and angle range can be collapsed
; i

into a single curve of

P-P°o+ X=X

vse (x-x )/6 For < 0
PwiL ~Peot e’ 6

and
P-P + x-xc
P—-—-—-—-—gg—p— VS, (x-xc)/é For 3 > 0
WIC "ot
where E{WIL is the local value of the weak interaction
pressure in the absence of a disturbance; P 'is

WIC

the weak interaction value at the corner location: and X,
locates the center of the corner. The result is apparently
independent of the corner radius provided the length of the
curved portion is not greater, say, than a few boundary

layer heights.
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4. FINITE DIFFERENCE SOLUTIONS OF THE
"GENERALIZED" LAMINAR BOUNDARY LAYER EQUATIONS

4.1. General Discussion

Can the class of local interaction problems under
consideration in this study be treated by the numerical
integration of a suitably generalized form of partial dif-
ferentiél field equations governing thin viscous layers?
xThe portion of the investigation presented in this Section
is directed toward resolving this gquestion.

Before examining the numerical procedure and results,
let us begin by anticipating where difficulties might lie
in this approach. First of all, we expect the same quali-
tative behavior as that exhibited by the moment method so-
lutions; that is, there exists a ''relaxation’’ solution tending to
Blasius on a flat wall with solutions departing from it on
a relatively short scale length. We exﬁ%ct this departure
length, relative to the boundary layer height, to increase
from a very small value near the leading edge to something
like a couple of boundary layer heights as we proceed to
low %X values.

In regard to the nature of the "departure" solutions,
our chances for success rest on several key points. First

of all, we hope that we can generate a physically meaning-
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ful one;parameter family of free interaction solutions. If
the departure solutions are critically dependant on the
fine detail of the functions describing the boundary
layer, then the problem is indeed "poorly posed" and must
be treated as a boundary value problem. The latter approach
would appear to be exceedingly difficult. But such a pro-
cedure is not necessarily out of the question, especially
in the light of recent successes iﬂ numerical experimenta-
tions of very low Reynolds number flows and supersonic in-
viscid flows with imbedded subsonic regions. The appréach
here, however, is to proceed by the far easier forward
marching technique in the hope that it will be successful
for at least an interesting class of problems.

Now of course the equations must possess an infinite
variety of departure solutions, differigg in very fine de~
tail initially but eventually becoming’a clearly discern-
ible multi-parameter family of solutions. If one thinks of
the departure as a linear phenomena, analogous to the Libby
and Fox (5) treatment of non-interacting flows, then the
departure can be envisioned as a superposition of eigen
solutions. The success of the numerical forward marching
approach will rest on the correctness of the assumption

that the scales associated with these departure modes are
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well displaced. Hence the "fine" structure associated
with an initial perturbation will decay quickly leaving a
single "fundamental" mode. It is clear that the very
essence of this approach precludes the analyzing of prob-
lems in which very fine detail is desired. For example,
suppose one wanted to know the detailed flow around a small
probe imbedded within a separated region. Obviously there
is no chance that one could treat such a situation by an
initial value technique. The manifestation of the presence
of the probe on the character of the flow well upstream is
infinitesimal, yet that is where one would be attempting to
describe the solution initially. On the other hand, if we
are willing to accept less detail, we might hope for a
reasonable solution removed slightly from the probe.

The question then is, if we are su?cessfull in gener-
ating a "smooth" one-parameter family of departure solu-
tions, can these be used to represent the upstream influ-
ence for a physically interesting class of problems. We
anticipate that we will be restricted to a class of prob-
lems with a certain degree of "smoothness" and that in the
neighborhood of régions which lack this, we must be willing
to accept loss of detail. This situation is not a new one,

a now classic example being Van Dyke's treatment of the
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inviscid flow over blunt bodies at supersonic flight
speeds. In that case he treats the subsonic region behind
the shock as an initial value problem. A émooth conic sec-
tion shock shape is selected and produces a "smooth" body
shape.

So far what we have anticipated in the way of mathe-
matical behavior stems, in large part, from a knowledge of
the moment method solution. To recap, we have implied that
"relaxation”" solutions exist and that success in this
approach will lie in being able 1) to generate such a solu-
tion; 2) to suppress or trigger departure from it at any
desired position; 3) upon departure, to suppress all fine
structure disturbances and retain only some dominant solu-
tions; and finally, 4) to show that such a solution is not
just a solution to the difference equations for which we
have suppressed all the "real" solutions, but that it is
indeed a solution to the differential equations.

The issue of whether one can properly pose a problem
as an initial value problem, is fundamentally linked to the
sensitivity of the subsequent solution to the initial data.
This in turn can be associated with positive exponential
solutions in linear systems. Elliptic equations are the

prime example of poorly posed initial value problems. This
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can be thought of as a consequence of the existence of
positive exponential solutions off of the initial surface.
The heat equation integrated in negative time is another
example. Thus we can discern at least three aspects which
may give trouble and a knowledge of these will be helpful
in attempting to surmount the problems. First, as we have
-mentioned, there is a positive exponential nature associa-
ted with the interaction equation. Secondly, the boundary
layer equations are diffusive in nature when the viscous
terms are comparable to the inertia terms - hence in re-
gions of reverse flow, analogous to integrating in negative
time, we can expect trouble. And thirdly, if the lateral
pressure gradient is retained, then under circumstances
where perturbations of small scale length exist, the sub-
sonic region will behave inviscidly and hence elliptically, -
thus exhibiting positive exponential solutions.

