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Abstract

Interplay between long-range and short-range interactions is a common theme in soft and biolog-

ical matter, which results in complicated self-assembly behaviors. We study two examples of this

interplay: reversible gelation of associating polymers and ligand-receptor interactions in membrane

adhesion. In associating polymer solutions, the competition between the conformation flexibility of

polymer chains and the enthalpic monomer interactions results in phase-separated micro-structures

at the mesoscopic scale; both gelation and the microphase order-disorder transition are manifes-

tations of this self-assembly. We further establish that reversible gelation is similar to the glass

transition: both are characterized by ergodicity breaking, aperiodic micro-structures, and non-

equilibrium relaxations over a finite temperature range. In the study of ligand-receptor interactions

between surfaces, we emphasize the interplay between specific ligand-receptor binding, and generic

physical interactions. We find that both the finite spatial extension of receptors and their mobilities

affect their binding affinity. As a special case of the interplay between receptor binding and generic

interactions, we study the dynamics of membrane adhesion that is mediated by receptor binding

but fulfilled through membrane deformations. We calculate the energy barrier of the adhesion as a

result of membrane bending deformations and the double-well adhesion potential, and analyze the

different scenarios according to the shape of the adhesion potential by scaling arguments.
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Overview

In a famous paper, “More is different,” P. W. Anderson (1972) highlighted the “hierarchical structure

of science.” Even though we understand the fundamental laws of basic particles or objects, the

physical behavior of aggregates of these entities, usually associated with strong interactions and

correlations, cannot be “understood from simple extrapolations from the properties of a few of

these particles.” More is different, and more leads to emergent phenomena as a result of increasing

complexities as length and time scales increase. For this very reason, chemical and biological sciences,

which study essentially physical phenomena from the nanometer scale up to the macroscopic scale

of our living world, call upon their own principles, rather than the microscopic quantum mechanic

theory.

This viewpoint is further supported by the multitude of complex behaviors of soft and biological

matter, which typically involve objects of large spatial extensions, such as long polymers or mem-

branes, and a confluent of energy and time scales of different interactions (Phillips and Quake, 2006).

A key feature of mesoscopic organization in soft and biological matter is that competing interactions

at different length scales can interplay with each other and result in sophisticated self-assembly.

This new paradigm, which extends the classical “symmetry breaking” picture of Landau, is referred

to as the “Middle Way” (Laughlin et al., 2000).

In this thesis I study two problems related to the self-assembly of soft matter as a result of

competing interactions at different length scales.

In Part I, we study the physics of reversible gelation. Reversible gel is a class of materials which

are macroscopic networks formed by reversible associations. Compared to irreversible gel with

permanent connections, such as rubber, reversible gel is characterized by both solid-like elasticity

and liquid-like relaxations. These features are characteristic of structural glasses. We choose the

model of associating polymer solutions, which is a prototype for reversible gelation, and analyze the

thermodynamics and phase transitions in the system. We find that gelation is intimately related to

the micro-structural order-disorder transition in this system and gelation to order-disorder transition

is an analog of glass transition to crystallization.

To further corroborate our conjecture regarding the nature of gelation, in particular, its relation

to the microphase transition, we study the phase transitions in diblock copolymer melts, which are
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characterized by the microphase spinodal as in associating polymer solutions. Using a thermody-

namic replica approach, we find a micro-structural glass transition in the system which results from

self-assembly due to competitions between monomer interactions and polymer chain flexibility. In

particular, we find that in the mean field limit (infinitely long chains), this glass transition becomes

identical to the microphase spinodal, suggesting that the microphase spinodal can be regarded as the

signature for glass transitions in this class of systems. In this calculation we also propose a systematic

treatment of fluctuations due to the cubic coupling term that appears in asymmetric copolymers,

which is missing in the Brazovskii-Leibler-Fredrickson-Helfand theory (Brazovskii, 1975; Leibler,

1980; Fredrickson and Helfand, 1987). Chapter 3 is adapted from our paper, C.-Z. Zhang and Z.-G.

Wang, Phys. Rev. E73, 031804 (2006). Copyright (2006) by the American Physical Society.

In Part II we study two problems related to ligand-receptor interactions between surfaces, which

is a central motif in cell adhesion and signaling. In Chapter 41 we analyze the thermodynamics of

interactions between flat surfaces mediated by receptors that are tethered by polymer chains. This

model is widely used in bioengineering applications (Garcia, 2006) and biophysical measurements

(Wong et al., 1997; Jeppesen et al., 2001). From statistical thermodynamics calculations we obtain

an effective two-dimensional binding constant reflecting contributions from the microscopic binding

affinity as well as from stretching of the polymer tether. In addition, we distinguish between different

scenarios as a result of different receptor mobilities relative to the biological process or experimental

measurements. These results clarify the persistent confusion about the interpretation of experimental

measurements of binding affinity (Dustin et al., 1996; Orsello et al., 2001). We also demonstrate

the versatile control over surface interactions by several examples that combine different types of

ligand-receptor interactions, which have both biological and bioengineering relevance.

In Chapter 52 we study the interplay between specific ligand-receptor binding and membrane

deformations. We offer a systematic analysis of the dynamics of the first-order adhesion typical

for cell and membrane adhesion mediated by specific receptors (Bruinsma et al., 2000; Bruinsma

and Sackmann, 2002; Sackmann and Goennenwein, 2006). We find that the evolution of membrane

deformations along the adhesion pathway is governed by the characteristic length associated with the

adhesion potential, while the energetics is governed by the potential depths of the adhesion potential.

The dependence of the critical radius and the energy barrier on relevant parameters, including the

bending rigidity, the barrier height of the potential, and the separation of the potential minima, are

obtained by scaling arguments, and verified by numerical calculations. For completeness we also

give a scaling analysis of the scenario when adhesion is a weak first-order transition; this is done by

a Peierls argument which accounts for the entropic corrections of irregular boundary shapes.

1Reproduced in part with permission from Langmuir, in press. Unpublished work copyright (2007) American
Chemical Society.

2Adapted version of the manuscript submitted to Phys. Rev. E. Copyright (2007) by the American Physical
Society
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Part I

Reversible Gelation and Glass

Transition:

Towards a microscopic model of

reversible polymer gel
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Chapter 1

Introduction: Gel and gelation

A (polymer) gel is a macroscopic network of polymer chains joined at a number of connection sites.

These joints can be either irreversible chemical bonds or reversible physical associations, which

are called chemical (irreversible) or physical (reversible) gels. Chemical associations are usually

introduced by crosslinking (e.g., vulcanization), while physical gels can involve many different types

of interactions, such as hydrophobic interactions, hydrogen bonds, and electrostatic interactions

between certain segments of the polymer chains.

In most cases the joints in a gel network are localized1 and result from short-range interac-

tions. But short-range connections have to be linked by long chains to form a macroscopic network.

The assembly of long polymers by short-range connections result in a spatially extended network

which is non-uniform. These two features, i.e., local joints connected by arms with finite spatial

extensions, characterize most gel-forming systems.

Comparing to an ordered crystal, we find that microscopic structures in a gel network are highly

random with no long-range order. The non-uniform yet aperiodic structures make a polymer gel

share both liquid and solid properties. Within short time scales, the non-uniform micro-structures

should have solid-like elasticity and exhibit fixed mechanical shapes. But over a long time span, the

aperiodic structures in a gel are not thermally stable compared to periodic crystals; these structures

should evolve slowly and exhibit liquid-like responses, such as finite shear viscosities. These features

are reminiscent of another class of disordered materials—glasses.

1.1 Preparation of gels

We first briefly review the conventional ways to prepare chemical and physical polymer gels. A

straightforward way to introduce chemical links is to add polyfunctional units (with 3 or more

functional groups) that serve as branches in a network. Such polyfunctional units are interconnected

1An exception is the network generated by topological entanglements, such as in melts of very long polymer chains,
or a series of interconnected rings (de Gennes, 1979).
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with polymer chains generated by di-functional monomers. Alternatively one can add crosslinking

agents to the system which will form inter- and intra-chain connections. A typical example is

vulcanized rubber, where sulphur molecules act as the crosslinking agents (Doi, 1996).

For polymer gels prepared via crosslinking, the connections are permanent and the gelation

process is irreversible. It was Flory (1953) who first calculated the amount of crosslinkers that are

necessary to generate a macroscopic network (Flory-Stockmayer model) and studied the elasticity of

this network (“rubber elasticity” theory). The basic model for this crosslinked network is percolation,

and it is known that Flory’s mean-field theory is accurate.

Reversible physical interactions that can induce gelation include hydrophobic interactions, elec-

trostatic interactions, and hydrogen bonds. A typical example is a solution of associating A-B-A

triblock copolymers where A segments associate with each other. At low concentrations, these tri-

block copolymers form micelles with A segments aggregating in the core and B segments in the

corona. As the concentration of polymers increases, more micelles are formed with bigger sizes and

finally these micelles overlap and interconnect with each other, some A-B-A chains serving as linkers

among the micelles. In this case the connections are not permanent and the gelation process is

reversible, i.e, the gel can dissociate when connections are turned off or reduced in number. This

reversible property makes physical gel an ideal candidate for drug delivery or intelligent materials

responsive to physical stimuli such as pH, temperature, or radiation (Petka et al., 1998; Shen et al.,

2006).

Besides these traditional methods, connections can also be introduced via topological constraints.

For example, in a concentrated solution of long polymers, polymer chains are strongly entangled; if

the concentration is high enough, the topological joints can support a macroscopic network within

the time scale of chain reptation. This is demonstrated by the elastic response of these systems. The

open ends of polymers can also be closed to form rings, then these rings can interconnect with each

other to form the so-called “Olympic” gel (Raphaël et al., 1997). This type of gel has permanent, but

non-local junctions, and these junctions are topological in nature, therefore their property should

resemble irreversible polymer gels; furthermore, as the junctions are non-local, this kind of material

should have even better elasticity than crosslinked networks.

1.2 Gelation

Gelation is the formation of gel out of uniform solutions, which is usually marked by a transition

from liquid-like behavior to solid-like behavior, for example, finite elastic modulus. Both physical

gelation and chemical gelation have generated considerable interest in statistical physicists.

Sol-gel transition is a natural example of percolation (Stauffer et al., 1982), which is characterized

by the emergence of a macroscopic cluster. The gelation point is identified as the critical point of
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percolation, which is characterized by a threshold bond (or site) occupancy probability. If more

bonds are occupied than the critical value, the system is percolated (in the gel phase), with an

emergent macroscopic network and small clusters; below the critical threshold, only finite clusters

are present and the system is in the sol phase. Near the threshold, physical properties including the

probability distribution of finite clusters are universal and can be calculated from the percolation

model.

In the classical model by Flory and Stockmayer (see Flory, 1953), the crosslinked network (e.g.,

vulcanized rubber) is assumed to be an infinitely large branched tree (without cycles), which is the

mean-field limit of the percolation model (i.e., percolation on a Cayley tree). The Flory-Stockmayer

model can be solved analytically and makes good predictions regarding the gelation point and

elastic properties. Furthermore, as each crosslinker (multi-functional unit) is surrounded by many

monomers, cycle structures are rare, therefore the Flory-Stockmayer model is accurate even near

the critical threshold (de Gennes, 1979). Later, Coniglio et al. (1979, 1982) modified the model

to account for the presence of solvent molecules. In this “site-bond correlated percolation” model,

lattice sites are occupied by monomers as well as solvent molecules and a bond can be formed between

neighbor monomers only. In addition, enthalpic monomer-monomer interactions are introduced as

near-neighbor correlations. In this model there is a sol-gel transition as well as a phase coexistence

as in normal polymer solutions due to the enthalpic interaction. The sol-gel transition intersects the

phase coexistence at a tricritical point which depends on the solvent property (see Tanaka et al.,

1979).

The “site-bond correlated percolation” model provides a natural extension to reversible gelation:

permanent links can be replaced by reversible monomer interactions and gelation can be defined

as a “transient” percolation of these reversible connections. Based on this model, Tanaka and

co-workers (Tanaka, 1989, 1990; Tanaka and Matsuyama, 1989; Tanaka and Stockmayer, 1994)

extended the model by Coniglio et al. (1982) to study the thermodynamics of reversible gelation.

The polymer solution is treated following the mean-field theory of Flory and Huggins (Flory, 1953)

and the reversible gelation is treated as a micellation. Later on, Semenov, Rubinstein and co-workers

(Semenov et al., 1995b; Semenov and Rubinstein, 1998a) studied a similar model, but with different

assumptions on the infinite cluster in the gel phase. Both models predict similar phase diagrams to

those observed in Tanaka et al. (1979), but the different assumptions for the post-gel regime, which

result in different cluster-size distributions, also lead to different predictions of the thermodynamic

nature of gelation. Tanaka’s theory predicted that reversible gelation is a third-order thermodynamic

transition while Rubinstein’s theory suggested that it is not a thermodynamic transition at all. The

assumption for the post-gel regime in a reversible gel phase essentially depends on the nature of

gelation and the life-time of the infinite cluster. Is the real gel phase is indeed reversible as implied

by the Rubinstein model? Or does it signal some new kind of transition which resembles critical
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percolation? Is the reversible gel more like a big micelle, or is it similar to a percolated network?

What defines gelation in a percolation network with reversible connections?

Although the definition of irreversible gel as a macroscopic network is unambiguous and results

in successful predictions, the percolation picture raises questions in the case of reversible gelation. In

particular, how to consistently account for the enthalpic monomer interactions and the emergence of

a macroscopic network is not obvious at all. Actually, the recent work by Zilman and Safran (2002) on

self-assembled networks revealed that in a system of self-assembling chains, the percolation transition

is purely topological, with no thermodynamic signature or dynamic crossover. This is clearly at odds

with experimental characterization of reversible gels by their solid-like dynamic properties, which

distinguish them from the liquid-like sol phase. Furthermore, the simulation results by Kumar

and co-workers (Kumar and Panagiotopoulos, 1999; Kumar and Douglas, 2001) showed that for

associating polymers with weak connections (associating energy comparable to kBT ), gelation is

characterized by a change of dynamic properties, which marks a distinct transition line from the

percolation transition. All these facts suggest that we should abandon the percolation picture, but

build a model of reversible gelation from the microscopic monomer interactions.

1.3 Features of reversible gelation and relations to the glass

transition

In a reversible gel, the network structure can transform through the breaking and rebuilding of

connections. Therefore the dynamic property of the gel phase has a liquid-like behavior in addition

to solid elasticity, this is especially evident in the long time limit. In real applications gelation is

usually defined as when the system exhibits a finite elastic modulus at low frequency range (generally

1Hz ∼ 103Hz).

Semenov and Rubinstein (1998b) used a scaling argument to study the dynamic responses of the

reversible gel phase based on the Zimm dynamics in the semi-dilute regime. The dynamic properties

of the gel phase (but not the sol phase, i.e., below the gelation point) depend on the lifetime and

the number of reversible junctions. In addition they also calculated the frequency dependence of

dynamic modulus and the scaling of viscosity away from the gelation point. Their predictions

reflect their assumptions that the reversible gel phase consists of transient network structures and

the dynamics of the system is governed by the dissociation of individual junctions but not of the

mesoscopic clusters.

However, recent experiments and simulations have shown that the gelation process shares many

similarities with the glass transition, and the gel phase is usually characterized by static inho-

mogeneities with ergodicity breaking; in particular, the dynamic properties depend on small-scale

relaxations as well as relaxations at the mesoscopic scale.
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Segrè et al. (2001) studied reversible gelation in a weakly attractive colloidal system using light

scattering. For all samples with high volume fractions (> 8%), the static light scattering profile

exhibits a peak at a finite wave number, implying percolation in the system with a finite correlation

length. However, not all the samples are truly solid-like. In those samples at larger volume fractions

(> 11%), the scattering profile is stable, and the sample is non-ergodic; for samples at relatively

lower volume fractions (< 11%), the speckles around the peak of the scattering profile are not static,

but fluctuate with time, reflecting cluster diffusions in the system. The scattering profiles of all these

samples are roughly identical, suggesting that similar structures are present in both ergodic and non-

ergodic samples; but the relaxation time in non-ergodic samples is infinite, while for quasi-ergodic

samples it is large but finite (the scattering profile remains constant for several days). Comparing

these behaviors to the glass transition, we see the following features: First, the non-ergodic samples

resemble amorphous glasses, which behave like a normal solid but do not have periodic micro-

structures. Second, gelation is similar to the glass transition as it is a smooth transition occurring

over a volume fraction range, instead of at a threshold value, and both transitions are accompanied

by a crossover in dynamic responses. In addition, the final decay of the dynamic light-scattering

function of the system is similar to that observed in structural glasses, characterized by a power-law

divergence. The intermediate scattering functions even satisfy the same scaling form as predicted

by the mode coupling theory for the glass transition (Götze, 1989).

Shibayama and co-workers (Ikkai and Shibayama, 1999; Shibayama et al., 2000) studied the

sol-gel transition in a reversible system consisting of poly(vinyl alcohol), Congo red (PVA/CR),

and water. They found that some speckles (random fluctuations in the scattered intensity) in the

time average light scattering intensity appear exclusively in the gel state, and disappear when the

temperature is increased or the concentration is lowered across the gelation point. These speckling

patterns indicate the existence of frozen inhomogeneities, which implies non-ergodicity in the system.

In addition, the slow mode in time intensity correlation measured by dynamic light scattering is well

fit by a stretched exponential form for the sol phase, and a power law for the gel phase. Similar

results have been discovered in the gelatin system (Ren and Sorensen, 1993). These features are

similar to the β and α relaxations observed in glasses and predicted by the mode-coupling theory

(Götze, 1989).

Kumar and co-workers (Kumar and Panagiotopoulos, 1999; Kumar and Douglas, 2001) conducted

Monte Carlo simulations on the phase behavior and gelation of reversibly associating polymers. Their

results showed that at high temperatures (the sticker attraction energy comparable to kBT ), the

“gel” structure characterized by geometric percolation (connected network) does not possess the

characteristic rheological properties of a gel, e.g., elasticity at short time scales. Instead, the change

of dynamic properties occurs near the so-called “clustering transition,” which leads to an abrupt

increase in cluster lifetimes over a small temperature range. This transition is similar to vitrification
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in glass-forming liquids. Furthermore, the diffusivity data fit well with the Vogel-Fulcher form, which

is known to describe the relaxation in fragile glasses.

The above results show that (1) reversible gels are characterized by the breaking of ergodicity

(static inhomogeneities); (2) relaxations in the system near gelation are quite similar to those in

supercooled liquids near the glass transition, usually characterized by a power low for the glassy state

and a stretched-exponential function for the viscous liquid state; (3) in the “weak” interaction case

(association energy comparable to kBT ), physical gelation is characterized by a dynamic transition,

usually occurring after the geometric percolation.

The similarity between reversible gelation and glass transition is also evident from the microscopic

perspective. Consider the solution of associating polymers. At low concentration, polymers asso-

ciate to form micelles; as concentration increases, more micelles are formed with larger aggregation

number, and finally these micelles overlap with each other to form a macroscopic network connected

by associating polymers. Gelation should resemble the microphase order-disorder transition in the

associating polymer solution. However, as these micelles have different sizes, and moreover, the

micelles from associating polymers are “soft” rather than “rigid,” their packing may be random

and share similarities with random close packing of spheres and the jamming transition, both of

which are believed to occur in certain glass transitions. These microscopic similarities between poly-

mer gels and soft (fragile) glasses are also reflected on their similar mechanical responses, including

non-equilibrium relaxations and partial breaking of ergodicity.

Here we propose that reversible gelation is essentially related to the microphase transition in

the system, and can be viewed as a “glass transition” alternative to the ordering transition, or,

put in other words, a transition from the disordered liquid phase to a solid-like state with random

structures that may be still slowly evolving. The central idea in studying the glass transition is

the free energy landscape, which is introduced to separate physical relaxations at different length

and time scales. In this picture, gelation or glass transition is characterized by ergodicity breaking

in the system, which results in solid-like responses; but the system has liquid-like micro-structures,

and therefore can still evolve. We hope this new paradigm for reversible gelation could yield better

insights into their thermodynamic nature.

In Chapter 2 we study the thermodynamics of associating polymer solutions and work out the

mean-field phase diagram in this system. We recover the phase diagram as observed in Tanaka

et al. (1979) and obtained in the papers by Coniglio et al. (1982), Tanaka (1989), and Semenov

and Rubinstein (1998a), but the gelation line is identified as the microphase transition spinodal

with no a priori assumption of the network. We may tentatively conclude that gelation is related

to this microphase transition, at least in the mean-field sense. In Chapter 3 we adapt the replica

approach by Schmalian, Wolynes, and co-workers (Westfahl et al., 2001; Schmalian and Wolynes,

2000) and study the phase diagram in the system of diblock copolymer melts. Even though diblock
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copolymer melt is essentially different from associating polymer solutions, they both have the feature

of microphase transition. In fact, it is believed that in copolymer solutions with non-selective

solvents, the microphase transition is likened to the ordering transition in copolymer melt with

“diluted” monomer interactions (Fredrickson and Leibler, 1989). Therefore our conclusion regarding

the glass transitions in diblock copolymer melts remains qualitatively correct for the gelation in

associating polymer solutions. Revealing the possibility of glass transitions in diblock copolymer

melts also supports our conjecture that gelation is the glass-transition alternative to the ordering

transition in associating polymer solutions.
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Chapter 2

Mean field theory and the spinodal
lines

In Chapter 1, we discussed the physical properties of reversible gel and the gelation of associating

polymers. At the macroscopic level, reversible polymer gel is characterized by solid-like elasticity

at high frequencies as well as liquid-like relaxations at long time scales. On the other hand, static

inhomogeneities are frozen in the microscopic structures of the gel phase (Ikkai and Shibayama,

1999; Shibayama et al., 2000).

We noted that gelation in the solution of associating polymers is related to the microphase tran-

sition in copolymer systems. (For a discussion of experimental observations in diblock copolymer

melts, see Chapter 3.) However, in contrast to the order-disorder transition, reversible gels do not

have well-developed periodicity in the micro-structures. Therefore gelation to order-disorder transi-

tion resembles glass transition to crystallization; reversible gels share similar features as supercooled

liquids, which exhibit non-equilibrium relaxations and breaking of ergodicity.

In this chapter we study the thermodynamics of the solution of A-B-A triblock copolymers, where

the A monomers are associating. This system is the most widely studied model for reversible gelation

(Tanaka and Matsuyama, 1989; Tanaka and Stockmayer, 1994; Ishida and Tanaka, 1997; Semenov

et al., 1995a,b; Semenov and Rubinstein, 1998a,b). We adopt two mean-field approaches. First,

density functional calculations can provide snapshots of the micro-structures of the solution under

microphase transition. We hope to confirm our conjecture that across the microphase order-disorder

transition, random structures with finite wave lengths are possible; such structures provide natural

candidates for the gel phase1. Unfortunately we were not able to obtain enough numerical results

to support our conjecture, therefore this part is only a summary of the theoretical model. Second,

we construct the mean-field phase diagram through a quadratic expansion of the free energy (effec-

tive potential) from the Edwards Hamiltonian. The phase diagram shows both binodal coexistence
1Wolynes and co-workers (Singh et al., 1985; Hall and Wolynes, 1987) used density functional calculations to study

the phase transition in an inhomogeneous hard-sphere liquid and found aperiodic structures as a more stable phase
compared to the disordered liquid phase, which suggested aperiodic structures as natural candidates for the glass
phase.



12

between polymer-rich and polymer-poor solution phases, and a spinodal transition associated with

the microphase transition. Comparing the phase diagram to experimental observations by Tanaka

et al. (1979), we may conclude that the gelation is an incomplete microphase transition which mani-

fests the underlying spinodal instability. In Chapter 3 we further demonstrate that the competition

between microscopic monomer interactions and this spinodal instability at a finite length scale com-

parable to the polymer size, results in a glass transition, which supports our conjecture that gelation

is an alternative random microphase transition to the order-disorder transition. In addition, the

glass transition lines approach the microphase spinodal in the mean field limit (as chain lengths

go to infinite); this result underscores the close relationship between gelation and the mean-field

microphase spinodal.

2.1 Self-consistent field theory

Since the successful predictions of the ordered structures in diblock copolymer melts (Matsen and

Schick, 1994), self-consistent mean field theory has been widely used to study the phase diagrams

in diblock and multi-block copolymer systems, and polymer blends. Many results are summarized

in the reviews by Schmid (1998) and by Fredrickson et al. (2002). Further extensions such as

the dynamic density functional theory by Fraaije et al. (1997) and Uneyama and Doi (2005) allow

systematic studies of the phase separation kinetics in these systems.

Self-consistent field (SCF) theories approximate systems with many-body interactions as non-

interacting particles under effective fields. The external fields are determined self-consistently from

the microscopic Hamiltonian in a mean-field approximation. Since the order parameter is a density

distribution or a function variable, density functional calculations enable us to sample the whole

space of density distributions, in particular, to find the free energy minima with irregular microscopic

structures. [See Fraaije et al. (1997), or the reviews, Schmid (1998) and Fredrickson et al. (2002),

for examples of irregular morphologies.]

SCF provides a natural way to probe the microscopic structures of associating polymer solutions,

which in many aspects are similar to copolymer melts. But applying it to polymer solutions needs

some caution. Depending on the solvent selectivity and the concentration of polymer segments,

the polymer chain can be significantly stretched or collapsed: in this scenario the random phase

approximation underlying the SCF theory breaks down. However, at the gelation point, polymer

chains overlap with each other, therefore the solution is in the semi-dilute or concentrated regime: the

correlation length is much smaller than the chain size and concentration fluctuations only renormalize

the microscopic “monomer size” and “monomer interactions”; at the level of polymer aggregates,

we expect density distributions to look similar as in a mean-field theory, and qualitative features of

the mean field theory should be preserved. In fact, SCF theory has been shown to be qualitatively
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valid in phase diagram calculations even when significant chain stretching is observed (Almdal et al.,

1990). In addition, as long as the polymer concentration is far away from the critical point, long-

range density fluctuations are not important and mean field approximation is valid; an analysis of

fluctuation effects in the spirit of Fredrickson and Helfand (1987) is presented in the next chapter.

2.1.1 Microscopic Hamiltonian of polymer mixtures

A continuum Gaussian chain with length N in an external field V (r) is described by the Edwards

Hamiltonian (Doi and Edwards, 1986)

h0[R(t)] =
3kBT

2Nb2

∫ 1

0

[(
∂R(t)
∂t

)2

+ V (R(t))

]
dt (2.1)

where R(t) maps the configuration of the polymer (0 ≤ t ≤ 1 is a parametrization of the polymer

chain), and Nb2 is mean square end-to-end distance.

To account for monomer interactions, we introduce the density operators φ̂α(r)(φ̂A, φ̂B, φ̂S)

φ̂A,B (r) =
np∑

m=1

∫ 1

0

δ (r−Rm(t)) δA,B(t)dt,

φ̂S (r) =
ns∑

n=1

δ (r− rn) . (2.2)

Here Rm labels the spatial conformation of the m-th polymer chain; rn is the position of the nth

solvent molecule; δA,B(t) is used to label the A or B block, e.g., δA(t) = 1 if the segment at t is A

and δB(t) = 1− δA(t). The spatial positions of solvent molecules and polymer chains are completely

described by {Rm(t), rn}.

The two-body interactions are given by2

∑
αβ

εαβφ̂αφ̂β =
∑
α6=β

χαβφ̂αφ̂β +
1
2
(εAAφ̂A + εBBφ̂B + εSSφ̂S), (2.3)

where

χαβ = εαβ −
1
2

(εαα + εββ) .

The last term in (2.3) can be dropped as εαα reflect constant shifts of the external fields, or self-

energy contributions, which do not affect the interaction free energy.

Besides the two-body enthalpic interactions, we also need to account for the incompressibility or

the excluded volume effect. Strict incompressibility can be inserted by adding a delta function (ρ is

2Here the summation is over each pair once.
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the average bulk density), ∏
r

δ

[∑
α

φ̂α(r)− ρ

]

to the partition function. Alternatively, we can assume a virial expansion (“soft” incompressibility)

c1φ̂
2
p + c2φ̂

3
p,

where φ̂p = φ̂A + φ̂B is the total density of polymer segments, and c1 and c2 are positive constants.

The total Hamiltonian of the system is

H

kBT
=

np∑
m=1

3
2Nb2

∫ 1

0

[(
∂Rm(t)
∂t

)2

+ V (Rm(t))

]
dt

+
1

kBT

∫ [∑
αβ

εαβφ̂α(r)φ̂β(r) + c1φ̂p(r)2 + c2φ̂p(r)3
]
dr. (2.4)

The strict incompressibility will result in an osmotic pressure term which we will discuss in the

derivation of self-consistent equations.

2.1.2 Partition function and self-consistent equations

2.1.2.1 Partition function

In the canonical ensemble with np polymers and ns solvent molecules, the classical partition function

is (β = 1/kBT )

Z(np, ns) =
∫
D[Rm]D[rn]e−βH

∏
r

δ
[
φ̂A(r) + φ̂B(r) + φ̂S(r)− ρ

]
. (2.5)

Here D stands for functional integration (or path integral) over the configurations. And in a grand

canonical ensemble where the chemical potential of polymer chains and solvents are given by µp and

µs, we have3

Ξ (µp, µs) =
∞∑

np=0

∞∑
ns=0

exp (βµpnp + βµsns)
ns!np!

Z(np, ns). (2.6)

To proceed, we introduce collective variables (functions) φα(r), their conjugate fields Wα(r), and

an osmotic pressure Π(r) to get rid of the operator fields φ̂α. Insert

∫
Dφαδ(φα − φ̂α) ∝

∫
Dφα

∫
DWα exp

[
iWα

(
φα − φ̂α

)]
= const.

3In Wood and Wang (2002) the chemical potential of the polymer segments is assumed instead of that of the
polymer chains.
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into the partition function, we get

Z(np, ns) =
1
N

∫
Dφα

∫
DWα

∫
DΠ exp

{
−βH1[φα] + iWαφα + i

∫
Π(r)

[∑
α

φα(r)− ρ

]
dr

}
∫
D [Rm]

∫
D [rn] exp

{
−βH0[Rm, rn]− iWαφ̂α

}
(2.7)

= N−1

∫
Dφα exp [−βH1(φα)− βF0(φα)] ; (2.8)

βF0(φα) = − ln
∫
DWαDΠ exp

{
iWαφα + i

∫
Π(r)

[∑
α

φα(r)− ρ

]
dr

}
Z[iWα]; (2.9)

Z[iWα] =
∫
D [Rm]

∫
D [rn] exp

{
−βH0[Rm, rn]− iWαφ̂α

}
= e−G0(Wα) (2.10)

where repeated indices imply integration over space, as well as summations over the same index,

Wαφ̂α =
∑
α

∫
Wα(r)φ̂α(r)dr.

Physically φα and Wα correspond to the density distributions and their conjugate external fields,

like the magnetic moment and the magnetic field, or the volume and the pressure in the liquid-gas

system. Z[iWα] gives the partition function of the imaginary system of non-interacting molecules

under external fields iWα (the imaginary unit i is introduced only for mathematical convenience),

G0 is the Gibbs free energy of this imaginary system, and F0 is its Legendre transform, or the

Helmholtz free energy in terms of the density fields φα.

Z[iWα] can be calculated for arbitrary polymer systems using the random phase approximations.

See Leibler (1980), Ohta and Kawasaki (1986), and de la Cruz (1991). F0[φα] can be expanded

as a power series of φα, and the physical free energy F = − lnZ can in principle be calculated

perturbatively. In the next section we shall derive the expansion of F up to quadratic order.

We note that in general the random phase approximation that assumes polymer chains to be

ideal does not apply to polymer solutions as the polymer chains are swollen. Therefore our model

applies to associating A-B-A polymers in a theta solvent for the middle block B, and a poor solvent

for end block A. Alternatively we can interpret microscopic parameters as renormalized by chain

swelling.

2.1.2.2 Self-consistent equations

In this section we derive the self-consistent equations from a saddle point approximation for the

partition function in (2.7). Minimizing the exponential term with respect to φα, Wα, and Π we have

δ

δφA (r)
,

δ

δφB (r)
,

δ

δφS (r)
= 0 ⇒
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iWA(r) + iΠ(r) = β
[
εABφB(r) + εASφS(r) + εAAφA(r) + 2c1φp(r) + 3c2φ2

p(r)
]
; (2.11a)

iWB(r) + iΠ(r) = β
[
εABφA(r) + εBSφS(r) + εBBφB(r) + 2c1φp(r) + 3c2φ2

p(r)
]
; (2.11b)

iWS(r) + iΠ(r) = β [εASφA(r) + εBSφB(r) + εSSφS(r)] ; (2.11c)

δ

δΠ (r)
= 0 ⇒ φA (r) + φB (r) + φS (r) = ρ; (2.11d)

δ

δWS (r)
= 0 ⇒ iφS (r) = −δ lnZ(iWα)

δWS(r)
; (2.11e)

δ

δWA (r)
,

δ

δWB (r)
= 0 ⇒ iφA,B (r) = −δ lnZ(iWα)

δWA,B(r)
. (2.11f)

To complete the set of equations we need to evaluate the partition function

Z(iWα) = Zp(iWA, iWB) · Zs(iWS).

For solvent molecules we neglect their internal degrees of freedom,

Zs(iWS) =
∫
D[rn]n=1,2,···ns exp

[
−i
∫
WS (r) φ̂S (r) dr

]
= qns

s , (2.12)

where

qs =
∫

exp [−iWS(r)] dr.

For polymer chains

Zp(iWA, iWB) = qnp
p , (2.13)

where qp is the partition function of a single polymer chain in external fields Wα. Details of the

derivations of Zp and its derivatives w.r.t. Wα are given in Appendix 2.A.1.

