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Abstract

The rhéological behavior of polymers in the neighborhood of the glass transi-
tion has been investigatekd in the framework of the free volume theory of nonlinear
viscoelastic behavior. Free volume theory as normally applied above the glass tran-
sition was modified to account for the effect of the residual volume of vacancies below
the glass transition; this modification was accomplished by modelling the changes
in the state of the polymer as the sum of viscoelastic changes and a random dis-
turbance deriving from the thermal collisions between molecules. The changes in
mechanical properties going across the glass transition follow from fvhe freezing-in
of relaxation mechanisms and of free volume. The pressure dependence of the glass
transition was found to be in qualitative agreement with measurements.on PVAc,
while the ratio of the glassy and rubbery heat capacities was found to coincide with
the ratio of the équilibrium bulk compliances in the glassy and rubbery domains.
The predictions of the model for the problem of transient and residual thermal

stresses were compared with those of two simpler models.

The second part of the thesis studies the consequences of the nonlinear vis-
coelastic behavio;‘ on the decohesion zone in front of a erack propagating through
an adhesive layer. The softening of the material response in the cohersive, zone 1s
fakeh to be effected by free volume induced change in relaxation times of the cohe-
sive material and by void growth; the latter is assumed to depend on a critical value
" of strain at the beginning of the cohesive zone. The stress intenéity factor for steady
crack propagation is obtained by imposing the finiteness of strains at the crack tip.
For the case where the properties of the adherends are the same as the linearized
properties of the adh‘esive, the predictions show three regimes of crack propagation:

a low speed regime where the adherends behave elastically with the rubbery prop-



erties, an intermediate range where their response becomes increasingly stiffer, and
a high speed regime characterized by glassy behavior of the adherends and control
of the crack growth process exclusively by the nonlinearly viscoelastic behavior of

the failing material.
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Preface

This thesis is devoted to the study of the rheological behavior of amorphous
polymers and to its consequences on the macroscopic properties, durability and

fracture toughness. It is comprised of two parts.

The first part focuses attention on the constitutive properties of polymers above
and below the glass transition and on the interrelations Between glassy and rubbery
behavior. The observations on the rheological behavior lead to the definition of
a nonlinear constitutive model which takes into account nonequilibrium effects on
the mechanical response. The model is then used in a finite element code for the
prediction of the transient and residual thermal stresses in a particular kind of
amorphous polymer, PVAc; the model predictions are also compared with those of

simpler material descriptions.

In part two the consequences of nonlinearly viscoelastic behavior on the failure
of polymeric adhesives is investigated. The steady propagation of a crack in an
adhesive layer is studied under the assumption of the existence of a cohesive zone
at the crack tip which prevents the build-up of singular stress and strain fields in
the polymer. The cohesive zone is taken to be characterized by material softening
due to nonlinearly viscoelastic behavior and by void growth, the onset of which is
set to depend on a critical value of strain. For the case where the properties of the
adherends are the same as the linearized properties of the adhesive, the results of

the analysis are compared with those of simpler fracture criteria.



CHAPTER 1

Free volume theory and nonlinear thermoviscoelasticity

Introduction

Today’s technology often relies on the use of polymers Whenevér lightweight,
easily formable and tough structural components are needed. The best known ad-
vanced application of this class of materials is found in the field of composites,
where different kinds of polymers can be arranged together to form a macroscop-
ically isotropic solid (e.g., rubber-toughened plastics) or when they are used to
support a network of stiff fibers of different composition (e.g., fiberglass, carbon-
fiber composites). Polymers are also increasingly replacing rivets and welds for the

connection of structural members through the use of polymeric adhesives.

These materials, as any other material on Earth, can fail: The failure of an
adhesive joint or a composite panel can be just a nuisance or a disaster, depending
orn the application, and the failure can occur in different ways, such as, among oth-
ers, decohesion between the fiber and the matrix in composites, cracks propagating
" through adhesives, degradation of the polymer due to solvents or radiation. What is
common to all these types of failure is the predominant role pldyed by the temper-
ature and possibly rate dependent constitutive properties of the polymer, and the
large differences in the ultimate strength that can arise from different manufactur-

ing processes. As a consequence, the accurate prediction of the final conditions of a
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polymer subject to a given stress, strain and temperature history is of tremendous
importance for the assessment of the durability and reliability of a structure or its
barts. There are two main areas in which these investigations are performed: on
the one hand, there is a continuous effort by the physics and chemistry community
to construct models of constitutive behavior based on the analysis of pflenomena
occurring at the molecular level; on the other hand, the mechanics and engineering
community tries to reconcile these molecular models with macroscopically measur-
able behavior through the use of more phenomenological theories, and also addresses
the effect of inhomogeneitiés in the material history, such as those which result from
thermal transients or localized softening. The work presented here t1;ies to narrow
the gap between these two points of view and devotes particular attention to the
problem of residual stresses which can arise in a polymer during a manufacturing

process or because of environmental changes in temperature.

The constitutive properties of general amorphous materials, of which polymers
are a particular class, have been thevobject of extensive investigations; for example,
researchers have studied the problem of the temperature dependence of the viscosity
of glass-forming 1i»quids (Eyring and Hirschfelder, 1937; Leaderman, 1943; Tobolsky
and Eyring, 1943; Williams, Landel and Ferry, 1955; Cohen and Turnbull, 1959;
Adam and Gibbs, 1965) and the nature and rate dependence of the glass transition
in polymers or general amorphous materials (Gibbs and DiMarzio, 1958; Turnbull
and Cohen, 1961; Cohen and Grest, 1979). Because most of the theoretical studies
~ concentrate on the description of the rheological behavior of amorphous materi-
als through equilibrium thermodynamics theory (e.g., the hole theory of liquids),
notable discrepancies have been found to occur between their predictions and the
experimental evidence below the glass transition, particularly when the constitutive

properties of long-chain polymers are of interest (McKinney and Goldstei.n, 1974).



-4-

For polymers, the problem is complicated further by the presence of a continuous
spectrum of relaxation times, as opposed to a single viscosity for monomeric glasses,
énd a constitutive response which is in great part effected by the rubbery-elastic
behavior of the chain network. Given the difficulty of the problem, polymeric be-
havior has therefore often been approached within the framework of semi—iempirical
or phenomenological descriptions, relying to a large extent on modifications of the
linear laws of small strain viscoelasticity. The common feature to all these theories
" is an attempt to bridge the gap existing between the straightforward predictions of
equilibrium thermodynamics or molecular dynamics applied to simple systems and
the macroscopically measurable properties, as the time-dependent coﬁstitutive ma-
terial response characterizing the complex behavior of a network of polymer chains
with a very complicated geometry. Some of the areas which have been addressed
include the time-dependent thermal expansion/contraction of polymers (Kovacs, -
1958), the effect of stress and strain histories on the material properties (Ferry and
Stratton, 1960; Knauss and Emri, 1981; Shay and Caruthers, 1986), and the effects
of physical aging on the material response (Struik, 1978; Cizmecioglu. et al., 1980;
Curro, Lagasse and Simha, 1981). B

This chapter on constitutive behavior is divided into two major parts. The
construction of a consistent phenomenological theory for the constitutive behavior
of amorphous and homogeneous polymers is addressed in section 1.1; in section 1.2
the constitutive assumptions are incorporated into a numerical study of the residual

stresses arising in a polymer subjected to temperature changes.

. The first part begins with a brief exposition of free volume theory in its simplest
form. Section 1.1.1 gives a short history of the origin of such theory starting from

observations on the temperature dependence of the relaxation behavior of polymeric
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and monomeric liquids. Section 1.1.2 discusses in greater detail how the free vol-
ume changes are affected by the mechanical history and gives an elementary model
7visua1izing the time-dependent response. The following sections 1.1.3 through 1.1.7
address some limitations of free volume theory as it is currently used in its simplest
form; section 1.1.3 deals with the first extension of such theory to con'siderithe prob-
lem of residual free volume, i.e., residual disorder in the glass below T, which can
affect the relaxation behavior of the polymer. The following section 1.1.4 considers
the effects of disequilibrium below the glass transition on the mechanical response,
and discusses inferences of the model parameters from experimental data. Section
1.1.5 addresses the dependence of the glass transition on the rate of éooling, while
section 1.1.6 investigates the approximations involved in relating the macroscopic
dilatation to the free volume induced shift in the time scale of the relaxation be-
havior. Some additional topics regarding the thermodynamic nature of the glass

transition, its pressure dependence and the role of viscosity are discussed in section

1.1.7.

The second part addresses the application of the constitutive assqmptions to
the problem of residual stresses. Section 1.2 presents the predicted transient and
résidual thermal stress fields for three different constitutive assumptions: an ele-
mentary model, often used in the literature, by which the eﬁ'ept of temperature is
- computed by subtracting the thermal strains from the dilatational history, the cur-
rent model and a simplification of the latter in which the time scale of the relaxation
behaviof is temperature controlled. The differences in the predictions of the three
models are found to increase as the time scale of the thermal transients approaches

or becomes smaller than the time scale of viscoelastic relaxation.



-6-

1.1 Constitutive modelling

1.1.1 Elementary free volume theory

The common denominator of the studies of monomeric and polymeric glasses
is the effort to quantify the dependence of the molecular mobility on ‘the instanta-
neous state, and possibly history, of the material. Molecular mobility is the main
factor governing the evolution of a glass from one nonequilibrium state to another
one in which the free energy reaches a minimum for given values of terhperature and
pressure, and in which further changes in the thermodynamic state of the material
do not arise unless the environmental conditions are again modified. Foildwing the
work of Eyring (1937), who suggested a connection between the viscosity of liquids
and their lattice Structure, a useful theoretical contribution to describe the rheolog-
ical behavior of monomeric glasses was offered by Cohen and Turnbull (1959), who
derived an expression for the dependence of the viscosity on the density of vacancies
in the solid (after a semi-empirical expression had been proposed by Doolittle in
1951). Cohen and Turnbull considered the phenomenon of molecular transport in
a liquid composed 6f hard spheres, schematically represented in Fig. 1.1, in which
diffusive motion occurs when density fluctuations open up spaces sufficiently large
for a molecule to slip in and for a second molecule to replace the first one in its
original position. In that work, free volume was defined as the region accessible to
~ the center of a molecule through a drifting motion that does not require interaction
with 1ts neighbors. In contrast, the remaining, occupied volume was defined as that
space in which a diffusing molecule would overlap partially with another one; these
definitions will be adopted throughout this work. If one denotes with Ry the radius

at which molecular interaction becomes significant, then the free volume accessible
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to each particle is the space delimited by spheres of radii 2Ry centered at neigh-
boring molecules. Such a volume model is shown in Fig. 1.2 for molecules A and

B.

FIGURE 1.1 Schematic representation of a liquid of hard spheres.

Under these conditions, Cohen and Turnbull suggested that the fluidity D of the
material be proportional to the probability of a molecule finding a sufficiently large
hole, i.e., a hole greater than a critical value, v,,;,, 50 that such molecule could step

into the vacancy and another one take its original position; they assumed therefore

1 oC
D = - x / p(v) dv (1.1.1)
Ui v

n being the intrinsic material viscosity and p(v) the probability distribution of the
size of free volume sites. Cohen and Turnbull next considered the distribution of free

volume sites for a liquid of hard spheres in which no energy change was required for

a redistribution of hole volumes. If NV is the total number of monomeric molecules,



and V; the total free volume, then the average free volume vy per molecule is

A discretized model of the free volume distribution was used, in which the total

range of free volume was divided into small regions having average value v;, such

that

and

The number of ways of redistributing the free volume without changing N; is

By maximizing W and passing to the continuum limit with the constraints 1.1.3

8

8

N
;

\
N‘Q\&\ &

- <
ORe
- -

R N

FIGURE 1.2 Free volume.

V,
o=,

ZNz"Ui = Vs,

ZN,- = N.

N!

W=-I-_I—;—N-;—'

and 1.1.4, Cohen and Turnbull obtained for p(v)

1

p(v) = — exp(——) .
Uy vy
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The material viscosity is then predicted from Eq. 1.1.1 as

T vy
n & e:vp( 2 m) , (1.1.7)

where I' is a material parameter which accounts for possible overlapping of free

volume. The same Eq. 1.1.7 can be cast in terms of the fractional free volume f,

i.e., the ratio l‘/}, instead of using the average free volume per molecule, yielding

1o ean(2) i

where B is given by the expression

vainN

B =
|4

(1.1.9)

The material viscosity is the governing factor in the relaxation behavior of a glass,
i.e., higher viscosities imply longer times needed to reach equilibriumbor, alterna-
tively, the evolution of the glass towards equilibrium needs to Be scaled in time
By tile instantaneous value of n. This idea leads to the concept of ihternal time,
denoted here by £(t), a material time scale which is related to the experiméntal one
through a factor, usually called the time shift*, which is the ratio of the instanta-

neous viscosity to the one measurable in some reference condition

tdr tdr .
t) = — = —_ . . 1.1.10
= [ o=/ T (1.1.10)

If one takes the ratio of viscosities given by the Cohen-Turnbull result, Eq. 1.1.8,

- corresponding to different values of free volume, one obtains

log(a:) = log (%) - B (-}1; —?1;-> ,} (1.1.11)

* Historically, the reason for this terminology is that a multiplying factor is equivalent to a shift
on a logarithmic plot, which is the form in which viscoelastic relaxation or creep data are
usually presented. :
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where fj is the reference fractional free volume, i.e., the fractional free volume of the
state in which the time-dependent (linear) material properties are measured. The
above equation is commonly designated as the Doolittle equation (Doolittle, 1951),
following his experimental studies on the temperature dependence of the viscosity

of glass-forming liquids.

Let us consider a different and more straightforward way of deriving the Cohen-
Turnbull results; the following method also has a simple connection to the basic
principles of statistical mechanics. Consider the existence of an entropy associated
with the free volume probability distribution which, in a Boltzmann sense, can be

written as
Sy = —k/ p(v) log(p(v))dv - (1.1.12)
0

where k is Boltzmann’s constant. Eq. 1.1.12 differs from the usual definition of
Boltzmann entropy since the distribution being considered is not a distribution in
phasé space, which is composed of physical coordinates and their conjugate mo-
menta, but rather refers to a probability of existence of holes of a certain size in the
lattice. On the other hand, if one assumes that a particle can migfate freely within a
vacancy, then the integral over the physical spatial coordinate can be translated into
one over the free volume, provided that its distribution is homogeneous throughout
the material. The above Eq. 1.1.12 can therefore be interpreted as the entropy of
migration associated with a particle that can freely wander within the holes of the

molecular network. If one furthermore imposes the restraints

/Oop(v)dv =1, (1.1.13)
0

and

/oovp(v) dv = f, (1.1.14)
0
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by maximizing the entropy with the above constraints, one recovers the expression

1.1.6: the mgthod of Lagrange multipliers requires the maximization of the integral
T = [Tks0) logpw) + Mp) + davplde. (1119)

The Euler equation applied to this integral then reads
—klog(p(v)) = A1 + Av—k, (1.1.16)

or

A A |
p(v) = exp(—fv-{—l—f . (1.1.17)
It is then easy to see that the constraints 1.1.13 and 1.1.14 require A\, = k(1 —

log(f)) and Ay = %, from which expression 1.1.6 is recovered.

Eq. 1.1.11 is also the basis of the time-temperature superposition principle,
which originates from the observation that the time-dependent properties of vis-
coelastic matériais at different temperatures can be collapsed onto a single master
curve via a shift on the logarithmic time scale, a shift which varies with temper-
ature. Again, this indicates the possibility of scaling the time~dependent material
properties so that they are expressed in terms of the reference conditions and the

current internal time scale of the material, given by

tdr A
Hﬂ=uﬁzzﬂ, B (1.1.18)
in which a:(T) is the time shift at the temperature T; a; is eqﬁal to unity if the
temperature is the same as that at which the time-dependent material properties
- are measured. A linear dependence of the free volume on témperature and Eq.
1.1.11 predict amazingly well the time-temperature shift a;(7") of polymeric mate-

rials above the glass transition, as it was first noted by Williams, Landel and Ferry

(1955). In particular, if one takes B =1 and

f=fo+(ai—a,)(T-Tp), : (1.1.19)
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where a; and a, are the coefficients of thermal expansion in the rubbery and glassy
state and the reference condition is taken to coincide with the status of the material
at its glass transition temperature, then one obtains the so-called WLF equation,
derived from the initials of Williams, Landel and Ferry who also proposed a universal

value of 2.5 percent for the fractional free volume at the glass transition.

An extension of the free volume model to include solvent concentration and
pressure histories was first proposed by Ferry and Stratton (1960) and later refined
by Knauss and Emri (1981). In the Ferry-Stratton model, free volume is set to

depend on several parameters
f = fo+asAT + BsAp+ v5Ac, (1.1.20)

where AT, Ap, Ac represent the changes in temperature, pressure and solvent
concentration with respect to the condition in which the reference free volume,
fo, is measured, and ay, 8¢,y are material parameters. Knauss and Emri (1981)
extended the Ferry-Stratton model to the case where the material propertics, such
as ay, 35,7y, are time-dependent, in which case the relation 1.1.20 needs to be
expressed in terms of convolution integrals over the time histories of temperature,

pressure and solvent concentration, i.e., for the case of temperature variations only

f = fo+ [ astetty—emgear, 1121)

where the material internal time £(¢) is now expressed as

todr e
E(t) = L m y '\1.1.22)

and a;( f) is computed through Eq. 1.1.18 and the instantaneous value of free volume

as given by Eq. 1.1.21. The Knauss-Emri model has interesting consequences on

the predicted material behavior since the molecular mobility is made to depend on
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the instantaneous fractional free volume, the changes of which in turn depend on
the molecular mobility. Such interconnection effects a strong coupling between the
ﬁateﬁal relaxation and the stress state, coupling which effects softening behavior
when polymers are subject to high tensile stresses, as experimental evidence shows

(Knauss and Emri, 1981).

There are some relevant questions which need to be addressed in full detail in
order to establish a consistent nonlinear theory for the constitutive behavior of poly-
mers. These questions, presenting themselves quite naturally, can be summarized

as follows:

1. How does the free volume change depend upon macroscopic deformations?

2. Is there an instantaneous change in free volume when a polymer is taken

through a sudden volume deformation?

- 3. Is there an equilibrium value of the free volume corresponding to macro-
scopic values of temperature and pressure below the glass transition, as

there is above it?

4. Can free volume attain zero values, or is there always a residual amount
that remains in the polymer and, if so, what is the mechahism which

prevents the total annihilation of the voids between molecules?

In order to address these questions, and in particular questions 1 and 2, it is
useful to first look at simple representations of phenomena at the molecular level,
e.g., the liquid of hard spheres, and then try to extend the related results to the
situation of more complex polymeric chains. Within such simple representations

of glass-forming materials, the physical phenomena underlying the Knauss-Emri
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constitutive model and the implications of the model will be discussed in the next
section, and a simple mechanical analogy for the description of the material behavior
will be given. The end of the next section 1.1.2 will conclude that part of this
thesis which is dedicated to the exposition of the free volume theory of nonlinear
viscoelasticity as it is currently known; the limitations of the basic tﬁeory and
the refinements needed to overcome such limitations will then be addressed in the

following sections 1.1.3 trough 1.1.7.

1.1.2 A simple constitutive model

In order to construct a model for the constitutive response, one hés to consider
the different aspects of the behavior of polymers. It is well known that these ma-
terials react to sudden changes in the environmental conditions, such as pressure
or temperature, with an instantaneous response and a time-dependent evolution
Which can last, depending on the values of pressure and temperature, from the mi-
crosecond scale up to several years. The time-dependent response can be of linearly
viscoelastic nature or it can also affect the time scale of material relaxation, in the
case of the process denoted as physical aging. If one defines an equilibrium state as

a state in which there are no changes in the internal variables**

of the polymer, it
is evident that the instantaneous response by itself is unable to b'ring’the material
to equilibrium and that the macroscopic time-dependent response, such as the one
. represented by the viscoelastic moduli, is a manifestation of the evolution of the

material towards such a state. These considerations can apply to macroscopic de-

formations, such as the time-dependent thermal expansion (Kovacs, 1958), to the

** Internal variables are quantities such as the distribution of holes in the solid, the local stress
state or the orientation of the polymer chains, quantities which are difficult to measure experi-
mentally.



-15-

stress state in a relaxation experiment, or also to the distribution of free volume
in the polymer. The rate at which equilibrium is achieved has been shown to be
7dependent not only on temperature, but also on the amount of disorder in the poly-
mer network, which is ideally quantified through the free volume content (Kovacs,
ibid.; Knauss and Emri, 1981; Shay and Caruthers, 1986). Since the rea;ction rate
of the material is governed by molecular mobility, and the molecular mobility is
in turn dependent on free volume, it is of great importance to assess how the free
volume changes are connected to the macroscopic deformation, in p@rticular how

they are related to the instantaneous and asymptotic response.

The first step in addressing the equilibrium and nonequilibrium aspects of the
free volume is to define an equilibrium state. There are several kinds of ‘e‘quilibria,
and the one which is addressed in this section is intended as a state in which no
changes bccur in the status of the material, a condition which can also be present
in Wha,t’ we define as a metastable equilibrium. A metastable equilibrium occurs
when the thermodynamic equilibrium is not attainable, such as is tile case when
crystallization of the polymer is prevented by the nature of its complex geometry.
The distinction between metastable and thermodynamic equilibrium is only mean-
ingful below the élaés transition, since only under those conditions can a metastable
equilibrium exist. The considerations in this section apply only to ther“modynamic
équiiibrium, i.e., for temperatures above the glass transition. The incorporation of a
metastable equilibrium in the model and the extension of the nonlinear viscoelastic

model to this regime will be addressed in Section 1.1.3.

It is commonly assumed that the equilibrium free volume of the material is a

T This is, apart from considerations about the distribution of free volume which are addressed
in Section 1.1.6, a good approximation in the case of small strains; for large strains, additional
factors, such as a preferred molecular orientation, need to be taken into account.
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function of temperature, for which the direct temperature dependence is removed
and replaced by an indirect one (for a discussion of this assumption, see Fox and
Flory, 1950). Sufficiently far above the glass transition temperature T, changes
in the equilibrium free volume can be assumed to be some fraction of the total
deformation; current molecular theoriés predict (e.g., Simha and Somcyné‘ky, 1969)
that such fraction is a constant above T,. In addition, the nonequilibrium free
volume fraction, i.e., the difference between the current amount and the asymptotic
one, has been shown to affect the mechanical relaxation, as in the experiments by
Cizmecioglu et al. (1980), who measured the effects of physical aging on the material
properties. Similar conclusions derive from the dilatomefric experimeﬁts by Kovacs
(1958) where, after thermal transients had settled down, the evolution towards
equilibrium at a given temperature was found to be dependent on the direction
of approach, ?.e. , whether the material underwent a heating or cooling process, a
phenomenon which can readily be explained through the concept of nonequilibrium

free volume.

Previous theoretical attempts to include nonequilibrium aspects in the treat-
ment of free-volume induced time shift include the work of Curro, Lagasse and
Simha (1981), WHO used the fraction of unoccupied sites in the Simha-Somcynsky
equation of state to allow for nonequilibrium behavior; time dependeﬁce was ac-
comxﬁodated through the use of the volume recovery data by Cizmecioglu et al. to
quantify the dilatational aging I of PMMA. Shay and Caruthers (1986) followed
* the approach of Curro et al. and used the equilibrium Simhé-Somcynsky theory
to compute the free volume fraction as a function of the instantaneous values of

volume, temperature and pressure. Within the framework of an equilibrium, time-

i e.,the change in the time scale of material relaxation effected by variations in the molecular
disorder.
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independent theory, an extension of the Simha-Somcynsky equation of state was
also suggested by Peng et al in order to accommodate a more general state of
étress, other than the uniform pressure which solely could be addressed within such

a formulation.

The mentioned studies, as others in the literature, have the common feature of
“starting from an equilibrium equation of state, often derived underAidéalized condi-
tions such as the assumption of a regular molecular lattice, and allowiﬁg for some
substitutional time dependence in its variables. While this is certainly a possible
approach, it is sometimes difficult to precisely reconcile the predictions of a “sim-
ple” theory with the behavior of a complex system of polymeric chains characterized
by a complicated and random geometry. One can raise the question whether an-
other point of yiew, namely a phenomenological model based on the experimentally
mea.surable nonequilibrium behavior such as the one shown by the time-dependent
bulk and shear moduli, would give different results or simply arrive at the same
conclusions (in terms of constitutive behavior) but in a more straightforward man-
ner. Such considerations motivate the approach presented here,.which is basically
phenomenological and tries to abstain, for as long as possible, from the use of equi-
librium equations> of state for the time-dependent material response. In the context
of a phenomenological theory such as the Knauss-Emri model, some asbects of the
depéndence of the time scale of material relaxation on the density of vacancies will
be discussed and the first subject to be considered will be the issue of instantaneous

- free volume change upon sudden deformation.

