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ABSTRACT 

This thesis is a study of error-correcting codes for reliable communication in 

the presence of extreme noise. We consider very noisy channels, which occur in 

practice by pushing ordinary channels to their physical limits. Both block codes 

and convolutional codes are examined. 

We show that the family of triply orthogonal codes, defined and studied in this 

thesis, or orthogonal codes can be used to achieve channel capacity for certain 

classes of very noisy discrete memoryless channels. The performance of binary 

block codes on the unquantized additive white Gaussian noise channel at very low 

signal-to-noise ratios is studied. Expressions are derived for the decoder block 

error as well as bit error probabilities and the asymptotic coding gain near the 

point where the signal energy is zero. 

The average distance spectrum for the ensemble of time-varying convolutional 

codes is computed, and the result gives a surprisingly accurate prediction of the 

growth rate of the number of fundamental paths at large distance for fixed codes. 

A Gilbert-like free distance lower bound is also given. Finally, a Markov chain 

model is developed to approximate burst error statistics of Viterbi decoding. The 

model is validated through computer simulations and is compared with the pre­

viously proposed geometric model. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

This thesis is a study of error-correcting codes for reliable communication in 

the presence of extreme noise. We consider "very noisy" channels, which occur in 

practice by pushing ordinary channels to their physical limits. Communication 

systems operating at very low signal-to-noise ratios and data storage systems with 

very high data densities are common examples of such channels. In the next two 

chapters, block codes are studied, while convolutional codes are examined in the 

last two chapters. 

In Chapter 2, we consider discrete memoryless Class I and Class II very noisy 

channels as identified in Majani's thesis. It is shown that, for both classes of 

very noisy channels, orthogonal codes can be used to achieve the computational 

cutoff rate. Most importantly, we prove that the family of "triply orthogonal" 

codes, defined and studied in Section 2.3, achieves channel capacity for binary­

input Class I very noisy channels, and so does the family of orthogonal codes if 

the channels are also symmetric. However, similar results do not hold for Class II 

channels. Generalizations to channels with more than two inputs are also given. 

The results obtained in this chapter are among the few, since the introduction of 

Shannon's channel coding theorem, to show explicitly codes that achieve channel 

capacity. 
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In Chapter 3, we study the behavior of binary block codes on the unquan­

tized additive white Gaussian noise channel at very low signal-to-noise ratios with 

maximum-likelihood decoding. Expressions are derived for the decoder block er­

ror and bit error probabilities near the point where the signal energy is zero. 

Asymptotic coding gain at low signal-to-noise ratios is computed. Applications of 

the results to several block codes are discussed. 

The path weight enumerator of a convolutional code, which counts all funda­

mental paths in the code's state diagram, is of great importance in performance 

estimation. In Chapter 4, we compute the average distance profile for the ensemble 

of time-varying convolutional codes, and find that the result gives a surprisingly 

accurate prediction of the growth rate of the number of fundamental paths at 

large distance for fixed codes. We also estimate the average free distance for time­

varying codes and obtain, for each constraint length, a Gilbert-like free distance 

lower bound. A similar random coding analysis for the weight of information bits 

for fundamental paths is given. Examples of the performance of several convolu­

tional codes at low signal-to-noise ratios are discussed. 

In some applications such as concatenated coding systems, the burst error 

statistics of a Viterbi decoder are important. Best showed that any convolutional 

coding scheme with maximum-likelihood decoding on a discrete memoryless chan­

nel can be modeled exactly as a finite state Markov chain. It then becomes ap­

parent that, for Viterbi decoding on discrete memoryless channels, output burst 

and guardspace lengths are distributed asymptotically geometrically. However, 

the excessive amount of computation required for Best's method makes it infea­

sible for practical codes. In Chapter 5, we develop a Markov chain model to 

approximate the burst error statistics of Viterbi decoding. Our Markov chain 

model is validated through computer simulations and is compared with the geo-
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CHAPTER 2 

ORTHOGONAL CODES AND CHANNELS WITH 
NOISE SCALING 

2.1 Introduction 

Shannon's channel coding theorem guarantees that, as long as the rate is 

below channel capacity, codes exist so that arbitrarily reliable communication is 

possible. However, little is known about which codes can achieve channel capacity. 

One of the few explicit results is that when communicating over an additive white 

Gaussian noise ( AWGN) channel, provided the bit signal-to-noise ratio Eb/ N 0 is 

greater than ln 2, the error probability of orthogonal codes can be made arbitrarily 

small [12]: 

1. p _ { 0 if Eb/No > ln 2 
Im E -

M-too 1 ifEb/N0 <ln2. 

Since for AWGN channels, no bit signal-to-noise ratio less than ln 2 can be achieved, 

orthogonal codes provide error-free transmission for rates up to channel capacity. 

In this chapter, we show that the family of "triply orthogonal" codes or orthog-

onal codes can be used to achieve capacity for certain other classes of very noisy 

channels. 

In [2] the concept of noise scaling is introduced to model certain classes of noisy 

channels. The noise scaling parameter z is the resource per stored or transmitted 

bit, where the abstract resource could be energy, area, time, etc. For example, 

the scaling parameter could be the area per stored bit for a VLSI memory chip 
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or the symbol signal-to-noise ratio for a practical communication system. The 

parameter z directly affects the noisiness of the channel; the smaller z is, the 

noisier the channel will become. The channel capacity C is hence a function of 

the scaling parameter z. When the channel gets noisy, we use coding to combat 

noise. By Shannon's channel coding theorem, reliable communication is possible 

if and only if the code rate R is below the capacity C(z). In many communication 

or information storage systems, we want to transmit or store information not only 

reliably but also efficiently or compactly. It will then be interesting to know what 

the ultimate limits of information density are for various channels. Let A be the 

resource per information bit: 

Then the ultimate minimum resource per information bit should be 

Amin = inf Cz( ) . 
z>O Z 

(2.1) 

For many practical channels, it is preferable to push them to their very noisy 

limit to achieve the largest information density. We therefore define 

Ac= lim~( )' 
z-+0 C z 

the minimum achievable resource per information bit as z -+ 0. It will be the abso-

lute minimum of A if the infimum in (2.1) is achieved as z-+ 0. Another quantity 

of interest is Ao, a practical measure of the minimum resource per information bit 

needed as z -+ 0, defined by 

. z 
Ao=hm-R( )' z-+0 0 z 

where Ila is the channel's computational cutoff rate. It is shown in [2] that the 

family of orthogonal codes achieves Ac for very noisy binary symmetric channels. 

