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Abstract

This thesis is primarily a theoretical study of degenerate parametric amplification as a 

means of generating squeezed-state light.

i) A wideband traveling-wave formalism is developed for analyzing quantum mechanically a 

degenerate parametric amplifier. The formalism is based on spatial differential equations— 

spatial Langevin equations—that propagate temporal Fourier components of the field through the 

nonlinear medium. In addition to the parametric nonlinearity, the Langevin equations include 

absorption and associated fluctuations, dispersion, and pump quantum fluctuations. The dom

inant effects of dispersion and pιnnp quantum fluctuations on the squeezing produced by a degen

erate parametric amplifier are analyzed.

ii) The wideband formalism of i) is used to carry out a more detailed analysis of the effects of 

phase mismatching. With the assumption of a lossless medium and a classical pump, we find that 

parametric amplification is capable of generating squeezed-state light over a wide band if materi

als with large χ(2) nonlinearities can be found, and that the squeezing bandwidth can be enhanced 

by phase mismatching away from degeneracy.

iii) We consider again the effect of pump quantum fluctuations on the squeezing produced by 

parametric amplification. We perform discrete-mode calculations for a parametric amplifier with 

a quantum pump, and discuss some of the limitations of calculations of this sort in quantum 

optics. We derive stochastic differential equations (SDEs) for one- and two-mode parametric 

amplifiers, and from them obtain an iterative solution showing that pump quantum fluctuations 

impose a limitation on the degree of squeezing obtainable from a parametric amplifier.

iv) A possible application of squeezing is considered; in particular, we study the effects of 

squeezing the intracavity noise in a laser oscillator. We solve the classical noise problem of a 

realistic laser model by making a bold—and possibly unrealizable-assumption, that the in- 

phase and quadrature Langevin sources which are responsible for the “noisiness” of the laser can
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be squeezed. We show that the effect of squeezing the in-phase quadrature is to reduce the phase 

noise, including the linewidth, of the laser but, due to amplitude-phase coupling, not to eliminate 

them altogether.
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CHAPTER 1

Introduction
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This thesis is a theoretical investigation into (i), the use of traveling-wave 

parametric amplification for the generation of squeezed-state light, and (ii), the possibil

ity of reducing the phase noise—and hence the linewidth—of laser oscillators by 

squeezing the intracavity noise. A recent experiment1 has shown that cavity parametric 

amplification can produce significant squeezing over a fairly narrow spectral region, the 

bandwidth being limited by the cavity resonance width. Traveling-wave parametric 

amplification, on the other hand, is not so limited, being an inherently wide-band pro

cess. The only bandwidth limitation is due to phase-matching considerations. The 

work in this thesis includes the following topics: (i) a traveling-wave analysis of the 

effects of phase mismatching, linear loss, and pump quantum fluctuations on the 

squeezing produced by a parametric amplifier near degeneracy (Chapter 2); (ii) an 

investigation of the possibility of using degenerate parametric amplification to generate 

broadband squeezed-state light (Chapter 3); (iii) a quantum-mechanical analysis, using 

stochastic differential equations, of the limitations to squeezing in a parametric 

amplifier due to pump quantum fluctuations (Chapter 4); (iv) a study of the spectral 

consequences of squeezing the intracavity noise in a laser oscillator (Chapter 5).

The present chapter will serve as an introduction to squeezing and some of the 

theory behind it. Section 1.1 describes what squeezed-state light is, and how it is 

characterized by phase-dependent quantum noise. Section 1.2 gives a simple physical 

analogy from which we gain some insight into the processes capable of generating 

squeezed-state light, and describes some recent experiments in which squeezed-state 

light has been generated and detected. The important mathematical tools used to 

describe squeezed-state light, the quadrature phases and the quadrature-phase ampli

tudes, are discussed in Section 1.3, as is balanced homodyne detection, the preferred 

method used to detect squeezed-state light. Finally, a brief introduction to the rest of
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this thesis is given in Section 1.4.

1.1 What is Squeezed-State Light?

In this section, we will consider a nearly monochromatic, nearly plane-wave elec

tromagnetic field with a single polarization to illustrate the important ideas behind the 

theory of squeezed-state light. The electric field can by decomposed into two quadra

ture components with time dependence cosΩ∕ and sinΩt. The quantum-mechanical 

operators corresponding to the amplitudes of the two quadratures of the field, called 

quadrature phases, will be shown to be non-commuting Hermitian operators (see Sec

tion 1.3); the two quadratures thus obey an uncertainty principle. When the field is in a 

vacuum state or a coherent state, the uncertainty product for the two operators is a 

minimum, the uncertainties in the two quadratures being equal. When the field is in a 

squeezed state, the variance of one quadrature—the squeezed quadrature—is less than 

that of the vacuum, while the variance of the other quadrature is increased in accord

ance with the uncertainty principle.

The electric field, propagating in the z -direction, is given at a particular point in 

space z = 0 by

E(t)=Er(t)cosΩ.t +E2(OsinΩf , (1∙1)

where the operators El(t) and E2(t) are the quadrature phases of the electric field. They 

are non-commuting Hermitian operators with the equal-time commutator

(1.2)

where σ is a cross-sectional area used to account crudely for the transverse structure of 

the field and β is an appropriate bandwidth. For non-commuting Hermitian operators A
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andß,2

[A3]=C => <ΔA2><Δβ2> >~ I <C > l2 , (1.3)

where, for any operator θ, ∆θ=θ-<θ>∙ When applied to the quadrature phases, Eq.

(1.3) yields the uncertainty principle

<ΔE12(r)><ΔZi2 (f)> > (1.4)

Equation (1.4), when the equality holds, represents the ultimate quantum-mechanical 

limit to the resolution of the quadrature phases after all other sources of noise have been 

eliminated. Although the uncertainty product is constrained by Eq. (1.4), the individual 

uncertainties <∆E1¼)> and <∆E22(∕)> are not constrained; we might try to “beat” the 

uncertainty principle by producing light with <∆E,2(r)>≠<∆E22(z)>, but such that the 

equality in Eq. (1.4) is satisfied. Such is the nature of squeezed-state light.

Coherent-state light, i.e., light produced by an ideal laser over time scales short 

compared to the phase diffusion tune, has equal fluctuations in the two quadratures, 

such that the equality holds in Eq. (1.4); that is,

(1.5)

Squeezed-state light, on the other hand, while satisfying the equality in Eq. (1.4), has 

unequal fluctuations in the two quadratures:

<ΔE,2(z)>= 4ftΩcσ jP 2
<Δ£2

(1.6a)

(1.6b)
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where G > 0. To keep our largely heuristic argument simple, we will assume that G is a 

constant over the bandwidth β, considering the more general case in which G is a func

tion of frequency in Section 1.3 and in later chapters of this thesis. If G > 1, fluctuation 

in the E1 quadrature is increased, while fluctuation in the E2 quadrature is decreased, or 

squeezed. The converse holds true when G < 1.

The fluctuation in the electric field itself is given by

<ΔE2(i)> = <ΔE12(i)> cos2Ωz + <ΔE,(f)ΔE2(i)>symsin2Ωf
+ <ΔE2(r)> sin2Ωf , (1.7)

where sym denotes a symmetrized product. If the fluctuations in the two quadratures 

are uncorrelated, then <zlE1(z)ΔE2(z)> =0. If we take (4∕iΩ∕cσ) f (l∕2)dω=l forjβ

simplicity (this simply means measuring the noise in vacuum units), then

<ae2(0>1z2= G2cos2Ωz + 1 ∙ 2λλ—- sιnΩz G2 1/2

(1.8)

Figure 1 illustrates graphically the nature of the quantum fluctuations for coherent- 

and squeezed-state light. We assume in the figures that <E1(t)>=A and <E2(t)>=0. 

Figures la, lc, and le are phasor diagrams for the electric field E{t) in a rotating frame 

in which the optical frequency “rotation” at frequency Ω is removed. The quantum 

nature of coherent-state light, i.e., light with G = 1, is illustrated in Fig. la; a “quantum 

fuzzball,” representing the quantum quadrature-phase fluctuations, is superimposed on 

the vector representing the mean electric field. It is obvious that the noise shows no 

preference for either quadrature, i.e., coherent-state light’s quantum noise is not phase 

sensitive. The quantum nature of squeezed-state light is illustrated in the phasor 

diagrams of Figs, lc and le. In Fig. lc, the Eλ quadrature is squeezed; the amplitude
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fluctuations are reduced and the phase fluctuations are increased in comparison to the 

coherent-state light in Fig. la. The converse is true in Fig. le. It is clear from Figs, lc 

and le that squeezed-state light has phase-dependent noise. This is further borne out by 

the time variation of the electric field, illustrated in Figs, lb, Id, and If. In each graph, 

the dark line represents the mean electric field <E(t)> =A cosΩt, and the shaded region 

represents the uncertainty in the electric field, described by Eq. (1.8). Figure Id shows 

the well-defined peaks characteristic of reduced amplitude fluctuations, and Fig. If 

shows the well-defined zero-crossings characteristic of reduced phase fluctuations.

1.2. Methods of Generating Squeezed-State Light

In the last section, we found that squeezed-state light is characterized by phase- 

dependent quantum noise. What is needed is a phase-sensitive amplifier to generate 

light with amplified quantum noise—amplified above the vacuum level—in one quad

rature, and de amplified or “squeezed” quantum noise—deamplified below the vacuum 

level— in the other quadrature. What kind of physical process will accomplish such a 

phase-sensitive amplification?

A physical analogy will aid in answering this question. Suppose we have a vari

able length pendulum; that is, we can vary the length of the string to which the pendu

lum bob is attached by pulling on the string while the bob is in motion, keeping the 

pivot point fixed (by hanging the string over a pulley, for example). A simple experi

ment shows that by pulling up on the string (i.e., shortening the string) each time the 

bob is at its lowest point and returning the string to its original length when the bob is at 

its highest point, we can amplify the motion. In pulling up on the string when the bob is 

at its lowest point (when its velocity is a maximum), we give the velocity a “kick” for 

the same reason that a twirling figure skater with arms extended rotates faster as she
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draws her arms in towards her. In one cycle of oscillation, we pull up on the string 

twice, once as the pendulum swings to the left, and again as it swings to the right; we 

“pump” the pendulum at twice its resonant frequency, and obtain an amplification of 

the motion.

Now suppose we change the phase of the “pump” by 180θ, i.e., we lower the 

string each time the bob is at its lowest point, and pull up on the string when the bob is 

at its highest point. The previous argument showing that the bob, when at its lowest 

point, speeds up when the string is pulled up now shows that the opposite occurs when 

the bob is lowered; the bob slows down, resulting in a deamplified motion.

Relative to the phase of the “pump,” there are two quadratures of the pendulum 

motion, one in which the bob is pulled up when at its lowest point, and the other in 

which the bob is lowered when at its lowest point. As we have seen, one quadrature is 

amplified and the other is deamplified. This is just the phase-sensitive physical process 

we need to generate squeezed-state light; devices implementing this process are known 

as parametric amplifiers.

Nonlinear susceptibilities provide the means of producing parametric 

amplification at optical frequencies. Three nonlinear-optical processes have been used 

recently to generate squeezed-state light in the laboratory. Squeezed-state light was 

successfully generated for the first time in the pioneering experiment of Slusher et al.3 

They used backward four-wave mixing in an optical cavity to produce squeezed-state 

light and balanced homodyne detection to detect it (see Section 1.3). Backward four- 

wave mixing makes use of two counter-propagating pump beams, each of frequency Ω, 

interacting with counter-propagating signal and idler beams, at frequencies Ω+ε and 

Ω-ε, respectively, where the signal and idler are in separate cavity modes. The interac

tion is mediated by the χί3> nonlinearity provided by a beam of atomic sodium. The



-8-

weakness of the nonlinearity necessitates the use of an optical cavity, allowing the field 

to make many passes through the sodium beam. In their best effort, they observed a 

17% reduction4 of the quantum noise level below that of the vacuum. Squeezed-state 

light has also been generated by four-wave mixing in a forward geometry in the experi

ment of Shelby et al.5 An optical fiber provided the χ(3) nonlinearity in their experiment, 

the 114 meters of optical fiber obviating the need for an optical cavity. They obtained a 

noise reduction of 12.5% below the vacuum level. The best results to date were 

obtained by Wu et al.,1 who used optical parametric down conversion to generate 

squeezed-state light with a noise reduction of greater than 50% relative to the vacuum 

level. Parametric down conversion uses a χ(2) nonlinearity to mediate the interaction of 

a powerful pump beam at frequency 2Ω with a signal beam at frequency Ω+ε and an 

idler beam at frequency Ω-ε. Here the signal and idler belong to the same cavity mode 

centered on ε=0 (degeneracy). A frequency-doubled laser provides the pump at fre

quency 2Ω, and a cavity, resonant at frequencies Ω and 2Ω, provides a long effective 

interaction length by allowing the photons to make many passes through the nonlinear 

medium.

The common link between parametric down conversion and four-wave mixing 

(whether backwards or forwards) is the reliance on a mechanism that couples a power

ful pump component at frequency 2Ω to signal and idler components at frequencies Ω+ε 

and Ω-ε, where in all cases ε<<Ω. For parametric down conversion, the pumping field 

itself oscillates at frequency 2Ω, and is coupled to the signal and idler fields through the 

χ(2) nonlinearity. Four-wave mixing, on the other hand, uses the χ(3) nonlinearity to cou

ple the signal and idler fields to the square of the pump field oscillating at frequency Ω. 

The squared field contains the component at frequency 2Ω needed for parametric 

amplification to occur. Both processes can thus be understood in terms of our simple
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pendulum analogy; the pumping at frequency 2Ω causes a phase-sensitive amplification 

to occur, resulting in the production of squeezed-state light.

1.3. Quadrature Phases, Quadrature-Phase Amplitudes, and Balanced 

Homodyne Detection

A plane-wave electromagnetic field traveling through free space in the positive-z 

direction can be described by the positive frequency part of the electric field

£(+)= [£(~ψ = 2π⅞ω
cσ

1/2

(3.1)f dω ⅛ 2π
where the integral runs over a bandwidth β symmetric about Ω that contains all relevant 

signal frequencies, and σ is an effective cross-sectional area that crudely accounts for 

the transverse structure of the field. The electric field operator is given by E =£(+)+£(_). 

The operators α(ω) and at(<x>) are annihilation and creation operators for the field which 

satisfy the continuum commutation relation

[a (ω),α ^(ω,)] = 2πδ(ω - ω'). (3.2)
The total energy (power integrated over all time) transported by the field through the 

surface z = constant is
f ho>a t(ω)a (ω). ⅛ 2π

We let ω=Ω±ε, where ε is positive by definition and ε<<Ω over the bandwidth β; 

we find that the electric field operator can be expressed in the form

E (z ,t )=E1 (z ,i ) cosΩ(z - z lc ) + E2(z ,t ) sinΩ(f -z∕c), (3.3)
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where El(z,t) and E2(z,t) are known as the quadrature phases6 of the electric field. The 

quadrature phases, in turn, are given by

El(z,t)--

1/2
1 ⅛ [α'<e>e' ε(f -≈zc>+αι'(ε)'εtf ~zlc'>']∙ (3.4a)8πħΩ,

cσ

E2(z ,t)--
8πΛΩ 1/2 Λ

∣∙δ de
cσ ∙∣θ 2π α2(ε)e^ l z+c⅛(ε)'ε(t-z∕c),clt(s.γε(ι -z!c) (3∙4b)

where a1(ε) and a2(ε) are the quadrature-phase amplitudes 6,7

αj(ε) = V2z,ti(1 + ε∕Ω), z2 a (Ω + ε)+( 1 - ε∕Ω)1/2 a r(Ω - ε)

α2(ε)=-‡ I ( 1 + ε∕Ω)lz2 a (Ω+ε) - ( 1 - ε∕Ω)1z2 <√(Ω - ε)

(3.5a)

(3.5b)

Here Ω+Δ is the upper limit of the band β. We see from Eqs. (3.4) that the quadrature- 

phase amplitudes are the Fourier components of the quadrature phases, and hence con

tain the spectral information about quantum fluctuations of the quadrature phases. The 

quadrature-phase amplitudes obey the following commutation relations:

[α1(ε),α1(ε,)] = [a2(ε),a2(ε,)] = [aι(ε),a2(ε,)] = 0, (3.6a)

[a1(ε),af(ε')] = [a2(ε),a∕(ε')] = ^-2πδ(ε-ε'), (3.6b)

[a1(ε),a2f(ε,)] = [af(ε),a2(ε,)] = y2πδ(ε-ε,). (3.6c)

Equations (3.6) imply the commutator Eq. (1.2) for the quadrature phases, and hence 

the uncertainty principle Eq. (1.4), as discussed earlier.
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The real significance of the quadrature phases and the quadrature-phase ampli

tudes becomes clear in a discussion of the method used to detect squeezed-state light. 

A phase-sensitive detection scheme is needed to detect the phase dependence of 

squeezed-state light; a balanced homodyne detector,8·9 shown in Fig. 2, is the preferred 

detector for this purpose. The signal beam Es(∑,t) is mixed with a powerful local oscil

lator (LO) beam Elo(z,0 by a 50-50 beam splitter. The LO can be expressed as the sum 

of a monochromatic field at frequency Ω plus a quantum fluctuation term

Eiθ(z,t)=A cos[Ω(i-z∕c)-Φlo] + ΔElo(z,t), (3.7)

where

<δelo(∑,o>=0. (3.8)

The 50-50 beam splitter mixes the LO and the signal beams, producing the following 

linear superpositions of the two at its outputs:

[Elo(z,t)+Ef(z ,t)] =E⅛+∖z,t) +E⅛∖z,t), (3.9a)

£v(z,f)=-L[£Lo(z,0-£J(z>i)]=£Az,f)+^“)(z,0 ∙ (3.9b)

The sign difference between Eqs. (3.9a) and (3.9b) is due to energy conservation; the 

field energy incident at the input ports of the beam splitter must be equal to the field 

energy leaving the output ports.9 The electric fields E∏(z,t) and Ev{z,t) are incident on 

the photodetectors £>, and D2, respectively, which we will assume are located at z =0. 

The photodetectors respond to the normally ordered part of the incident power flux, 

≈E<rXt)E^∖t), since the remaining terms, containing terms like E^(t) and e'~i2(o, oscil

late at optical frequencies, far beyond the bandwidth of any photodetector. An ideal
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ρhotodetector emits one photoelectron for each incident photon, so the photocurrent 

operator is obtained by using the classical expression of the current but treating the 

fields as operators. Taking the electron charge as e and the area of the photodetector as 

σtfet, we find that the current operators are

= ^^⅛∖θ^fe∖θ+^(θ^⅜)+⅛∖θ^w(θ+^wh)^(i)], (3.10a)

= . (3.10b)

A balanced homodyne detector takes the photocurrents from the two detectors and 

subtracts them coherently:

Id (0=h(t )-∕2(f )= ~-[⅛J (W}+∖t )+E⅛ (t )E}~∖t)] (3.11)

Using Eq. (3.7), Eq. (3.11) can be written as

4>(f)=
C ^det
2πΛΩ

y [E}+∖t )e,'(Ω' ^ w+E'~,(i )e ~i (Ω' ^ φl°,]

+ΔE⅛ (t )E,<-+∖t )+Δ£$ fr )E}~∖t )

From Eq. (3.1), Eqs. (3.4) and Eqs. (3.5), we find the useful relations

E,fr,t)=E}+∖z,t)eιa^-^+E^∖z,t)e-i^,,

(3.12)

(3.13a)
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E2(z,t)=-iE}+∖z,t)eii*-llc> + iEs<∙~Xz,t)e~ii*~zlc">. (3.13b)

Substituting Eqs. (3.13) into Eq. (3.12), we find

i0(0=^^[£i(Ocos‡LO+£2(f)sin<))LO], (3.14)

where we have ignored the second term of Eq. (3.12) by assuming that A is very large. 

Notice that the fluctuations from the local oscillator cancel; the local oscillator fluctua

tions are correlated, or “balanced” in the two arms of the detector, and thus make no 

contribution to the photocurrent.