The question of existence of an instantaneous free volume change, as implied
by Eq. 1.1.20 or Eq. 1.1.21, will be addressed now in the context of a simple molec-

ular model, similar to the liquid of hard spheres considered by Cohen and Turnbull.
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Such a simple model does not take into account the chain-like nature of polymer
molecules, which is the main factor governing the constitutive response, but is help-
ful in underetanding how the time scale of such response is affected by the morpho-
logical features of the polymer, in particular the amount of space not occupied by
the molecules. Instead of assigning rigid behavior to the particles of this idealized
model, a better representation would consider the boundaries of the molecules to be
| deformable and as regions in which molecule-molecule interaction becomes signifi-
cant. The regions surrounding two particles can overlap in this simple schematiza-
tion, but this overlapping would require some energy storage or expenditure through
their interaction. Assume that the situation at equilibriem 1s initialfy the same as
the one depicted in Fig. 1.2, with Ry being the initial radius of the molecules. Sup-
pose next that Ry is subjected to a change or, equivalently, remains constant while
the whole system shrinks or expands in a self-similar fashion changing the distances
between the centers of the molecules through a common proportionality factor (e.g.,
a sudden expansion or contraction of the polymer). Such a situation, depicted in
Fig. 1.3, where the radius of the shaded area surrounding each moleeule has been
increased, keeping the positions of the centers unchanged, shows that there is a
change in free velume which depends on the local geometry of the network; the new
free volume accessible to molecules A and B* is clearly smaller. The local variation
is difficult to quantify unless one has a detailed knowledge of the geometry on such
a very small scale, but one can reasonably assert that, upon sudden deformation
involving the total volume of the material, an instantaneous change in free volume

takes place, and this change immediately affects the relaxation behavior.

Subsequenf to this instantaneous free volume change, which is the first step

* these two molecules are not entirely shown for purpose of clarity.
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FIGURE 1.3 Free volume (left) and new free volume (right) after sudden deforma-
tion for molecules A and B. ‘

of the evolution towards equilibrium, a time-dependent one takes place‘. A ques-
tion arises about the connection between the two and their relation with the total
macroscopic dilatation or contraction. It is conceivable to depict a situation in
Which the nonequilibrium changes in occupied and free volume do not obey the
simple law of proportionality in relation to the total deformation, i.e., dufing this
time-dependent process the fraction of the volume change that contributes to one or
the other is not a constant. In addition, molecular rearrangements could modify the
chain topology in such a way that a “trading” between free and ocqupied volume
occurs, as would be the case when the regions where molecules partially overlap
change in size without a macroscopic change in volume. A major simplification will
be made here, partly because of ignorance of the molecular details and partly to
simplify the implementation of the model for purpose of analysis: the nonequilib-
rium fractional free volume changes will be assumed tko be a (constant) fraction of

the time-dependent dilatation, i.e., they will be written as

f = finie +6-€xx, (1.1.23)
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where 6 is a constant™ parameter and f;,;; is the initial fractional free volume of
the material. The initial fractional free volume is representative of the amount of
7vacancies in the equilibrium initial conditionT, before the latter is perturbed by a
temperaﬁure or pressure change. Eq. 1.1.23 will be held valid not only when e is
the asymptotic (equilibrium) deformation caused by changes in applied p/:ressure or
‘ temperature, but also when it corresponds to the contribution to the equilibrium

change due to the instantaneous or time-dependent response.

It will be assumed that, at low strains, the constitutive response of an amor-
phous and isotropic polymer can be formulated with the aid of two material func-
tions, namely with the time-dependent bulk and shear modulii, and that the time
scale of relaxation or creep is governed by a free volume induced time SHift., Above
the glass transition, the free volume changes will be assumed to be a constant frac-
tion of the total ‘deformation, as given by Eq. 1.1.23. Under isothermal conditions,
the govérning equations can then be summarized as follows:

0ij = / 6 (et - em) 2l ar 45, / K (&) - ())ae’“"' (1.1.24

K(t) and G(t) being the time-dependent bulk and shear moduli,

1 ' :
géijekk 5 ’ . (1.1.25)

1 _ .
€j = €ij

** These assumptions will be relaxed in the next section 1.1.3 in order to address the rheological
behavior of polymers below the glass transition; in particular, the parameter § will result to
be a function of the fractional free volume (cf. Eq. 1.1.73). :

T The initial condition is a reference one, but it must not be confused with the reference condition
related to the reference fractional free volume f3, which is representative of the state of the
material in which the time-dependent properties were measured.

i Large strain viscoelastic behavior, not addressed here, is complicated by the fact that the
material response would be in general an isotropic function of the deformation tensor, such as
a function of the invariants of the right Cauchy-Green deformation tensor, and, furthermore,
possibly the time scale itself of the viscoelastic behavior could be affected by the increasingly
anisotropic orientation of the molecules.
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denoting the deviatoric part of the strain tensor field, and £(t) representing the
internal time of the material, as given by Eq. 1.1.10, with a dependence of the time

shift on the current value of free volume as given by Eq. 1.1.11.

The model is completely general, but it can be helpful to visualize it through a
mechanical analogy for the viscoelastic behavior. In particular, if one approximates

the bulk behavior in terms of a Prony series, i.e.,
K(t) = Kaot+ Y Kie™ (1.1.26)
i

where K., represents the asymptotic, (long term) equilibrium response, the I{;’s
are the components of the relaxation spectrum and the 7;’s are the correspond-
ing relaxation times, then the constitutive behavior can be visualized through the
mechanical model shdwn in Fig. 1.4, where each of the spring-dashpot assemblies
represents one component of the spectrum and the series of the elastic springs takes

care of the asymptotic material response.

The model expresses the volumetric part of the mechanical behavior as the
sum of a time-independent response, corresponding to the equilibrium interaction
of the molecules, and a time-dependent one that can be related to nonequilibrium
behavior. If one wanted to look at the micromechanics of the volume deformation,
then the elastic and time-dependent parts of the response could be attributed to
local interaction®*, as in the case where the material is pressurized and molecules
are pressed against each other, and to entropic contributions stemming from the
rubbery behavior of the polymer. At the present stage, no distinction is made
between these two separate effects, though, in a more complete theory, this separa-

tion would need to be taken into account (Matheson, 1987), possibly through the

* Denoted here as energetic contribution, since it is the same phenomenon as the hydrostatic
pressure in a gas, which is directly related to its internal energy.
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FIGURE 1.4 Mechanical analogue for nonlinearly viscoelastic bulk behavior.

subdivision of the elastic component into entropic and energetic parts. The free
volume elastic response, related to the amount of deformation that contributes to
changing the volume of holes in the network, is not supposed to attribute elastic
properties to vacuum, which is ultimately the material of which the holes in between
the molecules are‘made. Instead, it purposely corrects (increases) the compliance of
the total volume by noting that some of the deformation does not result in forcing
the molecules closer, but it merely allows the shuffling of vacancies around while
changing their total volume. Under the assumption that the compliances of the free
and occupied volume are simply additive and that their ratio is constant**, their
~ values determine the constant fraction of the total deformation that contributes to

a change of one or the other. If one denotes by B¢, the ratio between the compli-

** Such assumption is reflected in the particular way in which the occupied and free volume elastic
elements are arranged in the mechanical analogue. This hypothesis will be relaxed in section
1.1.4 in order to account for the change in material properties which occurs when the material
passes through the glass transition.
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ance of the free volume, Cyee, and that of the occupied volume, C,.., which is also
the ratio between free and occupied volume changes occurring when the material is

subjected to an external pressure variation, i.e.,

Cfree _ AV'free

= = 27
Bso . AV (1.1.27)

then the parameter 6 of Eq. 1.1.23 is determined by the relation
8 AVjree = b (1.1.28)

AVfree +AVocc - 1+ﬂfo .

Attention shall now be devoted to the effects which temperature variations
have on the material behavior. Temperature changes influence the mechanical state
of the polymer in two different ways: on the one hand, there are variations in the
mechanical properties such as those which are expressed by Eq. 1.1.11 or those which
follow frém passing through a glass transitionT; on the other hand, a state of stress is
induced in the material if all motion is restrained or, conversely, a thermal expansion
follows a temperature change under isobaric conditions. The latter asi‘)ect, i.e., the
direct effect of temperature on the stress and displacement fields; will be addressed

here, while the former one will be discussed in section 1.1.4.

In the case of elastic materials such as metals, it is generally assumed that
the thermal expansion is instantaneously dependent on the temperature changes.
However, experimental observations (e.g., Kovacs, 1958) seem to indicate a different
behavior characteristic of polymers, notably a behavior which has time-dependence
associated with it. For such materials, the relation between the mechanical state

and the temperature history needs to be expressed in terms of functionals of the

T The effects of the glass transition on the mechanical properties will be specifically addressed in
section 1.1.4; in the same section, a method of inferring the parameter Bfo from experimental
data is suggested.
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latter. One can deduce some indications about the nature of the stress field de-
pendence on temperature variations by means of rational thermodynamics. Within
such a framéwork, if one assumes that the material (Helmholtz) free energy can
be expressed in terms of linear and quadratic functionals of the strain and tem-
perature histories, then the satisfaction of the Clausius-Duhem inequaliéy for the
entropy production (e.g., ¢f. Christensen and Naghdi, 1966) results in an expression
for the stress state which reads
t

i) = [ 26 (s~ &0) 28 ar w55 [ (et s<T>)ae’“’°dr—

hle ]

—5,~,-/t ((t)-g(f))—df, (1129

-0

where O(t) is a (possibly) time-dependent material function. If one postulates a
time-dependent coefficient of thermal expansion, namely a material function «(t)
which gives the thermal strains eg(t) under isobaric conditions and initial equilib-
rium. (i.e., ogx = 0), as

: oT '

eo(t) = / a(g(t) (T))—dr , (1.1.30)

—oo :

then one deduces from Eq. 1.1.29 a relationship between K(t), a(t), ©(t), which

reads

o(t) = /t K(f(t)—f(r))%dr. (1131

—o0
A straightforward derivation of Eq. 1.1.31 transforms Eq.s 1.1.29 and 1.1.30 in
~ the Laplace domain. If bar quantities are used to denote the Laplace transformed
functions, then the transformed Eq. 1.1.31 and volumetric component of Eq. 1.1.29
read

Exk(s) = sa(s) T(s) , , (1.1.32a)

Fee(s) = 3s K(s)&(s) — 3s0O(s) T(s) . - (1.1.32b)
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Upon substitution of Eq. 1.1.32a in 1.1.32b, one obtains for the isobaric case (5(s) =
0)
O(s) = s K(s) a(s) , (1.1.33)

which yields Eq. 1.1.31 upon inverse Laplace transformation.

It is useful to place bounds on the time-dependent function ©(t). If one con-

siders a monotonically increasing coefficient of thermal expansion, i.e.,

a(t) = ag+ Aa(t) ; d—A;;—(—t—) >0, (1.1.34)

where aq is the initial valuet of such coefficient and Aa(t) is its time-dependent

component, then Eq. 1.1.31 implies
O(t) > ap K(t) . | ~ (1.1.35)

On the other hand, it is reasonable to assume that the stress state due to temper-

ature variations is a nonincreasing function of time, i.e.,

do
— <0 1.1.36
2 <o, (11.36)
which in turn implies
O(t) < ap Ko , . (1.1.37)

Ky being the instantaneous value of the bulk modulus. The above inequalities

combined read

k<2 <k, (1.1.38)

G

¥ ap and Ky denote here the instantaneous values of coefficient of thermal expansion and bulk
modulus, which are not the same as the glassy values which are characteristic of the polymer
below the glass transition. As presented in section 1.1.4, the glassy values are additionally
affected by the lack of free volume deformability, which results in ay < og and Ky > Kg.
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which means that the functional ©(t) is characterized by an initial value of agK)p
and, if the coeflicient of thermal expansion is time-dependent, decays as a viscoelas-
tic modulus but possibly not as fast as the bulk modulus, since its values need to

stay above the curve apK (2).

The following observations can give further insight into the characteristics of
the function ©(t). This function expresses the isotropic part of .thé stress state
when all volumetric deformations are restrained, i.e., when €z = 0. Macroscopic
deformations play a significant role in the time-dependent nature of the viscoelastic
response, which is conceivably the result of short-range réarrangernerﬁ:s of the poly-
mer chains, such as bond rotation or local readjustments of position, and also of
long-range motion, which involves a drift of the entire polymer molecule.. If macro-
scopic deformation is restrained, it is conceivable that the long-range motions of the
polymer chains are strongly impaired by the lack of deformability of the network,
which in turn implies that the time-dependence of the resulting stress state might

not be as significant as when the material can expand or contract freely.

As a result of these observations, it will be assumed that, when macroscopic
motions are restrained, the stress state following a temperature change is time-
independent, i.e., the function ©(t) is taken to be constant. Thjs situation would
hold true if the restraint imposed on the macroscopic deformation implied a total
absence of rearrangements in the molecular network, such as the trading between
the occupied volume and the volume of the vacancies. Since such a trading can
conceivably occur, the assumption of a time-independent stress state under iso-
coric conditions still contains a margin of error in it, but seems to be superior to
assuming a constant coefficient of thermal expansion, since the former hypothe-

sis effects a time-dependent volume change. The temperature effects are therefore
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translated into an equivalent, time-independent “thermal pressure” p(7T') acting on
the viscoelastic material *, so that the constitutive equation can be rewritten in the

form

. ! Oeij(r) ‘ Oekk
o5 = 6;5(T) + / 26 (E(t) - €(r)) —f—dr + 5,5 / K (&(t) - &(r) = .
-0 T -0 ) or
(1.1.39)
Since the isocoric stress change due to temperature rise is assumed to be time-
independent, it can be computed as the stress state which, in the rubbery regime
characteristic of temperatures above the glass transition, gives an asymptotic vol-
ume deformation equal to the product of the rubbery coefficient of thermal expan-
sion oy times the temperature increment. Recalling that K., is the asymptotic

value of the bulk modulus, the thermal pressure can then be written as
BH(T)equit = H(T) = —KoooyAT . (1.1.40)

Eq. 1.1.39 can also be written in a different form, in which the thermal strains arc

subtracted from the dilatational history, which reads

t B(Ekk — 69)

o /_t 26(60) - €0) ae;gir)dﬁuai,- K (&(t) - &) =H—"ar,
” - (1.1.41)

where €y is given by

es(t) = /; M(E(t)—f(r))—a—(!-{%_:xl—T)dT , (1.1.42)

M(t) being the viscoelastic bulk compliance, related to the bulk modulus by the

equation (¢f. Appendix B)

/t Kit—-7)M(r)dr =t . (1.1.43)

—00

* Such thermal pressure is representative of the isotropic state of stress characterizing the poly-
mer when all volume changes are restricted and the material is subjected to a temperature
variation.
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It can also be noted that, since a direct correspondence is assumed between tempera-
ture changes and pressure, an applied pressure change is equivalent to a temperature

7change of

1

AT = —Kooal

Ap . (1.1.44)

Such equivalence will be used in section 1.1.7, where the pressure dependence of the

glass transition will be discussed.

The presented model reduces the thermal contribution to the stress state to
a constant term, easily computable in terms of other known quantities. On the
other hand, if the stress state dependence on temperature had beén constructed
through an appropriate functional of the thermal history, the experimental mea-
surement of the corresponding viscoelastic function would be required and such a
measurement is, to say the least, almost unattainable due to the constént .pres—
ence of thermal transients (heat conduction in a specimen of finite size). Although
the model contains some approximations, such as the already mentioned‘ neglect of
possible “trading” between free and occupied volume under isocoric éonditions, it
is certainly an improvement over assuming that the isobaric coéfﬁcient of thermal
expansion, corﬁmonly denoted with a; or &g depending on the temperature range,
is time or hisfory independent. In fact, one of the consequences of the model is the
time-dependent thermal expansion under isobaric ¢onditions, gov’ernéd by the bulk
behavior and by the free volume induced change in relaxation times, as was sug-
gested by Kovacs’s experiments (1958). Furthermore, the extension of the proposed
constitutive assumptions into the range of metastable equilibrium (below the glass
transition) will require, as shown in Section 1.1.4, no second coefficient of thermal

expansion besides q;.

Some comments on the consequences of the constitutive assumptions on the
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relaxation behavior are in order. The time scale of the material relaxation is taken
to be affected by the instantaneous free volume through the time shift computed via
Eq. 1.1.11. Since the free volume changes are a part of the total deformation, this
assumption effects a coupling between the strain and stress fields and the internal
time scale of the polymer, as shown by Knauss and Emri (1981). It followsifhat high
tensile stresses (dilatation) produce an acceleration of the creep process, due to the
increase in free volume, and this feature has been proposed to be one of the main
factors influencing the “yielding-like” phenomenon in glassy polymers. Conversely,
high pressures effect a decrease in the void volume, with a shift of the viscoelastic

spectra towards the glassy behavior, and longer times needed for the material to

reach equilibrium.

The constitutive model presented in this section is built within the framework
of the Weil-known nonlinear viscoelastic theory based on free volume considerations.
The exténsions of this model to the treatment of the problems of the residual free
volume and the second order glass transition will introduce some ne{av, additional
elements to such theory. These aspects will be addressed in the coming sections,

and the residual free volume will be considered first.

1.1.3 The residual free volume

The concept of residual free volume arises from experimental observations of
the rheological behavior of polymers at temperatures below the glass transition,
i.e., when the polymer can at best achieve a state of metastable equilibrium. The

notion of a state of metastable equilibrium™* is intended here as a state in which

** McKinney and Goldstein (1974) adopt the terminology “isoviscous” state.
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there is no time-dependent change in the condition of the polymer, but the mate-
rial is far from thermodynamic equilibrium. Conditions of metastable equilibrium
;cypica,lly occur below the glass transition, e.g., in the case where crystallization is
prevented and the polymer remains in an amorphous state, or when the volume of
the vacancies is larger than the equilibrium free volume fraction. The latter aspect

will be investigated next.

It is established experimentally that the time shift predicted by Eq. 71.1.11, with
the free volume f linearly dependent on temperature, fails to conform to measured
values below the glass transition. The experimental time-temperature shift for
PVAc, as measured by L. Heymans (Heymans, 1983), is shown by the discrete
points in Fig. 1.5. It is easy to see that a fit of Eq. 1.1.11 to the expe‘ri’m‘entally
measured values, assuming a linear dependence of free volume on temperature,

diverges from the experimental curve below the glass transition temperature, which

is ab‘out‘ 29 C for PVAc.

There are two plausible explanations for this discrepancy, the simplest' one be-
ing, perhaps, that the parameter B of the Doolittle equation hé.s a discontinuity
across the glass transition. Experimental observations seem, however, to favor the
opposite point of view, namely that the parameters and the fofrn of the Doolittle
equation are continuous across the transition, and the discrepancy bétween the ex-
perimental and computed time shifts has to be explained in terms of a different
~ dependence of the free volume on temperature. Rusch (1968) confirmed experi-
mentally that volume-recovery data, i.e., asymptotic contraction upon cooling be-
low T}, are consistent with the time shift if one considers the excess volume, defined
as the amount of volume which the material possesses above some equilibrium curve,

as frozen-in free volume, which affects the relaxation behavior through Eq. 1.1.11.
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FIGURE 1.5 Logarithm (base 10) of the experimental time shift for PVAc, refer-
enced to 40 C (squares). The WLF fit to the experimental data is

shown by the continuous line, with the following choice of parameters:
reference free volume at 40 C = .0095; 2£ = ay =232x107*C~1; B

(parameter of the Doolittle equa,tion)=, (.91TO.
That situation is depicted in Fig. 1.6, where the appropriate leume-temperature
curve for PMMYA.is‘ shown. The dashed lines represent the (thermodynamic) equi-
librium curves for the free and occupied volume, whereas the éontinuous one rep-
resents the experimentally measured values! which are attained when the polymer
settles into a state of metastable equilibrium. It is assumed that the equilibrium
free volume vanishes at some temperature T, below the glass transition, which can
be computed from the reference conditions and the equilibrium change of free vol-

ume with temperature; T, is shown in Fig. 1.6 by the intersection of the occupied

and free volume equilibrium curves and equals about 50 C. If this excess volume is

T Below Ty, the values were measured after a 10,000-sec annealing at each temperature.
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taken to represent free volume which has been left in the polymer and which will
not disappear in time, the time shift is well predicted through this metastable value
of f and the. unchanged (from above the glass transition) Doolittle equation. The
finite volume of the vacancies below T, determined where the linear temperature
dependence above T, would predict a null free volume content, will be den;ted here
as residual, since it does not vanish where the high-temperature behavior of the

polymer indicates that it should.
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FIGURE 1.6 Experimental volume recovery data for PMMA (Rusch, 1968).

Rusch (1968) does not indicate the reasons for the existence of a residual free
volume. A tentative explanation is given here with the intent of extending the
phenomenological model presented in the previous Section 1.1.2 to the range of
metastable equilibrium. Such a simple explanation arises naturally from the con-

sideration that random thermal vibrations of the polymer chains are unlikely to
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destroy the disorder in the network as embodied in the distribution of defects or
vacancies. There is thus a need to quantify random motion and its relationship to

the macroscopic material behavior.

What appears to be a continuous process on a macroscopic scale, such as creep
or relaxation, is in fact, on a molecular level, the superposition of a slow drift of
the chair;s and of the ensemble of thermal collisions between neighbprihg molecules.
These two aspecfs are not physically separable from each other, because fhere would
be no drifting without thermal motion, which provides the “engine” for the relax-
ation process. However, for the temperature range of interest, the two processes can
be considered superimposed on each other!. A simple schematization of a viscous
process and of the process as it would appear on a very small spatial and temporal
scale is shown in Fig. 1.7. Given the physical characteristics of this phenomenon,

the best way to approach it is through the theory of continuous Markov processes*.

At first, one should consider the phenomenon of volume changes as it appears
on a macroscopic scale when the amplitude of the random fluctuations is small com-
pared with the time-dependent viscous changes. This task can bé accomplished by
considering the viscoelastic laws.for the evolution of the polymer from a nonequi-

librium state to a stable one.

For instance, consider the free volume changes due to an arbitrary pressure

! For temperatures low enough to drastically change the vibrational modes of the polymer chains,
this might not be true. It is assumed here that in the temperature range of interest, not
extending to cryogenic values, this problem does not arise. This assumption also implies the
absence of strong discontinuities in the equilibrium internal energy of the polymer, as would
be the case when a first order transition is present.

A continuous Markov process is a particular kind of process which is partly governed by one
or more stochastic (random) variables, e.g., white noise. A short introduction to stochastic
analysis and Markov processes is given in Appendix C; for a more thorough exposure, see
Gardiner, 1985. :
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volume change (arb. units)

time (arbitrary units)

FIGURE 1.7 Schematic representation of a Markov process. The figure presents a
viscous process as it appears on a macroscopic scale; the large circle
shows how the process would appear if a very small volume, as the
one occupied by a few molecules, and a fine temporal resolution were
characterizing the observation. '

history which, in the linearly viscoelastic case, can be written as.

f(t) = 5-/_t M(t—r)-ggdf‘, | (1.1.45)

where § is the fraction of the total deformation that contributes to free volume
changes, as formulated in Eq. 1.1.23. If one adopts a Prony series expansion for the

bulk compliance, i.e.,
M(t) = Mo+ Y Mi(l.—e™ ™), (1.1.46)

then the same equation can be rewritten without loss of generality in the form

t—

f(®) = 6- [MoAp+Z/_t M(1-e" fir)%dr . (1.1.47)
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Differentiating Eq. 1.1.47 and by virtue of the vanishing of M(t) for ¢ < 0, one

obtains
% =6 [%M(O)-FZ/_; %e—t:ir %dr
=5 dpM0+Z ~(fioe = fi) o (1.1.48)
where

e_tf—-'r)—j—fdr (1.1.49)

fi=5'/_tooMi(1

is the current deformation of each component of the creep spectrum, and
©oopdp o
fio=10" Mi'('i—dT = 6. M, p(t) (1.1.50)
oo T

is the corresponding (long term) asymptotic deformation. In differential terms, one
may write

[Z (fioo = f) 8 Moiilp dt . 1)
Eq. 1.1.51 is valid only at the reference condition in which the time-dependent bulk
compliance has beeﬁ measured. For values of temperature or pressure different from
those in the reference state, one has to observe that the free-volume induced time

shift operates, therefore the above equation needs to be recast in the form

{Z (fzoo fz +5 Modpdt]%

_ Lo =B/ f=1/fo) dpy ..
- [Z Ti(fz,oo_ z) +6 MO dt]d (1.1.52)

:

by virtue of Eq. 1.1.11.
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As suggested previously in this section, it is of interest to investigate the conse-
quences of adding randomness to the molecular motion represented by Eq. 1.1.52. A
consistent Wéy of concretizing that intention is to consider the viscoelastic changes
as the superposition of an average viscoelastic motion, such as that expressed by Eq.
1.1.52, and a random Brownian disturbance incorporating the stochastic fe:a‘tures of
thermal vibration. If one considers each individual contribution of the creep spec-
trum to the total deformation, an extension of the viscoelastic model which includes

such random features incorporates a term describing stochastic motion (white noise)

in Eq. 1.1.52, i.e.,

A
&i = (oo = fe PR 1 2 fid (11.53)

The term db represents uncorrelated random fluctuations with the following features
E(db) = 0 , (1.1.54)

and .