As if the above wasn't bad enough, we must now inter-
jéct an additional and important consideration. The above
discussion reflected the character of the differential
equations. The question now is, do the difference equa-
tions introduce additional spurious positive exponential

or oscillating behavior, i.e. numerical instability?
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4.2. The Differential Equations

In order to avoid the complete ellipticity of the
Navier-Stokes equations, the Stokes-like viscous terms
associated with gjb were dropped where x corresponds to

X
the coordinate aligned with the flow. Inclusion of such
terms would preclude the treatment as an initial value
problem.
The Navier-Stokes equations are reduced by one order
under the fundamental assumption that viscous regions will

be confined to thin layers aligned with one of the coordi-

nate directions. Other than the dropping of the Stokes-
2

3
like viscous terms which involve u and Fv , the full
Ix? %3

equations have been retained pretty much intact. The
terms dropped are so called Stokes-like because, if the
viscous‘region is truly thin, then simp}e order of magni-
tude estimates indicate that these quantities can be of
significance only in regions where the inertia terms are
tending to zero. 1In addition, a very short characteristic
length disturbance, such as that introduced for example at
a sharp corner, is required in order for these terms to be
significant. The extent of such a region is of the order
of the "Stokes radius" or the radius at which the local

Reynolds number is unity. The "Stokes:.radius" to boundary
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layer thickness ratio is about 1/20th at a plate Reynolds
number of 100, 000.

The major difference then between the set of equations
dealt with here and the usual Prandtl boundary layer equa-
tions, is the inclusion here of the lateral momentum equa-
tion with its attendant lateral pressure gradient. Of
secondary interest, for the present, was the inclusion of
lateral viscous and dissipation terms in order to properly
describe imbedded shocks aligned with the x-axis. The in-
clusion of the latter might also allow solution of the
combined shock structure-boundary layer problem at the
leading edge.

The equations were written in axisymmetric orthogonal
surface coordinates and derived under the single assumption
that the viscous layer, whether shock or shear like, is
thin and aligned with the surface coordinate. All trans-
verse and longitudinal curvature terms are retained so the
system reduces to the correct polar coordinate formulation
at a sharp corner and reduces properly for the axisymmetric
wake case.

After writing the equation in curvilinear coordinates
and making the "thin viscous layer" assumptions, the coor-

. , . n .
dinate transformation (x,y) = x, n = F (y/x ) was intro-
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duced to facilitate the numerical treatment. F is an ar-
bitrary analytical function. The transformation allows
one to conveniently vary the mesh spacing in the lateral
direction depending on the problem at hand. Simplifica-
tions using Crocco or stream function coordinates are not
possible since reverse flows are to be considered. No
advantage or simplification was felt to be gained by the
introduction of a Howarth transformation.

Since the equations contain the full inviscid equa-
tions they could, in principle, be integrated out to a
point sufficiently far removed that the disturbance van-
ished, and that could serve as the complete formulation of
the problem. In practice, that generally requires far too
many node points if one retains the implicit numerical for-
mulation required within the viscous po;tion. The leading
edge might be an interesting exception. The alternative
is to change the method of calculating the flow field out-
side of the vortical region of the viscous boundary layer.
The most general approach is to use the method of charac-
teristics or simply an explicit forward marching along
coordinate lines. If the latter is used, care must be
taken to insure that the "region of influence" of a field

point falls entirely downstream of the coordinate line.
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Mann and Bradley (10) employ rotational characteristics in
their study of the leading edge interaction problem. The
approach taken here is to adopt a simple model for the
outer flow; either tangent-wedge theory or the simple wave
flow described by the Prandtl-Meyer relation. Hence the
study has been restricted to those situations for which no
disturbance is imposed on the flow from outside the boun-
dary layer. What has been investigated are the "free in-

teractions"” which can represent the upstream influence

associated with disturbances imposed from outside the layer,
and corner flows where the disturbance originates on the
wall side of the layer.

The Navier-Stokes equations in orthogonal curvilinear
coordinates are given, for example, by Tsien (14). The
equations used here in reduced form are in Appendix 3.

Boundary conditions at a solid wallﬁwere prescribed
with the allowance for arbitrary blowing and wall tempera-
ture distribution. Thermal fluid properties were allowed
to have arbitrary temperature dependance.

