
Explicit Object Representation by Sparse Neural

Codes

Thesis by

Stephen Waydo

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2008

(Defended September 21, 2007)



ii

c© 2008

Stephen Waydo

All Rights Reserved



iii

Acknowledgments

Despite having only a single name on the cover, this thesis represents the work of a

great many people. Some have provided mentorship and guidance, some have directly

contributed to the work and the writing, and many more have helped me to become

who I am as a researcher and as a person. I have been exceedingly fortunate in the

friends and colleagues I have amassed over the years, and without them none of this

would have been possible.

Richard Murray has been my advisor since my first days at Caltech, and has been

an invaluable mentor as I have made the transition from coursework to independent

research. Richard is a continual fountain of enthusiasm no matter the subject area,

and has encouraged all of my explorations into a wide variety of subject areas as I

sought a suitable area for thesis research. Always available to help me make progress,

not with an answer but by finding the right question to ask, Richard has been a great

teacher and friend.

Christof Koch supervised the years of work that went into creating this thesis. I

have never met someone with such a deep and abiding love of science; every meeting

with him leaves me recharged and enthusiastic about my work despite any obstacles.

He has been a close and active collaborator on every aspect of this work, and I am

immensely grateful for his willingness to invite me into his lab and help me find where

I could contribute, despite having no background in biology, let alone neuroscience.

His ability to stay true to biology while understanding and appreciating the value of

modeling and mathematics is unparalleled. I hope our interactions have been even a



iv

small fraction as fulfilling for him as they have been for me.

I have been fortunate to have a thesis committee that has gone beyond simply

being available for an examination and has actively participated in shaping the work

contained in this thesis. Along with Richard and Christof, these are Jerry Marsden,

Pietro Perona, and Bruno Olshausen.

In the modern era of interdisciplinary and collaborative research, very little work

is done in solitude. The work contained in this thesis was a collaborative effort that I

could not have even attempted without excellent colleagues. In addition to Christof,

Sasha Kraskov, Rodrigo Quian Quiroga, and Itzhak Fried directly contributed to the

work presented here. Furthermore, the members of Richard’s and Christof’s research

groups have all contributed greatly with their insight and questions as this work

progressed.

Two professors from my undergraduate days at the University of Washington had

a particularly significant impact on my academic career. Mark Campbell provided me

with my first opportunities for research as an undergraduate and helped me to secure

funding to spend time working on spacecraft rather than on a more ordinary job.

Juris Vagners introduced me to dynamics and control in a way that instilled in me a

lasting love of the subject area and drove my choice of graduate studies. Both Mark

and Juris inspired and encouraged me to pursue a Ph.D. and were instrumental in

helping me gain admission and funding for my graduate work. Together with Richard

and Christof they set the standard for who I want to be as a teacher and mentor.

I have been lucky to work in a wide variety of research areas while at Caltech

before settling in on the work presented in this thesis. All of my collaborators have

influenced my growth as a researcher and thus left an imprint on this work as well.

Particularly significant among these are Lars Cremean, Bill Dunbar, John Hauser,

Eric Klavins, everyone who worked on any of the incarnations of the Multi-Vehicle

Wireless Testbed, and everyone who TA’d Richard’s classes with me.



v

The Fannie and John Hertz Foundation provided generous financial support through-

out my graduate career, for which I will always be grateful. My Hertz Fellowship en-

abled me to explore numerous avenues of research without regard to what was funded

or even fundable at the time, and was a decisive factor in my success at Caltech. The

Hertz Foundation has also provided some wonderful opportunities to meet luminaries

of science and technology from across the public and private sectors. It is truly a

unique and special organization.

I could never have survived the long years of graduate school without the love

and support of a tight-knit group of friends. Chris and Lydia Voorhees, Peter and

Jeannette Illsley, Brea Dyk, Tim Chung, Steve Collins, and Tony Vanelli have been

there all along the way. Their friendship and the good (and bad) times we have spent

together mean more to me than I can say.

Finally, last but most of all, I thank my beautiful wife Jaime. Jaime has been at

my side throughout the epic adventure that is graduate school, and she has always

been my biggest fan and strongest supporter, as well as a constant source of love and

encouragement. She didn’t question my desire to spend a year flying spaceships rather

than focusing on the “real” research that would get me closer to finishing school, and

she wholeheartedly supported my rather questionable decision to pursue an entirely

new area of research when I should have been thinking about wrapping up work that

I had already started. This work is dedicated to her, and now I look forward to the

next phase of our life together with tremendous excitement.



vi

Abstract

Neurons have been identified in the human medial temporal lobe (MTL) that display

a strong selectivity for only a few stimuli (such as familiar individuals or landmark

buildings) out of perhaps 100 presented to the test subject. While highly selective for

a particular object or category, these cells are remarkably insensitive to different pre-

sentations (i.e., different poses and views) of their preferred stimulus. This invariant,

sparse, and explicit representation of the world may be crucial to the transformation

of complex visual stimuli into more abstract memories. In this thesis I first discuss

the issue of how best to quantify sparseness, particularly in very sparse systems where

biases are significant, and show the results of this analysis applied to human MTL

data. I also provide an overview of existing results from other investigators on mea-

suring sparseness both elsewhere along the primate visual pathway and in selected

other sensory processing systems. From there I move into the computational realm.

Sparse coding as a computational constraint applied to the representation of natural

images has been shown to produce receptive fields strikingly similar to those observed

in mammalian primary visual cortex. I apply sparse coding as a model for processing

further along the visual hierarchy: not directly to images but rather to an invariant

feature-based representation of images analogous to that found in the inferotemporal

cortex. This combination of sparseness and invariance naturally leads to explicit cat-

egory representation. That is, by exposing the model to different images drawn from

different categories, units develop that respond selectively to different categories. Af-

ter extending an existing model of sparse coding and providing some mathematical
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analysis of its operation, I show results obtained by applying this method both to

unsupervised category discovery in images and to differentiation between images of

different individuals.
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Chapter 1

Overview

1.1 Experimental Motivation

The fundamental motivation for the research culminating in this thesis was the results

of Quian Quiroga, Reddy, Kreiman, Koch, and Fried (2005), who recorded the activity

of single neurons in the human medial temporal lobe (MTL), a brain area linked to

memory consolidation and cross-modal association. The recordings were carried out in

the laboratory of neurosurgeon Itzhak Fried at UCLA, with his active participation

in all stages of the experiments. Dr. Fried implants chronic electrodes in patients

with pharmacologically intractable epilepsy for the purpose of localizing the seizure

focus for later resection. In the experiments I describe here, microwires capable

of measuring the activity of individual neurons were included at the electrode tips.

During the roughly one week period of time that the electrodes were in place in

each patient researchers were able to record neuronal activity while the patient—who

volunteered for these studies—participated in various experiments.

Two complimentary experimental paradigms involving the patient viewing natural

visual stimuli form the experimental motivation for my work. In the first, known as a

“screening” session, the patient viewed multiple presentations of roughly 100 different

images of individuals, animals, objects, and landmark buildings presented on a laptop

computer. The goal of this session was to discover at least one stimulus that some
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neuron was selective for. In a subsequent “invariance” session, the patient again

viewed numerous images, but several different images (with varying pose, lighting,

background, etc.) of objects that elicited strong responses in the screening session

were presented in addition to the standard images. Two important discoveries came

out of these two experiments. First, in general, MTL neurons responded strongly

(defined by a threshold above background firing rate) only very rarely—most neurons

did not respond strongly to any image in the screening session, and those that did

sometimes respond strongly only did so to a very small number of images. This

was evidence that MTL employs what is known as a “sparse” code, as opposed to a

“dense” or combinatoric code in which individual neurons would respond much more

frequently. Second, several neurons were identified (and many more have been since)

that responded strongly to many very different images of the same person or object,

but not to images of different objects (even very similar ones), a property known as

“invariance.” The best known example from this study was a neuron that responded

to seven different images of the actress Jennifer Aniston with an average of 4.85 spikes

between 300 and 500 ms after stimulus onset, but was virtually silent otherwise (with

a baseline rate of 0.03 spikes/s and very few spikes in response to other images).

Further investigations have uncovered cells that are invariant not only to different

images of the same object, but also to the name of the object both printed or spoken

aloud (Quian Quiroga, personal communication), underscoring the fact that, while it

receives input from visual areas, MTL itself is not limited to visual processing.

These results suggest a sparse and invariant encoding in MTL and seem to imply

the existence of “grandmother cells” that respond to only a single category, individual,

or object (Konorski, 1967; Barlow, 1972; Gross, 2002), though limitations on the

number of images that can be presented and neurons that can be recorded from

stop us short of making such a controversial claim. Further, these neurons seem

to respond to the high-level “concept” of their preferred object rather than to any
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particular features of the input. The work in this thesis represents an effort to better

understand the behavior of these remarkable cells from two perspectives—quantifying

as precisely as possible the behavior of these cells, and building a computational model

capable of reproducing some aspects of this behavior.

1.2 Outline and Contributions of Thesis

Chapters 2 and 3 of this thesis are devoted to developing a better understanding of

the experimental results first reported by Quian Quiroga and colleagues. First, in

Chapter 2, I discuss the various ways one might answer the fundamental question

“How sparse is the code?” based on experimental data. Sparseness is an important

parameter both for understanding the level of network activity and for quantifying

network capacity (Tsodyks & Feigel’man, 1988; Treves & Rolls, 1991; Meunier, Yanai

& Amari, 1991; Willmore & Tolhurst, 2001; Hahnloser, Kozhevnikov & Fee, 2002),

but no single measure exists that serves these purposes well in all circumstances. I

describe several commonly used sparseness measures and discuss the strengths and

weaknesses of each. I then turn to the practical problem of how to estimate sparseness

based on neural recordings. My primary contributions in this area are to show that the

most direct method for approaching this task breaks down in very sparse regimes such

as the human MTL due to extreme sensitivity to noise, and to propose a less direct but

more robust method for estimating sparseness in this setting. Then, in Chapter 3, I

apply this method to the human MTL data reported by Quian Quiroga et al., showing

that very sparse, though likely not grandmother, coding is employed by MTL. This

work has appeared in journal form as “Sparse Representation in the Human Medial

Temporal Lobe” (Waydo, Kraskov, Quian Quiroga, Fried & Koch, 2006). I also place

this data in the context of experimental results from other systems, both at different

locations along the primate ventral visual stream and in selected other systems such
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as rat hippocampus and auditory cortex.

In Chapters 4 and 5, I present a computational model for the human MTL cells

described above and how they can arise as a consequence of an unsupervised learning

process. My central hypothesis is that the two distinct but complimentary compu-

tational principles of sparseness and invariance together naturally lead to the type

of sparse, selective representation observed in MTL. I treat these two principles as

separable, modeling the ventral visual stream as a system for producing invariant,

but not necessarily sparse, representations, then modeling MTL as learning a sparse

representation for the activity of the visual system (without the benefit of a teacher

who labels each image). The process by which a sparse code is learned builds on work

by Olshausen and Field (1996, 1997). In that work, Olshausen and Field developed

a neurally implementable learning algorithm that seeks a sparse representation of

its inputs (meaning one in which the individual coding elements are active rarely),

and applied it directly to natural image patches, learning a set of basis functions for

images much like that observed in mammalian early visual cortex. In Chapter 4 I

describe this process in detail, then extend the model in several ways that improve

both its computational efficiency and its relevance as a model for MTL. In Chapter 5

I apply this model to collections of images of different individuals and categories after

first processing them through one of two different models for invariant feature extrac-

tion. That is, rather than applying the model directly to pixels, as Olshausen and

Field did, I apply it to some invariant representation of image features obtained from

established biologically-motivated machine vision algorithms. Through this learning

process, model neurons emerge that respond selectively to images of particular indi-

viduals or categories, much like those observed in human MTL. Portions of this work

have appeared as a conference paper (Waydo & Koch, 2007a), and a journal version

is in press (Waydo & Koch, 2007b).

Finally, in Chapter 6, I summarize the results of the thesis and outline a number of
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potentially fruitful avenues of future research. Possible extensions include expanding

the scope of the model to cover the entire visual hierarchy (rather than applying it

only at the top and the bottom), implementing the model using more biophysically

realistic neurons, and developing a method for cross-modal association to model the

multi-modal effects briefly mentioned above.
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Chapter 2

Quantifying the Sparseness of
Neural Codes

A fundamental question confronting any examination of neural coding schemes is

“How sparse is the code?” (Barlow, 1972; Olshausen & Field, 2004). Sparseness, ei-

ther intuitively defined as how frequently a neuron responds above some threshold or

according to various more general schemes, is an important quantity both for under-

standing the level of network activity and for quantifying network capacity (Tsodyks

& Feigel’man, 1988; Treves & Rolls, 1991; Meunier et al., 1991; Willmore & Tolhurst,

2001; Hahnloser et al., 2002). In later chapters I will explore in detail the sparse-

ness measured along the visual pathway and the implications for neural coding, and

develop computational models of visual processing inspired by these findings. First,

however, I turn to the task of quantifying sparseness. In Section 2.1 I will describe

several candidate measures for sparseness and discuss the strengths and weaknesses

of each. In Section 2.2 I discuss the practical problem of estimating sparseness from

neural recordings. The work in Section 2.2 was performed in collaboration with

Alexander Kraskov and Christof Koch, with additional contributions from Rodrigo

Quian Quiroga and Itzhak Fried in portions that overlap with material published as

“Sparse Representation in the Human Medial Temporal Lobe” (Waydo et al., 2006).
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2.1 Sparseness Measures

While seemingly an intuitive concept, sparseness can be very difficult to rigorously

define and quantify, and the appropriate choice of measure can vary depending on

the nature of the questions being investigated. Several authors have discussed and

compared different measures (Willmore & Tolhurst, 2001; Olshausen & Field, 2004);

what follows is an expanded description of the most common measures, along with

their strengths and weaknesses.

2.1.1 Notation

I denote random variables by capital letters, with corresponding samples in lower case,

i.e., x is a sample of a random variable X. The probability of an event is written

P [event], so the probability that X takes on a value larger than a is written P [X > a].

The probability density function for X is denoted by fX(x). The expectation operator

is denoted by E[·] or 〈·〉, with the special cases of the mean E[X] = µX and the

variance E[(X − µX)2] = σ2
X .

2.1.2 Threshold

The intuitive notion we would like to capture with sparseness is the likelihood that a

neuron will respond “significantly” to any particular stimulus. In the case of a truly

binary neuron (such as in a Hopfield network), then, sparseness can be simply defined

as the probability that a neuron will be in the “on” state. Real neurons, however, do

not necessarily fire in a clean “on/off” fashion; rather a neuron responds with some

rate R to a stimulus. In this more general case, we choose some reasonable threshold

rT and define the sparseness as

t = P [R ≥ rT ]. (2.1)
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Provided the threshold rT is chosen in a meanful way, this definition clearly captures

the basic question of “how active is this neuron?” It is particularly relevant when

attempting to quantify the behavior of neurons that have a strongly bimodal distribu-

tion, such as a neuron that fires with some high mean rate when a preferred stimulus

is present and some low background rate otherwise. For this reason it has been useful

when studying the responses of category- and individual-specific cells in the human

medial temporal lobe (Waydo et al., 2006).

In the case where a neuron has a unimodal distribution of firing rates and signifi-

cant information may be carried in the smoothly varying firing rate (as opposed to a

binary present/not present judgement), this measure may fail to capture important

subtleties in the rate distribution. I shall show below, however, that it may still pro-

vide a reasonable estimate of more sophisticated measures that is robust to noise. I

turn now to two sparseness measures that directly address the issue of continuously

variable firing rates.

2.1.3 Kurtosis

One common definition of sparseness is that a sparse distribution has more probability

density concentrated both near the mean and far from it than a Gaussian of the same

variance (Dayan & Abbott, 2001, p. 378), that is, it has a sharp peak and a heavy

tail. This definition is related to a measure called kurtosis, which is the fourth central

moment of a probability distribution. The kurtosis k of a probability distribution

fR(r) is defined as

k ≡ E

[

(

R − µR

σR

)4
]

. (2.2)

Occasionally an alternative definition k∗ = k − 3 (sometimes called the “kurtosis ex-

cess”) is used so that a Gaussian distribution has a kurtosis of k∗ = 0, with less sparse

distributions having negative kurtosis excess and sparse distributions having positive
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Figure 2.1: Kurtosis excess for several probability distributions, each with zero mean
and unit variance. Shown are a Gaussian distribution (solid, k∗ = 0), a Laplacian
distribution (dashed, k∗ = 3), and a uniform distribution (dotted, k∗ = −1.2).

kurtosis excess, though this distinction has no bearing on the following discussion.

Figure 2.1 gives a few examples of probability distributions with zero mean and unit

variance but different kurtosis. Note that larger kurtosis corresponds to a taller peak

and heavier tails, which corresponds well with the intuitive definition of sparseness

described above.

Kurtosis is generally described as reflecting either the “peakedness” or the heav-

iness of the tails of fR, and has the convenient property of being invariant both to

shift and scale. In the neural coding literature large values of k are identified with

sparse codes (Olshausen & Field, 1996; Bell & Sejnowski, 1997; Vinje & Gallant,

2000; Willmore & Tolhurst, 2001). This description, however, comes with the caveat

that kurtosis is only appropriately applied to reasonably symmetric, unimodal dis-

tributions such as those obtained from linear filters or artificial neurons (Vinje &

Gallant, 2000; Olshausen & Field, 2004), and not to the one-sided distributions nec-

essarily obtained from real neurons. Vinje and Gallant (2000) alleviate this difficulty

by reflecting their measured neural responses about zero before computing k (that

is, for each response r they include an artificial response of −r), but in the case of
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bimodal distributions, such as those that may be obtained from neurons involved in

recognition, the meaning of kurtosis remains unclear.

A further challenge confronting the application of kurtosis as a measure of neural

sparseness is its invariance with respect to flipping a distribution about its mean

(because it measures only shape). When evaluated with kurtosis, a neuron that is

highly active, only rarely dropping its firing rate, would be considered just as sparse

as a neuron that is highly inactive, only rarely firing strongly. From an information-

theoretic point of view the two neurons may carry equal information, one conveying

that information by a decrease in firing rate and the other by an increase, but in a

biological context a reasonable sparseness measure should rate the mostly inactive

neuron as much more sparse than the mostly active neuron.

Many of these difficulties stem from the fact that, as a high-order moment, several

disparate factors influence kurtosis and it is difficult at best to capture it intuitively.

Numerous papers in the statistics literature have lamented this difficulty, with com-

ments such as “what do we even mean by kurtosis?” (Bickel & Lehmann, 1975), “there

seems to be no universal agreement about the meaning and interpretation of kurto-

sis”(Moors, 1986), and “there is no agreement on what kurtosis measures”(Ruppert,

1987). Darlington first challenged the traditional interpretation of kurtosis, arguing

that “kurtosis is best decribed not as a measure of peakedness versus flatness, as in

most texts, but as a measure of unimodality versus bimodality” (Darlington, 1970).

This view was later found to fall short of capturing the essence of kurtosis, and the

most precise interpretation is the intuitively unsatisfying one that kurtosis measures

the dispersion of the distribution about the two points µ ± σ (Moors, 1986).

For the reasons outlined above I conclude that, while kurtosis may be a useful

tool for interpreting the sparseness of filters and artificial neurons with symmetric

response distributions, it may not be appropriate for interpreting real neural data.

This is particularly true in the case of bimodal response distributions that may be
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obtained, for example, from neurons that fire strongly to some preferred stimulus and

weakly or not at all to other stimuli.

2.1.4 Treves-Rolls Sparseness

Treves and Rolls (1991) present an alternative measure of sparseness more appropriate

for application to neural data. Let fR(r) be the probability density function for the

neuron’s response rates. They defined

a ≡ E[R]2

E[R2]
, (2.3)

that is, the square of the mean response divided by the mean squared response. With

this definition the (dimensionless) sparseness a varies between 0 and 1, and small

values of a correspond to sparse representations. This definition has two convenient

properties. First, in the case of a binary neuron that responds to a stimulus with

probability t (and has zero response otherwise), a = t; so indeed, a is the probability

that the neuron responds significantly. Second, from elementary properties of the

mean and variance we can rewrite Equation 2.3 as

a =
µ2

R

µ2
R + σ2

r

, (2.4)

Thus the sparseness is small if the variance is large compared to the mean (i.e.,

when the neuron has widely separated responses to different stimuli), and large if the

variance is small compared to the mean (i.e., when most responses are very similar).

In addition to being a relatively intuitive generalization of our notion of sparseness

to neurons with continuous rates, a is related to the theoretical storage capacity of

an autoassociative neural network (Tsodyks & Feigel’man, 1988; Treves & Rolls,

1991; Meunier et al., 1991). Hence we take an interest in a not simply as a means
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of quantifying the question of how frequently neurons fire “strongly,” but also as a

functionally relevant parameter.

As it is more appropriate than kurtosis when measuring the sparseness of real

neural data, this measure has been used extensively in experimental work (Rolls &

Tovee, 1995; Vinje & Gallant, 2000; Weliky, Fiser, Hunt & Wagner, 2003). In the

remainder of this work I will take this as my primary definition of sparseness.

2.1.5 A Selectivity Index

Working in the context of sparse, invariant neurons in the human medial temporal

lobe (Quian Quiroga et al., 2005), Quian Quiroga and colleagues (2007) propose a

novel threshold-independent index for quantifying the selectivity of neurons. They

first define a function describing the normalized number of responses above a threshold

rT

S̃r(rT ) =
1

S

S
∑

i=1

θ(ri − rT ), (2.5)

where θ(x) = 1 for x > 0, θ(x) = 0 for x ≤ 0. Note that if fR(r) is the probability

density function of the response distribution and FR(r) the corresponding cumulative

density function, then for large S S̃r(rT ) approaches 1−FR(rT ). The area under this

curve (as rT is varied) is

A =
1

M

M
∑

j=1

S̃r(rT,j), (2.6)

where rT,j = rmin + j
(

rmax−rmin

M

)

defines M equally spaced threshold values between

the minimum and maximum responses rmin and rmax (equivalently one can simply

rescale the responses to lie between 0 and 1). This area will be close to 0.5 for a

uniform distribution of firing rates and much smaller when only a small fraction of

responses are significant. Quian Quiroga and colleagues then define their selectivity

index by

I = 1 − 2A. (2.7)
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Consider the case of a binary neuron. If all responses but one are significant, I =

1 − 2
(

S−1
S

)

, so for large S I approaches −1. If instead only a single response is

significant, I = 1 − 2
(

1
S

)

, so for large S I approaches 1.