E([db)?*) = dt | (1.1.55)

where E(z) denotes the expected value of the random variable z.. The above equa-
tions simply state that the mean value of the fluctuations is zero and their variance
1s proportional to time. Eq. 1.1.55 also gives some information about the nature
of mathematical white noise, namely that it has dimensions of (time)!/2. Conse-
quently, a few adjustments are necessary to introduce this term into Eq. 1.1.52 in a
dimensionally proper way. These adjustments are the scaling of whité noise by the
square root of a characteristic time scale and the multiplication by the fractional

free volume f; **. These two terms can also be interpreted in a qualitative manner:

** Technically speaking, the multiplication by f; is not necessary since f denotes fractional frec
volume, which is dimensionless; but then the same equation cast in terms of total or fractional
free volume would have two completely different meanings; thus the reason for the introduction
of the multiplicative factor f;.
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the multiplicative factor f; arises from the probability of thermal motion affecting
the pre-existing free volume, probability which has to be proportional to the frac-
’;ional free volume; or it can arise from the proportionality of the fluctuations to the
current number or size of the vacancies. Since the above equation is to be valid for
each component of the relaxation spectrum, the characteristic time scale vs;as chosen
‘as the corresponding relaxation time. A is a (dimensionless) parameter, assumed

to be constant throughout the whole relaxation spectrum.

If one integrates the stochastic differential equation 1.1.53, the expected value
of the free volume deformationT, according to the Stratonovich integfali, 1s

4

1 - -
E(Afi) = |=(fieo = fi)e Ba/s 1/f0)+27--

flac.  (1156)

Given the values of f; o, t.e., § M;p, which represent the values of free volume
achievable in the absence of random motion, one can compute the (metastable)

equilibrium free volume f; . as the value for which E(Af;) is zero, which yields
1 ~BO/fe=1/50) 4, A |
;(fi,oo_fi,e)e ¢ ° +§;_"'fi,e =0, (1157)

or

fi,e(e—B(l/fe—l/fO) — g) _ fi’ooe—B(l/f;e—]/fo)A' R (11.58)

Since the total free volume f 1s given by the sum of the individual time-dependent
components f; and the time-independent one associated with the quantity - M, 0%,
- one can write an expression which predicts the (metastable) equilibrium free volume

below the glass transition. In order to distinguish among the different contributions

t i.e., the average quantity one could measure through an ensemble average of all the changes
occurring at the different free volume sites.

1 A brief introduction to stochastic integrdtion is given in Appendix C. A more detailed exposi-
tion of the subject is given in Gardiner (1985).



-38-

to the residual free volume, the time-dependent components will be denoted by a

superscript v and the time-independent one by a superscript g. One thus has

- v feo
fe = Zfi,e+fg = 1—%63(1/-&-1/)‘0) +fga (1159)

where f2 = ). fi oo is the asymptotic value of the time-dependent corriponent of

free volume in the absence of Brownian motion. If one denotes by ( the ratio of the

instantaneous free volume change to the overall asymptotic one, i.e., ——Lﬁ f:; , one has
= Cfo = ((fo+Afx) (1.1.60)

and
= -0 = U=Oh+Af) 5 (L161)

here Afy is the total equilibrium free volume change in the absence of random
molecular motion, which can be computed through the equilibrium materiél de-
scription, i.e., g%, which is characteristic of the polymer above the glass transition.
The .quantity ¢ can be computed® from the initial and asymptotic values of the bullk
modulus; the bulk modulus of PVAc as measured by McKinney and Belcher (1963)
was characterized by an initial value of 41500 bars and by an ésymptotic one of

25250 bars, which gives a value of ( equal to

_ Kinitial — I{asymptotic _ 41500 — 25250

= = 0.392 . 1.1.62
Kinitial 41500 (1.1.62)

The free volume f. in conditions of metastable equilibrium is given implicitly
as a function of fo, = fo + Afs through the nonlinear Eq. 1.1.59. f., can be

considered as the value of the (thermodynamic) equilibrium free volume in the

* This trivial calculation can be performed by considering the combined stiffness of two springs
in series, which represent, respectively, the time-dependent and constant part of the response.
The relative amount of deformation which affects one of the springs, say the second one, is
given by (2 = e3/(€1 +e€2) = k1/(ky + k2).
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’absence of Brownian motion, i.e., if randomness of thermal motion did not exist
an‘d if the molecules “knew” the positions of the holes that could be filled; f, is
the value oi" the free volume that is actually achieved after an infinite period of
time. For very small values of fo, there is always a nonzero positive value of f. that
satisfies Eq. 1.1.59; we identify these values of f, as the residual free voh;me of the

material.

The validity of Eq. 1.1.59 also extends to the case when the pérameter A
is temperature or pressure dependent, under the assumption that the free volume
fluctuations do not affect the temperature or pressure field; Appendix C will consider
the consequences on Eq. 1.1.56 of a situation in which such an assumption does not
hold. A temperature and pressure dependence of the Markov parameter 'A, 1.€.,a
dependence of the amplitude of the random thermal vibrations on temperature and
pressure, has effects on the pressure dependence of the glass transition, if the onset
of the latter is related to a critical value of free volume; the effect of a pressure

dependence of A will be addressed in section 1.1.7.

Fig. 1.8 shows the residual value of free volume below the glass transition
computed from the experimentally measured time shifts (Heymans, ‘1983) and the
parameters of the Doolittle equation. Along with the experiméﬁtal values, the solid
curve represents the prediction ** of Eq. 1.1.59, with foo = fo + df(T — Trey),
fo = .0095, Tref = 40 C and afy = 2.32 x 107* C~!. The curve §vas fitted to

the measured data by choosing a parameter A = 2. x 107%. -As can be seen, the

** It has to be remarked here that the parameters chosen to fit the time shift data by means
of the Doolittle equation differ from the usual ones employed in the literature. In particular,
instead of using the “universally accepted” value of 1 for B and the difference () — ay) for
af = g’JL‘ (cf. Fig. 1.5), the value of oy was taken as that derived later in section 1.1.4; the
consequent fit required the choice B = 0.1. These choices effect a value for the fractional free
volume at the glass transition of about six tenths of a percent, differing from the value of two
and a half percent proposed by Williams, Landel and Ferry (1955).
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shape of the solution f. to Eq. 1.1.59 has a strikingly good agreement with the the

experimental data.

0.02 T T T
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fractional free volume
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L 1 L
20 40 60 0
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FIGURE 1.8 Experimental and Predicted Free Volume in conditions of metastable
equilibrium below T, about 29 C for PVAc.

In an earlier stage of preparation of this work, no distinction was made between
the time-dependent ‘a,nd the instantaneous free volume changes, which now appears
in Eq. 1.1.59. The time-independent component was then treated as any other
viscous one, on the basis that Eq. 1.1.58 does not depend on any relaxation time,

and the equation corresponding to Eq. 1.1.59 was written in the form

foo
1— %63(1/)’:—1/%) '

fe = (1.1.63)

The different predictions of Eq.s 1.1.59 and 1.1.63 are shown in Fig. 1.9, for the

same choice of the parameter A, i.e., A = 2. x107%. The difference is very marginalT

T The computations presented in Sect. 1.2 are actually carried out on the basis of Eq. 1.1.63 for



-41-

0.02 T T T

0.018 |
()
E 0.016 |
o]
QO o014
>
()
Q@ oco12p
1
[Te,
- 0.01 L
8_ corrected free volume
|
-  0.008 | _

uncorrected free volume
0.008 .
0.004 . . )
20 a0 60 80

temperature (C)

FIGURE 1.9 Comparison between the different predictions for the residual free vol-
ume upon different treatment of the time-independent component. The
“corrected free volume” curve is the one predicted by Eq. 1.1.59, while
the “uncorrected” curve shows the predictions of Eq. 1.1.63.

1.1.4 The mechanical properties and the glass transition

The mechanical response of a polymer is not, in general, a éimple lincar func-
tion of the strain or strain history. Among the several factors which can influence
the constitutive behavior, this section will consider two which are responsible for
changes in the long-term, asymptotic response such as that represented by the
asymptotic bulk modulus, K. These two factors are, on the one hand, the possi-
ble presence of thermodynamic transitions in the equilibrium étate of the polymer
and the departure of the polymer from thermodynamic equilibrium below the glass

transition, as encountered in the freezing-in of the free volume sites and of the relax-

the description of residual free volume. Since the values predicted by Eq.s 1.1.59 and 1.1.63 are
very close to each other, the computations in section 1.2 and based on Eq. 1.1.63 are judged
fully representative of the physics of the problem.
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ation mechanisms. This section will attempt to assess their relative importance by

considering the consequences that each factor alone has on the asymptotic response

of the material.

First consider what would be the asymptotic material behavior under equilib-
rium conditions but in the presence of a thermodynamic transition (:.e., a discon-
tinuity in the values or in the derivatives of the thermodynamic 139tentia13). In the
case of an elastic material passing through a second order transitioni, one can de-
rive two equations, commonly called Ehrenfest relations, which express the change

of the transition temperature 7. with variations in the applied pressure p in the

form
T, Ty~ W
= .1.64
Jp ayp —a_ (1.1.64)
and
T _ T lar—a-) (1.1.65)

Op  Cpy —Cpe
Here T is the absolute temperature, K and K_ represent the bulk moduli above
and below the transition, a4 and a_ are the corresponding isobaric coefficients of
thermal expansion and C,4 and C,_ the heat capacities per unit volume and at
constant pressure. From Eq. 1.1.64 and Eq. 1.1.65 it follows that

1 1 T(a+ —a_)’
Ky K_ = Cp—C,

(1.1.66)

Since the nature of the glass transition in polymers is thought to be indicative of
the presence of an equilibrium second order transition, one would need to apply Eq.
1.1.66 to the elastic (equilibrium) response of the material, 1.e., to the changes of

the asymptotic bulk modulus, K.

1 A second order transition is defined as a transition in which the derivatives of the thermody-
namic potentials have a discontinuity but the potentials themselves are continuous. The glass
transition in polymers has sometimes been considered indicative of a second order transition.
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Besides these effects originated by the changes in the thermodynamic equi-
librium state, there are additional ones caused by the relaxation behavior of the
polymer préctically frozen for low values of free volume and from the fact that the
material can at best achieve a state of metastable equilibrium below the (assurned)
second order transition. In order to assess the relative importance of (thermody-
namic) equilibrium and nonequilibrium effects on the mechanical response, one can
investigate the consequences of nonequilibrium by initially neglecting the presence
of a thermodynamic transition of any kind at Ty, i.e., the constitutive behavior

would not obey Eq. 1.1.66.

With this assumption in mind, one can consider the effects of temperature on
the isobaric expansion/contraction of the material which, as mentioned ‘i'n section
1.1.2, are cast in terms of an equivalent “thermal pressure’, assumed to be linearly
dependeht on temperature but not affected by any equilibrium transitiobn and time-
independen’c. The implications of this assumed lack of a transition with respect to
the constitutive behavior in the glassy and rubbery regime and as exerﬁpliﬁed by the
differences in thermal expansion coefficients need to be considered now. In the long
term (equilibrium) rubbery regime the relaxation mechanisms, éymbolized in the
mechanical model by the dashpots, have no effect on the material response, and the
corresponding equilibrium dilatation is only affected by the elastic free and occupied
volume response. The second partial derivative of ;che internal enérgy of the system
with respect to temperature and volume can be computed by differentiating the

- thermal pressure with respect to temperature, resulting in

2 -
[ oy _ D g (1.1.67)

WoTln. = o

where o is the thermal expansion coefficient of the rubbery (sometimes denoted as

“liquid”) state, and K is the (long-time) asymptotic bulk modulus, given by the
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elastic characteristics of the free and occupied volume springs in series.

Far below the glass transition the deformation of the free volume is completely
absent, as explained in section 1.1.3. This lack of free volume deformation affects
the equilibrium response of the total (free + occupied) volume, and one can try
to compute this change in accordance with the intuitive mechanical mo&cl shown
in Fig. 1.4, by considering the stiffness of the free and occupied volume springs in
series. If C%,,, is the (equilibrium ) compliance of the free volume.above the glass

transition, z.e., in conditions of thermodynamic equilibrium, then

. _ Of '
Chree = B (1.1.68)

Cfree =
(T>>T,)

where f = f., since the distinction between residual (metastable) and equilibrium
free volume vanishes above the glass transition. Below the glass transition, the effec-
tive free volume compliance is affected by the conditions of metastable equilibrium;

therefore one has

Ofeq _ Ofcq Ofso _ o Ofes

Clree = = = . 1.1.69
d 0ok O0fco 00k free 9f e ( )
An expression for g—;:: can then be obtained by differentiating Eq. 1.1.63, which
yields
C Clree (1.1.70)
free = 1.
G R

Eq. 1.1.63 was obtained by considering the time-independent states of the polymer

(¢f. Egs. 1.1.56 and 1.1.57). It appears reasonable to extend the validity of this
| relation into time-dependent behavior by substituting the current value of the frac-
tional free volume f in place of the asymptotic value f.. If one does so, then Eq.

1.1.70 can be concisely written in the form

Cfree = C;ree(p(f) ) (1171)
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where
1

T E DT

(1.1.72)
is a function which is near unity for sufficiently large values of f but vanishes as
the lattef becomes small. If one denotes by (¢, the ratio* between the compliances
of the free and occupied volume in the rubbery regime, 85, = %}%, the equation

expressing the free volume changes as a function of the total deformation, Eq. 1.1.23,

needs to be reformulated as

f = finie +8(f) erx (1.1.73)
where
ﬁfoé(f)

§(f) = LS 1.1.74
D= T80 4T

Above the glass transition, the value of the asymptotic bulk modulus is given by

1

Ko = 1 = = (T>»T,) . (1.1.75)

C}ree + Cocc Cocc(l + ﬂfo)

Much below the transition, where the compliance of the free volume vanishes com-
pletely, a simple calculation shows that the asymptotic response, characterized here

by the symbol Koo, becomes

~ 1 1 l + ﬂfo ~
K, = = = Koo————— , (1.1.76
Croond D+ Coe ~ ConlL# Brad(D] ~ " =T5 A0y 17
and, since @( f) goes to zero as f becomes small
Ko = Koo(1+85,) (TKT,) . (1.1.77)

In addition, the relaxation mechanisms are frozen much below T,, and that fact has
~ to be considered, too. The effective value of the bulk modulus for any deformation

sufficiently below the glass transition is therefore given by

Krecr, = Koo(1+ Bg0) + »_Ki, (1.1.78)

* This is also the ratio between free volume and occupied volume change in the total deformation
above Ty.
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where the K;’s are the same quantities that appear in Eq. 1.1.26. If one focuses
attention on the glassy state characterized by a bulk modulus given by Eq. 1.1.78
and a glassy coeflicient of thermal expansion ay, the second partial derivative of
the internal energy of the glass with respect to volume and temperature can now

be written as

o°U
[BVGT] T,- [Koo(1 + Bo) + Z,-:Ki]ag : (1.1.79)
Under the (initial) assumption that the glass transition is not indicative of a ther-

modynamic transition, this derivative has to take on equal values in the rubbery

and in the glassy regime. If one compares Eq. 1.1.67 with Eq. 1.1.79, one finds

147!

—1+ﬂfo+2z%:

(1.1.80)

Oy

Since oy and o, are usually measured, the unknown value of §f, can be extracted
as

(23] K;
R - : 1.1.81
o = Y sy

Recall that the parameter 8¢, was defined as the ratio of the free to .the occupied
volume changes sufficiently far above the glass transition. From the relaxation data
for PVAc by MéKinney and Belcher (see Appendix B), and the values of ; and «,
by Sandberg and Backstrom (1980),** Eq. 1.1.81 renderé the value of this quantity

for this particular material as 3¢, = 0.63.

It is useful to stress once again the most important aspect of this theory: the
- difference in the value of the coefficient of thermal expansion, across the glass tran-
sition, is dictated by the purely nonlinear viscoelastic behavior of the material,

which brings about a difference in the effective asymptotic bulk modulus. The

** Using the values of o) = 5.5 x 10™% and og = 2.3 x 1074 K 1 as given by McKinney and
Simha (1974), changes the result by less than a 1%. :
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parametersT which govern the material behavior are the rubbery (“liquid”) coef-
ficient of thermal expansion, «;, and the time-dependent rubbery bulk modulus,
K(t) = Koob+ Y- Kiezp(—t/7;). The glassy thermal behavior is predicted through
the freezing of the mechanical relaxation plus the locking of the residual free vol-
ume, and both of these phenomena affect the compliance of the total Avolume to

yield a glassy coefficient of thermal expansion below Tj.

It can now be shown that nonequilibrium effects are predominént over the
consequences of equilibrium phase changes. If one considers in the Ehrenfest rela-
tion, Eq. 1.1.66, T =~ 300 K, and allows for the properties of PVAc (Sandberg and
Béackstrom, 1980), i.e.,

ap = 6.x107¢ K!

@, = 25x107* K!

Cpi = 2.09 x 10° —¥

Cpy = 129 x 10° —= |
then the predicted change in bulk modulus based on the idea of thérmodynamic
equilibrium can be compared with the values of the experimentally determined
bulk modulus (McKinney and Goldstein, 1974). The typically measured values of
17000 bars for thé rubbery modulus and 37000 bars for the glassy one correspond to
a change in compressibility of around 2.9 x 1075 bar™!, which is'almoét stz times
greafer than the one predicted for the thermodynamic transition by Eq. 1.1.66,
namely 4.5 x 107%bar~!. This discrepancy has been for a long time a thorny prob-
lem in the studies of the glass transition in polymers: experiméntal evidence shows

that the predictions of equilibrium thermodynamics are insufficient to explain the

constitutive behavior of glasses. A first attempt to solve this discrepancy was made

t The quantity 3¢, is not considered a parameter, since it is computable through Eq. 1.1.81.
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by Davies and Jones (1953), who recast Eq. 1.1.66 into the inequality form

1 _ 1 > TM (1.1.82)
Koo,rubbery I(oo,glassy . CPI_CPQ ‘ .

In the Davies/Jones approach to the glass transition, the excess amount of the
difference in compressibilities originates from the presence of additional variables,
other than pressure, temperature and specific volume, which are presumed to be
“needed to describe the thermodynamic states of glasses. In the language of nonequi-
librium thermodynamics, such variables are often called internal variables, due to

their elusiveness in experimental measurements.

Although at this stage of development one may argue about elegance in argu-
mentation, the work presented here has similarities with the approach of nonequi-
librium thermodynamics, with one substantial difference: instead of referring to
general internal variables, the physical significance of which is sometimes vnot‘ fully
characterized, the free volume content of polymers is considered as a more or less
recognizable physical internal variable which is needed to fully describe their ther-
momechanical state; the consequences of this assumption on the time‘-inde‘pendent
mechanical behavior are then derived. The results show that a rhuch better agree-
ment with experimental data can be achieved if one keeps track of both this addi-
tional parameter (free volume) and of the vanishing of ‘matefiéml relaxation at low
temperatures. Among other aspects, future work will have to assess whether the
additional possible presence of an equilibrium thermodynamic tranéition signifi-
cantly alters the thermomechanical behavior of polymers, as far as the predictions

of residual stresses and durability are concerned.

Current studies of the constitutive behavior of glasses often do not address the
possible existence of a thermodynamic transition (Christensen and Naghdi, 1967;

Oden and Armstrong, 1971), or try to explain it in terms of a set of viscoelastic
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functionals (Shay and Caruthers, 1986). The approach presented here has the
appealing feature of accommodating at least two important aspects of the problem,
ﬁamely the nonlinearly viscoelastic behavior and the change in thermodynamic
properties, by suggesting a model which is prevalently dependent on the viscoelastic
properties of polymers but that can conceivably be expanded to includ;e entropy
jumps or discontinuities in its derivatives (therefore the heat capacity) at the glass

transition.

The last comment concerns an aspect which more properly belongs to an equi-
librium thermodynamics treatment of the glass transition; nonethe"leés, it needs
to be mentioned here because it shows how equilibrium and nonequilibrium as-
pects might be related to each other. The ratio between the heat capacities in the
rubbery and glassy phase of PVAc (Sandberg and Backstrom, 1980) is, within ex-
perimentél error, equal to the ratio of the elastic compliances of the total volume
(2.09/1.29 = 1.62 = 1+ B,) in the rubbery and glassy regime, which ratio has just
been found within the framework of a nonequilibrium approach. Rathér than being
considered a confirmation of this simple theory, this agreement has to be considered
an interesting subject of discussion, in which one could ask if the heat capacities
have a connectioﬁ to the free and occupied volume deformabilities and, if so, why.
An approximate explanation of this connection would consider the enérgy change
aésociated with the free volume deformation (as it is done, for a different purpose,
in Section 1.1.6). How can the energy of a hole be evaluated? As long as the vacan-
* cies represent part of the total volume in which the polymer mélecules can migrate
freely and exchange free volume, it is possible to evaluate the energy assoclated
with the hole distribution by filling up the vacancies, ending up with a homoge-
neous continuum and computing the energy spent in the procbess. If one could do

that, then the energy spent would be equal to the energy associated with the occu-
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pied volume times the volume of the holes. Above the glass transition, a positive
temperature change effects an increase in both the free and the occupied volume,
ﬁ/ith a corresponding energy expel\lditurei. Below the transition, there exists a
residual amount of vacancies (residual free volume, due to nonequilibrium effects)
but this space is energetically unattainable for the polymer molecules, because of
their low energy levels. The energy associated with the free volume deformation is
therefore essentially zero, since such deformation is restrained; the corresponding
value for the heat capacity is affected by the thermal properties of the occupied
volume only; that seems to be the case as shown by the simple results derived in

this section.

1.1.5 The kinetic aspects of the glass transition

In section 1.1.4 the nonequilibrium and, in part, the equilibrium aspects of the
glass transition have been addressed. In this section some further features of a third
component of the transition, namely its kinetic or rate dependence, will be consid-
ered. This aspect, which is more closely connected with experimeﬁts such as cooling
or heating at fixed or variable rates, is a consequence of the viscoelastic material
response which requires a certain amount of time (increasing with de'créasing tem-
pérature) to bring the polymer to an equilibrium state. Such a phénomenon can be

explored for example in experiments in which the thermal contraction is measured

3 appealing from an intuitive point of view to model the holes and the occupied volume
as two different species of gas, thoroughly mixed. Above the glass transition, both gases are
present and active; below it, only one (the occupied volume) takes part in the thermal and
mechanical processes, while the other is kept in a frozen state. The heat capacity above the
transition would be given by the sum of the heat capacities of each phase, while below Ty
it would be equal to the heat capacity of the only phase still active. One can also draw an
analogy with the behavior of diatomic gases at high temperatures, where an increase in the
heat capacity is effected by the additional degree of freedom which the two atoms experience
by oscillating along the axis of the molecule.
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under a fixed rate of cooling. If one considers in such experiments the temperature
’f’g at which the slope of the volume-temperature curve changes as indicative of the
glass transition®, one observes a shifting of the transition to higher temperatures
with incréasing cooling rate. In particular, in experiments on monomerAic glasses
such as As;Se3, B;O3 and potassium silicate, Moynihan et al. (1974) have observed
a linear dependence of the fictive temperature T, on the logarithm of the cooling

rate.