4.3. The Difference Eguations

The differential equations as given in Appendix 3
were approximated by linear difference equations utilizing

a fully implicit differencing scheme as distinguished from
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the Crank-Nicholson averaging method. That is, the x der-

ivatives are all evaluated at the downstream node point -
not an intermediate point. To gain second order accuracy,
the use of a back point in the difference representation of
7%; was provided as an option. 1In order for the implicit
difference equations to be linear, the dependent variables
themselves (as distinguished from their derivatives) were
evaluated at the upstream node points for the first evalu-
ation of the solution at the downstream node. Iteration at
the downstream node was provided for to reduce the error
associated with this linearization. The difference rela-
tions used are in Appendix 4. Motivations for the above
choice are as follows. First, an implicit method is neces-
sary for diffusion equations regardless of any additional
complications if reasonable step sizes %n X are to be tol-
erable. In addition, we want to make use of the fact that
a fully implicit method will be the most effective in sup-
pressing the anticipated "departure” solutions. Again, the
reader is referred to Reference (11l) for discussion of this
point. That such suppression can be achieved even with the
Crank-Nicholson implicit formulation has already been dem-
onstrated by the very fact that Flﬁgge-Lotz and Blottner

(9) obtained well behaved, bounded solutions in treating
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the large ¥ leading edge interaction problem. In general
the choice here was made on the basis of obtaining the most
stable method possible. Comparable accuracy to the Crank-
Nicholson method is obtained, as mentioned, by the use of
an additional back point and by iteration. It should be
noted that the Crank-Nicholson approach also needs to in-
corporate an iteration to achieve second order accuracy.

In anticipation of difficulties in the subsonic re-
gion, an option was programmed whereby, below any pre-
scribed value of 1 or Mach number in the flow, the later-
al momentum equation is replaced by the condition that the
lateral pressure gradient is =zero.

The edge definition was taken as that value of n for
which the velocity and temperature gradients fell below
specified values. If the number of nodes is insufficient
to be able to realize this condition, tﬁe mesh 1s extended
outward. The linear system of difference equations form a
banded matrix of dimension 4N by 15 where N is the number
of lateral mesh points. These are solved using a band
matrix inversion routine which is very efficient.

4.4, The Results

All calculations were carried out for M = 5.8; M ~ T;

and Pr = 1.0. Except near the leading edge, where the tan-



50
gent-wedge approximation was used, Prandtl-Meyer outer flow
was assumed in all cases. All examples were for én adia-
batic, impervious wall.

4.4.1. Infinite Flat Plate

The infinite flat plate solution was obtained
starting at the leading edge and progressing downstream to
the weak interaction regime. Departure solutions are ef-
fectively suppressed by taking steps which become increas-
ingly longer relative to & as the integration proceeds
downstream. The step size becomes approximately 26 as the
weak interaction region is reached. The numerical accuracy
is good near the leading edge where Ax/6 is small. The
accuracy is also good in the weak interaction region where,
although Ax/6 is approximately 2, the boundary layer is
changing slowly. These conclusions are%confirmed by in-
creasing the step size in these regions without an appre-
ciable change in the results. In an intermediate region
between these extremes, where i is between 2.0 and 4.5,
the accuracy is not so good. The required step size of
approximately one boundary layer height apparently gives
rise to too large a truncation error in this region where
the relaxation solution itself is still undergoing rapid

change. 1In this range of ¥ , the generated pressure dis-
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tribution was taken as prescribed input in a non-interact-
ing boundary layer calculation using the interaction solu-
tion at X = 4.5 for initial data. The integration was
performed on a very small step size to insure accuracy.
The resulting lateral velocity at the edge, when qompared
with the interaction calculation, showed approximately a
5% to 10% disagreement. No attempt was made to improve
this solution, although iteration on the pressure field
would undoubtedly yield an accurate soclution. It is also
quite likely that further experimentation with regard to
an optimum step size distribution might help.

The primary goal of obtaining an accurate, self con-
sistent solution in the ¥ <2 range was achieved. This
was then used to investigate the "free interaction" depar-
tures.

Initial profiles for the leading edg; problem were
obtained from the leading edge similitude solutions (15).
These are given in Figures 14 and 15.

Figure 16 gives the pressure distribution in the
immediate vicinity of the leading edge. This calculation
was performed with step sizes of both one-half and one
boundary layer height with no significant difference in

the result. Results were obtained both with and without
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iteration to reduce the linearization error associated
with the difference equations. This was found to be a
significant factor. Further, it was found that a single
iteration was satisfactory and this was done in all subse-
guent problems. Figure 16 shows the effect of cutting the
step size back to 0.16 and 0.036 - immediate departure
results. Figure 17 shows the pressure distribution for
the entire ¥ range and compares it with experimental data
and the weak and strong interaction expansions.

Finally, it is noted that even though the numerical
accuracy appears good for i > 5, the agreement with ex-
perimental observation is not so good. For the leading
edge calculations of this section the lateral pressure
gradient was set equal to zero. This, in conjunction with
the use of the tangent-wedge interactiog equation, probably
invalidates the results for % > 5 where Re < 1500 and the
usual boundary layer assumptions become questionable. The
edge definition in particular becomes an important factor
in regions of rapid expansion if the lateral pressure gra-
dient is not properly accounted for. This point has not
been investigated further as of this writing. In all sub-
sequent calculations the lateral pressure gradient has been

included at least in the supersonic portion and hence the
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edge definition is not an issue.