The self-consistent equations are

WA (r) = β
(
εAAφA + εABφB + εASφS + 2c1φp + 3c2φ2

p

)
, (2.14a)

WB (r) = β
(
εBBφB + εABφA + εBSφS + 2c1φp + 3c2φ2

p

)
, (2.14b)

WS (r) = β (εSSφS + εASφA + εBSφB) ; (2.14c)

φS (r) = ns

[∫
exp(−WS(r))dr

]−1

exp (−WS) , (2.14d)

φA (r) = Nnp

[∫
q(r, 1)dr

]−1 ∫ 1

0

θA(t)q (r, t) q∗ (r, 1− t) dt, (2.14e)

φS (r) = Nnp

[∫
q(r, 1)dr

]−1 ∫ 1

0

θB (t) q (r, t) q∗ (r, 1− t) dt; (2.14f)

where φp = φA + φB, N is total the number of segments in each chain4, and np and ns are the

4For convenience we have assumed the monomer volume to be b3.
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number of polymer chains and solvent molecules, respectively. q and q∗ are the once-integrated

Green’s functions to be obtained from solving the following diffusion equations(
∂

∂t
− Nb2

6
∇2

r +N
∑
α

θα (t)Wα (r)

)
q(r, t) = 0, (2.15)(

∂

∂t
− Nb2

6
∇2

r +N
∑
α

θα (1− t)Wα (r)

)
q∗(r, t) = 0, (2.16)

q(r, 0) = q∗(r, 0) = 1.

θα(t) are labels for the different blocks. For a triblock copolymer with the structure 10A−80B−10A,

θα(t) is defined as

θA(t) =

 1 0 ≤ t ≤ 0.1 or 0.9 ≤ t ≤ 1

0 0.1 < t < 0.9
(2.17)

θB(t) = 1− θA(t).

The diffusion equations can be solved using the Crank-Nicholson scheme or the spectral method, as

explained in Appendix 2.A.

2.2 Free energy expansion

In Section 2.1.1 we write the Hamiltonian of the polymer system and by introducing collective fields

φα and Wα we get the free energy functions G0(Wα) and F0(φα), as in Eqs. (2.10) and (2.9). Here

we derive the perturbative expansion of F0 and G0 as a power series of the φα and Wα. From the

quadratic term we find the mean field spinodal transition lines from the Helmholtz free energy F0.

The higher-order terms (many-body interactions) are necessary if we want to study the effects of

fluctuations.

First we calculate G0(Wα). From now on we replace iWα by Wα. Note that

G0(Wα) = −kBT lnZ(Wα) = − 1
β

ln
∫
Dφ̂α exp

(
−βH0 −Wαφ̂α

)
, (2.18)

which admits an expansion into power series of Wα and connected correlation functions:

G0(Wα)−G0(Wα = 0) = − 1
β

∑
m

1
m!

∫
dx1dx2 · · ·dxm∑

α

G
(m)
α1α2···αm(x1,x2, · · · ,xm)Wα1(x1)Wα2(x2) · · ·Wαm(xm)

= − 1
β

∑
m

1
m!
Gα1α2···αmWα1Wα2 · · ·Wαm . (2.19)
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From now on we will adopt the summation convention with integration over space.

The connected correlation functions G(m)

G(m)
c (x1,x2, · · · ,xn) =

(−1)mβδmG0(Wα)
δW (x1)δW (x2) · · · δW (xn)

∣∣∣∣
Wα=0

=
〈
φ̂(x1)φ̂(x2) · · · φ̂(xm)

〉
c

(2.20)

can be calculated using the propagator of Gaussian chains; details are given in Appendix 2.B.1.

F0(φα) is the Legendre transform of G0(Wα), which satisfies

F0(φα)−G0(Wα) = − 1
β
φαWα = − 1

β

∫
φα(x)Wα(x)dx, (2.21)

where φα are the averages of operators φ̂α under external fields Wα, defined as

φα =
βδG0(Wα)

δWα
=
〈
φ̂α

〉
Wα

, (2.22)

and we have

Wα = −βδF0(φα)
δφα

. (2.23)

It is known that in the expansion of F0(φα),

F0(ϕα + φ̄α)− F0(φ̄α) =
1
β

∑
m>1

Γ(m)
α1α2···αmϕα1ϕα2 · · ·ϕαm , (2.24)

the vertex functions are related to the amputated connected correlation functions (Zinn-Justin, 2002):

Γ(2)
αβ(x1,x2) = Sαβ(x1,x2) =

[
G(2)

c (x1,x2)
]−1

αβ
; (2.25a)

Γ(3)
αβγ(x1,x2,x3) = −G(3)

amp(x1,x2,x3); (2.25b)

Γ(4)
αβγδ(x1,x2,x3,x4) = −G(4)

amp(x1,x2,x3,x4) +
∫
G(3)

amp(x1,x2,y)G(2)
c (y, z)G(3)

amp(z,x3,x4)dydz

+ 2 permutations; (2.25c)

where

G(n)
amp(x1,x2, · · · ,xn) =

∫
dy1dy2 · · ·dynG

(n)
α′

1α′
2···α′

n
(y1,y2, · · ·yn)

Sα1α′
1
(x1,y1)Sα2α′

2
(x2,y2) · · ·Sαnα′

n
(xn,yn). (2.26)

The interacting free energy of the interacting system is

F (φ) = H1(φ) + F0(φ). (2.27)
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At high temperatures (β � 1), the system is uniform and the free energy is minimized at φ = φ̄. As

the temperature decreases, the enthalpic interactions dominate over the entropic mixing term, and

the system tends to phase separate. This is signaled by the instability at the quadratic expansion

of the free energy with respect to perturbations of the order parameter ϕ = φ− φ̄, i.e., the Hessian

matrix attains negative eigen values. This defines the spinodal limit.

Up to quadratic order F is given by (See Appendix 2.B.2 for the derivation)

F (2) = V
∑
q

[
S−1(q)− f(βε)

]
ϕα(q)ϕα(−q) (2.28)

where S−1(q) is the inverse structure factor, βε are the interaction parameters, ϕα(q) is the Fourier

transform of ϕα(x), and ϕ∗α is the complex conjugate of ϕα. S−1(q) is dependent on the chain

composition and the bulk average volume fraction of polymers. To find the spinodal limit, we

minimize S−1(q) and find the value βε such that f(βε) ≥ minq S
−1(q).

The wave vector qm that minimizes S−1(q) gives the inverse of the correlation length of the

phase separated structure. In the microphase transition, qm ∼ N−1/2, thus the correlation length

is comparable to the chain length. In the macrophase phase separation, qm = 0. In the solution of

associating triblock copolymers, both spinodals are present.

2.3 Results and discussion

First we look at the spinodal lines in the solution of associating triblock copolymers. For simplicity

we assume that the only associating interaction is εAA = eA < 0, the solvent molecules and B

segments are assumed to be non-interacting.

In Figure 2.1 on page 20 we show the spinodal lines in the solution of associating polymers

with composition 3A-4B-3A with different chain lengths: N = 20, 40, 100. The spinodal for the

macrophase separation is shown in red, with a critical point; the spinodal for microphase transition

is shown in blue. The phase diagram is very similar to the experimental results obtained for gelatin

solution by Tanaka et al. (1979) and theoretical calculations by Tanaka (1989) and by Semenov and

Rubinstein (1998a).

From Appendix 2.B.2 we find that the critical point in the binodal coexistence is given by

e∗A
kBT

=
1

4f2
A(1− φp)

+
1

4f2
AφpN

,

which is of order O(1), and the microphase spinodal satisfies eA ∼ N−1. Therefore increasing the

chain length results in a large shift of the microphase spinodal, but only affects the macrophase

spinodal weakly. The scaling e ∼ N−1 is also obtained by Tanaka et al. (1979) for the gelation line,
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Figure 2.1: Spinodal lines for the microphase transition and the macrophase separation in solutions
of associating polymers. The fraction of associating A block is 0.3 on each end of the triblock
copolymer. Results are shown for associating polymers with three kuhn lengths (N = 20, N = 40
and N = 100). The red lines are the spinodal for the macrophase separation, with a critical point;
the blue lines are the microphase spinodal with instability at wave vector qm > 0.

while our result has no a priori assumption of the appearance of the gel phase. This coincidence

suggests that gelation has the same thermodynamic signature as the microphase transition.

We notice that as chain length increases, the intersection point between the two spinodals is

shifted to the left, suggesting that the solution is unstable with respect to the microphase transition

for lower polymer concentrations. Therefore the solution of associating polymers with longer chains

should form a gel at lower concentrations. This is expected both from the microscopic mechanism

of self-assembly and from the thermodynamics of polymer solutions.

We also point out that the microphase spinodal does not terminate at the intersection, but

continues below the binodal coexistence. Mathematically this implies a discontinuous jump in the

quadratic coefficient a in the structure factor

S−1(q) = q4 − aq2 + b.

This is different from the mean field Lifshitz point where a continuously decreases to zero. This might

be an artifact of the mean field approximation, and fluctuation effects should drive the confluent
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Figure 2.2: Spinodal lines in the solution of associating polymers with chain length N = 40 and
different end-block fractions, fA = 0.25, 0.3, 0.35. The meaning of the curves are the same as in
Fig. 2.1.

point to a Lifshitz tri-critical fixed point.

In Fig. 2.2 we plot the spinodal lines for associating polymers with fixed length (N = 40) at three

different end-block fractions: fA = 0.25, 0.3, 0.35. Compared to Fig. 2.1 we see that increasing the

end-block fraction has a big effect on the macrophase spinodal, but does not affect the microphase

spinodal very much. This can be understood from the driving force for the phase transition in each

case. In the macrophase separation, the driving force is mainly the enthalpic interactions, therefore

increasing the fraction of A blocks can enhance the tendency for phase separation into A-rich and

A-poor phases. On the other hand, for the microphase transition, the A blocks serve as connection

while the B blocks are the linkers. Because of volume incompressibility, the local density of A

segments is about the same for all chain compositions, therefore as long as the monomer interaction

between A segments is strong enough, they will form aggregated structures dispersed in the B matrix.

The driving force for this microphase transition is not only enthalpic, but also entropic, due to the

presence of B linker. In fact, as shown in Figure 2.3 on page 22, if we further increase the end fraction

to “unrealistic” high values fA = 0.45, we see that the microphase spinodal is shifted to even larger

eA. In particular we observe that increasing the polymer concentration can dissolve the gel instead

of triggering gelation as for lower end-block fractions. This corresponds to the “inversion” of the
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Figure 2.3: Spinodal lines in the solution of associating polymers with large end blocks. The chain
length is N = 40 and results are shown for end fractions fA = 0.35, 0.4, 0.45.

microphase structures from the A dispersed phase to the B dispersed phase, and clearly reflects the

self-assembly nature of the transition.

We also note that for fA = 0.25 the microphase spinodal intersects the binodal spinodal to

the left of the critical point, implying the possibility of two co-existing microphases with different

polymer concentrations. This is also found by Semenov and Rubinstein (1998a) for the gelation of

associating polymers. Our results suggest that such a coexistence is due to the competition between

short-range monomer interactions and the self-assembly of copolymers at the mesoscopic polymer

length scale.

Figure 2.4 on page 23 shows the critical wave vector qm associated with the microphase spinodal.

The correlation length ξ ∼ q−1
m . From the two blue curves we see that for long chains or at high

concentrations, the polymer chains are less swollen, as is expected from less screening. From the

three curves with different compositions at N = 40 we see that the structure is more swollen for

larger end-block fractions when the polymer concentration is high, but at low densities the trend is

reversed. This probably reflects the entropic effect in the self-assembly, and can be easily tested in

experimental measurements.

Finally in Figure 2.5 on page 24 we plot the microphase spinodal curves in a solution with virial
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Figure 2.4: Critical wave vector in the solution of associating polymers. We present the results for
three end block fractions, fA = 0.25, 0.3, 0.35 with chain length N = 40, and one curve fA = 0.3 for
N = 20.

type expansion instead of volume incompressibility. The macrophase spinodals are not shown as

they are similar to the previous cases. These results show similar features as for the model with

strict volume incompressibility.

2.4 Conclusion

To summarize, from analysis of a simple system for reversible gelation—triblock associating poly-

mer solutions—we find that such systems exhibit microphase transitions which share many similar

features with the reversible gelation. We find that this transition is rather insensitive to the chain

composition as compared to the chain length or associating energy. This reflects the nature of this

transition, which is due to the interplay between short-range monomer aggregation and long-range

polymer extension.

Although our work is carried out for triblock copolymer solutions, qualitative features should

hold in other associating polymer systems, such as multi-block or even diblock copolymers: There

should always be a microphase spinodal due to the segregation between A and B monomers. And

these systems could exhibit gelation under certain conditions.
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Figure 2.5: Microphase spinodal calculated using the virial-type expansion instead of strict volume
incompressibility. The chain length is N = 40 with c1 = 1kBT and c2 = 6kBT . Results are shown
for fA = 0.1, 0.15, 0.25, 0.35.

Our calculations suggest that one can start from the basic microscopic model to study the

thermodynamics of gelation, without a priori assumptions of the gel phase. But the nature of

reversible gelation, like the glass transition, is different from conventional phase transitions, and

calls upon new theoretical tools. In the next chapter, which is adapted from our published paper,

we analyze the possibility of glass transitions associated with this microscopic spinodal.

Appendix 2.A Self-consistent field calculation

2.A.1 Calculations of the partition functions of non-interacting polymers

in external fields

In this subsection we solve the partition function Z(iWα) as defined in Eq. (2.10). First we replace

iWα by Wα, it will turn out that thus defined Wα are real. From Eq. (2.12) we have

Zs(iWS) =
∫
D[rn]n=1,2,···ns exp

[
−
∫
WS (r) φ̂S (r) dr

]
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=
∫
D[rn] exp

[
−
∫
WS (r)

ns∑
n=1

δ (r− rn) dr

]
=
[∫

e−WS(r)dr
]ns

= qns
s . (2.29)

We still need to calculate the single chain partition function qp.

Using the Green’s function for Gaussian chains (Doi and Edwards, 1986) we can express the

partition function qp as

qp =
∫
G(r, r′;N),

where G(r, r′;N) satisfies

[
∂

∂N
− b2

6
∇2

r +W (r)
]
G(r, r′;N) = δ(r− r′). (2.30)

To calculate qp, we only need q(r, l), the once-integrated Green’s function (propagator) (see Wood

and Wang, 2002; Tzeremes et al., 2002; Drolet and Fredrickson, 1999; Fredrickson et al., 2002)

q(r, l) =
∫
G(r, r′; l)dr′,

which satisfies the same diffusion equation as G(r, r′)

[
∂

∂l
− b2

6
∇2

r +
∑
α

δα(l)Wα (r)

]
q(r, l) = 0, (2.30′)

but with the following initial condition:

q (r, 0) = 1.

q∗(r, l), the conjugate of q, satisfies

[
∂

∂l
− b2

6
∇2

r +
∑
α

δα(N − l)Wα (r)

]
q∗(r, l) = 0 (2.30′′)

with the same initial condition. We can rescale l by t = l/N , 0 ≤ t ≤ 1, then the equations become

[
∂

∂t
− Nb2

6
∇2

r +N
∑
α

δα(t)Wα (r)

]
q(r, t) = 0

δA,B(t) are defined the same as in Eq. (2.17). And

qp =
∫
q (r, 1) dr =

∫
q∗(r, 1)dr. (2.31)
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2.A.2 Grand canonical ensemble calculation

We have obtained the grand canonical partition function in Section 2.1.2 as

Ξ (µp, µs) =
∞∑

np=0

∞∑
ns=0

exp (βµpnp + βµsns)
ns!np!

Z(np, ns),

=
1
N

∫
Dφα

∫
DWα

∫
DΠ

exp

{
−βH1[φα] +Wαφα + Π

(∑
α

φα − ρ

)
+ eµsqs + eµpqp

}
. (2.32)

where µp and µs are the chemical potential of the polymers and the solvents.

In the grand canonical ensemble, Eq. (2.14) is replaced by

δ

δWS (r)
= 0 ⇒ φS = eβµs−WS ; (2.33a)

δ

δWA,B (r)
= 0 ⇒ φA,B (r) = exp (βµp)

∫ 1

0

θA,B(t)q (r, t) q∗ (r, 1− t) dt; (2.33b)

δ

δΠ(r)
= 0 ⇒

∑
α

φα(r) = ρ; (2.33c)

δ

δφα(r)
= 0 ⇒Wα(r) =

β∂H1(φα)
∂φα

. (2.33d)

If we use the virial expansion instead of strict incompressibility we have the following SCF equations

(εαβ and c1, c2 are given in unit of kBT ):

WA (r) = εAAφA(r) + εABφB (r) + εASφS (r) + 2c1φp(r) + 3c2φ2
p(r), (2.34a)

WB (r) = εBBφB(r) + εABφA (r) + εBSφS (r) + 2c1φp(r) + 3c2φ2
p(r), (2.34b)

WS (r) = εSSφS(r) + εASφA (r) + εBSφB(r); (2.34c)

φA = exp (βµp)
∫ 1

0

θA(t)q (r, t) q∗ (r, 1− t) dt, (2.34d)

φB = exp (βµp)
∫ 1

0

θB (t) q (r, t) q∗ (r, 1− t) dt, (2.34e)

φS = exp (βµs −WS) . (2.34f)

Finally the grand potential is

G = −kBT ln Ξ = H1(φα)− eβµpqp − eβµsqs −Wαφα. (2.35)

In the grand canonical calculation we want to fix the concentration of the polymers in the reservoir

instead of by their total density, therefore only one chemical potential is independent. We can take

µs = 0 for convenience and choose µp as in a uniform polymer solution with given volume fraction
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of polymer segments, which can be calculated from Eqs. (2.35) and (2.34).

The canonical free energy of the system is

F (φα) = H1(φα)− kBT (Wαφα + np ln qp + ns ln qs) . (2.36)

2.A.3 Numerical solution of the SCF equations

To implement numerical solutions of the self-consistent equations (2.14) or (2.34), we first note that

the inputting parameters are εαβ , c1 and c2, N , fα, and µp in the grand canonical ensemble, and

εαβ , c1 and c2, N , fα, and the average concentrations φ̄p and φ̄s in the canonical ensemble. fα are

the fractions of different blocks in each chain.

We adopt the following iteration scheme (Drolet and Fredrickson, 2001; Tzeremes et al., 2002):

1. The initial density distributions φ(0)
α (r) are generated by adding a tiny fluctuation to the

uniform distribution, the conjugate fields W (0)
α (r) are calculated from the first 3 equations of

Eqs. (2.14) or (2.34);

2. For a set of W (i)
α (r) , φ(i′)

α (r) are obtained using the remaining 3 equations, and W
(i′)
α (r) are

calculated from φ
(i′)
α (r) using the first 3 equations;

3. W (i)
α are updated by:

W (i+1)
α = W (i)

α + y1∆W (i)
α + y2∆φ(i)

α , (2.37)

∆W (i)
α = W (i′)

α −W (i)
α , (2.38)

∆φ(i)
α = φ(i′)

α − φ(i)
α . (2.39)

4. φ(i+1)
α are updated for W (i+1)

α from the last 3 equations and step (ii) and step (iii) are repeated.

To calculate the Green’s functions (the N factor has been adsorbed into W (r)):

q (r, 0) = 1,
(
∂

∂t
− Nb2

6
∇2

r +Wα (r)
)
q(r, t) = 0, (2.40)

first we rescale r by Rg =
(
Nb2/6

)1/2, and the solution can be formally written as

q (r, t+ dt) = exp
[(
∇2 −W (r)

)
dt
]
q (r, t) . (2.41)

From the Baker-Hausdorff operator identity (Tzeremes et al., 2002),

exp(Â) exp(B̂) = exp
{
Â+ B̂ − 1

2
[Â, B̂] + · · ·

}
,
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Eq. (2.41) can be written as

q (r, t+ dt) = exp
(
−dt

2
W (r)

)
exp

(
dt∇2

)
exp

(
−dt

2
W (r)

)
q (r, t) , (2.42)

which is accurate to dt2. Eq. (2.42) can be numerically implemented by Fourier transform,

q (r, t+ dt) = exp
(
−dt

2
W (r)

)
F−1

{
exp

(
−dtk2

)
F
[
exp

(
−dt

2
W (r)

)
q (r, t)

]}
; (2.43)

F denotes the Fourier transform, which can be implemented using fast Fourier transform. The fast

Fourier transform (FFT) automatically ensures the periodic boundary conditions.

In the simulation we need to specify the size and discretization of the system. If we choose the

discretization lattice to be 64×64 and the size of the system to be 6.4Rg×6.4Rg, then we can resolve

the density profile to ∼ 0.1Rg (Rg is the radius of gyration of the polymer). In our simulations we

use square lattices and resolve the density profile to 0.1 ∼ 0.2Rg.

2.A.4 Analysis of the iteration scheme

Self-consistent equations for polymer systems are highly non-linear and it is notoriously difficult to

obtain convergent solutions. Here we briefly analyze possible steepest descent schemes to solve the

self-consistent equations.

In Section 2.1 and Section 2.2 we have obtained the mean field free energy potential F [φα]:

F = − ln
∫
DφαDWα exp (−βH1[φα] +Wαφα −G[Wα]) . (2.44)

Taking the saddle point we have
δF

δWα
= 0,

δF

δφα
= 0.

From
δF

δWα
= 0

we obtain

φα =
δG[Wα]
δWα

= Φ(Wα). (2.45)

Therefore in terms of φα, the saddle point free energy is

F ∗[φα] = H1[φα]− Φ−1[φα]φα +G[Φ−1(φα)]. (2.46)
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The gradient of F ∗ against φα is

δF ∗[φα]
δφα

=
∂H1[φα]
∂φα

− Φ−1(φα). (2.47)

Φ−1 or Φ can be expanded as an asymptotic series of φα or Wα as done in the free energy expansion

in Section 2.2, but we do not have close-form expressions. Therefore it is inconvenient to implement

steepest descent or Langevin type dynamics in the φ field.

Alternatively we can first take
δF

δφα
= 0,

and we have

Wα =
∂H1[φα]
∂φα

= W(φα). (2.48)

Then

F ∗[Wα] = H1[W−1(Wα)]−W−1(Wα)Wα +G[Wα], (2.49)

and the free energy gradient is

δF ∗[Wα]
δWα

= Φ(Wα)−W−1(Wα). (2.50)

In most cases we do have a close form expression for W−1 or W from Eq. (2.48), therefore in

principle we could do a steepest ascent on Wα fields. But to ensure that the steepest descent on the

free energy landscape is well-behaved, we have to input the extra constraint that

δ2F ∗[Wα]
δWαδWβ

is negative/non-positive definite. This is generally true for the first term Φ(Wα). For W−1 this

imposes an extra constraint on H1 such that

δ2H[φα]
δφαδφβ

is positive definite. But we know that this is not the case! Therefore the solutions to the self-

consistent equations of interest to us (for H1 with double minima) are not the extrema in Wα fields,

but saddle points. It is tempting to use the “string method” to be discussed in the Chapter 5 in

Part II, which is an efficient method to locate extremum as well as saddle points on the free energy

landscape, or to adapt the cell dynamics approach by Bahiana and Oono (1990).



30

Appendix 2.B Free Energy Expansion

2.B.1 Calculation of the connected correlation functions

From Eq. (2.20), we have

G
(m)
α1α2···αm(x1,x2, · · · ,xm) =

〈
φ̂α1(x1)φ̂α2(x2) · · · φ̂αm(xm)

〉
c
.

From now on we shall adopt the short-hand label m for xm. To calculate these correlation functions,

note that the system consists of n non-interacting polymer chains, therefore

G
(m)
α1α2···αm(1,2, . . .m) = ng

(m)
α1α2···αm(1,2, . . .m), (2.51)

where g is the connected correlation function for a single chain, which is the joint probability

distribution Pα1α2···αm(1,2, . . .m), i.e., the probability that at r1 there is an α1 segment, at r2 there

is an α2 segment, etc.

We first study Pi1i2···im(1,2, ...m) which is the joint probability that there is the i1th segment

at r1, i2th segment at r2, etc. Because the Gaussian chain (Brownian motion) is Markovian, we can

express Pi1i2···im(1,2, ...m) using the transition probabilities (two-point propagators):

Pi1i2···im(1,2, . . .m) = Pi1(1)Pi1i2(1,2)Pi2i3(2,3) · · ·Pim−1im(m− 1,m) (2.52)

where

Pi1(1) =
1
V

is the probability that the first segment is located at position r1, and

Pi1i2(1,2) =
(

3
2π |i2 − i1| b2

)3

exp

[
− 3 |r2 − r1|2

2 |i2 − i1| b2

]
(2.53)

is the propagator of a Gaussian chain from r1 to r2 with capacity (i2 − i1)b2.

To evaluate Pi1i2···im , it is convenient to use the characteristic function of Pi1i2(1,2)

Pi1i2(q) =
∫
eiq·rPi1i2(r)dr = exp

[
− |i2 − i1| b2q2

6

]
. (2.54)

We now go on to evaluate gi1i2···im
.

gi1i2(q1,q2) =
∫
ei(q1·r1+q2·r2)Pi1(1)Pi1i2(r2 − r1)dr1dr2

=
1
V
δ(q1 + q2)Pi1i2(q2); (2.55)



31

gi1i2i3(q1,q2,q3) =
∫
ei(q1·r1+q2·r2+q3·r3)Pi1(1)Pi1i2(r2 − r1)Pi2i3(r3 − r2)dr1dr2dr3

=
1
V
δ(q1 + q2 + q3)Pi1i2(q1)Pi2i3(q3); (2.56)

gi1i2i3i4(q1,q2,q3,q4) =
∫

dr1dr2dr3dr4e
i(q1·r1+q2·r2+q3·r3+q4·r4)

Pi1(1)Pi1i2(r2 − r1)Pi2i3(r3 − r2)Pi3i4(r4 − r3)

=
1
V
δ(q1 + q2 + q3 + q4)Pi1i2(q1)Pi2i3(q1 + q2)Pi3i4(q4). (2.57)

The connected correlation functions Gα1α2···αm(q1,q2, . . .qm) are obtained via

Gα1α2···αm(q1,q2, . . .qm) =
∫

α1

di1
∫

α2

di2 · · ·
∫

αm

dimGi1i2i3···im(q1,q2, . . .qm). (2.58)

The integral is over different blocks αi.

2.B.2 Spinodal limit

We now study the system of associating A-B-A triblock copolymers in a theta solution for B but

poor solution for A. The spinodal limit is defined as when the uniform phase becomes unstable.

To calculate the spinodal transition lines we expand the free energy of the solution to the leading

(quadratic) order.

The monomer interactions are assumed to be εAA = −eA, εαβ = 0 otherwise. From Eqs. (2.24)

and (2.27) the quadratic term in the free energy expansion is

F (2){ϕα + φ̄α} − F (2){φ̄α}
kBT

=
1
2

∫
dx1dx2ϕα(x1)G−1

αβ(x1,x2)ϕβ(x2) +H
(2)
1 , (2.59)

where

H
(2)
1 = −1

2
eA

∫
ϕ2

A(x)dx + c1

∫
(ϕA(x) + ϕB(x))2 dx + 3c2

∫
(ϕA(x) + ϕB(x))2 φ̄pdx. (2.60)

φ̄α is the bulk average density of component α; φ̄p = φ̄A + φ̄B, is the bulk average density of polymer

segments.

F (2) can be expressed in terms of ϕα(q),

F (2) = V kBT
∑
q[

1
2
ϕα(q)G−1

αβ(q,−q)ϕβ(−q)− eA
2
ϕA(q)ϕA(−q) + c1ϕp(q)ϕp(−q) + 3c2ϕp(q)ϕp(−q)φ̄p

]
,

(2.61)

where ϕp = ϕA + ϕB.
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Gαβ can be obtained from Eqs. (2.55) and (2.58). Here we assume that each A block has NA

segments and the midblock has NB segments. Then

Gαβ =
n

V

 2N2
A(D(xA) + E(xA)) 2NANBH(xA, xB)

2NANBH(xA, xB) N2
BD(xB)

 =
n

V
Qαβ (2.62)

where NA is the length of the first A block, and

xα =
Nαq

2b2

6
,

D(x) =
x− 1 + e−x

x2
,

E(x) =
e−x(1− e−x)2

x2
,

H(xA, xB) =
(1− e−xA)(1− e−xB)

xAxB
.

Next we minimize F (2) with respect to ϕB(q) or ϕB(−q),

ϕB(q) =
N
[
Q−1

]
AB

+ 6c2φ̄2
p + 2c1φ̄p

−6c2φ̄2
p − 2c1φ̄p

−N
[
Q−1

]
BB

ϕA(q). (2.63)

[Q]−1
αβ is the inverse of [Q]αβ

[Q]−1
αβ [Q]βγ = δαγ .

Substitute Eq. (2.63) back into Eq. (2.61), and we obtain

βF (2) =
V

2

∑
q

{
N

φ̄p

[
(QBB + 2QAB +QAA)

(
2c1φ̄p + 6c2φ̄2

p

)
−N(

6c2φ̄2
p + 2c1φ̄p

)
(QAAQBB −Q2

AB)−NQAA

]
− βeA

}
ϕA(q)ϕA(−q) (2.64)

=
V

2

∑
q

[
S−1(q)− βeA

]
ϕA(q)ϕA(−q).

In the strict incompressible case, S−1(q) is given by

S−1(q) =
N3D(x) +N2(1− φ̄p)/φ̄p

φ̄p (QAAQBB −Q2
AB) + (1− φ̄p)NQAA

.

Note that the Q functions are dependent on q. The term in the square bracket attains a minimum

at qm and at q = 0. Once βeA exceeds this minimum, the free energy becomes unstable with respect

to perturbations at qm. This gives the spinodal limit. At q = qm, eA ∼ N−1 gives the spinodal limit

of a microscopic phase transition; while at q = 0, eA ∼ N0 corresponds to the spinodal limit of the

macroscopic phase separation.
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Chapter 3

Random isotropic structures and
possible glass transitions in diblock
copolymer melts

This chapter is reprinted from our paper, C.-Z. Zhang and Z.-G. Wang Phys. Rev. E73, 031804

(2006). Copyright (2006) by the American Physical Society.

3.1 Introduction

Block copolymers are macromolecules built with blocks of chemically distinct monomers. Melts of

block copolymers are attractive from both theoretical and experimental standpoints, as they undergo

microphase transitions and produce diverse ordered microstructures (Hamley, 1998, 2004; Bates and

Fredrickson, 1990, 1999).

The simplest block copolymer is the AB diblock copolymer made of two types of monomers A

and B. Below the order-disorder transition (ODT) temperature, a diblock-copolymer melt can ex-

hibit rich mesophases (Bates et al., 1994), including body-centered-cubic (bcc), hexagonally ordered

cylinder (hex), lamellar (lam), and several bicontinuous (e.g., gyroid) structures. Experimentally

these structures have been identified using transmission electron microscopy (TEM) (Bates et al.,

1982; Gido and Thomas, 1994), small-angle neutron scattering (SANS) (Bates et al., 1982, 1990;

Almdal and Bates, 1992), and dynamic mechanical measurements (Bates et al., 1990; Rosedale and

Bates, 1990; Almdal and Bates, 1992). Theoretically these structures are well described by the

self-consistent mean-field theory (Matsen and Schick, 1994; Matsen and Bates, 1996).

Generally these periodically ordered structures are expected to be the thermodynamically equi-

librium states (Bates et al., 1990). However, they are difficult to attain either in experiments (Bates

et al., 1990) or in computer simulations (Fraaije et al., 1997). Bates and co-workers (Bates and

Fredrickson, 1990; Bates et al., 1990) found that quenching a nearly symmetric diblock-copolymer

melt without a symmetry-breaking external field, such as reciprocal shearing, generally results in
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isotropic, locally microphase-separated structures with a characteristic length scale of the radius of

gyration of the polymer. In addition, such structures were also obtained (as a rule) in dynamic-

density-functional calculations (Fraaije et al., 1997; Maurits and Fraaije, 1997; Hamley, 1998). The

ordering kinetics in these random structures are very slow, suggesting that they are metastable states

corresponding to free-energy minima. It is therefore quite possible that the ordered phases, though

energetically favored, are not easily reached due to the kinetic trapping caused by the presence of a

large number of metastable free-energy minima. These metastable states correspond to the locally

microphase-separated states without long-range order.

Dynamic mechanical measurements by Bates and co-workers (Bates et al., 1990; Almdal and

Bates, 1992) on melts of both symmetric, lamellae-forming, and asymmetric, hex-forming PE–PEP

[partially deuterated poly(ethylene-propylene)–poly(ethylethylene)] copolymers revealed that the

system may be frozen in random structures upon a deep quench. Comparing the quenched sample

with the slowly supercooled sample and the shear-ordered sample, they found that the quenched

sample exhibits very slow relaxations and extraordinarily large elastic moduli at low frequencies; but

the supercooled sample behaves more like the disordered melt continuously extended to below the

ODT temperature. Balsara and co-workers (Balsara et al., 1998; Kim et al., 2001) studied the grain

structure of asymmetric, hex-forming PI-PS (polyisoprene–polystyrene) melt by light scattering,

SANS, and rheological measurements. Similar to the findings of Bates et al. (1990), they found

that upon a deep quench, randomly microphase-separated structures are obtained, which do not

appear to evolve towards the equilibrium structure with long-range order within the time scales of

the experiments. Besides these, Pochan et al. (1996) found randomly oriented wormlike cylinder

structures in an I2S [polyisoprene(I)-polystyrene(S)] star copolymer system.

The above results suggest that the ordering process in block-copolymer melts follow a two-step

mechanism: a fast step in which unlike monomers locally phase separate into random, macro-

scopically isotropic structures with domains of the size of a single polymer, followed by a domain

coarsening (or growth) step in which local defects in the random microstructures anhilate and long-

range order is developed. The second step is generally much slower than the first and most likely

involves activated processes. Therefore a rapid deep quench can result in randomly microphase-

separated structures that are kinetically trapped and unable to develop long-range order within

normal laboratory time scales.

This two-step mechanism is, in fact, consistent with the thermodynamic two-step scenario im-

plicit in the Fredrickson-Helfand (FH) fluctuation theory for diblock-copolymer melts (Fredrickson

and Helfand, 1987), which only applies to symmetric or nearly symmetric copolymers. Instead of

the featureless background as assumed in the random-field-approximated structure factor of Leibler

(Leibler, 1980), the FH theory suggests that when the temperature approaches the ODT, the dis-

ordered state is a fluctuating, heterogeneous structure consisting of locally A- and B-rich domains,
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which then orders into periodic mesophases upon further cooling.