Assuming a large number of samples and noting the relationship between S̃r(rT )

and FR(rT ), some algebra yields the relationship

I =
2

rmax − rmin

∫ rmax

rmin

F (r)dr − 1, (2.8)

so the selectivity is (in the limit) defined by the cumulative density function of the

response distribution. From this definition it can be seen that any symmetric response

distribution (e.g., Gaussian or uniform) will, in the limit, have I = 0. Thus, like

skewness (which is related to the 3rd central moment of a distribution), this measure

quantifies the asymmetry of the response distribution. Values close to the minimum of

−1 indicate that most responses are clustered near the maximum (the neuron nearly

always responds), values close to the maximum of 1 indicate that most responses are

clustered near the minimum (the neuron rarely responds), and values close to zero

indicate a symmetric response distribution.

As noted by Quian Quiroga et al., this index has a few convenient features.

It is threshold-independent, and captures the selectivity of roughly binary neurons

well and so conforms to our intuitive notion of sparseness. As with any threshold-

independent measure, accurate results depend strongly on a given experiment finding

enough responses to characterize the response distribution well (since no assumptions

are placed on the form of the distribution).

2.1.6 Population versus Lifetime Sparseness

In most discussions of sparse coding, the quantity of interest would more precisely be

defined as lifetime sparseness, which refers to the sparseness of an individual neuron’s
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responses over time. This is the sense in which I defined sparseness above. It is

also possible, however, to discuss the sparseness of the responses of a population of

neurons, or the population sparseness. In this case, the relevant sparseness measures

would be the same as defined above, except that the expectations would be taken

across the population of neurons for an individual stimulus rather than across the

universe of stimuli for an individual neuron (perhaps then averaging across all stimuli).

If the neurons’ responses to stimuli are independent and identically distributed,

it is clear from the definitions above that lifetime and population sparseness are

exactly equivalent. Simply speaking, the fraction of stimuli an individual neuron

responds to will be equal to the fraction of neurons that respond to a particular

stimulus. If, however, some neurons participate in many more representations than

others, the population sparseness may be very different than the lifetime sparseness.

Willmore and Tolhurst (2001) investigated this issue by examining the representation

of a set of natural images within several different filtering schemes such as Gabor,

principal components, and independent components filters. They computed both the

population and lifetime sparseness of the responses of each of the filters in each of

these coding systems and found no direct relationship between the two. This should

not be an unexpected result. For example, principle components analysis (PCA)

specifically seeks filters such that a small number of filters code for a large portion of

the input statistics (Hancock, Baddeley & Smith, 1992). A set of PCA filters would

be expected to have a high population sparseness but low average lifetime sparseness,

because a few of the filters have large output much of the time, while many of the

filters are active only rarely.

From an experimental point of view, it is not possible to directly measure the

population sparseness of a given representation—to do so would require recording

from a large enough subset of the entire coding set of neurons to establish the response

statistics at the population level. The below discussion will then be restricted to the
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lifetime sparseness, which can be estimated by recording a single neuron’s responses to

a large group of stimuli. Where I make inferences about the population sparseness,

it is under the assumption that the population of neurons under consideration is

homogenous (in the sense of their responses being i.i.d.).

It should be noted that sparseness should properly be defined with respect to a

particular class of “relevant” stimuli. I assume in what follows that the stimulus set is

relevant to the computation performed by the neurons from which we record. In other

work describing experimental results obtained from the human medial temporal lobe

my co-authors and I discuss the potential bias due to choice of stimulus set (Waydo

et al., 2006, and see Chapter 3). Note also that the issues I discuss here are different

than the extreme temporal sparseness observed, for example, in high vocal center

neurons of the zebra finch (Hahnloser et al., 2002; Fiete, Hahnloser, Fee & Seung,

2004). There, neurons appear to encode a time-varying signal (the finch’s song)

using precise spike timing, and “sparseness” refers to the fact that individual neurons

encode their portion of the signal using an extremely small number of spikes. In this

work, I am instead concerned with encoding static signals, and sparseness refers to

how rarely individual neurons will be active (in the case of lifetime sparseness) or

how few neurons will be active simultaneously (in the case of population sparseness).

2.2 Estimation of Sparseness from Neural Record-

ings

As we have seen above, a great deal of work has been done to find an appropriate

quantitative definition of sparseness and to understand how sparseness fits in models

of network performance. Comparatively little attention has been paid to the prac-

tical challenge of how to accurately measure it, the problem to which I now turn.

In a typical experimental paradigm, the activity of one or more neurons is recorded
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while a collection of stimuli is presented to the subject (Young & Yamane, 1992; Rolls

& Tovee, 1995; Vinje & Gallant, 2000; Quian Quiroga et al., 2005; Kreiman et al.,

2006). Due to constraints on experiment duration, the number of stimuli presented

generally varies in the range of about 50–100. The rate of “spontaneous” background

firing, usually of unclear significance (is it noise or signal?), can be significant and

needs to be properly accounted for. In this section I examine two methods for es-

timating representational sparseness from spiking data, direct computation and a

binary model-based approach. My primary contribution is to show that the direct

computation is, in many cases, vulnerable to corruption by noise, particularly if the

underlying code is sparse. I further show that this issue is likely to arise when the

mean noise is large compared to the mean response, regardless of the peak response.

In this regime it is more accurate to apply a binary model using a response threshold

and compute the probability that a neuron fires above that threshold.

This work was performed in collaboration with Christof Koch and Alexander

Kraskov (now at University College London); my contribution was the development

of the probabilistic reasoning about sparseness and the quantification of the biases

inherent in computing sparseness from limited, noisy datasets.

2.2.1 Direct Computation of Sparseness

Let S be the number of stimuli presented and ri be the neuron’s response to stimulus

i. The obvious way to estimate a is to calculate the sample mean and the sample

mean square, or, letting â be the estimate of a,

â =

(

1
S

∑S
i=1 ri

)2

1
S

∑S

i=1 r2
i

=
r2

r2
, (2.9)

where the bar over a quantity denotes the sample average.

This method of calculating â has two clear strengths. First, it is a direct calcula-
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tion of the quantity of interest, and so the result needs little interpretation. Secondly,

no underlying assumptions about the neuron’s behavior (i.e., a firing-rate model) are

required—one simply collects the neuron’s responses and plugs them in to Equation

2.9. This second strength, however, may also be a pitfall of this method. If one has a

very sparse neuron for which large responses are rare, one may measure a large num-

ber of responses that are purely noise. Because these responses are all very similar to

one another, Equation 2.9 will erroneously yield a large value. In what follows I will

make this issue more precise.

A fundamental challenge confronting the application of Equation 2.9 is that a is

sensitive to a uniform translation of responses, that is to adding a constant offset to all

responses, such as when taking spontaneous firing into account. For example, consider

a binary neuron with an “off” rate of 0 spikes/s, an “on” rate of 5 spikes/s, and a

firing probability of 5%. The sparseness calculated from Equation 2.3 is a = 5%.

If instead it fires at 6 spikes/s with the same probability and 1 spike/s otherwise,

a = 57%. This is a very different result, but we would argue that the answer to our

basic question (“how often does this neuron respond significantly”) has not changed.

This feature in turn means that the calculation of a can be highly vulnerable

to noise, particularly for very sparse systems. I will here examine the effect of this

vulnerability for a simple model with additive noise. Consider a system in which a

neuron’s response to a stimulus s is the sum of two components, that is

R(s) = X(s) + Y, (2.10)

where X(s) is the deterministic portion of the neuron’s response (that is, X(s) is

some parameterization of the neuron’s tuning curve) and Y is a noise term that is

independent of X. Assuming we choose stimuli randomly from the universe of all

possible stimuli, X can be viewed as a random variable.
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Let X and Y have means µx and µy and variances σ2
x and σ2

y , respectively. Presum-

ably in any discussion of sparseness what we are truly interested in is the sparseness

of the distribution of X, which by Equation 2.4 is

a =
µ2

x

µ2
x + σ2

x

. (2.11)

However, we have only the noisy responses R with which to characterize it. Because

X and Y are independent, the response distribution fR has mean µx+µy and variance

σ2
x + σ2

y . Applying Equation 2.4, the sparseness of the noisy distribution is then

â =
(µx + µy)

2

(µx + µy)2 + (σ2
x + σ2

y)
. (2.12)

Comparing Equations 2.11 and 2.12, we see that â approaches a if µx is large compared

to µy and σy. If this is not the case, â may, in fact, be quite different from the

underlying a that we wish to estimate. Roughly speaking, we have a signal-to-noise

ratio characterized by µx/µy or µx/σy. Even for seemingly low levels of noise, this can

present a significant difficulty. Although the significant responses may be quite large

in comparison to the noise, for a very sparse system we expect the mean response to

be small and so â will not accurately reflect a. Note also that only the mean and the

variance of the noise affect Equation 2.12; apart from these parameters the error is

independent of the details of the noise distribution.

Consider the case where X is a binary distribution, with an “off” rate of 0 spikes/s,

and an “on” rate of 10 spikes/s. The model neuron fires to a random stimulus with

probability a (as we pointed out above, the firing probability of such a neuron is

exactly its sparseness a). Now add to each response an independent noise component

with mean and standard deviation of 1 spike/s. It would seem in this case that the

signal-to-noise ratio ought to be very favorable: the “on” response is 10 times greater

than the mean noise level. However, the relevant comparison for our computation of



19

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

a (%)

es
tim

at
ed

 a
 (

%
)

Binary
Gamma
ideal

(a) Theoretical sensitivity of sparseness calcula-
tion (Equation 2.12) to noise

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

f R
(r

)

a = 1%
a = 25%
a = 50%

(b) Gamma probability density function for se-
lected values of a

Figure 2.2: Sensitivity of response sparseness â to noise. Response sparseness is
plotted as a function of the underlying distribution’s sparseness for binary (solid) and
gamma (dashed) distribution. High rate for the binary neuron is 10 spikes/s and
scale parameter λ for the gamma neuron is 5, so that both neurons have mean firing
rate 5 spikes/s at a = 1/2. Sparseness is varied by adjusting the firing probability a
for the binary neuron and the shape parameter α for the gamma neuron. The noise
is held constant at 1 spike/s mean and standard deviation.

â is between the mean response µx and the mean noise µy = 1. In this case, the mean

response is 10a, and so if a is even as low as 10% we may run into trouble. Plugging

these numbers into Equations 2.11 & 2.12 reveals that â = 29% for a = 10%, and

â = 38% for a = 1%!

While this example used binary model neurons to illustrate noise sensitivity, the

basic issue remains for any response model in which the mean response decreases

with a. For example, consider a neuron whose noiseless firing rates follow a gamma

distribution with shape parameter η and scale parameter λ,

fR(r) =
rη−1e−

r
λ

ληΓ(η)
, (2.13)

where Γ(η) is the gamma function. This distribution, depicted in Figure 2.2(b),

is convenient because it has an exponential falloff in rates and an easily tunable

sparseness. The sparseness of this distribution is a = η

1+η
, while the mean rate is
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ηλ. If we fix the scale parameter λ, then the mean rate declines with η and we

have the same bias problem as before. Figure 2.2(a) illustrates this issue for both

the gamma and binary neuron. Plotted is the sparseness estimate â as a function

of the underlying distribution’s sparseness a. Both neurons are parameterized such

that their mean firing rate is 5 spikes/s when a = 1/2. The sparseness of the binary

neuron is adjusted using the response probability a, while that of the gamma neuron

is adjusted using the shape parameter η while the scale parameter λ is held fixed. For

all levels of sparseness the noise is fixed with mean and standard deviation 1 spike/s.

We see from this figure that the bias due to noise can be substantial. Worse, the

variation of â with a is not even monotonic—the estimated sparseness increases as

the true sparseness becomes very small.

2.2.2 A Binary Model

If we make some a priori assumptions about the underlying rate distribution, we can

generate a few alternative methods for estimating a. In contrast to the direct calcu-

lation, in which the signal-to-noise ratio was that of the means of the response and

noise components, the relevant ratio will be that of the size of the “large” responses to

the noise. We can achieve this by assuming that the neuron responds to some stimuli

with at least some rate rT , where we pick rT to be our threshold for considering a

response significant. With this threshold we can then treat our neurons as behaving

in a binary fashion, with responses above rT considered “on” and all others “off.” It

is then straightforward to estimate the sparseness simply from the fraction of stimuli

a neuron responds to, or

â =
Sr

S
, (2.14)

where S is the total number of stimuli presented and Sr is the number of stimuli

the neuron responded to with at least rT . This approach has the advantage that it
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exactly answers the question of how frequently the neuron responds at a significant

level, as long as we can define a reasonable value for significance. Note that if the

underlying probability of achieving a significant response is a, then Sr follows a bi-

nomial distribution and E[â] = a. This estimate is biased upward by the probability

that an “off” response will be pushed above threshold by noise, so this bias is reduced

by increasing rT . Setting rT too high may, of course, cause significant responses to

be ignored as noise, so the separation between the significant responses and the back-

ground noise is the limiting factor for this method, which is much more favorable

than the difference between the mean response and the background noise in the case

of a sparse distribution.

Continuing with this binary model, I developed a method for determining a range

of sparseness that is consistent with our data, or alternatively the probability distri-

bution of the underlying response probability a. Let fa be the probability density

function of the response probability a. We want to determine fa(α|Sr = sr), the

probability density function for a given the observed number of responses sr. We

place no a priori assumption on a, so we set fa(α) = 1 for 0 ≤ α ≤ 1, that is, a is

equally likely to take on any value between 0 and 1.

At a particular value of a, the number of responses follows the binomial distribu-

tion

P [Sr = sr|a = α] =







S

sr






αsr(1 − α)S−sr. (2.15)

Bayes’ rule applied to this system gives

P [Sr = sr|a = α]fa(α) = fa(α|Sr = sr)P [Sr = sr], (2.16)
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or, solving for the desired distribution,

fa(α|Sr = sr) =
P [Sr = sr|a = α]fa(α)

P [Sr = sr]

=







S

sr






αsr(1 − α)S−srfa(α)

∫ 1

0
P [Sr = sr|a = α]fa(α)dα

=







S

sr






αsr(1 − α)S−sr(S + 1). (2.17)

For a given experiment we obtain a curve fa(α) describing the range of plausible

values for the underlying response probability a. Figure 2.3 gives examples of three

such curves derived from three different response patterns with S = 100. It is easy

to check that the peak of this distribution is at α = sr

S
, so the most likely value from

this distribution matches the intuitive definition of a for a binary model. We now

have additional information, however, about just how close the true a is likely to be

to our estimate â.

While the imposition of the binary model eliminates the noise sensitivity of the

direct method, it is of course not without challenges of its own. Primary among these

is that the binary model is an approximation of the true behavior that varies in its

accuracy depending on the details of the true firing rate distribution. In some cases

we may have a neuron that responds robustly at a high rate to some stimuli and

much less to others, and so the appropriate choice of threshold is clear. In other

cases, though, a neuron may respond with a wide variety of rates and the resulting

estimate of a based on a binary model will be sensitive to threshold. Obviously this

method sacrifices some of the detail in the neuron’s responses in favor of robustness

to noise.

It is possible to quantify to some extent the relationship between the true sparse-
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Figure 2.3: Example probability density functions for sparseness (expressed as a
percentage of stimuli that evoke a response) computed using Equation 2.17 in three
scenarios in which the number of stimuli presented was S = 100. The solid curve
would be obtained from a neuron for which no significant responses were recorded,
while the dashed and dash-dotted curves correspond to neurons for which 1 and 10
significant responses were recorded, respectively. As the number of stimuli shown to
the cell approaches the total number of images stored by the network, the density
function will converge to an ever-narrower curve centered at the true sparseness a.

ness of the underlying rate distribution and our estimate â derived from a binary

model. Note that â = P [R ≥ rT ], that is, our estimate of a is just the probability

that a response is greater than the threshold rT . The Markov inequality provides

an upper bound for the probability that a positive random variable exceeds some

threshold (Leon-Garcia, 1994). By this inequality,

â = P [R ≥ rT ] ≤ E[R]

rT

. (2.18)

Applying our additive noise model from above, we have

â ≤ µx + µy

rT

. (2.19)

Now assume as above that µx = aµ0 for some rate µ0. This is true for a binary neuron
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with µ0 = rh, and is approximately true for a gamma neuron with µ0 = λ and small

a. We now have

â ≤ a
µ0

rT

+
µy

rT

. (2.20)

Here we have an upper bound on â with two convenient features. First, the bias

is equal to µy

rT
, the mean noise relative to the threshold, so if our threshold is large

compared to the mean noise the bias is small. Second, the bound decreases with a,

so we are guaranteed that for any choice of threshold a small true a will give us a

small estimate â (provided the mean noise µy is small compared to the threshold).

This bound can also inform our choice of rT , but some caution is required. Clearly

we would like rT to be significantly larger than the mean noise µy to reduce the offset

from the noise term. From the first term, the temptation would be to set rT close

to one’s best guess for µ0. The bound given by the Markov inequality may be quite

loose, though, and this approach could result in a significant underestimate of a. A

balance must be struck between making rT as large as possible without getting too

close to µ0.

2.2.3 Simulation Results

Figures 2.4(a) and (b) depict Monte Carlo simulation results of sparseness estima-

tion with binary and gamma underlying rate distributions, respectively. The binary

neuron had an “on” response of 10 spikes/s, while the gamma neuron was tuned to

have the same mean response at each a as the binary neuron. For each neuron I

generated responses to S = 100 stimuli using the appropriate probability distribution

plus Poisson noise with unit (i.e., 1 spike/s) mean and variance. I then estimated

the sparseness of each neuron using both the direct calculation of Equation 2.9 and

the binary model with rT = 5 spikes/s (corresponding to rT = µ0/2 in the above

discussion). Plotted are the mean estimates over 1000 simulated neurons of each
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Figure 2.4: Monte Carlo simulation results for sparseness estimation for binary and
gamma distribution rate models. Noise was Poisson with 1 spike mean and standard
deviation. Solid line is the direct calculation (Equation 2.9); dashed line is the binary
calculation with a threshold of 5 spikes/s (Equation 2.14). Dotted line is the ideal of
â = a (which exactly overlaps the binary calculation in (a)). The number of stimuli
was S = 100, and 1000 neurons were simulated.

type.

In both cases the binary model produced substantially more accurate estimates

than the direct computation, particularly (as predicted) for very sparse distributions.

Because the binary model matched the underlying rate distribution, performance

in that case was nearly perfect. In the case of the gamma distribution, though,

performance was still very good in the sparse regime despite the model mismatch.

Figure 2.5 shows the effect of the choice of response threshold. Thresholds of

3, 5, and 7 spikes/s are considered with a fixed mean noise level of 1 spike/s. In

the case of the 3 spikes/s threshold, a significant number of “responses” were due to

noise and an overestimate of a resulted, though this overestimate was still much more

accurate than the direct computation in the sparse regime. The 5 and 7 spikes/s

thresholds both provided estimates close to the true a, and, most importantly, varied

monotonically with a. Figure 2.6 shows the effect of variations in mean noise level

on both the binary (a) and direct (b) computations. In the binary case, as the noise
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Figure 2.5: Variation of estimated sparseness with threshold. Response thresholds of
3, 5, and 7 spikes/s are considered, with noise level fixed at µy = 1 spike/s. Simulated
responses are drawn from the same gamma distribution as in Figure 2.4(b).

level drew close to the threshold (fixed at 5 spikes/s), many “responses” were due

to noise, resulting in an overestimate of a, but not as severe an overestimate as in

the direct computation case. At noise levels of 1 and 2 spikes/s, the estimates were

close to the true a. The direct computation provided a much worse overestimate of

a, particularly in the sparse regime.

2.2.4 Application to Data

I applied both the binary model and Equation 2.9 to the spiking responses obtained

from 1425 human MTL units from 34 experimental sessions in 11 patients (Quian

Quiroga et al., 2005; Waydo et al., 2006). This data will be discussed in more detail

in the next chapter, but it serves to illustrate the issues I discuss here. Figures 2.7

and 2.8 depict histograms of the results. In Figure 2.7, I calculated for each unit

the percentage of stimuli for which the median response was at least 3 standard

deviations above its background firing rate (for lower thresholds, many “responses”

are a result of random fluctuations; see (Waydo et al., 2006) for further discussion on
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Figure 2.6: Variation of estimated sparseness with mean noise level. Mean noise levels
of 1, 2, and 3 spikes/s are considered. Simulated responses are drawn from the same
gamma distribution as in Figure 2.4(b).

the choice of threshold). The large majority of these units responded (according to

the 3 standard deviation criterion) to less than 2% of presented stimuli, and the mean

value of this distribution is 1.5%. This is consistent with the qualitative observation

that these units respond in a highly selective manner (Quian Quiroga et al., 2005).

By contrast, Figure 2.8 depicts the sparseness estimate â computed using Equation

2.9 for the same data. In Figure 2.8(a) I applied Equation 2.9 to the raw firing rates,

and the estimate is fairly evenly distributed from 0–100%, with the spike at zero

caused by considering an entirely silent unit to have a sparseness of zero. The mean

value of â computed in this way is 37.8%. In Figure 2.8 I take a common approach

to compensating for noise by subtracting each neuron’s baseline firing rate from its

responses (setting the response to zero in cases where the result is negative). This

improves the results somewhat, with estimates now evenly distributed from 0–40%,

and a mean of 16.6%.

Recalling the example from Section 2.2.1, in which the numbers were motivated

by our experimental data, we see that a true sparseness of 1% can easily lead to a

sparseness estimate of 38%. Thus the seemingly contradictory results from Figures
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Figure 2.7: Histogram of the percentage of stimuli for which the median response was
at least three standard deviations above the background rate computed from spiking
responses of 1425 human MTL units. The mean is 1.5%.
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mean is 16.6%.

Figure 2.8: Histograms of estimated sparseness calculated using the direct computa-
tion of Equation 2.9 applied to spiking responses of 1425 human MTL units
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Figure 2.9: Histogram of the kurtosis excess for the responses of 1425 human MTL
units. The mean is 29.5.

2.7 and 2.8 are reconciled by the noise sensitivity of Equation 2.9 as described by

Equation 2.12. For this reason, and because it matches much better with the qual-

itative interpretation of the responses as highly sparse (Quian Quiroga et al., 2005)

(that is, the observation of highly selective responses to very few stimuli), I believe the

sparseness value of 1–2% implied by Figure 2.7 is a much more accurate description

of the data.

Figure 2.9 is a histogram of the kurtosis excess for the same set of responses. The

kurtosis excess is positive in all but 2% of neurons and has a mean of 29.5, indicating

a sparse response distribution in nearly all cases. Beyond this statement, however,

the kurtosis gives us little quantitative information about neuronal behavior for the

reasons discussed above.

