A Caltech Library Service

Dynamic failure behavior of ceramics under multiaxial compression


Chen, Weinong (1995) Dynamic failure behavior of ceramics under multiaxial compression. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/0NNE-JD20.


An experimental technique has been developed that is capable of (1) dynamically loading the specimen in multiaxial compression; (2) controlling the stress state in the specimen in the range from uniaxial stress to uniaxial strain; and (3) allowing the recovery of the sample after loaded by a single, well defined pulse for the characterization of the failure mode. In this technique, cylindrical ceramic specimens were loaded in the axial direction using a split Hopkinson pressure bar modified to apply a single loading pulse, and were confined laterally either by shrink fit sleeves, or by eletro-magnetic force. Quasi-static and dynamic multiaxial compression experiments have been performed on a machinable glass ceramic, Macor, and a monolithic engineering ceramic, sintered aluminum nitride (A1N). The cylindrical ceramic specimens were confned laterally by shrink fit sleeves: the amount of confining pressure (0-230 MPa) was varied by using different sleeve materials. The quasi-static axial load was applied by a hydraulic driven Material Test System (MTS), whereas the dynamic axial load was provided by a modified split Hopkinson (Kolsky) pressure bar (SHPB). Under both quasi-static and dynamic loading conditions, the experimental results for both materials showed that the failure mode changed from fragmentation by axial splitting under conditions of uniaxial stress (without lateral confinement) to localized deformation on faults under moderate lateral confinement. The fault initiation process was studied experimentally in detail. Based on the experimental results, a compressive brittle failure process was summarized. A transition from brittle to ductile behavior was observed in Macor under high confinement pressure which was achieved using a second sleeve around the inner sleeve. The compressive failure strengths of both materials increased with increasing confinement pressure under both quasi-static and dynamic loading conditions. The highest dynamic compressive strengths of Macor and A1N measured in the experiments were 1.35 GPa and 5.40 GPa, respectively, whereas their quasi-static compressive strength were measured to be 0.43 GPa and 2.5 GPa, respectively. Based on the experimental results on A1N together with available data in the literature, a failure/flow criterion was developed for ceramic materials under multiaxial loading. A Mohr-Coulomb criterion and an improved Johnson-Holmquist model were found to fit the experimental data for brittle failure, whereas the materials exhibited pressure insensitive plastic flow at high pressures. Observations made in other types of dynamic experiments (e.g., shock wave loading) were rationalized based on the postulated failure mechanisms and the possibility of plastic flow beyond the Hugoniot elastic limit (HEL). The effect of various material properties on the failure behavior was investigated using the proposed failure criterion. The applicability of the present model to a range of ceramics was also explored and the limitations of the model were outlined.

Item Type:Thesis (Dissertation (Ph.D.))
Subject Keywords:Aeronautics
Degree Grantor:California Institute of Technology
Division:Engineering and Applied Science
Major Option:Aeronautics
Awards:William F. Ballhaus Prize, 1995
Thesis Availability:Public (worldwide access)
Research Advisor(s):
  • Ravichandran, Guruswami
Thesis Committee:
  • Ravichandran, Guruswami (chair)
  • Rosakis, Ares J.
  • Knowles, James K.
  • Ortiz, Michael
  • Ahrens, Thomas J.
Defense Date:25 May 1995
Record Number:CaltechETD:etd-11032003-101839
Persistent URL:
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:4379
Deposited By: Imported from ETD-db
Deposited On:04 Nov 2003
Last Modified:21 Dec 2019 04:41

Thesis Files

PDF (Chen_w_1995.pdf) - Final Version
See Usage Policy.


Repository Staff Only: item control page