The most dramatic manifestation of the first step is the existence of disordered-spherical-micelle

state in highly asymmetric copolymer melts, which almost has the appearance of a distinct phase

between the featureless disordered phase and the bcc-ordered phase (Adams et al., 1994, 1996;

Schwab and Stühn, 1996; Kim et al., 1999; Han et al., 2000; Sota et al., 2003; Choi et al., 2003; Wang

et al., 2002). The micelle state was first predicted by Semenov (1989). Recently Dormidontova and

Lodge (2001) extended the Semenov theory by including the translational entropy of the disordered

spherical micelles and predicted a phase diagram that is in qualitative agreement with experiments.

More recently, Wang et al. (2005) examined the nature of the disordered spherical micelles and their

connection to concentration fluctuations using the self-consistent-field theory. Taking a nucleation

perspective, these authors showed that the disordered micelles are large, localized concentration

fluctuations through a thermally activated process.

In this work, we study the metastable states consisting of random structures in block-copolymer

melts and address the possibility of glass transition using a thermodynamic replica approach. This

approach was first proposed by Monasson (1995) and subsequently employed by a number of authors

in studying structural glass transitions (Mézard and Parisi, 2000; Coluzzi et al., 2000; Schmalian

and Wolynes, 2000; Westfahl et al., 2001; Wu et al., 2004). In this framework, the onset of glassiness

is identified with broken ergodicity (Palmer, 1982), which occurs as a result of the appearance of an

exponentially large number of metastable free-energy minima (Nussinov et al., 1999). The broken

ergodicity is manifested through a nonvanishing long-time correlation (here manifested as the cross

replica correlation function), whose first appearance defines the onset temperature of glassiness TA

(also called the dynamic glass transition temperature (Westfahl et al., 2001; Monasson, 1995)). An

equivalent Kauzmann temperature TK as in molecular liquids (Debenedetti and Stillinger, 2001) can

also be defined as signaling the complete vitrification of the random structures.

The possibility of glass transitions in bicontinuous microemulsions—a system closely related

to diblock copolymers—was recently examined by Wu et al. (2002), using both a dynamic mode-

coupling theory and the thermodynamic replica approach. There authors have also studied glass

transitions in the Coulomb-frustrated-magnet model using the replica method with a self-consistent-

screening approximation (Schmalian and Wolynes, 2000; Westfahl et al., 2001) and, more recently,

a local-field calculation (Wu et al., 2004). Both the microemulsion and the Coulomb-frustrated-

magnet systems belong to the general class of models first proposed by Brazovskii (1975), featuring

the existence of low-energy excitations around some finite wave number qm and the formation of

microphase-separated structures with length scales ∼ 1/qm at low temperatures. These studies

showed that as a result of the large degeneracy in ground states (Nussinov et al., 1999), a glass

transition can occur when the ratio of the correlation length of the system to the modulation length

2π/qm exceeds some critical value. Similar conclusions were also obtained by Grousson et al. (2002a)
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using the mode-coupling theory.

Our work follows a similar approach to that employed by Schmalian and co-workers (Schmalian

and Wolynes, 2000; Westfahl et al., 2001). However, we perform calculations specifically for the

block-copolymer system by taking advantage of the natural smallness parameter (the inverse of the

scaled degree of polymerization, N̄); this allows us to study how the glass transitions are affected

by increasing the chain length of the polymer when the system gradually approaches the mean-

field limit. An important conclusion of our work is that in the limit of infinitely long chains, both

the onset of glassiness and the Kauzmann temperature coincide with the mean-field spinodal of

the disordered phase. Therefore the spinodal is the mean-field signature for the glass transition

in the block copolymer system; the same conclusion is likely to hold in general for microphase-

separating systems. Another feature of our work is the inclusion of the order-disorder transition in

the phase diagram. This is important because it places the glass transition in proper relationship to

the ordering transition. We find that, for symmetric, lam-forming copolymers, the glass-transition

temperatures are below the ODT temperature, while for asymmetric, sphere-forming copolymers,

the onset of glassiness can precede the ODT into the bcc phase. On a technical point, we propose a

method for incorporating fluctuations due to the cubic interaction in the Brazovskii model, using a

renormalization scheme motivated by the 1/n expansion of the n-vector model in critical phenomena.

The effects of these fluctuations have not been addressed in any of the previous studies (Fredrickson

and Helfand, 1987; de la Cruz, 1991; Dobrynin and Erukhimovich, 1991; Barrat and Fredrickson,

1991; Fredrickson and Binder, 1989) on block-copolymer systems. We find that in the leading-order

approximation these fluctuations stabilize both the bcc phase and the glassy state.

3.2 Model and solution

3.2.1 Model description

We consider the melt of AB diblock copolymers of degree of polymerization N = NA + NB and

block composition f = NA/N . The monomer volume v and Kuhn length B are taken to be

equal for both monomers. We describe the thermodynamics of the system using the random-field-

approximated (RPA) free energy functional with local approximations for the cubic and quartic

interactions (Leibler, 1980; Ohta and Kawasaki, 1986; Fredrickson and Helfand, 1987) as the Hamil-

tonian

H[φ] =
1
Nv

[
1
2

∫
d3q

(2π)3
φ(−q)γ2(q,−q)φ(q) +

γ3

3!

∫
d3xφ(x)3 +

γ4

4!

∫
d3xφ(x)4

]
, (3.1)

where the order parameter φ ≡ ρA(x)v−f is the density deviation from the mean value. Throughout

the paper we take kBT = 1 except for our discussion of the thermodynamic approach to the glass
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transition in Section 3.2.3. To simplify the notation, we use plain letters (x, q, etc.) to denote

position and wave vectors; when the plain letter is used to denote the magnitude of the wave vector

(wave number), the context should make it clear.

Near the mean-field spinodal γ2(q,−q) can be approximated as

γ2(q,−q) =
c2

4
(
q2Nb2 − q2mNb

2
)2

+ 2 (χN)S − 2χN,

where χN is the Flory-Huggins interaction parameter between A and B blocks, (χN)S is its value

at the spinodal, and c is a parameter independent of N . (χN)S, c, and qm are functions of f and

N , which can be calculated using the RPA theory of Leibler (1980). Note that Eq. (3.1) as a

Hamiltonian is applicable to a broad class of copolymer systems, including multiblock copolymers

(de la Cruz, 1991) and copolymer/homopolymer blends (Kielhorn and Muthukumar, 1997), where

the dependence on chain architectures, block compositions, and volume fractions of copolymers can

be incorporated into the parameters (χN)S, qm, etc. Therefore our results on diblock-copolymer

systems should be qualitatively applicable to these systems as well.

The degree of polymerization, N , plays the role of Ginzburg parameter, which controls the

magnitude of fluctuations (Fredrickson and Helfand, 1987). To highlight this feature, we non-

dimensionalize the lengths and wave numbers by the ideal end-to-end distance of the polymer:

x̄ ≡ x/(
√
Nb), q̄ ≡ q

√
Nb, q̄m ≡ qm

√
Nb, and concurrently rescale the order parameter as φ̄(x̄) ≡

φ(x)cq̄m, φ̄(q̄) ≡ φ(q)cq̄m/(
√
Nb)3. Now the Hamiltonian [Eq. (3.1)] becomes

H[φ] =
√
Nb3

v

[
1
2

∫
d3q̄

(2π)3
g(q̄)−1φ̄(q̄)φ̄(−q̄) +

η

3!

∫
d3x̄φ̄(x̄)3 +

λ

4!

∫
d3x̄φ̄(x̄)4

]
(3.2)

= N̄1/2H[φ̄],

where

g(q̄)−1 =
1

4q̄2m

(
q̄2 − q̄2m

)2
+ τ0q̄

2
m, (3.3)

τ0 =
2 (χN)S − 2χN

c2q̄4m
, (3.4)

η =
γ3

c3q̄3m
, (3.5)

λ =
γ4

c4q̄4m
. (3.6)

The scaled couplings η and λ are, respectively, the same as NΓ3 and NΓ4 defined by Fredrickson

and Helfand (1987). For notational simplicity, we drop the overbars on the variables and the order

parameter henceforth.

We point out that, although the parameters in Eq. (3.2) are written in molecular terms, this
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model is best interpreted as phenomenological. The random-phase approximation used in deriving

the Hamiltonian, the approximation of higher-order interactions as spatially local, and the truncation

at quartic order in the order-parameter expansion—all introduce inaccuracies whose effects are

difficult to evaluate (Kudlay and Stepanow, 2003). In particular, the order-parameter expansion to

quartic order is not justified for strongly asymmetric block compositions as chain stretching effects

become important and the weak-segregation assumption no longer holds (Almdal et al., 1990).

However, we note that taking Eq. (3.2) as the Hamiltonian, one can reproduce the experimental

phase diagram of microphase transitions qualitatively at all compositions, including the disordered

spherical-micelle states at very asymmetric compositions, as the state-of-the-art self-consistent-field

theory. Therefore while the quantitative accuracy of our theory may not be reliable, we expect that

most of our predictions should be qualitatively correct. Such an expectation is further boosted by

the general success of the Fredrickson-Helfand theory [also using Eq. (3.2) as the Hamiltonian] in

capturing many key features of the physics of diblock-copolymer melts at length scales comparable

to or larger than the size of the polymer chain.

In addition, studying glass transitions in the system described by Eq. (3.2) is of intrinsic theo-

retical value, as Eq. (3.2) corresponds to the weak-coupling limit of the Brazovskii model. Therefore

our results elucidate the physics of systems in the Brazovskii class in this limit.

Finally we notice that the parameter N̄1/2 ≡ N1/2b3/v (henceforth referred to as the “chain

length”) is a natural combination emerging in any study of the fluctuation effects in polymer melts,

which gives the number of other chains within the spatial extension of a single polymer chain

(Fredrickson and Helfand, 1987; Wang, 2002). N̄ plays a role similar to 1/~ in quantum field theory

(Cornwall et al., 1974)—controlling the magnitude of fluctuations. In the limit of N̄ → ∞, mean-

field behavior is recovered. For systems with large but finite N̄ we can apply a systematic loop

expansion using 1/N̄1/2 as the smallness parameter.

The presence of the N̄1/2 factor in front of the Hamiltonian also has important consequences

on the free-energy barriers separating the multiplicity of free-energy minima. In the mean-field

approximation, we expect that the free-energy barriers should be proportional to this factor. For

long polymer chains, the barriers can be much larger than the thermal energy, resulting in slow

relaxations between the metastable states and from these states to the lower free energy ordered

phases. This justifies the application of the energy-landscape theory of glass transitions in polymer

systems.

3.2.2 Ordered states and order-disorder transition

Our current understanding of the effects of fluctuations on the ODT in block-copolymer melts

is largely based on the Brazovskii-Leibler-Fredrickson-Helfand (BLFH) theory (Brazovskii, 1975;

Leibler, 1980; Fredrickson and Helfand, 1987). This theory uses the self-consistent Brazovskii ap-
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proximation (a Hartree-type approximation) for the quartic interaction and ignores fluctuations due

to the cubic interaction. Therefore, strictly speaking, it is only valid for symmetric or nearly sym-

metric block copolymers where cubic interaction is small (see our discussions at the end of this

subsection). Here we extend this theory to include the leading-order one-loop correction from the

cubic interaction, which accounts for the fluctuation effects due to asymmetry in the copolymer

composition. This improved theory should give more accurate predictions on the ODT in asym-

metric copolymer melts (and other asymmetric systems) and, more important, enables a consistent

comparison with the glass transition in the same system, where the cubic term is shown to play a

dominant role.

As in previous weak-segregation theories (Leibler, 1980; Fredrickson and Helfand, 1987), we adopt

the single-mode approximation for the periodic microphases, representing the density wave by

ϕ(x) = a
∑

j

[exp(iQj · x) + exp(−iQj · x)] , (3.7)

where A is the magnitude of the density wave and Qj(1 ≤ j ≤ n) are the first set of vectors on the

reciprocal lattice of the periodic structure of the ordered microphases (Leibler, 1980; Fredrickson and

Helfand, 1987). Now we introduce the fluctuation field around the minimum, ψ(x) = φ(x) − ϕ(x),

and perform an expansion of the Hamiltonian H[φ] in Eq. (3.2) around ϕ. The fluctuation part of

H[φ] is

∆H[ψ;ϕ] = H[ψ + ϕ]−H[ϕ]

=
1
2

∫
d3q

(2π)3
ψ(−q)g(q)−1ψ(q) +

η

3!

∫
d3xψ(x)3 +

λ

4!

∫
d3xψ(x)4

+
η

2

∫
d3q1d

3q2d
3q3

(2π)9
ψ(q1)ψ(q2)ϕ(q3)δ3(q1 + q2 + q3)

+
λ

4!

∫
d3p1d

3p2d
3p3d

3p4

(2π)12
δ3(p1 + p2 + p3 + p4)

[4ψ(p1)ψ(p2)ψ(p3)ϕ(p4) + 6ϕ(p1)ϕ(p2)ψ(p3)ψ(p4)] . (3.8)

The linear term of ψ vanishes because ϕ is at the minimum of the Hamiltonian. For the quadratic

term we only keep the dominant isotropic part

D(q)−1 = g(q)−1 + nλa2, (3.9)

which is defined as the shifted bare propagator.

The free energy (effective potential) of the microphase-separated system is given by

F [ϕ] = −N̄−1/2 ln
〈
exp

{
−N̄1/2H[φ]

}〉
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= H[ϕ]− N̄−1/2 ln
〈
exp

{
−N̄1/2∆H[ψ;ϕ]

}〉
. (3.10)

Here the free energy is scaled by N̄−1/2 such that the mean-field part H[ϕ] is independent of N̄ and

reduces to the Leibler free energy (Leibler, 1980). The second term in Eq. (3.10) contains corrections

due to the fluctuation part of the Hamiltonian (Eq. (3.8)). In the one-loop approximation we have

F [ϕ] = H[ϕ] +
1

2N̄1/2
Tr lnG−1

H − λ

8N̄

[∫
d3q

(2π)3
GH(q)

]2
− η2

12N̄

∫
d3pd3q

(2π)6
GH(p)GH(q)GH(−q − p),

(3.11)

where GH(q) is the Hartree-renormalized propagator determined from

GH(q)−1 = D(q)−1 +
λ

2N̄1/2

∫
d3k

(2π)3
GH(k). (3.12)

Our one-loop approximation is slightly different from the conventional diagrammatic expansion;

details are discussed in Appendix 3.B.

Under this approximation the renormalized correlation function is given by

G(q)−1 =
{

δ2F [ϕ]
δϕ(q)δϕ(−q)

}−1

= GH(q)−1 − η2

2N̄1/2

∫
d3k

(2π)3
GH(k)GH(q − k). (3.13)

In the replica calculation G(q) gives the renormalized diagonal correlation function in the replica

space.

The second term in Eq. (3.13), corresponding to the one-loop cubic diagram, was absent in

previous theories on the ODT, as it was shown to be subdominant to the Hartree term (the first

term in Eq. (3.13)) near the mean-field ODT for asymmetric copolymers (Brazovskii, 1975; Swift

and Hohenberg, 1977). The arguments for ignoring this term no longer hold for the supercooled

disordered phase (below the ODT temperature), and here we need a free energy function that remains

valid even below the mean-field spinodal temperature. Therefore the one-loop cubic term cannot be

dropped as by Brazovskii (1975) and Fredrickson and Helfand (1987). Also in the 1/N̄ expansion

employed here (equivalent to a loop expansion), the one-loop cubic term is of the same order as

the Hartree term and their numerical values are comparable in the part of the phase diagram of

interest, except for nearly symmetric compositions when the cubic term is small1. Furthermore, as

shown in Appendix 3.A the corresponding term is the leading term in the self-consistent equation

for the cross-replica correlation function. Earlier work also showed that it is the leading term that

generates long-time correlations in the mode-coupling theory for glass transitions (Kirkpatrick and

1In a complementary perturbative expansion motivated by the 1/n expansion, this cubic diagram is subdominant
to the Hatree term (see Appendix 3.B for a discussion). But their numerical values turn out to be comparable.
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Thirumalai, 1989). We therefore include the one-loop cubic term in our treatment of the ODT to

have a consistent comparison with glass transition.

3.2.3 Random structures and glass transition

Traditionally two different approaches have been developed to study frustrated systems with quenched

disorder. The dynamic approach, most notably the mode-coupling theory (Götze, 1989), focuses on

dynamic correlation functions (e.g., the Edwards-Anderson order parameter defined as the long-time

spin-spin correlation function in the Ising-spin-glass model (Edwards and Anderson, 1976)) and char-

acterizes the glassy state with non-vanishing long-time correlations and broken ergodicity. On the

other hand, the equilibrium thermodynamic approach, including the density functional approach

(Singh et al., 1985) and the replica approach (Mézard et al., 1987), describes glass transitions in

terms of the energy-landscape features of the system (Debenedetti and Stillinger, 2001). The connec-

tion between these two approaches was explicitly demonstrated in the mean-field spin-glass models

(Kirkpatrick and Wolynes, 1987; Mézard et al., 1987) where it was shown that these two approaches

yield consistent predictions. We now briefly describe the essential concepts in the thermodynamic

approach.

The central assumption in the thermodynamic approach is that the dynamic behavior of glass-

forming systems reflects the underlying free-energy-landscape features (Adam and Gibbs, 1965;

Kirkpatrick et al., 1989; Monasson, 1995; Coluzzi et al., 2000; Debenedetti and Stillinger, 2001). At

high temperatures, there is only one minimum corresponding to the uniform liquid state. As temper-

ature decreases, multiple metastable minima begin to appear that are separated by sizable activation

barriers, and below some temperature TA, the number of these minima becomes thermodynamically

large, giving a finite contribution to the partition sum of these “disjoint” metastable states and gen-

erating extensive configurational complexity manifested in a nonvanishing configurational entropy

(Kirkpatrick et al., 1989). This signals the onset of glassiness or broken ergodicity (Palmer, 1982)

in the sense that within times scales of typical liquid relaxations, the system is trapped in these

metastable free-energy minima; transitions between the minima, however, can still occur through

activated processes (Kirkpatrick and Wolynes, 1987). Dynamically, one expects a significant slowing

down of structural relaxations, often accompanied by the appearance of long plateaus in the time

correlation functions (Debenedetti and Stillinger, 2001; Kirkpatrick and Thirumalai, 1989). Com-

plete vitrification occurs at a lower temperature TK, below which the system is dominated by one

or less than an exponentially large number of deep free energy minima; thermodynamically, this is

signaled by the vanishing of the configurational entropy. TK is often termed the ideal glass transition

temperature and is conceptually identified with the underlying thermodynamic glass transition at

which the viscosity of the supercooled liquid diverges (Kauzmann, 1948; Adam and Gibbs, 1965;

Monasson, 1995; Debenedetti and Stillinger, 2001).
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Recently Monasson (1995) proposed a replica method which allows explicit implementation of the

thermodynamic approach for studying structural glasses resulting from self-generated randomness.

Using this method Westfahl et al. (2001) successfully predicted the glass transitions in the Coulomb-

frustrated-magnet model. Here we adopt this approach to study the glass transition in block-

copolymer melts.

Following Monasson (1995), we introduce an external pinning field ζ and calculate the pinned

free energy of the system, F [ζ]

F [ζ] = −kBT lnZ[ζ] = −kBT ln
∫
Dφ exp

(
− 1
kBT

{
H[φ] +

α

2

∫
d3x [φ(x)− ζ(x)]2

})
, (3.14)

where α > 0 is the coupling between the pinning field and the order parameter. (In Eqs. (3.14)–

(3.20), we reintroduce the kBT factor in order to allow explicit temperature derivatives.) The effect

of ζ is to locate the basins on the free-energy landscape. The coupling constant will be taken to be

infinitesimally small at the end and serves as a convenient device for breaking ergodicity—localizing

the system into separate basins. Its role is similar to that of the infinitesimal field that breaks the up-

down symmetry of the Ising model below the critical temperature. One can show that the minima of

F [ζ] coincide with those of the effective potential of H[φ] as α→ 0; proof is given in Appendix 3.D.

Thus ζ serves as a running index for labeling different basins on the free-energy landscape, and

sampling the configuration space of ζ gives information on the metastable free-energy minima (the

energy minima with their location fluctuations) of the system. Therefore one can use F (ζ) as an

“effective Hamiltonian” for the metastable free energy minima and compute the “quenched-average”

free energy

F̄ =
∫
DζF [ζ] exp {−F [ζ]/kBT}∫
Dζ exp {−F [ζ]/kBT}

. (3.15)

If the system is fully ergodic, one can verify that F̄ is equal to the equilibrium free energy

F = −kBT ln
∫
Dφ exp{−H[φ]/kBT}

in the thermodynamic limit as α → 0+. However, when ergodicity is broken limα→0+ F̄ can be

different from F . Their difference

F̄ − F = TSc (3.16)

defines the configurational entropy that measures the configurational complexity due to an expo-

nentionally large number of metastable states (Monasson, 1995; Westfahl et al., 2001; Mézard et al.,

1987; Palmer, 1982). In the thermodynamic approach, Sc jumps discontinuously from zero to an ex-

tensive finite value at TA, implying broken ergodicity due to disjoint metastable states; Sc decreases

upon further cooling and vanishes at TK, when the system becomes completely vitrified.
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To calculate Sc it is convenient to introduce the “replicated” free energy

Fm = − lim
α→0+

kBT

m
ln
∫
Dζ exp

{
− m

kBT
F [ζ]

}
= − lim

α→0+

kBT

m
ln
∫
DζZ[ζ]m = −kBT

m
lnZm,

(3.17)

where T/m is introduced as the effective temperature conjugate to F [ζ]. F̄ and Sc are obtained

from Eq. (3.17) straighforwardly as

F̄ =
∂(mFm)
∂m

∣∣∣∣
m=1

, (3.18)

Sc = − ∂Fm

∂(T/m)

∣∣∣∣
m=1

=
1
T

∂Fm

∂m

∣∣∣∣
m=1

. (3.19)

Whenm is an integer, Zm in Eq. (3.17) can be simplified by introducingm copies of φ and integrating

out the ζ field, which gives

Zm = lim
α→0+

∫
Dφa exp

− 1
kBT

m∑
a=1

H[φa]− α

2mkBT

m∑
1≤a<b≤m

∫
d3x [φa(x)− φb(x)]

2

 , (3.20)

where a, b are replica indices. Eq. (3.20) has the same form as the replicated partition function for

a random system with quenched disorder (Mézard et al., 1987), although here we are interested in

the physical limit corresponding to m = 1.

To characterize the physical states of the system, we introduce the (renormalized) correlation

functions G(q) = 〈φA(q)φA(−q)〉 and F(q) = 〈φA(q)φB(−q)〉a6=b. G(q) is the normal physical cor-

relation function of the system, whereas F(q) measures the correlation between different replicas.

It has been shown that F(q) is equivalent to the long-time correlation function in the conventional

mode-coupling approach (Monasson, 1995; Westfahl et al., 2001; Kirkpatrick and Thirumalai, 1989).

At high temperatures the system is ergodic, and in the limit α→ 0+ different replicas are not cou-

pled; thus, F(q) = 0. When ergodicity is spontaneously broken, different replicas become coupled

even in the limit α→ 0+, and F(q) 6= 0. Using F(q) as the order parameter for ergodicity breaking,

we can define the onset of glassiness TA as the temperature when there first appears a solution with

F(q) 6= 0. TA defined in this way coincides with the dynamic-transition temperature in mean-field—

spin-glass models characterized by the appearance of drastically slow dynamic relaxation (Monasson,

1995; Westfahl et al., 2001).

To obtain the replica free energy defined by Eq. (3.17), we adopt the self-energy approach (Corn-

wall et al., 1974) and express the effective potential Fm as a functional of bare and renormalized

correlation functions

Fm [G] =
1
m

{
1
2
Tr lnG−1 +

1
2
Tr
(
D−1G

)
− Γ2[G]

}
. (3.21)
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Here D and G are bare and renormalized correlation functions, with

G = (G − F) I + FE, (3.22)

where Eab = 1 and Iab = δab. (Henceforth we use bold face uppercase letters (G, D, Σ) for the

matrices of functions in the replica space, plain uppercase letters with subscript indices (Gab, Dab,

etc.) for the matrix elements. G and F are reserved for the renormalized diagonal (physical) and

cross-replica correlation functions respectively.)

Dab is the replica-symmetric bare correlation function, Dab(q) = g(q)δab, with g(q) given from

Eq. (3.3)

q−2
m g(q)−1 =

1
4

(
q2

q2m
− 1
)2

+ τ0.

The self-energy functions Σab are defined by

Σ = G−1 −D−1 (3.23)

and obtained through variation of Fm:

Σ = −2δΓ2[G]
δG

. (3.24)

Γ2[G] contains all two-particle-irreducible (2PI) diagrams, which are evaluated perturbatively. De-

tailed calculations are given in Appendix 3.A.

Taking the inverse of G defined in Eq. (3.22), we find that the self-energy from Eq. (3.23) takes

the form

Σab = (ΣG − ΣF )δab + ΣF , (3.25)

where

ΣG(q) = G(q)−1 − g(q)−1, (3.26)

ΣF (q) = G(q)−1 − 1
G(q)−F(q)

. (3.27)

Assuming that the momentum dependence of self-energy functions ΣG(q) and ΣF (q) is negligible

compared with g(q), we can approximate the renormalized diagonal correlation function as

q−2
m G(q)−1 ≈ 1

4

(
q2

q2m
− 1
)2

+ τ0 + ΣG(qm)q−2
m ≡ 1

4

(
q2

q2m
− 1
)2

+ r. (3.28)
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And the off-diagonal correlation function F(q) takes the form

F(q) = G(q)− 1
G(q)−1 − ΣF (q)

(3.29)

≈ q−2
m

1
4

(
q2

q2
m
− 1
)2

+ r
− q−2

m

1
4

(
q2

q2
m
− 1
)2

+ r − q−2
m ΣF (qm)

(3.30)

≡ q−2
m

1
4

(
q2

q2
m
− 1
)2

+ r
− q−2

m

1
4

(
q2

q2
m
− 1
)2

+ s
. (3.31)

Equations. (3.23) and (3.24) give the self-consistent equations for G and F (algebraic equations

for r and s in our case). Solving these equations we obtain a normal replica-symmetric solution with

r = s and a replica-symmetry-broken solution with r < s below the dynamic-transition temperature

TA (corresponding to some (χN)A in our diblock-copolymer model).

The configurational entropy is obtained from Eqs. (3.19) and (3.21) to be

Sc

kB
= −1

2

∫
d3q

(2π)3

[
ln
(

1− F(q)
G(q)

)
+
F(q)
G(q)

]
− ∂

∂m

(
Γ2

m

)∣∣∣∣
m=1

. (3.32)

One indeed finds that Sc becomes extensive below TA and decreases to zero at T = TK < TA;

TK determines the Kauzmann temperature or the thermodynamic glass transition defined above.

3.3 Results and discussion

3.3.1 Glass transition

Glass transitions in the Coulomb-frustrated-magnet model have been addressed by several groups

in recent years (Nussinov et al., 1999; Grousson et al., 2001, 2002a,b; Schmalian and Wolynes,

2000; Westfahl et al., 2001; Geissler and Reichman, 2004; Nussinov, 2004; Wu et al., 2004). These

studies establish that in this model glass transitions are possible and could be kinetically favored.

However, all these studies focus on the strong-coupling regime, and except in Wu et al. (2004),

the asymmetric cubic interaction has been ignored. The block-copolymer system we are studying

belongs to the same universality class as the Coulomb-frustrated-magnet—both are examples of

the Brazovskii model. But for long chains our system corresponds to the weak-coupling regime of

the Brazovskii model. Furthermore, the presence of the cubic interaction, reflecting compositional

asymmetry in the copolymer, is the rule rather than exception. It has a strong effect on the ODT

and the glass transition, as we will discuss in this work.

We start with the glass transition. Figure 3.1 shows the transition lines for two chain lengths

N̄ = 104 and N̄ = 5×104. The dotted line represents the mean-field spinodal; dashed lines represent

the Kauzmann temperature (or the thermodynamic glass transition temperature) TK (Westfahl
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et al., 2001)). The dynamic glass transition temperature TA is found to be close to the Kauzmann

temperature TK on the scale of this figure in both cases, so we do not present TA here and only

include it in Figs. 3.2 and 3.3. In the energy-landscape theory of glass transitions, TA signals the

onset of glassy behavior (e.g., slow dynamics), whereas TK represents the limit of supercooling below

which the system becomes vitrified (Debenedetti and Stillinger, 2001). (Note that we use the term

“temperature” even though the phase diagram is presented in terms of the Flory-Huggins interaction

parameter χN ; the actual temperature can be determined from the temperature dependence of χN .)

These results show that in diblock-copolymer melts, glass transitions occur at finite temperatures

at any chain composition f . The narrow gap between TA and TK suggests that the system becomes

vitrified right after the onset of glassiness. Furthermore, as the chain length increases, both TA

and TK transitions approach the mean-field spinodal. This latter result is consistent with our

anticipation that a large number of inhomogeneous metastable free-energy minima emerge as the

system approaches the mean-field spinodal.

0.3 0.4 0.5 0.6 0.7
10

11

12

13

14

15
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17

18

19

f

χN N̄ = 104

N̄ = 5× 104

Kauzmann

Spinodal

Figure 3.1: Glass transitions in diblock-copolymer melt. Dashed lines are for the Kauzmann tem-
perature and the dotted line for the mean-field spinodal. The upper dashed line is for chain length
N̄ = 104; the lower one for N̄ = 5× 104. Since TA and TK are very close, only the TK transition is
shown here.

Figure 3.1 also shows the full crossover from nearly symmetric copolymer, whose glass transi-

tions are dominated by the quartic coupling, to highly asymmetric copolymer dominated by the

cubic coupling. (We again remind the reader that the results for highly asymmetric block com-

positions should only be taken as qualitatively but not quantitatively valid.) For symmetric or
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nearly symmetric copolymer, it is well known (Ling et al., 1981; Fredrickson and Helfand, 1987)

that the mean-field spinodal is destroyed by fluctuations and the disordered phase is always locally

stable. Also the transition from the disordered phase to the lam phase is a first-order transition

with rather complicated (and probably slow) kinetics (Hohenberg and Swift, 1995; Fredrickson and

Binder, 1989). Therefore a deep quench without annealing can result in the trapping of the system

in randomly microphase-separated structures; these structures represent the glassy state captured

here. This scenario is consistent with the experimental observations of Bates et al. (1990), where

they studied the mechanical properties of three different samples: a rapidly quenched sample, a

slowly supercooled sample, and a shear-oriented sample. By analogy to molecular liquids, these

three samples can be likened to the glassy state, the supercooled-liquid state, and the ordered crys-

talline state, respectively. The quenched sample in this study exhibits solidlike responses at low

frequencies while the supercooled sample has typical liquidlike responses.

We notice that in going from symmetric to asymmetric compositions on either side, the transition

lines exhibit a minimum. This is attributed to the crossover from the quartic-coupling dominant to

the cubic-coupling dominant regime. As we will discuss later, the cubic term considerably stabilizes

the glassy state and enlarges the region of glassy state in the phase diagram. This results in the

initial drop of χN values at the transitions as f deviates from 0.5.

For very asymmetric copolymers, mean-field theory predicts a first-order transition into ordered

spherical phases (face-centered cubic (fcc) or bcc) at χN smaller than the mean-field spinodal (χN)S

(Matsen and Bates, 1996). However, experiments show that between the featureless disordered phase

and the ordered bcc phase, there exists an intervening disordered-micelle state (Adams et al., 1994,

1996; Schwab and Stühn, 1996; Kim et al., 1999; Han et al., 2000; Sota et al., 2003; Choi et al.,

2003; Wang et al., 2002; Semenov, 1989; Dormidontova and Lodge, 2001). In a self-consistent-field

calculation, it was shown (Wang et al., 2005) that the micelles are formed via a thermally activated

process, with a free energy barrier vanishing at the mean-field spinodal. Therefore, if the system

is quickly quenched to the vicinity of the spinodal, micelles will proliferate all over the sample; the

jamming of these micelles causes their translational diffusion to be so slow that long-range order

cannot be developed.

The interplay between the glass transition and the ODT is complicated. We will present some

tentative results in the next subsection. But here we simply note that, in contrast to the symmetric

case where glass transitions occur at χN > (χN)S (or below the mean-field spinodal temperature), for

asymmetric copolymer glass transitions can occur at χN < (χN)S (or above the mean-field spinodal

temperature). We attribute this to the fact that different arrangements of micelles could generate a

large number of metastable states, which significantly stabilize the glassy state.

As highlighted in Eq. (3.2), the chain length N̄ controls the magnitude of nonlinear fluctuations

and, hence, the deviation from mean-field behavior that is recovered in the limit N̄ →∞. Figure 3.2
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Figure 3.2: Chain-length dependence of glass transitions. Plot of ∆ (χN) ≡ χN − (χN)S against
N̄ . Dashed lines are for the Kauzmann temperature, and dash-dotted lines are for the onset of
glassiness. Upper dashed and dash-dotted lines are for the symmetric copolymer, and lower ones for
the asymmetric copolymer with f = 0.3.

shows the chain-length dependence of the glass transition temperatures [measured by (χN)A and

(χN)K, respectively] relative to the mean-field spinodal for symmetric and asymmetric (f = 0.3)

copolymer melts. It is clear that in both cases the glass transitions (both TA and TK) approach

the mean-field spinodal as N̄ goes to infinity (though from different directions in symmetric and

asymmetric cases), implying that in this limit the mean-field spinodal is the true stability limit

of the disordered phase (with respect to either ordered or randomly phase-separated structures).

In other words, the mean-field spinodal is ultimately responsible for the appearance of random

structures, and thus is the mean-field signature for the glass transition. This general conclusion is

likely to be universal to the class of models with continuous degeneracy in the ground states, such

as the Brazovskii model (see Nussinov, 2004 for other models of the same class). We note that

the connection between the spinodal and the glass transition was also implied in an earlier study

by Bagchi et al. (1983) of the Lennard-Jones liquid, where the authors conjectured that the liquid

spinodal corresponds to the state of random close packing in an equivalent hard-sphere system.

We now discuss the chain-length dependence of the gap between glass transitions and the spin-

odal, (χN)A − (χN)S and (χN)K − (χN)S. By a simple scaling analysis given in Appendix 3.C, we

find that both should scale as N̄−0.3 for symmetric copolymer. This is consistent with the analysis of

Wu et al. (2004) if we substitute the N̄ dependence of the parameters into their scaling relation. Our
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more accurate numerical calculations confirm this result, as shown in Fig. 3.3, where the first-order

transition into lam phase is also included for comparison.