2.2.5 Multiple-Unit Recordings

A limitation of the binary model approach outlined in Section 2.2.2 is that if, for

example, two neurons are presented with the same 100 stimuli and neither responds,

the true sparseness is likely to be much smaller than that implied by the individual

density curves (although the neurons may simply be unresponsive to any stimulus).
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As in some recent experiments responses are collected simultaneously from up to

several dozen neurons, I extend the binary approach to account for an experiment in

which N neurons are recorded simultaneously while S stimuli are presented. Define

Nr to be the number of neurons that respond above threshold to at least one stimulus,

and Sr to be the number of stimuli that produce a response above threshold in at

least one of these. The derivation of the closed-form joint probability distribution of

Nr and Sr involves solving a recursive relation for the conditional distribution of Sr

given Nr and is described in Appendix A. I simply state the result here:

P [Nr = nr ∧ Sr = sr|a = α] =







S

sr













N

nr






(1 − α)NS(−1)nr

nr
∑

k=1







nr

k






(−1)k

[

(1 − α)−k − 1
]sr

. (2.21)

As in the single-neuron case discussed above, we can invert this relationship using

Bayes’ rule to obtain the probability distribution of a given Nr and Sr:

fa(α|Nr = nr ∧ Sr = sr) =
P [Nr = nr ∧ Sr = sr|a = α]fa(α)

∫ 1

0
P [Nr = nr ∧ Sr = sr|a = α]fa(α)dα

. (2.22)

This gives us the probability density function for a given the results of a full recording

session: Rather than obtaining a single curve for each cell, we now obtain a single

curve for each session that takes into account the presence of cells that did not respond

to any stimulus or that responded to multiple stimuli.

2.2.6 Conclusions

I demonstrated a few of the pitfalls inherent in attempting to estimate sparseness

from experimental spike recordings. In particular, I showed that the most direct way

of calculating the sparseness can be very sensitive to noise, especially in the case



31

where the true sparseness is small. From these developments I emerge with a few

recommendations:

1. If the mean firing rate is on the order of the mean noise level or smaller, the

direct computation will be very error-prone and applying the binary model will

likely lead to much better results.

2. Noise can be problematic for both methods. Repeated exposure to each stimulus

and response averaging should be used to reduce noise levels. Because the noise

is likely to have nonzero mean, however (since these are spiking cells), it will

produce a bias despite this averaging.

3. When applying the binary calculation, the response threshold should be var-

ied over a wide range to examine how estimated sparseness varies with this

threshold.
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Chapter 3

Experimental Evidence for
Sparseness

In this chapter I describe some of the evidence for sparse coding in biological systems

obtained from electrophysiology experiments. In Section 3.1 I survey results from

recordings taken throughout the visual system. In Section 3.2 I present my own

results (generated in collaboration with Alexander Kraskov, Rodrigo Quian Quiroga,

Itzhak Fried, and Christof Koch) from the human medial temporal lobe (MTL),

which, though not a visual area, sits at the end of the ventral visual pathway and is

linked to associating information across sensory modes and consolidating long-term

memory. Finally, in Section 3.3 I discuss a few relevant findings from the sensory

processing systems of other organisms.

3.1 The Visual System

Vinje and Gallant (2000) assessed the sparseness of the representation of natural

scenes in V1 in awake macaque monkeys. The stimuli were extracted from natural

scenes along simulated eye scan paths, and several patch sizes (1–4 times the classical

receptive field size) were tested to explore the effect of nonclassical receptive field

(nCRF) stimulation on sparseness. The representation became progressively more

sparse as the size of the stimulus increased, with a mean of 38% (using the Treves-
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Rolls definition of sparseness) for the largest stimuli. Furthermore, the responses of

the 11 different neurons recorded became increasingly less correlated with one another

as stimulus size increased, and so the increase in sparseness was linked to an increase

in the independence of the information transmitted by different neurons. Weliky et

al. (2003) obtained similar results in the primary visual cortex of the anesthetized

ferret, measuring a mean lifetime sparseness (again using the Treves-Rolls definition)

of about 50% in response to large natural images. As in the Vinje and Gallant study,

the responses to large-field images were much more sparse than would be predicted

by the classical receptive field behavior alone, indicating that a possible role of the

nCRF is to increase the sparseness of the V1 visual representation.

Proceeding further along the ventral visual processing hierarchy, Rolls and Tovee

(1995) recorded from single neurons in the superior temporal sulcus of the macaque

temporal visual cortex, an area known to be selective for faces (Bruce, Desimone &

Gross, 1981). Using a set of 23 face and 45 non-face stimuli, Rolls and Tovee measured

an average response sparseness (that is, sparseness computed from responses with the

mean firing rate subtracted) of 33%. However, they also note that these units were in

general highly selective for faces, with many neurons responding to the “best” (most

effective) face at a level at least 5 times that of the response to the best non-face.

As about 33% of the images were of faces, this selectivity and the statistics of the

input set could easily account for the result. The responses to faces were graded

rather than binary in nature, and the mean response sparseness with respect to faces

was 60%. These results suggest a non-sparse, distributed code for face identity in

this area, with little information about non-faces represented. A separate analysis

of similar data indicated that the representational capacity for faces in this area

grows exponentially in the number of neurons, providing additional evidence for a

distributed code (Abbott & Rolls, 1996). These results are consistent with those of

Young and Yamane (1992), who also find evidence for a population code for face
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identity in macaque inferotemporal cortex. Gross (1992) provides evidence that cells

in the inferior temporal cortex select for some aspect of shape, texture, or color rather

than act as narrow filters for particular stimuli, also categorizing face-selective cells

not primarily as face detectors but as part of a distributed code for facial identity.

However, it is not clear from the published data whether the responses of these cells

were invariant across different pictures of the same face, which would be a necessary

feature of a code for facial identity. It could instead be the case that these cells simply

make a face/non-face judgement, with the variations in firing rate due to differences

in the images rather than due to the identity of each face.

3.2 Medial Temporal Lobe

Single unit recordings from the human MTL have revealed the existence of highly

selective cells that may, for example, respond strongly to different images of a single

celebrity, but not to 100 pictures of other people or objects (Quian Quiroga et al.,

2005). These results suggest a sparse and invariant encoding in MTL and seem to

imply the existence of “grandmother cells” that respond to only a single category,

individual, or object (Konorski, 1967; Barlow, 1972; Gross, 2002). However, due to

limitations on the sampling of MTL neurons and on the sampling of the stimulus

space, it is unclear how many stimuli a given neuron will respond to on average and

conversely, how many MTL neurons are involved in the representation of a given ob-

ject. I here use the methods developed in Chapter 2 to explore these issues; this data

was previously published in journal form (Waydo et al., 2006). This data was col-

lected by Rodrigo Quian Quiroga (now at the University of Leicester) and Alexander

Kraskov (now at University College London) in the lab of Itzhak Fried at UCLA, and

this work was performed in collaboration with these individuals and Christof Koch at

Caltech; much of it has appeared in journal form (Waydo et al., 2006). My primary
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contribution was the development of the probabilistic description of the data and the

resulting numerical analysis.

Because the representations in this brain area are clearly very sparse, we use the

binary model-based approach to estimate the sparseness. As the original data was

acquired using 64 microelectrodes, we further make use of the extension to multiple-

unit recordings discussed at the end of Chapter 2. This analysis rests on a few key

assumptions. First, we assume the responses of all neurons can be treated in a binary

fashion, that is, it is reasonable to define a threshold above which we consider a

neuron to have responded (and we examine how the results vary with this threshold).

Note however that the results of Chapter 2 tell us that even if the neurons truly

respond in a more finely graded fashion this is still an accurate approach in the highly

sparse regime. Second, we assume the stimulus presentations are independent, and

further that the neuronal responses are independent of one another (aside from any

stimulus-induced correlations). The independence assumptions are consistent with

the observation of no significant correlations between neurons in the experimental

data. Finally, we assume that all of our recorded neurons share the same underlying

sparseness a. However, as our results are expressed as a probability density function

over this value, the width of the density function can be interpreted as describing the

range of sparseness present in the MTL.

The data set consisted of recordings of 1425 MTL units from 34 experimental

sessions in 11 patients (Quian Quiroga et al., 2005). To fit the data against the binary

model, we considered a response to be significant if it was larger than the mean plus

a threshold number of standard deviations of the baseline rate and had at least two

spikes in the post-stimulus time interval considered (0.3-1 sec) (as in previous work

by Quian Quiroga et al. (2005)). The baseline rate was determined by averaging the

number of spikes in the 1 second preceding stimulus onset across all trials. Figure

3.1 depicts the resulting probability distributions for thresholds of three and five
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Figure 3.1: Probability density function for sparseness a averaged over 34 experimen-
tal sessions that yielded spiking responses from 1425 units. Two different thresholds
for defining significant responses are considered: five (solid curve) and three (dashed)
standard deviations above baseline. The means of the distributions, corresponding
to the best estimates for a, are indicated by arrows, and the values below which a is
likely to lie with 95% probability are a = 1.4% and 2.6%. The peaks of the distribu-
tions are at 0.23% and 0.70%. The average number of simultaneously recorded units
per session, N , is 41.9 and the mean number of images shown to the subjects, S, is
88.4.

standard deviations; for lower thresholds many of the “responses” are due to random

fluctuations in firing rate rather than genuine responses to stimuli. For a threshold of

five standard deviations above baseline, the peaks of the 34 individual distributions

lie in the range of 0.16–1.64%. For a threshold of three standard deviations above

baseline, the individual curves peak in the range of 0.52–3.08%. The peaks of the

average distributions shown in Figure 3.1 are at a = 0.23% and 0.70% for thresholds

of five and three standard deviations, respectively, while the means are at a = 0.54%

and 1.2%.

From this figure we conclude that a most likely lies in the range of 0.2–1%. While

this is a sparse coding scheme, considering the large number of MTL neurons and

the large number of represented stimuli, it still results in a single unit responding

to many stimuli, and many MTL units responding to each stimulus. We assume,
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however, that all cells we are listening to are involved in the representation of some

stimulus, which may not be the case (i.e., some of them could serve a different function

altogether) and which could cause a downward bias in our estimate. To quantify a

plausible magnitude for this bias, we repeated the same analysis leaving out half of

the unresponsive neurons, that is, we used

N ′ = Nr +
N − Nr

2

in place of N . This analysis showed the potential bias to be small, as it yielded

most likely values for a of 0.9% and 1.8% at thresholds of five and three standard

deviations, respectively.

We can then estimate the probability of finding such highly selective cells in a

given experiment. If the true sparseness is 0.54% (the mean of the distribution with

a threshold of 5), in a typical session with N = 42 simultaneously recorded units and

S = 88 test stimuli (the averages from our experiments), we would expect to find on

average 15.9 units responding to 17.9 stimuli (with each responsive neuron responding

on average to 1.3 images, and each evocative stimulus producing a response in an

average of 1.1 neurons). In our experiments N ranged from 18 to 74 and S ranged

from 57 to 114, and with a five-standard-deviation threshold we found on average

7.9 responsive units (range: 3 to 20) responding to 16.4 stimuli (range: 3 to 44). As

a further check of our methods, we can examine how frequently two or more units

responded to the same stimulus. At a five-standard-deviation threshold, on average

4.1% of stimuli produced a (simultaneous) response in at least two neurons (range:

0 to 17.9%; median: 1.6%), compared to a predicted value (at 0.54% sparseness)

of 2.2%. Noting that we cannot expect perfect agreement between this prediction

and the observed value because of the varying numbers of neurons and stimuli across

recording sessions, we see that our model agrees very well with the observed statistics.
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We developed a method for obtaining a probability distribution for sparseness

based on multiple simultaneous neuronal recordings. This distribution allows us to

not only examine the average sparseness observed in a given experiment, but also the

range of sparseness consistent with the data. Averaging these distributions over 34

recording sessions in the human medial temporal lobe, we conclude that highly sparse

(though not grandmother) coding is present in this brain region.

To animate this discussion with some numbers, consider 0.54% sparseness level.

Assuming on the order of 109 neurons in both left and right human medial tempo-

ral lobes (Harding, Halliday & Kril, 1998; Henze et al., 2000), this corresponds to

about 5 million neurons being activated by a typical stimulus, while a sparseness

of 0.23% implies activity in a bit more than 2 million neurons. If we furthermore

assume that a typical adult recognizes between 10, 000 and 30, 000 discrete objects

(Biederman, 1987), a = 0.54% implies that each neuron fires in response to 50–150

distinct representations.

This interpretation relies on the assumption that the cells from which we record

are part of an object representation system. Instead, it may be possible that these

neurons signal recency or familiarity rather than the identity of a stimulus. Neurons

responding to both novelty and familiarity have been identified in the human hip-

pocampus (Fried, MacDonald & Wilson, 1997; Rutishauser, Mamelak & Schuman,

2006; Viskontas, Knowlton, Steinmetz & Fried, 2006) (and see Rolls, Perrett, Caan,

and Wilson (1982) for related results in monkeys). Even if true, however, this view

does not invalidate our conclusion that the true sparseness likely lies below 1%. In-

stead, it would imply that rather than a single neuron responding to dozens of stimuli

out of a universe of tens of thousands, such a neuron might respond to only one or a

few stimuli out of perhaps hundreds currently being tracked by this memory system,

still with millions of neurons being activated by a typical stimulus. Further, Rolls,

Xiang, and Franco (2005) identified neurons in macaque hippocampus and posterior
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perirhinal cortex responding to specific objects, places, and object-place combina-

tions while the animal performed an object-place association task. Because only two

objects and two places were used in each experiment it is impossible to assess the

sparseness of this representation, but the results at least suggest units selective for

specific stimuli as part of an episodic memory system.

These numbers are consistent with the results of Lennie (2003), who, building on

earlier work in rats by Attwell and Laughlin (2001), used detailed estimates of cortical

metabolism and the energy cost of spiking to calculate the maximum activity level

possible in human cortex. Lennie concluded that the cortical metabolism can support

an average spike rate of 0.80 spikes/s/neuron. Alternatively, if an “active” neuron

fires at 50 spikes/s, then only about 1.6% of neurons could be active at the same time,

and even fewer if the inactive neurons still maintained some small resting firing rate.

These results imply that, aside from any computational considerations, the cortical

metabolism can only support sparse codes in which only a small fraction of neurons

are simultaneously active. This analysis may not be enough to justify sparse coding

in and of itself, however—if it were significantly advantageous to utilize a distributed

code in which more neurons were simultaneously active, then it is easy to imagine that

the cortical metabolism would have evolved to support a higher energy consumption

rate. It may be that the cortical metabolism can only support a sparse code because

(as I will argue in the following chapters) a sparse code is computationally useful and

so a more vigorous metabolism is unnecessary.

Two significant factors may bias our estimate upward. A large majority of neurons

within the listening radius of an extracellular electrode are entirely silent during a

recording session: there are as many as 120 to 140 neurons within the sampling

region of a tetrode in the CA1 region of the hippocampus (Henze et al., 2000), but

we typically only succeed in identifying 1–5 units per electrode. In rats as many as 2

out of 3 cells isolated in the hippocampus under anesthesia may be behaviorally silent
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(Thompson & Best, 1989), though the reason for their silence is unclear. Thus, the

true sparseness could be considerably lower. Furthermore, there is a sampling bias

in that we present stimuli familiar to the patient (e.g., celebrities, landmarks, and

family members) that may evoke more responses than less familiar stimuli. For these

reasons these results should be interpreted as an upper bound on the true sparseness,

and some neurons may provide an even sparser representation.

These results are consistent with Barlow’s claim that “at the upper levels of the

hierarchy a relatively small proportion [of neurons] are active, and each of these

says a lot when it is active,” and his further speculation that the “aim of information

processing in higher sensory centres is to represent the input as completely as possible

by activity in as few neurons as possible” (Barlow, 1972).

3.3 Sparseness Elsewhere

I here describe a few other interesting examples of sparse coding identified in different

organisms.

3.3.1 Place Cells

O’Keefe and Dostrovsky (1971) discovered place cells in the rat hippocampus, which

are silent most of the time but fire more vigorously when the rat is in a particular loca-

tion (known as the cell’s place field), a result verified by numerous investigators in the

years since. Collectively, the place fields of hippocampal neurons form a map of the

environment that could be used for various tasks such as navigation and association

of places to memories. For example, place fields have been seen to be modulated by

spatial cues (that is, stay tied to the cues rather than the physical environment) dur-

ing a spatial memory task (O’Keefe & Speakman, 1997). As each place cell is highly

selective for a specific location, these cells form a sparse representation for location
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much like the human MTL cells discussed above form a sparse representation for ob-

ject category or identity. Extending these results to very different species, Ulanovsky

and Moss (2007) recorded from hippocampal area CA1 of bats during a foraging task,

finding well-defined place fields in a majority of active units. Remarkably, these place

fields were generally stable between recording sessions even when different sessions

allowed the use of different sensory modalities (vision and echolocation), a form of

invariance perhaps related to that observed in human MTL.

Hafting and colleagues (2005) may have illuminated part of the computation that

gives rise to place cells, recording earlier in the processing hierarchy in the dorsocaudal

region of the medial entorhinal cortex (dMEC) of rats. Here they found units with

multiple place fields, which each unit’s place fields organized in a regular triangular

grid. Spacing, orientation, and field size of these grids varied as a function of recording

location. It is likely that a sparse coding strategy much like that discussed in the

context of vision in later chapters could give rise to place cells when applied to inputs

from such “grid cells.”

3.3.2 Insect Olfaction

Sparsening of responses to stimuli as one proceeds up the processing hierarchy has

also been observed in insect sensory systems. Perez-Orive and colleagues (2002) mea-

sured responses of neurons in locust antennal lobe (AL), which receives input directly

from olfactory receptors, and the mushroom body (MB), the next stage in olfactory

processing. In an experiment roughly analogous to our own human MTL experiments,

they presented a panel of odors to the locusts and recorded spiking activity. Infor-

mation about the odor presented appears to be coded across the population of AL

neurons, with an average response probability (that is, the likelihood that a particular

odor will elicit a strong response in a neuron) of multiglomerular projection neurons

(which are the only pathway for olfactory input to MB) of 64%. At the next stage,
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however, the representation was considerably more sparse: the average response prob-

ability of Kenyon cells in MB was only 11%, and 58% of neurons recorded failed to

respond to any odor tested. As only 5 to 24 odors were presented in a particular ex-

periment, this means a typical MB neuron responded to only 1 to 3 of the presented

odors. Clearly the information carried at the population level in AL has been made

much more explicit in MB.

3.3.3 Temporal Sparseness

The issues of lifetime and population sparseness investigated above are distinct from

the related notion of temporal sparseness, in which individual neurons may fire only

a very small number of spikes in response to a stimulus or as part of a precise time

sequence. In the extreme case, a neuron may send a signal using only a single spike.

DeWeese, Wehn, and Zador (2003) recorded single neurons in the auditory cortex

of ketamine-anesthetised rats as they responded to pure tones. They found neurons

behaving in a nearly perfect binary fashion, responding to each stimulus with either

zero or one spikes. The probability of spiking in response to a particular stimulus was

a function of the tone frequency, approaching 1 at a specific preferred frequency and

falling off rapidly away from it. These neurons display sparse selectivity in the sense

defined above in that they respond selectively to a very specific stimulus (frequency),

as well as extreme temporal sparseness in that they generally fire only a single spike

in response to even an “optimal” stimulus. DeWeese and colleagues also suggest that

these results demonstrate a more precise control of spike number (or equivalently, the

presence of less noise) than is generally assumed possible. It may be that much of

the “noise” observed in cortex (including in our own data) is in fact stimulus driven

rather than a reflection of an inherently noisy computational system, and that the

ability to stimulate auditory cortex with a precise signal exposes the true precision

of sensory cortex.
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Hahnloser, Kozhevnikov, and Fee (2002) recorded single units in the high vocal

center (HVC) of zebra finches, finding units that burst just once during an approx-

imately 1 second song motif. These bursts consisted of about 5 spikes and were

time-locked to the song motif with better than 1 ms accuracy. The units were vir-

tually silent at other times, with a background rate in awake, non-singing birds less

than 0.001 spikes/s. The authors suggest that this precision is the temporal analogue

of the grandmother cell. Fiete and colleagues (2004) created a neural network model

of birdsong and found that this high level of sparsity speeded learning due to the

decreased interference between different patterns (i.e., different points in time) when

the patterns are sparse.

3.4 Conclusion

All of the results discussed in this chapter support the notion that a goal of sensory

processing is to represent the sensory world in a compact, sparse manner. That

is, sensory cortex transforms the behaviorally important information present only

implicitly at the periphery into an explicit representation in central structures in

which the activity of (relatively) small numbers of neurons carries a great deal of

information about the outside world. Individual neurons are then feature detectors

(Martin, 1994) that indicate the presence of different sensory features in the input

stream, with feature complexity increasing as one progresses along the hierarchy.

Again, Barlow (1972) expressed this idea most clearly:

The central proposition is that our perceptions are caused by the activity

of a rather small number of neurons selected from a very large population

of predominantly silent cells. The activity of each single cell is thus an

important perceptual event and it is thought to be related quite simply to

our subjective experience. The subtlety and sensitivity of perception re-



44

sults from the mechanisms determining when a single cell becomes active,

rather than from complex combinatorial rules of usage of nerve cells.

In the next chapters I will examine computational methods by which sparse, ex-

plicit representation may be achieved in a neurally plausible manner, and the results

obtained from applying such a model to visual information processing.
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Chapter 4

Models for Sparse Coding

In this chapter I discuss the manner in which sparse representations can be generated

from sensory information. In Section 4.1 I introduce the general idea of a generative

model and how such models are computed. I then discuss how this framework has

been used to develop a model of sparse coding that has successfully reproduced a V1-

like code for natural images in Section 4.2. In Section 4.3 I describe the extensions

I have made to this model for the particular type of coding I seek to reproduce.

Computational results from the application of these methods to visual processing will

be presented in Chapter 5. Finally, in Section 4.4 I discuss a few other unsupervised

learning algorithms and their relationships to sparse coding.

4.1 Generative Models

The framework I will use to develop a computational model for sparse coding is that

of a generative model. I provide here an overview of generative models sufficient to

motivate my results; for a more extensive discussion see Dayan and Abbot (2001,

Chapter 10), from which I derive much of the following notation.

Our model of the world is one in which a random process generates causes V ∈ R
m

according to some distribution fV (v). These causes in turn generate inputs U ∈

R
n according to the marginal distribution fU(u|v). The inputs are the observable
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quantity, and in general are of much higher dimension than the causes, so n ≫ m.

Our eventual goal will be recognition, in which an estimate of the cause v̂(u) (or a

distribution of causes fV (v|u)) can be determined for any particular observed input

u. We further desire to carry out this inference in an unsupervised manner—no

information about the specific causes underlying the observed inputs will be provided

to the model. Instead, the model must extract the cause estimates solely from the

statistics of the inputs u, subject to a set of heuristics, or assumptions on the structure

of the data and causes, that we place on the model. In general we view a particular

cause as potentially giving rise to a great many different inputs (or, in recognition,

a particular cause could be attributed to many different inputs). For example, the

collection of objects in an image would be considered the cause of the image, but

many different images (inputs) could be produced by the same set of objects.

