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Appendix 4.A Polymer confined between two surfaces

In this appendix we present in detail the calculations of the partition function of a polymer confined

between surfaces with hard wall boundary conditions. We shall discuss two examples: Gaussian

chains with infinite extensions and rigid rods with finite extensions.

4.A.1 Gaussian chain

First we consider Gaussian chains. The Green’s function of a free Gaussian chain is governed by the

partial differential equation (Doi and Edwards, 1986)

(
∂

∂N
− b2

6
∇2

)
G(r, r0;N) = δ3(r− r0)δ(N). (4.41)

The non-adsorbing (hard wall) boundary conditions are

G(r, r0;N) = 0 if r or r0 is at the boundary. (4.42)

The general result is

G(r, r0;N) = g(x, x0;N)g(y, y0;N)g(z, z0;N); (4.43)

g(x, x0;N) =
2
Lx

∑
1≤p≤∞

sin
(
pπx

Lx

)
sin
(
pπx0

Lx

)
exp

(
−p

2π2Nb2

6L2
x

)
, (4.44)

and similar results for g(y, y0;N) and g(z, z0;N). Here (Lx, Ly, Lz) is the size of the box containing

this polymer.

In our system the x and y directions are infinite, hence g(x, x0;N) and g(y, y0;N) are Gaussian

[u = (x, y)]:

g(u;N) =
3

2πNb2
e−

3u2

2Nb2 . (4.45)

In the z direction g(z, z0;N) is confined between 0 and Lz with hard-wall boundary conditions. The

general expansion for g(z, z0;N) is

g(z, z0;N) =
∑

−∞≤kz≤∞

a(kz)eikz(z0−z)e−k2
zNb2/6

=
∑

0≤kz≤∞

a(kz) [cos(kzz0) cos(kzz) + sin(kzz0) sin(kzz)] e−k2
zNb2/6.

To satisfy the Dirichlet boundary condition, we should choose sin(kzz0) sin(kzz); if we want a reflec-

tive boundary condition we should use cos(kzz) cos(kzz0).
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For the non-adsorbing boundary condition we have

g(z, z0;N) =
2
Lz

∑
p

sin
pπz

Lz
sin

pπz0
Lz

exp
(
−Nb

2p2π2

6L2
z

)
. (4.46)

In our problem, one end of the polymer is anchored at z0 very close to the surface, therefore the

Green’s function is given by

h0(z;N) =
2z0
L2

z

∑
p

pπ sin
pπz

Lz
exp

(
−Nb

2p2π2

6L2
z

)
(4.46′)

to first order in z0/Lz.

The partition function is given by

qz =
∫ Lz

0

dzh0(z;N) =
4z0
Lz

∑
p=1,3,5,...

e−p2π2/6l2 , (4.47)

and is approximated by

qz =


4z0
Lz

e−π2/6l2 l� 1,
√

6z0√
πNb2

l� 1.
(4.48)

Similarly for h0(Lz), the partition function of a ligand-receptor bridge we have14

h0(Lz;NL +NR) := h0(Lz − z0;NL +NR) =
2
Lz

∑
p

(−1)p+1 sin
pπz0
Lz

sin
pπz0
Lz

e−(pπ)2/6l2

≈ 2z2
0

L3
z

∑
p

(−1)p+1(pπ)2e−(pπ)2/6l2

= − 2z2
0

L3
z

∑
p

cos pπ(pπ)2e−(pπ)2/6l2 . (4.49)

h0(Lz;N) can be approximated by


2z2

0π
2

L3
z

e−π2/6l2 l� 1,

18

√
6
π

z2
0

(Nb2)3/2
l2e−3l2/2 l� 1.

(4.50)

Assembling the terms together we have

eε̃(l)−ε =
√
Nb · h0(Lz;NL +NR)∫ Lz

0
dzh0(z;NL)

∫ Lz

0
dzh0(z;NR)

14Since h0(Lz) vanishes, we define it to be h0(Lz − z0), as is shown later, for our interest this will not cause
ambiguity.
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≈ 1
8l

∑
p(−1)p+1(pπ)2e−(pπ)2/6l2[∑

p=2k−1 exp
(
− NL

NL+NR

p2π2

6l2

)]
·
[∑

p=2k−1 exp
(
− NR

NL+NR

p2π2

6l2

)] , (4.51)

and the asymptotic limits are


π2

8l
l� 1,

3
√

6πl2e−3l2/2

√
NLNR

NL +NR
l� 1.