The question arises whether free volume theory is consistent with such an ob-
served dependence of this transition temperature on the logarithm 6f the cooling
rate. Very often critical observations are offered in this regard by noting that, under
nonequilibrium conditions, the viscoelastic free volume changes at a giVén temper-
aturé are a decreasing function of the cooling rate; less time needed to reach the
final tempera'tturé implies a larger nonequilibrium free volume fraction, and there-
fore, in cooling, a larger total free volume at that temperature. If one were to make
the hypothesis that the onset of the glass transition is closely related to a critical
value of freé volume, this critical value would be reached at lower temperatures
with increasing cooling rate (because the nonequilibrium fraction would be larger)
and, so the argumenf proceeds, this fact would correspond to a lowering of the glass
t;ansition with a rate increase, which is precisely the opposite of what is observed

experimentally.

In order to give a qualitative rebuttal to those remarks, one can estimate the
volume change for a simple viscoelastic material subject to cooling from some tem-

perature T above Tg. If considerations are simplified by using a relaxation spectrum

* Tg is often called a fictive transition temperature, since it is primarily a consequence of the
kinetics of molecular rearrangements.
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possessing a single component **, e.g.,
t

then the differential equation describing the viscoelastic material response can be

written vas]L

dekk

ldorr 1
dt

— o . 1.84
37at T3 o (1184

1
(Koo-l-Kl) +:’_-I('°°6kk =

For constant mechanical pressure (isobaric conditions) the thermal effects can be

described in terms of the equivalent thermal pressure p(T') =

%Ukk = KooaAT =

Kooai(T — Tp); Eq. 1.1.84 can then be rewritten as

dekk _ Koo l dT

dt = Ko+ Ky T(alAT—Ekk)+OHE . . (1.1.85)

If one observes furthermore that the relaxation time has to be also modified accord-

ing to the free volume induced time shift, one obtains

dewe Koo { 1 dT} (1.1.86)

- AT — hutull
dt Ko+ K; Tewp[B('lf'—‘flg)](al 6kk)+a1dt

The first term on the right hand side is a consequence of the viscous material
behavior, and is proportional to the “distance” (a;AT — ey) of the polymer from
its equilibrium state, while the second one can be seen as the “glassy” (short term)
response to the temperature variations. The glassy term is linearly proportional to
the cooling rate, while the first one makes its presence felt only when the effective
. relaxation time of the material, i.e., T e:zp[B(-}- - %)], is short compared to the

experimental time scale. In order to present a qualitative idea of how the volume

** This simplification is actually very well representing the experiments on monomeric glasses by
Moynihan et al., since monomeric glasses tend to have, rather than a complete spectrum as
polymers, single values for the bulk and shear viscosity.

T For a material having a more complicated relaxation behavior, e.g., N relaxation times, the
equation would change into a differential equation of N-th order.



-53-

behavior changes with the cooling rate, one can consider a situation - as indicative

of the transition - in which the two terms are of the same order, i.e¢.,

1 dT
T - —o— . 1.1.87
reepBC ](OHA €kk) ~ —ou (1.1.87)

dt
Furthermore, one can make the reasonable assumption that the term (a;AT — €x)

is somehow proportional to the absolute value of cooling rate 4L d ~, or, more generally,

to some power ( of it, i.e.,

dT ¢
(CY[AT - Ekk) ~ ‘ . (1.1.88)

Eq. 1.1.87 can then be rewritten as

ezp(- B(— -

dT|1—¢
i . (1.1.89)

Eq. 1.1.89 shows? that, as the rate of cooling increases, the fractional freé volume
at W‘hich the fictive transition occurs also increases, in contrast to the assumption
that such a transition occurs at a critical value of f. In order to make a qualitative
statement on how the free volume at the transition changes with the cooling rate,
one can observe that in a cooling experiment the low material viscosity in the
rubbery state is such that the free volume of the material is not too far from its
equilibrium curve given by f = fy + a;(T — Ty), where oy is the equilibrium rate
of change of free voiume with temperature. Therefore, if the value of free volume
f at the transition temperature is approximated as the equilibrium value at the
transition®, i.e., f ~ fo -l-af(’f’g ~Ty), then, upon taking the logarithm of the above
expression 1.1.89 and considering only the terms dependent on the cooling rate, one

" obtains

~

= w219 =T e
f0 +af(Tg —To) - fo (1 fO ) (1 C)l 9\ —7

dT

, (1.1.90)

e g., by taking the logarithm of both sides of the equation.

* This would correspond to a cooling experiment which starts from a temperature not too far
from the transition temperature, so that ‘LLQ can also be considered small.
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from which one derives

a (1.1.91)

T, — Ty ~ log o

It has thus been shown that the present model is at least consistent with the ex-

perimental observations by Moynihan et al.

1.1.6 A closer look at free volume: its transient distribution

It has been assumed so far that the time scale of material relaxation and the
instantaneous fractional free volume are connected by the Doolittle eduation. This
assumption should now be reconsidered in a critical manner. Eq. 1.1.11 was de-
rived by assuming that the distribution of free volume maximizes the entropy of
the material, 1.e., it was derived with underlying equilibrium assumptions about
the size and the density of the vacancies. After the material has settled into a
time-independent equilibrium state, such a hypothesis seems appropriate; however,
when a time-dependent volume change is taking place, the distributioh of free vol-
ume might not be the same as that given by Eq. 1.1.6, since the latter indicates an
equilibrium distribution. In this section the effect of a nonequilibrium distribution
on the material viscosity will be addressed by adapting a quaiitative model con-
necting the changes in the hole volume to the time-dependent evolution from one

equilibrium state to another.

One can conceive of (at least) two principal mechanisms for creating and de-

stroying free volume. The first one would be a “glassy”**

mechanism, such as the
response of the material to a sudden compression, and the other one would be a

time-dependent rearrangement of the distribution of vacancies in the solid. At first

** The word “glassy” is used here with the meaning of “instantaneous”.
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one can consider what happens upon sudden deformation, assuming the material
~ to be initially (¢ = 07) characterized by the (exponential) equilibrium distribution
of free volume p(v) = (1/vys¢)exp(—v/vyse), which corresponds to a value of the
overall fractional free volume equal to fo. If the sudden compression destroys all
the sites of size smaller than a hypothetical value ¢ and at the same time removes
a correéponding amount from the larger ones, two distinct effects can be isolated,

namely:

i. the number (i.e., the density per unit volume of the polymer) of free volume

sites changes, since all the vacancies of size v < 9 are removed;

ii. the distribution of the size of the remaining vacancies might change.

To evaluate the consequences of these two aspects on the instantaneous value of
the time shift, i.é., to compute the new material viscosity, one has to modify the
Cohen-Turnbull considerations and observe that the probability whi_ch a particle
has of accessing free volume in excess of a certain amount, say v,,;,, is proportional
to the product of the probability for a given site (hole) of being larger than vmin
times the density of sites in the material (number of sites per molecule or per

volume), which will be denoted by p. Assuming, as was done in section 1.1.1, that

the material viscosity is inversely proportional to such a probability, one writes

N7l o~ p/ p(v) dv . | (1.1.92)

. Let the initial density of free volume sites be given by po. If a certain amount o
is removed from all vacancies, the number of the sites still active after the removal
will be proportional to the previous density times the fraction of sites having free
volume in excess of 9. Consequently, the new density is given by

D

p = po/ p(v)dv = poe:z:p(——;;) . (1.1.93)
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Paradoxically, the probability distribution of free volume does not change; this
invariance is a consequence of the property of the exponential function which, upon
shifting and renormalizationf, remains unchanged. If one denotes as v’ the new free
volume after the initial compression, the new probability distribution p(v") must be
calculated taking into account the elimination of all the holes of volume less than

¥ and the subtraction of the amount ¥ from the volume of the larger ones, which

yields
1 v td
70 €2P(— 1 v/
! Vfo vro
v) = — = —erp(——) . 1.1.94
o) vj'o Lwexp(_vvfov)dv' vfo s 'Ufo) ( )

Eq. 1.1.94 states that, although the number of sites has changed’, the average
volumet per site is the same as before. The new macroscopic fractional free vol-
ume will be different though, since the density of sites has changed (sorﬁe of them,
namély those with volume less than ¢, have been removed). The time shift with
respect to the initial condition can then be computed through a size distribution
which still has the form of the equilibrium distribution, as given by Eq. 1.1.6, but
with a different density (total number of available vacancies per total number of
molecules) of sites. Since the distribution of the size of the vacancies has the ex-
ponential (i.e., equilibrium) form, the Cohen-Turnbull result, Eq. 1.1.11, remains

valid upon the substitution

~

v

), o (1.1.95)
’Ufo '

f = foexp(

which is the value of the new fractional free volume after sudden deformation. The
~ relation between the time shift and the macroscopic free volume change still holds,

even if the material is far from its equilibrium state.

T A continuous probability distribution has to be normalized so that its integral over the domain
of definition yields unity. ’ '

1 The average free volume is intended here as the average size of the vacancies over the existing
population of holes.
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The time-dependent free volume changes will now be considered. It is of inter-
est to examine the effects of the local disequilibrium on the macroscopic behavior
of the material; in particular, one can investigate the validity of the Doolittle-type
dependeﬁce of the relaxation times on the macroscopic free volume chax}ges. For
the sake of simplicity, assume that the density of sites does not change and that
only the distribution of the site sizes varies®, i.e., the time-dependent changes in
the macroscopic; average free volume are exclusively due to variations in the size
distribution of free volume sites. For the purpose of analyzing the coﬂsequences of
this assumption, a simplified model may be used which contains the equilibrium
distribution of free volume as a stationary solution and which can be justified by
considering the local equilibrium of molecules constrained in the holes of the net-
work. Following the general approach to free volume theory of Cohen and‘Tuvrnbull,
this model does not take into account the chain-like nature of polymer molécules
but considers instead the interaction between an isolated, “monomeric” molecule
and the rest of the solid which surrounds the “cage” in which such a particle is

constrained,

On a very small scale, the volume of the cage constraining a molecule depends
on the interaction Between the latter and the outside medium, i.e., the rest of
the material which will here be assumed to behave as a homogeneous continuum.
Locally, the volume of each hole will be such that the sum of the two energies, one
characterizing the particle and the other one associated with the energy stored in
~ the outside medium, will reach a minimum. This picture resembles that of a gas
of particles contained in a reservoir, and in which (picture) the pressure exerted by

the gas on the walls of the container deforms them and stores mechanical energy

* This assumption is truly crucial but, since only qualitative results are attempted here, it should
not affect the conclusions in a drastic manner. k
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through their elastic deformation.

The objective is now to consider what happens to the local equilibrium when
it is disturbed, such as in the case of a temperature or pressure change. In order to

do so, it is expedient to make the following simplified assumptions: -

o the local interaction can be uncoupled: one may consider the total energy
as the sum of the energy which is stored in the particle constrained in the

cage, plus the energy which is stored in the outside medium;

e the initial equilibrium state of the hole volume corresponds to a deformed
configuration, i.e., the walls of the cage have already been moved in order

to accommodate the particle;

e such deformed configurations correspond to nonzero energies stored in both

the medium surrounding the cage and in the constrained particle;

o the changes in the volume of the cage are small in comparison to its total
volume; one can therefore linearize the dependence of the energy of the
surrounding medium and of the particle with respect to the hole volume

changes;

e the interaction between the particle and the medium can be represented in
terms of the Brownian, random collisions of the particle against the walls

of the cage and of a continuum-type response of the outside solid;

e the response of the outside medium can therefore be modeled as governed
by a change in the stored energy which, for small variations of the hole

volume, can be considered a linear function of these variations;

o the fluctuations of the hole volume are mainly fluctuations in the free

volume of the cage, given the initial loose packing of the particle in the
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hole;

e one also has to take into account the viscoelastic nature of the material,

for which there is a damping of the oscillations of the hole volume.

The above observations can be reformulated more precisely as follows:

i. the effect of the thermal collisions of the particle on the walls of the con-
taining cage can be represented by a Brownian term (white noise)** in the

equation for the equilibrium of the free volume of the cage;-

1. there is a natural tendency of the holes to close, due to the already present

deformation of the containing medium;

ili. the random variations of the hole (free) volume due to the Brownian col-
_ lisions of the particle against the walls of the cage have a characteristic

variance, o;

iv. there exists also an intrinsic viscous damping which smooths out the os-

cillations of the volume of the vacancy.

Under these assumptions, one can represent the energy of the containing me-

dium with a linear dependence on the hole volume, i.e.,
U = cvpr = c(Voce +vf) - : (1.1.96)

For the sake of simplicity and for consistency with the notation adopted in section
1.1.1, denote the free volume of the cage enclosing the particle by v; then, for small

variations of such a volume, the force which tries to close the holes will be given by

** For more information about the analysis of stochastic processes, see Gardiner, 1985.
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the gradient of the potential energy, , where U is given by Eq. 1.1.96. One can
“therefore consider the volume of a hole as the coordinate of a particle subjected to
such a conservative force and, in addition, to Brownian collisions db(t) and to an

intrinsic viscous damping /.t-‘:l—'t’. The system of equations for such a particle can be

written as
v d
E’ti = % (1.1.97)
d®v . dU

where the effect of thermal collisions has been taken to be proportional to some
scaling parameter \/E]L. The viscosity u is indicative of the reluctance of the vis-
coelastic polymer to engage in a random, Brownian dance governed by the thermal
collisions. Eq. 1.1.98 has the same form as the equation of volume change of a
monomeric glass, for which u would represent the bulk viscosity; in the case of a
polymer ’having a relaxation behavior characterized by several relaxation times, the
corresponding equation would contain higher derivatives of the dilatatibnal rate. In
the limit of large p, i.e., in the limit of a relaxation time that is large compared to

the characteristic time scale of thermal motion, Eq. 1.1.98 can be approximated ast
1[dU | |

) & —= | =5 - /odb(t)] 1.1.99

b~ = Ve ) S 19

Upon substitution in Eq. 1.1.97, one obtains

o _ 1 1\/-db(t) (1.1.100)
dt p dv

T The symbol o is used here because the quantity it represents will turn out to be proportional
to the variance of the volume increments.

} This solution technique is often denoted as adiabatic elimination of fast variables. Gardiner
(1985) provides some information about the approximation which is achieved by following this
approach.
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Eq. 1.1.100 contains a random variable, i.e., db(¢). If one considers the expected

increment and variance of the function v(t), one obtains*

1(dU
B(Av) = —;[-J;]dt , @10n
and
E((Av)?) = i—zdt . | (1.1.102)

The theory of stochastic processes asserts that Eq. 1.1.101 and 1.1.102 are equivalent
to a differential equation, known as the forward Fokker-Planck equation**, which

describes the changes in the probability distribution for the position of the particle

ap(v,t) 1{ 5] [dU

Op(v,
at  ulovlde M]}

a .
P+ 5 (1.1.103)

Ov

in which.%% = ¢ by Eq. 1.1.96. The equation can be scaled if one divides by ¢, and
lets t' = t/u, vp = 755 one obtains then

op dp &?p

6t' = 5; + ’Ufo‘é';)? . (1.1.104)

The stationary solution of this differential equation is the equilibrium size distribu-
tion of free volume corresponding to a value of the macroscopic free volume equal
to vy, t.e.,

v

p(v) = —l—emp(_—). - (1.1.105)
vso vfo

Therefore, at least in the stationary case, this simple model represents the features
- of the distribution of holes in amorphous materials rather well. Tt is also of interest
to examine the predictions of the Chapman-Kolmogorov equation in the case when

the equilibrium value of the macroscopic free volume is suddenly changed from

* Appendix C contains some information about the features of mathematical white noise.

** This is the basic theorem of stochastic analysis. For one version of the proof, see Gardiner,
1985.
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vfo to, say, vf1, as can happen when the material is suddenly thrown into a non-
equilibrium state by a sudden compression or coolingt. That examination amounts

to consider the new version of Eq. 1.1.104, written as

op _ 9p d%p

5{,‘ = 570' + Uf1 ﬁ y (11106)

‘which has, as a stationary solution, the new equilibrium distribution p(v) =
ﬁezp(;—-}%). The differential equation 1.1.106 can be integrated in time, with
the initial condition given by Eq. 1.1.105. The corresponding probability distribu-

tions at different times are shown in Fig. 1.10, where the (arbitrary) case vy = 1

and vy; = .5 has been considered.

18
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FIGURE 1.10 Diffusion in probability space

T Such changes are assumed to imply a change in the amplitude of the thermal collisions of the
particle against the walls of the cage, i.c., a variation in the Brownian term amplitude, \/o.
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FIGURE 1.11 Prediction of intrinsic diffusivity.

Having examined the transient distribution of the free volume, it is next of
iﬁterést to consider the consequences of such distribution on the r’na'_terialvviscos—
ity. The values of viscosity computed through the instantaneous distribuﬁions at
different times and Eq. 1.1.1 can be compared with those values predicted by the
equilibrium theory as a function of the instantaneous average value of free vol-
ume. If one adopts a form ! of the Doolittle equation which is convenient for these

considerations, i.e.,
1

B
log(n) ~ E ) (1.1.107)

~or, with D as the material diffusivity (reciprocal of viscosity),

BI
log(D) = log(%) = —v—f ; : (1.1.108)

! The following equation differs from Eq. 1.1.11 in the direct dependence of the viscosity on the
average free volume instead of its fractional value.
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then sizable differences can be found between the two predicted viscosities, as shown
in Fig. 1.11*. One observes that the viscosity computed through Eq. 1.1.1 and the
instantaneous distribution is higher than that predicted by Eq. 1.1.107, which as-
sumes an exponential shape for the distribution function**. The differences in values
of the viscosity (which for a polymer would correspond to an error in ‘the évaluation
of the time shift) are of the order of some fraction of the correct, nonequilibrium
solution, far smaller than the exponential changes seen in polymeré in equilibrium
at different temperatures. Thus, even if the time shift does not depend on the
instantaneous value of the nonequilibrium free volume as given by Eq. 1.1.11, the
error incurred by assuming the validity of that equation is small compared to the

variations in the time shift due to temperature changes.

1.1.7 The pressure dependence of the glass transition

The proposed constitutive model now allows the consideration of the pressure
dependence of the glass transition and the behavior of the entropy across that
transition. In the previous sections, two relevant features of the glass transition

have already been addressed, and they are summarized here for convenience:

e the glass transition is characterized by the polymer deviating from ther-

modynamic equilibrium and settling into a metastable state;

e there is a kinetic aspect to the glass transition, and this aspect is particu-
larly evident when experiments are conducted at different rates of cooling

or heating through the transition range.

* The parameter B’ of the same equation was set to unity for the sake of simplicity, therefore
the viscosity changes from e~1 to e~2.

** Fig. 1.11 shows a lower diffusivity characterizing the instantaneous (nonexponential) size
distribution.
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In addition to these two features, there are additional ones which might help
. to further illuminate this complicated phenomenon. For example, hysteretic effects
in cooling and heating cycles have been experimentally observed (Sharonov and
Vol'’kenshtein, 1964; Sandberg et al., 1977, 1980). A typical example of these effects
is shown in Fig. 1.12, where the apparent heat capacity of PVAc is shéwn upon
heating across the glass transition. The three different curves correspond to differ-
ent, prior annealing (holding) times below the transition, and they Show that aging
below T, induces higher peaks in the heat capacity upon reheating. Whether this
phenomenon can be justified merely through a free volume description of the mate-
rial viscosity will require further investigation. The different possible explanations
for this phenomenon include the admissible different natures of the tfan‘sition ( (a)
second order, i.e., with a change in the slope of the equilibrium entropy, or (b) first
order, with a finite entropy jump at T,), time-dependent changes in the ordering
parametert which determines the onset of the transition, or a direct dependence
of the entropy of the material on the number and size of holes in the “network”
(cf. the discussion at the end of section 1.1.6). Also, the assumed step change in
the heat capacity might not be entirely correct; recent studies, in the framework of
percolation theory for liquids (Cohen and Grest, 1979), indica:te that a smoother
variation should take place, mainly because the material is experiencing not a sin-
gle value of free volume, but rather a distribution of free volume sites. For such a
situation, the theory of critical phenomena (c¢f. Domb and Green, 1972) suggests
a variation of the heat capacity as {7, where £ is an ordering parameter and v an

exponent which, for a three dimensional cluster, is equal to 0.4.

t An ordering parameter is intended as a parameter which describes the onset of the glass
transition upon reaching a critical value; in the simplest theory, one would consider temperature
as the ordering parameter and assume that the glass transition occurs at a given temperature,
independent of pressure or rate of straining and cooling.
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FIGURE 1.12 Apparent heat capacity of PVAc upon reheating across T}, for differ-
ent annealing times at low temperature (Sharonov and Vol’kenshtein,

1964).

It is also evident (¢f. McKinney and Goldstein, 1974, for experimeﬁts on PVAc)
that the glass transition is a pressure dependent phenomenon. Ohe can recall that
the model preséntred here (cf. section 1.1.3) recognizes two components of free vol-
ume changes, namely a viscoelastic term and a Brownian noisé term, resulting a
non-zero residual free volume in conditions of metastable equilibrium below T,; this
result holds even for infinitesimally low rates of cooling. While it may be prema-

ture to consider the present theory to be a complete theory for the glass transition
process, it would be of interest to connect those aspects that are related closely
to equilibrium thermodynamics (such as the change in heat capacity) to what has
been developed so far within the framework of thivs phenomenological model. For
instance, one could consider that the onset of the glass transitién in polymers. oc-

curs when the molecular relaxation, represented by the viscoelastic, or “drifting”



67-

term in the constitutive behavior symbolized by Eq. 1.1.56, achieves the same or-
der of magnitude as the thermal agitation of the molecules, which is represented
by the second term on the right hand side of the same equation. This approach
is not mere speculation, since one can also think of the problem in the terms of
the perqolation model of the glass transition by Cohen and Grest (1979), ‘by which
a significant portion of the entropy of the material above T, arises as configura-
tional entropy from the migration of the molecules within “liquidlike’f cells which
in turn are connected to form an infinite percolation cluster. In the Cohen-Grest
model the “drifting” capability of the molecules is the main cause for the change
in heat capacity, through affecting the configurational entropy of the material. It
is not clear whether the Cohen-Grest theory of the glass transition cén be applied
directly to polymers, since the original theory seems to apply principally to complex
but monomeric glass forming substances. The presence in the polymefic material
of a chain backbone which imposes constraints on the drifting motion of the indi-
vidual members of the chain undermines somehow the “simple” derivation for the
configurational entropy in the Cohen-Grest developments, and this featufe could
explain the discrepancy between the fact that their theory predicts a first order
transition while experiments seem to indicate it to be of second order. The main
assertions of the Cohen-Grest theory can however be méintained, namély the fact
that the diffusive capability of the molecules is strictly connected’ to the change in

heat capacity.

The predictions of the proposed phenomenological model will be considered
now. The predicted curve for the equilibrium free volume, as represented through
Eq. 1.1.59, is shown in Fig. 1.8. If one hypothésizes that a “cﬁtical” value of
free volume, f.rit, characterizes the onset of the glass transitioﬁ, some interesfing

predictions can be obtained. Fox and Flory (1950) suggested that the viscosity of
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amorphous polymers may be written in the product form

n = g(T)z(f) , (1.1.109)

where z(f) has the usual Doolittle-type dependence on fractional free volume, and
g(T) is a function which depends on temperature only; the onset of the glass transi-
tion can then be related to a critical value of viscosity. According to the simplifica-
tions adopted in the present work, the direct effect of temperature will be ignored;
next, the consequences of assuming a critical value of free volume characterizing the
onset of the glass transition will be investigated within the framework of the pro-
posed phenomenological model. Under general thermal and mechanical histories,

the total differential of the free volume at equilibrium is given by

_ Of jp, OF |
& = 5pdT+ 5 dp | (1.1.110)

which can be expressed in terms of the model parameters (above the glass transition)

dp : :
df =6 (a,dT—{—f(—;) . | (1.1.111)

If the free volume at the glass transition is taken as a material constant, then

df = 0 at Ty(p). One thus obtains

(Z_DT@ _ K;al , (L1112

which, for PVAc, predicts a value of .06 Kelvin per Bar. This value is reasohably
~ close to the values ranging from .02 to .04 as measured by McKinney and Goldstein
(1974) for the same polymer species. The equilibrium curves corresponding to the

model predictions are shown in Fig. 1.13 for different values of pressurei.