For asymmetric copolymers, the results are more complicated: for short chains, both (χN)A

and (χN)K are larger than the spinodal value (χN)S ; as N̄ increases, the transition lines first shift

downward below the spinodal line, which indicates a possible crossover; then, for even larger N̄ , the

transitions gradually approach the spinodal and eventually collapse to the spinodal as N̄ → ∞. In

this latter limit, we find, using the scaling analysis outlined in Appendix 3.C, that (χN)S−(χN)A,K ∼

N̄−1/4. We attribute the nonmonotonic dependence on N̄ to the crossover from the quartic-coupling

dominant to cubic-coupling dominant regime as the chain length increases. Generally for asymmetric

copolymers, quartic coupling dominates for short chains and the glass-transition lines are located

above the spinodal (or below the spinodal temperature); for long chains, the opposite holds.

We close this subsection with a brief discussion of the dynamics of the system. For the Coulomb-

frustrated-magnet model, by invoking the entropy-droplet picture, Wolynes and co-workers (Xia and

Wolynes, 2000; Westfahl et al., 2001) predicted that the system should exhibit relaxations similar

to fragile liquids (Angell, 1995), characterized by the Vogel-Fulcher behavior, with a relaxation time

τ ∝ exp[A/(T − TK)] between TA and TK , and diverging at the Kauzmann temperature TK. This

prediction was disputed by Geissler and Reichman (2004), who performed dynamic Monte Carlo

simulations of the Brazovskii model without the cubic interaction. They found that as the system

approaches the glass-transition temperature predicted by the mode-coupling theory, the relaxation

time indeed increases dramatically, but does not show characteristics of fragile liquids. Schmalian

et al. (2003) subsequently argued that the failure to find the expected dynamic behavior could be a

result of the mode-coupling approximation which overestimates the transition temperature. Here we

note that the simulations by Geissler and Reichman (2004) were performed at temperatures above

the ODT temperature, but our calculations show that in the absence of the cubic interaction, the

onset of glassiness always occurs below the ODT temperature, at least in the weak-coupling regime.

Therefore simulations at lower temperatures (below the ODT temperature) are necessary in order

to elucidate the dynamic behavior of this model.

For block-copolymer melts, the situation is even more complicated. The Hamiltonian given

by Eq. (3.1) is a coarse-grained description of the system that focuses on the physics at length

scales comparable to or larger than the size of the polymer. Therefore we expect the validity of our

analysis to be limited to this range of length scales. The configurational entropy Sc defined above only

measures the number of configurations of chain aggregrates in the locally phase-separated structures,

but does not account for different chain conformations within each aggregrate. Indeed, above the

glass-transition temperature of the monomer, polymer chains remain liquidlike even though the

system acquires solidlike behavior at the microstructural scale (at high frequencies). Chain diffusion

also provides an additional mechanism for relaxations. Therefore, to accurately describe the dynamic
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relaxations in block-copolymer melts, one has to consider relaxations both at the microstructural

scale and of individual chains.

3.3.2 Glass transition vs order-disorder transition

Our analysis in the previous subsection shows that the glass transition is possible in diblock-

copolymer melts and is related to the underlying mean-field spinodal of the disordered phase, which

is responsible for the proliferation of inhomogeneous metastable states. However, the ODT also

occurs in the neighborhood of the spinodal. Thus a full understanding of the glass transition in this

system must address the relationship between these two transitions.

In molecular liquids the glass transition always takes place in the supercooled state—below

the melting (freezing) temperature. However, in diblock-copolymer melts, the structural entities

forming the random structures are themselves molecular aggregates formed through self-assembly,

the number and size of which depend on the temperature of the system. Therefore the relationship

between the glass transition and the ODT is not obvious.

Microphase transitions in block-copolymer systems have been extensively studied, both theoreti-

cally and experimentally (Bates and Fredrickson, 1990; Hamley, 1998). In previous theories only the

Hartree term arising from the quartic interaction was retained; fluctuations due to the cubic interac-

tion were ignored. However, our analysis in the previous subsection shows that fluctuations due to

the cubic interaction play an essential role in the glass transitions in asymmetric diblock copolymers,

at least for long chains2. Moreover, as discussed in Section 3.2.2, the leading cubic diagram is of the

same order in N̄ as the Hartree term, and their numerical magnitudes are comparable. Therefore

we need to include fluctuations due to the cubic term in our studies to have a consistent comparison

between the ODT and the glass transition.

In this subsection, we compare the transitions into the ordered phase and into the glassy state.

We have chosen to study symmetric (f = 0.5) and highly asymmetric f ∼ 0.1 copolymers, as our

perturbative methods are better controlled in these two limits (dominated by the quartic and cubic

nonlinear interactions, respectively).

Figure 3.3 shows the chain length dependence of the transitions for symmetric copolymers; it

can be considered as a generalized phase diagram. The solid line delineates the equilibrium phase

boundary between the disordered phase and the ordered lam phase. For a given N̄ , as temperature

decreases (∆(χN) increases), the equilibrium state of the system will change from the disordered

phase through a weakly first-order transition to the lam phase. However, since the nucleation kinetics

is generally slow and complicated (Fredrickson and Binder, 1989; Hohenberg and Swift, 1995), if the

system is supercooled to avoid the nucleation of lam phase, the system will remain in a metastable
2In the system of short chains the situation is ambiguous as the higher-order diagrammatic terms neglected in our

analysis could become important.
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Figure 3.3: Glass transition vs ODT in symmetric copolymer melts. Dashed and dash-dotted lines
have the same meanings as in Fig. 3.2; the solid line represents the ODT into the lamellar phase.

disordered state below the ODT temperature. Upon further cooling to the temperature TA shown as

the dash-dotted line, the system enters the glassy regime. The region bounded by this line and the

Kauzmann line (the dashed line) defines the dynamic range within which glass transition can take

place (Monasson, 1995; Schmalian and Wolynes, 2000). Although the lam phase has the lowest free

energy at low temperatures, once a system is supercooled below TK, it becomes essentially frozen

and incapable of reaching the more stable lam state. The narrow gap between the onset of glassiness

and the Kauzmann temperature implies that the glass transition in block copolymer melts will be

fairly sharp.

In symmetric copolymer melts we observe the scaling of (χN)ODT− (χN)S ∼ N̄−1/3 as predicted

by Fredrickson and Helfand (1987). For the onset of glassiness, (χN)A − (χN)S scales as N̄−0.3,

which agrees well with our approximate scaling analysis given in Appendix 3.C. Our results show

that for symmetric copolymers, the ODT always occurs before the glass transitions (i.e., at tem-

peratures above the glass transitions). While one might argue that this conclusion could be due

to the particular choice of diagrams in our perturbative calculation, we find that this scaling with

N̄ remains unchanged when a different approximation scheme, the self-consistent-screening approx-

imation, is used3. In addition, our results are also consistent with the local-field calculations by

Wu et al. (2004), as will be discussed later in this subsection. Since (χN)ODT − (χN)S decays more

rapidly with N̄ than both (χN)A − (χN)S and (χN)K − (χN)S, for sufficiently large N̄ , we always

3C.-Z. Zhang and Z.-G. Wang (unpublished).
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have (χN)ODT < (χN)A,K. Therefore, at least in the long-chain limit, our conclusion that the glass

transition occurs below the ODT temperature should be valid, regardless of the approximations in

the calculation.

Figure 3.4 shows various transitions for highly asymmetric copolymers around f = 0.1. Here

again TA is not shown as it is very close to TK on the scale of the figures. In the case of N̄ = 107, the

glass-transition lines are located below the ODT, i.e., the glass transition temperatures are above

the ODT temperature. In other words, glass transitions can precede the ordering transition into the

bcc phase. This unusual behavior is quite different from what happens in molecular fluids, where

the glass transition always occurs below the freezing (ordering) temperature. In the case of longer

chains with N̄ = 108, the ODT occurs before the glass transitions; this is the expected behavior in

the asymptotic limit N̄ → ∞, since in this limit the glass-transition lines approach the mean-field

spinodal whereas the ODT into the bcc phase takes place at a finite distance below the spinodal

(Matsen and Bates, 1996).

The chain-length dependence of the glass transitions relative to the ODT for asymmetric diblock

copolymers is qualitatively similar to the critical micelle temperature in the same system. It is

shown (Wang et al., 2005) that disordered micelles can appear in large numbers before the ordering

transition only for not-too-long chains; for very long chains, the ODT will set in before the dis-

ordered micelles reach a considerable concentration, essentially precluding the disordered micelles

from being a distinct intervening phase between the featureless disordered state and the ordered

(fcc or bcc) phases. Since micelles are likely to be the structural entities in the glassy asymmetric

copolymer melts, the connection between the micelle formation and the glass transition is worth

further investigation.

As discussed in Section 3.3.1, the cubic interaction stabilizes the glassy state. We attribute this

stabilizing effect to the additional complexities in the configurational space caused by the cubic

term. This effect is closely related to the effect of the cubic interaction on the ODT. Theoretical

analysis shows that the presence of the cubic term can considerably reduce the free energy of ordered

microstructures with three-fold symmetries. This is consistent with the fact that there are more

stable ordered phases in asymmetric diblock copolymers. If we visualize the random structures as

polycrystals with local but no long-range order, then the increased variety of mesophase structures

will increase the complexity in the configuration space4, which can explain the stabilization of the

glassy state in asymmetric copolymers.

As a final technical point, we compare our treatment of the cubic term with that by Wu et al.

(2004). There the authors used a local-field approximation, in which a momentum-independent

self-energy is solved variationally by mapping the Brazovskii Hamiltonian (as given by Eq. (3.2))

4For a discussion on the possible differences between polycrystalline phases and structural glasses in this context,
see Wu et al. (2004).
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Figure 3.4: Glass transition vs ODT in very asymmetric copolymer. (a) N̄ = 107, from above:
mean-field spinodal (dotted line), ODT (solid line), and Kauzmann temperature (dashed line). (b)
N̄ = 108, from above: mean-field spinodal (dotted line), Kauzmann temperature (dashed line), and
ODT (solid line)
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to a reference nonlinear but local Hamiltonian. Within this approximation, it was found that

the cubic interaction considerably stabilizes the glassy state and the glass transition can occur at

temperatures above the mean-field spinodal temperature; these results coincide with ours. However,

for certain choices of parameters in the weak-coupling regime, this local-field treatment could result

in a nonmonotonic relation between the correlation length and the temperature. We believe this

unphysical behavior is probably due to overestimating the fluctuation effects due to the cubic term

in their treatment.

3.4 Conclusions

To conclude, using the thermodynamic replica formalism we have shown that at low temperatures,

diblock-copolymer melts can exist as randomly microphase-separated structures, in addition to the

thermodynamically stable periodic structures. This transition is essentially a glass transition in

which the supercooled liquid gradually gets vitrified. We have identified the temperature range over

which this glass transition can occur, which is bordered by the onset of glassiness (or the dynamic

glass transition) temperature from above and the Kauzmann (thermodynamic glass transition) tem-

perature from below. For symmetric diblock copolymers, the glass transition takes place below the

temperature of the ODT into the lam phase. However, for asymmetric diblock copolymers, the glass

transition can precede the ordering transition, which is an unusual feature that probably reflects the

self-assembly nature of the system. This study leads us to naturally identify the quenched samples

of block copolymers in some previous experimental works as the glassy state of the system. Given

the slow phase transition kinetics in copolymer systems, we expect such glassy structures to be quite

common in these systems without externally imposed aligning fields.

As in any theories on polymer mixtures (Fredrickson and Helfand, 1987; Wang, 2002), the scaled

degree of polymerization, N̄ , serves as a Ginzburg parameter which allows us to systematically

examine the approach to mean-field behavior as N̄ → ∞. An important conclusion is that in the

limit of infinitely long chains, the glass transitions collapse to the mean-field spinodal, suggesting that

the mean-field spinodal is ultimately responsible for the proliferation of inhomogeneous free-energy

minima and can be used as the mean-field signature for the glass transition.

That a glass transition occurs at the mean-field spinodal in the limit of N̄ → ∞ can also be

understood using the following dynamical argument. Since the Hamiltonian has an overall factor of

N̄1/2, in the mean-field approximation, we expect the free energy barriers between the metastable

states to be proportional to this factor. For very long chains, these barriers can be very large.

Since proliferation of the metastable minima appears at the spinodal (Nussinov, 2004), upon a

quench below the spinodal, the system will first go to these metastable states with overwhelming

probability because of their large number, and transitions from these metastable states should be
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very slow. Note that it is the barriers from these metastable states to the (more stable) ordered

phases and between the metastable states themselves, rather than the nucleation barrier from the

uniform disordered phase to the ordered phases, that are relevant to the glass transition. Hence,

for example, in symmetric diblock copolymers, even though the transition from the disordered to

lamellar phase approaches second order in the limit N̄ →∞ (where the nucleation barrier vanishes

(Fredrickson and Binder, 1989)), our theory predicts a glass transition that coincides with the ODT,

which is the spinodal in this limit.

Studying diblock-copolymer melt as a specific example of the Brazovskii model, we find that the

cubic interaction significantly increases the stability of the glassy state as well as the bcc phase,

and causes qualitative changes in the scaling relations with the chain length. We conjecture that

this stabilizing effect is due to increased configurational complexity as a result of more free-energy

minima due to the presence of the cubic term.

Appendix 3.A Perturbative expansion of the effective poten-

tial with broken symmetries

In this appendix we present the details of our perturbative calculation of the free energy defined in

Eq. (3.17). The general expansion of the effective potential for a system with broken symmetry was

derived by Cornwall et al. (1974). Here we omit the details of that derivation but give the result

Γ[ϕ,G] = I[ϕ] +
1
2
Tr lnG−1 +

1
2
Tr
(
D−1G

)
− Γ2[G;∆H]. (3.33)

Here ϕ is the order parameter in the ordered phase, I[ϕ] is the mean-field free energy (in our case

the Leibler free energy), ∆H[ψ;ϕ] is the shifted Hamiltonian (see Eq. (3.8)), D is the shifted bare

propagator defined as

Dab(q) =
δ2∆H[ϕ]

δϕA(q)δϕB(−q)
, (3.34)

and G is the renormalized propagator. As noted before, we reserve boldface uppercase letters for

matrices of correlation functions and use the corresponding plain ones when referring to the matrix

element. The second term (Tr ln) in Eq. (3.33) is the one-loop correction and the last term, Γ2

contains higher-order corrections, including all 2PI diagrams generated by the vertices in the shifted

Hamiltonian ∆H with the renormalized propagator G. The third term ensures the consistency of

the expansion in terms of the renormalized propagator.

It has been shown by Cornwall et al. (1974) that Γ[ϕ,G], as defined in Eq. (3.33), is stationary

with respect to both ϕ and G. Therefore one can derive the self-energy equations through a variation
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of Eq. (3.33), which gives

δΓ[G]
δG

= 0 ⇒ Σ = G−1 −D−1 = −2δΓ2[G]
δG

. (3.35)

In the field-theory description of diblock-copolymer melts (Eq. (3.2)), N̄−1/2 serves as a smallness

parameter, which enables a straightforward loop expansion for Γ2[G]. To the leading two-loop order

(one-loop order in the self-energy), one has three terms

Γ(1)
2 = − λ

8N̄

∑
a

∫
d3q1d

3q2
(2π)6

Gaa(q1)Gaa(q2), (3.36a)

Γ(2)
2 =

η2

12N̄

∑
a,b

∫
d3q1d

3q2
(2π)6

Gab(q1)Gab(q2)Gab(−q1 − q2), (3.36b)

Γ(3)
2 =

λ2

12N̄

∑
a,b

∫
d3q1d

3q2d
3q3

(2π)9
ϕA(q1)Gab(−q2)Gab(−q3)Gab(q1 + q2 + q3)ϕB(−q1), (3.36c)

corresponding to the diagrams shown in Figs. 3.5(a), (b), and 5(c) respectively. In the glassy

state, translational symmetry breaking does not occur; therefore, ϕ = 0, Dab(q) = g(q)δab, and

Γ(3)
2 vanishes. Note that Γ(1)

2 is the Hartree term which only generates a momentum-independent

self-energy in the diagonal part of G; Γ(2)
2 generates an off-diagonal self-energy which enables a

nontrivial solution with broken replica symmetry. For symmetric copolymer, the cubic coupling

is zero; therefore, to find possible solutions with broken replica symmetry we need to include the

off-diagonal term of second order,

Γ(4)
2 =

λ2

48N̄3/2

∑
a,b

∫
d3q1d

3q2d
3q3

(2π)9
Gab(q1)Gab(q2)Gab(q3)Gab(−q1 − q2 − q3), (3.36d)

corresponding to the three-loop diagram as shown in Fig. 3.5(d). To study the crossover from very

asymmetric to symmetric copolymer, we keep Γ(4)
2 in the off-diagonal renormalization for asymmetric

copolymer as well.

From Eqs. (3.35) and (3.36) we obtain the self-energy

Σab(k) =
λ

2N̄1/2

∫
d3q

(2π)3
Gaa(q)δab −

η2

2N̄1/2

∫
d3q

(2π)3
Gab(q)Gab(k − q)

− λ2

6N̄

∫
d3qd3p

(2π)6
Gab(q)Gab(p)Gab(k − p− q). (3.37)

The three terms on the right-hand side corresponde to Figs. 3.5(e), (f), and (g), respectively.

Under the one-step replica-symmetry-breaking (1-RSB) ansatz, Gab(q) = [G(q)−F(q)] δab +
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Figure 3.5: Feynman diagrams: (a)–(d) Loop diagrams in Γ2. (e)–(g) Self-energy diagrams. In the
diagrams thick solid lines represent the renormalized propagator G and wiggly lines represent the
external leg of the order parameter ϕ(q). We use a slightly different perturbative expansion for the
diagonal renormalization, as explained in Appendix 3.B.

F(q), and Γ2 has three terms from Eqs. (3.36a), (3.36b), and (3.36d)

Γ(1)
2 = −mλ

8N̄

(∫
d3q

(2π)3
G(q)

)2

, (3.38a)

Γ(2)
2 =

η2

12N̄

[
m

∫
d3q1d

3q2
(2π)6

G(q1)G(q2)G(−q1 − q2) +m(m− 1)
∫
d3q1d

3q2
(2π)6

F(q1)F(q2)F(−q1 − q2)
]
,

(3.38b)

Γ(4)
2 =

λ2

48N̄3/2

[
m

∫
d3q1d

3q2d
3q3

(2π)9
G(q1)G(q2)G(q3)G(−q1 − q2 − q3)

+ m(m− 1)
∫
d3q1d

3q2d
3q3

(2π)9
F(q1)F(q2)F(q3)F(−q1 − q2 − q3)

]
. (3.38c)

Using the polarization functions Πab(k),

Πab(k) =
∫

d3q

(2π)3
Gab(q)Gba(k + q) = [ΠG(k)−ΠF (k)] δab + F(k),

ΠG(k) =
∫

d3q

(2π)3
G(q)G(k + q), (3.39a)

ΠF (k) =
∫

d3q

(2π)3
F(q)F(k + q), (3.39b)

we can rewrite the self-energy functions (after taking m = 1) as

Σab = (ΣG − ΣF ) δab + ΣF ,

ΣG(k) =
λ

2N̄1/2

∫
d3q

(2π)3
G(q)− η2

2N̄1/2
ΠG(k)− λ2

6N̄

∫
d3q

(2π)3
G(q)ΠG(q + k), (3.40a)
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ΣF (k) = − η2

2N̄1/2
ΠF (k)− λ2

6N̄

∫
d3q

(2π)3
F(q)ΠF (q + k). (3.40b)

The configurational entropy is obtained from Eqs. (3.32) and (3.38) to be

Sc =
1
T

∂Fm

∂m

∣∣∣∣
m=1

= S(0)
c + S(1)

c ,

S(0)
c = − 1

2N̄1/2

∫
d3q

(2π)3

[
ln
(

1− F(q)
G(q)

)
+
F(q)
G(q)

]
, (3.41a)

S(1)
c = − η2

12N̄

∫
d3q

(2π)3
ΠF (q)F(−q)− λ2

48N̄3/2

∫
d3q

(2π)3
ΠF (q)ΠF (−q). (3.41b)

We have set kBT = 1 in the above derivations; the configurational entropy is given in unit of kB per

unit volume.

Appendix 3.B Order-disorder transition

In this appendix, we present our calculation of the ODT in diblock-copolymer melts. Our approach

is different from the Brazovskii approximation (Brazovskii, 1975; Fredrickson and Helfand, 1987).

Following the derivation in Appendix 3.A, we expand the effective potential to two-loop order

and keep only the diagonal terms in Eq. (3.36):

Γ[φ̄ = ϕ] = FL(ϕ) +
1

2N̄1/2
Tr lnG−1 +

1
2N̄1/2

Tr(D−1G) +
λ

8N̄

[∫
d3q

(2π)3
G(q)

]2
− η2

12N̄

∫
d3q

(2π)3
G(q)ΠG(−q)− λ2

12N̄

∫
d3q1d

3q2
(2π)6

ϕ(q1)G(−q2)ΠG(q1 + q2)ϕ(−q1),

(3.42)

where FL(ϕ) is the Leibler free energy for the ordered phase, D(q) is the shifted bare propagator as

given in Eq. (3.9). The Hartree approximation (similar to the Brazovskii approximation) amounts

to keeping only the first four terms of Eq. (3.42), which can be justified by a renormalization-group

argument (Shankar, 1994). The central idea is the following: since near the critical temperature the

dominant fluctuations are those with wave numbers close to qm at which the propagator is maxi-

mized, one can decompose the spherical shell into small “patches” and rewrite the order parameter

into n components, each corresponding to one patch. In this way one can rewrite the original Hamil-

tonian (Eq. (3.2)) as an n-vector model. At the critical point, n goes to infinity and the Hartree

approximation becomes exact. Therefore we may replace G by the Hartree approximation GH as

defined in Eq. (3.12)

GH(k)−1 = D(k)−1 +
λ

2N̄1/2

∫
d3q

(2π)3
GH(q).

This gives the first three terms in Eq. (3.10).
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However, here we want to study the correction due to the cubic coupling; thus, we want to

include the leading-order diagram from the cubic interaction in the effective potential, as shown

in Fig. 3.5(b). It can be shown that in the corresponding n-vector model as mentioned above, the

Hartree term (Fig. 3.5(a)) is of order O(n) and this correction term (Fig. 3.5(b)) is of order O
(
n1/2

)
.

In our numerical calculations we find these two terms to be comparable for the temperature range

we are interested in. By a similar argument the last term in Eq. (3.42) is of order O(1) and ignored

in our calculation (the numerical value is indeed small compared with the other one-loop diagrams

because of the weak first-order nature of the transition). To summarize, the free energy is given by

Eq. (3.42) with the last term dropped, as is Eq. (3.11).

To find the ODT temperature, the free energy is minimized numerically with respect to the

magnitude of density wave A as given in Eq. (3.7) and the ODT occurs when the free energy of the

ordered phase equals the free energy of the disordered phase.

The physical correlation function is given by Eq. (3.13) and the corresponding self-energy is

ΣG(k) =
λ

2N̄1/2

∫
d3q

(2π)3
GH(q)− η2

6N̄1/2

∫
d3q

(2π)3
GH(q)GH(q + k). (3.43)

This renormalization scheme includes two parts, the first corresponding to a simple Hartree ap-

proximation and the second incorporating fluctuations from the cubic interaction using the Hartree-

renormalized propagator, which is schematically shown in the following diagrammatic equations:

�
=

�
− λ

2

�
,

(3.44)

�
=

�
+
η2

2

�
,

where thin lines represent the bare propagator g(q), double lines represent the Hartree-renormalized

propagator GH(q), and thick lines represent the physical propagator G(q). Equation (3.43) modifies

the self-energy equation (3.40a) we derived using a straightforward loop expansion in Appendix 3.A.

One can verify that this self-energy equation does not have the unphysical non-monotonic relation

between temperature (manifested through χN in τ0) and correlation length (manifested in r in G(q))

which occurs in a naive loop expansion, and this renormalization scheme indeed gives consistent

result in the known limits; e.g., when (χN)S − χN � 1 it reduces to the loop expansion and when

(χN)S − χN ∼ 0 it gives the leading-order terms in the 1/n expansion.
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Appendix 3.C Approximate solution of the glass transition

In this last appendix we provide an approximate solution of the self-consistent equations obtained

in Appendix 3.A. The diagonal and off-diagonal self-energy equations are shown in the following

diagrammatic equations:

�
ΣG =

λ

2�
− η2

2�
, (3.45)

�
ΣF = −η

2

2�
− λ2

6�
, (3.46)

where dashed lines represent the renormalized off-diagonal propagator F ; thick lines and double

lines represent the renormalized diagonal propagator G and the Hartree-renormalized propagator,

respectively, the same as before.

From Eqs. (3.28) and (3.31) the renormalized propagators G and F are given by

G(q) =
4q−2

m

(q2/q2m − 1)2 + 4r
, (3.28′)

F(q) =
4q−2

m

(q2/q2m − 1)2 + 4r
− 4q−2

m

(q2/q2m − 1)2 + 4s
. (3.31′)

When r,s are small, the polarization functions can be approximated as

ΠG(k) ' 1
4kr

, (3.47a)

ΠF (k) ' 1
4k

(
1√
r
− 1√

s

)2

, (3.47b)

for 0 < |k| < 2 and zero elsewhere. These are verified numerically and work well for r, s not too

large (. 0.1). The diagrammatic terms in our calculations are found to be

∫
d3q

(2π)3
G(q) ≈ qm

2π
√
r
, (3.48a)∫

d3q

(2π)3
G(k − q)ΠG(q)

∣∣∣∣
k=qm

≈ 1
8πr

√
r
, (3.48b)∫

d3q

(2π)3
F(k − q)ΠF (q)

∣∣∣∣
k=qm

≈ 1
8π

(
1√
r
− 1√

s

)3

, (3.48c)∫
d3q

(2π)3
F(−q)ΠF (q) ≈ 1

8π

(
1√
r
− 1√

s

)3

, (3.48d)
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d3q

(2π)3
ΠF (−q)ΠF (q) ≈ qm

16π2

(
1√
r
− 1√

s

)4

. (3.48e)

From Eqs. (3.44) and (3.28′) we have the following equations for r

τ0 = τ − λ

4πN̄1/2qm
√
τ
,

r = τ − η2

8πN̄1/2q3mτ
. (3.49)

And from Eqs. (3.46) and (3.31′) we have

s− r =
λ2

48πN̄q2m

(
1√
r
− 1√

s

)3

+
η2

8N̄1/2q3m

(
1√
r
− 1√

s

)2

. (3.50)

Let us look at Eq. (3.50) first. Defining t ≡
√
r/s, Eq. (3.50) becomes

t−2 − 1 =
λ2(1− t)3

48πN̄q2mr5/2
+

η2(1− t)2

8N̄1/2q3mr
2
. (3.51)

This equation always has a replica-symmetric solution t = 1 (F = 0). Here we are seeking a

replica-symmetry-broken solution with t < 1. Defining the dimensionless parameters

A ≡ λ2

48πN̄q2mr5/2
,

B ≡ η2

8N̄1/2q3mr
2
,

Eq. (3.51) becomes
A(1− t)2t2

1 + t
+
B(1− t)t2

1 + t
= 1. (3.51′)

Numerical calculations show that when both A and B are non-negative and either A > 23.66 or

B > 11.09, there is always a solution 0 < t∗ < 1. For symmetric copolymer and very asymmetric

copolymer, respectively, these inequalities result in the criteria

r .

(
λ2

N̄q2m

)2/5

∼ N̄−2/5, (3.52)

r .

(
η2

N̄1/2q3m

)1/2

∼ N̄−1/4. (3.53)

And the resulted scaling relations for τ0 [∝ (χN)S − χN ] for symmetric and asymmetric copolymers

are, respectively,

τ0 ∼ −N̄−0.3, (3.54)

τ0 ∼ N̄−1/4. (3.55)
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These have been verified by our numerical calculations.

Finally we look at the configurational entropy and the Kauzmann temperature. The configura-

tional entropy is given in Eq. (3.41) and found to be

S(0)
c =

q3m
√
r

4πN̄1/2t
(1− t)2, (3.56a)

S(1)
c ≈ − η2

96πN̄r3/2
(1− t)3 − λ2qm

768π2N̄3/2r2
(1− t)4. (3.56b)

Thus for symmetric copolymer (η = 0), the Kauzmann transition is located at

r ∼ N̄−2/5, (3.57)

τ0 ∼ −N̄−0.3. (3.58)

And for very asymmetric copolymer (η/q3/2
m � λ/qm),

r ∼ N̄−1/4, (3.59)

τ0 ∼ N̄−1/4. (3.60)

Appendix 3.D Relationship between the pinned free energy

F [ζ] and the free energy landscape of the orig-

inal Hamiltonian H[φ]

Here we explicitly show that the free energy F [ζ] defined in Eq. (3.14) captures the metastable

free-energy minima of the Hamiltonian H[φ] as defined in Eq. (3.2). First we rewrite Eq. (3.14) as

F [ζ] = − ln
∫
Dφ exp

(
−H′[φ] + αζ ∗ φ− α

2
ζ ∗ ζ

)
,

where ∗ is a shorthand notation for integration and

H ′[φ] = H[φ] +
α

2
φ ∗ φ. (3.61)

We then define the generating functional of the perturbed Hamiltonian H ′[φ],

W [J = αζ] = − ln
∫
Dφ exp (−H′[φ] + J ∗ φ) . (3.62)
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The effective potential Γ′[ϕ] of the Hamiltonian H ′[φ] is obtained as the Legendre transform of W [J ].

Thus we have

δW [J ]
δJ

∣∣∣∣
J=αζ

= −ϕ, (3.63)

Γ′[ϕ] = W [J ] + J ∗ ϕ, (3.64)

δΓ′[ϕ]
δϕ

∣∣∣∣
ϕ

= J. (3.65)

Now W [J ] is related to F [ζ] by

W [J = αζ] = F [ζ]− α

2
ζ ∗ ζ, (3.66)

so that for any ζ∗ that minimizes F [ζ], we have

δF [ζ]
δζ

∣∣∣∣
ζ=ζ∗

= α
δW [J ]
δJ

∣∣∣∣
J=αζ∗

+ αζ∗ = 0, (3.67)

that is,

ζ∗ = − δW [J ]
δJ

∣∣∣∣
J=αζ∗

= ϕ∗. (3.68)

Equation (3.68) holds for any positive α, including in particular the limit α → 0+. In the limit of

α → 0+, H ′[φ] approaches H[φ] and Γ′[ϕ] approaches Γ[ϕ], the effective potential of the original

Hamiltonian H[φ]. Also J = αζ → 0, from Eq. (3.65), ϕ∗ becomes a minimum of Γ[ϕ]. This,

together with Eq. (3.68), shows that the minima of F [ζ] coincide with the minima of the effective

potential Γ[ϕ] of the orginal Hamiltonian in the limit α→ 0+.
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Part II

Interplay of Generic Interactions

and Specific Binding
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Chapter 4

Thermodynamics of
polymer-tethered ligand-receptor
interactions between surfaces
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4.1 Introduction

Cells communicate via ligand-receptor interactions (Alberts et al., 2002; Baltimore et al., 2003).

Such non-covalent interactions, which are present between specific pairs of residues in proteins or

polypeptides, are specific (one-to-one) and reversible (Lauffenburger and Linderman, 1993). The

interplay between specific and other generic physical interactions, such as electrostatic, hydrophobic

and steric interactions (Israelachvili, 1992), is crucial to the adhesion and signalling between cells and

the extracellular matrix, and has been extensively studied by researchers in physiology, biochemistry,

biophysics, and bioengineering (Alberts et al., 2002; Bongrand, 1999; Hammer and Tirrell, 1996;

Orsello et al., 2001; Zhu et al., 2000; Baudry et al., 2004; Cuvelier et al., 2004). Understanding

specific cellular interactions, especially their interplay with other generic interactions in biological

processes, assists bioengineering design, such as tissue engineering and bio-specific recognition. On

the other hand, artificially-designed bio-mimetic materials, such as polymersomes (Discher et al.,

1999; Lin et al., 2004; Bermúdez et al., 2004; Lin et al., 2005), vesicles or liposomes (Cuvelier

et al., 2004; Cuvelier and Nassoy, 2004), and substrate-supported monolayer and bilayer membranes

(Sackmann, 1996; Tanaka and Sackmann, 2005) allow better characterization of the specific and

non-specific interactions because of the absence of complicating factors such as chemical signaling

and deformability of biological cells in vivo (Lawrence and Springer, 1991; Dustin et al., 1996; Finger

et al., 1996; Kuo and Lauffenburger, 1993; Eniola et al., 2003).

Designing biomaterials with biocompatibility requires qualitative understanding of the ligand-

receptor interactions. In the classical model of cell adhesion proposed by Bell, Dembo, and Bongrand

(Bell, 1978; Bell et al., 1984; Torney et al., 1986; Dembo and Bell, 1987) (illustrated in Fig. 4.1),

ligand-receptor binding is treated as a chemical equilibrium between ligand and receptor molecules,

the interplay between specific binding and generic physical interactions resulting in an equilibrium

constant dependent on the separation between the adhesion surfaces. The Bell model captures

the qualitative features of cell adhesion and has been successful in fitting certain experimental

measurements quantitatively. However, careful inspection of the theory reveals several flaws and

confusions. First, the equilibrium constant in the Bell model is by definition for a chemical reaction

in two dimensions (2D), which can only be inferred from measurements in bulk solutions (3D), but the

relation between these two equilibrium constants is obscure and often causes confusion (Dustin et al.,

1996; Orsello et al., 2001; Zhu et al., 2000). A rigorous treatment of the statistical thermodynamics of

binding in a 2D system is still lacking. Second, a chemical-equilibrium treatment implicitly assumes

that the ligand and receptor molecules are mobile on the surfaces, which is valid only when molecules

are embedded in a fluid bilayer or membrane. In many experimental settings ligands and receptors

are fixed on beads (Kuo and Lauffenburger, 1993; Eniola et al., 2003) or covalently linked (Lin et al.,

2004; Bermúdez et al., 2004), therefore the chemical-equilibrium assumption fails (Martin et al.,
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2006) and it is erroneous to extract the parameters of the Bell model from these measurements by

fitting to a chemical equilibrium expression naively.