By changing the phase of the local oscillator Φlo, we can, according to Eq. (3.14), 

make the photocurrent operator io(f) proportional to any relative combination of Ei(t') 

and E2(t). In particular, for Φlo=0, the current is proportional to Ei(ty, for φ1,o=π∕2, the 

current is proportional to E2(t). A more general argument makes this even clearer. We 

can re-express the signal field [Eq. (3.3)] so that it possesses the same argument as the 

local oscillator field:

Ei (z ,t)=E i(Φlo!z ,t ) cos[Ω(f -z∕c)- Φlo] +E2(Φlo-,ς ,t ) sin[Ω(i - z ∕c ) - Φlo]

= Ie i(Φlo!z >i ) c°sΦlo ~e2(^lo,z ,t ) sinφL0] cosΩ(i -z∕c)

+ [^ι(ΦLθ!z>t)sinφLo+jE'2(ΦLθ^4)cosφLo]sinΩ(f-zlc) . (3.15)

Equating Eqs. (3.3) and (3.15), we find

^i(‡Lo;z,0=£,i(z,0cos‡Lo+£,2(z,0sin())LO, (3.16a)

e2(Φuhz ,t )=E2{z ,t ) cosΦlo - E, (z ,t ) sin<j>Lo ∙ (3.16b)
The 5,,(Φlo!z√) quadrature is in phase with the local oscillator. From Eqs. (3.14) and
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(3.16a), we see that lD(t)^E^o;z,t); that is, at any phase Φlo, the differenced photo

current from a balanced homodyne detector is proportional to the quadrature which is in 

phase with the local oscillator.'0

Experimentally, one is interested in the spectrum of the differenced photocurrent. 

Spectral information is obtained using a spectrum analyzer, which yields an output sig

nal proportional to the mean spectral power in a bandwidth B centered on frequency ε 

as a function of ε. The relevant quantity here is the spectral density of Io{t), which by 

the Wiener-Khinchin theorem

function

<A/D(i)AiD(f+τ)>sym =

is the Fourier transform of the two-point correlation

cσdctA
4πhΩ,

<ΔE 1(φL0iO,f )ΔE ι(φLo!θ-i +τ)> sym

4π⅛Ω 8π⅛Ω ∣∙δ 4ε--∫θ -χ"5,∏(ΦL°,ε)cθsετ, (3.17)

where

S11 (Φι,o>ε)=1 ι(ε)cos2φLθ + [5 ↑ 2(ε)+S 2 ι(ε)] cos‡loSui‡lo+⅛(ε)sin2ΦLθ (3.18)

is the spectral density of E1(Φlo!0,O, normalized so that the vacuum has a value of 1/2. 

Here we have assumed

<Δα,Jε,)Δαπ(ε)>sym = <α,^(ε,)Δαλε)>sym=O, (3.19a)

<ΔoX(ε')Δan(ε)>sym = π0,mπ(ε)δ(ε-ε,). (3.19b)

Equations (3.19) characterize what is known as time-stationary quadrature-phase noise, 

610 i.e., the conditions set forth by Eqs. (3.19) guarantee that Eq. (3.17) is independent 

of the time t. The spectral-density matrix Sn,n(ε), 6∙,θ which contains all the spectral
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information about the quadrature-phase noise, is due to beats between the local oscilla

tor frequency Ω and the signal frequencies Ω±ε. The photodetectors D1 and D2 (Fig. 2) 

are sensitive to such beats over a limited bandwidth only, their electronic bandwidth. 

We identify this electronic bandwidth with our bandwidth β of relevant frequencies; in 

other words, we identify Δ as roughly the highest beat frequency to which either photo

detector can respond.

The time domain noise moments <∆E,2(r)> and <ΔE22(f)> can be recovered from 

Eq. (3.17). In particular, for τ=0 and Φlo=0, we find

<Δ£2(ί)> = ^/θΔί/ε511(ε), (3.20a)

and for τ=0 and ‡lo=k/2,

<ΔE22(i)> = -ίΔί/ε522(ε). (3.20b)co jθ
Comparison with Eqs. (1.6) shows that 511(ε)=522(ε)=l∕2 for coherent- or vacuum-state 

light. To squeeze the fluctuations in El or E2, one must have 511(ε)< 1/2 or S22(ε)< 1/2, 
respectively, over a significant portion of the bandwidth Δ. Regardless of whether Ei or 

E2 are squeezed, one has squeezing over frequency bands of width less than Δ when 

Smm < 1/2 over said band, where m = 1 or 2.

Rather than looking at the entire spectrum, one usually looks only at the spectrum 

in the bandwidth B ≪∆ about the analysis frequency ε and sweeps the local oscillator 

phase Φlo, displaying the resulting trace on an oscilloscope. Assuming that the spectral 

density is nearly constant over the bandwidth B, one can assume that the mean spectral 

power over B is proportional to -SΔ'1 ,(φ10,ε). Let us consider a specific example. 

Squeezed-state light in which the E1 quadrature is squeezed, as in Figs, lc and Id, has
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the spectral-density matrix elements [see Eq. (3.11) of Chapter 2]

Sn(ε)=∣e-2κ , (3.21a)

S 12(e)—S2ι(ε)-0 ,

(3.21b)

(3.21c)

where u (assumed positive) is known as the squeezing parameter and we have assumed 

the spectrum to be constant over the bandwidth B about ε. Using Eq. (3.18) and Eqs. 

(3.21), we find for the rms spectral current (proportional to the square root of the mean 

spectral power)

i(ΦLo>e)=⅜ 2" cos2φLθ+e2w s⅛2Φlo]1z2 , (3.22)

where we have set the proportionality constant equal to one for convenience. Figure 3 is 

a plot of Eq. (3.22) as a function of Φlo. The dashed circle of radius one in Fig. 3 shows 

the nns spectral current for u =0, corresponding to unsqueezed vacuum noise entering 

the signal port of the detector. The vacuum noise, which gives rise to shot noise in the 

differenced photocurrent, is clearly insensitive to the phase of the local oscillator. The 

same figure also shows the corresponding rms spectral current for a squeezed vacuum 

with u=ln4. We see clearly the reduced fluctuations for Φlo=0, and the increased 

fluctuations for φLθ=π∕2. The phase sensitivity of the noise in a squeezed vacuum is 

obvious; any fluctuation in the phase of the local oscillator near ‰=0 may degrade the 

observed squeezing by mixing part of the amplified quadrature E1 with the squeezed 

quadrature El.

A typical experimental set-up, the one used by Wu et al.,1 is shown in Fig. 4. Here
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a degenerate parametric amplifier (in an oscillator configuration) is the source of 

squeezed-state light—squeezed vacuum in this case. The effective length of the non

linear medium is increased by placing the crystal in an optical cavity, since it allows the 

light to make multiple passes through the crystal. Notice that the same laser that pumps 

the nonlinear crystal also acts as the source for the local oscillator. Figure 5 shows 

some of the results of this experiment. The rms noise voltage V(θ) is plotted as a func

tion of the local oscillator phase θ. Here the noise voltage corresponds to our nns spec

tral current plotted in Fig. 3. For certain values of θ, the noise voltage dips below the 

vacuum level, given by the dotted line in Fig. 5.

1.4. Introduction to the Remaining Chapters

In Chapter 2, we develop a wideband traveling-wave formalism for analyzing 

quantum mechanically a degenerate parametric amplifier. The formalism is based on 

spatial differential equations—spatial Langevin equations—that propagate temporal 

Fourier components of the field operators through the nonlinear medium. In addition to 

the parametric nonlinearity, the Langevin equations include absorption and associated 

fluctuations, dispersion (phase mismatching), and pump quantum fluctuations. We 

analyze the dominant effects of phase mismatching and pump quantum fluctuations on 

the squeezing near degeneracy (ε=0) produced by a degenerate parametric amplifier.

We carry out a more detailed analysis of the effects of phase mismatching in 

Chapter 3. The spatial Langevin equations derived in Chapter 2 are easily solved with 

the assumption of a lossless medium and a classical pump. We find that parametric 

amplification is capable of generating squeezed-state light over a wide band if materials 

with large χ(2) nonlinearities can be found, and that the squeezing bandwidth can be 

enhanced by phase matching away from degeneracy. We compare our results with
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similar results recently found for four-wave mixing in an optical fiber.

Chapter 4 considers again the effect of pump quantum fluctuations on the squeez

ing produced by parametric amplification. We briefly describe a wave-packet approach 

that enables us to treat traveling-wave problems quantum-mechanically with discrete

mode calculations. The equations of motion resulting from such an approach are spa

tial differential equations—as in Chapter 2—for the wave packet amplitude operators. 

Under certain assumptions, we can replace the spatial variable z by the temporal vari

able cttn0, where n0 is the index of refraction (assumed nondispersive). The resulting 

equations of motion are of the same form as those one would derive from a Hamiltonian 

using the standard approach to problems in quantum optics; one assumes the field can 

be described by a few discrete modes, and writes down an appropriate Hamiltonian for 

the process being considered. We justify our use of this Hamiltonian, and use it to 

derive Fokker-Planck equations for one- and two-mode parametric amplifiers. Standard 

methods of stochastic calculus11 are then used to derive Ito stochastic differential equa

tions (SDEs) from the Fokker-Planck equations. An approximate solution of the SDEs 

is obtained by iteration, and the full semiclassical correction (the correction to order 

2V^^1, where N is the initial number of pump photons) is then calculated analytically. The 

corrections obtained agree with the dominant correction calculated via spatial Langevin 

equations in Chapter 2.

A possible application of squeezing is considered in Chapter 5; in particular, we 

study the effects of squeezing the intracavity noise in a laser oscillator. We solve the 

classical noise problem of a realistic laser model by making a bold—and possibly 

unrealizable—assumption, that the in-phase and quadrature Langevin sources which are 

responsible for the “noisiness” of the laser can be squeezed. We show that the effect 

of squeezing the in-phase quadrature is to reduce the phase noise, including the
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linewidth, of the laser but, due to amplitude-phase coupling, not to eliminate them alto 

gether. Intensity fluctuations, on the other hand, are fully squeezed.
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FIGURE CAPTIONS

Fig. 1. Graphs of the electric field versus time for three states of the electromag

netic field. The graph on the left represents the “error box” of the complex amplitude, 

while the graph on the right is the time variation of the electric field for the same state. 

The dark line is the expectation value of the electric field, and the shaded region 

represents the uncertainty in the electric field, (a),(b) Coherent-state light, (c), (d) 

Squeezed-state light with reduced amplitude fluctuations, (e),(f) Squeezed-state light 

with reduced phase fluctuations. Reproduced with permission from Caves.12

Fig. 2. A balanced homodyne detector. The 50-50 beam splitter mixes the incom

ing signal with a powerful local oscillator, with the output fields incident on the photo

detectors D1 and D2. The output signal is obtained by coherently subtracting the photo

detector currents I1 and I2.

Fig. 3. A plot of the rms current Ζ(φω,ε) from a balanced homodyne detector as a 

function of local oscillator phase Φlo for fixed analysis frequency ε. The dashed line is 

for a signal composed of un-squeezed vacuum noise, and the solid line is for a signal 

composed of squeezed vacuum noise.

Fig. 4. Diagram of the principal elements of the apparatus for squeezed-state gen

eration by degenerate parametric down conversion. Reproduced with permission from 

Kimble.1

Fig. 5. Measurement of the phase dependence of the quantum fluctuations in a 

squeezed state produced by degenerate parametric down conversion. The phase 

dependence of the rms noise voltage V(θ) from a balanced homodyne detector is 

displayed as a function of local oscillator phase θ at fixed analysis frequency (1.8 MHz) 

and bandwidth (100 kHz) in the spectral distribution of photocurrent fluctuations. With 

the OPO input blocked, the vacuum field entering the signal port of the detector
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produces the noise voltage given by the dashed line with no sensitivity on θ. With the 

OPO input present, the dips below the vacuum level represent a 50% reduction in noise 

power relative to the vacuum noise level. Note that the ordinate is a linear scale in 

noise voltage. The dotted line is the amplifier noise level. Reproduced with permission 

from Kimble.1
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CHAPTER 2

Quantum Wideband Traveling-Wave Analysis of a 
Degenerate Parametric Amplifier

by Carlton M. Caves and David D. Crouch

Published in the Journal of the Optical Society of America B4, 1535 (1987).
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ABSTRACT

We develop a wideband traveling-wave formalism for analyzing quantum 

mechanically a degenerate parametric amplifier. The formalism is based on spatial dif

ferential equations—spatial Langevin equations—that propagate temporal Fourier com

ponents of the field operators through the nonlinear medium. In addition to the 

parametric nonlinearity, the Langevin equations include absorption and associated 

fluctuations, dispersion (phase mismatching), and pump quantum fluctuations. We 

analyze the dominant effects of phase mismatching and pump quantum fluctuations on 

the squeezing produced by a degenerate parametric amplifier.
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1. INTRODUCTION

A degenerate parametric amplifier (DPA) is the prototypic device for generating 

squeezed-state light.13 A DPA runs on the nonlinear interaction between a signal field 

near frequency Ω and a pump field at frequency Ωp =2Ω.4 This parametric interaction 

has been exploited to generate squeezed-state light5—but in an oscillator, rather than an 

amplifier configuration. In the oscillator configuration the nonlinear medium is 

enclosed in an optical cavity, in which multiple passes through the medium increase the 

effective nonlinearity.6“10 If one could find materials with larger χ(2) nonlinearities, 

however, one might prefer an amplifier configuration because of its intrinsically wider 

bandwidth.

The conventional approach to quantum problems in nonlinear optics is to special

ize to a few interacting modes of the electromagnetic field. All the spatial dependence 

is contained in the spatial mode functions. The basic equations are temporal differen

tial equations that describe the evolution of the modes. In one realization these equa

tions are temporal operator Langevin equations for the evolution of the creation and 

annihilation operators of the modes.

This conventional approach is well-suited to analyzing a parametric oscillator, in 

which the appropriate modes are modes of the optical cavity, but it is ill-suited to 

analyzing a DPA, which is a traveling-wave device not easily thought of in terms of a 

few discrete modes. To analyze a DPA, one would like a set of spatial differential 

equations for the propagation of the fields through the nonlinear medium. One way to 

get such spatial differential equations is to take the temporal differential equations for 

discrete modes interacting parametrically and to replace t with z/v h, where v h is the 

phase velocity in the medium.11 Aside from its questionable validity, this procedure 

runs into trouble when there is dispersion, and it does not address questions about
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bandwidths. These problems with the conventional approach have been stressed by 

Tucker and Walls,12 who developed a wave-packet formalism in an attempt to deal with 

them.

In this chapter we model a DPA in a different way. Our approach is patterned 

after the approach used in classical nonlinear optics, which is formulated in terms of 

spatial differential equations for coupled Fourier components of the fields. We start 

with an ideal, lossless, dispersionless medium with a nonlinear susceptibility χ(2). In 

such a medium the Heisenberg equations for the field operators are an operator version 

of the macroscopic Maxwell equations, together with a constitutive relation that 

includes the nonlinearity.13 A temporal Fourier transform then yields spatial differential 

equations for propagation of the Fourier components of the field operators through the 

medium. These equations describe a parametric interaction between signal frequencies 

Ω±ε and the pump at frequency Ω,p. Because there is no dispersion, the parametric 

interaction is perfectly phase matched.

Our next step is to include absorption and dispersion phenomenologically. We 

replace the actual nonlinear medium by a sequence of slabs of ideal medium separated 

by beam splitters. Reflection at the beam splitters models a linear loss mechanism, and 

frequency-dependent phase shifts at the beam splitters introduce dispersion. The final 

result is a set of spatial propagation equations that include absorption and phase 

mismatching. These equations might well be called spatial operator Langevin equa

tions for the propagation of the field through the nonlinear medium.

Throughout our analysis we are interested in the dominant effect of quantum 

fluctuations in the pump field, our goal being to investigate the conditions under which 

the pump can be treated classically. The dominant effect arises from quantum phase 

fluctuations in the pump, which feed noise from the amplified signal quadrature into the



-32-

squeezed signal quadrature. The quantum phase fluctuations in the pump can be 

viewed as due to vacuum fluctuations at unexcited frequencies near Ωp, which couple to 

signal frequencies through the parametric nonlinearity. The bandwidth over which such 

vacuum fluctuations are important, which can be thought of as the pump bandwidth, 

determines the size of the quantum phase fluctuations in the pump. This pump 

bandwidth is limited by phase mismatching, which renders frequencies sufficiently far 

removed from Ωp effectively uncoupled from the signal frequencies. We evaluate this 

pump bandwidth within our model. Perhaps surprisingly, it is smaller than the 

bandwidth over which the DPA is phase matched.

In Section 2 we describe our model of a DPA, present a simple heuristic argument 

for the conditions necessary for a classical pump, and then derive the spatial Langevin 

equations for the model. In Section 3 we use the spatial Langevin equations to investi

gate the effects of phase mismatching and pump quantum fluctuations on the squeezing 

spectrum.

2. MODEL FOR DEGENERATE PARAMETRIC AMPLIFIER

A. Description of model

Consider a nonlinear medium of length L, which lies between z = 0 and z =L. The 

nonlinearity is described by a nonlinear susceptibility χ(2). Propagating through the 

medium in the +z direction is a strong pump wave at frequency Ωp and a signal wave at 

frequencies near the degeneracy frequency Ω=Ωp∕2. The parametric nonlinearity cou

ples the pump to signal frequencies Ω±ε. We idealize all the waves as plane waves 

with a single polarization in which the electric (magnetic) field lies along the x -axis (y - 

axis). Specializing to a single polarization ignores the details of how phase matching is
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achieved in many real DP As, but these details are not important for our quantum 

analysis. Specializing to plane waves ignores the transverse structure of the waves, 

which we, nonetheless, take into account crudely by introducing an effective cross- 

sectional area σ for the waves.

We assume, for simplicity, that the index of refraction for frequencies near Ωp is 

uniform with value np=∏0∙, hence the pump wave number is Kp=Ωpn0∕c. The index of 

refraction for frequencies ω=Ω±ε near Ω is allowed to be dispersive with value 

∕ι(ω)=zιo+∆zj(ω)j the corresponding wave number is denoted fe(ω)=ωzz(ω)∕c. We assume 

perfect phase matching at degeneracy—i.e., ∆zz(Ω)=0—so that the wave number at 

degeneracy is K=Ωn0∕c ≈Kpl2.

We assume for convenience that the medium is lossless for frequencies near Ωp, 

but we allow for absorption at frequencies ω near Ω. The absorption is characterized by 

an absorption coefficient γ(ω), which gives the loss per unit length in photon units.

The pump’s magnetic field has complex amplitude iApe'φ,,=zApe2'φ, where Ap is the 

pump amplitude and φr=2φ is the pump phase. The corresponding pump power is 

Pp =(c<J∕Sπn0~)Af.

It is useful to introduce a dimensionless measure of the nonlinearity,

α0≡
2πχ'2U.

= 2π
∏o3'2 cσ

1/2

(2.1)
8τιPn

in terms of which the nonlinear gain coefficient of the medium is

g0≡ot0(Ω∕c)=α0(tf∕zj0). (2.2)

There are three important spatial rates in our model: (i) the rate of accumulation of 

phase K, (ii) the nonlinear gain coefficient g0, and (iii) the absorption coefficient γ. The
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fundamental assumption of our analysis—just as it is the fundamental assumption of a 

classical analysis of a DPA4—is that these spatial rates satisfy

go, y«K . (2.3)

That g0<<K is equivalent to saying that the dimensionless nonlinearity α0≪l.
The nonlinear gain is effective only over the bandwidth for which the medium is 

phase matched. The extent of phase mismatching at frequencies Ω±ε is characterized 

by

Δ⅛(ε)≡K. -k(Ω + ε)-k(Ω-ε) = - (i2⅛,A∕.,ff.l+g). _ (Ω_ε)Δ«(Ω_ε) (2.4)
i c c

The index of refraction varies only a small amount over the phase-matched bandwidth, 

so we can expand it as

Δn(Ω±ε) = ±n'ε+-^-n"ε2, (2.5)

where the derivatives of n (ω) are evaluated at Ω. One then finds that

∆⅛(ε)=-pε2∕Ωc , p ≡2Ωn'+Ω2n" , (2.6)

where p is a dimensionless factor for which a typical value might be Ip I-0.1. One can 

now introduce frequencies ε1 and ε2 at which the medium begins to be badly 

mismatched:

IΔ⅛(ε1)L I =1 ==> ε1 = lpΓl'2(Ωc∕L)i'2, (2.7a)

l∆⅛(ε2)∕2gol =1 =* ε2= Ip Γ,z2(2Ωcg0)lz2. (2.7b)

The bandwidth ∆∕2π over which the DPA is phase matched can be defined as
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∆∕2π≡π ,min(ε],ε2)≪Ω∕2π (2.8)

B. Conditions for classical pump

The pump wave is, of course, not completely classical. Its monochromatic excita

tion at frequency Ωp is inevitably accompanied by quantum fluctuations, which lead to 

fluctuations in the pump amplitude and phase. The limit in which the quantum fluctua

tions can be totally ignored and the pump is strictly classical is not just the limit of a 

very strong pump; rather, it is that the pump amplitude Ap → ∞, while the nonlinear sus

ceptibility χ(2) → 0, in such a way that the dimensionless nonlinearity α0°cχ<2Up (or the 

nonlinear gain g0) is held constant. Knowing this limit, however, does not tell one 

whether the pump in a given DPA can be treated classically to a good approximation. 