We will generalize the result in this chapter. 
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The study of very noisy channels in [3] identifies two classes of discrete mem­

oryless very noisy channels: Class I and Class II. We will use the model in [3] 

throughout this chapter. The rest of this chapter is divided into seven sections. 

In Section 2.2, Ac and Ao are computed for both classes of binary-input very noisy 

channels. In Section 2.3, we study orthogonal codes and define triply orthogonal 

codes as well as generalized triply orthogonal codes. A construction of a sequence 

of generalized triply orthogonal codes with arbitrary symbol size is given. Sec­

tion 2.4 shows that orthogonal codes can be used to achieve Ao for both classes 

of binary-input very noisy channels. In Section 2.5, we prove that the family of 

triply orthogonal codes achieves Ac for binary-input Class I very noisy channels 

and orthogonal codes will also achieve Ac if the channels are symmetric. Section 

2.6 is about binary-input Class II channels. We generalize our results to symmet­

ric Class I channels with more than two inputs in Section 2. 7. Finally, possible 

further research is discussed in Section 2.8. 

2.2 Binary-Input Channels with Noise Scaling 

We are particularly interested in the behavior of channels when they are pushed 

to their "very noisy" limit, i.e., if noise scaling is possible, when the scaling pa­

rameter z becomes very small. In other words, we want to study the behavior of 

channels in the neighborhood of zero capacity. The model for very noisy channels 

studied in [3] will be used in this chapter. 

Consider a discrete memoryless channel (DMC) with input alphabet X and 

output alphabet Y. 

Definition 2.1 [3] A DMC is a very noisy channel {VNC} if its transiti'on prob-
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abilz'ties satisfy 

p(ylx) = w(y) + E • u(x, y) + 0( E2
), for all x E X and y E Y, (2.2) 

where E ~ 1, w(y) is a probability distribution, i.e., 

w(y) 2: 0, for ally E Y, and L w(y) = 1, 
YEY 

and u(x, y) 's are fixed numbers satisfying 

It is clear that 

and hence 

L u(x,y) = 0, for all x EX. 
vEY 

limp(ylx) = w(y), 
€->0 

limC = 0. 
€->0 

(2.3) 

(2.4) 

Note that if the w(y)'s and u(x,y)'s are fixed, then the behavior of the channel is 

controlled by the single parameter E. For our model, E is a function of the noise 

scaling parameter z. 

Let the set Y of channel outputs be partitioned into two sets Yi and y2 , where 

Y1 = {y E Y : w(y) -f: O}, 

Y2 = {y E Y : w(y) = O}. 

In [3] two classes of VNCs are identified. Class I VNCs contain all VNCs for which 

Y2 is empty, covering those VNCs studied in [4] and [5]. Class II VNCs contain 

all VNCs for which Y2 is not empty. For example, a very noisy binary symmetric 

channel is of Class I and a very noisy Z-channel is of Class IL For Class I VNCs, 

the channel capacity is of the order E
2

, but, for Class II VNCs, the capacity is of 

the order E. 
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In this section, only binary-input channels are considered. Without loss of 

generality, let the input alphabet X be {O, 1}. From [3], for binary-input Class I 

VNCs, the capacity is achieved with uniform input probabilities, given by 

C = - 1£
2 

• (L -(1 ) (a(O,y) - a(l,y)) 2
) + O(t:3

). 
8 n2 vEY w y 

For binary-input Class II VNCs, the-eapacity is 

c = -·max 1-µaOyln E ( ( a(O,y) 
ln 2 o~µ9 Y~z ( ) ( ' ) (1 - µ)a(O, y) + µa(l, y) 

( ) a(l,y) )) ( 2) 
+µa l, y ln ( ) ( ) ( ) + 0 E • 1 - µ a 0, y + µa l, y 

(2.5) 

Definition 2.2 [6, p. 94] A DMC is symmetric if the set of outputs can be parti-

tioned into subsets in such a way that, for each subset in the matrix of transit£on 

probabilities, each row is a permutation of each other row and the same z"s true of 

columns. 

The capacity of a symmetric DMC is achieved with equiprobable inputs. Hence, 

for a symmetric binary-input Class II VNC, the maximum in (2.5) occurs at 

µ = 1/2 and the capacity is 

E (" 2a(0,y) ) (2 C = -1 
· ~ a(O, y) ln ( ) ( ) + 0 E ). 

n2 vEY
2 

a O,y +a l,y 

We now define three cases of severity of noise for VNCs, which are generaliza-

tions of those in [7]. 

Definition 2.3 A VNC z"s saz"d to have moderate noise if the following l£m£t z"s 

nonzero: 

for Class I, (2.6) 

or 

lim t:(z) = k2, 
z-->0 z 

for Class II. (2.7) 
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For this case, a finite nonzero number of information bits per unit resource can 

be transmitted or stored as z -+ 0, so Ac is finite and nonzero. 

Definition 2.4 If the limit (2.6} or (2. 7} approaches infinity, then a VNC is said 

to have light noise. 

For this case, an infinite number of information bits per unit resource can be 

transmitted or stored as z -+ O, so Ac is zero. This is an unlikely case and rarely 

occurs in practice. 

Definition 2.5 A VNC is said to have severe noise if the limit {2.6} or {2. 7} is 

zero. 

For this case, all the bits become redundant as z -+ 0 and Ac is infinity. 