1 Since the effect of temperature is felt through the action of the equivalent thermal pressure,
the equilibrium curves at different mechanical pressure need to take the latter into account,
i.e., they need to be horizontally shifted by an amount AT = Ap[Keoa] ™.
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FIGURE 1.13 Predicted equilibrium curves at different pressures

It has to be noted that the parameter A of Eq. 1.1.59 has been considered
s.o fa;r to be a constant. If one were to use an equation of state vfor" the thermal
vibration of the polymer molecules, which is equivalent to introducing a pressure
and temperature dependence for A, the agreement between the predicted values
and the ones measured by McKinney and Goldstein could be even better, as shown
in Fig. 1.14, where a simple pressure dependence for this pararﬁeter has been used

in the form

A(p) = 2.1 x 107° exp(—.0465p) . (1.1.113)

" Such a pressure dependence of A would imply that the amplitude of the thermal
vibrations is a decreasing function of pressure. Fig. 1.14 shows that for this simple
choice the points where the equilibrium curve changes in slope are more closely
gathered, u.e., %’- < .06, thus closer to the measured values (02 to .04 Kelvin per

Bar) than in the previous case, where the same parameter was considered to be
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FIGURE 1.14 Predicted equilibrium curves with pressure dependence of the Markov
parameter A.

constant.

Keeping these observations in mind, it can also be said that the present model
performs very well if one considers the case of cooling only. This good behavior
of the model is a consequence of the fact that, as the material cools down, the
ihterna,l time scale continuously slows down and eventually stops. This means that
small errors in evaluating the thermal transients (such as those generated from a
misrepresentation of the entropy curve) have increasingly marginal effects as the
temperature drops, since the error in cooling time drops far below the relaxation
times of the polymer, which times increase as the temperature decreases. Additional
studies for the cooling case, not presented here, indicate that _ignoyring the change
in heat capacity across the glass transition yields a distribution of residual stresses

that is quite similar to that computed through the full-fledged material description.
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On the other hand, the same argument applied to heating cycles predicts that the
errors amplify as temperature increases, for which a complete theory of thermal
stresses under the most general temperature histories will require some additional
refinement. This improvement would consist in allowing the possibility of discon-
tinuities in the entropy curve at T, and will also need careful expefimeﬁtation in

-order to be validated.

It needs to be stressed that the theory presented here is strictly a small defor-
mation model of nonlinearly viscoelastic behavior. No divstinc’cion is made between
current and reference configuration, the displacement gradients are sﬁpposed to be
small compared to unity, thus the constitutive behavior of an isotropic polymer
can be described in terms of only two quantities, the bulk and shear moduli. It is
recognized that large strains will induce anisotropy in the molecule orientafion, and
a study on large strain viscoelasticity will have to take that into account, since not
only the equilibrium dilatational behavior will be modified, but also the time shift
will be affected; given a preferential orientation of the polymer chains, a‘deformation
that involves sliding of the molecules along that particular direction will experience
a lower value of viscosity than that associated with another type of motion, and this
will have to be taken into account. Furthermore, it has been frequently stressed
throughout this work that the effects of a thermodynamic transition on the me-
chanical properties (¢f. Eq. 1.1.66) have been ignored. It is intended to include
such features in a more advanced model, e.g., through the use of an appropriate

equation of state for the time-independent material response.

. With the above limitations in mind, it is nonetheless felt that the theory pre-
sented so far allows a reasonable degree of accuracy for the usual manufacturing

conditions, in which the material is cooled through the glass transition, and this
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is probably enough for the formulation of an engineering judgment on the material

properties after the manufacturing process.
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1.2 Numerical analysis

The preceding section 1.1 has addressed the construction of a constitutive
model for the time and temperature dependent properties of amorphous polymers.
It is now of interest to evaluate the predictions of the constitutive assumptions
in model engineering problems, such as the determination of transient and residual
thermal stresses in a polymer cooled across the glass transition. This particular case
has a relevant practical interest since such stresses always arise during the manu-
facturing process of polymeric structural components. In addition, the predictions
of the presented constitutive model need to be compared with those of different,
sometimes less accurate material description, in order to assess the benefits, incon-

veniences or inaccuracies involved in the use of one or the other.

The cons-titlitive model was implemented in a finite element code, FEAP, orig-
inally devised by R. J. Taylor of U.C. Berkeley and made available to our research
group through the courtesy of Dr. Ravichandran of Brown University. As out-
lined in Appendix A, the code was modified so it could accomodate materials with
nonlinearly viscoelastic properties. Since the thermal diffusion problem had to be
addressed concurreﬁtly, the numerical code was structured so that it solyed the two
pro‘blems separately and then iterated the solution until convergence was obtained
for each time step. This iteration scheme was found to be more ‘convenient than
solving the two problems simultaneously since, given the asymmetric nature of the
~ laws of mechanical equilibrium and thermal conduction with respect to the temper-

ature and displacement fields, this latter approach would have led to the solution of
an asymmetric system of equations, which system is notoriously more demanding
on computating time. The thermal problem was solved using a three-step method,

known as Gear’s method with an averaged Crank-Nicolson start, which is well suited
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to address integration of parabolic equations with discontinuous initial boundary
conditions (Wood and Lewis, 1975), such as the case of a sudden drop or rise in

surface temperature.

In order to examine the effect of different features of the pz‘op'osedi material
‘model and to compare the predictions with previous analyses of thermo-viscoelastic
behavior, two additional simpler material models are considered. The first one
is similar to that used by Muki and Sternberg (1961)*, in which the femperature
effects reduce to subtraction of the quasi-elastic thermal strains from the mechanical

strain history, in the form

t

-0 —00 87‘

Oij = /t 2G ({(t) — 5(7-)) 86:'3157') dr + 6;; / K(é(t) _ E(T)) Oekk —\ea)dr ,

where

1 o
€; = € —§5ij6kk | v (1.2.2)

is the deviatoric part of the strain tensor, K(¢) and G(t) are the time dependent
bulk and shear moduli, and £(t) is representative of the internal time scale, related
to that in reference conditions through Eq. 1.1.18. The shear modulus was com-
puted from Heymans’s data (Heymans, 1983) and the bulk modulus from data by
McKinney and Belcher (McKinney and Belcher, 1963) through a numerical proce-
dure presented in Appendix B. In this model, which from now on will be referred
to as the “elementary” model, the glass transition temperature was considered to
be constant at 29 C, and the coefficient of thermal expansion and the heat capacity

were characterized by a discontinuity across T;. The thermal strains were therefore

* The original model used by Sternberg and Muki did not take into account a discontinuity in
the heat capacity across the glass transition.
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computed from

d
2= 4 = 6.0%107*K"! for T > T, = 29.C
dT (1.2.3)

= a, = 25x107*K7! for T < T,

The Fourier law of heat conduction is written in the form**

dT
2 P ——
kV*T = pC, rl (1.2.4)
where (Sandberg and Béckstrém, 1980)
Watt .
= .1 ' : 2.
K 9 % (1.2.5)
pCp = pCpi = 2.09 x 10° forT>T, |
m?K (1.2.6)
= pCpy = 1.29 % 10° —5 for T<T,

In this elementary model, the heat conductivity k was taken to be constant. The
bulk and shear moduli were referenced to 40 C' and the time shift was computed
from Heymans’s data, shown in Fig. 1.5, with a linear dependence of the free volume

on temperature, represented by the solid curve in the same ﬁgur_eT.

Before intfoducing the second simple model, a brief summary of the model
presented in this work is necessary, since the two material desériptions are close1y>
related. The equilibrium equations have the same form as Eq. 1.2.1, the only
difference being the change in the time-independent part of the volumetric response

resulting from the freezing-in of the free volume sites (¢f. section 1.1.4, Eq. 1.1.76).

** The effect of material energy dissipation resulting from viscoelastic behavior was not taken
into account in the energy equation, of which the Fourier law of heat conduction is a simple
form. The justification for this neglect comes from the model validity being restricted only to
small strain deformations; the dissipated energy, which is a quadratic function of the strains,
is therefore very small in comparison to the other terms of the energy equation, such as the
change in the internal energy of the material.

t This implies that the time-temperature shift of the elementary model diverged from the ex-
perimental one below the glass transition.
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Because of this variation, the convolution integrals of Eq. 1.2.1 had to be reduced
to differential equations which were then solved in the discretized time domain?.
The coefficient of heat capacity was taken to have a discontinuity at the glass
transition, but the glass transition itself was considered to occur at a critical value
of fractional free volume, as explained in section 1.1.7, resulting in é preésure and
rate dependent transition temperature*. The transition was assumed to be of second
order, i.e., no finite jump in the equilibrium entropy was allowed. As éxplained in
section 1.1.4, the only required coefficient of thermal expansion was the rubbery
coefficient ay, since the glassy behavior follows automatically from the freezing of
the free volume sites and of the relaxation mechanisms. The coefficient of heat
conduction was kept constant. The value of the time shift was assumed to depend
on the instantaneous value of the free volume, the changes of which are affected
by the mechanical and thermal histories. The initial value for the fraétional free
vplume (Tinitiat = 65 C) was taken to be .0142, as suggested by the Doolittle

equation fit to the experimentally measured time shift (Heymans, 1983) and the
choice gf = 2.32 x 107*C .

In this context, the question arises as to what are the consequences of consid-
ering a material scale of relaxation which depends on the noneqﬁilibrium fractional
free volume, i.e., the history-dependent volume of the vacancies. Within a simplified
approach to the problem, one could assume that the internal time scale depends on

the local value of temperature only, which is equivalent to a dependence of the time
shift on the equilibrium (asymptotic) value of free volume. This approach would

not take into account the viscoelastic “lag” between the temperature changes and

1 The replacement of convolution integrals by differential equations is also extremely advanta-
geous for the reduction in computational time, as explained in Appendix A.

* In these calculations, the critical value of fractional free volume was set to be .0065, i.e., .65
per cent.
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the morphological changes in the polymer, which lag causes the instantaneous time
shift to differ from the “equilibrium” one at a given temperature; in addition, the
stress and strain fields would have no influence on the variations in the time scale of
material felaxation, since the latter would only be temperature-controlled. It should
be noted that the effect of the stress field is an acceleration of the relaxation pro-
cess whére high tensile stresses are present; these stresses induce a dilatation which
increases the local free volume, resulting in a higher molecular moBility‘ (compared
with that which would be present in the case where free volume depended on tem-

perature only).

In order to examine the importance of the coupling between the stress field and
the time scale of relaxation, a second simple material description, denoted here as
semi-elementdry, was considered. In this model, the time shift governing the local
relaxation behavior was assumed to depend on the local temperature according
to the experimental data shown in Fig. 1.5**. All the other features, such as the
discontinuity in the heat capacities and the dependence of the glass transition on

pressure, were the same as in the model presented in section 1.1..

Two example cases were initially considered: 1) the case of an infinitely long
circular cylinder, restrained axially and uniformly at the ends, and 2-) that of a
sphefe; in both cases the material (PVAc) experiences a sudden femperature drop
at the surface. Both the cylinder and the sphere were taken to have a radius of
- two centimeters. The initial temperature was chosen to be —I;65 C and the final
one —5 C, so that the glass transition temperature (Ty ~ +29 C for PVAc) fell in
between the two extremes. Some of the predictions of the three different models

are shown in the following figures.

** In the elementary model the fitted continuous curve, also shown in the same figure, was used.
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FIGURE 1.17 Axial stress in the infinite cylinder (elementary model).
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FIGURE 1.18 Axial stress in the infinite cylinder (proposed model).
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radial stress (bar)

radial stress (bar)

-83-

indicated 2400. }

times in seconds

1401

120]
1166.

100}

®r 212,

j:: \ 88 54 33.6 \
20 (-
L

-20 |
-40

0.605 O.,O1 0.615 .02
radius (m)

FIGURE 1.24 Radial stress in the sphere (elementary model).

300 T T T
indicated times in seconds
250 -
2446,
200} _
1501 4
1166.
100} Jd
212.
.17 88
sol . 4
5.4 336 \
A\
ol A\ >
1 -
-50 { 1 |
0005 0.07 0.015 0.02

radius (m)

FIGURE 1.25 Radial stress in the sphere (proposed model).



tangential stress (bar)

tangential stress (bar)

400
350

300

250

FIGURE 1.26 Tangential stress in the sphere (elementary modef).

-100

-160

-200

FIGURE 1.27 Tangential stress in the sphere (proposed model).

_84-

1 T T
B indicated times in seconds
= - == ——
— 7 ] 3 i
o

17 gg 54 336 \l

l 1
0.01 0.015

radius (m)

|
0.005

T T T

indicated times in seconds

2446.

] )
0.01 -0.015 0.

radius (m)

5305™



-85-

400 T T T T T
proposed model

semi-elementary model -

_—

elementary model
200

1500

1001

tangential stress at surface

-100 L

-150

1 ]
1.00E-02 i .56E3 1 1 .5&E+5§ 1 .66E+01 1.00E+02 1.00E+03 1.00E+04

time (sec)

FIGURE 1.28 Comparison of the three model predictions for the tangential stress
: at the surface.

300 T T T
o semi-elementary model
@ B

250| -
io) )
S .
P . .
O 200 4
-
QC, proposed model
O  1sol 4
T elementary model
()] 100 \
) - - .
0
1.
frer]
th sof i
g
T ol 4
©
1.

-50 1 1 1

1.00E03 T.00E-02 T.00E+00 T00E+02 TO0E+04

time (sec)

FIGURE 1.29 Comparison of the three model predictions for the radial stress at the
center. ‘ '



-86-

-4.35E-08 T

-5.00E-05 [
-1.00E-04 |

-1.50E-04 |

-2.00E-04 | elementary model

-2.50E-04 |
-3.00E-04 |
-3.50E-04 |
-4.00E-04 |

~4.50E-04 proposed model

-5.00E-04 . )
1.00E-04 TO0E-02 TO0E+00 T 00E+02 T.00E+04

time (sec)

FIGURE 1.30 Reduced volume contraction (AV/[V|Tinitiai — Tfinai]]) of the PVAc
sphere cooled from +65 to —5 C.

0.00E+00
0]
0O -1.00E-03
c
«
L -2.00E-03
[§]
GE) -3.00E-03
2 ao00e03
S
. soogoa| limesinseconds

)]
o
& -6.00E-03 |
-
Q .700e03| 1186.
: /
1.
[

-8.00E-03

"\ 24486.
-9.00E-03 . . |
0.005 0.01 0.015 0.02

radius (m)

FIGURE 1.31 Time dependent fractional free volume change in the sphere (proposed
model).



-87-

Some special characteristics of the numerical solution are of interest. The ele-
mentary model predicts a moving discontinuity in the gradient of the stress distri-
Bution, which discontinuity occurs at the point where the material passes through
the glass transition (c¢f. Figs. 1.17, 1.19, 1.26). The “cusp” in the stress distribu-
tion is noticeably smoothed if the predictions of the proposed model are (;onsidered
(c¢f. Figs. 1.18,1.20,1.27). Also, dealing with two different coefficients of thermal
expansion gives rise to difficulties in the numerical analysis, as indicated by the
occasional “glitches” in the stress distribution in Figs. 1.16, 1.25. The predicfions
of the three different models differ by an amount which increases as _the time scale
of the local thermal transients becomes shorter. As shown by Figs. 1.21, 1.29, the
differences in the predicted radial stress on the axis of the cylinder or at the center
of the sphere, i.e., at the position where the temperature drop is slowest, are almost
negligible. In contrast, these differences are larger at the surface (cf. Figs. 1.22,
1.23, 1.28) where the thermal transients closely follow the initial, instantaneous
drop in surface temperature. This fact indicates an additional aspect of the resid-
ual stress problem, namely the interaction between the local relaxatién time scale
and the time scale of the thermal diffusion. In particular, if one considers the time
dependence of the bulk modulus of PVAc (McKinney and Belcher, 1963), shown in
Fig. 1.32, one can see that at a temperature of 40 C the volumetric response of the
polymer reaches equilibrium approximately after 10™2 seconds. Near the surface
of the sphere and of the cylinder, the material experiences a temperature drop in
a time interval of the order of few milliseconds and, furthermore, the relaxation
times become longer once the solid reaches the lower temperatures. At the center
of the sphere, thermal equilibrium is reached in about an hour (the cylinder takes a
little longer), and most of this time is spent at temperatures at which the polymer

can reach voluminal equilibrium within a second or less. As a consequence, the
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departure of the material from an equilibrium curve, characterized by the rubbery
(asymptotic) values of dilatation as a function of temperature, is greater near the
surface than at the center, i.e., is larger where the “distance” of the polymer from
its equilibrium state is more significant; the differences are also larger between the

predictions of the three material models.
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FIGURE 1.32 Bulk modulus of PVAc, referenced to T,y = 40 C.

In order to investigate the interaction between the thermal: transients and the
relaxation behavior, the case of the sphere, one millimeter in radius, cooled from 40
to 35 C and heated from 30 to 35 C, was considered. The choice of temperatures
was made with the desire of comparing the numerical results with experiments
conducted by Kovacs (1958) on the time-dependent thermal expansion of PVAc.
Those experiments were conducted in the following manner: a PVAc specimen was
introduced under vacuum into a glass reservoir, which was connecte’d to a capillary.
The reservoir was subsequently filled with mercury at some initia;l temperature ‘and

then dropped into a liquid bath at a different temperature; from the position of



-89-

the mercury meniscus in the capillary, the time-dependent volume changes were

measured. While it is not our intention to reproduce Kovacs’s results exactlyT,

a qualitative comparison is certainly possible. Kovacs’s experimental results are

shown in Fig. 1.33.
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FIGURE 1.33 Reduced volume change #ﬁ of PVAc, plotted vs. time; data
obtained by Kovacs (1963).

A relevant feature of the data in Fig. 1.33 is the difference between the heating

and cooling curves, which can only be explained in terms of free volume controlled

relaxation behavior (Kovacs, 1963). Furthermore, the time required to reach vo-

luminal equilibrium can be estimated, from the cooling curve, to be about 10*

seconds, much larger than the 10 seconds predicted by the time-temperature shift

of PVAc associated with the time-dependent bulk modulus measured by McKinney

t This would require the exact knowledge of the geometry of the specimen, glass container and
of the volume of mercury, none of which have been reported in Kovacs’s publication.
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and Belcher (1963)1. As a result, some questions arise about the conditions of the
material (PVAc) of which McKinney and Belcher measured the bulk modulus. It is
possible that the polymer was in a swollen state, perhaps due to contamination by
water or solvents; this suspicion is strengthened by the observation that the mate-
rial had a glass transition of about 17 C at atmospheric pressure, far4 fréﬁ being in
-the neighborhood of 29 C which several other measurements (e.g., Heymans, 1983)
indicate as the transition temperature. Consequently, it was decided, to consider
a “modified” bulk modulus in addition to the one extracted from McKinney’s and
Belcher’s data. This bulk modulus was obtained from that used in the calculations
so far through a shift of 2.5 decades along the logarithmic time scale*. For the case
of the sphere of 1 mm in radius, the predictions of the proposed and semi-elementary

models are presented in the following figures.

! The time shift between 40 and 30 C is, for PVAc, of the order of 103; the bulk modulus measured
by McKinney and Belcher reaches equilibrium at t &~ 10™2 seconds, at a temperature of 40 C.
This implies that about 10 seconds are required at 30 C.

* i.e., all the relaxation times were multiplied by 1025 = 313.
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FIGURE 1.36 Radial stress in the 1 mm radius sphere cooled from 40 to 35 C (pro-
posed model, McKinney’s and Belcher’s bulk modulus).
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FIGURE 1.37 Radial stress in the 1 mm radius sphere cooled from 40 to 35 C (pro-
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FIGURE 1.40 Predictions for the tangential stress at the surface of the 1 mm radius
sphere (McKinney’s and Belcher’s bulk modulus).
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sphere (McKinney’s and Belcher’s bulk modulus).
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FIGURE 1.44 Reduced volume change AV/{V|Tinit — Tfinatl] of the 1 mm radius
sphere heated from 30 to 35 C (“modified” bulk modulus). -
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If one restricts attention to the case where the “modified” modulus was used,
one can see that the differences between the predictions of the current and semi-
élementary fnodel are highlighted. In particular, Fig. 1.39 shows that at the center
of the sphere cooled from 40 to 35 C, the highest tensile stress predicted by the semi-
elementary model is about 50 per cent higher than that predicted by the present
theory. Similarly, the cooling and heating curves of McKinney’s and Belcher’s
material are only marginally affected by the choice of material representation, (cf.
Fig. 1.42), whereas, in the case of the “modified” material, these differences are

substantial (¢f. Figs. 1.43, 1.44).

The predicted residual stresses, in the temperature range just examined, fade
to zero since the final temperature (30 C) is above the glass transition ‘andk char-
acterized by active relaxation mechanisms. In order to examine the differences in
the residual stress distribution when the final temperature is low enough to freeze
molecular relaxation, and the two time scales, the one of thermal diffusion and the
one of viscoelastic behavior, are “close” to each other**, a rather extréme case was
considered, namely the case of a PVAc sphere, 1 mm in radius, cooled from +60 to
—5 C. The comparisons between the predictions of the three diﬁ'erent models are
shown in the next pages, and they show relevant differences in the magnitude of
the residual stresses. These results suggest that, when the rnateria,l 1s sﬁb jected to
harsh cooling such as in this last case, the problem of transient and residual thermal

stresses needs to be addressed with a lot of (scientific) care.

** This statement is intended only in a qualitative way, since the local rate of cooling depends on
the global geometry and the distance from the boundaries of the solid, whereas the viscoelastic
time scale is, as a first approximation, a function of the local, changing temperature.



98-

-1.27E-08 r T
Q) .
g’ -5.00E-05 [ .
m N
-8 -1.00E-04 | .
0 semi-elementary model
£ -1.50E-04 | ,
3
=  -200E-04 | 4
]
>

-2.50E-04 | »
8 proposed model
9]
35 -3.00E-04 L -
?

-3.50E-04 | .
- elementary model

-4.00E-04 | 4

-4.50E-04 \ . . )

1.00E07 T.00E-05 T.00E-03 T.00E-01 T.00E+01 T.00E+03"

Log(t) (sec)

FIGURE 1.45 Reduced \folume change AV/[V|Tinit — Tfinat|] of the 1 mm radius
sphere cooled from 460 to -5 C (“modified” bulk modulus).

radial stress at center

200 T T T
150 N
o elementary model
©
8 100} i
o proposed model
0
= sol _4
: "0,‘ semi-elementary model
g o
S - .
©
.
-50 | -
100 sphere 1mm radius +60 ->-5 C
] i 1
1.00E7 —T.00E08 T.00E-03 T.00E-01 T.00E+0T T.00E+03

time (sec)

FIGURE 1.46 Predictions for the radial stress at the center of the 1 mm radius
sphere cooled from +60 to -5 C (“modified” bulk modulus).
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FIGURE 1.47 Predictions for the tangential stress at the surface of the 1 mm radius
sphere cooled from +60 to -5 C (“modified” bulk modulus).
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1.3 Conclusions

A model has been presented which has the capability of describing the changes
in the rheological properties of a polymer at temperatures above and beloW the glass
transition. The model is based on experimentally measurable pararnetelgs, such as
the time-dependent bulk and shear moduli. The material behavior below the glass
transition is fully described through the use of parameters typical of the rubbery
state, such as the rubbery coefficient of thermal expansion «; and thé asymptotic
value of the bulk modulus, K. No glassy coefficient Qf thermal expansion is re-
quired since the glassy behavior is effected by the freezing-in of the frée volume and
of the relaxation mechanisms. The consequences of the model with respect to the
kinetic aspects of the glass transition have been investigated and found in essential
agreement with experimental results. The problem of transient and residual ther-
mal stresses has been addressed in the framework of this material representation
and of two simpler constitutive theories. The difference between the predictions
of the three models have been found to increase as the time scale of the thermal
transients becomes of the same order or smaller than the timé scale of viscoelas-
tic relaxation. Experimental results for the time-dependent thermal expansion of
PVAc have indicated that a careful measurement of the viscoeiastic bulk modulus
is needed; in particular, the predicted volume change sheds some concern on the
conditions in which the experimental results of McKinney and Belcher (1963) were

obtained.