4.4.2. The Free Interaction Solutions

The equations do exhibit a one-parameter
family of "free interaction" solutions departing from the
infinite plate solution. {(Henceforth, the semi-infinite
flat plate relaxation solution, exhibiting the leading edge
singularity, will be referred to simply as the "infinite
plate” solution. Any other relaxation solution on an in-
finite plate, such as the "reattachment” solution in which
a separated flow returns to the wall and passes downstream
to the Blasius point, will be specifically defined.) These
free interaction solutions can be generated by cutting back
the step size in x from the large value used to suppress
them. Examining the behavior as the step size is reduced,
one finds the following. For only a small reduction, the
same "relaxation" solution is recovered. When Ax is sub-
stantially cut back, say from 26 to & , then an erratic
oscillatory behavior sets in. The solution apparently
tries to drive off on a departure solution and is returned
by the implicit "restoring" mechanism. Then, upon further
substantial reduction, smooth well behaved departure solu-

tions are generated. It is found that once on a departure
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integral, there is a clear and easily established step
size below which the integration is accurate, i.e. further
reduction in step size does not alter the result. The
"rate" of departure can be increased by "kicking" the solu-~
tion substantially off the relaxation solution in the first
departure step. That is, it is possible to jump onto an
integral curve which departed from the relaxation solution
considerably further upstream. It is found that some cau-
tion must be exercised if one attempts the latter. An ar-
bitrary "kick” or perturbation of the relaxation solution
does not yield a solution which belongs to the "infinite
plate" one-parameter family. This is precisely the same
situation as was found with the moment method. However,
for i < 2, it appears that regardless of the nature of
the initial perturbation, the solution within a few boun-
dary layer heights at most does settle into the one-para-
meter family associated with the "infinite plate". Hence
the only uncertainity in using such "arbitrary" departure
conditions is in the initial behavior, not downstream in
the neighborhood of the disturbance giving rise to depar-
ture. One convenient method of "kicking" is to take an
intermediate sized initial step - not so large as to remain

on the relaxation solution and not so small as to give a
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gradual departure. In other words, this is just a simple
way of getting the computer to make a small initial "mis-
take". The initial step size can be used as a parameter
to generate the entire family. Within a short distance
the family so generated takes on the characteristics of
the one-parameter "infinite plate" family.

Figure 18 shows members of the family as generated
from two different departure points using various initial
step sizes. Solution D gives an example of too large an
initial kick - it takes some distance before the solution
settles into its ultimatg role as a member of the family.
Initial conditions for solution C were generated in a dif-
ferent manner. An already generated expansive departure
was selected and its deviation from the relaxation solu-
tion was calculated in terms of a pertufbation distribution -
in n of U, V, P and T. The sign of these perturbations
was then changed and the initial conditions for solution C
were thus established. The resultant solution soon falls
into place as an acceptable member.

Figures 19 through 24 give the detailed character of
a representative expansive and compressive free interaction
solution. The transverse momentum equation is retained

throughout the layer in the expansive case. No subsonic
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instabilities developed until the flow was expanded around
a sharp corner. Downstream of the corner it was found nec-
essary to restrict the transverse momentum equation to the
supersonic portion and to assume zero pressure gradient
normal to the wall in the subsonic region. In the compres-
sive case the gradient was retained to the wall until the
proximity of the separation point was reached. Following
that, instabilities dictated that the non-zero transverse
gradient of pressure be restricted to the supersonic re-
gime.

4.4.2.1. Separation And Reverse Flow

Perhaps the most interesting result of
all is the compressive free interaction solution passing
smoothly through separation and well downstream into the
reverse flow field. The so called "pressure plateau"” or
leveling off of the pressure rise is clearly discernible
in Figure 22. Figure 23 presents the velocity profiles at
various stations beginning with a near-Blasius weak inter-
action profile and ending with a profile which is approach-
ing the free mixing solution.

Figure 23 shows, however, a severe shortcoming of the
solutions obtained to date. There is an oscillation at the

edge in all the boundary layer variables which first devel-
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ops either at or slightly prior to separation. This un-
doubtedly has effected the interaction considerably. Fig-
ure 25 shows the corresponding pressure oscillations. Com-
parison with the experimental results of J. Lewis (8) indi-
cate that the x-scale length obtained here is too long by
about 30%. Until the edge oscillation is rectified it does
not seem worthwhile to cohjecture further on this discrep-
ancy. It is known that the Falkner-Skan similitude equa-
tion for negative p's does not have a unique solution.
The proper solution is chosen on the basis of correct
matching to the outer flow. This requires that the devia-
tion of the boundary layer solution from the outer solution
must be transcendentally small as the boundary layer vari-
able tends to infinity. It may be that the numerical solu-
tion obtained here corresponds to one of the inadmissible
Falkner-Skan solutions and must be eliminated on the basis
of improper matching. On the other hand, the Libby-Fox (5)
non-similar near-Blasius solutions for relaxing flows show
oscillatory behavior which exponentially decays at the
edge. Hence, because the solutions are oscillatory is
probably not sufficient reason to artificially suppress
them. It is probable that these oscillations are the re-

sult of numerical instability linked to the reverse flow
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region; although no perceptible signs of instability are
seen in the reverse flow region until well downstream of
the initiation of the outer oscillations. In the absence
of a turn in the wall, the reverse flow develops a numeri-
cal instability about three boundary layer heights down-
stream of separation. This instability appears primarily
in the V velocity component, and oscillations (except at
the edge) d o not appear above the dividing stream line.
It is interesting to note that for a smooth compressive
turn, the reverse flow is apparently stabilized, at least
as far downstream as the calculation was carried in this
study. In addition, the presence of a smooth turn causes
the outer oscillations to damp out and eventually disap-
pear. The velocity profiles associated with such a turn
are given in Figure 32. These can be coTpared to those in
Figure 23. Separation is at the same location in both
cases.