Indeed, the important practical question concerns a given nonlinear medium with a 

fixed value of χ(2)—not a fixed value of α0. One would like to know, given χ(2), the 

range of pump powers Pp for which the pump is approximately classical.

There is a simple heuristic argument14 for the dominant effect of pump quantum 

fluctuations. If the DPA were powered by a classical pump, it would produce ideal 

squeezed light at phase-matched signal frequencies. Such ideal squeezed light can be 

represented in a complex-amplitude diagram by an ellipse1516 with radius e-i°i for the 

squeezed quadrature and radius egjj for the amplified quadrature (ellipse with solid lines 

in Fig. 1). The orientation of the ellipse is determined by the phase of the pump; in Fig. 

1 the pump phase is chosen so that the ellipse with solid lines is oriented along the real 

and imaginary axes.

The dominant effect of pump quantum fluctuations arises from the phase fluctua

tions, which have characteristic size ∆φp = l∕2Npl2= l∕2∕4p. Here Np is the number of pump
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photons, and 4 is a dimensionless pump amplitude in photon units. The pump phase 

fluctuations cause the orientation of the ellipse in Fig. 1 to fluctuate, as indicated 

schematically by the dotted ellipse. The characteristic angle through which the ellipse 

turns is ∆φ=∆φp∕2 = l∕44 ■ These orientation fluctuations feed noise from the amplified 

signal quadrature into the squeezed signal quadrature, thereby degrading the squeezing. 

The characteristic size of the noise added to the squeezed quadrature is ∆φe*"t. Thus the 

condition for a classical pump is

∆⅛egj' =eg’L/44p«e~g°L ==⅛ 4>>je2*"i' = . (2.9)

One sees in this condition the limit for a strictly classical pump: α0=constant, 4 →∞.

Missing from the preceding argument is any hint of how to relate the physical 

pump amplitude Ap to the dimensionless amplitude 4 ∙ That relation requires identify

ing an appropriate bandwidth. The pump quantum fluctuations can be regarded as aris

ing from vacuum fluctuations in unexcited frequencies near Ωp, which are coupled to 

signal frequencies by the parametric nonlinearity. The size of the phase fluctuations— 

and, hence, the effective number of pump photons—depends on the bandwidth of 

nearby frequencies that must be considered. Clearly this pump bandwidth Δ ∕2π is lim

ited by phase mismatching, which means that frequencies sufficiently far removed from 

Ω,p are not effectively coupled to frequencies in the signal field.

Given a pump bandwidth ∆p∕2π, one can identify the number of pump photons as

∕y s—----- =—------χ2_
p hΩ,pΔp∕2π 4n0hΩpΔp p

(2.10)

Here

Δvac=(4∕j0ftΩpΔp∕cσ)1'2 (2.∏)
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is an effective amplitude for the pump quantum fluctuations; it corresponds to a vacuum 

power Pvac=(cσ∕8π∏0)A 2ac =⅛ΩpΔp∕2π. Notice that the variance in the pump phase is

(Δφp)2=l∕4Np =(⅛Ωp∕4Pp)(Δp∕2π). (2.12)

It is useful to introduce a dimensionless nonlinear susceptibility

^vac “
o⅛ = 2π⅞<2⅛vac
4 «ο

(2.13)

which measures the intrinsic nonlinearity of the medium in units of the pump vacuum 

amplitude.

Now write the condition (2.9) for a classical pump as

Xp≫-j-exp[2αvac(ΩΔ∕c)√7p] . (2.14)
For a given nonlinear medium with a fixed value of αvac(ΩL∕c), there is a restricted range 

of pump amplitudes for which the pump is approximately classical. The upper end of 

the range is determined by the solution of

4nax=~-exp[2αvac(ΩL∕c)4nra] ; (2.15)
to be approximately classical, the pump must have dimensionless amplitude Ap much 

bigger than 1, but somewhat smaller than ∕fmax. Rewritten in terms of physical parame

ters, the condition for a classical pump becomes

n 1 t,c∖ r
P„ »—⅛Ω. —- exp p 16 p 2π f 8π

n∩2
Ω,L

co

1/2

(2.16)
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These considerations hinge on knowing the pump bandwidth ∆p∕2π. One’s first 

guess might be that ∆f ∕2π is about the same size as the phase-matched bandwidth ∆∕2π, 

but our detailed calculation in Section 3D confirms the preceding argument and shows

that within our model

Δp∕2π=cg0∕Ωln,∣ , (2.17)

which is typically smaller than ∆∕2π.

Previous analyses of pump fluctuations in a DPA have idealized to a few discrete 

modes; thus they do not address bandwidth questions. Wodkiewicz and Zubairy17 spe

cialized to a single-mode pump and a single-mode signal, and they analyzed classical 

fluctuations in the pump amplitude and phase. Their result is consistent with the above 

argument, with ∆φp given by classical phase diffusion instead of quantum fluctuations. 

Hillery and Zubairy14 considered a single-mode pump and a single-mode signal, and 

they evaluated the effect of pump quantum fluctuations by using a path-integral 

analysis. Their result is consistent with the preceding argument. Scharf and Walls18 spe

cialized to a single-mode pump and a two-mode signal (signal and idler modes), and 

they did a detailed asymptotic analysis of pump quantum fluctuations. In their analysis 

the dominant effect of pump quantum fluctuations is an error tenn eiglirUWΑAp (in our 

notation), a bigger effect than the dominant effect e*"S'4√7z, suggested by the above argu

ment. If the Scharf-Walls result is correct, then pump quantum fluctuations are more 

serious than our analysis indicates.
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C. Spatial Langevin equations

We are primarily interested in the behavior of the signal field. Propagating toward 

the nonlinear medium from the vacuum region z <0 is the input signal field, a free field 

whose positive-frequency field operators can be written as

βf+) =D^ =E^ = fd tn lj in *^j in Jo
do)2π 2πftω

cσ

1/2

αin(ω)e iω(z∕c -f) , z <0 , (2.18)
where the integral runs over a bandwidth βj about Ω, which contains all relevant signal 

frequencies. The operators <zin(ω) and ⅛(ω) are annihilation and creation operators for 

the input signal field; they satisfy continuum commutation relations

[αto(ω),α∕ (ω')]==2πδ(ω-ω'). (2.19)

The total energy (power integrated over all time) transported by the input signal field 

through a surface ∑ = constant is
∫p ^⅛ωα∕(ω)ajn(ω).

Similar considerations apply to the output signal field, which propagates away 

from the nonlinear medium into the vacuum region z >L. We denote it in the same way 

as the input signal field, but with “in” replaced by “out.”

Inside the nonlinear medium we write the signal field in terms of a temporal 

Fourier expansion. The positive-frequency part of the magnetic field operator is given 

by

jgW= f ĵSj(ω,z>,<fa-ω'∖ k=am(<a)∕c, 0<∑<L,
2π

(2.20a)

B,(ω,z)= c
1/2

2πn (ω)Zιω∕j(ω)y5(ω) CO

1/2aj(ω,z) (2.20b)



-40-

Here vg(ω)≡(dk∕dω) 1 is the group velocity in the medium.

If there were no nonlinearity, the Fourier components βt(ω,z) would have no z 

dependence, and the displacement field operator Dst+> and the electric field operator Eti+, 

would have Fourier expansions similar to Eq. (2.20a), with 

Dj(ω) = t∏(ω)]⅛j(ω)==∏(ω)βj(ω). In addition, the energy transported by the signal field 

through a surface z = constant would be

∫pJ^⅛ω√(ω)αj(ω)

[the group-velocity factor in Eq (2.20b) is included to ensure this form]. Since the non

linearity is small, we ignore the energy stored in the nonlinear polarization; hence we 

can write the total energy transported by the signal field through a surface z = constant in 

the nonlinear medium as

∫p hωa∕(ω,z)as(ω,z).

Thus the operators αr(ω,z) are Fourier components normalized to be in photon units.

These considerations show that if there are no reflections at the input and output 

surfaces (perfect antireflection coatings), then appropriate boundary conditions are

αj(ω,0)=σin(ω), αout(ω)=αi(ω,L). (2.21)

A priori one does not know the commutators of the Fourier components αj(ω,z), because 

knowing them would require knowing the nonequal-time field commutators. Nonethe

less, in this simple case of plane waves propagating in one direction with no reflections, 

the above boundary conditions specify the commutators for as (ω,0) and ast(ω',0) and also 

the commutators for ai(ω,L) and ast(ω',L). Further, since the output boundary could be
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put at any value of z, one in fact knows the equal-position commutators for any value of

[αj (ω,z ),√(ω',z )]=2πδ(ω - ω') (2.22)

Besides the signal field one also needs the pump field. Inside the medium we 

expand the pump’s magnetic field operator as

Bpw= ∫fc , k0=ωn0∕c , 0<z<L ,

Bp (ω,z ) = i iAp ei φ' 2πδ(ω - Ωp )+ 2πn0⅛ω 1/2

cσ
¾,(ω,z)

(2.23a)

(2.23b)

Here the integral runs over a bandwidth βp about Ωp, which contains all relevant pump 

frequencies. The first term in Bp(ω,z) is the strong mean pump field, and the second 

tenn represents fluctuations about the mean. Considerations identical to those for the 

signal field show that ¾,(ω,0) and <zp(ω,L) are input and output annihilation operators at 

frequency ω. Throughout our analysis we assume that, aside from the strong excitation 

at frequency Ωp, the input pump field is in the vacuum state.

We would like to include in our description absorption and dispersion in the signal 

field, but there is a difficulty in doing so. The equations that we use to describe the 

nonlinearity are an operator version of the macroscopic Maxwell equations, which are 

the Heisenberg equations derived from an appropriate Hamiltonian. It is difficult to 

include losses and dispersion in such a Hamiltonian formalism.13 Therefore, we 

separate the losses and dispersion from the nonlinearity by using a trick (Fig. 2). Sup

pose that we have managed to propagate the signal and pump fields to position z in the 

medium and we wish to propagate them a further small distance ∆z. We replace the 

actual medium between ∑ and z +∆z by a beam splitter followed by a slab of ideal
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nonlinear medium, which has no absorption and no dispersion. The reflectivity of the 

beam splitter accounts for losses, and frequency-dependent phase shifts at the beam 

splitter introduce dispersion. The ideal nonlinear medium has uniform index of refrac

tion ∕ι0 and nonlinear susceptibility χf2∖

The problem that must be solved is to relate the fields entering the actual medium 

at ∑ +Δ∑, i.e., the Fourier components <⅞(ω,∑ +Az)e*(z+Ä2) and αp(ω,z +Δz)√mz+δz∖ to the 

fields leaving the actual medium at z, i.e., the Fourier components as(ω,z)eik and 

ap(ω,∑)e'k°z (Fig. 2). To do this we need to know how to propagate the fields through the 

beam splitter and the ideal nonlinear medium.

As a first step we need to describe the fields within the ideal nonlinear medium. 

We denote these fields by a subscript 0, and we write each field operator as a sum of a 

signal field and a pump field. For example, the positive-frequency part of the magnetic 

field operator within the ideal nonlinear medium is

D (+) _ D (+) . D (+) π0 φz30∕> ∙

The signal and pump fields are written in terms of temporal Fourier transforms:

(2.24)

(2.25a)

Ί 1/22π∕ι0Λω
B0j(ω,ξ) = Æ 0j (tθ>⅜) î (2.25b)

B0p (ω,ξ) = ±iAp √φ'2πδ(ω-Ωp ) +
(2.26a)

2π∕ι0ftω 1/2

<⅞i,(ω,ξ) (2.26b)

(z<ξ<z+∆z). Just as before, the operators alk(ω,ξ) and α0p(ω,ξ) give the energy
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transported in photon units, so it is appropriate to impose boundary conditions in terms 

of them.

The beam splitter transforms the fields that leave the actual medium at z before 

they reach the slab of ideal medium. Since the beam splitter has no effect on the pump 

field, the appropriate transformation at pump frequencies is

α0p(ω,z)=αp(ω,z). (2.27)

At signal frequencies the beam splitter has frequency-dependent reflectivity 

γ(ω)∆z, which thus becomes the loss in photon units at frequency ω within the slab ∆z. 

In other words, γ(ω) is the absorption coefficient (loss per unit length) of the actual 

medium. To conserve energy (or to preserve unitarity), the beam splitter must have a 

second input port, into which propagates a free field with annihilation operators ⅛j(ω), 

satisfying continuum commutation relations

t¼(ω),fr∕(ω')] = 2πδ(ω-ω,). (2.28)

This auxiliary signal field accounts for fluctuations associated with absorption; it is 

assumed to be in the vacuum state. The transfonnation law for the beam splitter at sig

nal frequencies is

<z0j(ω,z)e'*"z =β'ωΔ"(ω)Δί/7[ί-γ(ω)Δζ],/2αί(ω,ζ)ε'ΐζ +(γ(ω)∆z],z⅛j(ω)e'fe} . (2.29)

The phase factors eik' and e'*°z are included so as to match the phase of the field leaving 

the actual medium to the phase of the field entering the ideal medium. The frequency- 

dependent phase shift at the beam splitter, ω∆zz(ω)∆z∕c, where ∆zj(ω)≡zz(ω)-zzo, is simply 

the additional phase shift required to account for dispersion in the actual medium within 

the slab ∆z.
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It is useful in what follows to write Z>j(ω) as an integral over a continuum of contri

butions within the slab ∆z :

J,z + ∆z
4ξ⅛r(ω,ξ) ∙ (2.30)

z

The operators ⅛i(ω,ξ) obey the commutation relations

f⅛j (ω,ξ),Z√(ω',ξ')] = 2πδ(ω -ω')δ(ξ- ξ'). (2.31)

At the far end of the slab, the appropriate boundary conditions to get back into the 

actual medium are

ap{a>,z +Δz)=α0p(ω,z +∆z), (2.32)

aj(ω,z +Δζ>Λ(ζ+Δζ)=αΟΐ(ω,ζ +Δζ>'^+Δζ). (2.33)

Just as above, the phase factors in Eq. (2.33) match the phase of the field leaving the 

ideal medium to the phase of the field entering the actual medium.

What remains now is to propagate the field through the slab of ideal nonlinear 

medium. If we describe the nonlinearity by a susceptibility χ(2), then the Heisenberg 

equations for a lossless, dispersionless nonlinear medium are simply an operator ver

sion of the macroscopic Maxwell equations, supplemented by a constitutive relation.13 

The two important Maxwell equations are c~,3D^∕3i = -3β^,∕3ξ and 9E⅛θ∕3ξ 

=-c-1θβ^∕9f, where q can stand for either s or p. We choose to write a constitutive 

relation for the electric field in terms of the displacement field,13 rather than the usual 

relation for the displacement field in terms of the electric field. Thus we use a nonlinear 

susceptibility η(2)=«ο6Χ(2)· Decomposed in tenns of signal and pump fields, the constitu

tive relation becomes
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E^=n02D^-Smi]^D^D^, (2.34a)

E^ = n^D W-4πηW[D «J2 . (2.34b)

By plugging the Fourier expansions [Eqs. (2.25) and (2.26)] into the Maxwell 

equations and the constitutive relation and by keeping only the highest-order tenns in 

c⅛<<l and α√4<<0⅛> we find the following two spatial propagation equations: (i) a sig

nal equation,

4α0j(ω,ξ)
= -go

ω(Ω -ω) 1/2

e2'Λz0ζ(Ω -ω,ξ)

ωω (ω - ω)
ΩΏ„

1/2 αor(ω',ξ) t, , eλ 
-ω'ξ> (2.35a)

Ω

, . £o r dω 4 ⅛ 2π
and (ii) a pump equation,

<⅛0p(ω,ξ) _ j~ g0 , jω' 
4ξ -2^4^⅛^2iΓ

toω'(ω-ω')
Ω2Ωp

lz2a0j(ω',ξ)a0j(ω-ω',ξ)(∆√2π)υ2 (2.35b)

The first term in the signal equation is the primary effect of the parametric nonlinearity. 

It is the standard nonlinear coupling, mediated by the pump at frequency Ωp, between 

signal frequencies ω=Ω+ε and Ωp-ω=Ω-ε. The second term is an integral over 

equivalent couplings mediated by initially unexcited pump frequencies ω' within the 

bandwidth βp ; it includes the effects of pump quantum fluctuations. The pump equation 

describes an integral over nonlinear couplings between a pump frequency ω and signal 

frequencies ω' and ω-ω'; it includes, for example, the effects of pump depletion.

Equations (2.35) are the desired equations for propagation through the slab of 

ideal nonlinear medium. If we assume that the slab is sufficiently thin that ^0∆∑≪l, 
then we can approximate the solutions of Eqs. (2.35) as
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α0i(ω,z + Δz)=α0j(ω,z) +
α0p(ω,z +Δz)=i70p(ω,z) +

0j (g),⅞)

4ξ

<⅛op(ω,ξ)
4ξ

Δζ , 
ξ = *

(2.36a)

(2.36b)

If we further assume that ry(ω)∆z≪l and ω∆zι(ω)∆z∕c≪l and linearize in these quantities, 

we can combine Eqs. (2.27), (2.29), (2.32), (2.33), (2.35), and (2.36) to relate the fields 

entering the actual medium at z +∆z to the fields leaving the actual medium at z. By 

taking the limit ∆z → 0 and simultaneously introducing the operators bs (ω,ξ) of Eq. 

(2.30), we can rewrite these relations as two spatial differential equations: (i) a signal 

equation,

das(ω,z) I-l-.------ =-⅛K(ω,z)
dz 2

~8o
ω(Ωp -ω) 1/2

Ωz
e2'V'w∙ω)z√(Ωp-ω,z)

+ [γ(ω)]1⅜i(ω,z)

. go r dω +l 4 ¼ 2π ωω (ω - ω) 
Ω2Ωn

1/2
,ι∆i(<a <Δ√2,,)'≈m0,-wz,∙ <2'37a>

and (ii) a pump equation,

<⅛p(ω,z) _ £ g0 , do) 
dz 2 √4p ⅛∙ 2π ωω∖ω - ω,)

Ω2Ωn

1/2 -,Δ∕Γ(ω,m)z °s (ω ,Z (ω ω )(∆√2π)lz2 (2.37b)

These two equations are the spatial Langevin equations for our model of a DPA. The 

quantity
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ω∆fi(ω) (ω,-ω)∆n(ω'-ω)
c c c

(2.38)

characterizes the phase mismatching between a pump frequency ω' and signal frequen

cies ω and ω'-ω.

The first term in the signal equation (2.37a) describes attenuation that is due to 

absorption, and the third term represents the fluctuations associated with absorption. 

The second and fourth terms are a consequence of the parametric nonlinearity; they are 

the same as the equivalent terms in the signal equation (2.35a) for an ideal medium, 

except for the presence of phase-mismatching factors. The characteristic size of the 

pump-fluctuation tenn is 1∕√(, times the size of the primary nonlinear term. The pump 

equation (2.37b) differs from the pump equation (2.35b) for an ideal medium because 

of a phase mismatching-factor.

The spatial Langevin equations (2.37) display clearly the classical-pump limit: 

g0=constant, Λp →∞. In this limit the pump-fluctuation term in the signal equation goes 

away, and the pump is decoupled from the signal field.

It is instructive at this point to contrast our approach with the wave-packet formal

ism developed by Tucker and Walls,12 which has been applied to a DPA by Lane et al.'9 

In our approach, because we work in the temporal Fourier domain, frequency matching 

is enforced exactly. Just as in the usual classical analysis, phase mismatching appears 

as a mismatch ΔAr(ω',ω) between wave numbers whose corresponding frequencies match 

exactly. Tucker and Walls idealize to an infinitely long medium so that wave-number 

matching is enforced exactly. In their fonnalism phase mismatching appears as a 

mismatch between frequencies whose corresponding wave numbers match exactly.

Before going further, we make a series of simplifications. We assume that the 

absorption coefficient is constant over the signal bandwidth, i.e., γ(ω)=γ; we ignore the
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variation of the square-root-of-frequency factors in Eqs. (2.37); and we choose the 

pump phase to be φf=2φ=0. With these assumptions it is convenient to rewrite Eqs. 