(4.52)

4.A.2 Rigid rod and variants

Here we study models with finite extensibility. First we consider a spherical chain model, in which

the distribution of the free end is uniform within the hemisphere of radius R and zero outside. R

can be identified as the contour length of the polymer, or as an approximation to the Gaussian chain

model, identified with the mean square end-to-end distance of the Gaussian chain. For this model

the Green function of the polymer with one end fixed at the origin is given by

G(r, θ, φ;N) =
3r2 sin θ
2πR3

, (4.53)

and the partition function is

q =

 1 Lz ≥ R,

1
3

[
3Lz

R −
(

Lz

R

)3]
Lz < R.

(4.54)

Slightly different is the model of a freely rotating rod, corresponding to a short polymer whose

contour length is smaller than the persistence length. The Green function is

G(r, r0;R) =
1

2πR2
δ

(
|r− r0|
R

− 1
)
. (4.55)

R is the rod length, which is equal to the contour length of the polymer. For this model, the partition

function is

q =

 Lz

R Lz < R,

1 Lz ≥ R.
(4.56)

The Green’s function for the tether chain with two connected rods is conveniently represented by

the length of the arc from the intersection circle of the two hemispheres spanned by the rod ends

that is confined between the surfaces. The expression can be worked out, but is quite lengthy. Two

examples are shown in Figure 4.14 on page 108.

For ligand and receptor tethers we have RL,R = NL,Rb, and the combined tether length is



108

Lz

G(r, Lz;NL = NR)

r

LzLz

r

G(r, Lz;NL = 1.5NR)

Figure 4.14: Green’s function of joined rods

(NL +NR)b. Let us define the scaled densities

φL,R = ρL,RN
2b2.
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From Eqs. (4.24), the binding constant is given by

K =
ρLR

ρLρR
=

K0A
∫
rL,rR

GLR(rL, rR)∫
r

∫
rL
G(r, rL;NL)

∫
r

∫
rR
G(r, rR;NR)

=
K0

qLqR

∫
GLR(r;NL, NR)d2r. (4.57)

GLR is the partition function of a ligand-receptor bridge. In the quenched case we have (cf. Ap-

pendix 4.B for the definition of w(r))

w(r) =
K0GLR(r;NL, NR)

qLqR
. (4.58)

We immediately recognize from the finite extensibility that in these models binding is present only

if Lz ≤ (NL +NR)b. In addition, if molecules are immobile, binding is less probable compared with

Gaussian chains. For the rigid-rod model, consider a ligand and a receptor with lateral separation

r, a necessary but not sufficient condition for binding to be possible is

|NL −NR|b ≤
√

r2 + L2
z ≤ (NL +NR)b.

When surfaces come too close, binding becomes less probable.

Appendix 4.B Low-density expansion for the quenched problem

For an immobile ligand anchored at rL and a receptor at rR, the ratio of the Boltzmann factor of

the bound state to that of the unbound state is given from Eqs. (4.24) and (4.25) to be

w(rL, rR) =
qLR

qLqR
=
K0q

t
LR

qtLq
t
R

=
K0h(Lz)g(rL − rR;NL +NR)

qL(Lz)qR(Lz)
. (4.59)

Note that since molecules are immobile, the integration over rL or rR is removed; but the transla-

tional invariance implies that w(r1, r2) = w(r1 − r2). Using w(u) we can easily write down the first

few terms of F (mL,mR) (cf. Eq. (4.35)):

−βF (1, 1) = ln[1 + w(x1 − y2)] + ln qL + ln qR,

−βF (1, 2) = ln qL + 2 ln qR + ln[1 + w(x1 − y1) + w(x1 − y2)],

−βF (2, 2) = 2 ln qL + 2 ln qR + ln [1 + w(x1 − y1) + w(x1 − y2) + w(x2 − y1) + w(x2 − y2)

+ w(x1 − y1)w(x2 − y2) + w(x1 − y2) + w(x2 − y1)] .