In Figure 24 a typical reverse flow profile is shown
as a function of the Howarth coordinate and is compared to
the similitude reverse flow solutions found by Stewartson.
These solutions were computed by Klineberg (3). The

comparison shows a close family resemblance.
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4.4.2.2. Expansion And The Critical Point

Figure 18 shows the precipitous manner
in which the pressure falls for expansive free interactions.
As a consequence, a numerical solution for the final stage
of this plunge is difficult to achieve.

There is a limiting case, for expansive upstream in-
fluence, in which the sonic line comes into the wall. Such
a singularity is possible for the equations we are dealing
with because of the absence of the Stokes-~like region. The
picture quite probably is the following. The flow pertur-
bations respond in an inviscid manner in regions where the
streamwise gradients become large. The thin viscous sub-
layer adjacent to the wall is of the backward boundary lay-
er type with flow emerging from it into the inviscid do-
main. In the limit mentioned the streamwise gradients
near the wall become very large and the viscous wall layer
vanishes. Such a soiution cannot be continued downstream
unless a sharp corner is present with an angle greater than
some "critical" value. The "critical" angle is of such a
magnitude that all the stream tubes can swell in accordance
with the falling pressure, while the outer stream line in-
clination becomes progressively more negative in accordance

with the outer simple-wave flow. This singularity is the
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direct analogue of the moment method critical point. The
entire layer is supersonic and it cannot respond further to

changes in downstream conditions.

4.4.3. Expansion Corner

Figures 26 through 30 present the results for
flow over an expansion corner of approximately 7.4 degrees.
The upstream Mach number is 5.8 and the corner Reynolds
number is 123,000. The corner radius of curvature is
0.9 6C , wWhere 6C is the boundary layer height at the cor-
ner. The upstream-influence portion of the solution corre-
sponds to curve D of Figure 18.

The solution procedure was to vary the corner angle
until, in effect, the downstream boundary condition was
met, keeping the upstream solution fixed. As the angle is
varied, the solutions either go to a coﬁpressive separa-
tion~-type behavior or to an expansive "critical point" type
behavior. It is the exceptional integral which neither
goes to separation nor the "critical" point that will satis-
fy the downstream boundary conditions that the flow be
attached and approaching the pressure level corresponding
to the Prandtl-Meyer turn. This was the easiest procedure

to adopt for demonstrative purposes. Figure 25 shows the
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nature of the integral curves as the angle is varied. The
angle was varied in 0.1 degree increments which were satis-
factory to establish the solution for about three boundary
layer heights downstream. The calculation was not contin-
ued beyond that point. The data compilation of K. Victoria
(13) is given in Figure 25.  The agreement downstream is
good, although possibly fortuitous in light of the differ-
ences in the defining parameters between the experimental
and computed cases. A one-quarter boundary layer height
origin shift would bring the upstream data into essentially

exact agreement. Figure 27 gives the downstream pressure

. P P . . .
profiles. %; and %E at the edge are consistant with sim-
ple wave flow. Beginning at the first downstream station

the lateral pressure gradient below the sonic line was set
equal to zero. A discontinuity in gradient thus appears at
the first station of Figure 27. Figure 28 gives the down-
stream U-velocity profile as a function of the stream func-
tion.

Figure 29 presents the streamline pattern for the ex~
pansive corner. In addition, the Mach lines and a down-
stream constant pressure line are given. The downstream

constant pressure line shown lies very close to a Mach line.

The indication is that for small corner angles and within
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a boundary layer height or two from the corner, wave re-

flection off of the shear layer is weak.

4.4.4. Compression Turn

A compression turn starting at a plate Rey-
nolds number of 202,000 was briefly investigated. The
radius of curvature was approximately 37 boundary layer
heights. 1In terms of the plate length, the radius of
curvature equals 2.9x,, where X is the location of the
beginning of the turn. The calculation was terminated,
after the flow had been turned approximately 5 degrees,
due to numerical instability. No attempt has been made
at this time to rectify the situation. Figure 30 gives
the pressure distribution for this case. It gualitatively
has very much the same behavior as that reported by Lewis
(8) in his experimental investigation. "The outer edge
oscillations which exist between the separation point and
the corner are damped out by the presence of the turn.
Figure 32 gives the velocity profiles.

Figure 31 shows the streamline pattern for the separa-

ted region.



63
5. CONCLUSIONS

5.1. Moment Method Analysis

The most sweeping conclusion to be drawn is that the‘
moment method equations offer a remarkably clear "picture"
of supersonic laminar boundary layer mechanics. This in
itself, completely aside from considerations of the de-
tailed prediétions, makes the moment method a valuable ana-

lytical tool.

5.1.1. The Blasius Point

The Blasius point is characterized by a one-
parameter family of solutions relaxing into it. This fam-
ily generates a "relaxation" surface in the phase space
M, a, Re_* , which includes the leading edge and the crit-
ical linelsingularities. The asymptotic nature of the so-
lutions going into the Blasius point are€ described by the
infinite flat plate "weak interaction" expansion. The par-
ticular integral in the surface which passes through the

leading edge singularity corresponds to the semi-infinite

flat plate.