For the case of moderate noise, for binary-input Class I channels, 

8ln2 ( 1 2)-l Ac= -k- · L -(-) (a(O,y) - a(l,y)) , 
1 yEY w y 

(2.8) 

and for symmetric binary-input Class II channels, 

Ac - ln 2 . ( L a(O y) ln 2a(O, y) )-1 
- k2 yEy

2 
' a(O, y) + a(l, y) 

(2.9) 

We now compute Ao for both classes of channels, starting with the definition 

of R 0 , 

Definition 2.6 [8, p. 68] For each pafr x 1 , x 2 E X, let 

J(xi, xz) = L VP(yJx1)p(ylx2) 
YEY 

and 

where the minimization is taken over all i.£.d. random variables assuming values 

£n X. The computational cutoff rate Ro i's defined by 
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For binary-input channels, 

E(J(Xi,X2 )) = (1- v) 2 + v2 + 2 L v(l - v)Vp(y!O)p(y!l) 
yEY 

1+2v (L VP(Y!O)p(yjl) - 1) - 2v2 (L VP(Y!O)p(yjl) - 1) , 
yEY yEY 

where v = p(X1 = 0) = p(X2 = 0). Since the minimum of E(J(X1,X2)) is 

achieved at v = 1/2, 

Jo = ~ (1 + L VP(yjO)p(yjl)) 
2 

yEY 

and 

Ro= 1 - log2 (1 + L VP(yjO)p(yjl)) . 
yEY 

(2.10) 

The following are proved in Appendix 2.A. For binary-input Class I VNCs, 

Ro= E
1

2 

• (L -(1 
) (a(O, y) - a(l, y)) 2

) + O(t:3
). (2.11) 

16 n 2 yEY w ,Y 

For binary-input Class II VNCs, 

Ro= _1:_. (I: (Ja(o, y) - Ja(1, y)) 
2

) + 0(1:2
). (2.12) 

4 ln 2 yEy
2 

Note that, for binary-input Class I VNCs, Ro ~ C /2, originally found in [4]. 

Therefore, for the case of moderate noise as characterized in (2.6) or (2.7), for 

binary-input Class I channels, 

( )

-1 
. z 16 ln 2 1 2 Ao= hm-R () = k · 2::-(-) (a(O,y)-a(l,y)) , 

z-->O o Z 1 yEY W y 
(2.13) 

and, for binary-input Class II channels, 

( )

-1 
. z 4 ln 2 2 

Ao= Iim-() = - . I: (va(o,y) -va(l,y)) 
z->O Ro z kz y yE 2 

(2.14) 

Also note that Ao = 2>.0 for Class I channels. 
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Example. Consider the binary symmetric channel formed by binary phase-shift 

keying (BPSK) with output quantization on the AWGN channel. The matrix of 

transition probabilities is 

And 
1 

E(z) = 2 - Q(\12z), 

where z is the symbol signal-to-noise ratio and Q(x) 

channel becomes a Class I VN C as z --+ 0. Since 

k1 = lim E
2
(z) = ~' 

z->O z 7r 

which is nonzero, it has moderate noise and Ac = f In 2, which is the minimum 

achievable bit signal-to-noise ratio as z --+ 0. Actually, it can be shown that Ac 

is the minimum achievable bit signal-to-noise ratio for all z. For the case of no 

output quantization, it is well known that the minimum achievable bit signal-to-

noise ratio is ln 2, which corresponds to a 10 log( 71" /2) ~ 1.96 dB gain over hard 

quantization. Also, for this channel, Ao = 2Ac = 7r ln 2. 

2.3 Orthogonal Codes and Triply Orthogonal Codes 

We start with the definition of a Hadamard matrix. 

Definition 2.7 [9, Chap. 14] A Hadamard matrix of order M i"s an M x M 

matrix HM of +l's and -1 's such that 

We may permute rows or columns of HM or multiply rows or columns of HM 

by -1 without disturbing the above property, and such matrices are considered 
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equivalent. Given a Hadamard matrix, we can always find one equivalent to it in 

normalized form, i.e., the first row and the first column of the matrix contain only 

+l's. Hereafter, only Hadamard matrices in normalized form are considered. 

It is known that if HM exists then M necessarily equals 1, 2, or a multiple of 

4. For a Hadamard matrix HM of order M = 4t, take any two distinct rows u 

and v of HM other than the first row. Consider the following matrix: 

[ 

1 1 .. . 1 l 
U1 U2 •.• UM • 

V1 V2 VM 

Let ai, a2 , a 3 , a 4 be the number of columns of the form 

respectively. 

Lemma 2.1 [9, Chap. 14] a1 = a2 = a3 = a 4 = M/4. 

Now take any three distinct rows of HM, say u, v, and w. Consider the matrix: 

[ 

U1 U2 ·.. UM l 
V1 V2 . . . VM • 

W1 W2 .•• WM 

[ ~ l · [ il l · [ ~1 l · [ ~~ l · [ y l · [ ~: l · [ ~~ l · [ =~ l · 
respectively. 

Proposition 2.1 b1 + b8 = b2 + b1 = b3 + b6 = b4 + b5 = M/4. 

Proof. If any one of u, v and w is the first row of HM, then this proposition follows 

directly from Lemma 2.1. If none of these is the first row, then from Lemma 2.1, 

bi + b2 = b3 + b4 = b5 + b6 = b1 + bs = b1 + b5 = b2 + b6 = b3 + b1 = b4 + bs = bi + b3 = 

b2+b4 = b5+b1 = b6+b8 = M/4whichimplies b2 = b3 = b5 = b8 ,b1 = b4 = b6 = b7 • 

The proposition follows immediately. I 
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Definition 2.8 [10] An orthogonal code is a code such that for any two codewords 

the number of bit-by-bit agreements equals the number of disagreements. 

Clearly, each row of an M x M Hadamard matrix can be taken as a codeword 

of an orthogonal code of M codewords via the mapping that the +l's are changed 

to O's and the -1 's are changed to 1 's. Thus orthogonal codes have the same 

correlation properties as those of Hadamard matrices. 

Definition 2.9 [11] An orthogonal array (n, M, s, t) of strength t, size n, M 

constraints, and s levels is an M x n matrix, with entri"es from a set I: of s ;:::: 2 

elements, such that each t x n submatrix contains all possible t x 1 column vectors 

with the same frequency. 

It follows directly that n must be divisible by st. From Lemma 2.1, the 

Hadamard matrix HM of order M > 2 with the first row deleted is an orthogonal 

array (M,M - 1, 2, 2). 

Definition 2.10 A triply orthogonal code of length n and M codewords is defined 

to be a code in which each codeword is a row of an orthogonal array (n, M, 2, 3) 

with the symbol set I:= {O, l}. 

It is shown in [11] that for an orthogonal array (n, M, s, 3) of strength 3, M 

must satisfy 

l!!. -11 M~ _s __ +1, 
s-1 

(2.15) 

where la J is the largest integer not exceeding a. Substituting s = 2 in the above 

inequality, we obtain M ~ n/2 for triply orthogonal codes. A different but simpler 

proof is given as follows. 