I use the symbol G to stand for all of the (yet-to-be-specified) parameters and

assumptions of our generative model. In general, the model G is characterized by two

distributions: the generative distribution fU(u|v,G) by which causes generate inputs,

and the prior distribution of causes fV (v|G), the distribution according to which the

causes themselves occur. In other words, the prior distribution is a model of the

statistical structure of the outside world, while the generative distribution is a model

of the sensory process. The prior distribution and generative distribution together

define the marginal distribution of inputs within the model,

fU(u|G) =

∫

v

fU(u|v,G)fV (v|G). (4.1)

The goal is then to find a model G for which the distribution of inputs generated by

the model closely matches the observed distribution of inputs, or

fU(u|G) ≈ fU(u). (4.2)
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goal: fU(u|G) = fU(u)
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fU(u|v,G)fV (v|G)

-

Figure 4.1: World model (top) and the generative model (bottom) that attempts to
match its behavior

Figure 4.1 depicts this assumed structure of the world and the generative model

designed to match the world’s behavior.

Once such a model has been obtained, we can use it to estimate the causes un-

derlying the individual data points u. Applying Bayes’ rule we obtain the recognition

distribution

fV (v|u,G) =
fU(u|v,G)fV (v|G)

fU(u|G)
. (4.3)

From this distribution we can compute the expected or most likely cause underlying

a particular input u and use that as our estimate v̂. In many cases, however, the

integrals involved in evaluating Equation 4.3 are computationally intractable (that

is, it is impractical to evaluate Equation 4.1) and the model G is called noninvertible.

We then rely on an approximate recognition distribution qV (v|u,G) and include as part

of our optimization of G improving the fit of our approximate recognition distribution

to the true recognition distribution. Ultimately we would like

qV (v|u,G) ≈ fV (v|u,G). (4.4)

By placing various assumptions on the structure of G, we can obtain different types
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of coding. The nature of the true underlying causes of the observed data determines

what coding strategy will be most appropriate.

4.1.1 Expectation Maximization

The method we shall use to optimize our generative models (that is, to attempt

to satisfy Equation 4.2) is known as expectation maximization (EM), introduced by

Dempster, Laird, and Rubin (1977). In our setting, EM is based on maximizing the

function

F(q,G) =

〈
∫

v

qV (v|u,G) log
fV U(v, u|G)

qV (v|u,G)
dv

〉

, (4.5)

where the expectation 〈·〉 is taken over all observed inputs u. Noting that Bayes’ rule

states that fV U(v, u|G) = fV (v|u,G)fU(u|G) and with some rearrangement of terms

we can see why F is a useful quantity to consider:

F(q,G) =

〈
∫

v

qV (v|u,G) log fU(u|G)dv −
∫

v

qV (v|u,G) log
qV (v|u,G)

fV (v|u,G)
dv

〉

= 〈log fU(u|G)〉 −
〈

∫

v

qV (v|u,G) log
qV (v|u,G)

fV (v|u,G)
dv

〉

= 〈log fU(u|G)〉 −
〈

DKL

(

qV (v|u,G), fV (v|u,G)
)〉

, (4.6)

where DKL is the Kullback-Leibler divergence (Kullback & Leibler, 1951), which mea-

sures how different two probability distributions are from one another. The simplifi-

cation of the first term occurs because fU(u|G) does not depend on v, and qV (v|u,G)

integrates to one since it is a probability distribution. Thus F has two very meaning-

ful terms. The first term is the average log-likelihood that the model would generate

the observed inputs, and so it rewards a model that generates the observed data with

high probability. The second term penalizes the discrepancy between the approximate

recognition distribution qV (v|u,G) and the true recognition distribution fV (v|u,G).

In the case of an invertible model (so fV (v|u,G) is known), the second term vanishes
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and we are left simply maximizing the likelihood of the model generating the data.

Expectation maximization separately maximizes F with respect to its two argu-

ments G and q. In the expectation (E) phase, F is increased with respect to qV by

improving the fit of qV to the true recognition distribution, holding the other param-

eters of G constant. In the maximization (M) phase, F is increased with respect to

G while holding qV constant. In the cases we will consider, optimization proceeds in

a series of alternating E and M phases.

When we consider sparse coding we will further restrict ourselves to deterministic

recognition, in which for a given input u we compute a specific estimate of the un-

derlying cause, v̂(u). In this case we consider the limit of Equation 4.5 as qV (v|G)

approaches the Dirac δ-function δ(v − v̂(u)), obtaining

F(v̂(u),G) = 〈log fV U(v̂(u), u|G)〉. (4.7)

In the E phase we find the function v̂(u) that maximizes F , while in the M phase

we maximize with respect to G as before. This structure has the simple interpreta-

tion that we are trying to maximize the probability that our model G would have

simultaneously produced the inputs u and causes v̂(u).

4.2 Sparse Coding with a Generative Model

With an appropriate structure on G, the approach described above can be used to

learn a sparse code for the inputs u, that is, a code in which the individual coding

elements are active only rarely. This technique was first used by Olshausen and Field

to generate a code for natural images resembling the oriented bar filters observed in

V1 (Olshausen & Field, 1996, 1997). As my results build on an extension of their

work, I will summarize it here (though we adopt the notation of Dayan and Abbott

(2001) to map better to the extensions described later).
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Olshausen and Field developed a model in which the inputs u were assumed to

be a linear function of the unknown underlying causes v plus additive, zero-mean

Gaussian noise, so

u = Gv + ξ, (4.8)

where ξ is a zero-mean Gaussian random variable with covariance λI. The columns

of G ∈ R
n×m can be viewed as (non-orthogonal) basis functions for u. They further

assume that the individual causes vi ∈ R (that is, the individual elements of the cause

vector) are sparse, independent, and identically distributed, defining the sparse prior

distribution

fV (v) ∝
m
∏

i=1

exp(S(vi)), (4.9)

where S is a function designed such that fV (v) is sparse. In this context, sparse means

that both large responses and small ones are more likely than under a Gaussian dis-

tribution. The exponential form of the prior is chosen for mathematical convenience.

For simplicity I omit the proportionality constant required to make this distribution

integrate to 1 (this constant would drop out of the forthcoming optimization, so there

is no loss of generality). In Olshausen and Field (1997), where this strategy was used

to develop a visual cortex-like sparse code for natural images, the sparse prior S

followed a Cauchy distribution with S(v) = − log(1 + v2).

The problem of optimizing the model is now reduced to finding the weight matrix

G that maximizes the average log likelihood of the observed inputs u. Ideally one

would like to find the matrix G∗ such that

G∗ = arg max
G

〈

log

(
∫

v

fU(u|v, G)fV (v)dv

)〉

, (4.10)

where the expectation 〈·〉 is taken over all inputs u. However, the integral within

the optimization is in practical terms intractable (to perform for each of perhaps
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fV (v|u,G) u
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arg max fV (v|u,G)
�

Figure 4.2: Recognition model derived from the generative model of Figure 4.1

thousands of input stimuli for each G). Olshausen and Field instead take the deter-

ministic recognition approach, approximating the integral by its maximum value (a

valid approach if it has a tightly localized peak), finding

G∗ = arg max
G

〈

max
v

log(fU(u|v, G)fV (v))
〉

. (4.11)

Substituting in the assumed linear (plus noise) relationship between u and v and the

sparse prior, we find the function to be maximized is

F(v̂(u), G) = 〈log(fU(u|v̂(u), G)fV (v̂(u)))〉 (4.12)

=

〈

− 1

2λ
‖u − Gv̂(u)‖2 +

m
∑

i=1

S(v̂i(u))

〉

+ C,

where v̂(u) is the most likely cause given the input u (and so is our estimate of the

true cause v), or

v̂(u) = arg max
v

fU(u|v, G)fV (v). (4.13)

This deterministic recognition process is illustrated in Figure 4.2.

Inspecting the cost function F , we find that it has two meaningful parts. The

first penalizes ‖u − Gv̂(u)‖, the mismatch between the generated input Gv̂(u) and

the actual input u, and so expresses how well the current model represents the input

set. The second penalizes causes v̂(u) that are unlikely under the sparse prior S(v).

Thus the optimization seeks to find a set of basis functions G that describe the

data well, subject to the sparseness constraint. The constant C is the result of the

proportionality factors required so that the various distributions integrate to one, and

does not effect the optimization, and so will be dropped.
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The optimization of F is carried out via the two-step expectation-maximization

process outlined above. In the first (E) step, we compute the cause estimate v̂ for a

particular input u drawn from some set of inputs {u} (solving Equation 4.13). Taking

the derivative of F with respect to v̂ and setting it equal to zero we find

0 = GT (u − Gv̂) + λS ′(v̂), (4.14)

where S ′(v̂) is shorthand for the vector whose ith component is S ′(v̂i) and the prime

denotes the derivative of S with respect to its argument. This equation can be solved

by simulating the differential equation

v̇ = GT (u − Gv) + λS ′(v) (4.15)

until it reaches some equilibrium point v∞, and setting v̂ = v∞. In Appendix B I

show that it is always the case that v̇ → 0 as t → ∞, and so in practical terms this

process always converges. If one makes the additional assumption that all solutions of

Equation 4.14 are isolated, then this also implies that Equation 4.15 converges to one

such solution (and this has been the case in all test cases in the following chapter).

Equation 4.15 can be interpreted as the two-layer recurrent neural network pic-

tured in Figure 4.3. The neurons in the lower layer compute the reconstruction error

u − Gv, while those in the upper layer compute the most likely cause v. The neu-

rons are of two different types: the “error” neurons in the lower layer simply output

the sum of their inputs (with no internal dynamics), while those in the upper “out-

put” layer have dynamics that integrate their inputs while incorporating a nonlinear

self-inhibition term given by S ′. The recurrent feedback (−GT G) term introduces

competition between output units that represent similar inputs, producing winner-

take-all behavior, and this stage of the optimization can be viewed as computing

the set of basis functions that best represent the input, subject to the sparseness
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−GG
T

u

v

Figure 4.3: Neural network implementation of Equation 4.15. The bottom-layer
neurons compute the reconstruction error u − Gv̂, while the upper layer outputs the
causes v. The learning rule (Equation 4.16) is a Hebbian rule for this network.

constraint imposed by the self-inhibition term S ′. Note that the sparse prior only

enters the dynamics through the self-inhibition term, not through any interactions

between neurons. If one wished to alter the response probability of a given neuron

to reflect changing assumptions about the world (for example due to some top-down

attentional effect), one would only need to change that neuron’s inhibition term.

For a particular input u and cause estimate v̂(u) computed as above, Olshausen

and Field performed gradient-ascent learning to improve G, which results in the

update rule

G → G +
δ

λ
(u − Gv̂(u))v̂(u)T , (4.16)

where δ is a small, positive learning constant. Expanding this learning rule to look

only at the update of the single connection between error neuron i and output neuron

j in Figure 4.3, we obtain

∆gij =
δ

λ
(ui −

∑

j

Gij v̂j)v̂j . (4.17)

In the network of Figure 4.3 (which implements the dynamics of Equation 4.15), the
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Figure 4.4: Alternative network implementation of Equation 4.15

output of all the error neurons is

e = u − Gv̂, (4.18)

so the output of error neuron i is

ei = ui −
∑

j

Gij v̂j. (4.19)

Thus the update of synaptic weight ij is proportional to the product of the pre-

synaptic input and the post-synaptic response, and this is a standard Hebbian learning

rule for the network in Figure 4.3.

The network depicted in Figure 4.3 is not the only possible network implementing

the dynamics of Equation 4.15. These dynamics would also be implemented by the

network depicted in Figure 4.4, in which the input u is passed through the weight ma-

trix GT directly into the output (v̂) layer, which comprises neurons identical to those

in the upper layer of Figure 4.3 connected with recurrent weights −GT G. The learn-

ing rule given by Equation 4.16 is not Hebbian for this alternate network, however,

and so this topology does not have as straightforward a biological interpretation.

One possible weakness of the network interpretation is that there is a constraint
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imposed that the feedforward weights must match the feedback weights (transposed).

However, if the network were initialized with different feedforward weights G and

feedback weights −H , Hebbian learning would give ∆hij = ∆gji. To verify this, first

note that the output of error neuron i is

ei = ui −
∑

j

Hij v̂j,

while its pre-synaptic input from output neuron j is simply v̂j . The Hebbian weight

update is then

∆hij =
δ

λ
(ui −

∑

j

Hij v̂j)v̂j .

Meanwhile, the output of output neuron j is v̂j, while its pre-synaptic input from

input neuron i is ui −
∑

j Hij v̂j , so the Hebbian weight update is

∆gji =
δ

λ
(ui −

∑

j

Hij v̂j)v̂j .

Hence ∆H = (∆G)T . If a decay term were then included in the weight update (as

described in Section 4.3.2 below) the two weight matrices would converge to the same

solution over time (as their dynamics would be described by stable linear systems

with the same dynamics and inputs, differing only in initial conditions).

Olshausen and Field point out that there is a penalty inherent in approximating

the integral of Equation 4.10 with the maximum operation of Equation 4.11, namely

that there will be a trivial solution for G, since the larger G is the smaller v̂(u) can

be, and so the larger fV (v) can be (assuming that fV (v) increases as v approaches

zero). Without further constraints, then, G could grow without bound while trending

toward a good set of basis vectors. This problem was alleviated by adapting the length

of the basis functions (in our notation, the columns of G) to maintain the variance of

the individual cause estimates v̂i at a desired level. In Section 4.3.3 I discuss another
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method of mitigating this issue that fits directly in the optimization and may have a

cleaner biological interpretation.

4.3 Extensions

I here describe several extensions to the original Olshausen and Field sparse cod-

ing model besides the application of the model to a much higher level in the visual

hierarchy described in the next chapter; these extensions compose my main theoret-

ical contribution in this area. This section expands on work that has recently been

published elsewhere (Waydo & Koch, 2007a, 2007b).

4.3.1 Bimodal Sparse Prior

I would like to adapt the approach of Olshausen and Field to generate sparse, invariant

representations of objects in the visual world like those observed in human MTL

(Quian Quiroga et al., 2005; Waydo et al., 2006, and see Chapter 3). Olshausen and

Field used a Cauchy prior distribution for v, which is sparse in the sense that it will

generate more responses close to zero and far from it than a Gaussian. Because the

neuronal behavior I would like to replicate is more binary in nature (i.e., responses

are either “off,” near zero, or “on,” near some large firing rate), I employ a different

sparse prior that reflects this desire. The prior distribution I choose is a weighted

average of Gaussians centered at zero and some higher “on” rate rh. Denoting the

probability that the neuron responds strongly by a and the desired variance as σ2,

my sparse prior is

fV (v) =
1 − a√

2πσ
e

−v2

2σ2 +
a√
2πσ

e
−(v−rh)2

2σ2

= αe
−v2

2σ2 + βe
−(v−rh)2

2σ2 . (4.20)
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The constants α and β are introduced to simplify notation. In principle the variance

σ2 could be different for the two Gaussians, though this modification has not been

necessary. It would also be desirable to impose the constraint that neuronal responses

are always greater than zero (both for biological realism and to ease interpretation of

the results), which corresponds to fV (v) = 0 for v < 0. To avoid numerical difficulties

stemming from the resulting discontinuity, I instead impose a very narrow Gaussian

prior distribution for v < 0, which will result in negative responses being strongly

pushed toward zero. In the following development I assume v ≥ 0 and omit this

detail.

To use this formulation within the framework described above, I define S(v) such

that exp(S(v)) = fV (v), or

S(v) = log

(

αe
−v2

2σ2 + βe
−(v−rh)2

2σ2

)

. (4.21)

Taking the derivative of S with respect to v gives us the needed function describing

the neuronal dynamics,

S ′(v) = − v

σ2
+

βrh

σ2

1

α + βe
2rhv−r2

h
2σ2

e
2rhv−r2

h
2σ2 . (4.22)

Figure 4.5 provides a comparison between this form of S ′(v) and that used by Ol-

shausen and Field (as well as the corresponding sparse priors exp(S)), where

S ′(v) = − 2v

1 + v2
. (4.23)

The differences in scale between the two approaches are not important, as the two

models are driven by different inputs, but the difference in the overall shape is crucial.

In the Olshausen and Field approach (Equation 4.23), small responses are linearly

suppressed (i.e., S ′(v) ∝ v for small v), while the self-inhibition becomes small for
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large v. In our case (Equation 4.22), small responses are linearly suppressed toward

zero, while larger responses are linearly suppressed toward rh (in this figure, rh = 1),

giving rise to a bimodal response distribution.
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Figure 4.5: Comparison of sparse prior exp(S) (a, c) and the derivative S ′ (b, d)
between the approach of Olshausen and Field and that taken here. The differences
in scale are related to the differences in scale of our input sets and are unimportant;
the overall shape of the curve determines the resulting distribution of responses. (a,
b): Olshausen and Field approach (Equation 4.23). (c, d): Our approach (Equation
4.22). Only the portion for v ≥ 0 is shown, as we will later restrict ourselves to this
regime.

4.3.2 Weight Penalty

I also extend the approach of Olshausen and Field to incorporate a prior probability

distribution on the elements gij of the weight matrix G to express the constraint
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that the weights not be too large. I do so by placing a zero-mean Gaussian prior

distribution (with variance γ) on gij,

f(gij) =
1√
2πγ

e
−g2

ij

2γ , (4.24)

and further assuming that the distributions f(gij) are independent, so

f(G) =
∏

i,j

f(gij). (4.25)

The function to be maximized is now the average log likelihood of the inputs u, the

cause estimates v̂V (u), and the weights G, or

F(v̂(u), G) = 〈log(fU(u|v̂(u), G)fV (v̂(u))f(G))〉. (4.26)

This strategy for introducing additional structure on G is closely related to the

method of “hyperparameter estimation” introduced in the original work describing

EM (Dempster et al., 1977).

Plugging in the expressions for the various distributions and neglecting the con-

stant terms we find

F(v̂(u), G) =

〈

− 1

2λ
‖u − Gv̂(u)‖2 +

m
∑

j=1

S(v̂j) −
1

2γ

m
∑

j=1

n
∑

i=1

g2
ij

〉

. (4.27)

Taking the derivative with respect to v̂ and setting equal to zero gives us the same

result as before (Equation 4.14), and so we compute v̂ via the same differential equa-

tion as before (Equation 4.15). The Gaussian distribution on gij introduces a decay

term to the update rule for G, however, and we have

G →
(

1 − δ

γ

)

G +
δ

λ
(u − Gv̂(u))v̂(u)T (4.28)
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for learning rate δ. This decay term keeps the size of the weights under control,

eliminating the need for the explicit constraint employed by Olshausen and Field, and

reflects the plausible biological condition that rarely active synapses become weaker

over time (alternatively, “forgetting” is built into the model through the decay term).

4.3.3 Batch Learning

The quadratic penalty on the weights gij of G also allows us to explicitly solve for

the optimal G for a set of inputs {u} and cause estimates {v̂(u)}. To do so, we first

carry out the E-step computation for all inputs u for fixed G, obtaining an estimate

v̂(u) for each u. We then take the derivative of F with respect to G, set it equal to

zero, and solve for G to obtain the batch update rule

G → 〈uv̂(u)T 〉
(

λ

γ
I + 〈v̂(u)v̂(u)T 〉

)−1

. (4.29)

Because λ
γ
I is positive definite and 〈vvT 〉 is positive semidefinite, their sum is positive

definite and thus nonsingular, so this learning rule is always well defined and yields

the globally optimal G for the current v̂(u). This rule is a significant extension of the

method, as the large M step results in much faster convergence of the EM algorithm

than the incremental rule presented in Olshausen and Field (1997). In the applications

discussed in the next chapter, a typical experiment was sped up by easily an order of

magnitude or more by implementing the batch process.

The batch algorithm is then as follows. We denote the kth iteration of G and v̂

by G(k) and v̂(k), respectively.

Initially: v̂(0)(u) = 0 for all u ∈ {u}, G(0) = rand(n, m)

E step: For each u ∈ {u}, compute v̂(k+1) by gradient ascent on F starting at v̂(k) with
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G = G(k). That is, simulate the differential equation

v̇ = ∇vF = GT (u − Gv) + λS ′(v) (4.30)

until ‖v̇‖ falls below some convergence threshold v̇T .

M step: Set G(k+1) according to the update rule

G(k+1) = 〈uv̂T 〉
(

λ

γ
I + 〈v̂v̂T 〉

)−1

(4.31)

with v = v(k+1).

Iteration: Alternate E and M steps until the average change in the weights gij falls below

some threshold δgT .

One advantage of the batch learning rule is that it renders the algorithm more

amenable to analysis. In Appendix B I show that this algorithm converges to some

set of local maximizers of F ; in practice the algorithm has always converged by the

average change in weight criterion.

In summary, the algorithm I use for the remainder of this work implements sparse

coding with a bimodal prior via EM. The model requires 6 parameters to be specified:

1. m, the number of output (v) neurons,

2. λ, the noise variance,

3. γ, the target weight variance,

4. σ2, the variance of the Gaussians in the sparse prior,

5. a, the probability of a large response in the sparse prior, and

6. rh, the high response rate (though this is simply a rescaling and is always set

to 1.
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4.4 Related Models

The sparse coding algorithm discussed here is a special case of a very general class

of linear Gaussian generative models, in which the observed inputs are a noisy linear

function of unobserved states (“causes” in our terminology). Roweis and Ghahra-

mani (1999) provide an extensive discussion of such models, detailing how such dis-

parate learning techniques as factor analysis, principal component analysis, mixtures

of Gaussians, and Kalman filters can be described in this framework. I here high-

light a few important cases that are particularly relevant to the learning problems

discussed in this work.

Sparse coding is closely related to factor analysis, discussed by Dempster, Laird,

and Rubin (1977) alongside the EM algorithm. As with sparse coding algorithm

discussed here, factor analysis assumes the observed variables (inputs) depend in

an affine way on a lower-dimensional set of unobserved “factors” (causes), and the

EM algorithm is used to estimate the parameters of the mapping from factors to

observed variables as well as the factor scores themselves. In Dempster and colleagues’

discussion, however, the assumed prior distribution on factors (exp(S) in my notation)

is a zero-mean, unit-variance Gaussian (though he does not include this assumption

as part of the definition of factor analysis).