5.1.2. The Leading Edge

The leading edge is an isolated node-saddle

singularity. The exceptional node path corresponding to
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the flat plate solution is described by the "strong inter-

action" coordinate expansion,

5.1.3. The "Critical" Line

The "critical" line singularity has a nodal
character. Integrating in positive x the paths converge
toward the relaxation surface on the supercritical side,
pass through the singularity and diverge on the subcriti-

cal side.

5.1.4. The "Departure" Solutions

On the subcritical side, all integral paths
not on the surface diverge from it with increasing x.
These represent the "free interaction" expansion and com-

pression solutions.

5.1.5. The Expansion Corner

It was found possible to generate expansion
corner flow solutions passing smoothly from subcritical to
supercritical flow at the corner and returning smoothly to

subcritical flow downstream on the flat wall.

5.1.6., The Infinite Plate Solution

The infinite plate solution was extracted from

the relaxation surface and presented as a function of % .
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Agreement with experiment was found to be good.

5.2. Finite Difference Solutions Of The "Generalized"
Boundary Layer Egquations

The underlying conclusion of importance here is that
a large class of physically interesting problems exists
which can be successfully posed as initial value problems

using these finite difference equations.

5.2.1. "Free Interaction" Solutions

The "free interaction" or "upstream influence"
solutions departing from the infinite plate solution repre-
sent a one-parameter family. Their generation was found to
be an easy matter of cutting back substantially on the step
size required to generate the infinite plate solution.

This again confirms the importance of implicit integration.

Separation solutions were obtained which penetrated
into the reverse flow region for approximately three boun-
dary layer heights before reverse flow instability sets in.
These solutions, however, possess outer edge oscillatory
behavior which has yet to be rectified. It seems likely
that the problem is not insurmountable.

The expansion free interaction solutions support sub-

stantial lateral pressure gradients, indicating a definite
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need for retention of these gradients.

5.2.2. Expansion Corner

Expansion corner flow for a 7.4 degree turn at
M = 5.8 was obtained. The corner radius was approximately
one boundary layer height. The solution was carried down-
stream for approximately three boundary layer heights.
Agreement with experiment is good.
Continuation of the solution further downstream should

offer no insurmountable problems.

5.2.3. Compression Turn

Preliminary investigation of a compression
turn indicates a stabilizing effect on the reverse flow
behavior. These preliminary findings lend some encourage-
ment to the hope of carrying such a solution through re-
attachment. However, to do such would be asking a very
great deal from an inverse technique. It may well be that
once the flow is well separated, the best procedure would
be to couple this numerical technique with the moment
method.

5.2.4. General
Since the numerical approach offers consider-

able promise as an analytical tool for this type of inves-
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tigation, additional exploratory work should be done. The
range of applicability, the limitations, and the accuracy
should be firmly established.
In particular, attention should be given to 1) the
outer edge oscillatory behavior observed in this study,
2) the reverse flow instabilities and 3) inclusion of the

transverse momentum equation near the leading edge.

5.3. Comparison Of The Two Approaches

It seems clear that the numerical integration of the
full boundary layer equations is a powerful technigque which
should find an extensive role in analysis. It's potential
for handling complex problems involving a multitude of
"real"” phenomena goes way beyond the moment method approach.
The method should be adapéable to a wide variety of com-
plexities including hard blowing, imbedded shocks, and
chemical kinetics. Furthermore, by incorporating an ap-
propriate orthogonal coordinate system, it seems likely
that the near wake problem in the neighborhood of the body
shoulder can be analyzed.

On the other hand, problems involving large scale

separation certainly will require moment methods, or some-

thing equivalent to them, to handle the reverse flow por-
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tion of the flow field.

The question of machine time requirements is often
raised in a comparison of this sort. In general, however,
once the procedures have been developed, the machine costs
for complex problems of this sort are a small fraction of

the total expenditure associated with the analysis effort.
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APPENDIX 1: DEFINING RELATIONS FOR
MOMENT METHOD FORMULATION

Al.l. General

" 5.
6; = Sl (1-'%1-)(33{
o e
5.
_ i U U
ei - go (Ue) [1 (ﬁ—e-)] dyY
6, = g (U—)[l ~(U—)—ldY
o] € e
ei @i*
¥ o= — i J = —
. 5.
1 i
R = 25,/U° Sai(aU)Z ay; P 1* &Y,
- 1 e Y ’ - ﬁ: WY:O
5.
1l i U
Z = (_____) dy
o Y, Ue
TS
N FYR
1 Y=0
Y a p
Y = € y
S0 aOOPOO
6 = 61 aep _ B %
B SO 3P dy = (8, /8) [(14+m_W1+m )12 [1+m_ (&+1)]
3 6 " N
o = SOD'("U)/(peUe)JdY=(5i/5)[(1'+m00)/(1+me)]2[Z+1+me(;s{+1)]
5 N R
6 = So[(pU/(peUe)] [l-(U/Ue)]dy=<Si(a(/g)[(1+moo)/(1+me)]2