Proposition 2.2 For triply orthogonal codes of length n and M codewords, M 

must satisfy M ~ n/2. 
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Proof. For an orthogonal array ( n, M, 2, 3) with symbol set E = { -1, + 1}, 

consider the M X n/2 submatrix B formed by taking all columns with the first 

entry -1. Since the original orthogonal array is of strength 3, the inner product 

of any two distinct rows of B is zero. Let V = U 1 E9 U 2 EB··· E9 UM, where Ui 

is the subspace spanned by the row i of B. Then V is the row space of B and 

dim V = M because the U/s are orthogonal and, hence, independent. But, notice 

that B is an M x n/2 matrix, and hence dim V :S n/2. I 

The proof suggests the following construction of the orthogonal array ( 2M, M, 

2, 3) with symbol set E = {-1, +l} whenever the Hadamard matrix HM exists: 

This construction happens to be the same as that in [12]. From Proposition 2.1, 

AM is indeed an orthogonal array (2M, M, 2, 3). Hence a triply orthogonal code 

of length 2M and M codewords can be obtained from AM by changing all +l's 

to O's and all -l's to l's. From [9, Theorem 14.1.1], 

is a Hadamard matrix of order 2M if HM is a Hadamard matrix of order M. 

This is called the Sy Ivester construction. A triply orthogonal code can hence be 

thought of as a coset of an orthogonal code. An example of a Hadamard matrix 

and an orthogonal code is illustrated in Figure 2.1. Also an example of a triply 

orthogonal code is shown in Figure 2.2. 

We now generalize the definition of triply orthogonal codes to nonbinary cases. 

Definition 2.11 A generalized triply orthogonal code of s symbols, length n and 

M codewords is defined to be a code in which each codeword is a row of an orthog­

onal array (n,M,s,3) of strength 3. 
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+ + + + + + + 0 0 0 0 0 0 0 

+ + + 0 1 0 1 0 1 0 

+ + + 0 0 1 1 0 0 1 

+ + + 0 1 1 0 0 1 1 

+ + + 0 0 0 0 1 1 1 

+ + + 0 1 0 1 1 0 1 

+ + + 0 0 1 1 1 1 0 

+ + + 0 -1 1 0 1 0 0 

Figure 2.1: Hadamard Matrix and Orthogonal Code, M = 8. 

0 0 0 0 1 1 1 1 
0 1 0 1 1 0 1 0 
0 0 1 1 1 1 0 0 
0 1 1 0 1 0 0 1 

Figure 2.2: Triply Orthogonal Code, n = 8 and M = 4. 

0 
1 
1 
0 
1 
0 
0 
1 

A sequence of such codes for arbitrary s will be constructed. First, consider the 

case whens is pn, a prime power. In [11], the following lemma is proved to be a 

sufficient condition of the existence of an orthogonal array. 

Lemma 2.2 If we can find a k x m matrfr C: 

I 
C11 C12 • • • Cim I 
C21 C22 • • • C2m 

C= . . . ' . . . . . . 
Ckl Ck2 Ckm 

where Cij E GF(pr), and for which every submatrix obtained by taking t rows is of 

rank t, then we can construct an orthogonal array (sm,k,s,t), wheres= pr. 

Form an m x sm matrix D whose columns are all possible m x 1 column vectors 

whose coordinates are in GF(pr). Then an orthogonal array (sm, k, s, t) is obtained 
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by multiplying C in the above lemma by D. From a coding-theoretic point of 

view, we can think of CT as a parity-check matrix of a lt/2J-error correcting 

code. BCH-code-like constructions for C's are given in the following propositions. 

Proposition 2.3 Ifs =pr, where pis an odd prz'me, let N = sm -1 and consider 

the followi"ng (sm + 1) X 3m matr£x: 

1 0 0 
0 0 1 
1 1 1 

C= 1 a a2 

1 aN-1 a2(N-1) 

where a is a primi"tz've element £n GF(sm) and O, 1, and a are expressed as 1 x m 

row vectors £n G F( s). Then every submatrz'x obtained by taking 3 rows of C has 

rank 3. 

Proof. Now consider 0, 1, and a as elements in GF(s ). Any submatrix obtained 

by taking three rows of C without the first 2 rows is of the form 

a2i l 
a2j . 

a2l 

Then its determinant is 

Hence C' is of rank 3. 

Any submatrix obtained by taking the first row of C and any two of the last 

N rows is of the form 

and its determinant is 

[ 

1 0 
C' = 1 a~ 

1 a 3 

a~i ] 

a2i 
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A similar result follows for any matrix obtained by taking the second row of C 

and any two of the last N rows. 

Any submatrix obtained by taking the first two rows of C and one row of the 

last N rows is of the form 

C' = u ~; J, l 
and its determinant is 

<let (C') = -ci # 0, 

which completes the proof. I 

From Lemma 2.2 and this proposition, from C we can construct a sequence of 

orthogonal arrays (s 3m, sm + 1, s, 3) for arbitrary m > 0 ifs= pr, pan odd prime. 

Ifs is a power of 2, then we have the following construction. 

Proposition 2.4 Ifs= 2r, let N = sm-l and consider the following (sm+2)x3m 

matrix: 
1 0 0 
0 1 0 
0 0 1 

C= 1 1 1 
1 a a2 

1 O:N-1 a2(N-1) 

where a is a primitive element £n GF(sm) and 0, 1, and a are expressed as 1 x m 

row vectors in GF(s). Then every submatrix obtai"ned by tak£ng 3 rows of C has 

rank 3. 

Proof. Again consider 0, 1, and a as elements in GF(s). The submatrix obtained 

by taking the first three rows of C is an identity matrix and hence it has rank 3. 

Consider any submatrix obtained by taking the second row of C and any two of 



- 18 -

the last N rows. It is of the form 

C' = [ ~l ~i a~i l 
ai a2i 

and its determinant is 

<let (C') 

All the remaining cases follow similarly from Proposition 2.3. I 

Again from Lemma 2.2 and this proposition, from C we can construct a se­

quence of orthogonal arrays ( s3m, sm + 2, s, 3) for arbitrary m > 0 if s = 2r. 

Now consider the case when s = s1s2 • • • su, where Si = p;;, and the p/s are 

primes. In [13], a generalization of MacNeish's theorem is proved. We restate it 

here as the following lemma. 