In many biological or engineering systems, ligand or receptor groups are tethered by polymers

or polypeptides to enhance specificity (Garcia, 2006; Chen and Dormidontova, 2005) or achieve

different functions (Springer, 1990, 1994). Polymer-tethering has also been a common motif in

surface force measurements and single-molecule studies (Wong et al., 1997; Jeppesen et al., 2001).

The polymer tether turns the short-range lock-and-key type interaction into a long-range specific

interaction, which has important implications to the equilibrium as well as dynamic properties of

adhesion (Martin et al., 2006; Moore and Kuhl, 2006; Moreira and Marques, 2004; Sain and Wortis,

2004), and suggests a new route to controlling the interactions between surfaces typically achieved

by generic physical interactions (Israelachvili, 1992; Hiddessen et al., 2000; Carignano and Szleifer,

2003; Nap and Szleifer, 2005). To characterize the polymer-tethered ligand-receptor binding, we

need to separate the contributions to the effective binding constant from molecular binding and

from conformation degrees of freedom—a single phenomenological binding constant is inadequate.

In this paper we study a microscopic model of polymer-tethered ligand-receptor binding and

analyze the thermodynamics of binding as well as the interactions between surfaces mediated by the

ligands and receptors. We explicitly account for the degrees of freedom of the flexible polymer tether,

and separate their contributions to the effective binding affinity as measured in experiments. Specific

attention is paid to the quenched case, where both ligands and receptors are immobile with random

distributions. In this scenario the physical free energy is the average over the random distributions

of ligands and receptors (“quenched average”), and an “effective binding constant” is not applicable.

In the low-density regime, the quenched system has qualitatively different thermodynamics than the

annealed system. We develop an asymptotic expansion of the quenched free energy of binding in

terms of the scaled molecular densities of ligands and receptors, which extends our previous analysis

for the single-ligand problem (Martin et al., 2006). The leading-order contributions (which are

accurate at low densities and intermediate binding strength) allow us to derive the dependence of

the binding free energy and the fraction of bound molecules on the microscopic binding affinity and

the tether chain lengths, which are qualitatively different from the annealed systems.

Another feature of this paper is that we distinguish between ligands and receptors with fixed

densities (closed) and connected to a reservoir with fixed chemical potential (open). In the Bell model

the densities of ligands and receptors are both assumed to be the bulk average values. However,

both experiments (Dustin et al., 1996) and theoretical estimations (Bruinsma et al., 2000; Bruinsma

and Sackmann, 2002) suggest that in the adhesion of cells or vesicles, the small contact adhesion

zones have ligand-receptor bonds aggregated at much higher densities than the bulk average. In this

scenario the whole non-contact area serves as a reservoir for the small adhesion zones; therefore the

adhesion part should be more naturally treated as an open system with a reservoir of molecules.
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The biological implications are briefly discussed in Section 4.3.2. For further discussions in relation

to experiments, see Bruinsma and Sackmann (2002).

We illustrate all our calculations using the ideal-Gaussian-chain model for the polymer tether

and highlight the scaling dependences on the contour chain length (kuhn length); extensions to more

complicated realistic models are straightforward (Szleifer and Carignano, 1996; Chen and Dormi-

dontova, 2005). The Gaussian model allows exact analytical calculations of the chain confinement

repulsion as well as the chain stretching energy, which are the main motifs in addition to the spe-

cific binding. We find that both at the onset of binding (where ligand-receptor pairs start to form)

and at the free energy minimum (bridging conformation is most stable), the surface separations

scale linearly as the spatial extension of the Gaussian chain. While the equilibrium separation is

found to be insensitive to the binding energy, the onset of binding is proportional to the square

root of the binding energy
√
ε/kBT as was suggested by Moore and Kuhl (2006). These result in a

quasi-equilibrium critical tension for breaking a tethered ligand-receptor bond that scales as N−1/2.

This chapter extends our previous paper (Martin et al., 2006) where a discrete lattice model was

used and adhesion was between a single ligand and receptors. In Section 4.2 we define the continuum

model for tethered ligand-receptor binding as illustrated in Fig. 4.1, and present the theoretical

analysis. For simplicity we choose to study univalent ligands and receptors with monodisperse

tether lengths. In Section 4.3 we discuss the key features for the simple system corresponding to

the model solved in Section 4.2, and go on to study several examples combining different types of

specific and non-specific interactions based on the results in Section 4.2. We suggest some tentative

guidelines for the control over the interactions between surfaces via specific binding. The main

conclusions are summarized in Section 4.4 with brief discussions on relevant problems.

ρL, NL

ρR, NR

Figure 4.1: Schematic view of the model for surfaces with tethered ligands and receptors. The
surfaces are separated by a distance Lz, the polymer tethers have mean square end-to-end distance
NLb

2 and NRb
2, with area densities ρL and ρR for ligands and receptors, respectively; the anchoring

ends are located within distance z0 from the surface. In the Bell model, binding between ligands and
receptors is treated as a chemical equilibrium with constant K dependent on the surface separation.
Here we assume the binding between a ligand residue and a receptor residue to have an equilibrium
constant K0 as can be measured in a bulk solution of proteins.
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4.2 Model and solution

The model is schematically shown in Fig. 4.1. Definitions of variables are given in Table. 4.1. We

assume the anchoring ends on the surfaces to be non-interacting (i.e., ideal gas in 2D), and the

surfaces are non-adsorbing and impenetrable for the polymer segments.

The binding (ligand and receptor) groups are located at the free ends of the polymers. The

binding affinity is characterized by the equilibrium constant K0 of the reaction

L+R 
 LR

in a bulk solution of ligand and receptor proteins (without the polymer tether), as is given by

K0 =
cLR

cLcR
.

In our calculations all densities are molecular densities instead of molar densities.

From statistical thermodynamics we know that

K0 =
q′LR

q′Lq
′
R

,

where q′i = qi/V (i = L,R, or LR) is the internal part of the partition function for species i. If

molecules are tethered or confined, the translation part is modified, but we can assume that the

internal partition function remains the same, i.e., q′i is unaffected by the tether. For the current

model as illustrated in Fig. 4.1, the equilibrium constant in terms of the surface densities of molecules

is given by

K =
ρLR

ρLρR
=

qLR/A

qL/A · qR/A
=

q′LR

q′Lq
′
R

· Aq
t
LR

qtLq
t
R

= K0
AqtLR

qtLq
t
R

. (4.1)

qt
i are the translation part of the partition function, which are calculated in Section 4.2.2.

Throughout the paper we use ci to denote concentrations in 3D, in unit of “number of molecules

per unit volume” and ρi for concentrations in 2D (number of molecules per unit area). Later on we

also introduce a dimensionless density φi which is ρi multiplied by the area spanned by the tether.

4.2.1 Thermodynamics of the surface interactions

Before discussing the thermodynamics of tethered binding, we first consider the general thermo-

dynamics for the interactions between the surfaces with polymer-tethered ligands and receptors.

The total free energy of interaction ∆F is measured by the free energy at given surface separation

relative to infinite separation (non-interacting). Depending on the mobility and the relative fraction

of the contact area to the whole surface, each species of molecules (ligands or receptors) can be

in one of three different scenarios: immobile, mobile with a fixed density, or mobile with a fixed
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Table 4.1: Glossary

Variable Definition Dimensions or
Expressions

Nib
2 mean square end-to-end distance of the polymer tether [L]2

xL(xR) fraction of tether lengths NL/(NL +NR)
mi total number of molecules for each species –
ci number of molecules per unit volume [L]−3

ρi number of molecules per unit area [L]−2

φi scaled density in 2D ρiNb
2

c
(0)
i , ρ(0)

i , φ(0)
i overall densities (both bound and unbound) same as above

L separation between surfaces [L]
l scaled surface separation L/

√
Nb

l0(L0) position of the free energy minimum –
l1(L1) onset of binding –
qi partition function of the tethered receptor –
q′i internal partition function [L]−3

qti partition function of the polymer tether [L]3

F total free energy kBT
∆F interaction free energy kBT

Fb, Fr
contribution to ∆F from binding and repulsive
confinement kBT

µi reservoir chemical potential kBT
Ξ, Q grand partition function for open systems –
W,p grand potential, osmotic pressure kBT
K0 standard binding constant in terms of ci [L]3

K 2D binding constant in terms of ρi [L]2

(ε̃)ε (effective) binding energy kBT
A surface area [L]2

A
(0)
L (A(0)

R ) total area of the surface occupied by ligands (receptors) [L]2

G(r, r′;N) Green’s function of the polymer chain [L]−3

z0 anchoring distance [L]

T (Tc)
(critical) quasi-equilibrium tension force to break
a single ligand-receptor bond

[M][L]−1[T]−2

τD, τp, τr different time scales [T]

chemical potential (connected to a reservoir). These different scenarios are described by different

thermodynamic potentials.

For mobile receptors and ligands, the Helmholtz free energy can be written as

Ftot = FL(A(0)
L −A,m

(0)
L −mL) + FR(A(0)

R −A,m
(0)
R −mR) + F (A,mL,mR).

Here A(0)
α is the total area of the surface occupied by species α, m(0)

α is the total number of molecules,

A is the contact area, mα is the number of molecules within the contact area A, Fα is the free energy

of species α in the non-contact region on the surface, and F is the free energy in the contact region.

Before the surfaces are in contact, the free energy is

F
(0)
tot = FL(A(0),m

(0)
L ) + FR(A(0)

R ,m
(0)
R ).



71

Therefore the net interaction free energy is

∆F = F (A,mL,mR) + FL(A(0)
L −A,m

(0)
L −mL)− FL(A(0),m

(0)
L )

+ FR(A(0)
R −A,m

(0)
R −mR)− FR(A(0)

R ,m
(0)
R ). (4.2)

If both species have fixed densities, we can take the surface in contact to be the entire surface,

and A(0)
α = A. We have

∆F = F (A,mL,mR)− FL(A,mL)− FR(A,mR); (4.3a)

If one species is connected to a reservoir with fixed chemical potential, then the total surface area

for that species can be considered infinite relative to the contact area, e.g., A(0)
L � A = AR, then

the net free energy of interaction is

∆F = F (A,mL,mR)− FR(AR,mR)−A
∂FL

∂AL

∣∣∣∣
AL=A

(0)
L

−mL
∂FL

∂mL

∣∣∣∣
mL=m

(0)
L

= F (A,mL,mR)−mLµL − [FR(A,mR)−ApL]. (4.3b)

pL = −∂FL/∂AL is the osmotic pressure of the ligands in the reservoir. For the case where both

species are mobile, the interaction free energy is

∆F = F (A,mL,mR)−mLµL −mRµR +A(pL + pR) = −A(p− pL − pR). (4.3c)

In these two cases the appropriate thermodynamic potential is given by F −µLmL and F −µLmL−

µRmR, respectively, corresponding to the case of open ensemble for ligands (closed ensemble for

receptors), and open ensemble for both ligands and receptors.

If one species is immobile (localized) while the other is mobile, the immobile species essentially

corresponds to the closed system with fixed densities. However, if both species are immobile, the

translation degrees of freedom are lost. This case is referred to as the “quenched” case. Here we

assume a priori that the quenched average free energy is self-averaging, i.e.,

1
A

lim
A→∞

F (A) = F =
〈
F ({xi}, {yj})

〉
,

A is the total surface area; the first equation defines the average free energy in the thermodynamic

limit, and the second implies that this is equivalent to the average over different distributions of the

quenched molecules.

In the quenched case the binding free energy is a random variable dependent on the distribution

of molecules, and its average is essentially different from the annealed cases (where either of the
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species is mobile). Let us first look at the simple case when ligands and receptors are put on a

lattice with no tether, i.e., binding occurs only between molecules directly facing each other, then

the quenched average of the binding free energy is just

〈Fb〉 = −ρLρRε,

where ρL and ρR give the probability of finding a ligand/receptor molecule within a unit area, and

ε gives the energetic gain due to binding. Clearly this is different from the chemical equilibrium in

the annealed cases.

Polymer tethers enlarge the range of binding between immobile ligands and receptors, as com-

pared to the molecular case, nonetheless, at low densities most molecules are far apart: the physics

of interactions is similar to the molecular case with a scaled density. In Section 4.2.3 we develop an

asymptotic expansion in this low density limit for the binding free energy, from which the density

(fraction) of bound pairs can be obtained.

In the rest of this subsection we discuss the relevant thermodynamic quantities for each of the

annealed cases in detail; these results are quite general and do not depend on the specific model for

the tether polymer; explicit treatment of polymer tethering will be described in detail in Section

4.2.2.

4.2.1.1 Both-open system

First we examine the system where both receptors and ligands are connected to a reservoir (in a

grand canonical ensemble). The free energy of interaction is related to the grand canonical partition

function, which is given by

Ξ(µL, µR) = exp
[
eβµLqL + eβµRqR + eβ(µL+µR)qLR

]
, (4.4)

where µL and µR are the chemical potentials of ligands and receptors; qL, qR, and qLR are the

partition functions of ligands, receptors, and ligand-receptor pairs.

At equilibrium the chemical potential of the bound pair µLR is equal to µL + µR, hence we can

rewrite the above equation as

Ξ = exp
(
eβµLqL + eβµRqR + eβµLRqLR

)
. (4.4′)

And from the grand potential

W = −kBT ln Ξ = −kBT
(
eβµLqL + eβµRqR + eβµLRqLR

)
, (4.5)
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we can obtain the 2D concentrations of ligands, receptors, and bound pairs in equilibrium

ρi =
1
A

∂ ln Ξ
∂βµi

=
1
A
eβµiqi =

qti
A
eβµiq′i (i = L,R,LR) (4.6)

where qti is the translation part of the partition function. From these we obtain the relation between

2D and 3D binding constant as given by Eq. (4.1)

K =
ρLR

ρLρR
= K0

AqtLR

qtLq
t
R

.

In Eq. (4.6) qti depends on the surface separation Lz. At infinite separation (Lz = ∞) no binding

occurs, therefore ρα(∞) (α = L,R) are just the reservoir concentrations ρ(0)
α ,

ρ(0)
α =

qtα(∞)
A

eβµαq′α.

This relates ρi at finite surface separation Lz to the reservoir concentrations ρ(0)
α as

ρα = ρ(0)
α

qtα(Lz)
qtα(∞)

, (α = L,R) (4.7)

ρLR = Kρ
(0)
L ρ

(0)
R

qtL(Lz)qtR(Lz)
qtL(∞)qtR(∞)

. (4.8)

The interacting free energy per unit area is given by the difference in the grand potential as given

in Eq. (4.5)

∆F (Lz)
AkBT

=
W (Lz)
AkBT

− W (∞)
AkBT

= − ρL − ρR − ρLR + ρ
(0)
L + ρ

(0)
R

= ρ0
L

[
1− qtL(Lz)

qtL(∞)

]
+ ρ0

R

[
1− qtR(Lz)

qtR(∞)

]
−Kρ0

Lρ
0
R ·

qtL(Lz)
qtL(∞)

qtR(Lz)
qtR(∞)

. (4.9)

4.2.1.2 Both-closed system

In the both-closed system the total number of molecules are fixed within the contact area. The

chemical equilibrium between receptors, ligands, and bound pairs implies

K
(
ρ
(0)
L − ρLR

)(
ρ
(0)
R − ρLR

)
= ρLR,

which gives

ρLR =
1
2

[
ρ
(0)
L + ρ

(0)
R +K−1 −

√
(ρ(0)

L + ρ
(0)
R +K−1)2 − 4ρ(0)

L ρ
(0)
R

]
. (4.10)

Here ρLR, ρL, and ρR are 2D concentrations of ligand-receptor pairs, free ligands, and free receptors,

and ρ(0)
α = ρα + ρLR (α = L,R) give the total concentration of ligands and receptors (both free and
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bound) within the contact area.

The Helmholtz free energy is related to the grand potential by a Legendre transform1

F

kBT
= − W

kBT
+
∑

α=L,R

µα

kBT
(ρα + ρLR)

= −ρL − ρR − ρLR +
∑

α=L,R

(ρα + ρLR) ln
ραA

qtαq
′
α

. (4.11)

The interaction free energy is given by

∆F (Lz)
AkBT

=
F (Lz)
AkBT

− F (∞)
AkBT

= ρLR(Lz)− ρ
(0)
L ln

qtL(Lz)
qtL(∞)

− ρ
(0)
R ln

qtR(Lz)
qtR(∞)

+ ρ
(0)
L ln

ρL(Lz)

ρ
(0)
L

+ ρ
(0)
R ln

ρR(Lz)

ρ
(0)
R

. (4.12)

One can verify that if one species is immobile while the other is mobile and both have fixed

number of molecules, the only difference is the translation entropy of the immobile species, which is

independent of binding. Therefore the free energy of interaction is the same as in the both mobile

case.

4.2.1.3 Open-closed system

Finally we examine the case in which one surface has a fixed number of molecules while molecules on

the other has a fixed chemical potential. This corresponds to the scenario in which the two surfaces

have different overall sizes, e.g., a virus binding to a cell, or a versicle or bead binding to a fluid

bilayer.

Assuming that receptors have a fixed overall density, we have

ρLR = KρL(ρ(0)
R − ρLR) ⇒ ρLR =

Kρ
(0)
R ρL

1 +KρL
, (4.13)

which is simply the Langmuir isotherm for an ideal gas of ligands. ρL is related to the reservoir

density as in Eq. (4.6)

ρL(Lz) = ρ
(0)
L

qtL(Lz)
qtL(∞)

.

The thermodynamic potential of interest is obtained from the grand potential through a Legendre

transform over the fixed density and the free energy of interaction is given by

∆F
AkBT

= ρ
(0)
L − ρL(Lz) + ρ

(0)
R ln

ρR(Lz)

ρ
(0)
R

− ρ
(0)
R ln

qtR(Lz)
qtR(∞)

. (4.14)

1Note that in Eq. (4.3a) mα refer to the total number of ligands or species within the contact area, including both
free molecules and bound ones; here ρi refer to the density of the free molecules only.
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This also applies to the case in which receptors are immobile, where the difference due to the

translational entropy is a constant independent of binding.

The results are summarized in Table. 4.2. In the next subsection we study the effects of the

polymer tether and derive the expressions of qti for the Gaussian chain model. The quenched case is

treated separately in Section 4.2.3.

Table 4.2: Summary of different scenarios
ligands receptors ensemble expressions

I immobile immobile quenched (4.33), (4.36)

II
fixed c fixed c
fixed c immobile canonical ensemble (4.3a), (4.10), (4.12)

III
fixed µ fixed c
fixed µ immobile open-closed (4.3b), (4.13), (4.14)

IV fixed µ fixed µ grand canonical (4.3c),(4.8), (4.9)

4.2.2 Polymer-mediated specific interactions

In this subsection we calculate the contribution of polymer tethers to the ligand-receptor interactions.

Before presenting the exact analytical calculations for the Gaussian chain, we first explore the scaling

behavior of the physical quantities of interest.

4.2.2.1 Scaling analysis

As mentioned above, polymer tethers have two effects: chain stretching in binding, and repulsion

between the surfaces due to short-range confinement. Both effects are classic problems in polymer

physics (de Gennes, 1979). A systematic scaling analysis of polymers confined between surfaces can

be found in Lipowsky (1995), and Manghi and Aubouy (2003). Here we analyze the scaling of the

size of the polymer tether in the presence of ligand-receptor binding. The scaling analysis is carried

out for a polymer chain with Flory exponent ν, (i.e., < R2 >∼ N2νb). The Gaussian chain results

follow by take ν = 1/2.

When surfaces are far apart, the polymer chain is confined in a semi-infinite space, which gives

the reference state for the problem. As surfaces come closer, ligand and the receptor groups at chain

ends can meet and bind with each other. We assume that at this stage the two surfaces are still far

apart so that the polymer chain is significantly stretched and chain confinement can be neglected,

which will be justified a posteriori. In the strong stretching regime, the polymer chain can be viewed

as a string of blobs of size ξ. Then the stretching energy is given by

E ∼ kBT × number of blobs ∼ N

(ξ/b)1/ν
,
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and the equilibrium end-to-end distance is

Lz ∼ Nξ1−
1
ν b1/ν .

Therefore the stretching energy is given in terms of the end-to-end distance as

E

kBT
∼ N

(
Lz

Nb

) 1
1−ν

=
(
Lz

Nνb

) 1
1−ν

. (4.15)

When binding becomes possible, the molecular binding energy ε becomes comparable to the stretch-

ing energy, hence we have for the separation L1
z corresponding to the onset of binding

(
L1

z

Nνb

) 1
1−ν

∼ ε

kBT
⇒ L1

z ∼ (ε/kBT )1−νNνb. (4.16)

This justifies our initial assumption that confinement is negligible in this regime.

As surfaces come very close, the polymer chains are squeezed by the surfaces into a string of

blobs on a plane parallel to the surfaces, with thickness Lz. The blob size is

ξ ' Lz,

therefore free energy due to confinement is

V = kBT
N

(Lz/b)1/ν
. (4.17)

Putting these two terms together with the binding energy, the overall free energy of a single

ligand-receptor pair is (C1 and C2 are dimensionless constants)

F

kBT
= −f

[
ε

kBT
− C1

(
Lz

Nνb

) 1
1−ν

]
+ C2

N

(Lz/b)1/ν
, (4.18)

and attains minimum at L0
z which is given by

L0
z ∼ f−ν(1−ν)Nνb, (4.19)

where f is the fraction of ligand-receptor bridges per ligand-receptor pair. For ε� kBT , L1
z � Nνb,

hence binding overcomes stretching energy and most molecules are bound (f ≈ 1), therefore the

equilibrium separation between the surfaces is given by L0
z ∼ Nνb.

The quenched case is more subtle. Assume ε� kBT . The binding fraction of a tethered ligand is

essentially the probability of finding a receptor within the “natural extension” of the ligand tether,
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ρR

〈
r2‖

〉
. (Here “

〈〉
” denotes the average over different chain conformations.) For a stretched chain,

r2‖ is given by an ideal string of blobs in 2D,

〈
r2‖

〉
' N

(ξ/b)1/ν
ξ2 ∼ Nb2

(
N

Lz

) 2ν−1
1−ν

, (4.20a)

while for a confined chain the “natural” size of the tether parallel to the surface is that of a self-

avoiding walk in 2D, 〈
r2‖

〉
'
[

N

(ξ/b)1/ν

]2ν2

ξ2 ∼ N2ν2L2−2ν2/ν
z b2ν2/ν , (4.20b)

ν2 is the 2D Flory exponent.

For Gaussian chains, ν = ν2 = 1/2, the scaling is the same in both cases, f ∼ Nb2ρR, which is a

scaled density of the receptor molecules. And we have (cf. Eq. (4.19))

L0
z ∼ N1/2b

(
ρRNb

2
)−1/4

. (4.21)

Hence we see that if ρR is kept constant O(1), then the equilibrium occurs at a smaller surface

separation compared to the annealed case. For swollen chains, ν ≈ 3/5 and ν2 = 3/4, the scaling in

both scenarios (stretched and confined) also happen to be identical, and the probability for forming

a ligand-receptor bridge is f ∼ ρRN
3/2b2(Lz/b)−1/2. The extra L

−1/2
z factor suggests that as

surfaces get closer, the polymer tether extends further in the direction parallel to the surface (since

ν2 = 3/4 > ν3 ≈ 3/5). The scaled density is given by ρRN
3/2b2, and the equilibrium separation is

(cf. Eq. (4.19))

L0
z ∼ bN15/22

(
ρRN

3/2b2
)−3/11

∼ N6/22ρ
−3/11
R . (4.22)

Finally we can also estimate the interaction force between the surfaces due to binding. For a

single bond, when the surfaces are pulled apart till the bond is broken, the total work done by the

pulling force is roughly equal to the ε, hence we have (for binding fraction f) the average pulling

force due to one ligand-receptor bond is

τ ∼ f
ε

L1
z − L0

z

∼ fkBT

Nνb

(
ε

kBT

)ν

. (4.23)

4.2.2.2 Analytical calculations for the Gaussian chain

Here we carry out the exact analytical calculations for Gaussian chains. Since the internal partition

functions q′i is assumed to be unaffected by the polymer tether, all we need is the translation part of

the partition function qti modified by the polymer tether. Using the Green’s functions of the polymer
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chain we can express qti as

qtLR =
∫
r

∫
rR,rL

G(r, rR;NR)G(r, rL;NL) =
∫
rL,rR

G(rL, rR;NL +NR); (4.24a)

qtα =
∫
r

∫
rα

G(r, rα;Nα) (α = L,R). (4.24b)

Here r is the position of the ligand or receptor group in the space between the surfaces, and rL and

rR are the positions of the anchoring ends of ligand or receptor tethers. Eq. (4.24) apply to any chain

model for the polymer tether (as reflected in the Green’s functions), as well as to both annealed and

quenched cases: For annealed cases, rL (rR) is restricted to the membrane whose integral is over

a thin layer within distance z0 from the surface; for the quenched case, it reduces to a summation

over the positions of the immobile molecules.

For ideal Gaussian chain model, we can factorize the Green functions,

G(r1, r2;N) = g(u1,u2;N)h(z1, z2;N),

where u and z are the transverse (parallel to the surface) and the longitudinal (perpendicular to

the surface) coordinates, and g and h are the transverse and the longitudinal part of the Green’s

functions. By translational invariance we have

g(u1,u2;N) = g(u1 − u2;N),

and ∫
u1,u2

g(u1,u2;N) = A

∫
u

g(u;N).

For the end-anchored polymer chain we further assume that z0 �
√
Nb, and

∫ z0

0

dzh(z, z1;N) ≈ z0h(z0, z1;N) = z0h0(z1;N).

For small enough z0, its value does not affect the physical quantities of interest, such as the binding

constant or the free energy of interactions.

From Eq. (4.1), the binding constant is given by

K = K0
AqtLR

qtLq
t
R

= K0

h0(Lz;NL +NR)
∫
u
g(u;NL +NR)∫

u
g(u;NL)

∫
z
h0(z;NL)

∫
u
g(u;NR)

∫
z
h0(z;NR)

. (4.25)

For Gaussian chains, g(u) is a Gaussian distribution and the integration over u yields unity. We are

left with

K = K0
h0(Lz;NL +NR)∫

z
h0(z;NL)

∫
z
h0(z;NR)

. (4.26)
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The one-dimensional Green’s function h0 for a Gaussian chain confined between surfaces can be

analytically solved; details are given in Appendix 4.A.

To highlight the scalings for Gaussian chains, it is convenient to rescale lengths by
√
Nb, which

is the mean square end-to-end distance. Here we choose to scale all lengths by
√
NL +NRb =

√
Nb. (As is shown in Appendix 4.A, h0 scales as a function of Lz/

√
Nb.) With this rescaling the

(dimensionless) receptor/ligand densities are given by

φα = ραNb
2, (4.27)

with a dimensionless binding constant

φLR

φLφR
=

K0

Nb2
h0(Lz/

√
Nb)∫

z
h0(z/

√
NLb)

∫
z
h0(z/

√
NRb)

=
K0

(Nb2)3/2
·
√
Nbh0(l)

qtL(l)qtR(l)
. (4.28)

(Note that h0 is of dimension [length]−1, hence the second factor, which depends on the scaled

surface separation l = Lz/
√
Nb, is dimensionless.)

In the literature the dissociation constant Kd is frequently reported in unit of M (mol/litre) and

a binding energy ε0 is defined as

ε0 = −kBT ln(Kd/[M]),

which is considered the binding energy measuring the intrinsic binding affinity. For most bound

pairs ε0 is found to be 5 to 30 kBT (Moore and Kuhl, 2006). In our problem K0 is given in terms

of molecular densities, it is related to Kd as

K0 = K−1
d N−1

a ,

where Na is Avogadro’s number.

Eq. (4.28) suggests that for tethered binding, we can define an effective binding energy

ln
φLR

φLφR
=
ε̃(l)
kBT

=
ε+ ∆ε(l)
kBT

, (4.29)

ε =kBT ln
K0

(Nb2)3/2
, (4.30)

∆ε(l) =kBT ln
√
Nbh0(l)

qL(l)qR(l)
. (4.31)

∆ε(l) measures the energetic cost due to stretching of the polymer tether; while ε accounts for the
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binding affinity excluding chain stretching. ε is related to ε0 as

ε = ε0 + ln
10−3m3

(Nb2)3/2Na
. (4.32)

For tether lengths in the normal range Nb ∼ 10nm while b ∼ 0.1nm, the second term is of order 0.1.

One can use either ε0 or ε as a measure of the binding affinity in the tethered case; we adopt ε for

convenience in the discussion of different energetic contributions to the binding.

4.2.3 Immobile receptors and ligands: low-density limit

Since the quenched case (both receptors and ligands are immobile) is qualitatively different from the

annealed case, we discuss it in detail in this subsection.

As mentioned above, in this case the physical quantities of interest are averaged over the quenched

distributions of the molecules. We assume the quenched distribution is uniform for each molecule

on the surface, namely the probability that a particular molecule is found at r satisfies

p(rα = r) =
1
A

d2r.

For each species (ligand or receptor), we assume that the distribution of molecules correspond

to a particular realization of the grand canonical distribution controlled by a chemical potential µ,2

then the probability distribution of samples with given number of molecules n in an area A is given

by

p(n) =
1
Q

λnqn

n!
,

where λ = eβµ and the normalization (grand partition function) is

Q =
∑

n

λnqn

n!
= exp(λq).

Hence for the ligand-receptor system, the quenched average free energy is given by

F̄ =
∑

mL,mR

p(mL)p(mR) 〈F (mL,mR)〉 . (4.33)

The chemical potential is related to the (thermodynamic average) number density of molecules as

ρ(0)
α =

1
A

∂ lnQ
∂µα

=
λαqα
A

. (4.34)

2Here we temporarily omit the subscript α for convenience.
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Putting this back into Eq. (4.33) we have

F̄ =
1

eAρ
(0)
L +Aρ

(0)
R

∑
mL,mR

(Aρ(0)
L )mL(Aρ(0)

R )mR

mL!mR!
〈F (mL,mR)〉 (4.35)

= A
[
F (1,1)ρ

(0)
L ρ

(0)
R + F (1,2)ρ

(0)
L ρ

(0)
R

2
+ F (2,1)ρ

(0)
L

2
ρ
(0)
R + · · ·

]
.

(Note that we have reserved F̄ for the “grand canonical average” and 〈F (mL,mR)〉 can be regarded

as the “canonical average” free energy with given number of molecules, mL and mR. It is easy to see

that the largest term in the series in Eq. (4.35) has mL = Aρ
(0)
L and mR = Aρ

(0)
R , therefore in the

thermodynamic limit, the canonical average < F > should be equal to the grand canonical average

F̄ .) In Appendix 4.B we present the calculations for F (n,m) up to n = 2,m = 2. The binding

fraction is most conveniently obtained by taking the derivative of F with respect to βε (or lnK).

Despite that the expansion is asymptotic, the leading-order results are usually qualitatively

accurate well beyond the range of densities in which the series is convergent, and here we present

the results

F̄ = F̄b(binding) + Fr(repulsion)

F̄b = −Aρ(0)
L ρ

(0)
R

∫
u

ln
{

1 +
3
2π

exp
[
βε̃(l)− 3u2

2Nb2

]}
, (4.36a)

Fr = −AkBT

[
ρ
(0)
L ln

qtL(Lz)
qtL(∞)

+ ρ
(0)
R ln

qtR(Lz)
qtR(∞)

]
, (4.36b)

ρ̄LR =
2π
3
Nb2 ln

(
1 +

3
2π
eβε̃

)
ρ
(0)
L ρ

(0)
R . (4.36c)

4.3 Results and discussion

In this section we discuss the key features of binding between polymer-tethered ligands and receptors,

and the overall interactions between surfaces mediated by these polymers. To focus on the key

aspects of the problem without complications due to other interactions we assume the ideal-Gaussian-

chain model. As discussed at the end of Section 4.2.2, after rescaling by the ideal end-to-end distance

of the polymer tether, we obtain the dimensionless quantities as listed in Table 4.3 (cf. Table. 4.1

for definitions of the variables).

Table 4.3: Scaled variables

surface separation l = Lz/
√
Nb

densities φi = ρiNb
2

binding affinity ε = kBT ln
[
K0/(Nb2)3/2

]
tether fraction xα = Nα/(NL +NR), (α = L,R)

Before the discussion, it is informative to estimate the values of these parameters. The aver-
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age number of ligand/receptor molecules is 105 ∼ 107 per cell, and the average area of a cell is

10−7 ∼ 10−6cm2: these give the average area densities of receptors/ligands ρ ∼ 1012/cm2. The av-

erage tether length (contour length) of integrins and selectins on lymphocyte cells is of order 10nm

(Springer, 1990), which is comparable to the estimation in the Bell papers (Bell, 1978; Bell et al.,

1984; Torney et al., 1986). Assuming the monomer size b to be ∼ 10−8cm we find

φ ∼ 1012 · 10−6 · 10−8 = 10−2,

which gives the overall (dimensionless) density of molecules on the cell surface. In other cases (e.g.,

a cell adhering to a large surface) where the adhesion zone is an open system (a small part of the

whole surface), we estimate that φ ∼ O(1) within the focal zone, and φ ∼ 0.001 outside the contact

area (the reservoir) due to depletion of ligands and receptors.

The binding constant K0 can be obtained from the dissociation constant Kd. In Dustin et al.

(1996) the dissociation constant was found to be Kd = 6µM , and the binding constant is K0 =

(KdNa)−1 ≈ 10−16cm3, which corresponds to a binding energy (in unit of kBT )

ln
K0

(Nb2)3/2
≈ ln 105 ≈ 12

in our definition. Bell et al. (1984) estimated the 2D binding constant to be K2D ∼ 10−8cm2, which

gives a binding energy
ε

kBT
= ln

K2D

(Nb2)
≈ ln 106 ≈ 14

in our definition. Moore and Kuhl (2006) compiled a list of experimentally measured physical param-

eters of ligand-receptor binding and it was quoted that the average binding energy ε0 (cf. Eq. (4.32))

of all available ligand-receptor pairs is about 15kBT . The numerical values of ε0 and ε are compa-

rable; in our calculations we take ε to be 10kBT or 15kBT .