Taking the limit of factor analysis as the noise goes to zero (with the usual zero-

mean Gaussian assumption on the factors, so exp(S) becomes a zero-mean Gaussian

with increasingly small variance) yields principal component analysis (PCA), first

introduced (though not given this name) by Pearson (Pearson, 1901) as an approach

to the problem of optimally fitting lines and planes to systems of points. PCA finds

the directions of maximum variance in a set of input points, thereby finding the

most efficient set of basis vectors for representing the inputs (in terms of minimizing

reconstruction error for any fixed number of basis vectors). From an information-
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theoretic point of view, PCA maximizes the information about the inputs that can

be carried by a limited number of basis vectors (Dayan & Abbott, 2001). Though

PCA can be solved exactly via singular value decomposition (SVD), an EM algorithm

has also been found (Roweis, 1997). This algorithm, found by viewing PCA as the

zero-noise limit of factor analysis and applying the same learning techniques, offers

two distinct advantages over the SVD approach: its complexity grows only linearly in

number of data points, input dimension, and number of components to be learned, and

it can deal gracefully with incomplete data points by estimating maximum likelihood

values for any missing information. PCA has been applied to natural images with the

aim of describing the behavior of V1 cells, but only the first few principal components

were found to bear significant resemblance to known V1 responses (Hancock et al.,

1992).

If the number of causes and inputs is the same (so m = n) and no noise is included

in the model, the problem of estimating the causes and their mapping to inputs is

known as independent components analysis (ICA), first introduced by Herault and

Jutten (1986) in the context of extracting source signals from sensors sensitive to an

unknown linear combination of the sources. Bell and Sejnowski (1995) generalized

this problem and cast it in an information-theoretic framework, with applications

to blind source separation and blind deconvolution problems. In later work they

apply it to natural scenes, finding that Gabor-like filters develop with more sparsely

distributed outputs than other decorrelating filters such as principal components (Bell

& Sejnowski, 1997). ICA has also been used to learn efficient codes for natural sounds,

with the resulting code bearing a great resemblance to that observed in cochlear nerve

cells (Lewicki, 2002).
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Chapter 5

Application to Visual Information

The sparse coding model described in the last chapter was originally applied directly

to natural images. It developed receptive fields strikingly similar to those of simple

cells in the mammalian primary visual cortex (Olshausen & Field, 1996, 1997). In

this work I am interested instead in building a model capable of reproducing the selec-

tive, invarient behavior observed further along the visual pathway and in the MTL as

described in Chapter 3 (Quian Quiroga et al., 2005; Waydo et al., 2006). My central

hypothesis is that the machinery of the ventral visual pathway is largely concerned

with building an invarient feature-based description of visual inputs, transforming the

input data but not necessarily increasing the sparseness of representation. The MTL,

then, builds a sparse model for these invarient features. These two simple computa-

tional principles, sparseness and invariance, naturally lead to explicit representation

as observed in MTL. In the first half of this thesis, I described the representation

at various stages along the ventral visual pathway, culminating in the highly sparse,

selective, and invariant representation observed in MTL. In the previous chapter I de-

scribed one method for learning a sparse representation for sample data, and now in

this chapter I will show that this method, when combined with a separate system for

invariant feature extraction, is sufficient to reproduce these response patterns. To do

so I apply the sparse coding model of the previous chapter to the outputs of different

models for invariant feature extraction. Through training, units develop displaying
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sparse, invariant selectivity for particular object categories (such as faces or cars) or

even for particular individuals, much like that observed in the MTL data. Portions of

these results are currently in press for publication elsewhere (Waydo & Koch, 2007a,

2007b).

To achieve the high-level invariance observed in the human MTL data, it is first

necessary to develop an invariant feature-based (rather than pixel-based) description

of images such as may exist in inferotemporal cortex (IT) as input to MTL. Aside

from mimicking the observed data from electrophysiology, this process projects im-

ages from the space of pixels (or patterns of retinal activity) in which different images

of the same object may be wildly different to a space of features in which different im-

ages of the same object will lie close to one another (and hopefully images of different

objects are far apart). That is, the features are robust to “unimportant” (from the

standpoint of recognition) transformations such as lighting, pose, and scale. Cells in

monkey IT have been found to be selective for “moderately complex” features—that

is, features more complex than orientation, size, color, and texture, but in general

not complex enough to represent natural objects (Tanaka, 1997) (with the exception

of faces, for which specialized machinery appears to exist (Bruce et al., 1981; Perrett,

Rolls & Caan, 1982, and see Chapter 3)). I investigate three methods of generating

such a representation here and show results of applying the sparse coding network to

this representation for different input sets. The primary method (upon which most

of my results are based) is the feedforward neural network model of visual process-

ing of Serre et al. (2005, 2007), which has the advantage of employing biologically

plausible computations throughout the hierarchy; its practical drawback is that it is

very computationally complex. This model is also highly non-invertible, in the sense

that it is impossible to determine what portions of each image contribute most to

any given response. I describe this model in more detail and present results in Sec-

tion 5.2. The second model, discussed in Section 5.3, is based on the Scale-Invariant
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Feature Transform (SIFT) algorithm of Lowe (1999). While the SIFT computations

are less biologically plausible, the outputs at least are still analogous to IT responses

and can be computed much faster. Furthermore, it is possible to determine what

image features drive the responses. In Section 5.4 I present some preliminary results

from applying this model to a feature extraction system tailored specifically to face

recognition (Holub & Moreels, 2007). In Section 5.5 I discuss the statistics of the re-

sponse distribution in more detail. Finally, in Section 5.6 I investigate the structure

of the G matrix after training and examine the effects of quantizing and truncating

G on recognition performance. Robustness of G to these disturbances, which model

synaptic noise and pruning, is crucial to establishing the biological plausibility of my

results.

5.1 Classification Accuracy Metrics

In the following sections I apply the sparse coding model of Chapter 4 to features

extracted from various collections of images of objects drawn from different categories

(or in come cases, images of different people). My goal is for the sparse coding net-

work to develop units that respond selectively to the different categories present in

the input set, without being given information about which images belong to which

categories, or even the number or type of categories present. Given that I use a

purely unsupervised training process, and that the model is free to identify fewer or

more categories than are present in the training set, there are several possibilities for

evaluating the classification accuracy of this system. I consider three metrics here,

two of which are weakly supervised as they require us to decide what category each

unit is selective for, and one of which is fully unsupervised:

Metric 1: Single-category classifier. I consider each unit individually as a classi-
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fier for its most preferred category. The accuracy figure I use is the receiver-operating

characteristic (ROC) equal error rate (i.e., p(true positive) = 1-p(false positive)) test-

ing against the other categories. Chance level in this case is 50%. The metric is the

average accuracy of the best classifier for each category.

Metric 2: Weakly supervised classifier. I use all selective units together to

classify each input image into one of the input categories. To do so, I first manually

assign to each unit a category for which it is most selective, as before (so multiple

units could be assigned the same category). I then classify each image according

to which unit responded the most strongly. The accuracy is then the percentage of

testing images correctly classified, and the chance level is one over the number of

categories.

Metric 3: Unsupervised classifier. In the fully unsupervised setting I rely on the

output units to both define the categories and assign images to them. Each image

is assigned to a putative category based on which output unit responded the most

strongly. I then form a confusion matrix in which element (i, j) is the percentage

of images from input category j assigned to output category i and rearrange this

matrix to maximize the average of the diagonal elements, thereby picking the output

categories that best correspond to the input categories. This average is then the

classification accuracy, and chance level is one over the number of output units.

Note that each of these metrics says something different about the behavior of

the network, and none of them by themselves describe exactly the sparse, invariant

selectivity that is our goal. Metric 1 quantifies how selective individual units are

for particular categories, but disregards the separation between “on” and “off” re-

sponses. Metric 3 quantifies how precisely the categories discovered by the network
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correspond to those we defined, but a network that divides one or more categories

into subcategories would score poorly here despite qualitatively good performance.

Metric 2 alleviates this issue, but could disregard excessive subcategorization. Hence,

sparse, invariant representation of the input categories is only captured by good scores

according to all three metrics.

It is important to note that I label metrics 1 and 2 “weakly supervised” purely

because evaluating them requires information about which images are in which cat-

egories. In all cases the model is trained in a completely unsupervised manner: no

information is supplied about which images are in which categories, or even how

many categories are present in the input set. The model simply receives a collection

of inputs and learns a representation for them.

5.2 A Feedforward Model of Visual Processing

5.2.1 Overview of the Model

The first model I use to generate an invariant feature-based description of images is

the feedforward model of Serre et al. (2005, 2007), which is an extension of the HMAX

model of Riesenhuber and Poggio (1999). This model processes images via a series of

alternating layers of S (simple) and C (complex) units in an extension of the Hubel

and Wiesel (1962) simple-to-complex cell hierarchy. The S units provide Gaussian-

like tuning around template features, while the C units provide scale and position

invariance by pooling S units with the same feature selectivity across nearby positions

and scales. The initial S layer, called S1, consists of units which, like V1 simple cells,

are tuned to oriented bars and edges at a variety of scales and orientations. In the next

layer, C1, each unit pools the responses of S1 units with the same preferred orientation

but with small variations in position and scale, increasing the receptive field size and

the invariance to transformations and modeling complex cell behavior. Continuing up
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the hierarchy, each S2 unit is tuned to the activity of nearby C1 units with different

feature selectivity, increasing the complexity of the unit’s preferred feature, and each

C2 unit pools the responses of similar S2 units over position and scale. In this way

both feature complexity and receptive field size increase as one progresses up the

hierarchy, until at the output layers of the model each unit responds to the presence

of a particular complex feature located anywhere in the input image, in a manner

analogous to IT cells. The most recent version of this model (which I use here)

incorporates two parallel processing paths with somewhat different parameters for

the selectivity and pooling range, a “standard” route with three simple-to-complex

stages terminating with layer C3 (S1 → C1 → S2 → C2 → S3 → C3) and a “bypass”

route with two stages terminating with layer C2b (S1 → C1 → S2b → C2b). This

model normally terminates with a layer S4 (receiving inputs from C2b and C3) that

is task-specific in that its feature templates are learned from images from the set

to be classified. I instead rely only on the task-independent C2b and C3 outputs.

That is, in the version of the model I use, the feature templates for the S layers are

learned from images unrelated to the specific tasks at hand. Despite being designed

primarily to model biological vision, this model has been shown to perform on par

with the state of the art in image classification tasks in a supervised setting (Serre,

Wolf, Bileschi, Riesenhuber & Poggio, 2007) and even to match human performance

in a rapid categorization task (Serre, Oliva & Poggio, 2007). The software is available

from http://cbcl.mit.edu/software-datasets/.

5.2.2 Inputs to the Model

All images used in this investigation were taken from the Caltech-256 database of

images from 256 categories (Griffin, Holub & Perona, 2006). Images were resized

(using MATLAB’s imresize with nearest-neighbor interpolation) so that the smaller

dimension was 128 pixels while preserving the aspect ratio. The outputs of the C2b
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and C3 layers of the visual processing model were computed using a feature set derived

from training on 500 natural images. The feature set I used for the S layer templates

was the “universal” set included with the software distribution. There were 1000 units

in each of these layers, for a total of n = 2000 outputs. In some cases an input image

was large enough to have multiple C units for the same feature in the top layer, in

which case I performed an additional max operation over these units to preserve input

dimension. After computing the outputs for all input images, I renormalized them to

have zero mean and unit variance (they were initially values between 0 and 1). While

it may be possible to find parameters of the sparse coding network that work well

on the unnormalized data, this rescaling makes it possible to apply the network to

different input sets (such as this set and the SIFT features described below) without

adjusting the various network parameters for optimum performance.

5.2.3 Results: Categorization

I performed several object categorization experiments with this model. In all cases

the number of output units was m = 10 and the network parameters were λ = 10,

t = 0.05, and σ2 = 0.04. The weight penalty was γ = 100. The matrix G was

initialized with uniformly distributed random weights between −0.5 and 0.5. In each

experiment I used the batch update rule and terminated the optimization when the

average change in the weights gij was less than 2% for 5 consecutive iterations. I used

40 random images from each category for training and reserved 40 different images

for testing. After training, I ran the recognition model on the novel testing images;

these are the responses depicted below.

I performed the following three experiments:

(A) Three object categories. I trained and tested the model on images of motor-

bikes, airplanes, and faces. This is directly comparable to experiment (C) of Sivic et
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al. (2005).

(B) Four object categories. I added a fourth category (cars) to the training set

from experiment (A). This is similar to experiment (D) of Sivic et al. (2005), except

that I used side- rather than rear-views of cars.

(C) Four object categories. As the images from experiment (B) are relatively easy

to classify (a supervised classifier operating on the same inputs can perform this task

at near 100% accuracy), I performed the same experiment with four more difficult

categories: blimps, elephants, ketches (a type of sailboat), and leopards.

I ran each experiment 10 times with different random initial conditions for G.

All model parameters were identical between the three experiments—no adjustment

was required to account for different number or type of input categories between

experiments.

I here focus on describing the response profiles of the output units from a typical

run of experiment (B); results from the other trials and experiments were qualitatively

similar. Figure 5.1 depicts the responses of two of the selective units (from the same

session) that emerged in training. For each unit this figure shows 20 of the 40 images

that evoked the strongest responses (every other response is omitted for clarity) as

well as a histogram of all responses. The ROC curve for each unit treated as a classifier

for its preferred category is inset in the histogram, along with the ROC curve for the

best principal component for that category for comparison. We see from these figures

that category tuning has spontaneously emerged from the learning process.

The quantitative results of each experiment, as measured by the three metrics de-

scribed above, averaged over 10 trials (one “trial” refers to a complete training/testing

run with random initial conditions), are summarized in Table 5.1. As a baseline for
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Figure 5.1: Responses of two selective units (out of 10) after the unsupervised category
learning. (a, c): images that evoked the top responses, with the activation level above
each image. Every 2nd image omitted for clarity. (b, d): response histograms. x-axis is
the activation level; y-axis is the number of test images (160 total) evoking a response
at that level. Responses to preferred category in black; responses to all other images
in white. Insets: ROC curves. Solid line is ROC curve for selected unit, dashed line
is ROC curve for best principal component. ROC equal-error accuracies were 100%
and 88%.
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Ex Metric 1 Metric 2 Metric 3
SN PCA SVM ch SN PCA k-means SVM ch SN PCA ch

A 91.7 69.2 98.1 50.0 90.6 55.0 95.8 96.7 33.3 64.0 37.5 10.0
B 89.8 71.9 97.4 50.0 82.6 46.9 91.9 96.9 25.0 66.1 40.6 10.0
C 77.0 69.2 88.1 50.0 63.8 47.5 57.5 81.9 25.0 41.4 36.3 10.0

Table 5.1: Classification accuracy computed using different metrics averaged over 10
trials with random initial conditions. In all cases unseen images were used for testing.
For each metric I report the classification accuracy (as a percentage) for the sparse
network (SN) and for PCA applied to the same inputs, as well as chance level. For
metrics 1 and 2 I also provide the accuracy of a supervised SVM classifier applied to
the same inputs, and for metric 2 I further include the accuracy of k-means with k
equal to the true number of categories.

comparison, I also evaluated the performance of PCA applied to the same inputs as

the sparse coding network against these three metrics. As there were 10 units in the

output layer of the sparse coding network, I used the top 10 principal components for

this comparison. I also found the best performance I could achieve using a supervised

SVM classifier applied to the same inputs, which provides a reasonable upper bound

on achievable performance and an objective measure of task difficulty. For metric 1

I report the average accuracy of a binary SVM classifier for each category versus the

others, while for metric 2 I report the accuracy of a multi-way SVM. Finally, I applied

a k-means algorithm with k equal to the true number of categories. As in this case

the number of categories is a given, this performance metric is most comparable to

the semi-supervised performance of the sparse coding network.

The seemingly poor results from experiment (C) still occur in the context of units

that show very clean selectivity for each category. However, in each case the units

responded strongly only to a subset of the category in question. Figure 5.2 gives an

example of such a unit which responded selectively to some but not all of the ketch

images. Note also that this task is considerably more difficult than the others, as

quantified by the large drop in supervised SVM accuracy (also listed in Table 5.1).
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Figure 5.2: Responses of a ketch unit from experiment (C). (a): images that evoked
the top responses, with the activation level above each image. Every 2nd image
omitted for clarity. (b): response histogram. x-axis is the activation level; y-axis is
the number of test images (160 total) evoking a response at that level. Responses to
ketches in black; responses to all other images in white. Inset: ROC curve. Solid line
is ROC curve for this unit, dashed line is ROC curve for best principal component.
ROC equal error accuracy with respect to all ketches was 85%.

5.2.4 Results: Face Discrimination

To evaluate performance in a finer discrimination (as opposed to categorization) task,

I tested the algorithm on a dataset consisting of gray-scale frontal facial images of

different individuals obtained from the Caltech-256 dataset (Griffin et al., 2006).

Though the backgrounds vary slightly from image to image, these images are fairly

well structured and could be viewed as the output of an attentional selection and

segmentation process. Training was performed using 10 different images of each

individual, with 10 different images of the same individuals reserved for testing. I

performed experiments with 4 to 10 different individuals in the input set. All network

parameters were identical to the categorization task described above, except that the

number of output units was m = 15.

Figure 5.3 depicts the responses of two selective units (the best and a more typical

unit) from a single training session with 10 different individuals in the input set. The
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mean ROC accuracy (that is, the average ROC accuracy of the best unit for each

category) for this run was 91%, and the ROC accuracies for the two units shown were

100% (Figure 5.3 (a, b)) and 90% (Figure 5.3 (c, d)). The semi-supervised 10-way

classification accuracy of the sparse network was 56%. PCA yielded a mean ROC

accuracy of 78% and a semi-supervised classification accuracy of 37%. Additionally,

in contrast to the responses of the sparse units depicted in Figure 5.3, the responses of

the principal components were unimodal and so did not clearly indicate the presence

of a category in the same way as the sparse units (which is reflected in the poor semi-

supervised accuracy). Figure 5.4 depicts the response of the best principal component

for any category from the same dataset as in Figure 5.3 and gives an example of

this issue: while the ROC equal-error accuracy of this principal component for its

“preferred” category is 90%, there is no clean separation between in-category and

out-category responses.

I repeated this experiment 50 times for each number of different individuals, each

time starting with different random initial conditions (initial synaptic weights), using

a different random subset of the 17 individuals for which the dataset contains at least

20 pictures, and using different random subsets for training and testing. Figure 5.5

summarizes the results for metrics 1 and 2 (ROC and semi-supervised) and compares

them to those obtained from the top 15 principal components and the performance

achieved by a supervised SVM; the complete numerical results are listed in Table 5.2

with the addition of the performance of a k-means algorithm with k equal to the

true number of categories. Performance according to the ROC metric did not vary

significantly with the number of people presented, indicating that in all cases units

emerged that responded selectively to each individual. The mean ROC accuracy

across all 350 trials was 91.3%, compared to 96.6% for a binary SVM and 80.4% for

PCA. Performance according to the semi-supervised metric did decline as the number

of people in the input set increased, dropping from a mean of 85.5% to 64.2% as the
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Figure 5.3: Responses of two selective units (out of 15) after the unsupervised category
learning. (a, c): images that evoked the top responses, with the activation level above
each image. Every 2nd image omitted for clarity. (b, d): response histograms. x-axis is
the activation level; y-axis is the number of test images (100 total) evoking a response
at that level. Responses to preferred person in black; responses to all other images in
white. Insets: ROC curves. Solid line is ROC curve for selected unit (exactly along
the vertical and horizontal axes in (b)), dashed line is ROC curve for best principal
component.
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Figure 5.4: Responses of best principal component for a particular category for same
inputs as in Figure 5.3. (a): images that evoked the top responses, with the compo-
nent loading above each image. Every 2nd image omitted for clarity. (b): response
histogram. x-axis is the component loading; y-axis is the number of test images
(100 total) evoking a response at that level. Responses to preferred person in black;
responses to all other images in white. Inset: ROC curve.

number of people increased from 4 to 10. This is in all cases significantly better than

the PCA performance, which decreased from 58.1% to 41.1%, and the performance

of k-means, which decreased from 70.7% to 63.7%. This decline is not unexpected,

because as more categories are presented it becomes more likely that, in addition

to the “correct” unit responding to a given image, some other unit will spuriously

respond strongly (which is also reflected in the decreasing chance performance). In

the purely unsupervised case, performance increases slightly as the number of people’s

faces to be recognized rises from 4 to 6 before dropping off gradually with more people,

likely because with 15 output units significant subcategorization may be taking place

when there are few people in the input set. PCA sees a similar increase in accuracy in

this regime. Figure 5.6 depicts an example of such subcategorization occurring when

only 4 different faces were present in the input set. Shown are two units that, after

training, responded to different images of the same individual. The top unit had an

ROC equal-error accuracy of 80%, while the bottom unit had an accuracy of 90%.
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Figure 5.5: Face discrimination accuracy (mean ± s.d.) as a function of number of
people in the input set. Solid line: sparse coding network, dashed line: SVM (su-
pervised) classifier, dotted line: PCA. Dotted line without error bars depicts chance
performance. (a): ROC equal-error accuracy for binary classification. (b): semi-
supervised multi-way classification accuracy

The overall ROC accuracy of this run (which only the more accurate bottom unit

contributed to) was 92.5%. However, since both units responded strongly to several

images of the same person, either one was liable to have the strongest response to any

particular image of that person, hurting the unsupervised accuracy (metric 3), which

was 67% overall. In fact, each of these two units provided the strongest response to

40% of the testing images of this individual, so they evenly divide the category in two.

The only clear difference between the two subsets of images is that the bottom unit’s

preferred images appear brighter; though the normalization steps in the HMAX model

should provide invariance to brightness it may be that the top unit is responding to

details in the darker images that are washed out in the bright images.

It is interesting to note that, even with 10 faces in the input set, performance

on this task was essentially as good as in the categorization tasks described above.

While the distinction between different faces is clearly more subtle than the distinction

between categories, there is also less within-category variation in the face images than

in the images from other categories, so different images of the same individual are

likely to be tightly clustered in feature space. From this we see that the within-
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Figure 5.6: Responses of two selective units (out of 15) after the unsupervised category
learning. (a,c): images that evoked the top responses, with the activation level above
each image. (b,d): response histograms. x-axis is the activation level; y-axis is the
number of test images (40 total) evoking a response at that level. Responses to
preferred person in black; responses to all other images in white. Insets: ROC curves.
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# Metric 1 Metric 2 Metric 3
people SN PCA SVM ch SN PCA k-means SVM ch SN PCA ch

4 91.9 79.0 97.3 50.0 85.6 58.1 70.7 96.8 25.0 67.0 49.7 6.7
5 92.2 80.5 97.4 50.0 81.4 55.8 71.2 95.6 20.0 70.0 53.2 6.7
6 92.7 81.0 97.5 50.0 81.6 52.3 70.6 95.7 16.7 72.2 50.7 6.7
7 91.3 80.0 96.5 50.0 73.6 47.5 65.5 93.6 14.3 68.7 47.5 6.7
8 90.6 80.6 96.2 50.0 70.0 46.9 64.0 92.9 12.5 65.7 47.2 6.7
9 90.2 80.8 95.9 50.0 67.5 42.8 63.4 92.6 11.1 63.5 44.0 6.7
10 90.1 80.7 95.4 50.0 64.1 41.2 63.7 91.2 10.0 63.3 43.9 6.7

Table 5.2: Face discrimination accuracy computed using different metrics averaged
over 10 trials with random initial conditions using HMAX features. In all cases,
unseen images were used for testing. For each metric, I report the classification
accuracy (as a percentage) for the sparse network (SN) and for PCA applied to the
same inputs, as well as chance level. For metrics 1 and 2, I also provide the accuracy
of a supervised SVM classifier applied to the same inputs, and for metric 2 I further
include the accuracy of k-means, where k equals the true number of categories.

class homogeneity drives classification accuracy as much as the inter-class separation.