Lemma 2.3 Let n = n 1n 2 ···nu. If orthogonal arrays (ni,Mi,si,t) exist for every 

i, i = 1,2, ... ,u, then we can construct an orthogonal array (n,M,s,t), where 

The construction can be found m [13]. From this lemma and the previous 

constructions, the following proposition is obtained. 

Proposition 2.5 Ifs = s 1s 2 ···Su, where Si = p;i and the Pi 's are primes, then 

we can construct an orthogonal array (s 3m,M,s,3), where M = min(si + l,s2 + 

1, ... , s:i + 1), for arbitrary m > 0. 

From Equation (2.15), for an orthogonal array (s 3m,M,s,3), M must satisfy 

ls3m-1 _ lJ 
M< ' - s-l 

while for our construction, M = min(si + 1, s2 + 1, ... , s:i + 1). An example of 

a generalized triply orthogonal code is shown in Figure 2.3. 
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0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 
0 1 2 1 2 0 2 0 1 1 2 0 2 0 1 0 1 2 2 0 1 0 1 2 1 2 0 
0 1 2 2 0 1 1 2 0 1 2 0 0 1 2 2 0 1 2 0 1 1 2 0 0 1 2 
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 

Figure 2.3: Generalized Triply Orthogonal Code, n = 27, M = 4 and s = 3. 

2.4 .A0-Theorem for Binary-Input Channels 

In this section, we prove an important theorem about Ao for both classes of 

binary-input VNCs. 

Theorem 2.1 For both classes of binary-input VNCs, if moderate noise is as-

sumed, the family of orthogonal codes can be used to achieve a minimum resource 

per information bit of Ao. 

Proof. Let C = {x0 ,xi, ... ,xM-i} be an orthogonal code of length n and M 

codewords, where n = M. The code C is used on a binary-input channel with 

maximum-likelihood decoding. Our goal is to prove that the decoder error prob-

ability PE --+ 0 as M --+ oo if A > A0 . Assume the codeword Xi is transmitted 

and y is received. Let p~) denote the decoder error probability given that Xi is 

transmitted. First, consider the case of two codewords: {xi, Xj}. The decoder 

will make a correct decision if and only if p(yjxi) < p(yjxi)· Hence the decoder 

error probability Qi for the two-codeword case is 

Qj = L: p(ylxi), 
yEYj 

where Yj = {y : p(yjxi) 2: p(yjxi)}. (Here we exaggerate the decoder error 

probability a little bit by assuming that the decoder makes an error in case of a 



- 20 -

tie.) Since for ally E Yj, Jp(ylxi)/p(yixi) 2: 1, Qi can be Chernoff-bounded as 

Qi < L p(yixi) . p(ylxi) + L p(yixi) . 
yEY; p(ylxi) YEYn-Y; 

L )p(yixi)p(ylxi) 
yEYn 

n 

JI L Jp(yixil)P(Ylxi1), 
l=l YEY 

where Xi= (xi1, ... , Xin) and Xj = (xii, ... , Xjn)· But 

p(ylxi) 

p(yixi) 

L )p(yixii)P(Ylxi1) = L p(yixiz) = 1 if Xi! = Xjz, 
yEY yEY 

and 

L JP(YIXit)P(YIXj1) = L )p(yiO)p(yjl) if Xil i- Xjl· 
yEY yEY 

Since Xi and xi are codewords of an orthogonal code, the number of bit-by-bit 

agreements equals the number of disagreements and it is n/2. We obtain 

For the original M-codeword case, the decoder error probability is bounded 

above by the union bound: 

which yields 

p(i) < ~Q· 
E -L.,, J 

ifi 

p~) ::; M (L Jp(yiO)p(yil)) % 
yEY 

It is shown in Appendix 2.A that, for Class I VNCs, 

L )p(yiO)p(yil) = 1- E
2 

• (L -(1 ) (a(O,y) - a(l,y)) 2
) + 0(E3

), 

YEY S yEY W y 

and, for Class II VNCs, 
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Hence, for Class I channels, 

pfl <; M ( 1 - ~ . (~ w~y) (o-(0, y) - o-(1, y))') + 0(,') r 
M. M2l;M1n(1--?·(I:YEY w(y)(a(O,y)-a(I,y))z)+o(€3)) 

Ml-lnnM ( ~~. (I:YEY w(y) (a(O,y)-a(I,y))Z) +0(€3)) • 

Since z = AR, where the code rate R = ln M / ( n In 2), for fixed A, z decreases as 

M increases. If moderate noise is assumed, then 

n 2 E
2 A A 

-- • E - - • - ,...., kl · -
ln M - z ln 2 ln 2 ' 

for large M. 

Thus, for large M, 

Recalling the expression for Ao in ( 2.13), we get 

p(i) < Mi- /'a 
E - ' 

which implies that, if A > Ao, Pk) _,. 0 as M _,. oo. 

For Class II channels, 

pfl $ M (1- ~ {~, ( ju(O,y) - jo-(1,y))') + 0(E
2ir 

M. Mzl;M ln(l-~·( L:YEYz ( ~-VaM)
2

)+0(E2)) 
l-lnnM ( !·( L:yEYz ( ~-VaM) 2)+0(E2 )) 

M . 

Again if moderate noise is assumed, then 

n E A A 
--·E= - ·- ,......,k2· -
lnM z ln2 ln2' 

for large M. 

Thus, for large M, 
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Recalling the expression for ,\0 in (2.14), we obtain 

which shows that, if,\ > ..\0 , P~) --+ 0 as M--+ oo. 

Since the above proof holds for every i, the theorem follows. I 

One immediate corollary is that the theorem is still true if orthogonal codes 

are replaced by triply orthogonal codes, as seen from the proof. 

2.5 ..\0 -Theorem for Binary-Input Class I Channels 

It is shown in [2] that the family of orthogonal codes achieves a minimum 

resource per information bit of ..\0 for a binary symmetric channel if moderate 

noise is assumed. Using an extension of the method in [2], we generalize the 

result in this section. 