(2.37) in tenns of deviations of signal and pump frequencies from Ω and Ωρ:

das (Ω + ε,z ) ∣

dz 2 γ<7s(Ω + ε,z)-g0e"ufι≠α∕(Ω-ε,z)+γlz⅛i(Ω+ε,z)+P(ε,z), (2.39a)

⅜(Ωf,+ε,z) = 2, p dz_e-,∙M(ε'√-e)z ⅞(Ω + εz,z)⅞(Ω + ε-εz,z) 
dz 2 Λp ∙'-~ 2π e (Δ-∕2π)lz2(∆√2π)1 (2.39b)

Here tire pump-fluctuation term is given by

P(ειz)≡4M" ei^∙^ ⅞<⅞+ε ⅛∕(Ω-εz,z), (2.39c)
Æ J-∞ 2π n∙rr∖i^(∆√2π),

and the phase mismatching has been redefined in terms of

Δ⅛(ε,εz) ≡ΔK(Ωp + ε-εz,Ω+ε) = - (Ω + £)Δ”(Ω + ε). _ (Ω-εz)Δ∏(Ω-εz) , (2 4θ&)

∆⅛(e)≡∆fc(ε,ε)= - (g-+£>A"(Q+£> _ (Ω-ε)Δn(Ω-ε) (2.40b)

[cf. Eq. (2.4)]. In Eqs. (2.39) we formally extend the integration limits to ±∞, anticipat

ing that in the calculations of Section 3D, the phase-mismatching factors provide a 

natural cutoff for the integrals.

We now introduce quadrature-phase amplitudes716·20 for the signal field, defined by

<*ι(ε,z ) ≡ y [αj (Ω + ε,z )+α∕(Ω - ε,z )], (2.41a)

o⅛(ε,∑ ) ≡ - y [<7j (Ω+ε,z ) - √(Ω - ε,z )]. (2.41b)
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Tħe quadrature-phase amplitudes are the Fourier components of the quadrature phases 

of the signal field, defined with respect to frequency Ω. Evaluated at z =L, they contain 

the spectral information about the squeezing produced by the DPA. They are defined 

here with respect to a phase such that when <j>p =0, the α, quadrature shows maximum 

squeezing near degeneracy. The frequency argument ε of a quadrature-phase amplitude 

is always assumed to be nonnegative.

Suppose that the output of the DPA is detected by a balanced homodyne detec

tor.2’22 If the detector is ideal, the quadrature-phase amplitudes (multiplied by an 

appropriate factor) give the Fourier components of the differenced photocurrent at the 

output of the detector.7-23 Hence they provide the spectrum of the differenced photo

current. Specifically, if the phase of the local oscillator powering the homodyne detec

tor is chosen so as to display maximum squeezing for the phase-matched frequencies 

near degeneracy, then α1(ε) gives the Fourier component at rf frequency ε of the differ

enced photocurrent.

We find it useful to introduce another set of quadrature-phase amplitudes,

α1(ε,z)≡-j-[e-"wiε^z2iij(Ω+ε,z)+e'2wwzz2α∕(Ω-ε,z)] - (2.42a)

¾(ε,z)≡-ί[ί’-'Μ(ε)ζ%(Ω+ε,ζ)-ζ»^'ε>ζ/2α;(Ω-ε,ζ)], (2.42b)

which are related to the original quadrature-phase amplitudes by a frequency- and 

position-dependent rotation:

α1(ε,z)=α1(ε,z)cos[Δfc(ε)z∕2]+α2(ε,z)sin[ΔA-(ε)z∕2], (2.43a)

α2(ε,z ) = - α1(ε,z ) sin[∆∕< (ε)z /2] + cc2(ε,z ) cos[∆⅛ (ε)z /2] (2.43b)
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Evaluated at z=L, these barred quadrature-phase amplitudes also contain the spectral 

information about the squeezing produced by the DPA, but with some of the effects of 

phase mismatching removed. To detect these barred quadrature-phase amplitudes, one 

would have to vary the phase of the local oscillator in a homodyne detector as a func

tion of rf frequency ε.

We now put the signal equation (2.39a) into the form that we use in Section 3 by 

writing it in terms of the barred quadrature-phase amplitudes:

-= -⅛o+⅛αι(ε,z) + -∣-M(ε)o⅛(ε,z)+γιz2βι(ε,z)+P1(ε,z), (2.44a)
az 2 2

= + (g0-⅛α2(ε,z)-yM(ε)α1(ε,z)+γ,'2β2(ε,z)+P2(ε^) ∙ (2.44b)
az 2 2

Here

^l(e,z) = ^-[e~i&k^l2bs(Q.+e,z) + ei&k{£)z/2bst(Q,-e,z)], (2.45a)

β2(ε,z)≡ -^[β"'Μ(ε)ζ%(Ω+ε,ζ)-6'Μ(ε)ζ/2&/(Ω-ε,ζ)] (2.45b)

are quadrature-phase amplitudes for the fluctuations associated with absorption, and the 

pump-fluctuation terms are defined by

P1(e,z) = y[e-''M(e)l/2P( + c>z)+e'M<E)2/2Pi(-e,z)], (2.46a)

P^,z)≡-^[e~iιik^aP{ + Z,z)-ei^l2Pt{-z,z)} . (2.46b)

Equations (2.44) show that the primary effect of the parametric interaction is to deam- 

plify (squeeze) the α, quadrature and to amplify the o⅛ quadrature. This primary effect
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is degraded by absorption and phase mismatching.

3. MODEL PREDICTIONS FOR SQUEEZING SPECTRA

A. Solution of signal equations

We can write a formal Green function solution of the signal equations (2.44) for 

the barred quadrature-phase amplitudes:

αn, (ε,z ) = ∑ G,nn (ε,z )αn (ε,0)
n = l,2

+ £dz'Gmn(z,z -z')[γlz2βn(ε,∕)+Pπ(ε∕)⅛ , m = 1,2 . (3.1)

Here the Green function matrix is given by

G11(ε,z)≡e-^2^≠^l-μ2 (3.2a)

— ,n egz -li2∕>~*zG22(ε,z)≡e-^2g μξ
ι-μ

(3.2b)

G12(ε,z)=-G21(ε,z)=μe ι-μz (3.2c)

where

g=g(e)≡{gt-[Δk(ε)∕2Y}2)1/2

μ=μ(ε)= ∆⅛(ε)∕2go+S(ε)
(3.3a)

(3.3b)

The Green function matrix represents the familiar classical solution for a DPA with
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phase mismatching and absorption. Of course, only in the classical-pump limit, where 

the pump-fluctuation terms P„ vanish, does Eq. (3.1) give an actual solution of the sig

nal equations. In the presence of pump fluctuations, Eq. (3.1) is an integral equation, 

which can be used as the starting point for an iterative solution procedure.

If ε lies well within the phase-matched bandwidth ∆∕2π [Eq. (2.8)], then Δfc(ε)→0. 

Thus the barred quadrature-phase amplitudes become the same as the unbarred 

quadrature-phase amplitudes and, in addition, g(ε)→g0 and μ(ε)→0, so that the Green 

function matrix becomes diagonal, with the diagonal elements given by

G11(ε,z)=e-^⅜"^ , G22(ε,z)=e ẑ⅞^ . (3.4)

This is the classical solution for a phase-matched DPA with absorption; the parametric 

interaction deamplifies (squeezes) the α1 quadrature and amplifies the α2 quadrature.

B. Squeezing spectrum

Our goal is to calculate squeezing spectra for the light generated by our model 

DPA. Spectral information about the squeezing produced by the DPA is contained in 

the spectral-density matrix7,16’20·23 Smn(ε) of the output quadrature-phase amplitudes 

α,n(ε,L). The spectral-density matrix arises from second-order noise moments of the 

quadrature-phase amplitudes:

<Δα,7(ε',L)Δαπ(ε^)>synl=πδ,mn(ε)δ(ε-ε'), m,n=l,2. (3.5)

Here, for any operator O, ∆O≡O-<O>, and sym denotes a symmetrized product. A 

similar spectral-density matrix can be defined for the barred quadrature-phase ampli

tudes:

<∆α,7 (ε',L)∆αn (εΛ )>,ym=πSmn (ε)δ(ε-ε'). (3.6)
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These two spectral-density matrices are related by

S11 = S1J cos2(ΔfcL /2)+5,22 sin2(Δ½L /2)
-(5,ι2 + S,2i)cos(ΔfcL∕2)sin(ΔfcL∕2), (3∙7a)

S 22 = S11 sin2(ΔAL /2) + 5 22 cos2(ΔfaL /2)
+ (S 12+S2ι)cos(Δ⅛L∕2)sin(Δ⅛LZ2), (3.7b)

512=5*2 j = (S J1 - S22) cos(ΔkL /2) sin(∆fci /2)
+5,12 cos2(ΔfcL /2)—Δ, 2, sin2(ΔAL /2), (3.7c)

where ∆⅛ =∆λ(ε).

We are primarily interested in the spectrum of the squeezed quadrature, i.e., S11 or 

51,. As noted in Section 2C, 5,11(ε) gives the spectrum of the differenced photocurrent in 

an ideal balanced homodyne detector, when the phase of the local oscillator is chosen 

so as to display maximum squeezing for the phase-matched frequencies near degen

eracy. The spectrum 5n(ε) would apply if one suitably varied the phase of the local 

oscillator as a function of rf frequency ε.

We must also specify the spectra of the input signal field and the auxiliary field 

associated with absorption. We assume that both are in the vacuum state, which means 

that their first moments vanish and that their second moments are given by

<ot,f1(ε',0)απ(ε,0)>sym=<α,^(ε',0)αn(ε,0)>sym = yπδmnδ(ε-ε'), (3.8a)

(3.8b)
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Recall also that we assume that the input pump field is in the vacuum state, aside from 

the strong excitation at frequency Ω,p.

In the classical-pump limit (Pm=0), it is straightforward to calculate the output 

spectral density matrix 5mn(ε) in tenns of the Green function matrix:

⅛(ε)=- ∑
z p = 1,2

G4(εΛ)Gψ(ε,L)+γJjj dz G^(tl-^Gnp(ε^-z) (3∙9)

The first term in this spectral-density matrix comes from the vacuum fluctuations in the 

input signal field, processed through the parametric interaction; this first term includes 

phase mismatching and attenuation that is due to absorption. The second term arises 

from the fluctuations associated with absorption. It is an integral over fluctuations 

injected at positions z within the medium; after a fluctuation is injected at z, it is pro

cessed through the remainder of the nonlinear medium between z and L.

If we assume further that ε lies well within the phase-matched bandwidth ∆∕2π, 

then Smn{ε)=Smn{ε) becomes diagonal, with the diagonal elements given by

F r ∕ X 1 γ+2g0e^^cγ+2^i,
S,,ω=S,,(ε)=y------ γιigi------ , (3.109)

- 1 Ύ-2?η^_(γ_2ί°)ί'⅛(ε)⅛(ε)=4 r.... --------------- . (3.10b)
2 y-2g0

This is the familiar situation of squeezing competing with losses. In the absence of 

absorption, Eqs. (3.10) reduce further to the spectra for ideal squeezing:

5u(ε)=∣e-⅛"t , S22(ε) = ~e2g^ . (3.11)
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C. Phase mismatching

The preceding analysis can be applied immediately to investigate the effect of 

phase mismatching on the squeezing spectrum. To isolate the phase-mismatching 

effect, we assume that there is no absorption (γ=0) and that the pump is classical 

(P,n =0). Then the spectrum of the α1 quadrature becomes

Sn(ε) = ∣[IG11(εΛ)l2+ ∣G12(ε,L)l2]. (3.12)
The significance of phase mismatching for 511(ε) is quantified by the dimensionless 

parameter

∆fc(ε)∕2go=-φ∕lp l)(ε∕ε2)2 (3.13)

[cf. Eq. (2.7b)]. We assume that l∆⅛(ε)∕2gol≪l, i.e., ε<<ε2, and we then expand in 

l∆fc(ε)∕2gol, keeping only the largest corrections to ideal squeezing. Under these cir

cumstances, one sees that g =g0 and

μ(ε)=∆fc(ε)∕4go= - ±-(p∕ ∖p I )(ε∕ε2)2 . (3.14)

When there is at least a moderate amount of squeezing, i.e., g0∆ is somewhat larger than 

1, the largest correction to ideal squeezing is the one that grows fastest with g0Z,. This 

means that we can approximate

Gn(εΛ)=e^g"t , G12(ε,L)=μ(ε)e*°i , (3.15)

which leads to a squeezing spectrum

5∏(ε)=y
e-2^+[μ(ε)]2c¾"iJ-∣ i,-W+l(εyε2)4e2χ√, (3.16)
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The dominant correction to ideal squeezing arises because phase mismatching 

feeds a fraction lμ(ε)l of the amplified quadrature into the squeezed quadrature. In 

order to neglect phase mismatching and have ideal squeezing in the spectrum S11(ε), one 

requires

lμ(ε)les°L«e~gli => ε≪2l⅛^gtt . (3.17)

To explore the effect of phase mismatching on the squeezing spectrum 511(ε), one 

needs to consider an additional dimensionless parameter

Δk(ε)L =-(p∕∖p l)(ε∕ε1)2 (3.18)

[cf. Eq. (2.7a)]. Assuming that IΔA(ε)LI≪l and performing a similar analysis to find 

the largest correction to ideal squeezing, one finds

5ll(ε)= ^p-2*ai +
Ί 2

μ(ε)-∣Δ⅛(ε)L ,2g0t (3.19)

Equations (3.16) and (3.19) somewhat overstate the deleterious effects of phase 

mismatching.24 A frequency-dependent rotation of the barred quadrature-phase ampli

tudes α1(ε,L) and α2(ε,L) [similar to the rotation of α1(ε,L) and o⅛(εX) in Eqs. (2.43)] by 

an appropriate angle θ(ε,L) diagonalizes the resulting spectral-density matrix Smn(ε). 

This choice of θ(εΛ) minimizes (maximizes) S 11(ε) [S22(ε)]. Keeping only the dominant 

correction to ideal squeezing for g0L somewhat larger than 1 and for ε « ε2, one finds

that

s 1 ,(ε) = ±e-2g'i {l+4[μ(ε)]⅛0L) - ∣e ~2*'i [1 + (ε∕ε2)W ]. (3.20)

The dominant correction arises from the reduction in the nonlinear gain due to phase
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mismatching [Eq. (3.3a)]. In order to ignore phase mismatching and achieve ideal 

squeezing in the spectrum § 11(ε), one requires that

2lμ(ε)l(g0L)lz2≪ 1 -* ε≪ε2WTlz4. (3.21)

Relation (3.21) imposes a much less stringent restriction on the radio frequency ε than 

does expression (3.17).

D. Pump quantum fluctuations

We turn now to an analysis of quantum fluctuations in the pump field. The start

ing point is the fonnal solution [Eq. (3.1)] for the squeezed quadrature αl(ε,L). To sim

plify the analysis and to highlight the effect of pump fluctuations, we assume there is no 

absorption (γ=0), and we assume that ε lies well within the region of perfect phase 

matching (ε≪ε∕'i"i). With these simplifications, we can write

Glπ(ε,z)=δlne-^ , (3.22)

and the formal solution becomes

αt(ε,L) = e-∙s°i0c1(ε,O)+ ζjdz e~g^-zΨ1(ε,z). (3.23)

One can solve Eq. (3.23) by an iterative procedure in which the fundamental 

expansion parameter is lMi,≪l. The procedure is to evaluate P↑(ε,z) to progressively 

higher orders in UAp by plugging in progressively higher-order approximations to the 

signal and pump fields. Here we are interested only in the first-order correction to 

α,(εX), so we can evaluate P ,(ε,z) using the zero-order solutions for the signal and pump

fields.
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Furthermore, we are interested in the dominant effect of pump fluctuations when 

there is at least a moderate amount of squeezing, i.e., g0L is somewhat larger than 1. In 

this case the dominant contribution to Pi comes from the amplified α2 quadrature, so we 

can neglect the contribution to Pi from α,.

With this final assumption in mind, we use Eqs. (2.46a), (2.39c), (2.40), and (2.42) 

to put P1 in the form

nz ∖ f’p>le∙≈,= 2 4-I
2π

,iβfl'(e'-E>∕f ⅞(⅞+ε ε'z) + α∕(⅝ ε + ε,r^q2(Cz Z )(∆p∕2π) 1/2

. ,,r i ι , . dn (Ωσ +ε+ε -,z )+{z∏(Ωn ~ ε—ε ,z ) — + ,
+ c-,i⅛ (ε +ε)zfcJ±2-------------- Lj:--------------------Llaf^ε'tz)

(∆p∕2π)1/2

(3.24)

where we make explicit use of the Taylor expansion (2.5) for the index of refraction.

The next step is to substitute the zero-order solutions into Eq. (3.24). The zero- 

order solution for the pump is that the operators ap(ω,z)=ap(ω) have no z dependence 

(decoupling from the signal), and the zero-order solution for o⅛(ε',z ) is given by the first 

tenn in Eq. (3.1) with γ=0. This step taken, one then performs the integral over z in Eq.

(3.23) . Before proceeding, however, the form [Eq. (3.24)] for P1(ε,z) permits a further 

dramatic simplification.

The phase mismatching factors conspire in Eq. (3.22) to introduce new oscillating 

phase factors eχp[rΩn'(ε'-ε)z∕c] and eχp[-∕Ω∕∕(ε'+ε)z∕c]. Once the integral over z in Eq.

(3.23) is done, these phase factors cut off the ε' integral in Eq. (3.24). The first phase 

factor cuts off the integral when ε' is sufficiently far from ε that the phase factor oscil

lates rapidly on the scale go1 set by the nonlinear gain. Similarly, the second phase fac

tor cuts off the integral when ε' is sufficiently far from -ε. The frequency scale of these
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cutoffs is characterized by a frequency ε3, defined by

Ω∣77'lε3∕c ,
---------------= 1 => ε3 = 2cg0∕Ωln I . (3.25)

⅛o

Notice that ε3 is typically somewhat smaller than ε2 [Eq. (2.7b)]; indeed we assume that

ε3≪ε2e -∙s°z'.

Since by assumption ε lies well within the region of perfect phase matching, and 

since ε, in Eq. (3.24) is restricted to be within about a distance ε3 of ε, we are entitled to 

use in Eq. (3.24) the perfectly phase-matched zero-order solution for α2(ε',z), i.e., 

a2(ε',z) = eg*a2(ε',0). Substituting the zero-order solutions into Eq. (3.24) and performing 

the integral over z in Eq. (3.23), one finds

α1(εΛ )=e ~s°l a1(ε,0)

ι eg°t r°° dε'
⅛Ap « 2π

ι'Ωn (ε-ε)L∕c a (Ω +ε-ε') + apt(ii -£ + £.') - ,

. . Ω,n . ∕ .l+z------(ε -ε)
2c$ 0

(∆,∕2π)
,pv p

1/2 α2(ε ,0)

e-Ωn'(ε'+ε)z,∕c ai,(Ωi,+ε+ε')+a∕(Ωp-ε-ε,)-^,nλ
H------------ r Γn ¾ ,0)
ι-,⅛ε'+ε> <V2π>,'2

2cg0 ' ' J

(3.26)

This equation is the basic result for the dominant effect of pump quantum fluctuations 

on the squeezed quadrature.

The form of Eq. (3.26) [or of Eq. (3.24)] confirms the heuristic argument given in 

Section 2B. The pump field can be decomposed into quadrature phases whose 

quadrature-phase amplitudes are
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ap 1(ε,z ) = y [ap (Ωp + ε,z )+α∕(Ωf, - e,z )], (3.27a)

αp2(ε,z)= -y[ap(Ωp + ε,z)-a∕(Ωp -ε,z)]. (3.27b)

When φ;, =0, the strong mean pump field at frequency Ωp has complex amplitude iAp. 

Thus the ctp2 quadrature represents fluctuations that are in phase with the strong mean 

field, i.e., pump amplitude fluctuations, and the αpl quadrature represents fluctuations 

that are 90° out of phase with strong mean field, i.e., pump phase fluctuations. A glance 

at Eq. (3.26) shows that the dominant effect of pump quantum fluctuations comes from 

fluctuations in the αfl quadrature—phase fluctuations—which feed noise from the 

amplified signal quadrature into the squeezed signal quadrature. The characteristic size 

of this effect is given by the factor egjΙ⅛Λp in front of the integral in Eq. (3.26) [cf. Eq. 

(2.9)]. All that remains now is to use the integral to determine the pump bandwidth 

∆p ∕2π.
Substituting Eq. (3.26) into the expression (3.6), one finds a flat squeezing spec

trum

Sn(ε)= j ∖-⅛i÷'2"i
{ mJ , ε<<ε2e *°t

where the pump bandwidth is defined by

∆p r dε 1 1 ^ ego

(3.28)

(3.29)

[cf. Eq. (2.17)]. As expected, the frequency ε3, which comes ultimately from phase 

mismatching, provides a cutoff for the pump bandwidth.



-61 -

One further point deserves mention. We have calculated the first-order correction 

to α1(ε,L) resulting from pump quantum fluctuations; this first-order correction goes as 

l∕√∕f. Squared in calculating the spectral density, it produces a correction to the spec

trum that goes as 1∕>^. The second-order term in α1(εχ ) due to pump fluctuations goes 

as l∕,√i2. Multiplied by the zero-order solution c-g"iα,(ε,0) in forming the spectral den

sity, this second-order term also yields a correction to the spectrum that goes as 1Z∕^. 