Here xi and yj are positions of ligands and receptors, respectively.
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Assuming that receptors and ligands are randomly distributed on the surfaces and for any recep-

tor or ligand, its position distribution is independent of the others, we have the quenched average

〈
F (x1,x2, · · · ,xm,y1,y2, · · · ,yn)

〉
=

1
Ai+j

∫
{xi},{yj}

F ({xi}, {yj}),

Evaluating these averages is straighforward, which gives

−β 〈F (1, 1)〉 = ln qL + ln qR +
1
A

∫
u

ln[1 + w(u)], (4.60a)

−β 〈F (1, 2)〉 = ln qL + 2 ln qR +
1
A2

∫
u1,u2

ln[1 + w(u1) + w(u2)], (4.60b)

−β 〈F (2, 1)〉 = 2 ln qL + ln qL +
1
A2

∫
u1,u2

ln[1 + w(u1) + w(u2)], (4.60c)

−β 〈F (1,m)〉 = ln qL +m ln qR +
1
Am

∫
u1,···um

ln[1 +
∑
m

w(um)], (4.60d)

−β 〈F (2, 2)〉 = 2 ln qL + 2 ln qR +
1
A3

∫
u1,u2,v1

ln[1 + w(u1) + w(u2) + w(u1 + v) + w(u2 + v)

+ w(u2)w(u1 + v) + w(u1)w(u2 + v)]. (4.60e)

Substituting these back into Eq. (4.35) we have

−βF̄ (1,1) =
1

eAρL+AρR

∑
mL≥1,mR≥1

(AρL)mL(AρR)mR

mL!mR!
mLmR

A

∫
u

ln[1 + w(u)]

= AρLρR

∫
u

ln[1 + w(u)] (4.61a)

= AρLρRF (1,1);

−βF̄ (1,2) =
1

eA(ρL+ρR)

∑
mL≥1,mR≥2

(AρL)mL(AρR)mR

mL!mR!
m1

Lm
2
R{

1
A2

∫
u1,u2

ln[1 + w(u1) + w(u2)]−
2
A

∫
u

ln[1 + w(u)]
}

=
AρLρ

2
R

2

∫
u1,u2

{ln[1 + w(u1) + w(u2)]− ln[1 + w(u1)]− ln[1 + w(u2)]} (4.61b)

=
AρLρ

2
R

2
F (1,2);

−βF̄ (1,m) =
AρLρ

m
R

m!


∫
u1,u2,···um

ln

[
1 +

∑
i

w(ui)

]
−

∑
1≤k<m

Am−kCk
mF (1,k)

 ; (4.61c)

−βF̄ (2,2) =
Aρ2

Lρ
2
R

4

(∫
u1,u2,v

ln
[
1 + w(u1) + w(u2) + w(u1 + v) + w(u2 + v)

+ w(u1)w(u2 + v) + w(u2)w(u1 + v)
]

− 4A
∫
uL,uR

{
ln
[
1 + w(u1) + w(u2)

]
− ln[1 + w(u1)]− ln[1 + w(u2)]

}
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− 4A2

∫
u

ln[1 + w(u)]
)

(4.61d)

=
Aρ2

Lρ
2
R

4
F (2,2).

For Gaussian chains, the quantity w(r) can be rewritten as

w(u) =
K0h0(l)
qL(l)qR(l)

g(u;NL +NR) =
3
2π

exp
[
βε̃(l)− 3u2

2Nb2

]
, (4.62)

where the effective binding energy ε̃ is defined above as in Eq. (4.29) and the second term accounts

for lateral stretching. From Eq. (4.62) we see that (a) the effective binding energy has a similar

dependence on the surface separation as in the annealed case as reflected in ε̃; (b) each integral over

u gives a factor of Nb2, hence

F (n,m) ∝ (Nb2β)n+m−1,

and we see that in Eq. (4.61) the real expansion parameter is φ = ρNb2. (Similarly one can verify

that in the case of rigid rods, the expansion is in terms of φ = ρN2b2.) For large binding energy

βε̃, each integral over the scaled u also contributes a factor of βε̃, therefore the asymptotic density

expansion is valid only if

βε̃φ� 1.