These experiments also highlight the importance of the statistics of the input set to

the representation learned. In experiments (A) and (B) in the previous section, faces

were present often in the inputs, but no particular individual was present often. In

this case we obtained a representation for “face,” but no individuation within that

class. Roughly speaking, there was a cluster of inputs in feature space distinct from

the inputs from the other categories, but no smaller clusters corresponding to specific

individuals within it. In these experiments, particular individuals were present often

(and each individual was present equally often), so it became apparent that there were

well defined clusters within the “face” cluster, giving the network enough information

to identify multiple individuals and represent them separately.

To evaluate robustness of this method to more widely varied facial images (and

to improve the analogy with the results from human MTL), I also applied the model

to images of four celebrities collected from the web (Jennifer Aniston, Halle Berry,

George Clooney, and Matt Damon). I selected images that contained reasonably
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frontal views of faces and cropped them to include only the face, so the overall com-

position was similar to the images used above. However, these images contained

substantially more variation in pose, facial expression, hairstyle, and background

than the images used above, and were much more difficult to classify even using su-

pervised methods. I again performed 50 trials (full training and testing runs) using

10 images for training and 10 different images for testing, randomizing over initial

weights and which subsets of images were used for training and testing. The resulting

average ROC accuracy was 77.4%, compared to an average supervised SVM accuracy

of 84.3%. Relative to the benchmark of supervised classification (which expresses how

well the underlying vision model separates the categories into distinct groups), then,

performance was essentially the same as before.

Figure 5.7 depicts the responses of two selective units from a typical run on the

celebrity images. The Halle Berry (upper) unit had an ROC equal-error accuracy of

90%, while the Jennifer Aniston (lower) unit had an accuracy of 80%. It is particularly

interesting to note that the images “missed” by the Halle Berry unit all depicted her

with long hair, while the images that evoked strong responses depicted her with short

hair, so the unit in fact selects for a subcategory of Halle Berry images.

5.2.5 Results: Morphed Faces

A further investigation of the human MTL responses currently in progress involves

presenting the patient with “morphed” images of familiar people, that is, images that

are created by blending images of two different people (A. Kraskov, personal commu-

nication). This experiment serves two purposes: to investigate how the response of

a neuron changes as an image is continuously transformed from a person the neuron

responds strongly to into some other person (and back), and to see how the neu-

ron’s activity correlates with the subject’s perception of the image’s identity. The

first question can also be investigated within this computational framework, with the
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Figure 5.7: Responses of two selective units (out of 15) after the unsupervised category
learning. (a, c): images that evoked the top responses, with the activation level above
each image. Every 2nd image omitted for clarity. (b, d): response histograms. x-axis
is the activation level; y-axis is the number of test images (40 total) evoking a response
at that level. Responses to preferred person—Halle Berry in (b), Jennifer Aniston in
(d)—in black; responses to all other images in white. Insets: ROC curves. Solid line is
ROC curve for selected unit, dashed line is ROC curve for best principal component.
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additional advantage that we can look at the responses of neurons that ordinarily

represent both ends of the morph (while in the human studies the investigators gen-

erally only have access to a neuron representing one of the endpoints due to the small

number of simultaneously recorded selective neurons in any one session).

To explore the question of how the model responds to morphed images, I picked

two individuals with some similarities in appearance from the same training session.

For this example I used the same trained network for which I presented results in

Section 5.2.4 above, for which there were 10 different individuals in the input set. Both

individuals used for morphing were very well represented by the trained network, with

a unit providing 100% ROC accuracy and well separated in-category and out-category

responses for each. I generated 9 morphed images between each of 5 different pairs

of images using the commercially available photo morphing software “Morpheus”

(available at http://www.morpheussoftware.net/). To ensure a smooth morph

between the two images I manually matched keypoints such as eyes, ears, and mouths

in the two images, so the resulting morph was a combination of distortion and grey-

level interpolation between the starting and ending images. I then computed the

response of the trained network to the morphed images. There is no effect of hysteresis

in these results, as the state of the network (initial condition of v) was reset for each

image presentation.

Figure 5.8 summarizes the results for all 5 morphings and gives an example mor-

phing. Response strength to each morphed image is shown for the two neurons

representing the two indivduals. Each curve is the response of one neuron to one

set of morphed images; the curves are individually normalized by the strength of the

neuron’s response to the unmorphed image of its preferred person. As expected, the

response curves are sigmoidal, with a sharp transition between on and off responses as

some threshold is crossed. This sigmoidal transition is a feature of the sparse coding

network and is due to a combination of the bimodal prior and the winner-take-all
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Figure 5.8: Responses of trained network to 5 different morphings between the same
two individuals (top) and an example morphing (bottom). Solid lines are the re-
sponses of the neuron that prefers the person on the left; dashed lines are the responses
of the neuron that prefers the person on the right. All responses are normalized by
the response to the unmorphed preferred image.

like network topology; it is much different from the gradual transition that would be

expected from linear filters. In a distributed population code in which individual neu-

rons responded to, for example, different types of facial features, individual neurons

may still switch on or off in the same sigmoidal fashion as their preferred features

became more or less clear, though just as plausibly their activity could vary smoothly

if they functioned as linear feature templates.

Much like in the human data from both electrophysiology and psychophysics,

different morphings result in different transition thresholds, reflecting the difference

between the qualitative similarity of a morphed image to one individual or the other

and the distance along the continuum of morphings (Kraskov, personal communi-

cation). The average point at which the response was 50% of the response to the

unmorphed preferred image was 18.6% morphed (σ = 4.6) for the neuron that pre-

ferred the individual on the left, and 35.3% morphed (σ = 10.5) for the neuron that
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preferred the individual on the right. Hence in most cases there is a range of mor-

phings that produce only weak responses in both neurons—the network essentially

decides that the image resembles neither individual. Because (as noted above) in the

human experiments neurons representing both endpoints are only rarely available it

is very difficult at this time to compare this particular aspect of the responses to

real data, but this suggests one interesting question that could be asked if it is ever

possible to perform the morphing experiment between images of two people that are

represented by two different recorded neurons: is one or the other of two such neu-

rons always active, or, like in the model, is there some range of morphed images that

elicit no strong response? Further, how does this activity correlate with the subject’s

identification of the image as being one person or the other (or neither)?

5.3 Scale-Invariant Feature Transform

5.3.1 Overview of the Model

Another algorithm that can be used to produce invariant feature detectors is the

Scale-Invariant Feature Transform (SIFT), first introduced by Lowe (1999) and later

refined to the form applied here (Lowe, 2004). The first step in the SIFT algorithm is

to identify a set of keypoints corresponding to features with a high interest level and

high likelihood of invariance to scale and affine transformations. In this work I use

Harris-Affine interest point detection (Mikolajczyk & Schmid, 2004), which combines

the Harris edge and corner detector (Harris & Stephens, 1988) with an automatic

scale selection algorithm (Lindeberg, 1998) to obtain a scale invariant detector. On

the order of 500 (though at times as few as 100) features are identified for each

image. Each keypoint is assigned an image location, scale, and orientation, which

together naturally define a local 2D coordinate system that provides invariance to

these parameters. The next step is to compute a descriptor for the image region
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around each of these keypoints that is both highly distinctive and invariant to other

unimportant transformations such as changes in illumination and viewpoint. The

descriptor is based on local image gradients. First, the gradient magnitude and ori-

entation is computed at an array of sample points surrounding the keypoint, with

the extent of the array defined by the scale of the keypoint. The gradient sam-

ples are weighted by a Gaussian centered at the keypoint (to avoid discontinuities

in the descriptor with small changes in keypoint location) and accumulated into his-

tograms over subregions. These histograms are smoothed to avoid discontinuities

in the descriptor with small changes in keypoint orientation. Finally, the descrip-

tor is formed by concatenating all of the subregion histograms into a single vector

and normalizing to unit length. The resulting descriptor is invariant to changes in

location, scale, and orientation (because these are explicitly accounted for in the

keypoint identification), brightness (because it is based on gradients), and contrast

(because it is normalized). In the SIFT implementation I use here, there are 16

subregions (in a 4 × 4 array about the keypoint) and 8 bins in each subregion his-

togram, so the resulting descriptor is 128 dimensional. The software I use to im-

plement both keypoint detection and descriptor computation can be obtained from

http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html.

The intent in the original SIFT work was to compute descriptors that could be

matched between images, allowing test images to be classified with respect to template

images. Here we need to convert the collection of SIFT descriptors extracted from

each image into an n-dimensional vector describing in some sense the presence of

various features in the input image. In other words, we need to compute a feature

vector analogous to the outputs of the neural network model discussed above from the

SIFT descriptors. To do so, I first extract n descriptors at random from some image

set (I will describe exactly what image set I used in the results sections below) to be

feature templates. I denote the ith such template by τi. Denoting the descriptors in
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an image by dj, the input u was computed by

ui = max
j

(τi · dj). (5.1)

That is, for each template, each descriptor is assigned a score based on the dot product

of the descriptor with the template, then the maximum of these scores is taken to be

the response to that feature. In this way ui will be large if there is some feature in

the image very similar to τi.

While the computations used to generate these inputs have no simple biological

implementation, the inputs themselves are not altogether unreasonable from a biolog-

ical standpoint. They are essentially complex feature detectors with receptive fields

of the entire field of view, and Lowe points out that “SIFT features share a number of

properties in common with the responses of neurons in inferior temporal (IT) cortex

in primate vision” (Lowe, 1999).

As with the first model, I normalize these inputs to have zero mean and unit

variance prior to feeding them into the sparse coding network.

5.3.2 Results: Face Discrimination

As SIFT is geared more toward object recognition rather than the broader catego-

rization task, I repeated the face discrimination experiments from Section 5.2.4 using

SIFT inputs. All network parameters were the same as before, and I used n = 2000

SIFT features to match the number of inputs I used in the HMAX experiments.

The feature templates were extracted at random from images from the Caltech-256

dataset. That is, I ran the SIFT algorithm on all of the images in the Caltech-256

dataset, then picked 2000 random descriptors from random images to be my feature

templates. Repeating this analysis using only features from the face dataset did not

significantly affect the results. Figure 5.9 summarizes the results for metrics 1 and
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2 (ROC and semi-supervised) and compares them to those obtained from the top 15

principal components and the performance achieved by a supervised SVM; the com-

plete numerical results are listed in Table 5.3 with the addition of the performance

of a k-means algorithm with k equal to the true number of categories. Performance

according to the ROC metric did not vary significantly with the number of people

presented, indicating that in all cases units emerged that responded selectively to

each individual. The mean ROC accuracy across all 350 trials was 93.7%, compared

to 95.5% for a binary SVM and 81.3% for PCA. It is interesting to note that the

performance of the unsupervised sparse coding network was just as good as the su-

pervised SVM, especially as the number of people in the input set increased, though

it could be that the choice of SVM parameters was not optimal. Performance ac-

cording to the semi-supervised metric again declined as the number of people in the

input set increased, dropping from a mean of 92.0% to 75.7% as the number of peo-

ple increased from 4 to 10. This is in all cases significantly better than the PCA

performance, which decreased from 58.0% to 45.8%, though it is about the same as

the performance of k-means, which decreased from 94.1% to 82.6%. The fact that

k-means performed much more on par with the sparse coding network in this case

implies that the underlying clusters were more nearly spherical than in the case of

HMAX features. In the purely unsupervised case, performance increased significantly

as the number of people rose from 4 to 9 before dropping off slightly with 10 people,

likely because with 15 output units significant subcategorization may be taking place

when there are few people in the input set. This difference is more dramatic than

with the HMAX algorithm used in Section 5.2.4, likely because the SIFT descrip-

tors distinguish finer differences between images and so subcategorization is a bigger

problem when excess output neurons are available. PCA sees a smaller increase in

accuracy in this regime.

An advantage of the SIFT approach is that it is possible to determine which image
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Figure 5.9: Face discrimination accuracy (mean ± s.d.) as a function of number of
people in the input set, using SIFT for invariant feature extraction. Solid line: sparse
coding network, dashed line: SVM (supervised) classifier, dotted line: PCA. Dotted
line without error bars depicts chance performance. (a): ROC equal-error accuracy
for binary classification. (b): semi-supervised multi-way classification accuracy

# Metric 1 Metric 2 Metric 3
people SN PCA SVM ch SN PCA k-means SVM ch SN PCA ch

4 94.0 81.3 98.2 50.0 92.0 58.0 94.1 98.8 25.0 60.2 49.3 6.7
5 94.8 80.6 97.7 50.0 90.5 53.8 87.7 98.2 20.0 67.4 48.2 6.7
6 93.6 81.1 95.7 50.0 85.8 54.4 86.7 95.5 16.7 69.7 50.4 6.7
7 93.6 82.3 95.4 50.0 84.9 53.9 85.9 95.5 14.3 73.8 51.1 6.7
8 93.1 80.8 94.6 50.0 83.7 50.4 82.5 95.3 12.5 76.6 48.1 6.7
9 93.7 81.4 93.9 50.0 80.7 49.5 83.8 95.5 11.1 77.5 49.2 6.7
10 93.0 81.3 92.7 50.0 75.7 45.8 82.6 94.5 10.0 74.1 46.0 6.7

Table 5.3: Face discrimination accuracy computed using different metrics averaged
over 10 trials with random initial conditions using SIFT features. In all cases unseen
images were used for testing. For each metric I report the classification accuracy (as
a percentage) for the sparse network (SN) and for PCA applied to the same inputs, as
well as chance level. For metrics 1 and 2 I also provide the accuracy of a supervised
SVM classifier applied to the same inputs, and for metric 2 I further include the
accuracy of k-means, where k equals the true number of categories.
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features (SIFT descriptors) contributed the most to the observed response. To do so,

I first determined which of the 2000 features drove the output unit most strongly (i.e.,

for neuron j which inputs i had the largest uigij). I then found which SIFT descriptors

“won” the max operation in Equation 5.1 for these features. These descriptors then

provided the largest input to the unit in question. Figure 5.10 depicts the responses

of an example unit from a network trained on the same image set as in Figure 5.3

above, with the 10 most important descriptors highlighted. This unit formed a very

clean, sparse representation for its preferred individual. From the figure we see that

the most important features were those that we may expect to be most discriminatory

between individuals: eyes, eyebrows, and other distinctive features such as hairline

or goatee. It is also interesting to note that even for the distractor images very few

of the driving features are from the image background, indicating that the model

has successfully interpreted the variable background as noise and learned the more

consistent features of the various faces.

5.3.3 Comparison with HMAX

Table 5.4 summarizes the results of the face discrimination task for both HMAX

and SIFT inputs. Performance is fairly close between the two underlying models,

indicating that they do a similar job of projecting images into a feature space good

for discriminating between different faces while generalizing between different images

of the same face. A few more subtle details expose differences between the two

models, however. SIFT was designed to take advantage of features that should be

very similar between different images of the same object (as opposed to images of

different exemplars of the same class), so the features are generally very specific to

that object. In fact, just three descriptors or so are often good enough to match

an object between two images (Lowe, 1999). Performance as measured by the ROC

or semi-supervised metrics, then, is somewhat better when the model is applied to
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Figure 5.10: Responses of one selective unit (out of 15) after the unsupervised category
learning on the same image set as in Figure 5.3 using SIFT features. (a): images
that evoked the top responses with the 10 most important SIFT descriptors outlined
and the activation level above each image. Every 2nd image omitted for clarity. (b):
response histograms. x-axis is the activation level; y-axis is the number of test images
(100 total) evoking a response at that level. Responses to preferred person in black;
responses to all other images in white. Insets: ROC curves. Solid line is ROC curve
for selected unit, dashed line is ROC curve for best principal component.

SIFT features rather than HMAX features. This is because a unit is less likely to be

excited by a non-preferred person because such an image is likely to be well separated

from images of the preferred person in feature space. Furthermore, with fewer people

in the input set than available coding units, the SIFT features make available finer

distinctions between images than the HMAX features, so categories are more likely to

be split into subcategories. Using the semi-supervised metric 2, this results in better

performance, as multiple units representing different subsets of the same category are

taken into account. Using the unsupervised metric 3, however, this results in worse

performance for small numbers of input categories.

I also tested the SIFT approach on the multi-class categorization task (airplanes-

cars-motorbikes-faces) described in Section 5.2.3 above, with very different results. In

that case, the images from a single category are much more widely separated, so the

generalization capabilities of the model need to be correspondingly better. This is
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# Metric 1 Metric 2 Metric 3
people HMAX SIFT ch HMAX SIFT ch HMAX SIFT ch

4 91.9 94.0 50.0 85.6 92.0 25.0 67.0 60.2 6.7
5 92.2 94.8 50.0 81.4 90.5 20.0 70.0 67.4 6.7
6 92.7 93.6 50.0 81.6 85.8 16.7 72.2 69.7 6.7
7 91.3 93.6 50.0 73.6 84.9 14.3 68.7 73.8 6.7
8 90.6 93.1 50.0 70.0 83.7 12.5 65.7 76.6 6.7
9 90.2 93.7 50.0 67.5 80.7 11.1 63.5 77.5 6.7
10 90.1 93.0 50.0 64.1 75.7 10.0 63.3 74.1 6.7

Table 5.4: Comparison of performance of sparse coding network applied to HMAX
and SIFT features on face discrimination task.

where SIFT performs much worse than HMAX; in fact, performance is barely better

than chance in this setting (and so the details are omitted). It turns out that, for

example, images of two different motorcycles may be as widely separated in SIFT

feature space as an image of a motorcycle and one of an airplane, so they are not

likely to be clustered together.

These distinctions between HMAX and SIFT suggest a possible hierarchy for

object and category representation in the brain. At one stage, neurons may operate

on HMAX-like inputs to become selective to broad categories such as motorcycles

and faces. Such neurons would explicitly represent their preferred categories, but

within each category the identity of a particular exemplar would be carried only

across the population. As discussed in Chapter 3, the “face cells” of the macaque

inferior temporal cortex are an example of such neurons: individual cells respond

much more strongly to faces than non-faces, but facial identity is carried across the

population (Young & Yamane, 1992; Rolls & Tovee, 1995). These neurons may then

be making explicit image features best suited for making fine distinctions between

objects within their preferred category, but perhaps not suited for making broader

category judgement; these features would be more akin to the SIFT features used

here. A large population of these neurons with the same category selectivity, then,

may form the input to a second sparse coding stage that makes identity within the



93

category explicit. The sparse, invariant human MTL neurons are the clear example

here (Quian Quiroga et al., 2005).

A second possibility also comes to mind, however. With only roughly 10, 000

afferents on average, cortical neurons receive input from only a tiny fraction of cells

in the preceding region. Simply by chance, then, some neurons may receive input from

neurons representing a subset of features well-suited to broad categorization (HMAX-

like features) while others receive input from neurons that respond to features better

adapted to making fine distinctions within some category (SIFT-like features). The

emergence of category- and exemplar-selective cells would then happen in parallel

rather than as a two-stage process. With the available data it is unclear which of

these two architectures is more likely (or if there is a third possibility), though the

clear existence of face-selective cells in macaque IT and individual-selective cells in

human MTL makes the hierarchical architecture attractive.

5.4 A Specialized Facial Recognition Model

5.4.1 Overview of the Model

To generalize face discrimination results of Sections 5.2 and 5.3 to more natural

images (that is, with more variation in lighting, pose, etc.) I applied the model to a

machine vision model specifically tailored to face recognition, in which faces of the

same individual are likely to produce similar feature vectors in a manner somewhat

robust to common transformations (Holub & Moreels, 2007). Their model first detects

and segments faces within an image using the Viola and Jones face detector (Viola &

Jones, 2001). The segmented region is then passed to an Everingham facial feature

detector (Everingham, Sivic & Zisserman, 2006), which identifies the position of 19

facial features such as eyebrows, eyes, nose, and mouth (and parts thereof). These

features can be characterized in a number of ways, such as raw pixel intensity or
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intensity gradients. For this investigation I obtained features characterized by raw

pixel intensity in a 9 × 9 patch at each feature, for 9 × 9 × 19 = 1539 features per

image.

5.4.2 Results: Celebrity Faces

I tested the algorithm applied to responses obtained from the face recognition model

applied to facial images of 99 different celebrities collected from the web (note that

this is a different celebrity dataset than that used in Section 5.2.4 above). These

responses were provided by the Caltech Vision Lab; at the time of this writing I had

access only to the model outputs, not the original images. These images contain

significantly more variation in pose, lighting, etc. than the facial images used above.

As before, I performed experiments with 4 to 10 different individuals in the input set

with exactly the same network parameters. As fewer images of each individual were

available, I used just 5 images for training and 5 for testing; the data set included 92

individuals for which I had responses to at least 10 images.

Figure 5.11 summarizes the results for metrics 1 and 2 (ROC and semi-supervised)

and compares them to those obtained from the top 15 principal components and

the performance achieved by a supervised SVM; the complete numerical results are

listed in Table 5.5. Again, performance according to the ROC metric did not vary

significantly with the number of people presented, indicating that in all cases units

emerged that responded selectively to each individual. The mean ROC accuracy

across all 350 trials was 82.4%, compared to 82.0% for a binary SVM and 78.1% for

PCA. As in the SIFT case above, the sparse network matched the performance of

supervised SVM in the binary identification task quantified by the ROC accuracy.

Performance according to the semi-supervised metric again declined as the number

of people in the input set increased, dropping from a mean of 68.4% to 45.8% as

the number of people increased from 4 to 10. This is in all cases significantly better
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Figure 5.11: Face discrimination accuracy (mean ± s.d.) as a function of number of
people in the input set using celebrity images and the face representation of Holub and
Moreels (2007). Solid line: sparse coding network, dashed line: SVM (supervised)
classifier, dotted line: PCA. Dotted line without error bars depicts chance perfor-
mance. (a): ROC equal-error accuracy for binary classification. (b): semi-supervised
multi-way classification accuracy

than the PCA performance, which decreased from 55.9% to 36.9%. In the purely

unsupervised case, performance did not change significantly as the number of people

rose from 4 to 10.