Why have we ignored this correction when it is formally of the same size as the effect 

we have calculated? Because one can convince oneself, either by tedious analysis or by 

clever insight, that the correction to the spectrum due to the second-order term does not 

grow as fast as e2*,'z'. Hence, the correction we have calculated is the dominant effect 

when there is at least a moderate amount of squeezing.
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FIGURE CAPTIONS

Fig. 1. Effect of pump quantum fluctuations on squeezing. Ideal squeezing is 

represented by the ellipse with solid lines. Pump phase fluctuations cause the orienta

tion of the ellipse to fluctuate through a characteristic angle ∆φ=l∕4√(,, as indicated 

schematically by the dotted ellipse. These fluctuations feed noise from the amplified 

signal quadrature into the squeezed signal quadrature.

Fig. 2. Trick for introducing absorption and dispersion (phase mismatching). The 

actual nonlinear medium between z and z +∆z is replaced by a slab of ideal (lossless, 

dispersionless) nonlinear medium preceded by a beam splitter. Reflection at the beam 

splitter accounts for losses, and frequency-dependent phase shifts at the beam splitter 

introduce dispersion.
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Figure 1
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CHAPTER 3

Broadband Squeezing via 
Degenerate Parametric Amplification

by David D. Crouch

A condensed version of this chapter will be published in Physical Review A.
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ABSTRACT

We show that parametric amplification is capable of generating squeezed-state 

light over a wide band if materials with large χ(2) nonlinearities can be found, and that 

the squeezing bandwidth can be enhanced considerably by phase matching away from 

degeneracy. We compare our results with similar results recently found for four-wave 

mixing in an optical fiber.
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Squeezed-state light has been generated recently using degenerate parametric 

amplification in both oscillator’ and traveling-wave2 configurations. In the experiment 

of Slusher et al.,2 pulsed squeezed-state light was generated in a traveling-wave degen

erate parametric amplifier (DPA), using a pulsed pump to increase the effective non

linearity. If materials with larger χ(2) nonlinearities can be found, one could generate 

squeezed-state light over a wide band using a continuous pump. Here we present a 

first-order analysis of a DPA with a cw (monochromatic) pump; we ignore losses and 

pump quantum fluctuations, which have been studied previously,3 but we include 

dispersion.

The spatial differential equation describing the DPA is given by3

i⅛zt(Ω+ε,z)
dz

-goei[^ + ™as\&-Z,z), (1)

where the parametric gain g0 is given by

8oz
2πχpjΩ %πΡ„ 1/2

„3/2no c3σ
(2)

and the phase mismatch ∆⅛(ε) by

ΔJfc (ε) ≡ Kp (2Ω) - k (Ω ÷ ε) - k (Ω - ε) = - [2Ωw (2Ω) - (Ω+ε)n (Ω+ε) - (Ω - ε)n (Ω - ε)]. (3 )
Here φp =2φ is the pump phase, Pp the pump power, Ωp =2Ω the pump frequency, ∏(ω) 

the index of refraction, χ(2) the nonlinear susceptibility (assumed nondispersive over the 

frequencies of interest), and σ an effective cross-sectional area used to account crudely 

for the transverse structure of the waves. The operators as(υ>,∑) are Fourier components 

of the magnetic field operator
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dω c
1/2 2πn(ω)⅛ω2π n (ω)vg (ω) cσ -∣ω[f -w(ω)z∕cj (4)

Here βj is the signal bandwidth, and ',g(ω) the group velocity.

We introduce a set of quadrature-phase amplitudes,3-5 defined by

α1(ε,z ) = y [e -,'<ε>zz2+φl as (Ω + ε,z )+ei [M <ε>z n +φj √(Ω - ε,z )], (5 a)

α2(ε,z)= -^[€-'(Μ(ε)ζ/2+φ]α,(Ω+ε,ζ)-6'ΊΔί(ε)ζ/2+ΦΙα/(Ω-ε,ζ)]. (5b)

The quadrature-phase amplitudes α, and α2 contain the spectral information about the 

squeezing produced by the DPA. If z=L, α,(ε,L) and α2(εX) can be detected by a bal

anced homodyne detector by changing the phase of the local oscillator as a function of 

rf frequency ε.

By combining Eqs. (1), (5a), and (5b) we can write the equation of motion for the 

DPA in terms of the barred quadrature-phase amplitudes,

<∕α1(ε,z) 1 ., .
------, = - g ο «1 (ε,z ) + 77ΔΛ- (ε) α2(ε,z ), (oa)

az 2
Jo⅛(ε,z) 1 . .
—- ----- =^0α2(ε,z)--∆fc(ε)α,(ε,z). (6b)

dz 2

At phase-matched frequencies, where ∆fc(ε)=0, the α1 quadrature is deamplified 

(squeezed) and the α2 quadrature is amplified. At other frequencies, where ∆A-(ε)≠O, the 

phase mismatch degrades the squeezing by mixing part of the amplified quadrature with 

the squeezed quadrature. The solutions to Eqs. (6a) and (6b) are given by

α1(ε,z )=Re [μ(ε,z )+v(ε,z )]a,(ε,0) - Im [μ(ε,z ) - v(ε,z )]o½(ε,0), (7a)
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α2(ε,z)=Im[μ(ε,z)+v(ε,z)]α1(ε,0)+Re[μ(ε,z)-v(ε,z)]α2(ε,0), (7b)

where

μ(ε,z )=coshg (ε)z - sinhg (ε)z , (8a)2g(ε)
v(ε,z ) = —%~ sinhg (ε)z (8b)

S(ε)

when g^>[∆fc(ε)∕2]z, and

μ(ε,z ) = cosA^ (ε)z - sjn^(ε)z ; (9a)2SΓ(ε)
v(ε,z ) = - sin∕Γ(ε)z (9b)

*(ε)

when g g < [ΔΛ (ε)∕2]2. Here

g(ε) = zK(ε) = [g02 -(∆⅛(ε)∕2)2]1z2 . (10)

Spectral information about the squeezing produced by the DPA is contained in the 

spectral-density matrix3“5 Smπ(ε) of the output quadrature-phase amplitudes αl(ε,L) and 

c½(εΛ)ι

<Δa,t(ε'^)Δan(ε,L)>sym =πSmn(ε)δ(ε-ε'), m,n=l,2. (11)
Here, for any operator θ, ∆θ=θ- <θ>, and sym denotes a symmetrized product. Using 

the continuum commutation relation

[a (ω,z ),<z t(o3',∑ )]=2π δ(ω - ω,), (12)
one can show that for a vacuum input
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<Δα,^(ε',O)Δαπ(ε,O)>v,π =yδmnδ(ε-ε,). (13)

Although the barred spectral-density matrix 5m,,(ε) contains all the spectral infor

mation about squeezing, it does not give directly the maximum and minimum spectra at 

each ε. This is obtained by diagonalizing the spectral-density matrix by applying a suit

able frequency- and position-dependent rotation θ(ε,L) to the output quadrature-phase 

amplitudes α1(ε,L) and o2(εΛ). We define α1(ε,L) and α2(ε,Λ) by

α1(εΛ)=α1(ε,L)cosθ+c⅛(ε,L)sinθ, (14a)

α2(εΛ)= -α,(εΛ)sinθ+α2(ε,L)cosθ, (14b)

and the new spectral-density matrix Smn (ε) by

<Δα,t(ε'Λ)Δαn(ε^)>jym = π3rwn(ε)δ(ε-ε'). (15)

Using Eqs. (7a) and (7b), we find that the elements of the rotated spectral-density 

matrix Smn (ε) are given by

£n(ε) = yflμ(εΛ)l2+2Re[μ(ε,L)v(εΛ)e-2iθ]+ lv(εΛ)∣27 . (16a)

5 ,2(ε)=S 21(ε)=Im [μ(ε,L)v(εΛ ) e ~2iθ], (16b)

^22(ε) = ∣(∣μ(ε^)∣2-2Re[μ(ε,L)v(εΛ)e-2iθ]+ Iv(ε∕-)∣2} . (16c)

We diagonalize the spectral-density matrix by choosing θ to satisfy

μ(εΛ)v(ε,L)ε-2'θ= - lμ(εΛ)∣ ∣v(εΛ)l . (17)

The matrix element S11(ε) gives the spectrum of the differenced photocurrent from a
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balanced homodyne detector when the phase of the local oscillator is chosen to yield 

the maximum squeezing at rf frequency ε. The elements of the spectral-density matrix 

resulting from this choice are

S 11 (ε) = -∣ [ I μ(ε,L) I - I v(ε,L) I ]2, ( 18a)

$ 22(ε) = J11 μ(εX ) ∣ + ∣ v(e,L ) I ]2. ( 18b)

Equations (17), (18a), and (18b) are formally equivalent to results obtained recently by 

Potasek and Yurke for four-wave mixing in an optical fiber.6

The frequency dependence of the phase mismatch ∆fc(ε)—and thus the index of 

refraction—must be specified before we can study the squeezing spectrum. Since the 

index of refraction varies only a small amount over the phase-matched bandwidth, we 

can expand it in a Taylor series about Ω,

zj(Ω±ε)=zι(Ω)±z√,>(Ω)ε+y z√2>(Ω)ε2 + ∙ ∙ ∙ , ε<<Ω (19)

where zιω(Ω) denotes the j'h derivative of n evaluated at Ω. One normally assumes 

phase matching at degeneracy, i.e., n(2Ω)=n(Ω). Here we will not make such an 

assumption, but will assume zz(2Ω)=zj(Ω + ε0), where ε0<<Ω. Equation (3) then becomes

∆fc (ε) = [2Ωzj (Ω+ε0) - (Ω + ε)zι (Ω + ε) - (Ω - ε)zz (Ω - ε)]. (20)
c

Substituting Eq. (19) into Eq. (20), we find to fourth order in ε∕Ω,

ΔA- (ε) = - [Δ -p (ε∕Ω)2 - q (ε∕Ω)4], (21 a)

where the dimensionless parameters Δ, p, and q are given by
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Δ=2[n(Ω+ε0)-n(Ω)], (2ib)

p =2Ωn<,>(Ω)+Ω2n<2>(Ω) , (21c)

q = -γ- [4Ω3m <3>(Ω) + Ω4zj w(Ω)] . (21 d)

Phase-matching occurs at frequency Ω+εm where Δ⅛(εm)=0j setting Eq. (2la) equal to 

zero and solving for εm, we find

ε,,, -2jtfm Ω* JL
2q

1± , , 4Δ⅛ 
P2

1/2' 1/2

(22)

We wish to investigate the case where Δ=0 and p =0 simultaneously, so we must 

find a frequency Ωo such that n(2Ω0)=n(Ω0) and p(Ω0)=<k then Δfc(ε)°≈(ε∕Ω)4 varies from 

zero only slowly as long as ε<<Ω. For example, using a modified Sellmeier equation for 

the ordinary refractive index in lithium niobate7 and assuming that phase matching is 

possible at any frequency, we find that p =0 at λ0=2πc∕Ω0= 1.9025pm; we also find that 

p >0 for λ<λ0, p <0 for λ>λ0, and q <0 for all wavelengths in the neighborhood of λ0. In 

the following we will assume g0=1.0m-1, and L = 1.0m. Figure 1 is a plot of the squeezed 

spectral density S (where 5=2511, so that 5=1 is the vacuum level) as a function of 

f =ε∕2π for relatively large values of p. The solid line is for λ=1.935 μm, where 

p = -3.208×10-3 and q = -4.883×10-2. The short-dashed line is for λ= 1.875 μm, where 

p =2.76×10-3 and q = -4.545×10-2. The bandwidth over which squeezing occurs at these 

frequencies can be improved by taking Δ to be nonzero; the result is a nonzero phase

matching frequency, as is seen from Eq. (22). The medium-dashed line in Fig. 1 shows 

the broadened squeezing band for λ= 1.935 μm obtained by taking ∕θ=ε0∕2π=-l GHz, 

resulting in Δ= -7.86×10~7 and, from Eq. (22), a new phase-matching frequency fm =2.42 

THz. The long-dashed line in Fig. 1 shows the broadened squeezing band for
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λ= 1.875 μm obtained by taking ∕0=l GHz, resulting in Δ=7.38×10 7 and a new phase

matching frequency fm =2.62 THz.

Squeezing over much greater bandwidths is obtained near λ0, where p is small. 

The solid line in Fig. 2 shows 5 as a function of f for λ=λ0, where p =0, q = -4.7×l(Γz, 

and Δ=0. In practice, p can be small, but not identically zero. The short-dashed line in 

Fig. 2 is for λ=1.8971 μm, where p =5.39×10^4, q = -4.67×10^2, and Δ=0. Because p and q 

aie of opposite sign, Eq. (22) yields two phase-matching frequencies: one at fm =0 and 

another at fm = 16.99 THz. The long-dashed line in Fig. 2 is for λ= 1.8971 μm and ∕0=l 
GHz, where Δ=7.55×10^^7. Again we have phase matching at two frequencies, f,n =6.39 

THz and ∕m =15.75 THz, resulting in squeezing of roughly 80% or better over a 

bandwidth of 17 THz.

Similar results are obtained for four-wave mixing in an optical fiber.6·8 To derive 

the spatial equation of motion for four-wave mixing, we proceed as in Ref. 3; we prop

agate the field through a slab of ideal (dispersionless) nonlinear medium, and then intro

duce dispersion via the beam splitter method of Ref. 3. Because the signal and the 

pump occupy the same band, we need not treat the signal and the pump separately as 

we did with the DPA. The positive frequency part of the magnetic field operator in an 

ideal nonlinear medium is given by

(23a)

where

B0(ω,ξ)=A0e'^+0>2πδ(ω-Ω)+ 2πnθftω
⅛0(ω,ξ). (23b)

Here Ao (θ) is the amplitude (phase) of the classical pump,
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24πΩχ(3)Αο 48π2Ωχ<3>
1 ~~ ·Λ ■* I
--------  ~ -------- £v-- 2√
3„ m2^2λ Ρ

(24)

is the nonlinear phase shift due to the interaction of the pump with itself, i.e., the optical 

Kerr effect, and P is the pump power. The integral [Eq. (23a)] runs over a bandwidth β 

about Ω that contains all relevant signal frequencies. The Heisenberg equations of 

motion for a lossless, dispersionless nonlinear medium are simply an operator version 

of Maxwell’s equations, supplemented by a constitutive relation.9 As with the DPA, the 

two important Maxwell equations are ί?_,3Ώ^+)/3ί = -3Β^+)/9ξ and 3£<)+)/9ξ= -c~i∂B⅛^∕∂t. 

Once again we write a constitutive relation for the electric field in ternis of the displace

ment field rather than the usual relation for the displacement field in terms of the elec

tric field. The resulting constitutive relation is

£ W =D<p∕n* -(12πχ'3¼√)[D<+>]M> . (25)

By plugging the Fourier expansion [Eqs. (23a,b)] into the Maxwell equations and 

the constitutive relation and by keeping only the highest order tenns in γ, we find the 

spatial propagation equation

<⅛0(Ω + ε,z )
dz

=2i yb 0(Ω + ε,z ) + i ye 2, + % ο (Ω - ε,z ). (26)

If we then use the beam splitter method to introduce dispersion, we find

dbs (Ω+ε,∑ )
dz

(27)

where

Mj(ε)≡2∕ς(Ω)~^(Ω + ε)~-Ar(Ω-ε)=-[2Ω∏(Ω)-(Ω + ε)∏(Ω÷ε)-(Ω-ε)∕i(Ω-ε)]. (28) 
i c
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The magnetic field operator in the dispersive medium is then given by Eq. (4) with 

as (ω,z ) replaced by bs (ω,z ). Introducing bs (Ω+ε,z )=cs (Ω+ε,z ) exp(2z'γz ), we find

dc, (Ω + ε,z ) 
dz

= -yeH∆k,β{t)z +2φ,] †csτ(Ω-ε,z), (29)

where ψi =θ-π∕4 and

Δ⅛rff(ε)=M,(ε)-2γ (30)

Equation (29) has the same form as the equation for the DPA, Eq. (1); the solution of 

Eq. (29) follows from Eqs. (7), (8), and (9) if ∆⅛eff(ε) is substituted for ΔA(ε), γ for g0, and 

φi for φ. The solution so obtained is different from that of the nonlinear Schrôdinger 

equation only in the absence of odd-order dispersion tenns that have been shown by 

Potasek and Yurke6 to have no effect on the squeezing. Using Eq. (20), we expand 

ΔAcff(ε) in a Taylor series:

∆⅛efχε) = ~[∆j -pj(ε∕Ω)2-<∕j<ε∕Ω)4], 
c

(31a)

where

4 = -⅛∙ (31b)

Here ps and ¾ are given by Eqs. (21c) and (21d), respectively. Equations (29) and (31a) 

are the four-wave-mixing analogs of Eqs. (1) and (21 a) for parametric amplification; in 

this sense, four-wave mixing and parametric amplification aie equivalent processes for 

generating squeezed-state light.

Maximum squeezing occurs not when Δfcj(ε)=0, but when ∆⅛cff<ε) = ()j we find the 

“phase-matching” frequencies fs by substituting ps for p,qs for q, and ∆j for Δ in Eq.
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(22). If qs and ∆j aie both negative—as they tend to be for optical fibers—then only 

one real solution fs will exist regardless of the sign of ps. If ∆j could be made 

positive—as is possible with the DPA—then for pj>0 one would obtain two real solu

tions fsl and ∕j2∙ F°r Λ<θ there are no real solutions when Δj>0. It is the possibility of 

obtaining two phase-matching frequencies that distinguishes parametric amplification 

from four-wave mixing in an optical fiber. As we saw in Fig. 2, two phase matching 

frequencies result in squeezing over a very wide band. This is not possible with four- 

wave mixing.

In our example, we have assumed that one could phase match lithium niobate at or 

near λ0= 1.9025 μm, a wavelength somewhat into the infrared. We are not proposing 

lithium niobate as a candidate material for the generation of broadband squeezed-state 

light, but use it merely as an illustrative example. Whether or not suitable materials can 

be found is a problem we have not addressed; the point we wish to make is that if one 

can find a nonlinear material in which it is possible to phase match at a frequency Ω at 

which p(Ω)~0, one can then obtain squeezing over a large bandwidth.
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FIGURE CAPTIONS

Fig. 1. Spectral-density S as a function of detuning f for degenerate parametric 

amplification in lithium niobate; S =1 is the vacuum level. Solid line: λ= 1.935 μm, ∕o=0. 

Short-dashed line: λ=1.875μm, ∕o=0. Medium-dashed line: λ= 1.935 μm, f0=-l GHz. 

Long-dashed line: λ= 1.875 μm, f0 = l GHz.

Fig. 2. Broadened squeezing spectra near λ0=1.9025 μm, where the dispersion 

parameter p=Q. Solid line: λ=λ0, ∕o=0. Short-dashed line: λ= 1.8971 μm, ∕o=0. Long- 

dashed line: λ= 1.8971 μm, ∕0= 1 GHz.
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Figure 1
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FREQUENCY (THz)

Figure 2
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CHAPTER 4

Limitations to Squeezing in a Parametric 
Amplifier due to Pump Quantum Fluctuations

by David D. Crouch and Samuel L. Braunstein
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ABSTRACT

We perform discrete mode calculations for a parametric amplifier with a quantum 

pump, and discuss some of the limitations on calculations of this sort in quantum optics. 

We calculate corrections to the squeezing due to pump quantum fluctuations to order l∕∕v2, for a pump initially in a coherent state with average photon number N. We find 

that the limit to the variance of the squeezed quadrature due to the quantum nature of 

the pump goes as N~v2.
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1. INTRODUCTION

The parametric amplifier1’2 (PA) is a basic device in quantum optics and quantum 

electronics. It couples a pump field at frequency ωp to signal modes at frequencies near 

ω=ωp∕2. In this chapter we are mainly interested in the application of the PA for gen

erating squeezed states,3-5 i∙e., quantum states for which one of a pair of canonically 

conjugate variables has its quantum noise (uncertainty) reduced below the vacuum level 

(zero point noise). The main purpose of this chapter is to show that the ability of a PA 

to produce squeezed-state light is limited by the initial phase noise in the pump.

When the signal modes are initially in vacuum states, only the pump’s phase can 

detennine which quadrature will be squeezed. If the pump’s phase fluctuates, then the 

quadrature chosen will have a slight admixture6 of its conjugate quadrature—the noisy 

quadrature. This argument is treated more carefully in Section 2 for the case of phase 

noise in a classical pump. Calculations of the corrections to semiclassical order (to 

order l/N in the matrix elements, where N is the average photon number of the pump) 

have been previously performed for both the one-7 and the two-mode8 PA.