The model neglects the effect of an equilibrium second order transition on the
mechanical response, which could be accomplished readily. A more challenging task
is the inclusion of the effects of molecular reorientation with increasing deformation

on the isotropy and on the time-dependent behavior of the polymer; this will be the
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subject of future work.
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APPENDIX A
The finite element modelling of

a thermorheologically simple material

A.1 Introduction

The following is a brief description of how a nonlinearly viscoelastic model
of material behavior can be implemented into a finite element code. The code
used was FEAP (Finite Element Analysis Program), originally developed at UC
Berkeley and later expanded at Brown University. The relevant feature of the code
is its extreme flexibility, stemming from the computation of the different variables
at the element level. The code was originally capable of nonlinear elastic/plastic
analyses; the nonlinear viscoelastic model was implemented as explained in the
following pages. Since the following description is necessarily :brief, the reader is
referred to specialized textbooks for more detailed explanations of the algorithm.
In particular, the notation used by Zienkiewicz (1977) will be used, since a first
version of the program is included in his book. Also, it has to be noticed that this
model is strictly a small deformation analysis; no distinction between current and
reference configuration is ever made and, furthermore, only two parameters (bulk

and shear moduli) are used to describe the material response. -
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A.2 Finite element theory

The theory of finite elements states that, for a single element, the following

equation must hold
/V [BI{o}dV +{f} = {0} , (A2
where [B] is the matrix relating the strains to the nodal displacements, i.e.,

{e} = [BI{U} , . (A.2.2)

where {U} is the vector of nodal displacements. The vectors {o} ,{€} and {f} are

defined according to the convention adopted in reference 1 as

€Exrz Ozrzx
€yy Oyy .
eZZ r-94
(e} = oy=1|° () = / (NT(B}dV | (A.23)
| Yzy Ory v, :
7yz ‘ Oyz
Yzz Oz

where [N] is the matrix relating the displacements in the interior of the element to
those at the nodes (i.e., the matrix of shape functions) and {b} is the body force

vector field

Ug bT
{u} = (uy> = [N{U} {b} = (Zy) : 7 (A.2.4)

Equation A.2.1 is derived from virtual work principles, so it is valid for any class
of material behavior. In the case of a linearly elastic solid, the stress and strain

. vectors are related through a material dependent matrix [D], such that
{0} = [Di{e} . (A.2.5)
Eq. A.2.1 with Eq. A.2.5 leads to the linear equation

KUY+ {f} = {0} , - (A26)
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where [K] is the stiffness matrix, defined as
K] = / (BIT[D][B]dV . (A.2.7)
Ve

In the case of a thermorheologically simple material, the stress has a functional

dependence on the strain history that can be schematically represented as

(o} =2 {18 | (A28

where £, a parameter of the strain history, is called the internal time of the material,

defined as

é(t)=/0 % , | (A.2.9)

a(t) being the shift factor at time ¢t. In general, a(t) depends on several factors,

including dilatation, solvent concentration and temperature. For such a material

the equilibrium equation for the finite element reads

/v[B]T<I>£=E(t)[{e(£)},£]dV+{f(t)}={0}- (A2.10)

¢=0

A.3 Constitutive model

" In the case of small deformations of an isotropic solid, the mechanical response
can be completely described through two material functions, namely the shear mod-
ulus G(t) and the bulk modulus K(¢). The time dependent behavior of these two

' quantities can be characterized by a Prony-Dirichlet series of the form

M
G(t) = Goo + ZGiexp(-Ef-) (A.3.1)
k=1 )
N _t ) '
_ exn(—) - (A.32
K(t) = Ko + ZK,exp( w) | (A.3.2)

k=1
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A typical functional relation between stresses and strains is written as

) ;
ruet)= [ 1560~ €)+ K6 - 012l agry

1 E=£(1) , , Beu(f') aezx(él)
+§ /(; [3K(£ - f ) - 2G(€ - 5 )][ 35' + 85'

|d¢’ - (A.3.3)
. and similarly for the other components of the stress tensor.

A concise representation of the functional relation A.2.8 can be written in the

form v
{o(H)} = [T{e(s)} O (A34)

where [¥] is a convolution operator, defined as

A]* A2* Ag* 0 0 0
Az* Al* Ag* 0 0 0
] Agx Agpx Agx 0 0 0
WI=1"% 0 0 4s o0 o | (4.39)
0 0 0 0 A 0
0 0 0 0 0 A
in which
£(1) 4
A= [ GEE- )+ KE- €
0 35
€0 1
Aﬂ=/ SIBK(E — €) — 26(€ — &) e
0 o¢
€ '
A= [ ae- 6)66' . (A.3.6)

Denoting the generic element of [¥] as ¥;; * (), the * denoting the convolution on

the argument (o), Eq. A.2.10 can now be rewritten, in component form, as

| /v ByiWy + (BiyUi(€))dV + fi =0 . | (A.3.7)
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The operator [¥] is linear in internal time, i.e., all the nonlinearities collapse onto
Eq. A.2.9, expressing the relation between internal and experimental time. Fur-
ﬁhermore, the matrix [B] is determined once and for all, in the hypothesis of small
deformations, by the shape functions chosen for the finite element. That implies
that [B] does not have any time depehdence and that it can be pulled O;lt of the

convolution integral. Thus, Eq. A.3.7 can be rewritten as

[ BuBywas @@+ fi=0 . (A.3.8)

e

Note also that [¥] remains within the integrand of the volume integral since it is a
function of the local internal time, which ultimately depends on the local histories

of dilatation, solvent concentration and so on.

The 'volume integral of Eq. A.3.8 can be evaluated using numerical integration

at a certain number of quadrature points, i.e.,

. |
[ BuByux WAV = 3w, BuiBiyu s (UC)) (4.39)

g=1

!

where the w 7

s are the integration weights at the QQ quadrature points. At each
quadrature point a convolution needs to be performed, which fact greatly increases

the computation time.
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A.4 Time integration

The time dependence of Eq. A.3.8 involves convolutions in internal time on the
nodal displacements and the time dependent components of the functional [¥].
To achieve a numerical solution, one needs to discretize the time domain, and
consequently the internal time, since the two are related by Eq. A.2.9. Cdnsider
‘therefore a set of instants in time #g,%;, ¢, ....... tn, with t; < t; for 1 < 3. Assume
that the values of the nodal displacements, dilatation, etc., are known up £o t=tr_1.
The‘values of the internal time &g, &1,€2,...,6r—1 are therefore also known, since
the two sets are related through Eq. A.2.9, and the values of the shift factor are
obtainable, when all the relevant quantities are known. One would like to find
the nodal displacements after the next time step, i.e., U;(t,) = Uj({r)‘.\ Since an
iterative search of the solution is required, let it be assumed initially that the value
of the infemal time £(t,) = &, is known, and, to simplify the notation, denote by
U;(p) the values U;(£,), with p = 0, ....,7.; also denote by ¥;; (without the %) the
kernel appearing in the operator ¥ |

1']'*, 1.€.,

Tyy(€) = = G(€) + K(¢) i (A.4.1)

W v~

and similarly for the other components. This kernel will admit, from the represen-
tation for the bulk and shear moduli, a Prony series expansion, i.e., .

¢
M+N

-

V(@) = Y WPean() | (A42)

— y .
p=0

 where Ag can be chosen to be infinitely large in order to retain a constant term in

the summation to represent the possible asymptotic behavior. With these premises,

Eq. A.3.8 can now be rewritten as

O (&) = €),00,(8) 1o
‘/Ve Bk,‘BIJ'/O Z \Ilif;)ezp( M\ ) ajf’ dé'dV + f; =»0 . (A43)

p=0
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By using Eq. A.3.9 and subdividing the convolution integral in 7 subintervals going

from ¢, to {,41, one can then write

T—1M+N Ept1 ' N ,
@ [ —(& = €)\0U;(&') 01, £ _
quBk,BU; ; a6 / cop(—G— T 4 fi=0, (A4
where §; = £(t). If one approximates the displacement history during any time

step with a linear law, s.e.,

oU (¢! , U;
——éf('é ) = constant = U}j(p) = fEZ:i; — &t Ui )p)
_ Uy — U3 ' "
=%, "% (A.4.5)

on the interval ({,,{,+1), then the above integral can be performed exactly in

internal time &', yielding

T—1M+N _ Uj
quBk,BUZ Y \Ixﬁg;)A,, T
p=0 p=0 +1 T Gp
.{emp(-———‘“’ "f"“)) - e:cp(—_(gr/\— 5"))] +fi=0 . (A.4.6)
14 )

If one isolates the term containing the unknowns, i.e., the vector of displacements

Ul, then the above is rewritten as

M+N '
quBszl] Z gy T Tl U U [1' _ exp(Lé"_,l))] =

p—O lil P E - 61’ 1 /\p
1'—2M+N U]
quBszl]Z Z \Ilgcli)/\]’—g £.
prnr S +1 =&,

zp( (A.4.7)

femp( =L bori)y _

P

_('51' - £P) )]
Ap '
The equilibrium equation can be concisely rewritten in the form

1

[KIA{U} = ~fi - f] - (A4.8)
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where A{U} is the current displacement increment,

= (R
quBk,B,,Z\pg;)Ap = 6_1[1.—exp(r—)‘pr-———1—-)] (A.4.9)

is the “incremental” stiffness matrix, f; is the usual body force vector and f; is the
additional nodal load vector arising from the effect of the previous history on the

‘viscoelaétic behavior of the material

T—2M+N U
fr = quBk,B,]Z 3 \Ifi’;),\,,
p=0 p=0 5 +1 = ép
.[emp(:_(_f_f____@_’*'_l)) - emp(M)] i - (A.4.10)
)‘P )‘P

Consider now the contribution of one quadrature point and a single Prony element

of the constitutive operator to the load vector

T—2 UJ _ U]
(P))\ +1 I
1Pq(T) Bszl]pZO\I"kl P é- 41— gp
.[exp(_'i{_’_ﬁtl_))_exp("(f_f—ipl)] ) - (A.4.11)
/\P . AP .

Notice that there are two variations in the above expression from one time step to

the next, .e.,

e the number of terms in the summation;

o the value of the intérnal time, £, (which appears in both exponentials

contained in each member of the summation).

Eventually, one can prove that

Fipa(r +1) = flpg(r) v eop(~ 2571y
P
+Bk,B,,\1:§f;)A,,W;U—[1o ezp(M)] . (A412)
é‘r—ér 1 )\p
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Therefore, it is only necessary to save each component f; ,,, one for each Prony
element and for each quadrature point, instead of the whole displacement history,

thus greatly improving the efficiency of the algorithm.

The above holds if the current internal time at each quadrature point is known,
which is not true in general since the same depends also on the curreﬁt values of the
strains, temperature and possibly solvent concentration. In particular, the nonlin-
early viscoelastic model presented in this work assumes that the free volume changes
are, above the glass transition, a constant fraction of the volumetric changes, which
are computed from the current nodal displacements, which in turn depend on the
current and past free volume content through a Doolittle-type dependence. At
each time step, iteration of the solution is therefore necessary until coanrgence is

achieved.
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APPENDIX B

Numerical conversion of viscoelastic functions

B.1 Preface

Viscoelastic functions represent the time-dependent response of a polymeric
material to a change in applied stress or deformation. Such functions, like the
shear creep compliance or the corresponding relaxation modulus, often exhibit time-
dependent behavior over several decades of time, with the initial and aéymptotic
response that can differ in orders of magnitude. The computation of the modulus
from creep data or vice versa has been investigated in the past, mainly because of its
ili—poéedness and high vulnerability to problems of numerical stability and conver-
gence. One of the most cited works on this subject in.the context of viscoelasticity
is the study by Hopkins and Hamming (1957), who defined an algorithm that still

is among the most accurate ones for the handling of the stability issues.

As an example, consider‘ the case of the shear modulus and corresponding
compliance. According to the linear theory of viscoelasticity, the shear stress and

the shear strain in a viscoelastic solid are related through the convolution integral

t .
Oe,
)= [ e —n22 Wy (B.1.1)
0- on
where p(t) is the time dependent shear modulus of the material. Conversely, one

can write an equation for the dependence of the strain on the stress history, namely
t

2e.4(t) = . J(t - n)%—"’;@dn , - (B.1.2)
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J(t) being the time-dependent shear compliance.

The two functions J(t) and p(t) cannot therefore be independent but are related
through a convolution equation. If one takes the Laplace transform of Eq. B.1.2

and B.1.1, with zero initial conditions one obtains

2€,4(3) = 8J(8)Try(s) . (B.1.3)

Toy(8) = 280(s)Egy(s) | (B.1.4)

where €,4(8), Tzy(s), &(s) and J(s) are the Laplace transforms of the shear strain,
shear stress, shear modulus and shear compliance. The two equations combined

yield

STey(8)€zy(s) = 1, (B.1.5)

which, upon application of the inverse Laplace transformation, can be written as

t
[ o= wutman =t , | (B.1.6a)
0
or, equivalently,
t :
jo p(t—n)J(n)dn=t . S (B.1.6b)

Eq. B.1.6 shows that, aside from stability issues of the numerical inversion proce-

. dure, it is possible to find the inverse of a viscoelastic function.
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B.2 The Hopkins-Hamming algorithm

The integral of Eq. B.1.6 is performed by discretizing the interval (0,t) into
subintervals t;,¢;4+1, with ¢ = 0,1, ....n. Furthermore, since J(t) or u(t) can be the

input function, it is better to write the integral in a more general form, i;e.,,

| #e=nwinan =t , B2

where the function (%) is assumed to be known at the points tg,?1,...t,, and ¢(t)
is the function that has to be generated. The function ¥ can be either a modulus
or a compliance depending on the available experimentzﬂ data; the dual nature of
Eq. B.1.6a and B.1.6b allows the application of the forthcoming algorithm to both

cases.
If one denotes by f(t) the quantity

£(t) = / $(m)dn . (B22)

and discretizes the integral of B.2.1 in the form

tnt1
s = / S(m)(tnss — n)dn =

n tita ;
=3 [ bnbltns —mdn  (B23)
i=p Yt
then all the individual integrals in the summation can be approximated by
tit tiyt .
| 80 tnss = mdn = (i) [ Fltnis =iy =
t; t;

= —(tiz1/2)[f(tns1 — tiv1) = ftnt1 — )] - (B.24)
where t;1,/; is the average %(t,- + ti+1). Solving for ¢(tn.41/2), one obtains

nt1 = Sico $(tiv1/2)[f(Ensr — 1) = f(tnta —‘ti+1)]_
f(tn+1 - tn) . ’

t .
$(tns1/2) = (B.2.5)
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where

t1
P1/2 = Ok ; (B.2.6)

under the provision that such ratio is defined, which occurs whenever ¥(0) is

nonzero. The difference f(tn+1 —ti) — f(fn+1 — ti+1) can be written as

Ing1—

fltngr — i) — f(tng1 — tiga) = / Y(n)dn . (B.2.7)

tnpri—=tiqr

If the points t; are generally distributed, one or both of the values (¢,,4+; — ti41) or
(ta+1 —t;) may be less than or equal to ¢o, the first point at which ¢(t) is known
from experimental data. Therefore, it is necessary to interpolate the function Y(t)
between ¢t = 0 and ¢t = t3. Two different choices seem reasonable: to define the
value of 1(t) at ¢ = 0 to be equal to the value ¥(to), or to compute ¥(0) using a

linear interpolation of the function between ¢y and t;, 1.e.,

to  P(t1) —¥(to)
ti—ty  ti —tp )

$(0) = (o) —

(B.2.8)

The linear interpolation approach was found to be very sensitive to numerical noise
in the inversion procedure. If the cycle of inversion is repeated several times T,
linear interpolation tends to create a divergence of the numerical solution from the
correct} one near time ¢ = 0. The choice ¥(0) = ¥(to) gives a better stability than

the linear interpolation approch.

Another problem one has to confront for the inversion of viscoelastic functions
is the presence of an experimental error. This is particularly true when one has to

compute a compliance from experimental data for the modulus; for a viscoelastic

1 i.e., computing the compliance from the modulus, recomputing the modulus from the inverted
compliance and repeating this procedure starting with the newly computed modulus.

¥ At time £ = 0 there is a correct solution, which can be computed from ¢(0)%‘t£t=0 =1
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material, the long time shear modulus is considerably smaller than the initial re-
sponse, sometimes differing by a few orders of magnitude. Therefore, even a very
small absolute error in the determination of the long time behavior of the modulus
can be a large percent error, the presence of which is then reflected in the curve
for the compliance obtained through the numerical inversion. To over(;ome this
problem, it was found useful to smooth the experimental data before performing
the numerical inversion. This smoothing was achieved by running a five-point win-
dow through the set of experimental points, using a least-square method to adapt
a third degree polynomial to the values of these points, and cor‘nputing, from the
interpolating function, a new value for the midpoint. Thé process can be repeated
a few times, and also the degree of the polynomial can be lowered, to increase the
damping of the irregularities where the curve has a low grade of smoothness. The
curve so obtained can be indistiguishable from the experimental one within plotting

accuracy, but the outcome of the inversion procedure can be notably improved.

B.3 Conversion of viscoelastic functions

The behavi.orA of an isotropic viscoelastic solid can be described in different ways
using different choices for the pair of material parameters that al;e needed. One can
use Young’s modulus and shear modulus, bulk and shear, or Poisson’s ratio with
either bulk or Young’s modulus. Obviously, the material para.metefs caﬁnot be

independent and are related through integral equations that are the viscoelastic
analogs of the linearly elastic laws. A typical example is the relation that gives
Young’s modulus E(?) in terms of bulk and shear moduli, K(¢) and u(t), which, in

one of its forms, reads

/0lt E(t — n)[BK(r) + p(r))dr = /(; 9K(t — T)d/;—gj-)dT : (B.3.1)
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The above expression can be cast in other equivalent forms, all of them resulting
from the manipulation of the relation that connects the Laplace transforms of the

moduli, t.e.,

E(s)[3K(s) + u(s)] = 9K (s)u(s)s .  (B32)

It has to be noted that Eq. B.3.1 is formally equivalent to the convolution equation
that relates a modulus to the corresponding compliance, with the only difference
that the known function inside the integral is a combination of other viscoelastic
moduli, and that the known side of the equation is itself a convolution in time of bulk
and shear moduli. The Hopkins-Hamming algorithm, with very few fnodiﬁcations,
can therefore be used to compute the time-dependent Young’s modulus. The largest
change in the numerical procedure is the replacement of the vector of ¢;’s with the
values of the bulk-shear convolution, which needs to be computed at several instants

in time.

B.4 Application to experimental data

McKinney and Belcher (1963) experimentally determined. the complex bulk
compliance of PVAc under sinusoidal excitation. From those data, the bﬁlk modulus
can be extracted using a numerical procedure. If one denotes By M(t) the bulk
compliance, M'(w) the storage compliance, i.e., the compliance in phase with the
- load under sinusoidal excitation, and by M, the glassy (short terfn) compliance, then

the two quantities M(t) and M'(w) are related through the following expression*

o0 " __
M(t) =M, + %/0 ﬂ-u—)—]-\-/[—g-sin(wt)dw - (B41)

*

cfr. Ferry, “Viscoelastic Properties of Polymers”, Third Edition, p. 70.
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The inversion task can be performed quite easily if one expresses the storage

compliance in form of a Prony series in w-space, 1.e.,

N
—Ww
M'(w) =M, + ZMi%P(;) ,

(B.4.2)

which can be easily done using an algorithm developed by Emri (1985). ’Ii‘he‘ above

integral can then be solved in close form for each contributing exponential.

3.8 L

3.8 L

34

3zl

28 L

26}

24 L

22

Storage compliance (1/bar*105)

oF

-1 10
frequency (Hz)

FIGURE B.1 Experimental bulk storage compliance (bar™! x 10°) referenced to 50

C (McKinney and Belcher, 1963).

The experimental bulk storage compliance is shown in Fig. B.l,‘with the fre-

quency scale referenced to a temperature of 50 C. The storage compliance was

approximated in terms of a Prony series, and from there the bulk compliance was

obtained. This compliance, shown in Fig. B.2, was then inverted, and the result

of the inversion is shown in Fig. B.3. The time scale of the bulk modulus is now

referenced to 40 C, using time-temperature shift data by Heymans, found by ex-

perimental measurements of the shear compliance, shown in Fig. B.4. The inverted

shear modulus is also shown in Fig. B.5.
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FIGURE B.2 Computed bulk compliance (bar™! x 10°) referenced to 40 C upon time
shifting based on experimental data by Heymans (1983).
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FIGURE B.3 Inverted bulk modulus (bar) referenced to 40 C.
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FIGURE B.4 Experimental shear compliance (bar~!) at 40 C (Heymaﬁs, 1983).
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FIGURE B.5 Inverted shear modulus (bar) referenced to 40 C.
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APPENDIX C

Stochastic Integration

‘A brief, and therefore incomplete, introduction to stochastic integration will
be presented in this appendix; for a more detailed exposure, the reader can refer to

specialized textbooks, such as Gardiner’s (1985).

A continuous Markov process is a process influenced by one or more stochastic

(random) variables, with the following features:

e the conditional probability that a process is in a certain state S at time

| t, given that the same process was in states Sy, S;, S3, SN at instants
t1,t2, ceene. ,tn, where t > ¢, >ty > ... > tn, depends only on the most
recent state Sp, t.e., the process has no memory beyoﬁd the rﬁost recent

event. If one denotes such conditional probability as

p(S,t(S1,%1), (S2,t2),...,(SNn,tN)), then one has

<

p(S,tl(Sl,tx»),(Sz,tz),---,(SN,tN))=P(5,t151,t1)‘; ()

o if p(S,t+ At|Z,t) is the conditional probability that the process is in the
state S at time ¢t + At, given the fact that the same process was in state

Z at time t (At > 0), then for every e > 0,

lim —/ p(S,t+At|Z,6dS = 0 . (C.2)
|S—Z|>¢
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Thus, the probability of the process being in a state S different from Z at

time t + At tends to zero faster than At, as At — 0.

Under appropriate conditions, a continuous Markov process can be Aescribed
by a differential equation known as the Fokker-Planck equation. These conditions
require the finiteness of the expected increment and variance of the stochastic pro-
cess. If one restricts attention to processes that can be described by one single

variable, e.g., z, these conditions read

) 1
Alilllo ~ /lz_z|<6(x —z) p(z,t + At|z,t) dz = A(z,t) + O(e) (C.3)
and
. 1 2 _ .
Al?_n-»o < [z_z‘<f(x —2)* p(z,t + At|z,t) dz = B(z,t)+ O(e) , (C4)

where A(z,t) and B(z,t) are finite functions of position and time. If the above con-
ditions are met, then the Markov process can be described by a differential equation,
known as the forward Fokker-Planck equation, which describes the changes in the
probability distribution p(z,t), ¢.e., the function giving the probébility of the pro-
cess being in the state z at time ¢. Such an equation, for a process characterized

by a single variable, can be written as

Op(a,t) _ " 9Ax,p(a,t) , 8Bz, Op(a,1)
ot - Oz ot?

(C.5)

. The proof of such a connection is omitted here; any specialized textbook can be

consulted for the demonstration of Eq. C.5.

A particular kind of random process is stochastic white noise, of which the

variations have a null expected value and variance proportional to time, i.e.,

E(db) = 0 , . (C.6)
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and

B(ldgP) = dt (©n

where E(z) is used to denote the expected value of the random variable z. The

following stochastic integral will now be considered

t=p '
7= [ o . - (©)

This. integral is different from the known Riemann and Lebesgue integrals in the
fact that the integration variable, b(t), is continuous but does not have a continuous
derivative anywhere. There are two interpretations to this stochastic integral, and
they are known as the Stratonovich (S) and the Itd (1) interpretations.'» They are

given as follows:

v=N

I= [o@ea = fm S o0w) (C9)
v=0 -
and
v v=N 1 ‘
5= [o@e)de) = Jm Y 3l0(8) + (bt [oesn) - 4] | (C10)
where
A; = u=nl1%xw(t,,+1 —t,) , : (C.11)
and
t() = tN = ﬂ . | (Cl?.)

One can reduce these stochastic integrals to standard integrals. G(t¢) will here

denote the indefinite integral of g(t), i.e.,

G(t) = / o(t)dt .  (ca3)
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A (nontrivial) theorem of stochastic analysis proves that the Stratonovich and Ito

integrals can be rewritten in terms of nonrandom, classical variables as

B
I = [o@e)a = 6t - Gt - 5 [ gttnar ,  (Cy

[ 2

and
5 = [ oe)dit) = Gta)) - Gt | (C15)
where ¢'(t) is the derivative of the function g(t). The lengthy proof of this theorem

will be omitted here.