The density of bound pairs is obtained by taking the derivative of F̄ against lnw. At leading

order the binding fraction can be expressed in a close form:

f (1,1) =
∫
u

d
d lnw

ln(1 + w) =
∫
r

w(u)
1 + w(u)

, (4.63)

which for Gaussian chain with

w(u) ∝ e−
3u2
2 ,

becomes

f (1,1) = 2π
∫ ∞

0

w(0)e−
3u2
2

1 + w(0)e−
3u2
2

udu =
2π
3

ln(1 + w(0)) =
2π
3

ln(1 + w(0)). (4.64)
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Appendix 4.C Exact results for the single-chain quenched

problem

Consider the problem of one ligand with randomly anchored receptors, the quenched average quan-

tities include the free energy

−∆F
kT

=

〈
ln

[
1 +

∑
r

σ(r)w(r)

]〉
{σ}

,

and the binding fraction

f =
〈 ∑

r σ(r)w(r)
1 +

∑
r σ(r)w(r)

〉
{σ}

,

both of which involve

Σ =
∑
r

σ(r)w(r).

σ(r) labels the occupation of each lattice site, namely σ(r) = 1 if the lattice site is occupied and 0

otherwise. Σ is a random variable with mean

E[Σ] = ρeβε

∫
g(r)d2r.

The only problem is to find the distribution of Σ. Let’s calculate the characteristic function of

Σ.

4.C.1 Ideal solution model

Here we assume that each lattice site has a probability φ to be occupied. The partition function of

non-interacting system is

Q = (1 + eµ)A,

with

φ =
eµ

1 + eµ
.

Further we assume that lattice sites are decoupled, i.e., they are independent. The characteristic

function of one site is

ϕσ(t) = 1− φ+ φeit. (4.65)

Then for

Σ =
∑
r

σ(r)w(r),
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we have

ϕΣ(t) =
∏
r

(
1− φ+ φeitw(r)

)
= exp

[∑
r

log
(
1− φ+ φeitw(r)

)]
. (4.66)

In the continuum model, the summation can be replaced by an integral,

ϕΣ(t) = exp
[

1
a2

∫
log
(
1− φ+ φeitw(x,y)

)
dxdy

]
.

Assuming that φ� 1, we can approximate the exponent by

φ

a2

∫ ∞

−∞
dx

∫ ∞

−∞
dy
(
eitg(x,y) − 1

)
.

This is in fact the —

4.C.2 Ideal lattice gas model

In the ideal lattice gas model, the lattice distribution variable satisfies the Poisson distribution

P (σ = n) =
e−φφn

n!
,

ϕσ(t) = exp
(
eitφ− φ

)
.

Then for

Σ =
∑
r

w(r)σ(r),

we have

ϕΣ(t) = exp

[
φ
∑
r

(
eitw(r) − 1

)]
.

Alternatively one can define

Σ =
∑
r

w(r)
∑

i

δ(r− ri),

where ri are the positions of the receptors. Ignoring the maximum occupancy constraint, as the

receptors position distributions are independent, we have

ϕΣ =
∏
r

(
1− a2

A
+
a2

A
eitg(r)

)n

= exp

[
n
∑
r

ln
(

1− a2

A
+
a2

A
eitw(r)

)]
(4.67)

'
∏
r

exp
[
na2

A

(
eitw(r) − 1

)]
' exp

[
ρ

∫ (
eitw(r) − 1

)
dr
]
. (4.68)

The “'” becomes “=” in the thermodynamic limit A→∞ and in the continuum limit a2 → 0.
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We know that w(r) is Gaussian, and can be written as15

w(x, y) = exp
(
βε− x2 + y2

Nb2

)
= g(x, y)eβε.

We can drop the exp(βε) term as it is a constant, and

ϕΣ(t) = exp
[
ρ

∫ ∞

−∞
dx
∫ ∞

−∞
dy
(
eitw(x,y) − 1

)]
=exp

{
ρNb2

∫ ∞

−∞
du
∫ ∞

−∞
dv
[
exp

(
iteβε−(u2+v2)

)
− 1
]}

=exp

ρNb2 ∑
m≥1

1
m!

∫ ∞

−∞
du
∫ ∞

−∞
dv
[
ieβεte−(u2+v2)

]m
=exp

πρNb2 ∑
m≥1

(it)m
emβε

m ·m!

 = exp

{
πρNb2

∫ eβεt

0

eix − 1
x

dx

}
. (4.69)

The probability distribution of e−βεΣ is given by

fe−βεΣ(x) =
1
2π

∫ ∞

−∞
e−itxϕΣ(t)dt =

1
2π

∫ ∞

−∞
exp

[
−itx+ Φ

∫ t

0

eiu − 1
u

du
]

dt (4.70)

=
1
π

∫ ∞

0

exp
[
−Φ

∫ t

0

1− cosu
u

du
]

cos
(
−tx+ Φ

∫ t

0

sinu
u

du
)

dt. (4.71)

We note that
∫ t

0
sin x

x dx is an odd function of t while
∫ t

0
cos u−1

u du is an even function of t.