In the discussions we proceed as follows. In Section 4.3.1 we study the effects of polymer tether

on specific binding and non-specific repulsion. In particular we examine the dependence of binding

on the tether fractions xL and xR. In Section 4.3.2, we discuss in detail the interactions between

surfaces mediated by ligand-receptor binding. We consider the following cases for the receptors and

ligands: I. Quenched (both ligands and receptors are immobile); II. “Both closed” (either ligands

or receptors are mobile, but both with fixed densities); III. “Open-closed” (ligands are connected to

a reservoir, and receptors have a fixed density (either mobile or immobile), or vice versa); IV. “Both

open” (both ligands and receptors are connected to a reservoir). Hereafter we will refer to these

different scenarios as “case I” to “case IV.”

We focus on the free energy of interaction and the average number of bound pair per lig-

and/receptor (“binding fraction”). In particular we discuss features including the dependences
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of the equilibrium separation and the minimum free energy on the binding energy and the molec-

ular densities; scaling relations are tested by analytical calculations. In addition we also study the

equilibrium force-extension curve between the surfaces. Finally in Section 4.3.3, we study several

systems combining different types of specific and non-specific interactions, including ligand-receptor

pairs with different tether lengths or binding affinities, and additional repelling polymers between

surfaces.

4.3.1 Effects of the polymer tether on specific binding and non-specific

interactions

From Eqs. (4.29) and (4.62) we see that the binding affinity in both quenched and annealed cases is

measured by the separation-dependent effective binding energy

ε̃(l)
kBT

=
ε

kBT
+ ln

√
Nbh0(l)

qtL(l)qtR(l)
.

Since ε is only weakly dependent on the chain length (cf. Table. 4.3), the dependence in the binding

affinity is primarily contained in the scaled surface separation l = Lz/
√
Nb in the second term. In

Appendix 4.A.1 we have worked out the close-form expressions for the second term in the asymptotic

limits of large and small separations

ε̃(l)− ε

kBT
'


ln
π2

8l
(l� 1),

ln
[
3
√

6πl2e−3l2/2√xLxR

]
(l� 1).

(4.37)

The effective binding constant (for the annealed case) is given by

K =
ρLR

ρLρR
= Nb2eβε̃(l),

and from Eqs. (4.37) this becomes

K ∝


K0

l
√
Nb

=
K0

Lz
(l� 1),

K0√
Nb

l2e−3l2/2 (l� 1).

(4.38)

Bell and co-workers (Bell, 1978; Bell et al., 1984; Torney et al., 1986) suggested that the 2D

binding constant should be related to the 3D binding constant as

K =
K0

Lz
.
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Figure 4.2: The contribution to the effective binding energy due to tether stretching: −∆ε = ε− ε̃(l).
Here −∆ε is given in unit of kBT and plotted against scaled surface separation l = Lz/

√
Nb. Dash

lines and the solid line are results from the asymptotic expressions in the limits l � 1 and l � 1,
respectively; circles are from exact solutions. The thick dash line and circles are for equal tether
lengths (xL = xR = 0.5), and the thin line and circles for a tether length ratio of 1 : 99. In all
calculations the total tether length N = NL +NR is kept constant.

Our calculation establishes that this is valid only when surfaces are close enough, i.e., the surface

separation is less than the ideal size of the tethered ligand-receptor bridge. When surfaces are far

separate, the second expression implies a large stretching energy cost. Therefore one should be

careful when inferring 2D binding constant from the 3D experimental data3.

In Fig. 4.2 we plot −∆ε = ε − ε̃(l) in units of kBT against the scaled surface separation l =

Lz/
√
Nb. (Here −∆ε can be interpreted as the free energy cost due to tether stretching.) We choose

two different tether length ratios (xL): the thick lines and circles represent the case with equal tether

lengths, xL = xR = 0.5; while the thin lines and circles are for the case with xL = 0.01 (equivalent

to xR = 0.01 by symmetry). Here the circles represent results from exact solutions, dash lines are

from the approximate expressions for large separations and the solid line is for small separations (in

the latter case the results only depend on the total tether length and are identical in both cases).

For the whole range of surface separations the approximate expressions work remarkably well. In

particular, the stretching energy cost is given by 3l2/2 to the leading-order, as was given by scaling

3In real situations the polymer tethers are probably not Gaussian, however, our scaling analysis (cf. Section 4.2.2.1)
showed that the stretching regime and the confinement regime are qualitatively different, therefore it is impossible to
have one expression valid for these different regimes.
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arguments (de Gennes, 1979). We can define the onset of binding l1 as where ε̃ & 0, whence the

density of bound pairs starts to increase significantly. Assuming that at l1 the polymer tether is

stretched, we can estimate l1 as (from the asymptotic expression in the strong stretching limit)

l1 =
Lz√
Nb

∼
√
ε/kBT > 1, (4.39)

which justifies our assumption a posteriori. Therefore for ε� kBT , the tether chains are considerably

stretched when ligand-receptor bridges start to form.

From Fig. 4.2 we also see that with total tether length N = NL +NR fixed, binding is optimal if

ligand and receptor tether lengths are equal; the difference between different tether ratios vanishes

at small surface separations as can be inferred from Eq. (4.37). The 3kBT difference is purely an

entropic effect, and allows the fine tuning of the binding affinity at intermediate or large surface

separations without affecting the short-range behavior. This feature is especially relevant near the

onset of binding, where ε̃ ≈ 0, and a small difference in ∆ε can result in a large change in l1.

Another contribution from the polymers is the repulsion between surfaces due to the confinement

of polymer segments. Figure 4.3 shows the dependence of the repulsive free energy on the surface

separation for a single polymer with ideal end-to-end distance Nb2.

From Appendix 4.A.1 we have obtained4

Fr

kBT
'


− ln

4z0
l
√
Nb

+
π2

6l2
l� 1,

− ln
4z0√
Nb

− ln
√

6
4
√
π

l� 1.

(4.40)

The constant in the limit l � 1 gives the free energy of confining a single Gaussian chain in half

space, while the result for l� 1 scales as 1/l2, as is inferred from scaling arguments.

While the stretching energy cost flattens off at small surface separations, the repulsive free energy

(∼ 1/l2) increases sharply and dominates over the binding energy. On the other hand the stretching

energy grows as l2 at large separations and prohibits binding at large l. The net effect results in

a total free energy minimum attained around l = 1, with low stretching energy and not too strong

repulsion due to confinement. Next we discuss the total interaction due to tethered binding in

different physical scenarios.
4In Fig. 4.3 we have substracted out the first term in Eqs. (4.40) involving the anchoring distance z0, which is a

constant for given chain length.
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Figure 4.3: The free energy of confining a polymer between parallel surfaces. Circles are results
from exact solutions and the dash line is from the asymptotic expression for l� 1.

4.3.2 Interactions between surfaces mediated by ligand-receptor binding

In this subsection we study 4 different scenarios according to the different mobilities of the species:

case I (quenched), case II (both closed), case III (open-closed), and case IV (both open). The

expressions for the density of bound molecules and the free energy of interactions are given by

(cf. Table. 4.2) Eqs. (4.36) for the quenched case (case I), Eqs. (4.10) and (4.12) for the both-closed

system (case II), Eqs. (4.13) and (4.14) for the open-closed system (case III), and Eqs. (4.8) and

(4.9) for the both-open system (case IV).

While the quenched case applies to interacting surfaces with immobile molecules unambiguously,

the different annealed cases can be difficult to distinguish. In particular we note that if one species is

mobile, the thermodynamics is the same whether the other species with a fixed density are immobile

or mobile. In reality a closed system (as in case II or case III) is best associated with surfaces with

uniformly distributed molecules, such as lipid bilayers supported on flat substrates. An open system,

on the other hand, corresponds to an inhomogeneous system with partial contact, such as flexible

membranes or lipid bilayers supported on spherical particles. In these cases the non-contact part

of the surface serves as a reservoir for the part in contact. Some typical examples of each cases are

listed in Table. 4.3.2.

Here we focus on two quantities. The binding fraction f is defined as the number of bound
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Table 4.4: Examples of different cases

Case I (quenched) polymersomes, solid substrates, colloidal particles with attached polymers
Case II (both closed) substrate-supporting lipid bilayers and monolayers
Case III (open-closed) flexible membranes interacting with surfaces covered by immobile molecules
Case IV (both open) flexible membranes, spherical vesicles

molecules divided by the number of molecules:

f =
ρLR

min(ρ(0)
L , ρ

(0)
R )

;

the free energy per molecule is defined by

F (l) =
∆F

Amin(ρ(0)
L , ρ

(0)
R )

,

which measures the strength of binding interactions between ligands and receptors. The definition

of F (l) coincides with the definition by Bell et al. (1984), and also allows a comparison with the

single-chain calculation in our previous paper (Martin et al., 2006). To avoid ambiguity we choose

ρ
(0)
L = ρ

(0)
R = ρ (φ(0)

L = φ
(0)
R = φ(0)) in our calculations. If both species are connected to a reservoir,

then the density of bound pairs ρLR can be significantly higher than the reservoir densities ρ(0)
L

or ρ(0)
R ; in this case f and F lose the meaning of “binding fraction” or “free energy per ligand or

receptor,” but purely serve as a comparison to the other cases (I, II, and III).

First we compare the different annealed cases (II, III, IV) where molecules are mobile. In Fig. 4.4,

we show results for case II (thin lines) and case III (thick lines) with densities φ(0)
L = φ

(0)
R = 0.01.

The binding energy is taken to be ε = 10kBT and equal tether lengths for ligands and receptors are

assumed. We see that for l ≥ 0.5, both cases are similar. In case III the binding fraction f saturates

at a larger surface separation than in case II. In particular, near l = 1 the binding fraction is close

to unity even for a lower reservoir density φ(0) = 0.001 (results not shown here). This indicates that

molecules in the reservoir can be attracted into the system and bind with their counterparts; near the

equilibrium bound state, the density of bound pairs is insensitive to the average density of ligands

or receptors in the reservoir, but is determined from the binding constant and the (maximum) fixed

density—this is consistent with the experimental observations by Dustin et al. (1996).

As surfaces come closer (l < 1), molecules start to feel the repulsion from the surfaces and are

squeezed out from the contact area. At very small l(< 0.5), the confinement repulsion dominates, and

in case III even bound pairs are broken and molecules are pushed out into the reservoir; accordingly

f drops to zero. In this regime of case III, the total interaction energy is the sum of the confinement

free energy of the molecules remaining in the system and the osmotic pressure from the reservoir.
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Figure 4.4: Comparison of case II (“both closed” system) and case III (“open-closed” system). The
binding fraction f and the interaction free energy F are plotted against the scaled surface separation
l = Lz/

√
NL +NRb. Thin solid lines are results for case II with φ(0) = ρ

(0)
L (NL + NR)b2 = 0.01,

(ρ(0)
L = ρ

(0)
R ); thick lines are for case III with the same densities. All calculations are for a binding

energy ε = 10kBT and equal tether lengths.

We see that the free energy of interaction is always lower compared with case II due to the extra

degrees of freedom of the species connected to a reservoir.

In Fig. 4.5 we compare case III (“open-closed”) and case IV (“both open”). The binding energy

is ε = 10kBT , and all the densities are φ(0)
L = φ

(0)
R = 10−3. Here thin lines are for case III and

thick lines for case IV; the dot line in Fig. 4.5(a) is the density of free (unbound) molecules with

a reservoir. (From Eq. (4.13) if the reservoir densities are equal, the density of free molecules is

the same in case III and case IV.) In both cases we see that as surfaces approach each other, free

molecules are pushed out, while the densities of bound molecules hit a maximum near l = 1, close

to the free energy minimum. But in the “both-open” system, we see a great enhancement of the

local densities since both types of molecules can flow into the system due to binding attraction. As

surfaces come even closer, both receptors and ligands are pushed out, the free energy in the “both

open” system flattens off at F = 2kBT , which is the total osmotic pressure from the reservoir.

Next we compare the annealed case (case II) and the quenched case (case I) and discuss the

features of binding in more detail.

Figure 4.6 shows F and f for case I (quenched) and case II (both closed) with scaled densities

φ
(0)
L = φ

(0)
R = 0.01: the solid lines are results for case II; for the quenched case, the dash lines are

results from the leading-order density expansion [O(φLφR)], and circles are from expansions up to

quartic order[O(φ4)]. To ensure accuracy of the density expansion, we choose a modest binding



89

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

φ
φ0

0 0.5 1 1.5 2 2.5 3 3.5 4

−20

−10

0

10

l = Lz/
√

Nb

F/kT

Figure 4.5: Comparison of case III (“open-closed”) and case IV (“both open”). In either case all
densities are chosen to be φ(0) = 10−3. Upper figure shows densities of molecules relative to the
reservoir density: the dot line represents the relative density of free molecules, thin and thick solid
lines represent the relative densities of bound pairs for case III and case IV. Lower figure: Total
free energy of interaction for case III (thin solid line) and case IV (thick solid line). The molecular
binding energy is ε = 10kBT .

energy ε = 10kBT .

In both cases, we see that the binding fraction f starts to increase around Lz/
√
Nb = 3.5, which

corresponds to the onset of binding. At the onset of binding, very few bound ligand-receptor pairs

are sparsely distributed and the situation is similar to isolated non-interacting ligand-receptor pairs,

therefore the scaling dependence of l1 on ε should be identical to that for a single ligand-receptor

pair, l1 = L1
z/
√
Nb ∼

√
ε/kBT , as discussed previously. Indeed this scaling estimate gives l1 ≈ 3.2

for the Gaussian chain model, quite close to the exact results5.

In the annealed case, as surfaces come closer, the binding fraction first increases rapidly and then

gradually approaches unity, whence most molecules are bound. In the latter regime the separation

between the surfaces is comparable to the size of the connected polymer tether, and ligand and

receptor groups can reach anywhere between the surfaces with almost equal probability—put in

other words, their densities are almost uniform in the space between the surfaces. This implies

that the 2D binding constant K is related to the 3D constant K0 as K = K0/Lz . On the other

hand, as surfaces come even closer the polymers start to feel stronger confinement from the surfaces,

which contributes a repulsive free energy scaling as 1/l2 for Gaussian chains. The balance between

5Of course, for very strong binding βε� 1, we have l1 � 1 and the Gaussian chain model becomes inaccurate. In
this regime the finite extensibility of the polymer chain should be accounted for.
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Figure 4.6: Comparison of case I (“quenched”) and case II (“both closed”). Solid lines are for case
II (mobile ligands and receptors with fixed densities), and dash lines are for case I (immobile ligands
and receptors) from leading-order density expansion; Circles are results for the quenched case from
second-order density expansion. The binding energy is ε = 10kBT and both ligands and receptors
have a density φ(0) = 0.01.

the attractive binding and the repulsive confinement leads to a free energy minimum at l0 ≈ 1.

Single-bound-pair scaling applies here as well because in this regime most molecules are bound,

hence f ≈ 1. For weaker binding such that the binding fraction has a substantial dependence on l,

the equilibrium separation l0 will also depend on ε, as will be discussed below.

We now investigate the quenched case. As discussed in Section 4.2.1, the free energy is averaged

over the random distributions of the molecules. The generic repulsion due to confinement is inde-

pendent of the relative positions of ligands and receptors; the quenched average is only invoked for

the binding part. By the convexity of the free energy,

Fq = −kBT
〈
lnQ

〉
≥ −kBT ln

〈
Q
〉

= F,

i.e., the quenched average is always larger than the annealed average. Hence the bound state in a

quenched system has a higher free energy, and binding is less probable compared to the annealed

case.

At least two factors contribute to the reduced tendency of binding between immobile molecules

at low densities6. First, at low densities the anchoring ends of ligands and receptors are far apart,

therefore the tether chains have to be laterally stretched for ligands and receptors to bind. This
6At high densities the quenched case should approach the annealed case.
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lateral stretching adds an extra energetic cost to binding, and is only dependent on the densities

and the tether lengths of the molecules. Another effect is due to the local inhomogeneity in molecule

distributions7: due to fluctuations in the quenched distributions, locally there could be more ligands

than receptors or vice versa, and the excess ones have no counterparts nearby, and remain unbound;

while in the annealed case, these molecules can move around to locate their counterparts.

In the Gaussian chain model, the polymer chain is infinitely extensible. We can estimate the

average number of molecules within an“accessible” distance as8

ρR2 = ρNb2ε/kBT = φε/kBT,

where the binding energy gain ε enables the tether to stretch farther to form a bridge. This gives an

estimate for the maximal binding fraction, f . φε/kBT , which is attained when surfaces are very

close. For reasonable values of ε with small φ it is always less than unity9.

We also note that the asymptotic density expansion is accurate if the surface densities φL, φR

are small and binding energy is not too big. Since the density expansion is carried out around

the no binding state, an empirical criterion is given by φε/kBT < 1, corresponding to the “weak”

binding scenario. We see that the leading-order expansion is fairly accurate compared with the

higher-order expansion (up to O(φ4)). Since we are mostly interested in the low-density regime

when the quenched case and the annealed cases are most different, we shall use the leading-order

result throughout the rest of the paper. From the leading-order expansion we have

ρ̄LR ∝ ρ
(0)
L ρ

(0)
R Nb2ε̃,

this should be distinguished from the conventional binding equilibrium,

ρLR ∝ (ρ(0)
L − ρLR)(ρ(0)

R − ρLR)eβε̃.

In general there is no well-defined binding constant for the quenched case, especially when higher

order terms O(φ3) and O(φ4) are relevant.

To summarize the binding favorability in different scenarios, we have

Both open � open-close & both close > quenched.

The difference is the entropic effect due to flexible polymers as well as to the diffusion of molecules

in the reservoir. To better illustrate the difference between these cases, we plot in Fig. 4.7 the free
7This is briefly commented on by Moreira et al. (2003).
8When the surface separation is large, ε should be replaced by ε̃ to account for the stretching energy.
9For finitely extensible chains, as in our previous paper (Martin et al., 2006), there is a strict upper bound set by

the average number of molecules within the maximal extension in the limit of βε→∞, which is completely determined
by the molecular density and maximal tether extension.
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energy of binding and the binding fraction against the density of one species (receptors or ligands)

while keeping the other fixed φ(0) = 0.01 (F and f is normalized to this fixed density). We see

that for the quenched case the free energy and binding fraction increases almost linearly with the

density, the slope is small, reflecting the restricted availability of binding molecules. In case II and

case III where the maximum density of bound pairs is set by the fixed density of one species, as the

density of the other species increases, f first increases exponentially but then approaches saturation.

In case IV, the increase is linear all the way with a much larger slope that is proportional to K

(cf. Eqs. (4.8) and (4.9)); this reflects a positive feedback effect: increasing the density of one species

automatically attracts more molecules of the other species from the reservoir.
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Figure 4.7: Dependence of the binding fraction and the free energy on the density of molecules
for case I (dash line), II (solid line), III (dash dot line), and IV (dot line). The binding energy
is ε = 10kBT ; receptors and ligands have equal tether lengths, one species has a fixed density
φ(0) = 0.01, while the other has a varying density. The free energy and the binding fraction are
calculated for a fixed surface separation l = 1 (Lz =

√
Nb), which is near the equilibrium position

(cf. Fig. 4.8).

Next we focus on the features related to the equilibrium separation l0 and the equilibrium (min-

imum) free energy. From our scaling analysis in Section 4.2.2, for Gaussian chains the interaction

free energy (per bound pair) can be written as

F

kBT
≈ −f

(
ε

kBT
− C1l

2

)
+
C2

l2
.

The first term gives the total stretching and binding energy, while the second term measures the

repulsion due to confinement. Assuming that f has a weaker dependence on l compared with the
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stretching energy and the confinement repulsion10, we obtain the equilibrium separation as

l0 ≈ f−1/4,

and the minimum free energy
Fmin

kBT
≈ −f ε

kBT
+ C3f

1/2.

The only dependence of l0 on the binding energy is contained in f . From previous discussions we

have seen that for reasonably large binding energy, f is close to unity near the equilibrium position

in the annealed cases, therefore in these scenarios we expect l0 to reach a constant if ε/kBT � 1,

this is indeed true as shown from in Fig. 4.8.

1 2 3 4 5 6 7 8 9 10
1

1.2

1.4

1.6

1.8

l∗l0

1 2 3 4 5 6 7 8 9 10
−5

−4

−3

−2

−1

0

ε/kT

Fmin

Figure 4.8: The dependence of the equilibrium separation and free energy on the molecular binding
energy for case I (dash line), II (solid line), III (dash dot line), and IV (dot line). Ligands and
receptors have equal tether length, with densities φ(0) = 0.01.

In Fig. 4.8 we plot l0 and the equilibrium free energy for different binding energies. Broken

lines represent the quenched case, solid lines for case II (both closed), dash-dot lines for case III

(open-closed), and dot lines for case IV (both open). The receptors and ligands have equal tether

lengths, with equal density φ(0)
L = φ

(0)
R = 0.01. We observe that for the annealed cases in which the

binding fractions reach unity in the strong binding regime, l0 approaches 1, where the total energy

due to stretching and confinement is minimized. In the free energy plot, we see that in case II and

case III, for large ε the free energy curves approach linear with slope 1, reflecting that in this regime
10Indeed f ∼ 1 near the equilibrium separation in case II and case III, ∂f/∂L ' 0 in case IV, and in the quenched

case f ∝ ε with a logarithmic dependence when l ' 1.
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most molecules are bound (f ≈ 1); in the both-open system, the free energy has an exponential

increase due to the incoming molecules from the reservoirs.

On the other hand the quenched case is essentially different. From above we have the estimate

that f ≤ φε/kBT , therefore f � 1 for the range of ε we choose. Naive estimate for l0 gives

l0 ∼ f−1/4 ∼ ε−1/4 > 1, which would be true only if f is independent of l. Even though the latter

assumption does not hold in this regime, the qualitative trends still hold: we indeed observe that l0

is bigger than in the annealed cases and decreases as ε increases.
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Figure 4.9: The force-extension curve for case I (dash line), II (solid line), III (dash-dot line), and
IV (dot line). The binding energy is ε = 10kBT and the molecular densities are φ(0)

L = φ
(0)
R = 0.01.

Finally from the interaction potential we calculate the equilibrium force defined as

τ =
∂F

∂Lz
.

τ measures the force between the surfaces at a given surface separation in a quasi-equilibrium state.

(We adopt the convention that τ is positive if the surfaces are attracting each other, i.e., one needs

to exert force to pull the surfaces apart.) In Fig. 4.9 we plot τ
√
Nb against the scaled surface

separation l. If we neglect the weak dependence of ε on N , this is a scaling plot for τ
√
Nb against

l. One immediately sees that τ scales as N−1/2 against the tether length, reflecting the finite range

of binding attraction mediated by the polymer tether. The maximum in the force-extension curve

corresponds to the critical pulling force above which the bond will be broken even in the quasi-

equilibrium state (without fluctuations), which gives an upper bound of the bridging force (Moore
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and Kuhl, 2006). From scaling arguments we would expect

τc ∼
fβε

l1 − l0
∼ f

(
ε

kBT

)1/2

N−1/2.

For tether length
√
Nb ∼ 3nm and ρ ∼ 10−1nm−2, 1kBT in Fig. 4.9 corresponds to a force per unit

area 3.7 N/m2. Therefore the critical stresses in different cases are 2N/m2 (case I), 15N/m2 (case

II, III), and 100N/m2 (case IV). The values are comparable to the results reported by Moore and

Kuhl (2006), but larger than their values which are around 4N/m2. However, the polymer tether is

significantly stretched in the experiments by Moore and Kuhl (2006) therefore the Gaussian chain

approximation is invalid. In this strong stretching regime, the critical tension is approximately

τc ∼
fε/kBT

l1 − l0
∼ f

(
ε

kBT

)
N−1.

In summary, the interactions between surfaces due to ligands and receptors include the generic

repulsion due to confinement and the specific attraction due to binding. The magnitude of the

binding attraction is determined by the microscopic binding affinity, the tether lengths, and the

molecular densities, through an effective binding constant and the scaled molecular densities. The

net effect of binding attraction and confinement repulsion results in a free energy minimum at a

surface separation comparable to the ideal size of a tethered bridge.

When one or both species are connected to a reservoir, molecules can be attracted into or pushed

out of the system according to the interaction potential. Qualitatively different is the case when

molecules are immobile. The free energy cost due to lateral stretching makes binding much less

probable, resulting in a binding fraction considerably less than unity.

We further notice that in all these cases, the onset of binding (where the binding fraction starts to

increase considerably) appears to be identical, reflecting the binding energy ε as a universal measure

of binding strength; while the equilibrium bound state, which is dependent on the saturated density

of bound molecules, differs in the various scenarios due to entropic effects (diffusion of molecules).

The dependences of the equilibrium separation and the minimum free energy can be qualitatively

explained using the scaling relations.

Since our results are based on equilibrium analysis but real systems or processes are usually non-

equilibrium in nature, it is natural to ask in what situations these conclusions hold. Let’s take the

surface force measurement (Wong et al., 1997; Jeppesen et al., 2001) as an example. Here we observe

three physical time scales, corresponding to the binding reaction (τr), the diffusion of the polymer

tether (or the ligand/receptor group) in solution (τp), and the trans-membrane diffusion of polymers

(τD). In addition there is the time scale corresponding to the relative speed at which surfaces are

approaching or departing from each other (τ). Moore and Kuhl (2006) found that the polymer
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diffusion time τp (Zimm time) is roughly 1µs, and the binding reaction time τr is typically several

nanoseconds. The diffusivity of the protein across the membrane was quoted in Dustin et al. (1996)

and Cuvelier et al. (2004) to be 10−8 ∼ 10−9cm2/s, which gives a time scale of τD ∼ (ρD)−1 ∼ 1ms

for the rearrangement of molecular distributions. Therefore we have

τD � τp � τr.

Generally τ � τr, and it is always valid to treat the binding reaction as an equilibrium. If the

surfaces approach very fast such that τ < τp, then the diffusion of the polymer tether is relevant and

this is the scenario analyzed by Moreira et al. (2003) and Moreira and Marques (2004) using reaction-

diffusion theory. If the surfaces approach slow enough such that τ > τD, then the system is essentially

governed by the equilibrium thermodynamics and all our results should hold; if τD > τ > τp, the

system is in the quenched scenario as the diffusion of the molecules across the membrane is too slow

to be treated as annealed.

Moreira et al. (2003), Moreira and Marques (2004), and Moore and Kuhl (2006) discussed the

relevance of the approaching speed to the interacting force between the surfaces and the dependence

of the fraction of bonds on the surface separation. For the dependence of the onset of binding

(their “binding range”) on the binding affinity, they found the same result as ours, l1 ∝
√
ε/kBT ,

which sets an upper bound in the dynamic measurements where surfaces approach at a finite speed;

for the dependence on the tether length, our result suggests l1 ∼
√
ε/kBTN

νb, which agrees with

their experimental results for long tethers11; for short tethers the finite extensibility of the tether

should change the scaling dependence. The breaking of the bond is more subtle and is best put in

a dynamic context (Evans and Ritchie, 1999; Sain and Wortis, 2004). But as discussed by Moore

and Kuhl (2006), the equilibrium force gives an upper bound on the bridging force or the breaking

force as long as the approaching or separating speed is not faster than the relaxation of the polymer

segments. And our prediction that τ ∼ ε1/2/Nν should hold for long chains in this regime. Thermal

fluctuations will even lower the threshold for breaking the bond, as was considered by Sain and

Wortis (2004).

The distinct time scales of motion result in different physical scenarios. For example, the diffusion

of ligand and/or receptor groups is governed by the diffusion of the polymer tether as well as

the diffusion of the anchoring end in the membrane. But the diffusion in the bilayer is much

slower compared to the diffusion of polymer segments in the solution, therefore tethered ligands and

receptors can locate their counterparts more easily and result in faster adhesion dynamics compared

with the adhesion without tether, as was observed by Cuvelier and Nassoy (2004). In addition

the polymer tether increases the range of binding, which admits larger membrane deformations

compared with the case of molecular binding: such membrane fluctuations lower the energy barrier
11Moreira et al. (2003) and Moreira and Marques (2004) did not do a scaling plot.
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Figure 4.10: Schematic views of the models to be discussed in Section 4.3.3.1 (a), Section 4.3.3.2
(b), and Section 4.3.3.3(c). When molecules with different lengths are present, we usually scale the
densities by the length of the (shorter) tethered ligand-receptor bridge, and refer to the molecular
densities of other species relative to the density of ligands or receptors.

of adhesion and stabilize the bound state. These two effects qualitatively explain the experimental

findings by Cuvelier and Nassoy (2004), although quantitative treatments require an analysis of the

adhesion dynamics, which is beyond the scope of our current paper.

4.3.3 Composite interaction potential from specific binding and non-

specific interactions

In previous subsections we discuss the interactions between surfaces mediated by polymer-tethered

ligand-receptor binding. Real biological processes, however, usually involve many different types

of ligand-receptor interactions, with different binding affinities or tether lengths. (See Springer

(1990) for a snapshot of different proteins involved in immunological responses.) Even in a simple

cell adhesion, the polysaccharide layer on the cell surface introduces additional repulsion between

the cell surface and the external surface. This repulsive layer effectively prevents non-specific and

preserves specific adhesion.
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Here we study the overall interaction potential between the surfaces mediated by several specific

and non-specific interactions. We neglect non-specific intra- and intermolecular interactions, such as

the excluded volume, and focus on the features of specific interactions and generic repulsion. From

these examples we try to illustrate the different features associated with each interacting species and

provide some general principles for the design and control of surface interactions.

4.3.3.1 Cell adhesion revisited

Bell and co-workers (Bell, 1978; Bell et al., 1984; Torney et al., 1986) first proposed that cell ad-

hesion is a net result of specific ligand-receptor binding and non-specific steric repulsion due to

repelling molecules on the cell surface. Here we re-examine this model and study the dependence

of the interaction potential on measurable and controllable molecular parameters, which can guide

bioengineering design of artificial surfaces that can trigger cell adhesion. Specifically we treat the

binding molecules as polymer-tethered ligands and receptors and the repelling polymers as linear

Gaussian chains confined between surfaces 12. The model is schematically shown in Fig. 4.10(a).

Figure 4.11 shows the composite interaction potential due to ligand-receptor binding and steric

repellers. In Fig. 4.11(a) the system belongs to case III (open-closed system) and we plot the cases

with mobile repellers (dash line) and immobile repellers (thick solid line). The interaction potential

due to ligand-receptor interactions alone is shown for comparison (thin solid line).

The repeller polymer has length Nr = 16(NL +NR), hence the repulsion is present at

Lz ∼
√
Nrb = 4

√
NL +NRb &

√
βε
√
NL +NRb,

which is slightly larger than the separation at the onset of binding. When repellers are mobile,

the repulsive potential flattens off at small separation, implying that they are squeezed out (or

“redistributed” in Bell’s terminology). This introduces a modest barrier (osmotic pressure) that is

proportional to the density of repellers; the length of repellers only affects the range of repulsion,

not the barrier height. When repellers are immobile, the short-range repulsion scales as Nrb
2/L2

z

and presents a strong repulsion. Accordingly the equilibrium bound state is shifted towards larger

surface separations with shallower free energy minimum, due to the strong repulsion at small surface

separations.

In Fig. 4.11(b), we examine the case when both receptors and ligands are connected to a reservoir

with densities φ(0) = 0.005 and with immobile repeller polymers at different densities. Contrary to

the case of receptors/ligands with fixed densities, the equilibrium separation is shifted very little,

although the free energy minimum becomes shallower if not vanishing. This suggests a way to adjust
12Simple scaling tells us that the short-range repulsion due to confinement of Gaussian chains scales as ∼ Nb2/L2

z ,
Nb2 being the mean square end-to-end distance of the polymer and Lz the spatial confinement size. In the Bell
model, the repulsion is assumed to scale as ∝ (Lz)−1; this would correspond to stretched polymers in the brush
regime. Extension to this scenario can be straightforwardly implemented via self-consistent calculation.
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Figure 4.11: The interaction between surfaces mediated by ligand-receptor binding and repulsive
polymers. The ligand-receptor binding has a binding energy ε = 15kBT . The length of repelling
polymers is Nr = 16(NL +NR). In (a) the densities of ligands and receptors are ρ(0)(NL +NR)b2 = 1
and the repeller density is ρr = ρ(0)/3. The dash line is for mobile repellers and the thick solid line
for immobile repellers; the thin line is for the bare ligand-receptor system without repellers. (b)
Receptors and ligands are both in open system (case IV) with reservoir densities ρ(0)(NL +NR)b2 =
0.005, the binding energy is the same as in (a); from above the densities of repelling polymers are:
ρr = ρ(0) (thinnest), ρr = 2ρ(0)/3 (moderate), and ρr = ρ(0)/3 (thick).

the depth of the free energy of the bound state independent of its location, as compared to the case

in Fig. 4.11(a) where the two are correlated.

Recently Bruinsma et al. (2000) studied the adhesion between a large versicle and a lipid bilayer

when both receptors and repellers are present. They observed that tightly bound regions with

higher densities of receptors coexist with loosely bound states with lower densities, and receptors
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slowly aggregate to the tightly bound regions (focal adhesion zone). This coexistence was argued to

result from a double-well inter-membrane potential separated by a barrier induced by the repeller

molecules. The authors further pointed out that the repellers are better characterized as mobile

with a given chemical potential so that they can be pushed out in the tightly bound regions.

In our model we do not account for the long-range physical interactions or membrane defor-

mations, which result in the loosely bound minimum described in the Bruinsma paper. Otherwise

our analysis qualitatively agrees with their observations. In addition we point out that since the

growth of the contact area is slow, initially the adhesion zone should be viewed as an open system

of receptors with the loosely bound part serving as the reservoir. This was also observed by Dustin

et al. (1996). The attraction inside the focal contact is significantly higher than that predicted from

the overall density on the surface, which can overcome the barrier due to immobile repellers; such

a process would be impossible if the binding molecules were uniformly distributed as in a closed

ensemble.