Figure 5.12 depicts the responses of two units (the best and a typical unit) from

the same network after training on 10 individuals. It was frequently the case that

even the most selective units would have very few (if any) large responses, as can be

seen in this figure. This may help to explain why the accuracy of the sparse coding

approach was no better than PCA for this dataset: if the network is never excited to

large responses, the sparse prior is essentially a zero-mean Gaussian, and so the result

approaches PCA as the variance becomes small. The reason behind the network being

rarely excited to large responses is unclear; it may be that the very small size of the

training set (just 5 training images of each individual) was insufficient for the network

to extract the underlying sparse structure.
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# Metric 1 Metric 2 Metric 3
people SN PCA SVM ch SN PCA SVM ch SN PCA ch

4 84.1 77.8 84.3 50.0 68.4 55.9 83.9 25.0 50.8 44.3 6.7
5 83.6 77.7 83.6 50.0 61.3 47.9 79.8 20.0 48.5 41.0 6.7
6 82.9 77.8 82.8 50.0 57.5 45.3 79.5 16.7 52.3 41.7 6.7
7 82.2 78.7 82.7 50.0 56.4 44.2 77.3 14.3 51.9 43.4 6.7
8 82.0 78.8 81.2 50.0 52.6 43.0 74.7 12.5 51.0 43.3 6.7
9 80.7 78.0 80.4 50.0 46.8 38.0 73.6 11.1 48.9 39.6 6.7
10 81.1 78.2 79.2 50.0 45.8 36.9 72.3 10.0 47.5 38.8 6.7

Table 5.5: Face discrimination accuracy computed using different metrics averaged
over 10 trials with random initial conditions using features from Holub and Moreels
(2007). In all cases unseen images were used for testing. For each metric I report the
classification accuracy (as a percentage) for the sparse network (SN) and for PCA
applied to the same inputs, as well as chance level. For metrics 1 and 2 I also provide
the accuracy of a supervised SVM classifier applied to the same inputs.
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Figure 5.12: Response histograms for two units (the best and a typical unit) from
the same training run on celebrity faces using the face representation of Holub and
Moreels (2007). x-axis is the activation level; y-axis is the number of test images
(100 total) evoking a response at that level. Responses to preferred person in black;
responses to all other images in white. Insets: ROC curves. Solid line is ROC curve
for selected unit, dashed line is ROC curve for best principal component. ROC equal-
error accuracy of the left unit was 89%, of the right unit was 78%.
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5.5 Statistics of the Response Distribution

In this section I discuss the statistics of the responses obtained from the sparse coding

network after training. As an example I use the responses from the face discrimination

network discussed in Section 5.2.4 (which was trained on 10 images of each of 10

different individuals); these results are typical of those obtained from other runs.

For comparison I will look at two cases that strip key features from the sparse coding

network. First, I cut the feedback connections but leave the dynamics of the individual

neurons intact, to the network dynamics become

v̇ = GT u + λS ′(v). (5.2)

This will illuminate the role feedback plays in recognition performance and sparsening

of responses, and provide a prediction of how recognition would suffer in the event

that feedback connections were cut in the real biological system. Second, I simply

treat the trained G matrix as a feed forward linear filter, that is, I set v = GT u. This

shows how similar each input u is to each learned basis function in the absence of

the feedback inhibition that produces winner-take-all like behavior in the network.

This linear feedforward network will allow us to see how much of the sparseness of

the responses is due to the form of the learned basis functions and how much is due

to the sparsening nature of the dynamics.

Both the dynamic and linear feedforward networks still perform well according

to our classification metrics, with an average ROC accuracy of 89% in both cases

(compared to 91% for the feedback network). However, a more detailed look at

the responses reveals that true recognition performance would likely suffer somewhat

more that the optimal ROC result suggests. The purely linear feedforward model

lacks the bimodal response distribution that cleanly separates “on” responses from

“off” responses and makes readout particularly easy. The response distribution of
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the dynamic feedforward network is still bimodal, but while the largest responses of

an individual neuron tend to be to its preferred person, many significant responses

are to other people due to the lack of inhibitory feedback from other neurons in the

network. Hence our model predicts that, if feedback connections in the visual path-

way were somehow cut, recognition performance would suffer but not be eliminated

entirely—instead we would expect increased confusion between similar people or ob-

jects. Feedback is crucial for learning, however—we would expect a person with such

an injury to be unable to learn to recognize new people or categories.

Figure 5.13(a) is a histogram of the strength of all responses to all images in the

testing data set (100 images times 15 neurons for 1500 total responses). The response

distribution is bimodal, as specified by the sparse prior, with most responses near

zero. The “large” responses are centered around roughly 1.25, somewhat larger than

the second peak location of 1 in the prior as the inputs bias all responses to be larger

than the unstimulated equilibrium points of 0 and 1. The kurtosis excess of this

distribution is 8.7, reflecting its sparse and bimodal nature. The responses of the

dynamic feedforward network, depicted in Figure 5.13(b), are still bimodal, and are

in general larger due to the lack of inhibitory feedback. These responses are still

sparse, with a kurtosis excess of 6.6. The responses of the feedforward network are

unimodal and widely varied, but due to the nature of the sparse basis functions are

still sparse (but less so), with a kurtosis excess of 3.5. Figure 5.13(c) is the same

histogram for the feedforward network; the distribution is clearly unimodal.

One often-suggested role for sparseness is the reduction of redundancy by decor-

relating neuronal responses (Vinje & Gallant, 2000). Figure 5.14(a) is a histogram of

the correlation coefficient between all neuron pairs (15 choose 2, or 105 pairs). Most

correlation coefficients are negative, reflecting the inhibitory effect neurons have on

one another. Overall correlations are weak, with a mean absolute value of the corre-

lation coefficient of 0.18. Figure 5.14(b) is the same histogram for the network with
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Figure 5.13: Histogram of the strength of all responses to all images in the testing
data set (1500 responses total). (a): feedback network depicted in Figure 5.3. (b):
the same network with the feedback connections cut. (c): linear feedforward network
with the same G matrix.
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Figure 5.14: Histogram of the correlation coefficient between all neuron pairs (105
neuron pairs total). (a): feedback network depicted in Figure 5.3. (b): the same
network with the feedback connections cut. (c): linear feedforward network with the
same G matrix.

the feedback connections cut; correlations in this setting are somewhat higher, with

an mean absolute value of 0.28. Finally, Figure 5.14(c) is the same histogram for the

linear feedforward network. Neuronal responses are more strongly correlated in this

case, with a mean absolute value of the correlation coefficient of 0.37. From this we

see that both the dynamics induced by the sparse prior and the recurrent feedback

play a role in decorrelating neural responses. Note that we are not considering tem-

poral correlations here (as our network considers each image separately rather than

an image sequence), but correlation in the amplitude of neural responses.

From these results we see that the structure of the recurrent sparse coding net-
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work serves to both enhance the sparseness of the responses (through the sparse prior

distribution encoded in each neuron’s dynamics) and to reduce the correlation be-

tween the responses of different neurons. This decorrelation reduces the redundancy

of information carried in the firing rates of different neurons.

5.6 Structure and Robustness of the G Matrix

In this section I examine the structure of the synaptic weight matrix G after training,

particularly with regard to the robustness of the network performance to perturba-

tions in synaptic weights. Given that real neural networks do not enjoy full connec-

tivity, and individual synapses most likely cannot have precisely controlled strength,

this robustness is crucial to establishing the biological relevance of the model.

Figure 5.15 depicts histograms of the weights gij after training for the category

classification example given in Section 5.2.3 and the face discrimination example

given in Section 5.2.4 (both with HMAX features as inputs). Both sets of weights

are essentially zero mean. The standard deviations are very similar, at 0.30 for

the categorization network and 0.28 for the face discrimination network. The only

significant difference between the two distributions is that the face discrimination

network has more weights near zero and (though it cannot be seen in the figure)

far from it, which is reflected in a higher kurtosis value of 4.5 compared to 3.2 for

the categorization network. The dashed line overlaid on each histogram depicts a

Gaussian distribution of the same mean and variance. It is clear from the figure

that many more weights are near zero than would be expected from a Gaussian

distribution. Though it is difficult to see from the figure, it is also the case that

more weights are large than would be expected from a Gaussian: 5.4% and 5.3% of

weights are more than 2 standard deviations from the mean for the category and

face examples, respectively, compared to 4.6% for a Gaussian distribution. Thus the
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Figure 5.15: Histogram of synaptic weights gij after training. Bin locations and sizes
are the same for both figures. Dashed line depicts a Gaussian distribution of the
same mean and variance. (a): Category classification network of Figure 5.1. (b):
Face discrimination network of Figure 5.3

weight distribution is sparse in the sense that more weights are both very small and

very large than would be expected from a Gaussian distribution.

An important issue pertaining to the biological plausibility of all of these results

is how much fidelity is required in the G matrix for successful recognition. It is un-

likely that individual synaptic weights are precisely controlled to nearly the degree

of accuracy used in the computational experiments described here. In Section 5.6.1

I investigate the effect of modeling the biological imprecision by quantizing the indi-

vidual weights. Furthermore, the sparseness model assumes full connectivity of the

neural network, again a biologically implausible constraint. In Section 5.6.2 I examine

what happens when connectivity is reduced by truncating weights smaller than some

threshold to zero. In both cases the network performance proves to be very robust to

perturbations in G, bolstering the biological realism of the results.

5.6.1 Quantization

To determine the effect of noise or limited fidelity in synaptic weights, I quantized the

G matrix to a fixed number of weights between the minimum and maximum trained
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Figure 5.16: Histogram of synaptic weights gij after quantization for the category
classification network. (a): original weights. (b): 6 bits quantization. (c): 4 bits
quantization. (d): 2 bits quantization

values. This modification was carried out after training and the recognition model

then run on previously unseen images. Figure 5.16 depicts histograms of the synaptic

weights of the category classification network after quantization at different levels of

fidelity.

Tables 5.6 and 5.7 give the resulting performance according to each metric, in-

cluding the number and percentage of nonzero weights remaining, for the 4-category

classification network used to generate Figure 5.1 and the trained face-discrimination

network used to generate Figure 5.3 above. In both cases, performance according to

all three metrics was preserved even at just 2 bits, or 4 quantization levels.

Looking at the actual responses depicted in Figures 5.17 and 5.18 tells a more
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Table 5.6: Results from quantizing G, 4 category classification task

# bits Metric 1 Metric 2 Metric 3
∞ 91.9 82.5 75.6
8 91.9 81.3 75.6
6 91.9 81.3 75.6
4 92.1 80.6 75.6
2 91.7 85.0 76.3

Table 5.7: Results from quantizing G, 10 face discrimination task

# bits Metric 1 Metric 2 Metric 3
∞ 91.1 56.0 56.0
8 91.2 58.0 58.0
6 91.3 58.0 58.0
4 91.1 57.0 57.0
2 90.1 52.0 58.0

complete story, however. While it is true that the responses remain well-ordered

with respect to the categories (thus producing a good ROC score) even at 2 bits

quantization, the magnitude of the responses drops off as the quantization is decreased

from 4 to 2 bits. In the case of the face recognition network, no responses are in the

“high” regime at 2 bits quantization, though the ROC score remains at 99% accuracy.

It appears that, by quantizing the G matrix, the overall input to each output (v)

unit is decreased (because many weights are set to zero), resulting in the smaller

responses. There may then be a strategy for rescaling G after quantization that

could alleviate this issue, though simply rescaling G to preserve the average weight

magnitude was not fruitful. It may also be possible to quantize G during training

rather than just at the end, which would better reflect the biological reality of limited

precision in synaptic weights and also allow the appropriate rescaling to happen as

part of learning.



105

1.927 1.766 1.687 1.666 1.664

1.604 1.578 1.501 1.459 1.429

1.354 1.319 1.179 1.102 1.062

0.537
0.450 0.375 0.340 0.337

(a)

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

v
i

nu
m

be
r 

of
 r

es
po

ns
es

0 0.5 1
0

0.5

1

p(false alarm)

p(
de

te
ct

io
n)

ROC, area = 0.955

(b)

1.652 1.491 1.484 1.435 1.382

1.373 1.320 1.263 1.232 1.195

1.152 1.113 1.032 0.938 0.555

0.435
0.349 0.322

0.289 0.278

(c)

0 0.5 1 1.5 2
0

20

40

60

80

100

v
i

nu
m

be
r 

of
 r

es
po

ns
es

0 0.5 1
0

0.5

1

p(false alarm)

p(
de

te
ct

io
n)

ROC, area = 0.946

(d)

Figure 5.17: Responses of the motorbike unit of Figure 5.1(c, d) after quantizing G
matrix. (a, b): 4 bits quantization. (c, d): 2 bits quantization. ROC equal-error
accuracy was 87% at 4 bits and 88% at 2 bits.
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Figure 5.18: Responses of the face unit of Figure 5.3(a, b) after quantizing G matrix.
(a, b): 4 bits quantization. (c, d): 2 bits quantization. ROC equal-error accuracy
was 100% at 4 bits and 99% at 2 bits.
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5.6.2 Truncation

To determine the effect of reducing network connectivity, I truncated all weights of

the G matrix smaller than a threshold number of standard deviations from zero to

zero. Again, this modification was done after training, then the recognition model

was run on previously unseen images. In contrast to the quantization results, in which

it would be more realistic to quantize the network weights all along the way during

training, truncation after training is somewhat more reasonable as it could reflect

pruning of weak synapses.

Tables 5.8 and 5.9 give the resulting performance according to each metric, in-

cluding the number and percentage of nonzero weights remaining, for the 4-category

classification network used to generate Figure 5.1 and the trained face-discrimination

network used to generate Figure 5.3 above. In both cases, performance according

to all three metrics was preserved up to about 2 standard deviations truncation (at

which point only just over 5% of weights remain nonzero), and drops off slowly after

that.

Table 5.8: Results from truncating G, 4 category classification task

thresh (σ) # nonzero % nonzero Metric 1 Metric 2 Metric 3
0.0 20000 100.0 91.9 82.5 75.6
0.5 10643 53.2 91.9 80.6 76.3
1.0 6294 31.5 91.3 85.0 76.3
1.5 3179 15.9 92.1 81.9 77.5
2.0 1078 5.4 89.8 83.1 83.1
2.5 246 1.2 90.8 82.5 82.5
3.0 23 0.5 73.8 50.0 53.8

As with the quantization case, the actual responses depicted in Figures 5.19 and

5.20 show that, though the ROC score is maintained, truncating G too aggressively

results in many responses dropping dramatically. The same comments about there

perhaps being a way to rescale G to alleviate this issue apply.
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Table 5.9: Results from truncating G, 10 face discrimination task

thresh (σ) # nonzero % nonzero Metric 1 Metric 2 Metric 3
0.0 30000 100.0 91.1 56.0 56.0
0.5 16301 54.3 91.1 57.0 57.0
1.0 8777 29.3 91.1 56.0 57.0
1.5 4209 14.0 91.3 48.0 56.0
2.0 1592 5.3 91.2 49.0 56.0
2.5 515 1.7 89.3 45.0 50.0
3.0 163 0.5 89.0 48.0 49.0
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Figure 5.19: Responses of the motorbike unit of Figure 5.1(c, d) after truncating G
matrix. (a, b): 1.5σ truncation. (c, d): 2.5σ truncation. ROC equal-error accuracy
was 89% at 1.5σ truncation and 82% at 2.5σ truncation.
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Figure 5.20: Responses of the face unit of Figure 5.3(a, b) after truncating G matrix.
(a, b): 1.5σ truncation. (c, d): 2.5σ truncation. ROC equal-error accuracy was 98%
at 1.5σ truncation and 99% at 2.5σ truncation.
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5.6.3 Summary

While preliminary, the results of this section are highly encouraging in that any

reasonable model of real neural learning must be robust in the face of both limited

connectivity and significant noise in synaptic weights. These two features of real

networks are nicely modeled by truncation and quantization, respectively, and I have

shown here that the trained network is very robust to these disturbances. The next

step along these lines would be to implement some form of these errors during the

learning process, as in the real brain these issues are present all the time. One

challenge confronting this process is that some small weights may be necessary to

give learning a place to take hold: if some column j of G (which, recall, can be

seen as a basis function) becomes entirely zero due to truncation or quantization,

inspection of the equations describing the algorithm reveals that the corresponding

unit vj will no longer respond, and further that the learning process will never cause

the column to become nonzero again. If this proves to be an issue it may be necessary

to either quantize not to zero but to some small nonzero number, or to include a noise

source that occasionally randomly perturbs zero weights to nonzero values (possibly

realistically reflecting new synaptic growth). On the plus side, however, implementing

these disturbances during training may allow us to truncate (or quantize) aggressively

and still maintain large responses, as G should automatically be rescaled by the

learning process to keep some responses large.

5.7 Related Work

The problem I discussed in this chapter is clearly distinct from the more common

approach to object recognition or classification in which a labeled training set is used

to learn features common to the category. These features are then extracted from

unlabeled images to classify them (Barnard et al., 2003). From a pure engineering
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standpoint, in many settings such as recognition of objects from previously learned

templates, this supervised approach is likely to be the best one. However, the MTL

data suggests that the brain is capable of forming internal representations of objects

in the absense of explicit supervisory signals, the issue I explore here. Further, prob-

lems such as clustering and classification of large image databases will likely benefit

from at least a partially unsupervised approach, as human labeling of all images may

not always be feasible. Only a few examples of truly unsupervised image classification

exist in the literature. The only directly comparable work is that of Sivic et al. (2005),

who address much the same computational task using very different techniques. As

in my work, they first compute a feature-based (as opposed to pixel-based) repre-

sentation of images, but they do so using vector quantized SIFT descriptors (Lowe,

1999) where the quantized features are obtained from a k-means algorithm applied

to descriptors from sample images from their input set. I instead obtain a feature-

based representation using a more biologically plausible model of visual processing,

the most recent extension of the HMAX model (Riesenhuber & Poggio, 1999; Serre,

Oliva & Poggio, 2007). Sivic et al. then also apply a generative statistical model

to the image features, using techniques developed for unsupervised topic discovery

in text applied to the “words” (features) extracted from each image. An important

distinction is that they found it important to restrict the number of categories (top-

ics) searched for to the number truly present in their datasets, while my method is

robust to varying numbers of input categories (and objects could in principle belong

to multiple categories, though preliminary experiments along these lines have met

mixed results). Nonetheless, the essential computational approach of first building

a feature-based representation of images and then learning a generative statistical

model for these features is the same.

Between the extremes of fully supervised and unsupervised classification lie a

number of different approaches that can be described as “weakly” or “partially”
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supervised, in which at least some information about the stimulus set is provided to

the algorithm. Fergus, Perona, and Zisserman (2003) use an unsupervised generative

learning algorithm to build representations of particular image categories, but only

images from a single category are presented to the model, which is then tested in a

category-versus-background setting. Their model thus attempts to find the features

common to all the images in the input set because it is known that they all come

from the same category. In contrast, my model simultaneously learns representations

for multiple image categories without a priori specification of the labels (or even

the number of categories present). Weber, Welling, and Perona (2000) also cast the

unsupervised categorization problem as emergent population coding, but again only

present images from a single category at a time. The different “components” of

their representation then correspond to different views or sub-categories of the input

category, and each image is “explained” by a single component. In principal their

method could be applied to an input set consisting of images from multiple categories

and it should distinguish between them. As with Sivic et al., however, it would be

important to specify the number of categories to be identified. Dong and Bhanu

(2003) present a method for image search in which the user can specify whether or

not returned images were relevant to the search. As in this work, image features

are modeled as a Gaussian mixture dependent on the components (causes) present

in the image, and the components of this model are estimated using unsupervised

expectation maximization. Over time, a subset of images in the database are labeled

though user feedback, and the system makes use of these labels to refine the category

clustering.

Sparse coding as a tool for efficient representation and classification has attracted

a great deal of attention in recent years, both in the context of vision and elsewhere.

Olshausen and Field developed the algorithm I extend here and showed that, when

applied to natural image patches, it generates feature selectivity much like that ob-



113

served in simple cells in primary visual cortex (1996, 1997). Hinton and Ghahramani

(1997) also cast sparse representation in a generative modeling framework, but, as

with Olshausen and Field, they work directly at the image level. Mutch and Lowe

(2006) improve the performance of one of the underlying vision system models I use

here (HMAX), in part using sparsification to enhance selectivity lower in the hierar-

chy. They evaluate performance in a supervised setting by training a support-vector

machine (SVM) for category selection. Ranzato et al. (2006) take an energy-based

approach to the unsupervised learning of sparse representations of natural images

and briefly discuss its extension to a hierarchical model, though their results are at a

much lower level of the visual hierarchy and so do not address categorization. Their

approach, if applied to a higher level of the feature hierarchy, may produce results

similar to my own. The categorization task I discuss here can be viewed as a blind

source separation problem. Li et al. (2004) discuss the utility of sparse coding ap-

plied to this problem, including the aspect that the number of sources is unknown.

They consider several applications, including separating speech signals and separat-

ing mixed (superimposed) drawings of faces, but not the image categorization task I

discuss here.
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Chapter 6

Conclusions and Future Directions

In this final chapter I will revisit and tie together the topics discussed so far, then

discuss a handful of ideas for carrying this work forward. In Section 6.1 I summarize

the main results of this thesis and how they can be viewed as a whole. In the fol-

lowing sections I describe a few possible avenues of future research that could grow

out of the work presented here. These can be broadly characterized as possible com-

putational enhancements to the sparse coding model (Section 6.2) and as furthering

the links to biological data (Section 6.3), though of course there will be significant

cross-fertilization between these areas (as I hope has been the case throughout this

work). Finally, in Section 6.4 I offer a few closing thoughts.

6.1 Summary of Thesis

The unifying theme of this thesis has of course been sparse coding and its computa-

tional utility. The primary motivating examples from biology are the extraordinary

human MTL cells reported by Quian Quiroga and colleagues (2005). In my view

the two most important questions to ask about such neurons are “How selective are

they?” and “How did they come to be this way?” In Chapters 2 and 3 I answered the

first question, first describing various methods by which it can be answered (and the

strengths and limitations of different approaches) and then applying these methods
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to the MTL data. The result is that these cells are indeed highly selective, respond-

ing to perhaps 1% (or even much less) of all stimuli. These cells appear to me to

sit at the top of a hierarchy devoted to extracting the sparse structure underlying

the vastly complex bombardment of sensory information entering our brains from the

world around us. Making this sparse structure explicit serves a variety of purposes:

it makes readout of signals elsewhere in the brain (for example, to drive behavior in

response to stimuli) very easy, it is metabolically efficient, and, if the hippocampus

serves as some sort of “pointer table” indexing detailed memories stored in sensory

cortex, it maximizes the number of patterns that can be stored therein and thus the

number of memories indexed.

In Chapters 4 and 5 I moved on to the second question, investigating a neurally

plausible scheme for learning a sparse code for sensory inputs. I first provided a

theoretical discussion of sparse coding, building upon the work of Olshausen and Field

and extending their model both to increase learning efficiency and to better serve as a

model of the MTL data. Finally, I presented results from applying these ideas to the

top of the visual processing hierarchy, showing that sparse coding as a computational

constraint can naturally lead to the type of sparse, selective behavior observed in

MTL. I believe these results compellingly illustrate the power of such computational

models to better understand the biological data and, perhaps, to begin to explain it.