Hillery and Zubairy7 studied the one-mode PA with an interaction Hamiltonian

^int=i'-γ(αt2¾,-tf2<z∕) (1-1)

(up to a phase rotation of the variables), where â and âp are the annihilation operators 

for the signal and pump modes, respectively, and κ is a coupling constant which is pro

portional to the second order nonlinear susceptibility χ(2) of the medium in which the 

interaction is taking place. They used a path-integral technique9 to obtain corrections at 

the semiclassical order. They did not claim to get the full semiclassical correction,10 

and the dominant tenns they obtained for the fluctuation in the squeezed quadrature

were
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-2m 2u
<Λx½>≈^- + -=, (1.2)

4 64/V

where x1= -i(â -0t)Γ2 is the quadrature (analogous to the position operator) which is 

squeezed by the interaction in Eq. (1.1), and u =Nu2κt is a dimensionless time. This 

yields a minimum variance, and hence a limit to the squeezing, of

<∆f72>π 8/V 1/2 (1.3)

which is just what the argument of phase noise in the classical pump gives (see Section 

2).

Scharf and Walls8 studied the two-mode PA whose interaction Hamiltonian is 

(again up to a rotation of the variables’ phases)

∕∕int=∕Λκ(d1id2dp -d1d2d∕), (1.4)
where <3l and d2 are the annihilation operators for the two signal modes. They used an 

asymptotic method developed by Scharf11-13 to arrive at the dominant correction to the 

variance of the Hermitian variable

Λ≡-y(4+-4^), (1.5)

as

<∆y22>
-2u e6u

1920N ’ (1.6)e
4

+

where d+≡(d,+d2)∕^2. They concluded that the minimum variance obtainable by the 

two-mode PA would be
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<∆y2>min≈ ι
6(1(W),z4 '

(1.7)

How can we compare these calculations? If one rewrites Eq. (1.4) in terms of the 

variables

a+≡ ^=∙(α1+α2),

4-= (4i~42) ,

14then the interaction Hamiltonian may be written

^ . ΪΐΚ. . λ +2 A Λ 2 ^ †\ ∙ Z ^ †2 Λ y, 2 Λ
→+√)-*-<√I⅛ -0-⅛)

(1.8a)

(1.8b)

(1.9)

If the pump is now treated classically, then the â+ and â_ modes become completely 

independent, each described by the one-mode PA Hamiltonian Eq. (1.1). Thus we 

might expect the same correction to the squeezing due to a quantum pump as found by 

Hilleιy and Zubairy [see Eq. (1.2)]. In fact, since the pump is allowed to be quantum 

mechanical, the 4+ and ά_ modes can interact with each other by modifying their com

mon pump. Thus these modes cannot completely decouple. Even so Scharf and Walls’ 

results of Eqs. (1.6) and (1.7) are surprising; for a pump with TV = 109 there is a large 

discrepancy

<∆y22>min 

≤Δλ'2 ≥n,in 4 Ä 
3 10

1/4 400
3

(1.10)

The purpose of this chapter is to resolve the apparent discrepancy between these two 

calculations, first noted by Caves and Crouch.15
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This chapter is divided into four sections. Section 2 justifies our use of discrete 

mode calculations for a traveling-wave device, which in principle should be given a full 

continuum treatment, and also reviews the argument for the contribution of phase noise 

in a classical pump. In Section 3, we use the positive-P distribution16 to derive Fokker- 

Planck equations for one- and two-mode parametric amplifiers. Standard methods of 

stochastic calculus17 are then used to derive Ito stochastic differential equations (SDEs) 

from the Fokker-Planck equations. An approximate solution of the SDEs is obtained by 

iteration, and the full semiclassical correction is then calculated analytically.

We have found that Hillery and Zubairy have in fact calculated the exact semi

classical corrections to the parametric approximation for the one-mode PA, and that the 

dominant corrections for the one- and two-mode calculations are the same, and agree 

with the dominant correction obtained by Caves and Crouch15 from a continuum calcu

lation.

2. DISCUSSION

The conventional approach to problems in quantum optics typically makes use of 

a mode expansion to describe the electromagnetic field. Using this approach, one can 

derive from an appropriate Hamiltonian temporal differential equations for the modal 

creation and annihilation operators, the spatial dependence being carried by the mode 

functions. Such an approach is suitable for cavity devices in which one has well 

defined standing-wave modes (the eigenmodes of the cavity), but not for a traveling- 

wave device in which such modes are non-existent. One would like to derive spatial 

differential equations governing the evolution of the field operators through the 

medium, in analogy with classical nonlinear optics; the conventional approach is 

clearly unsuited to this purpose. Tucker and Walls18 and Lane et al.κ recognized these
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problems with the conventional approach and developed a continuum wave-packet for

malism in an attempt to deal with them.

In this section we briefly describe a discrete mode expansion of the electromag

netic field in terms of wave-packet modes that enable us to derive spatial equations of 

motion for PAs. We assume that the wave packets are short compared to the nonlinear 

medium through which they propagate, so that they “fit” inside the medium, allowing 

us to ignore boundary effects. Physically, the individual wave packet propagates from 

free space through the entrance boundary on a time scale short compared to the time it 

will spend inside the nonlinear medium; in this way the interaction is “turned on.” 

This method is preferable to the technique often used in the conventional approach in 

which the interaction is suddenly turned on throughout all space, either at time t =0 or at 

some time in the remote past. We also present a heuristic argument for the dominant 

effect of pump quantum fluctuations on the variance of the squeezed quadrature in a 

PA.

We will give a brief outline of the derivation of the discrete wave-packet mode 

equations of motion for the PA; details will be given elsewhere. The discrete mode 

expansions of the signal and pump magnetic field operators in a dispersionless medium 

are given by

2πn0Λωπ
cσΓj

1/2 ∕[(i-n0z∕c)-ATJ , (2.la)
B⅛X∑,t) = i ∑

2π∕ι0⅛Ωp
caTp

1/2

f[(t-n0∑∕c)-kTp], (2. lb)

M oβ
B%Xz,t}= ∑ ∑

M

where

‰ (z ),⅛'√(2 )] = [⅛ (z ),⅛'(z )]=0, (2.2a)
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‰ (∑ >λV (z )]=δn√δ*t',

[⅛(z)Λi(z)] = ⅛' >

(2.2b)

(2.2c)

and

sinπtlTj

πt∏j
}=s,p (2.3)fj{t) =

is the wave-packet envelope function. Here ∏0 is the index of refraction of the disper

sionless medium, Ωp =2Ω is the pump frequency, and σ is a cross-sectional area we use 

to account crudely for the transverse structure of the field. The discrete-mode expan

sions described by Eqs. (2.la) and (2.lb) are obtained from a continuum description by 

dividing the signal and pump bandwidths into “bins” of width ∆ωi and ∆ωp, respec

tively, with signal center frequency ωπ =Ω+nΔω and pump center frequency Ωp = 2Ω.20 

Here we have assumed that the pump can be described by a single frequency bin. Each 

signal (pump) bin corresponds to a train of wave packets in the time domain, each of 

duration Ts =2π∕∆ωs (Tp =2π∕∆ωp) with envelope given by Eq. (2.3).

By substituting Eqs. (2.1a) and (2.1b) into Maxwell’s equations, we obtain the 

spatial equations of motion

(z) _ ,∙i2? (jt,7∙f _kTi y sin[π(ATt k Tp )∕Tp ]
⅛ k'=-J π(kTs-k'Tp)∕Tp bk,(z')at-nk{z'), (2.4a)

dbk{z)

dz

fK_
2

M. eo ∕
∑ ∑ eiilr(kT,-kTr)

n = -Mk = —oo

sin[π(⅛,rι -kTp)∕Tp} 

π(k,Ts -kTpYΓp
dnk(z )d~nk,(∑ ), (2∙4b)

where the coupling constant κ, is given by

z 4πΩχ<2> 
K 2

V

2πn0∕ιΩz,
cσΓr

(2.5)
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Here we have assumed that ∆ωp « ∆ωj (or Tp » Ts ) to avoid coupling among energy 

non-conserving modes. By restricting our observations to the region of spacetime near 

t-no∑∕c=O, we can discard all wave packets (both signal and pump) with k≠(), since 

fj {kTj )=δtι0∙ With â„ 0(z ) ≡ dn (z ) and b0(z )=dp (z ), we find

i¾fr) z „ , ,
d∑

--κ' dp(z)dlπ(z), (2.6a)

<⅛7p(z) √ M
dz

∑ â„(z)â_„{z). (2.6b)
n = -M

Assuming that the wave packets are narrow compared to the scale of variation set by κ', 

we can replace ∑ by ct∕n0 and obtain the temporal equations of motion

ddn{t) +-^-=κdp(,t)dtn{t),
at

(2.7a)

ddp(t)

dt L n≈ -Μ
(2.7b)

where κ=cκ7∕ι0∙ Equations (2.7a) and (2.7b) are identical to the Heisenberg equations 

of motion that are derived from the multimode interaction Hamiltonian

U
ΣH=i ħκ [dp (t )dnt(t )dln {t ) - âht )d„ (t )d_„ {t )] (2.8)

-M

when the conventional approach is used.

The Hamiltonian Eq. (2.8) correctly describes the interaction of a discrete pump 

mode with 2M + 1 discrete signal modes, but it does not provide a completely accurate 

description of traveling-wave parametric amplification, since it ignores the interaction 

of the pump wave packet k =0 with signal wave packets other than k =0. Ignoring as it
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does interactions with these wave packets, the Hamiltonian cannot correctly describe 

nonlinear effects such as pump depletion; it does, however, correctly describe the effect 

of the initial pump quantum fluctuations on the signal modes. We will show, first by a 

heuristic argument and then by the results of detailed calculations using the Hamil

tonian Eq. (2.8), that the initial pump quantum fluctuations are responsible for the dom

inant correction to the squeezing due to the quantum nature of the pump. We also cal

culate higher-order corrections. By the argument just given, the exact form of these 

corrections cannot be related to the physical parameters of a traveling-wave PA; these 

corrections are of physical interest, however, in showing how nonlinear effects affect 

the squeezing, and of mathematical interest in demonstrating the computational tools 

we have developed to calculate them.

The wave-packet approach gives us a new and more realistic way to deal with 

traveling-wave problems in quantum optics; it also leads one to realize that the conven

tional Hamiltonian approach can lead to misleading results when used blindly. We 

will, however, ignore distinctions between the conventional and the wave-packet 

approaches through much of this chapter. The point we wish to make is that the wave- 

packet modes are an appropriate set of modes for describing the spatial evolution of 

quantized electromagnetic fields in traveling-wave devices without resorting to contin

uum calculations.

We will now give a heuristic argument for the effect of pump quantum fluctua

tions on the squeezing produced by a PA. Our treatment of parametric amplification 

has thus far treated the pump quantum mechanically. Under certain circumstances, one 

can treat the pump classically, in what is known as the parametric approximation; in 

this approximation, one replaces the pump operator by a c-number ap =N''2e'*,∙. The 

interaction Hamiltonian for a one-mode PA, where we ignore all modes in Eq. (2.8)
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except for η =0, is

— 1Z2
Hp = i^-[dt2(t)ei^ -Λθe-'φ'] , (2.9)

where d0(t)≡d(ty, two resulting equations of motion are

^i = κ∕V1Vφ'0f(O, (2.10a)
dt

^l = κNυ2e-i^d(t). (2.10b)
dt

We define two sets of quadrature-phase amplitudes,14

χi(t)=~1β(t)+dt(t)], (2.11a)

A(0=-"W)-<⅜)], (2.11b)

and

xi(t)= ⅜[a(t)e~i*'l2+dt(t)ei*'l2], (2.12a)

x2'(O= -j[d(t)e~i*''2-dt(t)eiV2}, (2.12b)

the two sets being identical when φp =0. The two sets of quadrature-phase amplitudes 

are related by the rotation

X 1(i )=x ( (t) cos(φp /2)-x'2 {t ) sin(φr /2), (2.13a)

*2(0=Λ'2(Ocos(φp∕2)+Λ∙1∖θsin(φp∕2), (2.13b)

pictured in Fig. 1 for φp∕2=∆φ. By substituting Eqs. (2.12a) and (2.12b) in Eqs. (2.10a)
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and (2.10b), we see that the quadrature-phase amplitudes x'↑(t) and λ2(z) decouple the 

equations of motion:

dx∖^ =κjVlz⅛1z(O => xi(M)=xi(0)e" , (2.14a)
at

ffa2∕0 =-κ^lz⅛2(O => x'(u)=x^2(O)e-u , (2.14b)
at

where u =κNu2t is a dimensionless time. For a vacuum input, one easily finds that

<∆x'i∖u)> = ±e2u , (2.15a)

<Af2'2(M)> = ∣e-2" ; (2.15b)

the ,τ2 quadrature exhibits maximum squeezing when the pump’s phase is φp. The 

corresponding noise in the quadrature-phase amplitudes xl and f2, from Eqs. (2.13a), 

(2.13b), (2.15a), and (2.15b) is described by

<Δx12(m)> = -^e2u cos2(φp∕2) + ±e~2u sin2(φp∕2), (2.16a)

<Δx22(m)> = -^-e-2'' cos2(φp∕2)+~e2" sin2(φp∕2). (2.16b)

Suppose we allow the pump’s phase to fluctuate. For the quantized pump in a 

coherent state l∕V,'2> with mean photon number N, the phase fluctuations are character

ized by

<∆φ∕> = <φ∕> = 1
4N

(2.17)

since we may choose without loss of generality <φp>=0. Because N is large, <∆φ2>
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will be small; we can thus approximate cos2(φp∕2) by 1, sin2(φp∕2) by <φ2∕4> = l∕167V, and 
the variance of the x2 quadrature by

<Δf22(u)>≈-ιe-2" + -Le2κ . (2.18)4 647V
The pump can be considered classical and the parametric approximation valid when the 

correction term is small, that is, when

Λf 5⅛>-J-exp(4Λf,z2κO , (2.19)16
where we have used the definition of u. The second term of Eq. (2.18) is the dominant 

correction to the variance of the squeezed quadrature due to pump quantum fluctua

tions. Because of the quantum nature of the pump, phase fluctuations are unavoidable; 

Fig. 1 illustrates their effect. The solid ellipse represents squeezing with a classical 

pump (i.e. the parametric approximation) with a well defined phase φp =0. When 6,, ≠0, 

the ellipse is rotated by an angle φp∕2 as demonstrated by Eqs. (2.13a,b). Pump phase 

fluctuations cause the orientation of the ellipse to fluctuate about φp =0 with the charac

teristic angle ∆φ=<φ2∕4> = 1∕4Nv2, as represented by the dotted ellipse in Fig. 1, feeding 

noise from the amplified quadrature into the squeezed quadrature. One also sees why 

amplitude fluctuations are unimportant. Amplitude fluctuations merely produce fluctua

tions in the gain (or rate of squeezing); they do not couple noise in the amplified quad

rature into the squeezed quadrature.

The above argument is for a one-mode PA, but it is easily extended to any number 

of modes; the same argument has been given for a continuum-mode PA,15 yielding the 

same dominant correction as given by Eq. (2.18), but given N in tenns of the pump 

power by identification of an appropriate bandwidth defined by phase mismatching. In
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the parametric approximation, the signal modes interact in pairs at frequencies Ω + wΔω 

and Ώ-ηΔω; there are no interactions among different pairs in this approximation, and 

each pair can thus be considered separately. The correction that we have been discuss

ing is due to fluctuations in the initial state of the pump, and has nothing to do with 

back-action from the signal modes—pump depletion being one example of such back 

action—which would depend on the number of signal modes. The initial fluctuations 

act on each pair of modes in the same manner as described in Eq. (2.18) for the one

mode PA, yielding for each pair of modes a correction identical to that of Eq. (2.18). 

This correction is then independent of the number of signal modes, justifying our one

mode treatment.

The arguments given above are not rigorous; we have cited quantum mechanics as 

the ultimate source of pump phase fluctuations, yet we have treated their effect on 

squeezing classically. What we have given is a plausibility argument for and a physical 

picture of the dominant effect due to such fluctuations. The validity of our arguments 

will be confinned by our detailed calculations showing the correction terms in Eq. 

(2.18) to be the dominant effect of pump quantum fluctuations on the squeezing, 

independent of the number of signal modes.

3. STOCHASTIC DIFFERENTIAL EQUATIONS

A. The one-mode PA

The dynamic evolution of a one-mode PA is described by von Neumann’s equa

tion in the interaction picture

⅜∕(0

∂i
⅛(0√∕int(O] , 

ft
(3.1)
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where the interaction Hamiltonian H∙mt(t) is given by Eq. (1.1). All operators are now in 

the interaction picture. We will assume that initially the signal mode is in the vacuum 

state, and the pump is in a coherent state of real amplitude α0r

p(O)=pi(O)= l0,ao><0,aol . (3.2)

To solve Eq. (3.1), it is convenient to project the density operator ρi(t) onto a suit

able set of basis states. The positive-P representation16 is an off-diagonal representation 

obtained from an expansion on a coherent state basis:

pi(f)= ∫∫∫∫P(α,αr,β,βp,i)A(α,αp,β,βp)t∕2αd2αp d2βd2βp ,

where the operator Λ is given by

(3.3)

Λ(<x,ap,β,βp)≡
I a,ap > <β* ,β∕ I 

<β*,βpΙa,ap >

= e√aβ+arβr)gσ∕+σrd, ( θ θ> <θ θ| gβΛ +βr<5p

Using Eq. (3.3a), one obtains the operator identities

ifΛ=αΛ, Λ<5i=βΛ,

¾,Λ=αpΛ, Λ4∕=βpΛ,

and

(3.3a)

(3.4a)

atΛ,=
μ+p

A, Àâ = 9α+ —
da < 3PJ

Λ,

<i∕Λ =
9a„

■ ÷βp Λ, Λ4 α'"+⅛
p J

(3.4b)
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Substituting Eqs. (3.3) into Eq. (3.1), using the operator identities in Eqs. (3.4), and 

integrating by parts yields the Fokker-Planck equation

ap=i Rj__ R A <χ2 9 β2 J ⅞ θ2 βf a2
dτ I °⅛p da aPp dβ + 2 9ap + 2 ¾ + 2 ⅛c2 2 3β2 (3.5)

where τ=κf and P ≡P(a,ap ,β,βp ,τ).

In its present form, Eq. (3.5) is a complex eight dimensional Fokker-Planck equa

tion. The analyticity of Λ=Λ(α,αp,β,βp), however, allows us some freedom of choice in

interpreting the derivatives:

3Â _ 3Â 
da dax

(3.6a)

9Â _ 9Â _ _ . 9Â 
9β “< --ιap7 ’ (3.6b)

9Λ 3Â . 9Λ 
9⅜ ⅜x ∂ccpy

3Â _ ∂Λ _ . 3Λ 
¾ ¾x ,θβpy

(3.6c)

(3.6d)

Here “x” and “y” denote real and imaginary parts of a complex number. By properly 

interpreting the derivatives in Eq. (3.5), we obtain a real Fokker-Planck equation with 

positive-semidefinite diffusion. A detailed derivation of the diffusion matrices for both 

one- and two-mode PAs is given in the Appendix. Using the standard methods of sto

chastic calculus,17 this eight dimensional Fokker-Planck equation yields a set of eight 

real, first order Ito stochastic differential equations (SDEs). When written in complex 

notation, the resulting SDEs are

da=apβdτ+^ap dWl,
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dβ = αβpdτ+√βp JIV2,

dap = - ~a2dτ,

dβp = -±β2dτ,

where, in the Ito calculus,

(3.7b)

(3.7c)

(3.7d)

dw† =dW½=dτ. (3.7e)

The Wiener increments dWl and dW2 are real and independent.

Although we cannot solve Eqs. (3.7) analytically, an approximate solution is pos

sible in the case of a nearly classical pump. We assume that the stochastic pump mode 

variables ap and βp consist of a mean amplitude c⅛ (chosen to be real) plus fluctuations 

∆α and Δβ:

ap =o⅛+∆α,

βp=o⅛+∆β.

We define new variables χi,pl,χ2, and p2 by

(3.8a)

(3.8b)

∙*ι = y(α+β), r(α-β), (3.9a)

Pt = y(∆α+∆β), p2=-y(∆α-∆β) (3.9b)

It is convenient to change variables once again. We define the variables z1 and ∑2 by

zλ=xie (3.10a)
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z2=∙x2e (3.10b)

The resulting SDEs are

dzr = 4'dzypx+z2p2e 2u')<⅛+~e u 
<⅞ 2

f. Pi+Ψ2 1/2 , Pl-⅛,2
1/2

1 + —---------- dV j + 1 +-------------- JV2
[ α° J ι α° J

(3.11a)

dz2 =—(zip2e2u -z2pl)du - ~etl o⅛ 2 P∖ + Ψ2
1/2

<*o
dVl-

Pι-Ψ2

O⅛

1/2

dV- ,(3.11b)1 + 1 +

dpl = ‰z½e-2u-z2e2u)du , 2α0
dp2 =------- zlz2du ,

<⅞

(3.11c)

(3.lid)

where u = a0τ, dVj = ∙√a0dW 1, and dV2=a∕o⅛ JWλ2.