Lemma 2.4 Let X0 , Xi, ... , XM-l be i.i.d. normal random variables with mean 

0 and variance 1. If Yi, Y2 , ••• , YM-l are defined by 

Yi=Xi+X0 , /ori=l,2, ... ,M-1, 

then the Yi 's are normal random var£ables with mean 0 and covariance matrix 

Cov(Y) = I 2 1 1 I 1 2 1 
. . . . . . . 
1 1 2 

Proof. Since the sum of two normal random variables is still normal, the lemma 

follows from trivial verifications. I 

The following theorem and corollary are the most important results in this 

chapter. 
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Theorem 2.2 For binary-input Class I VNCs, zf moderate noise is assumed, the 

family of triply orthogonal codes achieves >..c, which is the minimum achievable 

resource per informat£on bit as z -t 0. 

Proof. Let C = {x0,xi, ... ,xM-i} be a triply orthogonal code of length n and 

M codewords, where n = 2M. The code C is used on a binary-input Class I 

channel. Without loss of generality, let the output alphabet Y of the channel be 

{O, 1, ... , L-1}. Suppose the codeword x0 is transmitted and the received vector 

is y. Let PE denote the decoder error probability and Pc denote the probability 

of correct decoding. A maximum-likelihood decoder will make a correct decision 

if and only if 

for i = 1, 2, ... , M - 1 

which yields 

n n 

II P(Yilxoj) > II P(Yilxij), for i = 1,2, ... ,M-1, (2.16) 
j=l j=l 

where x0/s, xi/sand y/s are components of x 0 , Xi and y, respectively. Let N?(y), 

y E Y, be the number of components of y equal to y when the corresponding 

Xoj = 0 and Xij = 1. And let Nl (y) denote the number of components of y equal 

to y when the corresponding Xoj = 1 and Xij = 0. Since the codewords of a triply 

orthogonal code are rows of an orthogonal array of strength 3, which implies it is 

also of strength 2, 

L NP(Y) = L N/(y) = ~. 
yEY YEY 

4 
(2.17) 

After cancelling terms on both sides, (2.16) can be rewritten as 

II p(y!O)N?(vlp(yll)Nf(v) > II p(yll)Nf(Y)p(y!O)Nf(v). 
yEY YEY 

Taking logarithms of both sides, we obtain 

~ ( o p(y!O) 1 p(yll)) 
~ Ni (y) ln p(yll) +Ni (y) In p(y!O) > O, for i = 1,2, ... ,M -1. (2.18) 
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Since the channel is of Class I, w(y) > 0 for all y E Y, which implies p(y!O) > 0 

and p(yjl) > 0 for all y. Thus, ln(p(yjO)/p(yll)) or ln(p(yjl)/p(ylO)) in (2.18) 

always exists. 

In order to compute Pc, we define the following i.i.d. random variables. The 

first set of i.i.d. random variables Ui, U2 , ••• , Un is defined by their common prob­

ability distribution: 1 

( 
p(y!O)) 

Pr U = ln p(yll) = p(yjo), y E y. 

Since p(y!O) > 0 for all y E Y and I:YEY p(y!O) = 1, U is a valid probability 

distribution. The second set of i.i.d. random variables Vi, Vi, ... , Vn is defined by 

their common probability distribution: 

( 
p(yll)) 

Pr V = ln p(ylO) = p(yjl), 

Similarly, V is a valid probability distribution. It is straightforward to calculate 

the means and variances of U and V: 

also 

~ p(yjO) 
E(U) = Lt p(y!O) ln ( I ) , 

vEY p y l 
(2.19) 

~ p(yll) 
E(V) = Lt p(yll) ln ( I ) , 

vEY p y O 
(2.20) 

Var(U) = E(U2
) - E2 (U) 

L p(ylO) ln2 p(ylO) - (L p(y!O) ln p(ylO)) 
2 

vEY p(yjl) vEY p(yll) 

L L p(yjO)p(y1 IO) ln2 p(ylO) - L L p(ylO)p(y1IO) ln p(ylO) ln P(Y:IO) 
vEY y'EY p(yll) vEY v'EY p(y/l) p(y /l) 

1 If ln(p(yjO)/p(yjl)) = ln(p(y1 jO)/p(y1 jl)) for some y -=/- y1
, then we define Pr(U = 

In(p(yjO)/p(yjl))) = p(ylO) + p(y'IO). All the derivations still hold. Similar modifications ap­
ply to the random variable V. 
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L L p(y[O)p(y'[O) (1n2 p(y[O) - ln p(y[O) ln p(y'[O)) 
YEY y'EY p(yf l) p(yf l) p(y'f l) 

y':j:y 

L L p(y[O)p(y'[O) (1n2 p(yJO) + ln2 p(y'JO) - 2 ln p(yJO) ln p(y'[O)) 
yEY y'EY p(yf l) p(y'JO) p(yjl) p(y'jl) 

y'>y 

L L p(yJO)p(y'[O) ln2 p(yJO)p(y:Jl), 
yEY y'EY p(yjl)p(y JO) 

(2.21) 

y'>y 

and, similarly, 

Var(V) = L L p(yf l)p(y'Jl) ln2 p(yJl)p(y:Jo). (2.22) 
yEY y'EY p(yJO)p(y fl) 

y'>y 

Now let U = (Ui, U2, ... , Un) and V = (Vi, V2 , ••• , Vn)· Then (2.18) becomes 

(U,x0 ·xi)+ (V,x0 ·xi) > O, for i = 1, 2, ... ,M - 1, 

where (a, b) denotes the real inner product Ej ajbj of vectors a and b, a· bis the 

bit-wise AND ( a1b1, a2 b2 , ••• , anbn) of a and b, and a is the bit-wise complement 

of vector a. If we define Si, i = 1, 2, ... , M - 1, by 

(2.23) 

then the probability of correct decoding Pc is 

Pc=Pr{Si>O, i=l,2, ... ,M-1}. (2.24) 

If M is large and, hence, n is large, from the central limit theorem, the Si's 

can be approximated by normal random variables. From (2.17) and (2.23), for 

i = 1, 2, ... , M - 1, 

E(Si) = ?!'_ (E(U) + E(V)), 
4 

n 
Var( Si) = "4 (Var(U) + Var(V)), 
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because Ui and Vi are independent. Define the following sets: 

Ao = { m : Xom = 0 and Xim = 1, 1:::; m:::; n}, 

A 1 = { m : Xom = 1 and Xim = 0, 1:::; m:::; n}, 

Bo = { m : Xom = 0 and Xjm = 1, 1:::; m:::; n}, 
-

B1 = { m : Xom = 1 and Xjm = 0, 1:::; m:::; n}. 