Attention is next devoted to the differences of these two kinds of integrals on
the integration of stochastic differential equations. Consider a stochastic differential

equation of the form

dz = A(z,t)dt + B(z,t)db(t) . (C.16)

The.stdchastic differential equation C.16 can be transformed into an ordinary
differential equation by evaluating its expected value, 1.e., by considéring E(Az).
The two interpretations of the stochastic equation, due to It6 and Stratonovich,
attribute different features to the random process z(t). The to interpretation
assumes that dz(t) and db(t) are independent; in this case the random process
is denoted as nonanticipating. The Stratonovich integral states insvteéd that the
increments dz(t) and db(t) are dependent (anticipating process). In order to see
that, one should consider the Stratonovich differential intepretation of the stochastic

- equation, which can be written as
dz = A(z,t)dt + -;—[B(:v + dz,t +dt) + B(z,t)|db(t) . ~ (C.17)

Expanding B(z) in a Taylor series, assuming B(z+dz,t+dt|z,t) = B(z+dz, t|z,t)+
o(dt) and neglecting all second or larger powers of dT', one has

dB(z,t)

dz ~ A(z,t)dt + [B(z,t) + % ]
2 dz

dz)db(t) . (C.18)
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Collecting the terms multiplying dz, one obtains

o A(x t)dt + B(x, t)db(t)
dz = my B:x 3 gb0) (C.19)

If one expands the denominator in a geometric series for small values of the quantity

%quz—’tldb(t), one can write

xr

ds = |A(z,)dt + B(s, t)ab(t)]| [1 - ;dB(x ,1)

db(t) + o(db)]

~ Az, tydt + Bz, Hap)] [1 - % dB(z, 1)

db(t)] (C.20)

Furthermore, if one takes the expected value of Eq. C.20, recalling that E(db(t)) =
E(db(t))? = At, and discarding terms of higher order in At, one obtains

E(Ax) = Az, )Mt + Bz, (M) + 2 Blat) 2 papn))? =
= [A(z,t) + 2Bz, ) 2BED) Ay (C.21)
2 dz
Analogously, the It6 interpretation of the stochastic equation yields
E(Az) = A(z,t)At . (C.22)

Eq. C.21 and C.22 represent two ordinary differential equations in the variable z,

which can be solved by standard methods.

The application of the theory of stochastic integration to the time-dependent
free volume changes will now be shown in reference to the case when the parameter
A, representing the amplitude of the random thermal vibrations, is pressure or
temperature dependent. Recall the governing equation for the free volume changes,

written as

1 [A .
df; = ;(fi,oo“-fi)e—B(l/f—I/f°)dt+ ;fidb _ (C.23)
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If one takes the expected value of this expression according to the Stratonovich

integration rule, in the case when the parameter A is a constant, one obtains (cf.

sect. 1.1.3)
1 —B(1/f— A -
B(Af) = [~(fiew = f)e™PAN1 4 Zglar. . (C24)

Conversely, if one assumes an effect of temperature and pressure on A, s.e., A =

A(p,T), then one also has to differentiate A with respect to f, i.e.,i
dA 0A 8_T 0A @

& T aTof T opaf (€25)

where the derivative represents the effect which the free volume ﬂuciuations have

on the value of A. In sect. 1.1.3 such an effect was assumed to be null; z.e., %’} = 0;

if one relaxes that restriction, Eq. C.24 becomes
N oo [Yop  _ pye-Bair-1/f) , Ay P (OAOT  0AOp
E(Aft) - Ti'(fl,OO fl)e +2Tif!+4Ti(aT af + 6P af>]At
' 4 (C.26)

For a material with time-dependent properties, the values of g—?— and g—? need to be
expressed in terms of rate equations involving the appropriate material parameters.
If one ignores all time dependence associated with such derivatives and takes their

instantaneous values, then

aT 1 1 Ko ‘ :
B = a— == a 6_ = y= 3 ) (C.Z?)
of = $FE 8 Kew

where Ky = Koo+ Y; K, is the instantaneous (¢ = 0%) value of the bulk modulus,

and
@ _ ap Bekk _ {(_'9_
af N 6ek k 5f - .

K, represents the asymptotic value of the bulk modulus in the rubbery state, o

(C.28)

is the ratio AVfree/AViotar and a; is the rubbery coefficient of thermal expansion.

Eq. C.26 then reads

E(Af) = [Z(fio = fi)e P00 4 2 gy

27’,‘
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CHAPTER 2

Failure of adhesive bonds

2.1 Introduction

The failure of structural materials is generally a consequence of the phenomenon
of plastic deformation. When plastic flow is spread over a region of very‘small size
compared to the rest of the solid, and generation and growth of discontinuities in
the material are effected, one tends to address the problem in terms of the theory
of fracture and crack propagation. The constitutive behavior of the material plays
a predominant role in these phenomena and, particularly in the case of polymers,
the interaction between the continuum breakdown and the plastic-like deformation
is one of the main factors governing the acceleration or deceleration of the failure
process. Polymer«ic‘solids are affected by temperature and rate-dependent proper-
ties, often varying over a time scale of several orders of magnitude, which effect a

S ‘

strong dependence of the rate of fracture or crack propagation on the applied load

history and its interaction with the viscoelastic response of the material.

The work presented here tries to focus attention on the phenomenon of steady
crack propagation in viscoelastic materials, such as polymers with time-dependent
properties. The propagation of a planar discontinuity in a polymeric solid is usu-
ally addressed in the context of two different designations, namely crack propagation

and/or craze growth. A craze differs from a crack through the presence of a residual
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material connectivity joining the two parts of the material on opposite sides of the
discontinuity, while, in the case of a crack, the separation of the solid is complete
(traction-free crack surfaces). In addition to the morphological differences, the roles
played by these two phenomena also differ: when a crack propagates, the growing
discontinuity ultimately leads to the failure of the structural member, whereas when
multiple generation of randomly arranged crazes, occurs (a phenomenon which is de-
noted as “crazing” ), there is an alleviation of the local stress levels and conversion of
mechanical energy into plastic work, which ultimately leads to a “tougher” material
behavior. Also, cracks propagating in polymers very often have craze-like cohesive
zones in front of them, which illustrates again the similarity and inseparability of

these two kinds of failure phenomena.

undamaged polymer

direction of moving crack

crack tip craze tip

FIGURE 2.1 Schematic representation of a crack, preceded by a craze-like cohesive
zone, propagating in a polymer.
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FIGURE 2.2 Schematization of the Taylor instability at the craze front. (a) craze
geometry; (b) top view of the craze front; (c¢) instability of the craze
front shown growing; (d) new fibrils created.

When a polymer fails by fracture, the departure of the material behavior from a
linear continuum description is often approximated as taking place only in a narrow
strip in front of the crack tip. This approximation, questionable in the case of metal

plasticity * where the nonlinear material behavior governs over a spread zone around

* except in sheet geometries where plastic strain localization occurs.
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the tip, is often appropriate in the case of polymeric materials, as is shown by the
morphological features of crazes. A craze is a region in which the polymer departs
from being a continuous solid and finds it energetically “more convenient” to break
down into elongated chunks by which the polymer flows parallel to the direction of
maximum tensile stress. The aspect ratio of the thin region in which this occurs,
" measured in terms of length over maximum thickness, can achieve valﬁgs of several
hundreds (Lauterwasser and Kramer, 1979). In this small volume, voids develop and
elongate perpendicularly to the crack plane, forming characteristic features called
fibrils, which connect the crack faces just ahead of the tip. These ﬁbrils dissipate
energy, absorb plastic work and are responsible for the toughness of polymers in

fracture.

It has been suggested (Argon and Salama, 1977) that the onset 6f failure in
the crazé zone is the consequence of an instability similar to the Taylor meniscus
instability, in which the wavefront of the damage zone develops a series of protrud-
ing “fingers”. This situation is depicted in Fig. 2.2b, where a cross section of the
craze front in the craze plane is shown; Figs. 2.2c and 2.2d sHow the elongation
and successive sépara.tion of these fingers as isolated chunks of polymer. Exper-
imental investigations relying on transmission electron microscopy (Léuterwasser
and Kramer, 1979) show that there are two principal mechanisﬁs of fibril elonga-
tion, t.e., fibril creep and drawing of virgin polymeric material from the craze faces.
Under the particular conditions examined when the latter mechanism was found to
be predominant, the strains achieved in the fibrils were measured to be of the order
of several hundred per cent. These observations cast serious doubts on the effective-
ness of linear constitutive theories for the description of the material behavior in
the craze volume, since these theories rely on small strain assumptions. A nonlinear

theory of viscoelastic behavior, as the one used in this work, seems therefore to hold
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more promise for the analysis of the mechanical response of polymers at the tip of

a crack and for the prediction of its influence on the rate of crack propagation.

It is conceivable that the morphology of the material at the crack tip strictly
resembles that typical of a craze. In fact, past studies on the subject H:ave often
assumed the presence of a thin cohesive zone at the crack tip, a zone which governs
the propagation of the crack in response to the applied loads. Investigating the
mechanics of cracks in elastic bodies, Barenblatt (1962) and Dugdale (1960) were
able to relate the amplitude of the far-field loading to the value of the uniformly dis-
tributed stresses in the cohesive zone. Similarly, the model of Verheulpen-Heymans
and Bauwens (1976) assumes a time-independent stress distribution featuring two
neighboring intervals of constant cohesive stress, of which the one carrying the
larger loads was closer to the crack tip. An attempt to include a constitutive model
based on molecular concepts for the degradation of the material is contained in the
work by Goodier and Kanninen (1966), which evaluated the cohesive forces using
nonlinear atomic separation laws. A common denominator of these studies is the
absence of time-dependence in the failure process, which was ﬁfst introduced by
Williams (1963)v, by assuming a model of discontinuous crack growth governed by a
finite strain criterion, and by Mueller and Knauss (1971), who tobk into account the
effect of the viscoelastically unloading tractions at the crack tip in the discrete jump
propagation. Later, Knauss (1974) developed a model of continuous crack ’gr_owth
in which the time-dependent behavior of the material surrounding the failure zone
could be taken into account, but the distribution of loadé in the decohesion zone

was still considered to be time-independent.

The study presented here has the objective of studying the consequences of a

rate-dependent nonlinear viscoelastic behavior in the propagation of a crack in a
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polymer, assuming the existence of a craze-like cohesive zone in front of the crack
tip. The topology of deformation is assumed to be similar to that presented in
Fig. 2.2. The volume of polymer entering the cohesive zone is confined to within
a thin strip in front of the propagating crack. Two softening mechanisms, namely
void growth and free-volume induced softening, are considered to be aﬁ'écting the
nonlinearly viscoelasti¢c behavior of the polymer in the failure zone. The undam-
aged material surrounding the propagating crack will be characterized by a linear

(possibly viscoelastic) response.

This investigation can also be easily related to the failure of adhesive bonds,
where the decohesion in the polymeric adhesive is responsible for the separation
of generally much stiffer adherends (¢fr. Fig. 2.3); this alternate view is possible
since the effects of the nonlinear material behavior in the failure zone and the linear
response of the sﬁrrounding volume are taken into account separately, allowing the
study of cases where the two sets of constitutive properties are completely different.
The adhesion problem will be considered in this work, with the additional advantage
of the related terminology creating a clear distinction between the material which
becomes part of the failure zone (adhesive) and the surrounding, undamaged solid
(adherends). The beginning of the cohesive zone will be designated as “craze tip”

and the end of it as “crack tiP” (see Fig. 2.1).

The method of solution follows the approach presented by Knauss (1974) in
~ which the time-dependent compliance of the polymer surrounding the propagating
crack is taken into account by using a complex potential solution and a time convo-
lution to compute the crack opening displacement. The dependence of the far-field
loading parameter, the stress intensity factor at failure, on the values of crack speed

is inferred from the imposition of a bounded strain at the craze tip. The onset
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adherend

adhesive layer

direction of moving crack

=D

FIGURE 2.3 Schematic representation of a crack propagating through an adhesive
layer.

of void growth depends on a critical value of strain, €., meaénred at the craze
tip and normal to the plane of propagation; the void growth itself is considered
to be time-independent and affected by local strain values only.: The length of the
cohesive zone and the initial cohesive stress are also part of the solution, which is

presented for two values of the critical strain e, namely .3 and 1 per cent.
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2.2 Schematization of the problem

The mathematical formulation of the problem, shown schematically in Fig. 2.1,
considers the adhesive layer (or, in the case of a crack propagating in a.polymer,
the strip of material which enters the cohesive zone) as a thin layer, haviﬁg a small
thickness compared to the other length scale, e.g., the extent of the cohesive zone.
The problem can then be separated into two parts, namely the 1ineaf deformation of
the adherends due to the effect of the cohesive stresses and the nonlinear mechanical
response of the adhesive layer to the opening of the crack faces and the consequent

straining,.

The first part of the problem can be reduced to that of a linearly elastic or
viscoelastic half—space, representing one of the adherends, on which mixed boundary
conditions are specified in terms of tractions T(z) and displacements v(z) on the
undeformed configuration, i.e., on the straight line delimiting the half-spa.ce. The

original problem is shown in Fig. 2.3 and its schematization in Fig. 2.4.

In front of the craze tip, the crack-normal displacement of the adherends is
taken to be null. Thé tractions due to the nonlinear adhesive act on the crack faces
between the craze and crack tips while the crack faces are load-free behina the crack
tip. | )

The second part of the problem, sketched in Fig. 2.5, concerns the constitutive
response of the adhesive in reaction to a given strain history. Since the crack is
considered to be propagating at constant speed in the adhesive, a reference system
mdving with the crack is appropriate. In such a reference system, centered at the
onset of void growth (craze tip), the strip material passes into nonlinear material

behavior at the position z = 0 on the crack axis; ahead of this point it obeys a
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T = T{v(x,dx/dt))

FIGURE 2.4 Schematization of the linear problem for the adherend deformation.

linearly viscoelastic law. The cohesive zone, the presence of which allows to satisfy
the finiteness condition at the crack tip (Barenblatt, 1962), is characterized by the

nonlinear constitutive response of the adhesive.

2.3 The constitutive response of the adhesive

The two relevant features affecting the material behavior in the failure zone
are the generation and growth of voids, plus the eﬁ'ecté of the high strains on
the viscoelastic behavior of the undamaged material; both of these aspects need
to be taken into consideration. These two features are not independent of each
other, since nonlinearly viscoelastic theories of polymeric behavior (Knauss and

Emri, 1981; Shay and Caruthers, 1986) show that the mechanical history affects
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d(x) = V(x,dx/dt) + h

adhesive layer

X

FIGURE 2.5 Nonlinear viscoelastic behavior of the adhesive layer in response to the
' displacement V = V(z,¢) of the adherends (the half-thickness of the
adhesive in the undeformed configuration is denoted by h).

the relaxation behavior through a dilatation-induced time shift. The capability of
the polymer to flow consequently affects the phenomenon of void growth at the tip
of the failure zone. Since a consistent theory of large strain viscoelastié behavior,
including the induced anisotropy in the material response due to large molecule
orientation, is still in the making, one has to make simplifications in the mechanical
. problem. For approximation purposes, it will be assumed here that void growth
and free volume induced softening of the polymer are two independent phenomena;
the first one will be assumed to depend on the current strain level only and not on
the past history or on other parameters such as the current free volume, while the
second one, the nonlinear viscoelastic behavior of the undamaged material, will be

taken to depend only on the strain history but be independent of the volume of the
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voids in the failure zone. Consequently, the cumulative damage due to these two
factors can be assumed to be additive, i.e., the effective reduction in stress levels is
taken to be that due to free-volume induced softening, times a factor that takes into
account the volume of voids currently present in the material and which. depends

solely on the current value of the strain.

An experimental attempt to investigate the degradation of the material re-
sponse due to void growth was carried out in our laboratories by M. Parvin (Knauss
and Parvin, 1989), using an interferometric technique to infer the stresses in an ad-
hesive layer sandwiched between two stiff adherends which are pulled épart. One of
the quantities that is difficult to determine in these experiments is the local thick-
ness of the adhesive layer, which in turn determines the local strains from the local
displacements. It was therefore decided to allow for a scaling of the effect of void
growth, relying on a parametric curve fitted to Parvin’s data, the parameter being
the maximum value of the strain at failure, €,q;. In the presented computations,

the value of €,,,, was set to six percent.

The free-volume induced softening is taken into account by formulating the
cohesive response Kof‘the adhesive in terms of the nonlinear theory of viscoelasticity
of Knauss and Emri (1981). In this description, the time dependence of the rheo-
logical response in the viscoelz;stic adhesive is modified through a time-multiplying

factor a;, which depends on the value of mechanical dilatation through the Doolittle

' equation

B 1 1 -
m(.J?_.E) , (2.3.1)

Log(ay) =
where f is the fractional free volume and fq is the free volume at reference con-

ditions. The time shift factor modifies the experimental time scale to produce an

internal time scale for the polymer, which is the one ultimately governing the vis-
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coelastic response. In the presence of mechanical dilatation, one assumes that such

dilatation contributes to an increase in free volume according to
f = fo+6exx 7 (2.3.2)

exr being the dilatational strain and § the ratio between free volume and total
volume changes, which ranges between 0 and 1. For the model éase considered,
values of .015 for f; and .997 for B were used. The value of § was set to unity. The
reason for this choice of parameters is that they affect the non-linear viscoelastic
behavior of the material moduli, shown in Figs. 2.6 and 2.7, giving rise to softening
behavior, as shown in Fig. 2.8, where the predicted tensile stress for a uniaxial

tension test is shown for the linear and nonlinear viscoelastic theory.
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FIGURE 2.6 Bulk Compliance
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FIGURE 2.7 Young’s modulus

In the failure zone, as shown in Fig. 2.2, the adhesive is modelled as undergoing
a uniaxial extension; this deformation is intended to represent the strain history of
the fibrils, which are strained perpendicularly to the plane of the crack and with
no restraint to lateral contraction. Since the crack is assumed__ to be propagating
steadily, the convolution iﬁtegrals necessary to compute the viscoelasﬁic response
of the solid can be written in‘terms of line integrals, where the pé,th of integration
follows a material particle from the moment it enters the failure zone. In a refer-
. ence system moving with the crack, with the craze tip located at £ = 0 and the
cohesive zone located on the negative = axis, the following equations represent the

constitutive behavior of the adhesive:

oyy(z) = ¥ ( ) [70 + / " E(¢(z) - s(x'))%dx'] , (2.3.3)

5ma:c

&(x) :
exk(z) =€ + /; M(E(m) - {(x')) ?gﬁdz' , (2.3.4)
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FIGURE 2.8 Comparison of linearly and non linearly viscoelastic response for a uni-
axial tension test. '

where £ is the internal time of the material particle, referenced to the arrival at the

craze tip, t.e.,

‘4 _ t_d_‘r_ _ z dz |
“‘”‘A () /o Zalfor flem(@)) (2:35)

¢ represents the velocity of the propagating crack, E(t) the time-dependent -Young’s
modulué, M(t) the bulk complia;lce and €y and o are the stress and strain at the
beginning of the cohesive zone (i.e., at z = 0 in a reference system moving with
the crack). It has to be noted that Eq. 2.3.3 implies a uniaxial strétch of the fibrils
in the failure zone, as is suggested from experimental evidence. _’The value for ¢q,
which represents the initial strain at the tip of the craze, is that which delimits the

boundary between linear and nonlinear viscoelastic behavior.

The material properties at each point of the cohesive zone depend on the local
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value of free volume, through Eq. 2.3.2, which is a function through 2.3.4 of the
local dilatation, which in turn requires the local properties in order to be computed.
A careful integration procedure is therefore required in order to accurately capture
the nonlinear material response. The set of constitutive equations was ihtegrated
using a Runge-Kutta scheme which computed the time shift as a combination of
‘the time shifts at the two extremes and at the midpoint of the current interval
along the craze. The stability of the resulting solution, with respect tb variations in
the opening profile due to successive iterations, was excellent; convergence was also
checked by changing the mesh size, which typically consisted of 300 points along

the failure zone.

In the above integrals, the mechanical history before a material point reaches
the failure zone is partly ignored; the effect of the previous history on fhe material
qondition in the failure zone is approximated by the constants o and ¢, rather
than having a linearly viscoelastic dependence on the strain and stress history in
front of the running crack. A justification for this approximatio,ﬁ can be found in
the highlighting of the time-dependent behavior in the failure Zone by nonlinear
viscoelasticity of the adhesive and also in the high stress gradients which are gen-
erated by the void-growth function. The effect of €p on the dila.tation_-iriduced time
shift was not taken into account, and it was assumed that the méterial entered the
decohesion zone with a content of free volume equal to the reference value, f;. The

- value of gy was prescribed according to a criterion discussed below.

The multiplicative factor ¥ present in Eq. 2.3.3 represents the effect of void
growth on the material response. \Il(fn’-:’:) is a decreasing function of ¢,,, and
varying between unity and zero; the uniaxial strain in the adhesive layer €, is

scaled by the maximum extension attainable before failure, €,,45. As stressed before,
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this function is assumed to be time and rate-independent. The chosen form for
the function was computed from Parvin’s experimental data (Knauss and Parvin,
1989), and it is shown in Fig. 2.9. The parameter €p,,, was set to six pér cent in

the following calculations.

0.8 |

0.6 |

04|

“‘W(e/€max)

0.2 L

0 0.5 1 - 1.5
E/€Emax ‘

FIGURE 2.9 Function expressing the cumulative damage due to void growth.

4

It has to be remarked here that the chosen fit to the experimental curve of the
function \P(e—fn’f:) had an unexpected feature. When multiplied by a linear function
of €4, it gave rise to a small oscillation of the resulting curve around its maxi-
mum, as it will be shown in the plots of the load distribution on the crack faces.
This circumstance arises for sufficiently high crack speeds to cancel the nonlinear
viscoelastic softening in the cohesive zone, so that the material response is there

governed only by the void growth and by a time-independent, linearly elastic re-
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sponse which gives a direct proportionality between loads and displacements. While
~ this feature appears to result no adverse effects to the conclusions of this investi-
gation, the appearance of a “hat” around the maximum in the load distribution on
the crack faces signalled the lack of free-volume induced softening from the craze
tip up to the location of maximum load, providing additional information for the

evaluation of the results.

Once the crack opening displacement was found in the iterative solution scheme,
the strain in the adhesive could be computed by dividing it by the original thickness
of the layer, which therefore becomes the main characteristic length scale éf the
problem. The point at which the critical strain was achieved determinéd the extent
of the cohesive zone along the crack faces, which was therefore part of the; probiem
solution and not given a priori. A “polite” guess for the cohesive zone length needs
to be known before initiating the numeric;al search for the solution, so that most of
the pbints of the discretized crack faces are load-carrying and contributing to the
solution. The points of zero cohesive load have no effect on the stress intensity factor
and the displacement profile, and therefore the effective mesh size is giveﬁ only by
the total number of load-carrying points along the discretized cohesive zone. As a
consequence, it was neceséary to re-mesh the cohesive zone periodically; the load
distribution at the new discretized points was found by linear interpolation over the
old mesh. In the preliminary calculations, it was found that an adhesive thickness
. of .0007 was effecting a craze length not too dissimilar from the dimension of the
initially discretized domain, therefore this value was chosen and set as a reference

quantity.
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2.4 The deformation of the adherends

The stress and strain fields in the adherends are obtained using a fundamental
solution developed by Knauss (1974), on the basis of complex potentialsT. ‘The
theory of complex potentia.lsi maps the two-dimensional elasticity ﬁroblém,' in the
(z,y) plane, into a problem 6n a complex plane, where the position vector is defined

as

z=z +1iy , (24

and where the stress and displacement fields are related to the values and derivative
of functions of the corﬁplex variable z. Consider a crack propagating at constant
speed in a linear material, subject to a given load distribution on the crack faces in
proximity of the crack tip. The properties of the linear material in which the crack
propagat‘es can be specified arbitrarily as time dependent, thus accounting for the
influence of the viscoelastic compliance of the adherends on crack propagation. The
limit case, in which the mechanical properties of the adherends and the linearized
adhesive are taken to be the same, mimics rather well the propagation of a crack,

preceded by a craze.

- In a reference system moving with the crack, the crack tip is chosen as the
origin and the z axis was aligned with the direction of the propagating crack. The
relations between the coordinates (z,y) in the moving system and the ones (X,Y)
. of a reference system not moving with respect to the material points can be easily

written as

r=X-¢c (2.4.2a)

t Fora thorough exposition of the method of complex potentials in linear elasticity, c¢fr. Mushke-
lishvily, 1963.