We use an iterative procedure to obtain an approximate solution of Eqs. (3.11). 

The square roots are expanded in a Taylor series:

1 +
Pι±ip2

0⅛

1/2
1 I P∖±iPz 1 (P1±tP2)

= 1 +-------------------- - ------------- +α0 2 c√ 8 (3.12)

Substituting Eq. (3.12) into Eqs. (3.11) and integrating formally, we find

1 rw1(ι∕ )=z 1(0) + — ∫o [z ,(x )p ,(x) + z2(.y )p2(x )e~2x ] dx

+ ι*=∫VλJ dV + — 
√2 jo o⅛

1 , . i
"

-pi(x)dV + ±p2(x)dW + ■ - ■ . (3.13a)
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z2(u)=z2(0)+-^-∫o [∑i(*)P2(Λ∙)e2t -z2(x)pι(x)]d⅛

±f“ √7 Jθ e↑ dW + - ∣p,(λW + ~p2(χW (3.13b)
⅜

+

p 1(u) =Pι(0)+~ ∫θ tâ (*>~2x -z ,2 U)e2'] dx ,

P2(M )=p2(θ) - — Lz ι(* ⅛2(χ)dχ ■ 
α0 jθ

Here we have defined two new independent Wiener increments

(3.13c)

(3.13d)

dV(χ)=
dVλ(x)+dV2(x)

√2 (3.14a)

dW(x) =
dV ↑(x )-dV2(x )

(3.14b)

The new Wiener increments defined in Eqs. (3.14) correspond to a rotation of the old 

Wiener increments, dVl and dV2, and hence retain the same correlation matrix.17

We can ignore the initial values z1(0)=x1(0), z2(θ)=*2(θ), p1(0) and p2(0) in subse

quent calculations because all moments involving these quantities are zero. To see this, 

we observe that the P-function gives normally ordered averages for all moments α" and 

β", and all normally ordered averages are initially zero for the case studied here. By 

extension, all moments involving the initial values .r1(0), ,v2(0),p1(0), and p2(0) are zero.

The formal solution [Eqs. (3.13)] yields an approximate solution, valid for short 

interaction times and large pump amplitude, when the stochastic variables are expanded 

in a perturbation series in the reciprocal of the pump amplitude:

θ= ∑ o⅛nθ<">.
n=0

(3.15)
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By substituting the expansion Eq. (3.15) into the formal solution Eqs. (3.13) and equat

ing equal powers of o⅛'', we obtain an approximate solution to the set of SDEs: (i) to 

zeroth order,

^(u) = ^e~xdV, (3.16a)

^∖u)=-^exdW , (3.16b)

∕>1w(m)=p)o>(h)=0 , (3.16c)

(ii) to first order,

z1<,>(m)=zP(h)=0, (3.17a)

pγ∖u)=^"[z^∖x)e-^-z^∖x)eix}dx , (3.17b)

pP(M)=-∫θ"z{θ∖x)zf>(Λ)d⅛ , (3.17c)

and (iii) to second order,

Z <2> (it ) = ∫θ'' [z ,<°> (X )p 1<1> (Λ ) + zf> {x )p P (X )e~2x ] dx

+ ⅛∖u0^∖pγ∖x')dV+ip^{x)dW}, (3.18a)

^2)(« ) = ∫θκ [21<O) (x )piυ (X >2x -z)0) (X)p fυ (X)] dx

-^∖'∖p^x)dW +ipV∖x)dV}, (3.18b)

pP(h)=pF(m) = 0∙ (3.18c)
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The SDEs corresponding to the zeroth order solutions γ∣0,(m) and ∑),li(κ) are

dz^ = ψe~"dV , √2
ifef > = -~eudW . √2

We define the new variables

Al(u)=z^(u)eu ,

A2(u) = iz^(w)e-" ,
with the resulting SDEs

dA j = A1 du + -^=- dV ,

dA2=-A2du+-~dW

(3.19a)

(3.19b)

(3.20a)

(3.20b)

(3.21a)

(3.21b)

Equations (3.21) describe two independent Omstein-Uhlenbeck processes, each with 

zero mean. Thus z1w(κ) and z%f>(u), apart from the exponential factors eu and e~u, 

respectively, are themselves Omstein-Uhlenbeck processes. They are Gaussian vari

ables; all higher order moments can be expressed in terms of second order moments. 

With this in mind, we can formulate a pair of rales to guide us through the remaining 

calculations: (i) a rule for quadratic moments,

<z1(0)(M)z1(0)(M')>av=^-(l-e_2H’) u>w , (3.22a)

<z)θ, (w )z)θi (w )>av — — ~(^2m, — 1) U>W , (3.22b)
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<z {0) (ι∕ )z)0) (ty )>ttv = 0 .
(3.22c)

and (ii) a rule for quartic moments,

<z 1<0> (« )z ,(0) (V )z1w (w )z 1<0> (z )>av = <Z 1<0> (u )z }0> (v )>av<z<o> {w )z ι<0) (z }>

+ <z 1w (u )z 1<°) (w )> av <χ 1<O) (v )z ι(0) (. }> av

+ <z1tθ>(M)z1W(z)>av<-zι(0)iv^ι(0)ivv^^ , (3.23a)

<z)θ> (M )z <°) (V )z <0> (w )z%y> (z )>av = <z)θ> {u )z)0> (v )>av<z W (w )z (O)(z }>

+ <z)θ> (w )z)0> (tv )>av<z^0) (v )zp (z )>av

+ <r20>(“)^(’)(O>av<zf’(v)zf>(Mi)>av, (3.23b)

where < >av denotes an average in the positive-P representation.

The squeezing in the signal mode is easily calculated by the repeated application 

of (i) and (ii). The quadrature-phase amplitudes are defined by

λ 1 . „ ,≠ Xι = --(a +a'), --~(a -at),

(αp +α∕), P2 = - y(αp -«/),
2'P P‘

(3.24a)

(3.24b)1

where .r, and χ2 are signal mode quadrature-phase amplitudes, and P1 and P2 are pump 

mode quadrature-phase amplitudes. The expectation values of the signal-mode 

quadrature-phase amplitudes χl and x2 are zerθ when the signal is initially vacuum. We 

then find that the uncertainties in x 1 and x2 are

2κ<∆x,2> = -+ <λ'12 (tt)>a : —+ <Z12(li)>a 
4

(3.25a)
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<M%> = ^ + <x%(u)>m = y + <z%(u)>me~2u . (3.25b)
4 4

We see from Eqs. (3.25) that x1 and x2 are the c-number equivalents of the quadrature- 

phase amplitudes xl and %2, respectively. To second order in o⅛', the uncertainties are

<∆x 2 > =-J-+ <∑f,*2(u )>av e2" + <2∑f’)(u)r j2>(w )>ave2" , (3.26a)
4 o⅛z

<M¾> = ⅛ + <z½oy∖u)>ave^2u+^<2zi0∖u)z½2∖u)>aye-2a . (3.26b)
4 a02

Application of (i) yields the ideal squeezing:

</Vv2>ideaI=| + <zi0)2(«)>ave2'‘ = {e2“ , (3.27a)

<∆x2 >idca,= { + <d°>‰)>ave-2“ = I e-2" ∙ (3.27b)

Repeated applications of (i) and (ii) yield the quadrature variances correct to semiclas- 

sical order o⅛2=N~h

<∆%,2> = 4e2κ + 1
4 82VL

u2e2u +u(e2u + l)-(3sinh2κ +2)sinhι< eu-sinh2u , (3.28a)

<∆f2> = -e 2u + ^=iu2e 2u-u(e 2u +l) + (3sinh2κ +2)sinhw e “-sinh2« 4 82V L , (3.28b)

which are exactly the results obtained by Hillery and Zubairy.7 The variance of the 

squeezed quadrature, including the dominant correction for at best moderate squeezing 

only, is

<∆v22 > = 4 e~2u + —U e2u , 
4 647V

(3.29)
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which agrees with Eq. (2.18), validating our heuristic picture of the effects of pump 

fluctuations on squeezing.

B. The two-mode PA

The analysis of the two-mode PA is similar to that of the one-mode PA. The 

equation of motion is again von Neumann’s equation in the interaction representation, 

Eq. (3.1), with the two-mode interaction Hamiltonian given by Eq. (1.4). Initially, we 

assume the signal modes are in vacuum states, and the pump mode is in a coherent

state:

ρ(0) = Pi(θ) = 1 0,0,α0> <0,0,α01 . (3.30)

The positive-P representation for the density operator is

Pz 0 ) = ∫∫∫∫∫∫ p («i ⅜<⅛ -β∣ ’ßz-ßp >i ) Λ(α∙1 ,α2,αp ,β, ,β2,βr )

×J2a1d2a2d2ap d2βι<∕2β2d2βp , (3.31)

where the operator Λ(a1,o⅛,o⅛,βι,β2,β1p) *s giγen by

λ I a1,<x2,o⅛ > <βί ,β2 ,β∕ I
Λ(a,,a2,<⅞,β1⅛,βp). -^ξpTg-laι,ai,ap>

zzi-(a,β1+⅛β,+⅛ft,)ca1^+^+⅛⅛ 10,0,0> <0,0,0 ∣eM,+M≈+β,⅛ (3.31a)

Substituting Eqs. (3.31) into Eq. (3.1), using the two-mode version of the operator iden

tities in Eqs. (3.4), and integrating by parts, we find the Fokker-Planck equation for the
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two-mode PA:

3P
∂τ β2⅜

∂
9α,

+<*ιθ2-j^→βιβ2

'⅛⅜-⅛V,1⅛

∂ ∂2 r y
9βr a" 9a13a2 ,', 9β19β2

d

9β2

P , (3.32)

where x=κt and P ≡P(a1,a2,ap,β1,β2,βp,τ) ·

Proceeding as in the one-mode case (see Appendix for details), we can derive a set 

of Ito SDEs from the Fokker-Planck equation, Eq. (3.32):

i∕α1 = β2αp dτ+y∣ap dW x, (3.33a))

<∕a2 = β,ar dτ+^ap dW↑ , (3.33b)

<*β, =<¾βp dτ+'Ιfip dW2, (3.33c)

^β2=⅜βp<fτ+√βp(∏V2 , (3.33d)

dap = -a,o⅛<7τ , (3.33e)

^βp = ~βιβ2<∕τ . (3.33f)

The complex Wiener increments dW, and dW2 are defined by

dWi =
dW lx +idW,y 

√2
(3.34a)

dW2 =
dW 2x + zt∕lt7 2y

√2 (3.34b)

where dWix, 4Hzlj,, dW2x, and dW2y are independent, real Wiener increments, and, in the
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Ito calculus,

dW^s=dW2s=dτ s=x,y. (3.34c)

The complex pump amplitudes ap and βp are again assumed to consist of a large, 

real mean value α0 plus small fluctuations, as in Eqs. (3.8). We define the new variables 

xl,γl,x2, Γ2, P1, andP2by

X1 = ∣(α1 + β2), X2=-∣(α1-β2), (3.35a)

Iz1 = {(α2+β1), ^2=-⅜(o⅛-βι). (3.35b)

P, = ∣(∆α+∆β), P2=-y(Δa-Δβ). (3.35c)

It is convenient to change variables one more time:

U1=Xle- , U2=X2eu ,

Zl=Yie~tt , Z2=Y2eu .

(3.36a)

(3.36b)

The resulting SDEs are

t∕[Z1 = -(U,P 1 + U2P2e~2u )du + ±e~u α0 2 Γ Pi+iP2 1/2 Γ Pχ-iP2 1/2
ι+-j—- 1 + JV2

α0L k J <⅞< J

(3.37a)
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ΓΓ Pι + zP21 1/2 1/2

1 + dV*l + 1 + —i-------- -- dV2
L 0t° J ι a° J

(3.37b)

dU2= ~(UxP2e2u -U2Pl)du-±-eu 
Oq 2

Γf Λ+>∕√
1/2 f ^l-^2^

1/2

1 + dVi- 1 + —i-------- -- dV2
LL a° J I a° J

(3.37c)

dZ2=-^-(Z1P2e2u -Z2Pl)du--⅛eu P↑+iP2

«0

1/2

dV↑ Pl-iP2
«ο

1/2

dV,1 + - 1 + -

(3.37d)

dPl = -(U2Z2e~2u-UlZle2u)du , (3.37e)
°t0

dP2=-iZ2+U2Zl)du , (3.37f)
c⅛

where u = α0τ, dVl=y∣a0dWi and dV2=y∣c⅛dW2.

We can obtain an approximate solution to Eqs. (3.37) just as we did in the one

mode case; we formally integrate Eqs. (3.37), expand the square roots, and substitute 

the expansion Eq. (3.15). We have found the approximate solution up to second order 

in α0"1 : (i) to zeroth order,

U^(u) = ^j∖-χ(dSr + idS2), (3.38a)

Ziθ>(H) = t∕1<°i*(M), (3.38b)

U⅛0∖u)=^e∖dS3-idSi), (3.38c)
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Zi0>(ι∕)=-t∕fi*(H),

P{θ>(M) = P^(H) = 0,

(ii) to first order,

σ1°)(M)=z}υ(u)=o,

czP(m)=zΓ∖m)=o,
p 1(,)(K ) = Γ [tφ(x)Zl0>(X)e~i' - t∕1<θ>(X)ZΓ(X )e7^x] dx ,

j'J

p(,>(«)=-J0“[£/i0)(x)Z<0\x) + {7(°)(x)Z{0\x)]dx ,

and (iii) to second order,

υ i(2> <u > = f & ><0) (■* >p i(1) <x )+ ’ (χ > ~7λ Idx

+ ⅛Jo e~x[P,ω(xχj51 + idS2)-p2υU)(dS3-idS4∩ ,

z ,<2) (w ) = ∫θ" [Z 1<°) (X )P P> (X )+Z <0>Pf > (X )e-2x]dx

+1 £ e~X [P >°(*}{dS 1 -idSï)+p^{x }{dS'+idS^} ’

U?}(μ ) = ∫θ" [tφ(X )P^(X )e2x - U?>(X)P 1<,>(x)] dx

+ ⅛f gX [p 1<1 ’(x χj53- W54)+> (x )(J51+idS2)],

(3.38d)

(3.38e)

(3.39a)

(3.39b)

(3.39c)

(3.39d)

(3.40a)

(3.40b)

(3.40c)
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zf)(li)= ∫o"[z1W(x)Pp(%k2r -zΓ(x)∕>P(*)]4*

- ⅛ f e'r [P 1'υ u )(dSi+ids*>~p^(x )(dS 1 ~idS2)1 ’

P,<2>(u)=Pf>(w)=0.

(3.40d)

(3.40e)

Notice that in Eqs. (3.38) and Eqs. (3.40) we have replaced the complex noise incre

ments by the real Wiener increments dS}, dS2, dS3, and dS4, where, using Eqs. (3.34),

dSl =
dW↑x+dW2x

√2
dS-

dW ly -dW2y 

√2
(3.41 a)

dS3 =
dWλy+dW2y

dï,
dS4=

dW↑x-dW2x^
√2

(3.41b)

Also note that, as in the one-mode case, we have dropped all contributions arising from 

the initial conditions.

By comparing Eqs. (3.38) with Eqs. (3.16), we see that the zeroth-order solutions 

{∕,w(κ), Z1fθ,(«), C∕)0∖m), and Z)0j(h) have real and imaginary parts that are Gaussian vari

ables. Let

C/{°)(«)=z1<0)*(M)=ß1(„)+,ß2(H), (3.42a)

uP (u ) = - zf > * („ )=β 3(w ) + iQ 4(m ), (3.42b)

where Ql(u), Q2(u), Qi(u), and β4(∏) are independent Gaussian variables with zero 

mean. We can use Eqs. (3.42) to generalize the one-mode mles [Eqs. (3.22) and Eqs. 

(3.23)] to the two-mode case: (i) a rule for quadratic moments,

<ßl(»)öl(H’)>av=<Ö2(M)02(Mz)>av = i(1_e-2„,) (3.43a)8
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<ß3(«)ß3(M')>av=<04(«)ß4(H')>ilv=}^2W-1> U-W' (343b)

<ß,(«)ßy(«)>.v=O z≠Λ (3.43c)

and (ii) a rule for quartic moments,

<β l(M )β 1 (V )β 1(∏ jβ 1(Z )>av = <β 1(M )β ,(V )>av<β 1 >β 1(Z )>av

+ <ßl(i<)ßl(M’)>av<'ö^V^l(z)':>av

+ <β,(« )β ι(z )>av<β ι<v )ô i<m' )>-v , (3.44a)

<β2(∏ )β2(v )β2(∏' )β2(* )>av = <ßi(« )ß ι<v )Q l(z )>av ’ (3.44b)

<β3(M)β3(v)β3(H')β3(2)>av=<β3(M)β3(v)>av<β3(M')β3(z)>av

+ <β3(M)β3(w)>av<β3(v)β3β)>av

+ <β3(M)β3G")>av<β3(v)β3(W')>av , (3.44c)

<β4(M)β4(v)β4(M')β4^)>av = <β3(")03(v)β3(M')β3(z)>av ’ (3.44d)

We can calculate the two-mode squeezing by repeated application of (i) and (ii). 

The two-mode quadrature-phase amplitudes are defined by

χ1 = -(α1+<z2i), X2= "^(4ι-02), (3.45a)
2 z

P1 = ∣(4p+α∕), Γ2=-f(⅛-√)∙ (3.45b)

The two-mode signal quadrature-phase amplitudes are not Hermitian operators. The 

mean-square uncertainties in the two-mode quadrature-phase amplitudes are given by14
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<IΔX1l2>≡ ∣ <X1iX,+X1X1'>-<X1><xf> , (3.46a)

<IΔX212>≡y<x}x2 +X2X}>-<X2><X½> , (3.46b)

or, iιι tenus of the stochastic c-numbers, by

<IΔX,l2> = ∣ + <X,y1>av-<Xι>av<Γ1>av, (3.47a)

< iδx2i2> = I + <x2r2>av- <x2>av<r2>av ∙ (3.47b)

From Eqs. (3.47) we see that Xl and Γ, are the c-number equivalents of the operators X1 

and its Hermitian conjugate X1t, respectively, and X2 and Γ2 are the c-number 

equivalents of the operators X2 and its Hennitian conjugate X2. Substituting Eq. (3.15), 

Eqs. (3.38), Eqs. (3.39), and Eqs. (3.40) into Eqs. (3.47), we have to second order in c⅛,

<IΔX1l2> = 4 + <^ιw(w)Z1w(u)>avi'2'' + <^,wh')Zi2i(M) + ^i2*(w)Z1iθ,(w)>av<∙2" ,
4

(3.48a)

< IΔX212> = I + <U^(« )Zjθ>(« )>av e~2u + -⅛ <U^ (κ )Zj2> (« ) + t/P (« )Z jθ> (u )>βv e~2u «0
(3.48b)

since the expectation values of Xl, Γ,, X2, and Γ2 are zero.

Repeated application of the two-mode rules (i) and (ii) yields the mean-squared
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uncertainties correct to semiclassical order c⅛2=∕V

1
8/7

<IΔX1l2> = -e2" 4 + -⅛r M2e2', +κ(-e2u + l)-(4sinh2u +—)sinhκ e" - — sinħ2u 8∕√ 2 2 2
(3.49a)

u2e 2u -w(∙∣-e 2u +l) + (4sinh2κ +-∣-)sinhw e u --∣-sinh2κ
(3.49b)

which are slightly different from the one-mode result, Eqs. (3.28). When the dominant 

correction only is kept, the uncertainty in the squeezed quadrature is

(3.50)

which is the same as the dominant correction found for the one-mode case, Eq.(3.29), in 

contrast to the result obtained by Scharf and Walls,8 Eq. (1.6).