Then from the properties of triply orthogonal codes, 

and 

Thus, 

E(SiSj) = E (( L Ua +Lua) (L V,a + L v,a)) 
aEAo aEA 1 ,BEBo ,8EB1 

L E(u;) + L L E(Ua)E(U,a) + L E(v;) 
aEAonBo aEAo ,BEBo 

,Bf.a 
,8EA1nB1 

(2.25) 

+ L L E(Va)E(V,a) + L L E(Ua)E(V,a) + L L E(U,a)E(Va) 
aEA1 ,8EB1 aEAo ,8EB1 aEA1 ,BEBo 

,Bf.a 

- ~ (E(U 2
) + E(V 2

)) + (~;- ~) (E 2(U) + E2(V)) + ~
2 

E(U)E(V), 

and 

Therefore, for i =/= j, 

n - S (Var(U) + Var(V)) . 
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Now define a new set of random variables T1 , T2 , ••• , TM-I by 

n 
Ti =Si - - (E(U) + E(V)). 

4 

All the Ti's have mean zero and covariance matrix 

n 1 I 
2 

Cov(T) = ii (Var(U) + Var(V)) ; 
1 . . . 1 I 2 ... 1 
. . . . . . . . . . 
1 ... 2 

Similarly, for large M, 1i can be approximated by a normal random variable, 

which, from Lemma 2.4, is given by 

1i ~vi (Var(U) + Var(V)) (Xi+ Xo), 

where the Xi's are i.i.d. N(O, 1) random variables. From (2.24), for large M, Pc 

can now be approximated by 

Pc ~ P {x v -~ (E(U) + E(V)) 
r i + AQ > , 

J~ (Var(U) + Var(V)) 
i=l,2,. .. ,M-1} 

{ 
-~ (E(U) + E(V)) 

Pr X· > -Xo 
i J~ (Var(U) + Var(V)) ' 

i = 1, 2, ... , M - 1 }(2.26) 

For Class I VNCs, the following are shown in Appendix 2.B: 

E(U) = 

(2.27) 

E(V) I: p(yJ1) ln p(yJi) 
vEY p(yJO) 

E2 ( 1 ) - · L -(-) (a(O, y) - a(l, y)) 2 + 0(E3
), 

2 vEY w y 
(2.28) 
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Var(V) 
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L L p(y!O)p(y'IO) ln2 p(y!O)p(y'll) 
YEY y'EY p(yll)p(y'IO) 

y'>y 

E
2

• (L -(1 
) (a(O, y) - a(l, y) )2

) + 0( E3
), (2.29) 

yEY w y 

L L p(yll)p(y'll) ln2 p(yll)p(y'IO) 
YEY y'EY p(y!O)p(y'll) 

y'>y 

E2
• (2= ____!__( ) (a(O,y) - a(l,y)) 2

) + 0(E3
). (2.30) 

yEY w y 

For convenience, let D denote the quantity LyEY w(y) (a(O,y) - a(l,y)) 2
• Then 

where 

Z(x) = . ~e-x2/2, 
v 27f 

P(x) = j__x
00 

Z(t) dt, 

Q(x) = fx
00 

Z(t) dt = 1 - P(x) = P(-x). 

Now we want to investigate necessary and sufficient conditions for Pc _. 1 as 

M _. oo. Since z decreases as M increases, it is understood that E is a decreasing 

function of M. From (2.31), a necessary condition for Pc_. 1 is 

lim EVn = lim EV2Af = oo. 
M--->oo M--->oo 

(2.32) 
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If (2.32) holds, for each finite x, 

( )

M-1 
5:.Vfj + 0 E2) E M 

Jim p Vn. 2 J ( + x = lim p (-V15. vn) 
M--->oo 1 + O(E) M---+oo 2 

It follows that 

lim Pc = lim p (~05. vn)M 
M---+oo M---+oo 2 

By using the approximation P(x) ~ 1- Z(x)/x as x-+ oo, 

( ) 
M 

( 
z §_Vii. n ) 

lim Pc = lim 1 - 2 Vn 
M-->oo M---+oo ~VD. Vn 

Since it is easier to deal with In Pc, we have 

lim lnPc = 
M--->oo 

. ( ( z (~vn. vn))) hm Mln 1- VD 
M--->oo ~ D · Vn 

lim (- }nM Z (~05 · vn)) 
M-->oo E D · Vn 2 

l' ( 1 2Af -E
2 Dn/8) 

M~oo - J27f . EVD. Vne . 

The condition (2.32) is satisfied for the case of moderate noise since 

for large M. 

Also 

lim lnPc 
M-+oo 

lim (- 2 . M e-~~~~·InM) 
M-+oo V2iflJ Jk1A log2 M 

lim - . --;===== ( 
2 M1-¥i-;& ) 

M-+oo V2iflJ Jk1A log2 M 

lim - . -;===== 
( 

2 M1-),~ ) 

M-+oo V2iflJ Jk1A log2 M 

by recognizing that Ac = 8 ln 2 / k1 D. Finally, 

lim lnPc = { O, 
M---+oo -oo, 

if>..> Ac, 
if>.. < Ac, 



- 30 -

which is equivalent to 

lim PE= { 
0
1' 

M->oo , 

if>. > Ac, 
if A < Ac. 

From the symmetry of triply orthogonal codes, it follows that PE will remain the 

same if any other codeword Xi other than x 0 is transmitted. I 

-Corollary 2.1 For symmetric b£nary-input Class I VNCs, if modercte noise i's 

assumed, the family of orthogonal codes achz"eves a minimum resource per in/or-

matz"on bz"t of Ac. 

Proof. If the channel is symmetric, then 

E(U) = 
"\"' p(yiO) 
~ p(ylO) ln ( I ) 
vEY p y l 

L: p(yl1) ln p(yll) 
vEY p(yiO) 
E(V) 

because there exists y' E Y such that p(ylO) = p(y'll) and p(yil) = p(y'IO) for 

every y E Y. Similarly, 

Var(U) L L p(ylO)p(y'IO) ln2 p(ylO)p(y'll) 
YEY y'EY p(yll)p(y'IO) 

y'>y 

L L p(yll)p(y'll) ln2 p(yll)p(y'IO) 
vEY v'EY p(yiO)p(y'll) 

y'>y 

Var(V). 