Finally we point out that due to the barrier between the bound and the unbound state, even

in flat geometries the adhesion process should be a first-order transition (Bruinsma and Sackmann,

2002; Weikl et al., 2002). Therefore the presence of a considerable barrier is adequate to prevent

non-specific adhesion even though the bound minimum still exists. In this case the growth of the

adhesion contact is through nucleation, which is most likely mediated by membrane fluctuations. We

will study this interplay between membrane fluctuations and ligand-receptor interactions in Chapter

5.

4.3.3.2 Bidisperse ligand-receptor binding

Introducing long repelling polymers can generate a barrier from the unbound to the bound state,

thus preventing unwanted binding or adhesion between the surfaces. If, instead of purely repelling

polymers, we introduce longer-tethered ligands and receptors, then these molecules act as a “barrier”

to the shorter-tethered binding, but on the other hand generate another minimum at a larger surface

separation. Properly adjusting the binding affinities and tether lengths of these two ligand/receptor

pairs gives us extra freedom in controlling the strength and range of the attraction between the

surfaces.

Here we consider a system with two ligand-receptor pairs with different tether lengths and affini-

ties, as schematically represented in Fig. 4.10(b). The interaction potentials are shown in Fig. 4.12.

The shorter-tethered ligand/receptor pair has a larger binding energy ε = 15kBT and higher density

φ
(0)
1 = 1, and we assume them to be an “open-closed” system to mimic cell-substrate interactions.

The longer-tethered one has a smaller binding energy ε = 5kBT and smaller density ρ(0)
2 = 0.5ρ(0)

1

(note that this is the molecular density instead of the scaled density φ) and we assume both of them

to be in a closed system.
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Figure 4.12: The interaction potential resulting from binary ligand-receptor interactions. Ligands
and receptors have equal densities as their counterparts. The short-tethered ligand-receptor pairs
have ε1 = 15kBT , and φ

(0)
1 = 1, and the system belongs to case III (open-closed). The thin line

represents the interaction potential of this system alone. The long-tethered ligand-receptor pairs
have weaker binding energy ε2 = 5kBT , with fixed densities (case II) ρ(0)

2 = 0.5ρ(0)
1 . Both ligand-

receptor pairs have equal lengths for ligand and receptor tether. From above, the lengths of the
longer tethers are: N2 = 64N1 (dot line), N2 = 36N1 (dash-dot line), and N2 = 16N1 (thick solid
line).

Since the long-tethered molecules introduce a barrier to the short-tethered binding and generate

a new free energy minimum at larger separation, the superimposed interaction potential should take

a double-well shape. In Fig. 4.12 the dot line represents the case with tether ratio N2/N1 = 64, the

dash-dot line for N2/N1 = 36, and the thick solid line for N2/N1 = 16; the thin solid line is for the

system with short-tethered ligands and receptors only, the same as in Fig. 4.11(a). For the range of

tether lengths we studied, we see that the minimum due to the short-tethered binding is shifted to

larger separations with higher free energies, similar to Fig. 4.11(a).

When the length of the long-tethered bridge is much larger than that of the short-tethered one

(dot line), we observe two minima separated by a positive barrier. If the long tether is of intermediate

size (dash-dot line), we still observe two separate minima, but the barrier between them is small

and negative; for comparable tether lengths (thick solid line), the two minima merge with a larger

range of attraction. These results demonstrate that by adjusting the relative length ratio one can

qualitatively control the shape of the interaction potential from single well to double well.

Understanding the interactions due to binary ligand-receptor binding is both relevant to surface

engineering and to our understanding of biological systems. In a colloidal suspension with particles

interacting via a double-well potential, we expect structures with competing length scales of ordering
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Figure 4.13: Interaction between surfaces with two different ligand-receptor interactions and repelling
polymers. For short-tethered ligands/receptors we have ε1 = 15kBT , and φ

(0)
1 = 1; for the long-

tethered ligands/receptors we have ε2 = 10kBT , ρ(0)
2 = 0.5ρ(0)

1 , and N2 = 16N1. Ligand and receptor
tether lengths are equal for both types. And the short-tethered binding is assumed to belong to case
III (open-closed) and the long one to case II (both closed). The lengths of the immobile repelling
polymers are Nr = 36N1 (thickest line) and Nr = 16N1 (intermediate) with density ρr = ρ

(0)
1 /3.

with complicated symmetries, as well as colloidal gels with local but no long-range order13. On the

other hand, it is known that in the rolling of leukocyte cells (Lawrence and Springer, 1991; Springer,

1994), the longer but weaker selectin ligands mediate rolling of the cells, while the shorter but

stronger integrin receptors result in the final strong adhesion; the interplay between longer-tethered

ligands and shorter-tethered ligands is key to the successful immunological response (Qi et al., 2001).

For stable rolling, the double-well shape interaction potential might be crucial.

4.3.3.3 Attempt at a synthesis

From the above examples we have seen two ways to adjust the interaction potential between surfaces:

(1) introduce a barrier from the unbound to the bound state by adding longer repelling polymers;

(2) shift the equilibrium separation and the minimum free energy and allow different minima to

appear by combining ligand-receptor pairs of different lengths.

Let’s summarize the main results in these two cases. To introduce a barrier to the bound state,

mobile repellers introduce a less noticeable barrier and smaller shift to the equilibrium separation

compared with immobile repellers; with immobile repellers increasing the density or the chain length

of the repeller molecules can both increase the barrier height, but the latter will also result in a larger

range of repulsion. When a different type of ligand/receptor pairs with longer tethers is introduced,

13See Hiddessen et al. (2000) for some examples using single ligand-receptor pairs.
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depending on the tether lengths, the system can show two free energy minima separated by a

large barrier (large tether-length difference), two minima separated by a small barrier (intermediate

tether-length difference), or one minimum only (comparable tether lengths). Adjusting the density

of each type of ligand/receptor molecules allows us to control the relative stability of the minima

due to each ligand-receptor pair.

Combining these two methods allows us to control the subtle features of the interaction potential.

Here we just give one example to illustrate how the relative stability of the minima in a bidisperse

ligand-receptor system can be controlled by introducing repellers of different lengths. In Fig. 4.13

the thin line represents the system with bidisperse ligand/receptor molecules with parameters: ε1 =

15kBT , φ(0)
1 = 1, and ε2 = 10kBT , N2 = 16N1, ρ

(0)
2 = 0.5ρ(0)

1 . Comparing Fig. 4.13 with Fig. 4.12,

we see that although the binding energy for the longer-tethered ligand/receptor molecules is larger,

the qualitative features are identical, hence changing the binding energy has little effect on the

shape of the interaction potential. However, by introducing immobile repeller molecules with a fixed

density ρr = ρ
(0)
1 /3 but different lengths, we can qualitatively control the interaction potential. In

both cases we see two separate minima. For long repellers (Nr = 36N1, thickest line) the stable one

is at the larger separation, corresponding to the longer-tethered binding, and the repellers generate

a barrier to the bound state. In the case of short repellers (Nr = 16N1) the stable bound state is at

the smaller separation and there is no barrier from unbound to the longer-tethered bound state.

Clearly one can introduce more species into the system to adjust the individual features indepen-

dently. Because of the specificity of ligand-receptor binding, each type of ligand-receptor binding is

independent of others, and the total interaction potential is the superposition of all ligand-receptor

pairs, which provides a diverse and powerful way to engineer surface interactions.

4.4 Conclusion

We have studied a continuum microscopic model for polymer-tethered ligand-receptor interactions

between surfaces and analyzed the thermodynamics of interactions between the surfaces, which

essentially consist of a repulsion due to the confinement of polymers at small surface separations,

and an attractive binding at intermediate range of separations mediated by the polymer tether.

The generic short-range repulsion due to confinement can be calculated or estimated from scaling

analysis for a given chain model. For the tethered binding we find an effective binding constant that

relates the density of bound pairs to those of ligands and receptors.

The binding constant has contributions from a microscopic binding affinity between the ligand

and the receptor group, which is independent of the surface separation or tether lengths, and a tether

stretching energy, which reflects the conformation change of the polymer tethers due to binding. At

small surface separations, the 2D binding constant is independent of the tether length, and can
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be related to the 3D binding constant by K2D = K3D/surface separation, but at large surface

separations the stretching energy is important. The attractive binding and the repulsion due to

confinement result in an equilibrium separation between the surfaces corresponding to the minimum

of the total interaction free energy.

For the overall interactions between surfaces, we study the different scenarios when binding

molecules have different mobilities. Specifically ligands and receptors can be immobile, mobile with

a fixed density, or mobile with a fixed chemical potential. These different scenarios correspond to

binding between objects with different geometries or different molecular embeddings. Binding is

least probable in the case when both species are immobile. On the other hand, in the cases with

open ensembles, molecules are attracted into or pushed out of the system due to the net interaction,

resulting in a lower free energy. In particular, for the case with ligands in a closed system and

receptors in an open system, the maximum density of bound ligand-receptor pairs is determined by

the fixed density of ligands, and is insensitive to the reservoir density, as is observed in experiments.

We illustrate our calculations using an ideal-Gaussian-chain model. Simple scaling arguments

yield that the onset of binding (adhesion range) scales as L1
z ∼

√
ε/kBT

√
Nb, and the equilibrium

separation scales as L0
z ∼

√
Nb. These results agree well with the exact solutions. We also infer that

the quasi-equilibrium critical tension as obtained from the equilibrium force-extension curve should

scale as N−1/2 for the Gaussian tether. These scaling dependences should also hold for non-Gaussian

chain models by replacing the N1/2 factor with the characteristic size of the polymer chain (Nν).

Finally we demonstrate that by combining different types of ligand-receptor interactions and

non-specific repeller molecules, one can achieve precise control over the interaction potential between

surfaces. Specific examples include introducing a barrier between the unbound and the bound state

and introducing multiple minima and controlling the range and magnitude of each minimum. These

results suggest possible strategies for bioengineering design with better specificity and for a diverse

control of surface interactions using specific interactions.
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Appendix 4.A Polymer confined between two surfaces

In this appendix we present in detail the calculations of the partition function of a polymer confined

between surfaces with hard wall boundary conditions. We shall discuss two examples: Gaussian

chains with infinite extensions and rigid rods with finite extensions.

4.A.1 Gaussian chain

First we consider Gaussian chains. The Green’s function of a free Gaussian chain is governed by the

partial differential equation (Doi and Edwards, 1986)

(
∂

∂N
− b2

6
∇2

)
G(r, r0;N) = δ3(r− r0)δ(N). (4.41)

The non-adsorbing (hard wall) boundary conditions are

G(r, r0;N) = 0 if r or r0 is at the boundary. (4.42)

The general result is

G(r, r0;N) = g(x, x0;N)g(y, y0;N)g(z, z0;N); (4.43)

g(x, x0;N) =
2
Lx

∑
1≤p≤∞

sin
(
pπx

Lx

)
sin
(
pπx0

Lx

)
exp

(
−p

2π2Nb2

6L2
x

)
, (4.44)

and similar results for g(y, y0;N) and g(z, z0;N). Here (Lx, Ly, Lz) is the size of the box containing

this polymer.

In our system the x and y directions are infinite, hence g(x, x0;N) and g(y, y0;N) are Gaussian

[u = (x, y)]:

g(u;N) =
3

2πNb2
e−

3u2

2Nb2 . (4.45)

In the z direction g(z, z0;N) is confined between 0 and Lz with hard-wall boundary conditions. The

general expansion for g(z, z0;N) is

g(z, z0;N) =
∑

−∞≤kz≤∞

a(kz)eikz(z0−z)e−k2
zNb2/6

=
∑

0≤kz≤∞

a(kz) [cos(kzz0) cos(kzz) + sin(kzz0) sin(kzz)] e−k2
zNb2/6.

To satisfy the Dirichlet boundary condition, we should choose sin(kzz0) sin(kzz); if we want a reflec-

tive boundary condition we should use cos(kzz) cos(kzz0).
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For the non-adsorbing boundary condition we have

g(z, z0;N) =
2
Lz

∑
p

sin
pπz

Lz
sin

pπz0
Lz

exp
(
−Nb

2p2π2

6L2
z

)
. (4.46)

In our problem, one end of the polymer is anchored at z0 very close to the surface, therefore the

Green’s function is given by

h0(z;N) =
2z0
L2

z

∑
p

pπ sin
pπz

Lz
exp

(
−Nb

2p2π2

6L2
z

)
(4.46′)

to first order in z0/Lz.

The partition function is given by

qz =
∫ Lz

0

dzh0(z;N) =
4z0
Lz

∑
p=1,3,5,...

e−p2π2/6l2 , (4.47)

and is approximated by

qz =


4z0
Lz

e−π2/6l2 l� 1,
√

6z0√
πNb2

l� 1.
(4.48)

Similarly for h0(Lz), the partition function of a ligand-receptor bridge we have14

h0(Lz;NL +NR) := h0(Lz − z0;NL +NR) =
2
Lz

∑
p

(−1)p+1 sin
pπz0
Lz

sin
pπz0
Lz

e−(pπ)2/6l2

≈ 2z2
0

L3
z

∑
p

(−1)p+1(pπ)2e−(pπ)2/6l2

= − 2z2
0

L3
z

∑
p

cos pπ(pπ)2e−(pπ)2/6l2 . (4.49)

h0(Lz;N) can be approximated by


2z2

0π
2

L3
z

e−π2/6l2 l� 1,

18

√
6
π

z2
0

(Nb2)3/2
l2e−3l2/2 l� 1.

(4.50)

Assembling the terms together we have

eε̃(l)−ε =
√
Nb · h0(Lz;NL +NR)∫ Lz

0
dzh0(z;NL)

∫ Lz

0
dzh0(z;NR)

14Since h0(Lz) vanishes, we define it to be h0(Lz − z0), as is shown later, for our interest this will not cause
ambiguity.
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≈ 1
8l

∑
p(−1)p+1(pπ)2e−(pπ)2/6l2[∑

p=2k−1 exp
(
− NL

NL+NR

p2π2

6l2

)]
·
[∑

p=2k−1 exp
(
− NR

NL+NR

p2π2

6l2

)] , (4.51)

and the asymptotic limits are


π2

8l
l� 1,

3
√

6πl2e−3l2/2

√
NLNR

NL +NR
l� 1.

(4.52)

4.A.2 Rigid rod and variants

Here we study models with finite extensibility. First we consider a spherical chain model, in which

the distribution of the free end is uniform within the hemisphere of radius R and zero outside. R

can be identified as the contour length of the polymer, or as an approximation to the Gaussian chain

model, identified with the mean square end-to-end distance of the Gaussian chain. For this model

the Green function of the polymer with one end fixed at the origin is given by

G(r, θ, φ;N) =
3r2 sin θ
2πR3

, (4.53)

and the partition function is

q =

 1 Lz ≥ R,

1
3

[
3Lz

R −
(

Lz

R

)3]
Lz < R.

(4.54)

Slightly different is the model of a freely rotating rod, corresponding to a short polymer whose

contour length is smaller than the persistence length. The Green function is

G(r, r0;R) =
1

2πR2
δ

(
|r− r0|
R

− 1
)
. (4.55)

R is the rod length, which is equal to the contour length of the polymer. For this model, the partition

function is

q =

 Lz

R Lz < R,

1 Lz ≥ R.
(4.56)

The Green’s function for the tether chain with two connected rods is conveniently represented by

the length of the arc from the intersection circle of the two hemispheres spanned by the rod ends

that is confined between the surfaces. The expression can be worked out, but is quite lengthy. Two

examples are shown in Figure 4.14 on page 108.

For ligand and receptor tethers we have RL,R = NL,Rb, and the combined tether length is
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Lz

G(r, Lz;NL = NR)

r

LzLz

r

G(r, Lz;NL = 1.5NR)

Figure 4.14: Green’s function of joined rods

(NL +NR)b. Let us define the scaled densities

φL,R = ρL,RN
2b2.
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From Eqs. (4.24), the binding constant is given by

K =
ρLR

ρLρR
=

K0A
∫
rL,rR

GLR(rL, rR)∫
r

∫
rL
G(r, rL;NL)

∫
r

∫
rR
G(r, rR;NR)

=
K0

qLqR

∫
GLR(r;NL, NR)d2r. (4.57)

GLR is the partition function of a ligand-receptor bridge. In the quenched case we have (cf. Ap-

pendix 4.B for the definition of w(r))

w(r) =
K0GLR(r;NL, NR)

qLqR
. (4.58)

We immediately recognize from the finite extensibility that in these models binding is present only

if Lz ≤ (NL +NR)b. In addition, if molecules are immobile, binding is less probable compared with

Gaussian chains. For the rigid-rod model, consider a ligand and a receptor with lateral separation

r, a necessary but not sufficient condition for binding to be possible is

|NL −NR|b ≤
√

r2 + L2
z ≤ (NL +NR)b.

When surfaces come too close, binding becomes less probable.

Appendix 4.B Low-density expansion for the quenched problem

For an immobile ligand anchored at rL and a receptor at rR, the ratio of the Boltzmann factor of

the bound state to that of the unbound state is given from Eqs. (4.24) and (4.25) to be

w(rL, rR) =
qLR

qLqR
=
K0q

t
LR

qtLq
t
R

=
K0h(Lz)g(rL − rR;NL +NR)

qL(Lz)qR(Lz)
. (4.59)

Note that since molecules are immobile, the integration over rL or rR is removed; but the transla-

tional invariance implies that w(r1, r2) = w(r1 − r2). Using w(u) we can easily write down the first

few terms of F (mL,mR) (cf. Eq. (4.35)):

−βF (1, 1) = ln[1 + w(x1 − y2)] + ln qL + ln qR,

−βF (1, 2) = ln qL + 2 ln qR + ln[1 + w(x1 − y1) + w(x1 − y2)],

−βF (2, 2) = 2 ln qL + 2 ln qR + ln [1 + w(x1 − y1) + w(x1 − y2) + w(x2 − y1) + w(x2 − y2)

+ w(x1 − y1)w(x2 − y2) + w(x1 − y2) + w(x2 − y1)] .

Here xi and yj are positions of ligands and receptors, respectively.
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Assuming that receptors and ligands are randomly distributed on the surfaces and for any recep-

tor or ligand, its position distribution is independent of the others, we have the quenched average

〈
F (x1,x2, · · · ,xm,y1,y2, · · · ,yn)

〉
=

1
Ai+j

∫
{xi},{yj}

F ({xi}, {yj}),

Evaluating these averages is straighforward, which gives

−β 〈F (1, 1)〉 = ln qL + ln qR +
1
A

∫
u

ln[1 + w(u)], (4.60a)

−β 〈F (1, 2)〉 = ln qL + 2 ln qR +
1
A2

∫
u1,u2

ln[1 + w(u1) + w(u2)], (4.60b)

−β 〈F (2, 1)〉 = 2 ln qL + ln qL +
1
A2

∫
u1,u2

ln[1 + w(u1) + w(u2)], (4.60c)

−β 〈F (1,m)〉 = ln qL +m ln qR +
1
Am

∫
u1,···um

ln[1 +
∑
m

w(um)], (4.60d)

−β 〈F (2, 2)〉 = 2 ln qL + 2 ln qR +
1
A3

∫
u1,u2,v1

ln[1 + w(u1) + w(u2) + w(u1 + v) + w(u2 + v)

+ w(u2)w(u1 + v) + w(u1)w(u2 + v)]. (4.60e)

Substituting these back into Eq. (4.35) we have

−βF̄ (1,1) =
1

eAρL+AρR

∑
mL≥1,mR≥1

(AρL)mL(AρR)mR

mL!mR!
mLmR

A

∫
u

ln[1 + w(u)]

= AρLρR

∫
u

ln[1 + w(u)] (4.61a)

= AρLρRF (1,1);

−βF̄ (1,2) =
1

eA(ρL+ρR)

∑
mL≥1,mR≥2

(AρL)mL(AρR)mR

mL!mR!
m1

Lm
2
R{

1
A2

∫
u1,u2

ln[1 + w(u1) + w(u2)]−
2
A

∫
u

ln[1 + w(u)]
}

=
AρLρ

2
R

2

∫
u1,u2

{ln[1 + w(u1) + w(u2)]− ln[1 + w(u1)]− ln[1 + w(u2)]} (4.61b)

=
AρLρ

2
R

2
F (1,2);

−βF̄ (1,m) =
AρLρ

m
R

m!


∫
u1,u2,···um

ln

[
1 +

∑
i

w(ui)

]
−

∑
1≤k<m

Am−kCk
mF (1,k)

 ; (4.61c)

−βF̄ (2,2) =
Aρ2

Lρ
2
R

4

(∫
u1,u2,v

ln
[
1 + w(u1) + w(u2) + w(u1 + v) + w(u2 + v)

+ w(u1)w(u2 + v) + w(u2)w(u1 + v)
]

− 4A
∫
uL,uR

{
ln
[
1 + w(u1) + w(u2)

]
− ln[1 + w(u1)]− ln[1 + w(u2)]

}
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− 4A2

∫
u

ln[1 + w(u)]
)

(4.61d)

=
Aρ2

Lρ
2
R

4
F (2,2).

For Gaussian chains, the quantity w(r) can be rewritten as

w(u) =
K0h0(l)
qL(l)qR(l)

g(u;NL +NR) =
3
2π

exp
[
βε̃(l)− 3u2

2Nb2

]
, (4.62)

where the effective binding energy ε̃ is defined above as in Eq. (4.29) and the second term accounts

for lateral stretching. From Eq. (4.62) we see that (a) the effective binding energy has a similar

dependence on the surface separation as in the annealed case as reflected in ε̃; (b) each integral over

u gives a factor of Nb2, hence

F (n,m) ∝ (Nb2β)n+m−1,

and we see that in Eq. (4.61) the real expansion parameter is φ = ρNb2. (Similarly one can verify

that in the case of rigid rods, the expansion is in terms of φ = ρN2b2.) For large binding energy

βε̃, each integral over the scaled u also contributes a factor of βε̃, therefore the asymptotic density

expansion is valid only if

βε̃φ� 1.

The density of bound pairs is obtained by taking the derivative of F̄ against lnw. At leading

order the binding fraction can be expressed in a close form:

f (1,1) =
∫
u

d
d lnw

ln(1 + w) =
∫
r

w(u)
1 + w(u)

, (4.63)

which for Gaussian chain with

w(u) ∝ e−
3u2
2 ,

becomes

f (1,1) = 2π
∫ ∞

0

w(0)e−
3u2
2

1 + w(0)e−
3u2
2

udu =
2π
3

ln(1 + w(0)) =
2π
3

ln(1 + w(0)). (4.64)
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Appendix 4.C Exact results for the single-chain quenched

problem

Consider the problem of one ligand with randomly anchored receptors, the quenched average quan-

tities include the free energy

−∆F
kT

=

〈
ln

[
1 +

∑
r

σ(r)w(r)

]〉
{σ}

,

and the binding fraction

f =
〈 ∑

r σ(r)w(r)
1 +

∑
r σ(r)w(r)

〉
{σ}

,

both of which involve

Σ =
∑
r

σ(r)w(r).

σ(r) labels the occupation of each lattice site, namely σ(r) = 1 if the lattice site is occupied and 0

otherwise. Σ is a random variable with mean

E[Σ] = ρeβε

∫
g(r)d2r.

The only problem is to find the distribution of Σ. Let’s calculate the characteristic function of

Σ.

4.C.1 Ideal solution model

Here we assume that each lattice site has a probability φ to be occupied. The partition function of

non-interacting system is

Q = (1 + eµ)A,

with

φ =
eµ

1 + eµ
.

Further we assume that lattice sites are decoupled, i.e., they are independent. The characteristic

function of one site is

ϕσ(t) = 1− φ+ φeit. (4.65)

Then for

Σ =
∑
r

σ(r)w(r),
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we have

ϕΣ(t) =
∏
r

(
1− φ+ φeitw(r)

)
= exp

[∑
r

log
(
1− φ+ φeitw(r)

)]
. (4.66)

In the continuum model, the summation can be replaced by an integral,

ϕΣ(t) = exp
[

1
a2

∫
log
(
1− φ+ φeitw(x,y)

)
dxdy

]
.

Assuming that φ� 1, we can approximate the exponent by

φ

a2

∫ ∞

−∞
dx

∫ ∞

−∞
dy
(
eitg(x,y) − 1

)
.

This is in fact the —

4.C.2 Ideal lattice gas model

In the ideal lattice gas model, the lattice distribution variable satisfies the Poisson distribution

P (σ = n) =
e−φφn

n!
,

ϕσ(t) = exp
(
eitφ− φ

)
.

Then for

Σ =
∑
r

w(r)σ(r),

we have

ϕΣ(t) = exp

[
φ
∑
r

(
eitw(r) − 1

)]
.

Alternatively one can define

Σ =
∑
r

w(r)
∑

i

δ(r− ri),

where ri are the positions of the receptors. Ignoring the maximum occupancy constraint, as the

receptors position distributions are independent, we have

ϕΣ =
∏
r

(
1− a2

A
+
a2

A
eitg(r)

)n

= exp

[
n
∑
r

ln
(

1− a2

A
+
a2

A
eitw(r)

)]
(4.67)

'
∏
r

exp
[
na2

A

(
eitw(r) − 1

)]
' exp

[
ρ

∫ (
eitw(r) − 1

)
dr
]
. (4.68)

The “'” becomes “=” in the thermodynamic limit A→∞ and in the continuum limit a2 → 0.
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We know that w(r) is Gaussian, and can be written as15

w(x, y) = exp
(
βε− x2 + y2

Nb2

)
= g(x, y)eβε.

We can drop the exp(βε) term as it is a constant, and

ϕΣ(t) = exp
[
ρ

∫ ∞

−∞
dx
∫ ∞

−∞
dy
(
eitw(x,y) − 1

)]
=exp

{
ρNb2

∫ ∞

−∞
du
∫ ∞

−∞
dv
[
exp

(
iteβε−(u2+v2)

)
− 1
]}

=exp

ρNb2 ∑
m≥1

1
m!

∫ ∞

−∞
du
∫ ∞

−∞
dv
[
ieβεte−(u2+v2)

]m
=exp

πρNb2 ∑
m≥1

(it)m
emβε

m ·m!

 = exp

{
πρNb2

∫ eβεt

0

eix − 1
x

dx

}
. (4.69)

The probability distribution of e−βεΣ is given by

fe−βεΣ(x) =
1
2π

∫ ∞

−∞
e−itxϕΣ(t)dt =

1
2π

∫ ∞

−∞
exp

[
−itx+ Φ

∫ t

0

eiu − 1
u

du
]

dt (4.70)

=
1
π

∫ ∞

0

exp
[
−Φ

∫ t

0

1− cosu
u

du
]

cos
(
−tx+ Φ

∫ t

0

sinu
u

du
)

dt. (4.71)

We note that
∫ t

0
sin x

x dx is an odd function of t while
∫ t

0
cos u−1

u du is an even function of t.

If Φ � 1, then the integral has most contribution from t� 1

1− cosu =
u2

2
− u4

4!
+
u6

6!
+ · · ·

∫ t

0

1− cosu
u

du ≈ t2

4
− t4

96
+ · · ·

∫ t

0

sinu
u

du ≈ t− t3

18
+ · · ·

15In general we have

ϕA(t) = exp

24φ
X
n≥2

intn

n!
Wn

35
where

Wn =
X
r

w(r)n

and the probability distribution of A is

fA(x) =
1

2π

Z ∞

−∞
e−itxϕA(t)dt =

1

2π

Z ∞

−∞
dt exp

24−itx + φ
X
n≥2

intn

n!
Wn

35
=

1

π

Z ∞

0
exp

24φ

k≥1X
n=2k

(−)kt2k

n!
Wn

35 cos

0@−tx + φ

k≥1X
n=2k+1

(−)kt2k+1

n!
Wn

1A .
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fe−βεΣ(x) ≈ 1
π

∫ ∞

0

exp
[
−Φt2

4

]
cos
[
−tx+ Φ

(
t− t3

18

)]
dt. (4.72)

The extra t3 term is kept as the leading-order correction to Gaussian distribution of Λ.

If Φ � 1, then the exponent can be expanded as a power series—we have

ϕe−βεΣ(t) = exp
{

Φ
∫ t

0

eiu − 1
u

du
}

≈1 + Φ
∫ t

0

eiu − 1
u

du ' 1− Φ ln
t

δ
+ Φ

∫ t

δ

eiu

u
du. (4.73)

Let’s choose δ = te−R2/Nb2 . Then this equation becomes

ϕe−βεΣ(t) '1− ΦR2

Nb2
+ Φ

∫ t

e−R2/Nb2 t

eiu

u
du

=1− ρπR2 + ρ

∫ R

0

exp
(
ite−r2

)
rdr. (4.74)

This corresponds to a uniform distribution of receptors within a circle with radius R. We see that

if Φ � 1 then each ligand essentially sees only one receptor and the perturbative expansion in

Appendix 4.B is accurate in this regime.

Appendix 4.D Multi-chain quenched problem in the high-

density limit

As seen in Appendix 4.C, in the high-density limit, the single-chain quenched problem approaches

the annealed case. Will the same conclusion hold for the multi-chain problem?

Assume the area densities of receptors and ligands to be ρR and ρL. And we simplify w(u) to be

a step function, i.e.,

w(u) =

 eβε u < u∗,

0 u ≥ u∗.
(4.75)

Now within a area S = π(u∗)2 all ligands and receptors can bind with each other. Assume that

ρ0
i (u

∗)2 � 1, the average number of molecules within S is roughly Gaussian and peaked at ρ0
i (u

∗)2.

Also assume that ε � 1, therefore as many molecules are bound as possible. The only difference

between the quenched case and the annealed case is in their entropy. The partition function for each

quenched sample satisfies

Q({rL}, {rR}) > (q∗)A/(u∗)2 , (4.76)
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q∗ is the partition sum within S, whose entropic term is approximately

q∗ ' [ρ0
L(u∗)2]![ρ0

R(u∗)2]![
ρL(u∗)2

]
!
[
ρR(u∗)2

]
!
[
ρLR(u∗)2

]
!

=
φ0

L!φ0
R!

φL!φR!φLR!
. (4.77)

In the annealed case the change in the entropic part of the free energy is

∆fs

kT
=φL lnφL + φR lnφR + φLR lnφLR + φLR − φ0

L lnφ0
L − φ0

R lnφ0
R. (4.78)

Therefore one concludes that the quenched free energy within S

< f >≤ f.

On the other hand, we know that < f >≥ f by definition, therefore this suggests that < f >= f in

the thermodynamic limit.

This result follows from the fact that within S the fluctuation in the quenched distribution is

negligible, hence the quenched system is essentially “annealed” within S; therefore their free energies

are equal, as the free energy < f > is self-averaging.



117

Chapter 5

Dynamics of membrane adhesion
mediated by receptor interactions
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5.1 Introduction

Cell adhesion is crucial to many biological processes, including cell differentiation and division, signal

transduction, and immunological responses (Alberts et al., 2002; Berg et al., 2002; Springer, 1990).

Many different interactions are involved in adhesions in vivo: lock-and-key type interactions between

proteins (Lauffenburger and Linderman, 1993), force-induced signaling, reorganization of actin fil-

aments and the cortex (Lipowsky, 1995), and various generic physical forces (Nelson et al., 2004).

Despite the complexity of these interactions, researchers have been successful in explaining many

experimental observations from thermodynamic and physico-chemical analysis, and many features of

cell adhesion can be qualitatively understood from basic physical principles (Bell, 1978; Bell et al.,

1984; Torney et al., 1986; Coombs et al., 2004; Flyvbjerg et al., 1997; Zukerman and Bruinsma,

1995; Lipowsky, 1996; Bruinsma et al., 2000; Boulbitch et al., 2001; Bruinsma and Sackmann, 2002;

Sackmann and Bruinsma, 2002; Sackmann and Goennenwein, 2006).

In contrast to adhesion mediated by generic interactions such as the van der Waals or electrostatic

forces, biological adhesions are induced by specific binding between proteins with complementary

domains, i.e, receptors and ligands. Other interactions provide different regulation mechanisms

to fortify (e.g., cytoskeleton reorganization) or destabilize (e.g., repeller molecules) the adhesion

contact. While adhesion receptors play the major role and are extensively studied, de-adhesion forces

are crucial to ensure specificity of the adhesion (Bruinsma et al., 2000; Bruinsma and Sackmann,

2002). The interplay between attractive specific and (usually repulsive) non-specific forces is a

recurring theme in cell adhesion, and provides delicate control over the adhesion–de-adhesion process

in cell migration and immunological response.

While receptors and their ligands have been the focus of biological studies over the past decades,

the physical carrier of these proteins—the cell membrane—has been extensively studied by physicists

and biophysicists since the fluid-mosaic model was proposed by Mitchell and Nicholson. Membranes

are composed of self-assembled lipid molecules and form vesicles in aqueous solutions of typical

sizes up to 10 µm. The physics of fluid or solid membranes are well studied and summarized by

Peliti (1994), Nelson et al. (2004), and Safran (1994). In particular the interactions between flexible

membranes have been studied by Lipowsky and co-workers (Peliti and Leibler, 1985; Lipowsky and

Leibler, 1986; Lipowsky, 1994, 1995).

Recent advances in bioengineering techniques have enabled studies of adhesion between biomimetic

membranes mediated by specific and non-specific interactions. Sackmann and co-workers (Sack-

mann, 1996; Tanaka and Sackmann, 2005) have designed self-assembled vesicles and monolayers

supported by a polymer cushion to mimic cell membranes and the extracellular matrix; in the mem-

branes they incorporated specific proteins (to mimic ligand-receptor binding), glycolipids (to mimic

the glycocalyx), as well as other additives to stabilize the vesicles. This system provides the first
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biomimetic system incorporating key elements in cell adhesion and allows systematic studies of the

dynamics and mechanics of adhesion without complications due to other factors present in biological

cells.