4. CONCLUSION

We have calculated, for the one- and two-mode PA, the explicit corrections for 

squeezing to order N~', due to a quantum pump in a coherent state with an average pho

ton number of N. We found that the pump’s phase noise is responsible for the dominant 

contribution to the limitations on squeezing for any number of signal modes. We also 

briefly discuss when traveling-wave calculations can be treated by Hamiltonian 

methods in the most direct way. This was done by discretizing the continuum problem.
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APPENDIX: DETAILED DERIVATION OF THE STOCHASTIC DIFFEREN

TIAL EQUATIONS

We will first consider the one-mode PA. Equations (3.6) allow us to choose the 

derivatives in Eq. (3.5) so that a Fokker-Planck equation with real drift and positive- 

semidefinite diffusion result:

∂ _ ∂ _ . ∂
9ξ ∂ζ, l^y ’ (A.1)

where ξ represents any of the complex variables α, β, ai,, or βp, and “x” and “y” 

denote the real and imaginary parts of the complex number ξ. For the drift terms, we 

have

⅛β έ=-r'⅛ β* ⅛ ll"'">, P) ⅜ ■

αβ<∙9β- Re< αβf * ⅛ ,"ltaβ'',¾'

2 ∂

(A.2a)

(A.2b)

α
2

or =Re +Im
∂apy

(A.2c)

2 3βp

a
2

=Re £ ∂ +Im
ΐ

2 2 'py
(A.2d)

The corresponding drift coefficients are

Λ1=Re(αpβ), A2=Im(apβ).
A3=-Re A4= -Im

(A.3a)

(A.3b)

(A.3c)

2 9c⅛

a
2

a2
A5=Re(aβp), A6=Im(aβp),
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£ £
2Aι= -Re λ8= -Im (A.3d)

where the subscript 1 corresponds to αt, 2 to αy, 3 to αpx, 4 to αpv, 5 to βr, 6 to βv, 7 to 

βpt, and 8 to βry.

To simplify the derivation of the diffusion matrix, we let ap=(χ+iy)z and 

βi, =(« +iv)2.21 Using Eq. (A.1), we find

92 2 ∂2
x~ ~—V +2xya'⅛Γ'1,+l,iiM- 3«?

92 . 2 θ2
9αrotj, 3cς2

(A.4a)

η V z . ,7 92 2 92 „ 92 , 2 92

*⅛=<m+π° φ=" -⅛J+2uvw^+v (A.4b)
9β2

The resulting nonzero elements of the one-mode diffusion matrix are

D11=x2, d2i=o,, (A.5a)

D2ι=χy , ^22-y2 > (A.5b)

D55 = K2 > D56 = mv , (A.5c)

D65 = kv , D66=V2, (A.5d)

where we have used the same subscript convention as in Eqs. (A.3). In matrix form,
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Eqs. (A.5) become

x2 xy 0 0 0 0 0 0 
xy y2 0 0 0 000 0 0000 000 0 0000 000 0 0 0 0 u2 uv 0 0 0 0 0 0 uv v2 0 0 0 0000 000 0 0000 000

(A.6)

The diffusion matrix D can be written as the product of a matrix B with its transpose BT:

D=BBτ. (A.7)

We can easily show that

√2

X X 0 0 0 0 0 0'
noooooo 00000000 00000000 0 0 0 0 «« 00 0 0 0 0 V v00 00000000 00000000

(A.8)

The Fokker-Planck equation corresponding to the drift coefficients in Eqs. (A.3) and the 

diffusion matrix Eq. (A.6) has the form

3P
3τ

N

-∑
ι=l

3
dX:

■A; + -
N

■ Σ 
<∙√ = 1 3x.∙ 3r

-[BBτ],∙ (A.9)

B =

Using the Ito calculus, we can derive a set of SDEs from the Fokker-Planck equation 

Eq, (A.9):

N
dxi =Ai dτ+ ∑ B,7 dWj , z ,j = 1,... A , y=ι (A. 10)
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where dWj is a Wiener increment, and, in the Ito calculus,

dWi dWj = δij dx, i,j = l,...,N . (A. 10a)

For the one-mode PA, Λ-1=αt, .r2=αy,, etc., dWx=dWa*, dW2=dWθy, etc., and JV=8. Substi

tuting Eqs. (A.3) and Eq. (A.8) into Eq. (A.10) and recalling that x =Re√o⅛, y =Im√o⅛, 
u =Re^∕βp, and v =Im√βp, we find the Ito SDEs for the one-mode PA:

dax =Re(αp β)dτ+Re'Vap dW a,+dW θy √2 (A. 11 a)

day =Im(az,β)i∕τ+Inr'∕ap (A. lib)

d βx = Re(aβp ) dx+Re√ βp dW^+dW^y√2 (A. lie)

d βv = Im(aβp ) dx+I∏W β2, dW^+dW⅛√2 (A. lid)

dapx = -Re a22 dx , (A. lie)

da,py = -Im 2a2 dx, (A.llf)

dβi,t = -Re Y2. J
dx , (A.llg)

Jβw, = -Im 'β2'2 dx . (A.llh)

By defining the new Wiener increments

J½z,= (A.12a)
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dW
dW2=------

β,+dwβ,

√2 (A.12b)

and writing Eqs. (A.11) in complex fonn (do,=dax +iday, etc.), we obtain the complex 

SDEs Eqs. (3.7).

The derivation for the two-mode PA proceeds in a similar fashion. We can use the 

two-mode equivalents of Eqs. (3.6) to show that Eq. (A.1) applies in the two-mode case 

as well. Applying Eq. (A.1) to the drift terms of Eq. (3.32) results in

-fc⅛ 3α, =-R'<fc“-)3a1., -lra<fc,⅛> Sa1, ’ (A.13a)

-¾β, 3βι =-Re(<⅛> -lmθx⅛) , (A.13b)

(A.13c)

-"ll,'∙ ¾ " 'r'"-,'p'∙1 3fc, -1"l"'<' ¾ ∙ (A.13d)

a,¾ ≈Re(a,a1) +Im(a1a2) . (A.13e)

β1β2J =Wιβ2) J +Im(βιβ2) J ∙
θβp ⅛ dβn,

(A.13f)

The corresponding drift coefficients are

Al = Re(β2αfj, A2 = Im(β2ap), (A.14a)

A3 = Re(β1αp), Λ4=Im(β,o⅛), (A.14b)

Λ5 = Re(a2βp), A6=Im(a2βi,), (A.14c)
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A7=Re(α1βp), A8=Im(a1βp),
A9= -Re(a1a2), A,0= -Im(a1a2),
Aπ =-Re(β1β2), A12=-Im(β1β2),

where the subscript 1 corresponds to au, 2 to aly, 3 to o⅛l, 4 to a2v, 5 

to β2t, 8 to β2y, 9 to apjt, 10 to apy, 11 to βfr, and 12 to fipy.

As in the one-mode case, we let ap=(χ+iy)2 and βp=(u+z'v)2 

derivatives so that

32 _ 1αp 3α19α2 4

β,
92 _ 1

θβ1θβ2 4

(χ2+y2) JL+JL+JL+JL
3c⅛ 3oc2y 3<⅛ 3a2y

+2(x2-y2)

(u2 + v2)

∂i________ 92
9alx 3c⅛ 3ot]v 9a2y

+4λj
92

3<x∣λ 3oc2yt

JL+JL+JL+JL 
3β12t 3β12 ∂⅛ <J

+2(zz2-v2) ________ 92
θβίΛθβΐϊ θβlyθβ2y

+4zzv ∂2

The resulting nonzero elements of the two-mode diffusion matrix are

D11 =D22 = D33 = D44= -(x2+y2),

Di3=-D24={(*2-∕),

(A.14d)

(A.14e)

(A.14f)

to βu, 6 to βb,, 7

. We choose the

∂2 Ϊ
h3αly3α2JJ ’

(A.15a)

32 ^∣^

9βly9βit

(A.15b)

(A.16a)

(A.16b)
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D14-D23-xy , (A.16c)

D55 = D66=D77 = Dgs= y(l∕2+ v2), (A.16d)

D57=-D68=∣(m2-v2), (A,16e)

D58=D67=Mv , (A.16f)

where the remaining nonzero elements are obtained from the symmetry relation 

D,7=Dy, , and the subscripts follow the same convention defined in Eqs. (A.14). In 

matrix form, Eq. (A. 16) becomes

'x2+y2

0
2 2x-y

0
x2+y2

2xy

x2-y2

2xy
x2+y2

2xy
y2-x2

0

0
0
0

0
0
0

0
0
0

0
0
0

1 2xy y2-x2 0 x2+y2 0 0 0 0
2 0 0 0 0 2 , 2u +v 0 u2-v2 2ι∕v

0 0 0 0 0 κ2+v2 2uv v2-u2

0 0 0 0 h2-v2 2uv u2+v2 0
0 0 0 0 2uv v2-u2 0 m2 + v2

Here we have suppressed the rows and columns of D corresponding to αp and βp since 

all elements of these rows and columns are zero. The diffusion matrix D can be written 

as a product of a matrix B and its transpose:

D=BBτ. (A.18)
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We find that

-y -yχχ 
X X y y 
y y X X 

-X -X y y0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0'0 0 0 00 0 0 00 0 0 0
-V — VMM

u U V V

V V U U

—U —U V V

(A.19)

The Fokker-Planck equation corresponding to the drift coefficients Eqs. (A. 14) 

and the diffusion matrix Eq. (A. 17) is of the form Eq. (A.9), with the corresponding 

SDEs of the form Eq. (A. 10). In the two-mode case, TV = 12. Substituting Eq. (A. 14) 

and Eq. (A.19) into Eq. (A.10), and recalling that x=Re√αp, y=l∏rVαp, ι∕=Re√βp, and 

y =lm√βf, we find the SDEs for the two-mode PA:

⅛ =Re(β2αp)4τ+ -^(Re√ap dWlx -Im√ctp dWiy), (A.20a)

d α,lv = Im(β2ap ) dτ+ ^(lm√ap dWlx+R^apdWiy), (A.20b)

d a2x = Re(β1ap ) dτ+ ^,(Re√ap dWlx + Im√apdWiy), (A.20c)

da2y =Im(β1ap)dτ+ ^(Inι√ap cΛFlx -Re√0^dψ,y), (A.20d)

4βu =Re(o⅛βp)4τ+ ^=-(Re√βp dW2x -Im√ξ^dW2y), (A.20e)

4βly =Im(a2βp)<∕τ+^-(Im√βp dW7x +Re√βp dWly), (A.20f)

Jβ2τ =Re(a1βp)4τ+-J=√Re√βp dW2x +lm^pdW2y), (A.20g)
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Jβ2y =Im(α,βp)dτ+^(I∏r⅛ dW2x -Re√βp dW2y),

da,

d<zpy =

dβpx =

dβpy =

-Re(a1a2)c∕τ,
-Im(a1a2)Jτ,
-Re(β1β2)Jτ,
-Im(β,β2)√τ,

(A.20h)

(A.20i)

(A,20j)

(A.20k)

(A.201)

where

dW lx

dW2x '

dW az,+dW a1
√2 , dWly =

dWa,,+dWc,√2
dWp^+dW^√2 , dW2y- √2

(A.21a)

(A.21b)

By defining the complex Wiener increments

dW lr + idW lv √2
dW2 =

dW2x +idW2y

√2

(A.22a)

(A.22b)

and writing Eqs. (A.20) in complex form, we obtain the complex SDEs Eqs. (3.33).

The choice of derivatives in Eqs. (A. 15) is certainly not an obvious one. One 

might make a more reasonable choice such as

αn ■ =%
θcqoc2 θ0Cj r θoc2* - +.ry

3α∣r3o⅛y 3αly3o⅛ +r 9α, 3o⅛,,
(A.23a)

ßr
∂1 ∂2 9βι3β2=Μ2¥Λ7+Μν θ2 I ∂2

9βlxθβ2y 9βly‰
92

9βlyθβ2y
(A.23b)+ V
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A similar choice worked quite well for the one-mode PA. For the two-mode PA, how

ever, this choice leads to a diffusion matrix that is not positive-semidefinite, which in 

turn results in a complex matrix B. The resulting SDEs for the “real” and “imag

inary” parts of α,, o⅛, β1, β2, ap, and βp are complex rather than real. Writing the SDEs 

in complex form, however, results in the same set of complex SDEs that one obtains 

with the original choice of derivatives, Eqs. (3.33). One can then work backwards to 

find the correct choice of derivatives, i.e., the one that results in a positive-semidefinite 

diffusion matrix D and thus a real matrix B.
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FIGURE CAPTION

Fig. 1. The effect of pump phase fluctuations on squeezing. The ellipse with solid 

lines represents ideal squeezing, in which the pump has a well defined phase. Phase 

fluctuations in the pump cause the orientation of the ellipse to fluctuate about φz, =0, 

with the characteristic angle Δφ=l∕(4Nlz2), feeding noise from the amplified quadrature 

into the squeezed quadrature.
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CHAPTER 5

The Spectral Consequences of Internal Squeezing 
in a Laser Oscillator

by Amnon Yariv and David D. Crouch

An expanded version of a paper submitted to Optics Letters
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ABSTRACT

We study the effects of squeezing the intracavity noise in a laser oscillator. In par

ticular, we find that by squeezing the in-phase quadrature of the noise (squeezed ampli

tude fluctuations), the phase fluctuations are reduced, resulting in a reduction in laser 

linewidth.



-131 -

We are witnessing a nascent interest in the possible effect of squeezing1 on laser 

oscillators. The few treatments published to date use a quantum theoretical approach to 

look at phase diffusion but do not consider the all-important amplitude-phase coupling 

which dominates the phase noise of semiconductor lasers.2,3

In this chapter, we solve the classical noise problem of a realistic laser model by 

making a bold—and possibly unrealizable—assumption, that the in-phase and quadra

ture Langevin sources which are responsible for the “noisiness” of the laser can be 

squeezed. We proceed to show that the effect of such squeezing is to reduce the phase 

noise, including the linewidth, of the laser but, due to amplitude-phase coupling, not to 

eliminate them altogether. Intensity fluctuations, on the other hand, are fully squeezed.

The method we use is that of Ref. (3), which we will repeat in part for complete

ness. We start with Maxwell’s equations

v×r = -⅞, (!)

V×∕∕=σE+ε  ̂+ ∣-[X+pj, (2)
dt dt

where σ is the conductivity of the medium used to account for distributed losses and 

output coupling, ε is the nonresonant dielectric constant, P is the component of the 

polarization due to stimulated emission, and p represents a Langevin noise source due 

to spontaneous emission. Solving Eqs. (1) and (2) for E(r,t) yields the wave equation

where we have assumed that V(V∙E)~0. We then expand the electric field and the polar

ization in terms of orthogonal cavity modes:
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E(r,f) = Re
P(r,∕)=Re
p(r,f)=Re

∑Em(i)em(r) ,

∑Pm{t'jem(r)

∑Pm<J)em(r)

(4a)

(4b)

(4c)

where the spatial mode functions satisfy the homogeneous wave equation

V2⅛(r) + ω⅛em(r ) = 0 (5)

and the orthogonality relation

∫ .t en (r∖e*(r )dv=Vhmn . (6)
∙,cavιty

Here V is the cavity volume and ωm is the passive cavity resonance frequency. By sub

stituting Eqs. (4) into Eq. (3), using the orthogonality relation [Eq. (6)], and assuming 

that only one mode oscillates, we find the equation of motion for a single-mode laser

⅞)+⅛(O+ωo⅛(0=-⅛(f)+p(f)], (7)
Tp c

where τp and ω0 are the photon lifetime and resonant frequency, respectively, of the pas

sive resonator.

We can relate the polarization P(t) to the electric field E{t) by the relation

P(O=εo[χ<,>+∕¾⅛Γ(O (8)

where χiυ and χ<3) are the complex linear and nonlinear susceptibilities of the laser 

medium, respectively, due to the population inversion; the imaginary part of χ(3), χfy,
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represents gain saturation, and the real part of χ(3), χ,P∖ represents an intensity-dependent 

index of refraction.3 We take

E(O = ∣A0+δ(θJi>itω'+φωι (9)

where Λo is real and δ(0 and φ(r) with zero means represent amplitude and phase quan

tum fluctuations, respectively, caused by p{t). The linearized van der Pol equations 

resulting from a substitution of Eqs. (8) and (9) in Eq. (7) are3

and

δ(f) + ω,δ(i) =
∆,∙(f) 
2ω ’

(10a)

A0<j>(t) +
3ωχ<3U02

2«2
δ(0=-

Δr(Q 
2ω ’

(10b)

where ω,=-3χ∕3Uo ω∕2zι2 and

= [∆r (t )+i Δ,∙ (f )] ei l°a +φ(,)), (H)

so that ∆r(t ) and ∆l (t') are the in-phase and quadrature noise (Langevin) sources.

Our main ensatz will be to assume that as a result of squeezing the intracavity 

noise, the “powers” of ∆r and Δ, are no longer equal. The equality of these powers is 

at the heart of all present laser theories and the consequences of our departure from this 

equality are of fundamental importance. We thus take

<∆,∙(i,)∆,∙(i2)>=0e 2iL>(i1→2), (12)

<∆r (t 1 )Δ,, (t2)> = Qe 2j D (t 1 -12) , (13)
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<Δ,.(i1)Δr(f2)>=0, (H)

where 5 is the squeezing parameter (5 =0 is the non-squeezed case), Q =4⅛ω03η∕εVτp (V is 

the volume of the resonator, and η the inversion factor), and D(z) is the Dirac delta 

function.

The solution of Eqs. (10) using Eqs. (12), (13), and (14) follows the method of 

Ref. (3) leading, respectively, to the following results for the spectral density of the fre

quency fluctuations, the laser field spectrum, the laser linewidth, and the spectral den

sity of the power fluctuations:

‰(Ω) = j⅛ ⅞ω e2i + - α2e^2iπτn
Ψ(Ω)=

1+(Ω∕<0i)2

∆o2 ∆ωs∕22π (Ω-ω)2+(Δω5∕2)2
(15)

(16)

,λvx = ,„2 -2,,» /laser — _ 7 _ ∣ CC £ ) f
2π 2πτfP0

(17)

‰(Ω)= 4 ⅛ωηP0 e-⅛ π τ2 Ω2+ω12 (18)

where P0=εA0V∕τp is the mean output power of the laser oscillator and α≡χ)3Vχ∕3> is the 

amplitude-phase coupling constant.3

The laser linewidth is proportional to the factor eχp(2i )+α2eχp(-2i). The first te∏n 

exp(2,y ) represents an amplification of the direct phase diffusion te∏n while the term 

α2exp( -2s ) is due to a deamplification (squeezing) of the amplitude-phase coupling. It 

thus follows that because of the coupling the phase noise cannot be squeezed out com

pletely unless α=0, and the minimum value of the noise factor is 

[eχp(2i)+α2eχp(-2s)]min=2α and obtains with i=ln^α, resulting in a minimum laser
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linewidth of

∆vmin≡∙
Δω„2π ⅞ωη<x

πτp2P0
(19)

We can, however, squeeze the power fluctuation spectrum, Eq. (18), which depends 

only on the factor exp(-2s). Figure 1 is a plot of the normalized laser field spectrum 

Λ(v')≡(πΔωminMo )W(2πv'), normalized in the sense that Λ(0)=l when 5 =ln√α. Here 

v,≡Ω∕2π. Using typical parameters for a GaAs semiconductor laser, we have 

v = ω∕2π=3.53×1014 Hz, η=3, τp=5×10-12 s, P0 = Q.5 mW, and α=4. The solid line is for 

,v=0, when the intracavity noise is unsqueezed and is equally distributed between the 

two quadratures ∆,(f) and ∆,(f)∙ The dashed line is for s=lιr√4, which results in the 

minimum laser linewidth ∆vmin.

Our conclusions follow directly from the assumed fonn of Eqs. (12), (13), and 

(14), These take their inspiration from the form of the squeezing of the quadrature field 

components of the field operators in quantum optics.14 To the extent that the laser noise 

can be attributed to the transitions induced by the resonator vacuum (zero point) field, 

the fonn of Eqs. (12), (13), and (14) is plausible if the laser vacuum field is squeezed, 

although the issue of whether the vacuum field accounts for all or one half of the spon

taneous emission is not yet resolved.5

Recent proposals for reducing laser fluctuations involve injecting a squeezed 

vacuum field into a laser to inhibit phase diffusion,6 injecting a sub-Poissonian current 

into a semiconductor laser to reduce amplitude fluctuations,7 and pumping the laser 

with an incoherent source in a squeezed vacuum state.8 The first two techniques are 

directly applicable to semiconductor lasers as such lasers are limited by quantum, rather 

than technical noise. It is possible that a direct squeezing using a nonlinear element 

inside the laser resonator might more closely approximate the assumed form of Eqs.
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(12) and (13). One such method might employ the amplified and doubled output of the 

laser to pump a degenerate parametric amplifier crystal within the laser resonator. Such 

an arrangement is known9 to lead to squeezing in configurations which do not include 

the gain medium. An important basic issue then is what happens to the cavity vacuum 

fluctuations in the presence of gain and squeezing.
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FIGURE CAPTION

Figure 1. Normalized laser field spectrum R as a function of detuning from line 

center v'-v. The solid line is the field spectrum when the intracavity noise is 

unsqueezed, i.e., i =0. The dashed line is the field spectrum when the intracavity noise 

is squeezed, with s =ln√4.
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