If Φ � 1, then the integral has most contribution from t� 1

1− cosu =
u2

2
− u4

4!
+
u6

6!
+ · · ·

∫ t

0

1− cosu
u

du ≈ t2

4
− t4

96
+ · · ·

∫ t

0

sinu
u

du ≈ t− t3

18
+ · · ·

15In general we have

ϕA(t) = exp

24φ
X
n≥2

intn

n!
Wn

35
where

Wn =
X
r

w(r)n

and the probability distribution of A is

fA(x) =
1

2π

Z ∞

−∞
e−itxϕA(t)dt =

1

2π

Z ∞

−∞
dt exp

24−itx + φ
X
n≥2

intn

n!
Wn

35
=

1

π

Z ∞

0
exp

24φ

k≥1X
n=2k

(−)kt2k

n!
Wn

35 cos

0@−tx + φ

k≥1X
n=2k+1

(−)kt2k+1

n!
Wn

1A .
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fe−βεΣ(x) ≈ 1
π

∫ ∞

0

exp
[
−Φt2

4

]
cos
[
−tx+ Φ

(
t− t3

18

)]
dt. (4.72)

The extra t3 term is kept as the leading-order correction to Gaussian distribution of Λ.

If Φ � 1, then the exponent can be expanded as a power series—we have

ϕe−βεΣ(t) = exp
{

Φ
∫ t

0

eiu − 1
u

du
}

≈1 + Φ
∫ t

0

eiu − 1
u

du ' 1− Φ ln
t

δ
+ Φ

∫ t

δ

eiu

u
du. (4.73)

Let’s choose δ = te−R2/Nb2 . Then this equation becomes

ϕe−βεΣ(t) '1− ΦR2

Nb2
+ Φ

∫ t

e−R2/Nb2 t

eiu

u
du

=1− ρπR2 + ρ

∫ R

0

exp
(
ite−r2

)
rdr. (4.74)

This corresponds to a uniform distribution of receptors within a circle with radius R. We see that

if Φ � 1 then each ligand essentially sees only one receptor and the perturbative expansion in

Appendix 4.B is accurate in this regime.

Appendix 4.D Multi-chain quenched problem in the high-

density limit

As seen in Appendix 4.C, in the high-density limit, the single-chain quenched problem approaches

the annealed case. Will the same conclusion hold for the multi-chain problem?

Assume the area densities of receptors and ligands to be ρR and ρL. And we simplify w(u) to be

a step function, i.e.,

w(u) =

 eβε u < u∗,

0 u ≥ u∗.
(4.75)

Now within a area S = π(u∗)2 all ligands and receptors can bind with each other. Assume that

ρ0
i (u

∗)2 � 1, the average number of molecules within S is roughly Gaussian and peaked at ρ0
i (u

∗)2.

Also assume that ε � 1, therefore as many molecules are bound as possible. The only difference

between the quenched case and the annealed case is in their entropy. The partition function for each

quenched sample satisfies

Q({rL}, {rR}) > (q∗)A/(u∗)2 , (4.76)
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q∗ is the partition sum within S, whose entropic term is approximately

q∗ ' [ρ0
L(u∗)2]![ρ0

R(u∗)2]![
ρL(u∗)2

]
!
[
ρR(u∗)2

]
!
[
ρLR(u∗)2

]
!

=
φ0

L!φ0
R!

φL!φR!φLR!
. (4.77)

In the annealed case the change in the entropic part of the free energy is

∆fs

kT
=φL lnφL + φR lnφR + φLR lnφLR + φLR − φ0

L lnφ0
L − φ0

R lnφ0
R. (4.78)

Therefore one concludes that the quenched free energy within S

< f >≤ f.

On the other hand, we know that < f >≥ f by definition, therefore this suggests that < f >= f in

the thermodynamic limit.

This result follows from the fact that within S the fluctuation in the quenched distribution is

negligible, hence the quenched system is essentially “annealed” within S; therefore their free energies

are equal, as the free energy < f > is self-averaging.