Based on in vitro experiments using biomimetic vesicles, Sackmann, Bruinsma, and co-workers

(Bruinsma et al., 2000; Bruinsma and Sackmann, 2002; Sackmann and Goennenwein, 2006) found

that cell adhesion is controlled by a double-well potential: a weak-adhesion state at a large surface

separation due to generic van der Waals interactions between lipids, and a strong-adhesion state

at a small surface separation due to ligand-receptor binding; membrane undulation and glycolipid

depletion induce repulsive forces that constitute the barrier between the two minima. The adhesion

process proceeds in three steps (Albersdörfer et al., 1997; Kloboucek et al., 1999; Boulbitch et al.,

2001; Sackmann and Bruinsma, 2002). First, small adhesion contacts are formed which are most

likely induced by membrane undulations; such a process is an activated process with a nucleation

barrier larger than 10 kBT . Following nucleation, receptors diffuse into the adhesion contacts and

contact area grows accompanied by a depletion of repellers (glycolipids), this is the growth step. Fi-

nally, after receptors are depleted, the adhesion contacts evolve like coarsening in a phase separation:

the number of adhesion contacts decreases and various small focal contacts are formed with high

densities of receptors, accompanied by a possible decrease in the total area of contact. The whole

process is likened to the wetting transition (Bruinsma and Sackmann, 2002) and phenomenological

parameters like the surface tension, the spreading pressure, and the contact angle can be measured

and related to underlying parameters, including the mechanical properties of the membrane and

the molecular parameters of receptors (Bruinsma et al., 2000; Simson et al., 1998; Boulbitch et al.,

2001).

The conformations of adhered membranes are recorded in situ by reflection interference con-

trast microscopy (RICM) (Rädler and Sackmann, 1993; Rädler et al., 1995), which provide direct

experimental measurements of the formation and growth of adhesion plaques. However, RICM is

unable to resolve adhesion contacts smaller than 300 nm (Boulbitch et al., 2001), therefore cannot

give direct support for the nucleation process. On the other hand, scaling arguments and Monte

Carlo studies (Lipowsky, 1994; Volmer et al., 1998) usually cannot yield quantitative results that

are experimentally testable.

In this paper we present a systematic study of the nucleation step of the adhesion controlled by a

double-well interacting potential. Following Bruinsma et al. (2000), Bruinsma and Sackmann (2002),

and Sackmann and Bruinsma (2002), we assume the “minimum” model of membrane adhesion

consisting of the elastic deformation energy of the flexible membrane and the double-well adhesion

potential. As discussed above, this minimum model preserves the key features of cell adhesion. From

a scaling analysis we find that the membrane shapes are governed by the adhesion length R0 which

is determined from the bending rigidity κ and adhesion potential; the energy barrier is controlled
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by the energy scale
√
κVeffL2

0, where Veff is the effective barrier height and L0 is the characteristic

length determined by the adhesion potential.

If F0 � kBT , adhesion is a first-order transition and nucleation proceeds along the “minimum

energy path” governed by the effective potential (free energy). Using the string method by E et al.

(2002), we calculate the “minimum energy path” from the weakly bound state to a well-developed

adhesion contact. We find that the typical energy barrier for adhesion between flexible membranes

is about 20–30 kBT , corresponding to a time scale of 0.1–1000 seconds. For adhesion of cells with

actin cortices, which have much larger bending modulus, the nucleation barrier is much larger and

is essentially insurmountable by thermal undulations, and actin reorganization and cell signaling

provide additional mechanisms for stabilizing the adhesion contact.

For F0 comparable to kBT , we adopt a Peierls argument following Lipowsky (1994, 1995). We

find that near the critical unbinding transition, adhesion is a weak first-order transition, and the

adhesion dynamics depend on the shape of the irregular boundary. We show that if the potential

minima have comparable depth, the adhesion dynamics are controlled by the potential depths only,

and independent of the length scale of the double-well potential, which reflects the dominance of

membrane undulations.

5.2 Model and solution

5.2.1 Model description

The thickness of a self-assembled monolayer or bilayer is about 10–100 nm, thus negligible compared

to the spatial extension (∼ 10 µm). Therefore the macroscopic behaviors of membranes are mostly

determined by their geometric shapes, and to a good approximation independent of the microscopic

degrees of freedom of the consistituent amphiphilic molecules. Flexible membranes as random sur-

faces have been extensively studied in the past decades by physicists; theoretical models and results

are collected in the book edited by Nelson et al. (2004). For cell membranes or self-assembled mono-

layers with biological relevance, see Safran (1994) and the book edited by Lipowsky (1995); a more

up-to-date review of simulation methods and other approaches is given by Müller et al. (2006).

For a single membrane that is homogeneous, smooth, and non-interacting, Canham (1970) and

Helfrich (1973) proposed that up to 2nd-order derivatives with respect to the local coordinates of

the membrane shape, the elastic energy of a deformed membrane is given by

He

kBT
=
∫

S

[
σ +

1
2
κ (H −H0)

2 + κ̄K

]
dA. (5.1)

Here σ is the (local) surface tension conjugate to the surface area, κ and κ̄ are elastic moduli known

as the bending regidity and the Gaussian rigidity coupled to the mean curvature H and the Gaussian
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curvature K, H0 is the spontaneous curvature. The integral is over the whole membrane area1.

x

y

z(x, y)

Figure 5.1: Monge representation of a near-flat membrane shape

In this paper we study the adhesion between a flexible membrane and a flat surface, correspond-

ing to the experimental system studied by Bruinsma et al. (2000). For this model the separation

between the membrane and the flat surface provides a natural representation of the membrane shape

(cf. Fig. 5.1), z = z(x, y), also called the Monge representation2. Since we focus on the initial stage

of adhesion where the adhesion contact is small compared to the size of the membrane, we assume

H0 = 0, and in this case the Monge representation is useful. The elastic energy of the membrane is

given by
He

kBT
=
∫ {κ

2
[∆z(x, y)]2 + σ [∇z(x, y)]2

}
dxdy. (5.2)

The elastic energy gives the “kinetic” part of the Hamiltonian, now we consider the interacting

potential between the membrane and the adhering surface. Generic (non-specific) interactions,

including the van der Waals interaction, electrostatic interaction, and hydration forces (see Nelson

et al., 2004, Chapter 3) results in a potential Vg with a minimum around 10–100 nm (Albersdörfer

et al., 1997; Bruinsma et al., 2000; Guttenberg et al., 2001). The net interaction between the surfaces

mediated by receptors and repellers has been calculated in our previous paper3; for phenomenological

treatments, see Zukerman and Bruinsma (1995), Bruinsma et al. (2000), and Weikl et al. (2002).

1The Helfrich Hamiltonian is the simplest renormalizable model for fluctuating membranes that satisfies Euclidean
symmetry and reparametrization invariance; the functional accounts for the energy of elastic deformations from the
equilibrium state with minimum area Amin and uniform curvature H0. If the Gaussian rigidity is constant, then the
Gaussian curvature term is constant for a surface with fixed topology (Euler characteristic). See Peliti (1994) and
Nelson et al. (2004) for thorough discussions.

2In the case of adhesion between two membranes, the elastic energy is divided into two parts: one due to deformation
of the “center of mass” of the binary system, the other dependent on the relative separation between the membranes;
after integrating out the center of mass deformations, one can write the elastic energy dependent on the relative
separation in the same form as above with the additive bending rigidity (cf. Lipowsky (1996))

κ−1 = κ−1
1 + κ−1

2 .

3Manuscript submitted to Langmuir.
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The interaction potential due to receptors Vs can be generally written as a functional of the density

distributions φi(x, y), and φi depends on the local surface separation z(x, y). Here we assume that

molecular transport is fast enough so that we can write Vs as a functional of the separation z(x, y).

Therefore the total Hamiltonian is given by [r = (x, y)]

H[z(r), φi(r)] = He[z(r)] + Vg[z(r)] + Vs[z(r)]. (5.3)

The free energy (effective potential) of the model given by (5.3) can be calculated by standard field

theoretic method by integrating out fluctuations of the separation variable z(r). These fluctuation

effects have been extensively studied (Nelson et al., 2004); in particular, membrane fluctuations

induce an effective repulsion which contributes to V [z(r)]. Since fluctuation effects are not our

focus here, we apply a mean-field approximation and assume the free energy takes the same form as

the Hamiltonian with renormalized elastic constants and interacting potential: these renormalized

parameters are experimentally measurable; we shall consider the membrane undulation effects in

Section 5.4 by scaling arguments.

With these approximations we can write the effective potential of our model as

F [z(r)]
kBT

=
∫ {κ

2
[∆z(r)]2 + σ [∇z(r)]2 + V [z(r)]

}
d2r. (5.4)

The adhesion (interacting) potential V (z) has a double-well shape (Bruinsma et al., 2000; Bruinsma

and Sackmann, 2002) and is characterized by the depths of and the locations of the minima, as is

schematically shown in Fig. 5.2(a). The parameters in Eq. (5.4) have been measured by Sackmann

and co-workers in different systems (see Flyvbjerg et al., 1997; Simson et al., 1998; Kloboucek et al.,

1999; Bruinsma and Sackmann, 2002; Sackmann, 2006; Sackmann and Goennenwein, 2006). κ is

about 20 kBT for a self-assembled bilayer, and of order 1000 kBT for cells with actin cortices. σ is

related to the so-called capillary length (Sackmann and Goennenwein, 2006)

Rc =
√
κ/σ,

which defines the length scale above which surface tension becomes important. Typical values for

Rc are about 0.1–1 µm (Bruinsma et al., 2000; Sackmann and Goennenwein, 2006). Generally the

size of adhesion plaques in the initial stage of adhesion is smaller than Rc, therefore the bending

energy dominates.

For clarity of our discussion it is convenient to scale the separation z(r) and the radial coordinate

r by natural length scales arisen from the adhesion potential and the membrane elasticity. After the

general rescaling

r/R0 → r, l/L0 → l, z/L0 → z;V/V2 → v
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∆L = L1 + L2

W1 W2

V1 V2 = V1 −∆V

L2L1

Figure 5.2: Schematic representation of the interaction potential V (z). The shape of the potential
is similar to that calculated from a phenomenological model proposed by Bruinsma et al. (2000).
Only the part of the potential inbetween the minima are important for our calculations, and the
potential is characterized by the position L1, L2 (fixing the barrier at the origin) and the depths
W1, W2 of the minima. In our numerical calculations we choose the functional form for V (z) such
that the widths W1 ≈ L1 and W2 ≈ L2 for fast convergence.

the effective potential becomes

F [z]
kBT

=
∫

S

[
κL2

0

2R2
0

(
∇2z

)2
+ γL2

0 (∇z)2 + V2R
2
0v(z)

]
d2r. (5.5)

In the rigidity dominant regime, we choose

V2R
2
0 =

κL2
0

R2
0

,

such that the length scales are determined by the adhesion potential V (z) and the bending rigidity.

This leads to
F [z]
kBT

=
√
κV2L2

0

∫
S

[
1
2
(
∇2z

)2
+

Σ
2

(∇z)2 + v(z)
]

d2r, (5.5′)

where

Σ =
2σL0√
κV2

=
2R2

0

R2
c

, (5.6)

R0 =
(
κL2

0

V2

)1/4

. (5.7)

We call R0 the adhesion length (similar to the “persistence length” defined by Sackmann and Goen-

nenwein (2006)), which turns out to control the interfacial width of the adhesion contact. In general

R0 ∼ 10 nm � Rc, therefore the surface tension term is unimportant.

We further notice that the combination
√
κV2L2

0 (even though L0 is unspecified) controls the
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magnitude of the free energy. If κV2L
2
0 � 1, then the minima of V (z) is separated by a large barrier

(cf. Lipowsky (1995, 1994)). In this regime, thermal fluctuations are unimportant compared to the

adhesion energy, and we can apply the mean-field capillary approximation.

5.2.2 Scaling analysis of the nucleation dynamics

Experimental measurements suggest that cell adhesion is a first-order transition (Albersdörfer et al.,

1997; Boulbitch et al., 2001), therefore the potential minima are separated by a large barrier and ad-

hesion should proceed via a nucleation-and-growth pathway. Here we study the nucleation dynamics

in this regime using the classical capillary approximation.

z(r)

r

∆L ∆R

Figure 5.3: Illustration of a regular adhesion droplet

Initially the membrane is in a loosely bound state at a larger separation L2, and the equilibrium

shape is flat. Nucleation of an adhesion contact is driven by membrane undulations and results

in a droplet as shown in Fig. 5.3. When thermal fluctuations are irrelevant, the boundary of the

adhesion droplet is regular (a simple curve), and without loss of generality we assume the droplet

to be axi-symmetric and the membrane deviation to be a function of the radius z(r). If potential

depths are comparable, i.e., ∆V � V2, the length scale L0 associated with the adhesion potential

V (z) is naturally chosen to be the separation between the minima ∆L; otherwise when ∆V > V2,

L0 should be taken to be the separation of the metastable minimum (V2) from the barrier, L2.

In the first case, there is a well-defined adhesion “nucleus” which has size R in the interior and

an interfacial area of width ∆R (cf. Fig. 5.3). The length scales are

L0 = ∆L,

R0 =
(
κ∆L2

V2

)1/4

,
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and the energy scale is

F0 =
√
κV2∆L2.

From scaling analysis we have (∆r = ∆R/R0, r = R/R0)

∇2z ∼ L0

∆R2
, κ

∫
(∇2z)2dA ∼ κRL2

0

∆R3
; (5.8)∫

[V (z)− V (L2)]dA ∼ −πR2∆V + πR∆RV2. (5.9)

Combining these two contributions we find

∆R ∼ R0 =
(
κ∆L2

V2

)1/4

. (5.10)

We recognize that the free energy is similar to that in the capillary approximation, with a line

tension

Γ = ∆RV2 ∼ κ1/4V
3/4
2 ∆L1/2. (5.11)

At the critical radius R‡ the free energy attains maximum, and we have

R‡ ∼ V2

∆V
∆R =

V2

∆V

(
κ∆L2

V2

)1/4

=
V2

∆V
R0, (5.12)

F ‡ ∼ V 2
2

∆V
∆R2 =

V2

∆V
(κV2∆L2)1/2 =

V2

∆V
F0. (5.13)

In the second case V2/∆V . 1, and the radius R is comparable to the boundary width δR. The

above results become

R ∼ δR ∼ R0 =
(
κ∆L2

V2

)1/4

, (5.12′)

F ∼ πR2
0V2 = F0. (5.13′)

From Eqs. (5.12), (5.13) and (5.12′), (5.13′) we see that R0 and F0 control the length (R and

∆R) and energy (F ) scales. The scaling R‡ ∼ V
−1/4
2 is different from classical mean-field results

R‡V −1/2 which is due to the difference in the surface energy. We note that the capillary analysis is

valid only if F0 � kBT , and thermal fluctuations are not important. In particular,

κV2∆L2 ≈ 1 (5.14)

marks the tricritical point where the unbinding transiton crosses over from first order to second

order (Lipowsky, 1994).
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5.2.3 Minimum-energy-path calculation

Under the mean field approximation (zero temperature limit), nucleation proceeds along the “min-

imum energy path,” or the valley on the free energy landscape. We parametrize this path by a

variable s and represent the path as

z(r, s) : s→ z(r).

The minimum energy path (MEP) is defined such that the tangent along the path ∇sz(r, s) is

parallel to the free energy gradient δF [z]/δz at z(r, s) for any s, or equivalently

(
δF [z]
δz

)⊥
=
δF [z]
δz

· (I− ŝŝ) = 0 (5.15)

ŝ =
∇sz(r, s)
||∇sz(r, s)||

.

To calculate z(r, s) we adopt the string method by E and co-workers (E et al., 2002), which is a

modified steepest descent
∂z(R, s; t)

∂t
= −δF [z]

δz
· (I − ŝŝ) + λŝ. (5.16)

Here λ is a Lagrangian multiplier which is used to fix the parametrization s. The choice of λ is

arbitrary, and we adopt the same parametrization as given by E et al. (2002), which requires the

points be uniformly separated along the path,

||∇sz(r, s)|| = const.

which has a close form expression.

δF [z]/δz is the free energy gradient

δF [z]
δz

= ∆2z − Σ∆z + v′(z). (5.17)

In radial coordinates, the Laplacian is

∆ → d2

dr2
+

1
r

d
dr
,

and

∆2 → d4

dr4
+

2
r

d3

dr3
− 1
r2

d2

dr2
+

1
r3

d
dr
.

To implement the steepest descent as described by Eq. (5.16), we proceed as follows: First we

impose a circular droplet centered at z = ∆L which has a radius large enough such that letting

it evolve along the free energy gradient (steepest descent) the size of the droplet grows instead of

shrinking to the flat profile. After evolving for some steps the profile reaches steady growth, and
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has passed the nucleation barrier, and this profile is taken as the final state z(r, s = 1; t = 0), and

the initial path is generated by a simple linear interpolation between z = 0 and z(r, s = 1; t = 0).

Although the final state z(r, s = 1; t = 0) might not be on the minimum energy path, after iteration

using Eq. (5.16), the whole path will evolve to the MEP and the maximum of the free energy

corresponds to the critical “nucleus.”

We adopt an explicit forward time splitting for the potential V (z) and an implicit splitting for

the differential operators, which ensures fast convergence4. Iteration stops when the maximum free

energy of the reaction path maxs F [z(s)] reaches a constant and the maximum residual gradient

maxs{∇F (z)⊥} is used to test the accuracy of convergence. In the next section we discuss the

numerical results.

5.3 Numerical results and discussion

In this section we discuss numerical results of the minimum-energy-path (MEP) calculations. Before

the discussion we first estimate the typical length and energy scales associated with the adhesion

process. The bending rigidity κ is about 20 kBT for bilayer membranes and 1000 kBT for cell

membranes with actin cortices (Sackmann and Goennenwein, 2006; Bruinsma and Sackmann, 2002).

The separation ∆L is between 5 and 50 nm, depending on the size of the receptors (Bruinsma

et al., 2000; Martin et al., 2006), and we take L0 = 5 nm. The barrier height V2 is estimated to be

10−5 J/m2 (Bruinsma et al., 2000). Therefore the energy scale for flexible membranes is (at T = 300

K)

F0 = (κV2∆L2)1/2 ≈ 1kBT,

which indeed reflects flexibility. The lateral length scale is

R0 = 4
√
κ∆L2/V2 ≈ 2 nm.

In the case of cell membranes with actin network, F0 increases by about 7 times and R0 about 2.5

times. The capillary length

Rc =
√
κ/σ

is usually of order 0.1µm (Sackmann and Goennenwein, 2006), and hence the surface tension

Σ ∼ R2
0

R2
c

is small, and we neglect the surface tension term in our calculations except in the discussion of their

effects on adhesion.
4See for example, the (p)reprints at http://www.math.utah.edu/∼eyre/research/methods/papers.html.
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In the following discussions quantities are represented using the scaled units. The scaled potential

V (z) is parametrized by the positions of the potential minima and their depth as

V (z) = p(z;−L1, V1) + p(z;L2, V2),

where p(x;L, V ) is given by

p(x;L, V ) = −V
[( x
L
− 1
)2

− 1
]

exp
[
−4
( x
L
− 1
)2
]
. (5.18)

The combined potential has two minima located at −L1 and L2 with depths V1 and V2, and the

barrier is located at z = 0. An example is shown in Fig. 5.4.

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

z

V (z)

L1 = 1, V1 = 2

L2 = 1, V2 = 1

Figure 5.4: Shape of the potential V (z) for L1 = L2 = 1, V1 = 2, V2 = 1

In Fig. 5.5 we present two representative nucleation paths. The barrier height is V2 = 1, the

locations of minima are L2 = 1, L1 = 1, and we choose two cases V1 = 1.3 and V1 = 4, giving

potential depth difference ∆V = 0.3 and 3, respectively. Figure 5.5(a) and (c) show the evolution

of membrane shapes along the minimum energy path (MEP): the membrane conformation evolves

in the direction of the arrow; Figure 5.5(b) and (d) give the free energy along the MEP with red

circles corresponding to each membrane shape shown on the left. The red thick curves in (a) and

(c) are the critical shape corresponding to the maximum free energy along the nucleation contour

(saddle point).
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In the case that the barrier height is large, ∆V = 0.3 < V2 = 1, we see that the critical nucleus

has a well-formed adhesion contact with radius R‡ ≈ 7R0 = 14 nm, with an interfacial width

δR ≈ 3R0 = 6 nm: this is similar to the classical nucleation scenario where capillary approximation

applies. On the other hand for ∆V = 3 > V2, the critical shape has not formed an adhesion contact

yet, but barely passed the barrier position z = 0. The free energy barrier in the second case is about

18 kBT while in the first case is 51 kBT , the ratio is about 2.8, which is quite close to the scaling

result given by V2/∆V = 1/0.3 ≈ 3.33.

To have a better understanding of the nucleation dynamics, we estimate the characteristic time

scales of membrane undulations. By dimensional analysis, we have

τun ∼ ηL3/kBT = 0.24 ns

for L = 1 nm. For an energy barrier of 25 kBT the nucleation time is

τ0 ∼ τune
−F ‡/kT ∼ 14 s.

Therefore in the first case (∆V = 3) there is little barrier and nucleation is fast, while in the second

case (∆V = 0.3) the nucleation barrier is so high that it is essentially impossible. It has been pointed

out by Bruinsma et al. (2000) and by us (Martin et al., 2006) that in the initial stage of adhesion

receptors form local aggregrates with very high densities, resulting in a deep potential minimum;

our calculations further corroborate this assumption. On the other hand, for cellular adhesion the

nucleation barrier is much higher and the reorganization of the actin cortex provides a mechanism

to fortify the adhesion contact; other mechanisms such as dimerization can also be triggered by cell

signaling.

Komura and Andelman (2000) studied the membrane shape near the phase boundary under

lateral phase separation induced by adhesion, and found that the membrane deformation is non-

monotonic near the phase boundary between coexisting phases. Our results show that this non-

monotonic feature is present throughout the adhesion process. As we shall see at the end of this

section, this feature is due to the bending energy term; increasing surface tension will diminish this

feature.

To study the crossover between the two scenarios shown in Fig. 5.5, we plot the critical membrane

shapes for different ∆V in Fig. 5.6. We notice that for 2 ≤ ∆V ≤ 4 the critical shape is almost

invariant: in this regime the barrier height V2 is small compared to the potential depth difference

∆V , and nucleation is determined by the potential near the metastable minimum at L2. On the other

hand, when ∆V is small, the critical shape has a well-developed adhesion contact with increasing

radii as ∆V becomes smaller, and one can compare the critical radius and free energy with scaling

results from the capillary approximation.
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Figure 5.6: Critical membrane shapes at different potential depths. The positions of the minima are
the same as in Fig. 5.5, L1 = L2 = 1. V2 = 1 and V1 = V2 + ∆V with ∆V = 4, 3, 2, 1, 0.5, 0.3, 0.2
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In Fig. 5.7 we plot the free energy barrier F ‡ (maximum on the MEP) and the critical nucleus

R‡, defined as the radius of the membrane contact within the adhesion minimum (with z(r) < 0).

The plot is on a log-log scale. Scaling arguments imply that when ∆V � V2, the free energy barrier

and the critical nucleus both scale as 1/∆V . Numerical results indeed confirm this scaling. When

∆V � V2, scaling arguments suggest that ∆V is irrelevant, this trend also holds approximately.

Inspecting Fig. 5.6 we notice that critical shapes at different ∆V resemble the growth of a single

adhesion contact, as in Fig. 5.5(a). Scaling analysis suggests that in the bending dominant regime the

controlling length scale is R0 = (κL2
0/V2)1/4, which is independent of the potential depth difference;

in particular, the interfacial width δR ∼ R0. Therefore all membrane shapes look similar. Since

only R0 controls the shape of membrane deformations, we expect that the nucleation path in the

conformation space is mostly determined by R0, through the barrier height V2, the length scale

L0 (which is proportional to ∆L here) and the bending rigidity κ; potential depth difference ∆V

controls only the location of the saddle point along the nucleation path and the energy barrier.

To verify the dependence of nucleation on the minimum separation ∆L, we calculate the energy

barrier F ‡ and the critical radius R‡ for interacting potential V (z) with potential minima having

the same depths but varying locations. These results are shown in Fig. 5.8. The potential depths

are fixed at V1 = 2 and V2 = 1 and the minima are located at −L and L with L varying from 1 to

2. We see that scaling relations R‡ ∝ ∆L1/2 and F ‡ ∝ ∆L fit well with numerical results.
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Figure 5.8: The saddle point free energy F ‡ and the critical shape radius R‡ at different potential
well separations. The potential wells are symmetrically positioned across the barrier with separation
∆L = 2L ranging from 2 to 4. The potential depths are fixed at V1 = 2, V2 = 1. Linear fits are
done for F ‡ against ∆L and logR‡ against log ∆L and show as dash lines.
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Finally we study the effects of the surface tension term. Fig. 5.9(a) shows the development of

an adhesion nucleus under strong surface tension Σ = 3. The potential depths are V1 = 2 and

V2 = 1 and the minima are located at L1 = L2 = 1. Compared to the case with no surface tension,

we observe that the membrane shape is flatter, and the extra surface energy increases the critical

nucleus size. Fig. 5.9(b) shows the crossover of the critical membrane shape from rigidity-dominant

regime to tension-dominant regime and the straighten-up of the membrane shape due to surface

tension is apparent. In Fig. 5.9(c) we plot the energy barrier against the surface tension. Under a

small surface tension, the size of the critical nucleus does not change much and is still determined by

the adhesion length R0, hence the extra surface area of the adhesion droplet is almost constant, and

the free energy should be a linear function of the surface tension: this is also verified by numerical

results.

In summary we have shown that the adhesion strength R0 = (κ∆L2/V2)1/4 controls the evolution

of the membrane shape in the nucleation process, and the energy scale F0 =
√
κV2∆L2 determines

the nucleation barrier and the dynamics of the process. Our numerical results verify the scaling

relations obtained from capillary approximations. In addition, the surface tension term flattens out

the membrane shape and adds a surface energy to the energy barrier which is a linear function of

the surface tension.

Our results apply to membrane adhesions mediated by any double-well adhesion potential. In

particular, we note that our model also applies to the formation of the immunological synapse,

which are focal contacts between a T-lymphocyte cell and an antigen-present cell (APC) (Grakoui

et al., 1999). The synapse primarily consists of the T-cell receptor (TCR)–Major Histocompatibility

molecule-peptide Complex (MHC) bonds and integrin (ICAM-1/LFA-1) bonds. Due to their differ-

ent spatial extensions (the natural size of the integrin-ligand bond is ∼40nm, and is about 15nm for

the TCR-MHC complex), the binary system consisting of TCR and integrin binding should exhibit

a double-well interaction potential (Raychaudhuri et al., 2003). Given the high membrane bending

rigidity (∼400kT ) of the T-cell, our results suggest that even after the integrin bonds form an ad-

hesion contact (surfaces are brought close to 40nm separation), nucleation of the TCR contact at

normal TCR densities still exhibits a considerable barrier. Such a barrier would be impossible to

overcome by thermal fluctuations. Therefore some active mechanism is likely to be involved that

overcomes this barrier. Alternatively, increasing TCR expression could lower the TCR binding min-

imum, thereby descreasing the nucleation barrier [cf. Fig. 5.7(a)], which is the case in the synapse

between a mature T-cell and APC (Qi et al., 2001). The fact that the synapses between premature

T-cells (thymocytes) and the APC do not show a well-developed contact with TCR-MHC bonds

could be due to either insufficient TCR bonds (Lee et al., 2003; Raychaudhuri et al., 2003), or the

absence of active mechanisms to overcome the high energy barrier. Our calculations thus offer a

complementary perspective to the work by Chakraborty and co-workers which did not explicitly
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Figure 5.9: Illustration of the effects of surface tension. The potential is parametrized by L1 = L2 =
1, V1 = −2, V2 = 1.
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address the issue of nucleation.

5.4 The Peierls argument near the critical unbinding transi-

tion

Above we have discussed the nucleation dynamics of adhesion that is controlled by a large energy

barrier. Here we study the scenario when the energy barrier is small, i.e.,

κV2L
2
0 . kBT.

This is the case when the barrier is small or the membrane is very flexible. In this regime thermal

fluctuations (membrane undulations) are comparable to the size of adhesion plaques, and the shape

of the adhesion contact may be irregular. Our discussions follow those by Lipowsky and co-workers

(Lipowsky, 1994, 1995; Lipowsky and Dimova, 2003).

Before the discussion of adhesion dynamics we first briefly discuss the interaction between the

membrane surfaces due to shape undulations. For a membrane confined within a well of width W ,

the confinement free energy is found to be (Lipowsky, 1995)

V

kBT
=

c1
κW 2

. (5.19)

c1 is a constant of order 1. This extra entropic repulsion contributes to the free energy at each

minimum c1/κW
2, and results in an effective energy barrier Veff < V2, the bare energy barrier that

is calculated based on molecular models of ligand-receptor binding by us (Martin et al., 2006).

Taking into account the entropic contributions, we find the renormalized potential depth differ-

ence ∆V to be

∆V = ∆Vbare −
c1
κW 2

1

+
c1
κW 2

2

, (5.20)

where Wi are the widths of the potential minima. ∆V = 0 corresponds to the binodal phase

coexistence (binding-unbinding transition).

If κ is small or the energy scale F0 =
√
κVeffL2

0 ∼ kBT , then membrane undulations are prominent

and the boundary width δR is controlled by thermal fluctuations and determined as

κ

(
L0

δR2

)2

δR2 ∼ 1 ⇒ δR ∼
√
κL0. (5.21)

Here L0 is the membrane roughness which measures the magnitude of thermal undulations. In the

adhesion we can take L0 to be the width of the metastable minimum W2.

As we mentioned at the beginning of this section, membrane undulations induce an effective



137

repulsion between the surfaces; the effective barrier height is

Veff = V2 −
c1
κW 2

2

, (5.22)

where the 2nd term corresponds to the confinement energy of membrane undulations within the

metastable minimum. The line tension is given by

γ ∝ VeffδR. (5.23)

If κV2W
2
2 . kBT , then the line tension becomes zero and the barrier vanishes. Below we focus on

the case when κV2W
2
2 > kBT with Veff > 0.

R

ξt

∆
R

Figure 5.10: Projection of an irregular droplet

When fluctuations are prevalent, the domain boundaries between the adhesion states (corre-

sponding to the two potential minima) are irregular, and we can apply a Peierls-type argument to

account for the extra entropic contribution due to the fluctuations of the boundary shapes. Assume

the boundary to be a self-avoiding walk in 2D plane (2D SAW) with Hausdorff dimension 4/3, then

the perimeter of a droplet scales as

L ∼ R4/3

ξ
1/3
t

, (5.24)

where ξt is the “unit” step size of this self-avoiding loop (δR is the width of this loop, see Fig. 5.10).

The configuration entropy of the domain boundary is given by

S ≈ c2
L
ξt
, (5.25)

c2 is a universal constant.

For a string with line tension γ and width δR, the step size or persistence length scales as
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ξt ∼ γδR2, therefore the combined interface energy is given by

Γ = γL − S =
(
γ − c2

ξt

)
L

=
(
γ − c2

γδR2

)
R4/3

(γδR2)1/3
. (5.26)

We see that if γδR ∼ 1, i.e.,

κVeffL
2
0 ∼ 1, (5.27)

then the interface energy is of order kBT and adhesion is a second-order transition. If γδR � 1,

then

Γ ∼ V
2/3
eff R4/3, (5.28)

and adhesion is a weak first-order transition. While Eq. (5.27) gives the transition from first order

adhesion to second order, which should be governed by a tricritical point (Lipowsky, 1995).

For the weak first order transition that is still governed by the critical point, we can modify the

capillary argument by incorporating the entropic correction. For an adhesion plaque (“nucleus”),

the total free energy is

F = −πR2∆V + Γ,

= −πR2∆V +R4/3V
2/3
eff . (5.29)

The critical radius is

R‡ ∼ Veff∆V −3/2, (5.30)

and the free energy barrier scales as

F ‡ ∼
(
Veff

∆V

)2

. (5.31)

Eqs. (5.30) and (5.31) apply to the regime when the persistence length of the boundary ξt � R, i.e,

γδR2 � R‡ ⇒ κ∆V L2
0 � 1. (5.32)

This is further translated into ∆V � Veff . We note that in this regime the critical size R‡ and the

energy barrier only depend on the potential depths, but not on the length scale associated with the

potential V (z); this is because membrane undulations are comparable to the separation between the

potential minima, and the tunneling of the barrier is controlled by thermal fluctuations but not the

shape of the adhesion potential.

If κ∆V L2
0 > κVeffL

2
0, then

R ∼ δR =
√
κL0 (5.30′)
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and the energy is given by

F ∼ R2Veff = κVeffL
2
0. (5.31′)

Table 5.1 summarizes the scaling results in this section and in Section 5.2.2.

Rigid Membrane κV2L
2
0 � 1

V2 � ∆V ∆V & V2

R
V2

∆V

(
κ∆L2

V2

)1/4 (
κL2

2

V2

)1/4

F
V2

∆V

√
κV2∆L2

√
κV2L2

2

Flexible membrane κVeffL
2
0 & 1

Veff � ∆V ∆V & Veff

R Veff/∆V 3/2
√
κW2

F (Veff/∆V )2 κV2W
2
2

Table 5.1: Summary of scaling results

5.5 Conclusion

In this paper we have systematically studied the nucleation dynamics of membrane adhesions me-

diated by specific receptor binding. We distinguish between the different regimes according to the

nature of the adhesion and the shape of the adhesion potential. Scaling arguments suggest that in

the rigid-membrane regime when adhesion is a first-order transition, the geometry of the membrane

shape is controlled by the adhesion length R0, while the energetics is controlled by the characteristic

energy F0 =
√
κV2L2

0 —where L0 is the length scale associated with the adhesion potential, V2 is

the barrier height, and κ is the bending rigidity. These conclusions are further verified from our

numerical calculations of the minimum energy path.

When the membrane is very flexible or the barrier is small, entropic effects due to membrane un-

dulations are important, and adhesion is a weak first-order transition controlled by the characteristic

energy scale given by F0 =
√
κVeffL2

0. If the potential depth difference ∆V is small, the adhesion

droplet still has a well-defined but irregular boundary. Applying a Peierls argument we find that the

nucleation dynamics depend on the geometric dimension of the boundary of the adhesion droplet.

In addition, the energy barrier and the critical nucleus size only depend on the potential depths but

not their locations.

The surface tension term increases the nucleation barrier as well as the size of the critical nucleus.

But we find that at a small surface tension, the shape of the nucleus is still controlled by the adhesion

length R0, which is almost unaffected by the surface tension, implying that the extra surface area
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in the critical adhesion droplet is almost constant. We also show that the non-monotonic feature in

the membrane shape near the phase boundary, as was first found by Komura and Andelman (2000),

is due to the bending energy term and is reduced at increasing surface tension.
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