72
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Al,2., The Profile Functions
The functions ¥, J, Z, R and P have been obtained by Kline -
berg (3 ) as functions of "a', The table below gives these functions
where
SYM = C +C.a+GC,a’+-2er
o) 1 2
ATTACHED PROFILES - ADIABATIC WALL
Sym CO Cl C2 C3 C4 C5
¥ .24711 . 110560 |-,021223] .0043455|~-.00097238| .00009921
J «37372| ,169689 |-.023356{ .00572391-.00174700] .00019124
Z 11,035391{ .483731 {-.015025) .0260954 {-.00369675 ————
R [1.25782|-.555497 | .319639[-.0907667 |+.01398307|-.00093482
P - . 487447 |-.099274| . 0096044 |~. 00031106 ———
dy/da | . 11056 |~. 042447 | .013036|-.0038895| .00049603 ————
dJ/dy |1.50031| . 281050 |-.042867| .0026238 - ———-
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Al.,3., The Interaction Equations
Al.3.1. Prandtl-Meyer
O+a, = - [v(M)) - v(M )]
L -1 2 L
viM) = [y+1)/(y-1)]% tan™ " [(M"-1) (y-1)/y+1)]?
L
- tan"1 (Mz-l)a
Pe Y
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0
Al.3.2., Tangent-Wedge
1
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APPENDIX 2: "STRONG'" AND "WEAK' INTERACTION EXPANSIONS

The expansions below are developed by Klineberg (3 ).

AZ2,1. Infinite Flat Plate "Weak' Interaction Expansion - Adiabatic

e ~ _Z ® © 9 ¢
Me/Moo = 1+mlx+mzx +

&
3 o — —

3¢ o
Reai/CMoo = —-—-_}Z (L+8,X+8,X

Che, XXt )

where the coefficients are given in the table below for Moo equal to

4.0, 6.0, and 8.0

M

4.0 6.0 8.0
60 1.7239 1.7239 1.7239
61 0.3160 0.2980 6. 2909
62 0.0658 0.0578 0. 0543
€5 -. 02925 -. 02466 - -. 02203
a, 1. 6331 1. 6331 1. 6331
25 0. 2878 0.2202 0.1989
a, 0.1298 0.0718 0. 0559
m, -. 07930 -0. 06065 -. 05479
m, -. 003164 +.000496 +.001389
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A2.2. '"Strong' Interaction Expansion - Adiabatic Wall, Infinite

Flat Plate

Re *

5.

i _ 1,1944 _ -
o3 m)(l +0.9479/ % - 0.1988/ % + )

w X
a = 2.288 - 1,101/ +2.136/ % %+ -
M -(y-1)/2y

- — _2

o = 1.1012 % (1-0.2165/% +0.1514/ X+ =)
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APPENDIX 3: THE "GENERALIZED' LAMINAR
BOUNDARY LAYER EQUATIONS

A3.1. Nomenclature

All quantities below are normalized in the following fashion:
r, (n) l,y, and x with respect to an arbitrary length L; U, V, p, T, cp
and i with their respective undisturbed free stream values; and P
with respect to P Uooz. # is the wall curvatur’e; y the normal dis-
tance from the surface; and x is coordinate lying along the surface.

J = 0 for planar flow and j = 1.0 in the axisymmetric case. 0 is the

surface inclination relative to the axis of axisymmetry. Further,

p U L C M
Re = _% 0 and Pr = _Px "o
u K
(¢ o] o0

Subscript x and y below refer to partial differentiation.

o}‘ \”
T

B(Neg. As
Shown)
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A3, 2. Continuitx
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A3.3. Longitudinal Momentum
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2n jcos 8 )’ Ay )}
+ pL(Hny +r+y cos B &Uy Tty

A3.4., Transverse Momentum

1 n )
<1+ny> pUVx+ pVVY B <I+ny pU
1 4
= ﬁ‘é‘[‘“’]
A3.5. Energz
( L _)pUc T +pVe T
Truy p x P V% 7y

= (y-1) 2{( )UPX+pr}

1 jcos B ) }
.*.Re]?r{w'C T) +(1+}ty+r+ycose U'Cp Ty

¢ T (0743 )

A3.6, State

'YM(jP:pT
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APPENDIX 4: FINITE DIFFERENCE RELATIONS

A4,1, Nomenclature

The sketch below gives a typical mesh point within the boundary

layer.

h
n+l,m n+l,m+l )
ln,m-l n,m n,m+l
i X
7
n-l,m Tn-l,,m+l

A\ is the ratio of step sizes, in the x direction, as indicated above. In
the equations that follow (j) refers to the iteration number, j= 0
representing the first calculation at the n, m node point. hm and s
are the step sizes in the 7 and x directions respectively. m is the
transformed lateral coordinate corresponding to the general trans-

formation

(x,y) — x, n:F(;{%)

where F is an arbitrary but twice differentiable function.
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anz 2
j .
o - )\}1 (2);\+1‘ t)MJ +1
m ox n, m+1 n, m
Aratl
B N - n, m
)\Z
tygr (59M,
oM J J
For t=1 this reduces to h_ — =M - M
m 9x n, m+1
n, m+1

n, m’

for t = 0 the difference formula corresponds to a quadratic fit between

the three points.