! Sometimes incorrectly referred to as the method of analytic functions, a rather misleading
designation since these functions are not at all analytic, except for very special cases.



y =Y . (2.4.2b)

Within the approximation that the craze opening in the failure zone is very small
compared to the length of the latter, one can impose boundary conditions and
compute the solution in the undeformed configuration, i.e., in this specia;l case on
the crack faces on the y = 0 axis. The vertical displacement component v(z) on the
crack faces is consequently expressed as

v(z,0) = v(0,0) + ‘/: 6—1)((;;7’—0)&7 . | (2.4.3)

If one takes the craze tip as the origin, then v(0,0) = 0. Denoting by J(¢) the shear
creep compliance of the adherends, the theory of complex potentials states that one

can express the crack opening displacement in terms of a complex potential ¢(z) as

£+1 1 9¢(¢)
I — )2l ge| 2.4.4
ml [ ae- 025 (244)

v(z,0) = ylirgl+ 5

where I'm denotes the imaginary part of the integral, ¢ is the time elapsed for
a material particle from the moment it leaves the propagating craze tip to the
moment it reaches the point z = z + 1y on the crack faces, and £ is the time elapsed
while the material particle goes from the craze tip to the point z = { + 1y, i.e., (cfr.

Eq. 2.4.2)

t(z) = % .  (245)

. The parameter « is a factor depending on whether one considers a plane stress or

plane strain case, in particular

k = 3 — 4v for plane strain, : ~ (2.4.62)

K = ? _*—_ Z for generalized plane stress. (2.4.6b)
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v being the Poisson’s ratio of the material. The above equations for « are valid when
v is time-independent. When v is a time operator, then the above equations 2.4.6a
and 2.4.6b can be reformulated in accordance with the laws of linearly viscoelastic

analysis, e.g., in the case of plane strain,

v(z,0)1=2 Im [ /0 “ J(t - 6)6¢(C)de] —21Im [ /0 ) J(t—é)aq)(o | (2.4.7)

where

o) = s [ wr0-r@02a . eay

and

H(Q)-r(E) = -5,  (2.49)

C

and the path of integration in Eq. 2.4.8 follows a material particle as it approaches
the crack tip located at * = 0 from z = +co. Behind the craze tip, s.e., for
z < 0, one has to consider a limit process since the cohesive zone coincides with
a branch cut of the complex potential ¢(z). In the presented calculations, v was
approximated by a constant, with simplifications for the algorithm, and the crack

was considered to be propagating under plane strain conditions.

The particular case considered was that of a crack, preceded by a_cfaze, propa-
gating in a polymer, therefore the shear creep compliance of Eq. 2.4.4 was taken to
be the same as the shear compliance of the linearized adhesive, and such a compli-
- ance in shown in Fig. 2.10. Obviously, the three curves for.the viscoelastic response
of the material are not independent of each other; thus the shear compliance curve
was obtained from the time-dependent Young’s and bulk moduli through a con-
version procedure outlined in Appendix A. The glassy value of Poisson’s ratio for
the adhesive was used to determine a value for &, which was then kept constant as

explained above.
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FIGURE 2.10 Shear compliance.
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FIGURE 2.11 Trapezoidal distribution of tractions.
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For the case of a semi-infinite crack in an infinite medium, with the craze tip
located at z = 0 and the crack tip (i.e., the end of the cohesive zone) located at
T = c, the theory of complex potentials asserts that the derivative of the potential
function ¢(z) needs to satisfy the following boundary condition on the crack faces,

in order for the solution to render bounded stresses anywhere

#(2) = 5 \/175 /0 “on(VT ey,

where the distribution of oyy is given by Eqs. 2.3.3, 2.3.4, 2.3.5, and the domain

. (2.4.0)

of integration extends over all the cohesive zone, from the craze tip to the crack
tip. In addition to the particular solution, there is always a homogeneous solution,

corresponding to zero loads on the crack faces, given by

¢r(2) = —\/—g_;\/z -a , o (2.4.11)

in which the stress intensity factor K is the “far field loading parameter”. Thus, the

effective complex potential is the sum of the homogeneous and particular solutions,
#(z) = de(2) + ¢5(2) , f (2:4.12)

where ¢.(z) satisfies Eq. 2.4.10. For the case of a trapezoidal loading extending from
Tz = 7 to the crack tip located at z = a and with o being the ma,ximum value
of the stress, as shown in Figl 2.11, the function ¢.(2) can be computed (Knauss,

1974), with its imaginary part given by*

() = { (-5 + (04 8 - ooy (VAT VETF),
va—z+Ja —7)+
Vo Va P

+(22 = (a +7)z + a7)3log(

* In the following expressions, all the functions as logarithms and square roots are intended to be
real functions, since the expressions in which they appear follow from the separation between
real and imaginary parts of the complex potential ¢(z).
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—Va —z[\/a—B(6z—48 - 2a) + Va — 7(2a — 62 —{-47)]}0

L J M
(o — 2)(68 — 6v)

If one imposes the vanishing of the singular term in ¢(z), one obtains the condition

forz=z+iy,z<a,y—=0tandy< . - (2.4.13)

K =2V2r lim vz — adl(z) . (2.4.14)
By substituting Eq. 2.4.13 into the above condition, one finds

K = {Va=Blta - 48) - VA= (da - ) o

oM

68— 1)Vor

For later use it is necessary to compute the (initial) strain at the crack tip in the

(2.4.15)

adherends, which, after having taken into account branch cuts and rotations of 7
in the complex plane (cfr. Mushkelishvily, 1963), is found to be related to the real

pért of ¢'(z) in front of the running crack through the following convolution integral

€yy(z = 0) = €,y (z = +00) + = o " Re [/: J(%)?%i—z—)d;c] . (2.4.16)

where z =z = X — ¢t and

Re [qb’(z)] = {3[22—(a+ﬂ)z+*aﬂ]arctg ( \/___'C::g) —/(z —a)(a - ﬂ)(3;—2ﬁ—a)+

+[32% — 3(a + 7)z + 3ary]arctyg ( \/____'::;/) + (2 = a)(a - j)(3z -2y — a)}o

oM
N Py T Jn
i
Vorvz —a

There is no limit process in this case since the branch cut of the‘complex potential

+ for z=z2>0 , (2.4.17)

is located behind the craze tip.
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2.5 Numerical procedure

The solution presented in the previous section assumes a trapezoidal load distri-
bution in the cohesive zone. A more general loading on the crack faces can be
represented as a superposition of trapezoidal distributions, to which 'Knaﬁss’s fun-
‘damen’cal solution can be applied individually; such an approximation is sketched
in Fig. 2.12. Upon discretization of the cohesive zone, the contributions of each
trapezoidal load can be computed after the substitutions in the expression for the

complex potential ¢(z) of

om = oyy(k = 1) = oyy(k) C(251)
ap = constant = 0 (2.5.2)
ve = a(k) (253)

Be = a(k—1) , (2.5.4)

where z(k) and z(k — 1) are the coordinates of the discretizatioﬁ points along the
cohesive zone. Tfle choice for the parameter oy is a consequence of:the craze tip
being located at £ = 0 in the system of reference moving with the ﬁropagating
crack‘. The total stress and s‘train fields are then obtained as the sum of each of

these individual contributions.

Once the crack opening displacement is obtained through this procedure, the
time history of straining in the adhesive is known and can be employed to obtain a
more accurate cohesive load distribution on the boundary of the adherends, which
in turn is used to yield a new crack opening profile. The whole process is iterated

until convergence is achieved. This method, known as Picard iteration, does not
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FIGURE 2.12 Representation of a general loading distribution as a superposition of
trapezoidal loads. '

guarantee convergence under all possible conditions**; one modification that over-
comes the problem is to take, at every new iteration, not the newiy computed crack
opening displacerfxeht as that used to compute the nonlinear viscoelastic response of
the adhesive, but the sum of the old one and a fraction of the difference between the
two; iif one denotes by v(z)("i and v(2)("t1) the displacement profiles at the n-th
and (n+1)-st iterations, then the actual diplacement profile 9(z) used to compute

" the new stresses in the cohesive zone is given by
9(z)" D = v(z)™ 4+ Blu(z) ") —v(z)™] (2.5.5)

The minimum value of the relaxation parameter 3 that ensured stability of the

iterations was found to depend on the shape of the loading distribution in the

** see, for example, Ungsuwarunsgri and Knauss, 1988.
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cohesive zone; a typical value of 20 percent sometimes had to be scaled down to
five percent under unfavorable conditions, as in the case of sharp peaks in the
cohesive load distribution away from the crack tip. This procedure takes care of
the instabilities inherent in the iterative process, but nonetheless many iterations
have to be performed, since the same procedure also slows down the coﬁvergence
rate. The convergence was checked on the value of the stress intensity factor,
which was found to be the quantity most sensitive to variations in the displacement
profile. Typically, convergence of the solution was considered to be achieved when
the adjusted difference in stress intensity factors between an iteration and the next,
i.€., :
AK KD _ g™

7 = 5 (2.5.6)

was found to be of the order of one or two percent. In rare occasions (indicated by

the occasional glitches in the plots showing the results) such a tolerance was not

achieved because of the extremely “unstable” nature of the solution. .

A favorable aspect of the computation of the crack opening displacement from
the loads on the crack faces is its linearity; as long as the péint at which the
critical opening ciisplacement €maz 15 achieved lies in the discretized craze domain,
the effects of the load distribution on the stress intensity factor and cré,ck opening
proﬁie can be cast, through Ezls. 2.4.13 and 2.4.15, in a matrix form. The governing
matrix is a function of geometry and does not depend on the loads, so it needs
to be recomputed only when re-meshing was necessary due to vthe extension of the

cohesive zone past the current position of the last point.

The initial stress in the cohesive zone, oy, is an essential parameter of the prob-
lem, since it contributes significantly to the loads on the crack faces. This value

of stress can be set constant or can be determined through some failure criterion
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FIGURE 2.13 Iteration scheme. N.R. = Newton-Raphson; s0 = oo; €0 = €.

. predicting the onset and growth of voids in the adhesive. If one limits attention to
the case of the crack running in a polymer then, since there are no discontinuities
in the material properties between the inner and outer domain, the strain charac-
terizing the outer domain at the craze tip, computed using Eq. 2.4.16 and 2.4.17,
is also the same strain affecting the layer of polymer which enters the degradation

zone. This situation allows one to investigate the consequences of assuming that
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a critical strain characterizes the onset of void generation: here the onset of void

growth was related to a particular value of strain, independent of crack speed.

For this reason, an outer loop of iterations needed to be performed on the
correct value of the initial cohesive stress oy, which was otherwise COmﬁletely ar-
bitrary, so that the assumed critical value of the strain is achieved at the crack
tip. These calculations were performed using a modified Newton-Raphson’s method
which yielded more accurate values of initial stress at every iteration. A sketch of

the algorithm is shown in Fig. 2.13.

2.6 Results and discussion

In the following pages, the crack speed will be considered as a giveﬁ parameter
and the corresponding stress intensity factor and load distribution on the crack
faces will be determined. Alternately the stress intensity factor can be considered
the input parameter of the problem, and the crack velocity that can sustain such a
stress intensity in a steady fashion would be the output of the numerical solution.
The choice of considering instead the crack velocity as the given parameter comes

purely from the structure of the algorithm seeking the numerical solutién.

<

The crack speed was normalized by a reference crack speed defined by the
thickness of the adhesive layer and a characteristic relaxation time. The latter was
determined as the average relaxation time

N
- Zi:l JiTi .
=ttt

Zk:l Jk

where the J;'’s represent the discrete relaxation spectrum of the shear compliance,

T (2.6.1)

and the 7;’s are the corresponding retardation times. This characteristic time 7 was
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approximately 2.3x10% seconds. Analogously, the stress intensity factor was nor-
malized by invoking as the reference stress the glassy value of the Young’s modulus

of the adhesive (4300 bar), and the adhesive thickness (.0007 m).

One of the quantities of interest is the energy I" dissipated in the cohesive zone

per unit crack advance,

r = / o(z)de(z) ; | (2.6.2)
cohesive zone

here the path of integration follows the strain history of a material ‘pa,rticle as it
progresses through the craze. The cohesive fracture energy was also normalized by

the glassy value of Young’s modulus.

Two values of the critical strain parameter €..;; were considered, .3 and 1
p‘erce.nt.' Thus, the onset of vbid growth was taken to depend on the critical value
of the ey, strain, which was computed through Eq. 2.4.16. Figs. 2.14 through
2.19 show the evolution of the load distribution on the crack faces as a function
of crack speed. Some relevant features can be pointed out. At‘ high speeds, the
progressive hardening of the material response in the cohesive zone results in a
tendency to move the high stress gradients away from the craze tip. This fprogressive
hardening can be seen (cf. Fig. 2.16) in the formation of the “hé,t” at the top of
the cohesive zone distribution, which indicates that the material behavior in-that
. area is exclusively influenced by the features of the void growth function, and the
nonlinearly viscoelastic softening is removed by virtue of the very high the strain
rates. When this phenomenon happens, no further changes in stress intensity factor
or stress distribution occur by increasing the crack velocity, since then all the time
dependence of the problem is absent. This regime is perfectly representable by a

Dugdale/Barenblatt model in which one assigns a rate independent (o, v) relation to
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the material behavior in the cohesive zone. Since the (o,v) relation has to represent

the effect of void growth only, it necessarily coincides with the function ¥(e).

As the speed decreases, the size of the cohesive zone also reduces, and the
maximum value of the stresses also decreases. This trend continues until :fhe crack
speed becomes so small that the outer linear material has time to relax while it
runs along the crack faces, and this interaction between the nonlinearly viscoelastic
softening of the fibrils and the creep of the linear material surrounding the craze
effects an increase of the cohesive zone size, as shown in Fig. 2.15. The initial
stress at the crack tip also exhibits a large decrease. As the crack slows down
further, again all the time dependence disappears, since now the a.dherends behave
as elastic materials having the rubbery values of the moduli, and this enforces a

strong reduction in the cohesive zone size.
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(7] R
Q 220E-04 | normalized speed = 342.
b )
"&,‘ 2.00E-04 |
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O s20e04|
T
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N
= 8.00E-05 |
®
E  sooeos|
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O 40005 |
c

2.00E-05 |
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1
-160 =1 == 40 =
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FIGURE 2.14 Load distribution on the crack faces for different Values of crack speed,
for a critical strain of .3 percent.
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FIGURE 2.15 Load distribution on the crack faces for different values of crack speed,
for a critical strain of .3 percent.
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FIGURE 2.16 Load distribution on the crack faces for different values of crack speed,
for a critical strain of .3 percent.
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FIGURE 2.17 Load distribution on the crack faces for different values of crack speed,
for a critical strain of 1. percent.
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FIGURE 2.18 Load distribution on the crack faces for different values of crack speed,
for a critical strain of 1. percent. ‘
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FIGURE 2.19 Load distribution on the crack faces for different values of crack speed,
for a critical strain of 1. percent.

Similar conclusions can be drawn from the inspection of the dependence of
the stress intensity factor, cohesive zone size and initial stress on the values of
crack speed, as presented in Figs. 2.20 through 2.23. It should:be recalled that
a normalized crack speed equal to unity implies that the crack covers a distance
equal to the thickness of the adhesive in the same time as the a;rerage retardation
time. Since the normalized size of the cohesive zone ranges from a few units to
almost seventy as in the case of the .3 per cent critical strain, the time needed
for a material particle to pass along the cohesive zone varies from two or three
times to more than sixty times the characteristic retardation time. Since the shear
compliance, shown in Fig. 2.10, shows time dependence for more than six orders of
maghitude below the average retardation time (~ 2 x 10° seconds), one concludes
that the effect of the viscoelastic compliance of the adherends is felt in a range of

normalized crack speed between one (the time of passage through the cohesive zone
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is of the order of the reference time) and 107 (the time of passage is so short that
the adherends behave in a glassy manner). This explanation accounts for the rise in
stress intensity factor, fracture energy and the changes in cohesive zone si’ze in this
velocity range (cfr. Figs. 2.20, 2.21, 2.22, 2.23). For a crack speed below this range,
the adherends can be characterized essentially as elastic media of rubbery shear
compliance. In between these two extreme ranges, the material passing through the
cohesive zone experiences a constitutive response of the adherends which evolves
from rubbery to glassy behavior, causing changes in the stress intensity factor and
cohesive zone size as portrayed in Figs. 2.20 through 2.23. For much.'higher values
of crack speed, the progressive hardening of the response in the cohesive zone starts
playing a predominant role, and an increase in stress intensity factor and cohesive

fracture energy is observed.

stress intensity factor vs crack speed
0.1 T T T

1 % critical strain
0.03 |

0.01 |

. 0.003 L. vy .
.3% critical strain

0.001 |

0.0003

normalized stress intensity factor

0.0001 | ) ,
1.00E-04 1.00E+05 1.00E+14 1.00E+23 ~ 1.00E+32
normalized crack speed '

FIGURE 2.20 Stress intensity factor as a function of crack velocity.
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initial stress vs crack speed
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FIGURE 2.21 Initial stress in the cohesive zone as a function of crack velocity.
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FIGURE 2.22 Cohesive fracture energy as a function of crack velocity.
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The behavior of the fracture energy as a function of crack speed exhibits an
interesting feature. Fig. 2.22 shows a sharp change from a strong dependence on
crack velocity to a regime in which the fracture energy is rather insensitive to crack
speed. This transition occurs at a normalized speed of about 1. X 1708 for a value
of critical strain of 1 percent. Although the analysis presented here is strictly a
steady state analysis, this latter transition might be indicative of a .regime of crack
speed which coulld favor unstable crack growth in polymers, which is oftén detected
in experiments (e.g., Washabaugh, 1990). For a qualitative argument one would
consider the energy dissipated in the cohesive zone as the relevant mechanism of
energy dissipation, i.e., without taking into account the strain energy which is lost
in the adherends or in the undamaged adhesive. Within this approximation and
that of applying the results of a steady state analysis to transient behavior; one can
appreciafe that an oscillation in crack speed around the transition velocity implies
a decrease in the energy dissipated in the cohesive zone. If ¢cri; is the transition
velocity and A¢ is the variation, assuming that the crack spends eqﬁal periods of
time propagating at é = é.rir — A¢ and at é = écprir + AC, then the average energy
expenditure is given by the intersection of the line connecting 'the points on the
energy vs. speed>c{1rve at ¢ = éerie — A and ¢ = écrit + Ac¢ with the vertical line
¢ = €crit- If the curve has a negative second derivative, this average enel;gy is lower;
in the case of a sharp “corner"’, as the one shown in Fig. 2.22 for the critical strain
of 1 percent, the decrease in the dissipated energy is furthermore emphasized, and

this can indicate the presence of a mechanism which favors unstable crack growth.

It is of interest to qualitatively compare these predictions with the results of
simpler treatments. In particular, if one assumes a constant load distribution on the
crack faces, similar to that shown in Fig. 2.11 but without the triangular part, then

the predictions of simpler fracture criteria can be considered. Here oy will be used
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cohesive zone size vs crack speed
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FIGURE 2.23 Cohesive zone size as a function of crack velocity.
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FIGURE 2.24 Cohesive zone size vs. stress intensity factor.
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cohesive zone size vs cohesive fracture energy
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FIGURE 2.25 Cohesive zone size vs. cohesive fracture energy.
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FIGURE 2.26 Initial stress in cohesive zone vs. zone size.
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initial stress vs stress intensity factor
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FIGURE 2.27 Initial stress in the cohesive zone vs. stress intensity factor.
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FIGURE 2.28 Cohesive fracture energy vs. stress intensity factor.
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initial stress vs cohesive fracture energy
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FIGURE 2.29 Initial stress in the cohesive zone vs. cohesive fracture energy.

to denote the extension of the cohesive zone, o the value of the cohesive stress, and
¢ the velomty of propagation. The crack opening displacement (COD) criterion,
which assumes that the crack propagates once a critical opening displacement is

reached at the trailing boundary of the cohesive zone, demands (Knauss, 1974)

o for a constant! length of the cohesive zone ag and a variable cohesive stress

L]

K J(a—éo) = constant ; (2.6.3)

e for a constant cohesive stress oy and a variable extension of the cohesive

zone

)— constant , - (2.6.4)

T The word constant is used to mean not a function of crack speed.
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where Cj is a material parameter depending on the cohesive stress oo and the
asymptotic Young’s modulus of the material E.,. Similarly, the energy criterion

requires (Knauss, 1974)

o for a constant length of the cohesive zone ag and a variable cohesive stress

K? J(a—c,o) = constant ; A h (2.6.5)

e for a constant cohesive stress oy and a variable extent of the cohesive zone

-2 )
K? J(ﬁ-c'{\—) = constant . -~ (2.6.6)

The comparison between the presented model, which assumes a value of critical
strain at the craze tip, and the four criteria listed above is presented in Fig. 2.30,
where the values of ay and Cp have been adjusted so that the four curves coincide

for low values of the crack speed.

The predictions of the current model fall in between the two predictions of
the crack opening displa,cemgnt criterion and also follow closely the curves for the

energy criterion.
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stress intensity factor vs crack speed
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FIGURE 2.30 Comparison between the current model and the predictioné of classical
theories (critical strain e..;; = 1 percent ).

2.7 Conclusions

The consequences of rate dependent material properties on the propagation
of a crack in an adhesive layer have been investigated. Two relevant features of
this problem have been shown in the analysis, namely the intefaction between the
compliance of the adherends and the time history of loading in the adhesive near
the tip of the propagating crack and the hardening in the decohesion zone which
~ occurs as the crack speed increases. The constitutive properties of the adhesive in
the decohesion zone have been taken to be affected by free volume induced softening
and void growth, assumed to be independent of each other. The fracture criterion
which has been used in the analysis assumes a critical strain determining the onset
of void growth. Two values of the critical strain have been éonsidered, but its

possible rate dependence has not been investigated, and this could be done in the
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future. It has been shown that there can be regimes of crack speed which might
favor unstable crack growth and, in order to investigate this feature, the current
steady-state analysis would need to be reformulated to accommodate a fully time-

dependent problem with appropriate initial conditions.



-178-

References

Argon, A. S., Salama, M. M., (1977), “Growth of Crazes in Glassy Poly-
mers,” Philosophical Magazine, Vol. 36, No. 5, pp. 1217-1234.

Barenblatt, G.I. (1962), “The Mathematical Theory of Equilibrium Cracks
in Brittle Fracture,” Advances in Applied Mechanics, Vol. 7, pp. 59-129.

Dugdale, D. S., (1960), “Yielding of Steel Sheets Containing Slifs,” Journal
of Mechanics and Physics of Solids, Vol. 8, pp. 100-104.

'Goodier, J. N., Kanninen, M., (1966), “Crack Propagation in a Contin-
uum Model with Nonlinear Atomic Separation Laws,” Technical Report No. 165,

Division of Engineering Mechanics, Stanford University, 1966.

Knauss, W. G., (1974), “On the Steady Propagation of a Crack in a Vis-
coelastic Sheet: Experiment and Analysis,” Deformation and Fracture of High Poly-

mers, H.Henning Kausch Ed., Plenum Press, pp. 501-541.

rKnauss, W. G., Emri, I., (1981), “Non Linear Viscoelasticity Based on

Free Volume Considerations,” Computers and Structures, Vol. 13, pp. 123-128.
Knauss, W. G., Parvin, M., (1987), “Damage Induced Constitutive Re-
sponse of a Thermoplastic Related to Composites and Adhesive Bonding,” GALCIT

SM 87-15a, to appear in the International Journal of Fracture.

Lauterwasser, B. D., Kramer, E.J., (1979), “Microscopic Mechanisms .



-179-

and Mechanics of Craze Growth and Fracture,” Philosophical Magazine A, Vol. 39,
No. 4, pp. 469-495.

Mueller, H. K., Knauss, W. G., (1971), “Crack Propagation in a Linearly
Viscoelastic Strip,” Journal of Applied Mechanics, Vol. 38, Series E, pp. 483-488.

Muskhelishvili, N.I. (1963), “Some Basic Problems of the Mathematical
Theory of Elasticity,” P. Noordhof Ltd., Groningen, The Netherlands.

Shay, R. M., Caruthers, J. M., (1986), “ A New Nonlineé,r Viscoelastic
Constitutive Equation for Predicting Yield in Amorphous Solid Polymers,” Journal

of the Society of Rheology, Vol. 30, pp. 781-827.

Verheulpen-Heymans, N., Bauwens, J. C., (1976), “Effect of Stress and
Temperature on Dry Craze Growth Kinetics during Low-Stress Creep of Pblycar—

bonate”,” Journal of Material Science, Vol. 11, pp.>1—16.

Washabaugh, P., (1990), Doctoral Dissertation (to be submitted), Graduate

Aeronautical Laboratories, California Institute of Technology.

.

Williams, M. L., (1963), “The Fracture of Viscoelastic Material,” in “Frac-

ture of Solids,” (Drucker and Gilman Eds.) p. 157, Interscience Publ.

Ungsuwarunsgri, T., Knauss, W. G., (1988), “A Nonlinear Analysis of

an Equilibrium Craze,” Journal of Applied Mechanics, Vol. 55, pp. 44-58