6.2 Computational Extensions

6.2.1 Extending the Scope of the Model

I have shown here that the same sparse coding model successfully employed by Ol-

shausen and Field to model V1 can also be fruitfully applied to a much higher level of

the visual hierarchy. That is not to say that the top and bottom of the hierarchy are

the only places where sparse coding may be advantageous. In Chapter 3 I provided
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evidence that sparse codes may be advantageous from a metabolic point of view, and

in Chapters 4 and 5 I argued for their computational utility. It is reasonable to expect

that the principles of sparse coding described in this work could be fruitfully applied

throughout the visual hierarchy to enhance the coding efficiency of visual inputs.

In its current state, the feature selectivity of the HMAX network used to generate

most of the results of Chapter 5 is simply memorized from a random selection of

images. That is, in each S layer (aside from S1, in which V1-like oriented bar filters

are used), each neuron is given weights by propagating some image patch through

the network up to that point and memorizing the resulting pattern of activity on its

afferents as a template feature. While this method should capture the statistics of

natural images, it makes no effort to build a particularly efficient representation as

a sparse coding network does, and it must make use of millions of neurons in the

intermediate layer in order to capture enough image features to support recognition.

It is therefore reasonable to expect that applying the coding strategy described in this

thesis throughout the hierarchy of a simple-complex processing network like HMAX

(that is, at each simple cell stage) could provide a performance improvement both in

fidelity of representation and in number of coding units required.

The primary obstacle to this approach is one of available computational resources—

the intermediate layers of the vision model used here consist of millions of simulated

neurons, and so the model is only tractable because these neurons operate in a purely

feedforward fashion. By contrast, interactions between neurons in the same layer are

crucially important to our sparse coding scheme, and so a more efficient means for

computing the equilibrium of the network (and thus computing the representation)

would be required. A few ideas may be of use here. First, if we assume the sparse

coding network will truly learn a more efficient code for image features, we may be

able to reduce the number of representing units. Second, we can exploit the sparse

structure of the trained interconnection (G) matrix (as described in Chapter 5) to
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speed computation at the recognition stage, though this will not improve training

speed. Finally, it may be possible to impose a sparse set of interconnections between

neurons even during training rather than the full connectivity used in this work.

6.2.2 Multi-Modal Perception

One of the most striking results from human MTL reported by Quian Quiroga and

colleagues was a neuron that, in addition to its robust invariant response to various

images of the actress Halle Berry, responded vigorously to the letter string “Halle

Berry” (Quian Quiroga et al., 2005). Furthermore, pilot data from continuing studies

in this area reveal MTL cells that respond strongly to the name of their preferred

stimulus spoken aloud by a computer (R. Quian Quiroga, personal communication).

One intriguing area of future work is therefore to extend the computational work

described in Chapters 4 and 5 to other forms of sensory input. In principal the

same machinery for sparse coding should be sufficient—at the level of abstraction of

the inputs to the sparse coding model, namely image features, nothing is specifically

designed or tuned to the visual mode. Furthermore, evidence of neural plasticity

across brain areas suggests that it may be worthwhile to seek general computational

structures that apply across sensory modes (Pascual-Leone, Amedi, Fregni & Mer-

abet, 2005, and references therein). The same methodology applied to an invariant

representation of written or spoken words may be successful in extracting the sparse

structure present therein.

Though written words (text) enter the brain through the visual system, evidence

from fMRI experiments suggests that specialized machinery for the holistic process-

ing of words develops in the Visual Word Form Area as reading skills are acquired

(Gaillard et al., 2006; McCandliss, Cohen & Dehaene, 2003, and references therein)

(but see criticisms of this view in Price and Devlin (2003)). For this reason it may

be appropriate to treat written words as a distinct sensory mode and investigate the
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application of our coding methodology to it. To generate a representation of text

invariant to transformations such as changes in scale and font one may either use

one of many sophisticated systems for optical character recognition (OCR) currently

available on any input images containing words, or simply apply the model directly

to text represented as such. A minor distinction between this mode of input and the

vision system model described above is the crucial importance of the spatial rela-

tionship between letters—in the vision model excellent performance is possible even

when most spatial information is discarded, while in text rearranging letters generally

destroys the meaning (though some robustness to this is present, as long as the first

and last letters of a word are preserved).

In the auditory domain, one could use existing models of auditory language pro-

cessing to project auditory signals into a space wherein the same word spoken by

different individuals or otherwise manipulated will produce a similar representation.

Smith and Lewicki (2005) discuss methods for developing efficient, shift-invariant rep-

resentations for natural sounds using spiking models, among them a sparse generative

model much like that employed by Olshausen and Field in the visual domain. Such

a representation can then be fed into the sparse coding network, which could extract

structure, such as commonly used words, from the input data stream.

The goal of this line of inquiry would be to replicate the multi-modal response

characteristics observed in the human MTL recordings. Further, significant evidence

from fMRI and psychophysical experiments indicate that this type of cross-modal

interaction plays an important role in perception (Shimojo & Shams, 2001, and refer-

ences therein). A likely strategy here would be to feed into the sparse coding network

not inputs from a single sensory mode, but simultaneous inputs from multiple modes.

For example, one would present the image of Halle Berry together with her name

spoken aloud, each processed through the appropriate invariance model. The model

will then be able to associate the inputs across modes, in essence allowing each mode
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to act as a supervisory signal for the other(s). Computational studies have already

shown the utility of such multi-modal “self-supervision” in performing the unsuper-

vised clustering task of learning vowels from spoken English using both auditory and

visual information (Coen, 2006).

6.3 Enhancing the Link to Biology

A final important area of future research is to enhance the quantitative link of the

model to real biological systems. I here describe a few areas in which either the link

to biology could be strengthened, or in which it has not yet been fully investigated.

6.3.1 Neuronal Dynamics

The sparse coding model depends on neurons with a specific type of nonlinear self-

inhibition (the S ′(v) term in the network dynamics), which enforces the constraint

that the responses follow the sparse prior distribution. The physical meaning of this

inhibition term has not been well explored either in this work or elsewhere. In the

case of the prior distribution used here (the mixture of Gaussians), the input-output

behavior of a single neuron with this nonlinearity is similar to that of a threshold-linear

unit, and the dynamics can be approximated by a continuous firing-rate model of a

leaky integrate-and-fire neuron. I have carried out some preliminary investigations in

which I replaced the ideal sparse coding neurons with such a model with encouraging

results (similar performance in the 4-category classification task). In fact, it may

be possible to formalize this approximation as still constituting a gradient descent,

though not a steepest descent, of the sparse coding cost function (B. Olshausen,

personal communication). However, much more work is still needed to implement the

sparse coding model with truly biophysically plausible neurons.

All of the computational results presented here were based on the steady-state
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responses of neurons to constant inputs. Another potential avenue for future work

is to investigate the time-course of the neural responses and compare to the electro-

physiological data. This work must be closely tied to the effort to implement the

model using biophysically realistic neurons described above in order to have a hope

of illuminating the data at a quantitative level.

6.3.2 Learning Dynamics

The learning model used here required numerous presentations of images from each

category to be learned in order for the weights to converge to a point where sparse,

selective behavior emerges. In contrast, it appears that the selective neurons observed

in MTL may develop their representations in a relatively short time—cells have been

observed that begin to respond to the clinical personnel and attending scientists af-

ter a number of hours of interactions with these people (R. Quian Quiroga, personal

communication). While there is some evidence from studies in rat hippocampus that

memories are “replayed” during sleep, effectively increasing the number of presenta-

tions (Hoffman & McNaughton, 2002), there still may be a gap between the relatively

slow learning rate of the algorithms presented here and the speedy learning observed

in experimental settings (and in our qualitative personal experience).

The evolution of the representation as learning progresses has not been carefully

studied, though preliminary investigations have been interesting. For example, in

the face discrimination task, the network first learns to distinguish between subsets

of the individuals in the input set, then, as more information becomes available, it

further differentiates between them. This bears a qualitative resemblance to how

humans categorize data, with people only broadly categorizing rarely encountered

classes but making fine distinctions between members of a more commonly seen (or

more personally important) category. For example, many people may only recognize

rough categories of automobiles such as “car,” “truck,” and “SUV,” while automotive
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enthusiasts make fine distinctions between different makes, models, and years of car.

6.4 Conclusion

I would like to close by repeating the quote from Barlow (1972) about sparse coding

and perception:

The central proposition is that our perceptions are caused by the activity

of a rather small number of neurons selected from a very large population

of predominantly silent cells. The activity of each single cell is thus an

important perceptual event and it is thought to be related quite simply to

our subjective experience. The subtlety and sensitivity of perception re-

sults from the mechanisms determining when a single cell becomes active,

rather than from complex combinatorial rules of usage of nerve cells.

The MTL data strongly supports this “central proposition,” and my goals in this

thesis have been to argue in favor of this point and to put forth a model for the

“mechanisms determining when a single cell becomes active,” furthering at least a

bit our understanding of the neural computations underlying our perception of the

world around us.
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Appendix A

Derivation of the Joint Probability
of Nr and Sr

Here I describe how to calculate the joint probability of measuring Nr responsive

neurons and Sr evocative stimuli given that we are recording from N neurons and

presenting S stimuli. I will first derive a recursive relation for the conditional distri-

bution of Sr given Nr, then solve the recurrence in closed form and apply Bayes’ rule

to obtain the joint distribution.

In what follows I assume the sparseness a is known, that is, all probability dis-

tributions are conditioned on a. First, let M be the number of stimuli among the S

presented that a particular neuron responds to. The value of M follows a binomial

distribution,

P [M = m] =







S

m






am(1 − a)S−m.

If we assume that the neuron in question is responsive (i.e., M ≥ 1), this distribution

becomes (using Bayes’ rule)

P [M = m|M ≥ 1] =
P [M = m]

P [M ≥ 1]
=







S

m







am(1 − a)S−m

1 − (1 − a)S
. (A.1)

To begin our recursive definition, note that P [Sr = sr|Nr = 1] = P [M = sr|M ≥ 1].
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Now assume the first nr − 1 responsive neurons are excited by R stimuli. Let Q be

the number of stimuli not in the set of size R that excite the next neuron (neuron

nr). The distribution of Q is given by

P [Q = q|R = r] =

r+q
∑

m=q

P [M = m|M ≥ 1]







r

m − q













S − r

q













S

m







, (A.2)

where q ∈ {0, . . . , S − m}. The first term in the sum is simply the probability that

the neuron in question responds to m stimuli total. The second term is the number

of ways these m stimuli could be split such that q of them are not in the set of

size r divided by the total number of ways these m stimuli could be chosen, so it is

the probability that the m stimuli include exactly q stimuli not already in the set

responded to by the first nr − 1 neurons.

With a little effort we can find a closed-form expression for Equation A.2. If q > 0,

we can combine equations A.1 and A.2 and pull out terms unrelated to the sum to

obtain

P [Q = q|R = r] =







S − r

q







(1 − a)S

1 − (1 − a)S

r+q
∑

m=q







r

m − q







(

a

1 − a

)m

.

Substituting m′ = m − q this becomes

P [Q = q|R = r] =







S − r

q







(1 − a)S

1 − (1 − a)S

(

a

1 − a

)q r
∑

m′=0







r

m′







(

a

1 − a

)m′

.
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Applying the binomial theorem to the sum we have

P [Q = q|R = r] =







S − r

q







(1 − a)S

1 − (1 − a)S

(

a

1 − a

)q (

1

1 − a

)r

(q > 0). (A.3)

If q = 0, the first term in the sum vanishes and we have instead

P [Q = 0|R = r] =
(1 − a)S

1 − (1 − a)S

r
∑

m=1







r

m







(

a

1 − a

)m

.

Again applying the binomial theorem this becomes

P [Q = 0|R = r] =
(1 − a)S

1 − (1 − a)S

[(

1

1 − a

)r

− 1

]

. (A.4)

We can combine Equations A.3 and A.4 to obtain the final result,

P [Q = q|R = r] =







S − r

q







(1 − a)S

1 − (1 − a)S

(

a

1 − a

)q [(

1

1 − a

)r

− δ(q)

]

, (A.5)

where δ(q) = 1 if q = 0, and δ(q) = 0 otherwise.

The relationship in Equation A.5 now lets us complete the recursive definition of

the conditional distribution of Sr given Nr:

P [Sr = sr|Nr = nr] =

sr
∑

y=1

P [Sr = y|Nr = nr − 1]P [Q = sr − y|M = y]. (A.6)

Simply put, this is the probability that neuron nr adds just enough new stimuli to

the set responded to by the first nr − 1 neurons to total sr. Since we calculated the

base case P [Sr = sr|Nr = 1] above, this probability can be calculated for any nr and

sr by starting at Nr = 1 and working upward.

Next I solve the recurrence to find a simpler expression for this probability and
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eliminate the need to calculate the needed probability recursively.

Proposition A.1. The recurrence given in Equation A.6 has solution

P [Sr = sr|Nr = nr] =







S

sr







[

(1 − a)S

1 − (1 − a)S

]nr

(−1)nr

nr
∑

k=1







nr

k






(−1)k

[

(1 − a)−k − 1
]sr

. (A.7)

Proof. For convenience, define

G ≡ (1 − a)S

1 − (1 − a)S
,

H ≡ a

1 − a
.

Then the recurrence we are trying to solve is

P [Sr = sr|Nr = nr] =

sr
∑

y=1

P [Sr = y|Nr = nr − 1]P [Q = sr − y|R = y] (A.8)

= G

{

Hsr

sr
∑

y=1

P [Sr = y|Nr = nr − 1]







S − y

sr − y






a−y

−P [Sr = y|Nr = nr − 1]

}

P [Sr = sr|Nr = 1] =







S

sr






HsrG,

and the proposed solution is

P [Sr = sr|Nr = nr] =







S

sr






Gnr(−1)nr

nr
∑

k=1







nr

k






(−1)k

[

(

H

a

)k

− 1

]sr

. (A.9)
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We will prove the result using induction. For the base case, let nr = 1. Then

P [Sr = sr|Nr = 1] =







S

sr






G(−1)(−1)

[

H

a
− 1

]sr

=







S

sr






GHsr ,

the desired result. For the inductive step, assume the result holds for nr − 1. Then

substituting into Equation A.8 we have

P [Sr = sr|Nr = nr] = G

{

Hsr

sr
∑

y=1







S

y






Gnr−1(−1)nr−1

nr−1
∑

k=1







nr − 1

k






(−1)k

[

(

H

a

)k

− 1

]y







S − y

sr − y






a−y −







S

sr






Gnr−1(−1)nr−1

nr−1
∑

k=1







nr − 1

k






(−1)k

[

(

H

a

)k

− 1

]sr
}

= Gnr(−1)nr







S

sr







nr
∑

k=1







nr

k






(−1)k

[

(

H

a

)k

− 1

]sr

,

where the simplification results from extensive algebraic manipulation and applica-

tions of the binomial theorem. This is exactly the proposed solution from Equation

A.9 and the proof is complete.

To obtain the joint probability of measuring Nr responsive neurons and Sr stimuli

to which they respond from Bayes’ rule, we will need the probability of measuring
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Nr responsive neurons independent of Sr. The probability that a neuron responds to

some stimulus, which we denote pr, is 1 minus the probability that it responds to no

stimuli, or

pr = 1 − (1 − a)S.

The number of responsive neurons then follows a binomial distribution,

P [Nr = nr] =







N

nr






pnr

r (1 − pr)
N−nr

=







N

nr







[

1 − (1 − a)S
]nr

(1 − a)S(N−nr).

We are now ready to apply Bayes’ rule to obtain the desired probability,

P [Nr = nr ∧ Sr = sr] = P [Sr = sr|Nr = nr]P [Nr = nr]

=







S

sr







[

(1 − a)S

1 − (1 − a)S

]nr

(−1)nr

nr
∑

k=1







nr

k






(−1)k

[

(1 − a)−k − 1
]sr







N

nr







(

1 − (1 − a)S
)nr

(1 − a)S(N−nr)

=







S

sr













N

nr






(1 − a)NS(−1)nr

nr
∑

k=1







nr

k






(−1)k

[

(1 − a)−k − 1
]sr

. (A.10)

Equation A.10 has been verified to match Monte Carlo results within 5% for all
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cases in which the number of trials (108 simulated sessions) was statistically signifi-

cant (108 trials is sufficient to measure a probability of 0.01 to within 5% with 99%

confidence) for select values of a. Note also that it can be shown that if the roles of N

and S and those of nr and sr are reversed Equation A.9 does not change, an expected

result due to the symmetry of the problem. Furthermore, summing Equation A.9

over all sr or nr yields the expected marginal distributions. We should also note that

Equation A.9 is numerically very poorly conditioned, as the binomial coefficients can

easily produce numbers much larger than machine precision allows. Hence care is

needed when evaluating these probabilities numerically. In some cases wildly inac-

curate results were obtained using MATLAB, and it was necessary to make use of

Mathematica’s arbitrary-precision capabilities to generate meaningful results.

Note that all of the above assumed a was known, so replacing a by α in the derived

distribution we obtain the conditional distribution P [Nr = nr ∧ Sr = sr|a = α].
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Appendix B

Convergence of EM for Sparse
Coding

I here show that the EM algorithm for sparse coding described in Chapter 3 converges.

The cost function to be maximized is:

F(v̂, G) =

〈

− 1

2λ
‖u − Gv̂‖2 +

m
∑

j=1

S(v̂j)

〉

− 1

2γ

m
∑

j=1

n
∑

i=1

g2
ij (B.1)

where to simplify the notation we denote v̂(u) by v̂.

The algorithm is as follows:

Initially: v̂(0)(u) = 0 for all u ∈ {u}, G(0) = rand(n, m).

E step: For each u ∈ {u}, compute v̂(k+1) by gradient ascent on F starting at v̂(k) with

G = G(k). That is, simulate the differential equation

v̇ = ∇vF = GT (u − Gv) + λS ′(v) (B.2)

until ‖v̇‖ falls below some convergence threshold v̇T .

M step: Set G(k+1) according to the update rule

G(k+1) = 〈uv̂T 〉
(

λ

γ
I + 〈v̂v̂T 〉

)−1

(B.3)
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with v = v(k+1).

Lemma B.1. The cost function F(v̂, G) is bounded from above.

Proof. Clearly

F(v̂, G) ≤
〈

m
∑

i=1

S(v̂i)

〉

.

Recall exp(S) is a continuous probability distribution. Hence exp(S) has a finite

maximum and so S has a finite maximum as well, which I denote by Smax. Then

F(v̂, G) ≤ mSmax.

Proposition B.2. The update rule given by Equation B.3 yields the G that globally

maximizes F (for fixed v̂).

Proof. Let G∗(v̂) be the value of G given by B.3, and let H(G) = F(v̂, G). Let

Ωc = {G|H(G) ≥ c}, and choose c < H(G∗) so G∗ lies in the interior of Ωc. Note that

H(G) → −∞ as ‖G‖ → ∞ (where ‖G‖ denotes the norm of G taken as a vector),

so Ωc is compact. H is a continuous function on Ωc, so it must have a maximum

value in Ωc. This maximum is not on the boundary of Ωc because on the boundary

H = c < H(G∗), and so it must be the case that ∂H
∂G

= 0 at the maximum. G∗ is

the only point at which this is the case, and so it must be the maximum of H on Ωc.

H(G) < c < H(G∗) for G outside Ωc and so G∗ is the global maximum of H.

Lemma B.3. The cause estimate v̂ is bounded, that is, there exists some constant

c < ∞ such that ‖v̂‖ < c.

Proof. The E step is a gradient ascent with respect to v̂ on F , and by Proposition B.2

the M step yields the global maximum of F with respect to G, so F is bounded from

below by its initial value F0. Recall exp(S(v̂)) is a continuous probability distribution,

so exp(S(v̂)) → 0 as ‖v̂‖ → ∞ and S(v̂) → −∞ as ‖v̂‖ → ∞. The other term of F

involving v̂ is − 1
2λ
‖u − Gv̂‖2, which also goes to −∞ as ‖v̂‖ → ∞. Hence F → −∞

as ‖v̂‖ → ∞, but F is bounded from below, so ‖v̂‖ must be bounded.
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Proposition B.4. The E step converges to locally optimal cause estimates v̂(u).

Proof. For fixed G, define the Lyapunov function

V(v̂) = −F(v̂, G). (B.4)

The derivative of V is

V̇ = −∇vF v̇ = −‖v̇‖2 ≤ 0, (B.5)

with equality if and only if ‖v̇‖ = 0. By Lemma B.3 ‖v‖ is bounded, so LaSalle’s

invariance principle states that the dynamics converge to the largest invariant set M

such that v̇ = 0 for v ∈ M (LaSalle, 1976). Further, Theorem 2.7.8 of LaSalle (1976)

states that M is (locally) asymptotically stable, so it consists of local minimizers

(with respect to v̂) of V, or maximizers of F .

Note that I have not shown that v converges to a particular unique equilibrium

point, only that its derivative v̇ goes to zero. This is sufficient to show that this step

of the algorithm will converge. However, if we make the additional (very reasonable)

assumption that the equilibrium points of the dynamics of v are isolated then it

follows that v converges to such a point.

Theorem B.5. The cause estimate v̂(u) and weight matrix G converge to a closed

set of local maximizers of F .

Proof. Let G∗(v̂) be the value of G given by B.3, and define the Lyapunov function

V(v̂) = −F(v̂, G∗(v̂)), that is, V is the negative of the cost function after the M step.

Let T (v̂) be the mapping of v̂ through the E step. Define

∆V(v̂) = V(T (v̂)) − V(v̂),

that is, ∆V is the change in V across a full EM iteration. By the fact that the E
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step is gradient ascent on F and Proposition B.2, it is the case that ∆V ≤ 0. By

Lemma B.3 ‖v̂‖ is bounded, so by a discrete version of LaSalle’s invariance principle

(LaSalle, 1976) the limit set Ωv is contained in the largest invariant set M such that

∆V(v̂) = 0 in M . Thus v̂ converges to a closed set of local minima of V. In the M

step G is a continuous function of v̂, so this implies that G converges to the closed

set

ΩG = {G|G = G(v̂) for some v̂ ∈ Ωv}.

Define the limit set of the EM algorithm,

Ω = {(v̂, G)|v̂ ∈ Ωv, G = G(v̂)}.

This is a closed set because both Ωv and ΩG are. By Proposition B.4 v̂ is locally

optimal at points in Ωv, and G is globally optimal at points in Ω, so points in Ω are

local maximizers of F .

In practice, not only does the algorithm converge to some set of maximizers, it

always converges to a particular fixed point (v̂∗, G∗).
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