9
A4c 30 "a"'_'
. J J
oM |’ Mo me c Maon, mitn
5 =
n, m+l 28
2
a4, 2
on
] J N] J
9°M _ Mot mt1 T My e T M1 mtl
2 - 2
on n, m+1 S
ads. (2f
. (‘gﬁ-)
Zj (j'l) (j“l)
oM (M -M
( > - n+l, m+1 n-1,m+1
om 2 :
n, m+l 45
j (j-1)

J
[Z(M +1, m+1 Mn-l,m+1)‘(Mn+1,m+1

(J 1)
n-1,m+l1

]
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where
(-1)
Mnil, m+l = Mn:l:l,m

Ad. 6. (%)(gﬁ)

<8M QE)-J _ 1 (MJ _MJ )(T(J“l) -T(J"l))
an ° 9n 452l ntl,m+l "n-1, m+1" n+lm+l n-1lmtl
n, m+1
(3-1) (j-1) (j-1) (G-1)
B (Mn+1,m+1'Mn-1,m+ (Tn+l,m+1-Tn-1,m+l>

(j-1) (G-1) J J
* (Mn+1, m+1”Mn-1, m+ (Tn+1, m+1JIr‘1-l, m+l>:]

Ad. 7. "a%" at "Outer Edge"

The continuity equation requires the evaluation of the first

partial -5% at the edge node n= N, The mesh appropriate for this

calculation is given below: -
N,m-| N,m y&mﬂ
¢ 7
N-I, m+I
X
N-2,m+]1
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A quadratic fit is used to estimate é%" i, e.

oM J 3 2 1 J
= M - =M
5 25 +1 S
n N, m+1 N, m

—

N-1,m+1 7 28 MN-2, m+1
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SCHEMATIC OF
"RELAXATION" SURFACE

#
Reai
TO BLASIUS
SEPARATION POINT
LINE —\'
— CRITICAL
LINE

/
/
]

-

\LEADINGEDGE a
SINGULARITY °

Fig. 2
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6.2

M Mw = 6.0
BLASIUS PO'NT7 PRANDTL-MEYER

60 \; INTERACTION EQN.
5.8 _\\J)

56 -

52t

48

4.6

T

I

4.4

4.2
.
3 | \ [ \ \ | \ ] \

I

1.0 1.2 .4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
a

Fig.3 BLASIUS POINT PHASE SPACE TRAJECTORIES M-a PROJECTION
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AT INFINITY
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Mo = 6.0
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INTERACTION EQN.

T

\
\ ASSUMED EXTRAPOLATION TO
\/_ ESTABLISH THE TRAJECTORY
\ ASSOCIATED WITH THE
\ LEADING EDGE

I I} i I i i \ ! 1 i

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 a 2.8

Fig.4 BLASIUS POINT PHASE SPACE TRAJECTORIES Reg} ~a PROJECTION
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6.2
M BLASIUS POINT
/—
60 | s
58}
56
54|
52k
5.0 -
DASHED CURVES ARE THE Rext = 250\
BLASIUS POINT TRAJECTORIES 8i ~
48}
Mw = 6.0
PRANDTL-MEYER
a6 - INTERACTION EQN.
4.4
‘1; | | { ] { H i 1
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 o 2.6

Fig.5 LEVEL CURVES OF THE RELAXATION SURFACE FOR CONSTANT
VALUES OF Reg|
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M
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Mm = 6.0
1 ’ / PRANDTL-MEYER
[ INTERACTION EQN.

1

1200 1~ / ——— WEAK INTERACTION

1100
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900

800

700
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400
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I

0
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Fig.8 INFINITE FLAT PLATE MOMENT METHOD SOLUTION
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0.4 -
Y 3
— X 10
L
0.3 |-
0.2 -
Mg = 5.8
o Re_=.585 X 108
’ Rey = 292.5
P .
—F3; = 5.87
0 1 1 : x ;
0 0.1 0.2 0.3 04 y 05
Fig.15 INITIAL PROFILE NEAR LEADING EDGE
0.4 r
Y 3
— X
L 10
0.3 |-
0.2+
Mo = 5.8
o1 L Re =.585 X% 108
' Rey,= 292.5
P__
P = 5:87
0 ] ] ] ] ]
o 2 4 6 8 y 10

Fig. 14 INITIAL PROFILE NEAR LEADING EDGE
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Ol4 B

012 -
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PROFILES
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CURVE D OF
FIG. I8
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185
004 —~
002 -
o) !
0.8 = 1.3
Pwo

Fig.2l FREE INTERACTION-EXPANSIVE PRESSURE PROFILES
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Fig. 25 COMPRESSIVE FREE INTERACTION-PRESSURE PROFILES
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0.20

SEE FIG.21 FOR UPSTREAM PROFILES FOR x<x,
v g% =0 FOR M<! ON DOWNSTREAM SIDE
L
016
012 b
008 -
CORNER ANGLE =7.4°
Re_ = 585,000
.004 - Mg =5.8
2 20.210
< =0,
0 J‘V 1 | ] | ]
8 9 1.0 X i
P
P

Fig.27 PRESSURE PROFILES FOR EXPANSION CORNER~DOWNSTREAM SIDE
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Fig. 28 VELOCITY VS. STREAM FUNCTION FOR EXPANSIVE CORNER
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