If orthogonal codes are used instead of triply orthogonal codes, then, instead of 

(2.25), we get 

Following similar derivations for the covariance matrix of Si, we obtain 
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The rest of the proof for the theorem still works. I 

Since a very noisy binary symmetric channel is of Class I, the theorem proved 

in [ 2] is a special case of this corollary. 

2.6 Remarks about Binary-Input Class II Channels 

In the previous section, we show that triply orthogonal codes achieve Ac for 

binary-input Class I channels and orthogonal codes also achieve Ac if the channels 

are symmetric. Similar results do not hold for general Class II VNCs since the 

capacity in (2.5) is usually not achieved with equiprobable inputs. The following 

examples show that orthogonal codes (or triply orthogonal codes) do not achieve 

Ac for some symmetric binary-input Class II VNCs. 

Consider the VNC with the transition probability matrix given by 

[ 
0 1 0 l [ 2 -3 1 l 

Pv1x = O 1 O + E • 1 -3 2 · 

By our definition, it is a symmetric Class II VNC. If moderate noise is assumed, 

then from (2.9) 

ln2. ( L a(O y) ln 2a(O,y) )-1 
kz YEY

2 
' a(O,y)+a(l,y) 

ln2 -1 k; ( 5 ln 2 - 3 ln 3) 

4.079 

kz ' 

and from (2.14) 

4~n2. (2= (Ja(o,y)-.ja(1,y))2)-1 
2 yEY2 

2 ln2 ( . ~)-1 -- 3-2v2 
kz 

8.080 

kz · 
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From Theorem 2.1, we know that orthogonal codes can be used to achieve .\0 . 

Since, for this channel, no transition probability p(xly) = 0, the same method 

used in proving Theorem 2.2 can be applied here. Proceeding as in the last 

section, we have (2.26): 

Pc ::::::: Pr Xi > - Xo, { 
-~ (E(U) + E(V)) 

J~ (Var(lf) + Var(V)) 
i = 1,2, .. .,M-1}, 

where X 0 , X1 , ... , XM-l are i.i.d. N(O, 1) random variables, and the means and 

variances of U and V are found by 

E(U) E(V) = L p(yiO) In p~y:Oj 
yEY p y l 

E • ( 2 In 2 - In 2) = E • In 2, 

and 

Var(U) Var(V) = E(U 2
) - E2 (U) 

E • ( 2 In 2 2 + + In 2 2) - ( E • In 2) 
2 

= E • 3 In 2 2 + 0 ( E2
). 

Similar to (2.31), 

A necessary condition for Pc-+ 1 as M-+ oo is 

Iim Vf.vn = oo, 
M-too 

which is satisfied for the case of moderate noise since, for large M, 

E 
E • n = - · >. · Iog2 M ,....., k2 • >. · log2 M. 

z 
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Following similar derivations as in the last section, we obtain 

which yields 

{ 
1 if ,\ > 6 ln 2 

lim Pc= a' 6k122' 
M-+oo , if,\ < k~ . 

Since 6ln2/k2 ~ 4.159/k2 , >.c < 6ln2/k2 • Therefore, 

1 P "f , , 6 ln 2 im E = 1 1 /\C < /\ < -k
2 M-+oo 

when orthogonal codes (or triply orthogonal codes) are used on this channel. 

Remark. In general, for symmetric binary-input Class II VNCs, if the following 

is satisfied: 

a(x, y) =f- 0 for all x E X and y E Y2, 

then we can apply the same method as in the last section and obtain (2.26). The 

means and variances of U and V are now given by 

and 

E(U) E(V) 

Var(U) 

~ p(yjO) 
L, p(yjO) ln ( jl) 
yEY p y 

E · ( L a(O,y) ln a~O,yj) + 0(E2), 
vEY2 a l,y 

Var(V) 
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E(U2
) - E2(U) 

E • ( L a(O, y) ln2 a~O, y~) + O( E2
). 

YEY2 a l,y 

Following similar derivations, for the case of moderate noise, we can show that 

lim PE= { 
0
1

' 
M->oo , 

where A* is given by 

if ,\ > A*' 
if A < A*' 

, 21n2 (~ ( )I 2 a(O,y)) (~ ( )I a(O,y))-
2 

"* = -- · ~ a 0, y n · ~ a 0, y n ---
k2 yEY2 a(l, y) yEY2 a(l, y) 

Comparing A* and Ac given in (2.9), from Shannon's theorem, we have A* > Ac 

in general. Hence if orthogonal codes (or triply orthogonal codes) are used on this 

type of Class II VNCs, then 

Results similar to Theorem 2.2 or Corollary 2.1 do not hold for Class II VNCs. 

2. 7 Generalization to Symmetric Class I Channels with More than 

Two Inputs 

Consider a symmetric Class I VNC with s inputs, where s > 2. Without loss 

of generality, let the input alphabet X = {O, 1, ... , s-1} and the output alphabet 

Y = {O, 1, ... , L - 1}. If the input probability is denoted by p(x) for all x E X, 

from [3] the mutual information is given by 

I(X; Y) = -
1
E

2 

• (L -(1 
) (I: p(x)a2 (x, y) - (I: p(x)a(x, y)) 

2

)) + 0(E3). 
2 n 2 yEY W Y xEX xEX 

Since the channel is symmetric, the capacity is achieved with uniform input prob-

abilities. Setting p(x) = 1/ s for all x E X in J(X; Y), we obtain 

C = - 1E
2 

• (I:-(1 ) (~ L a2(x,y) - (~ L a(x,y))
2

)) + 0(E3
) 

2 n 2 yEY W y S xEX S xEX 
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_lE2 • (L _(1) (s ~ 1 L o-2(x,y) - ~ L L u(x,y)o-(x',y))) + O(t:3) 
2 n 2 yEY W Y s xEX s xEX x'EX 

x'>x 

= 2E; · (L_!_() LL (u(x,y)-u(x',y))
2

) +O(t:3). 2s n 2 yEY W y xEX x'EX 
x'>x 

Thus, if moderate noise is assumed, then 

( )

-1 

2s 2 ln 2 1 , 2 
Ac= k · L w( ) L L (u(x,y) - u(x ,y)) 

1 yEY y xEX x'EX 
x'>x 

The following lemma is similar to Lemma 2.4. 

Lemma 2.5 Let Xo, Xi, ... , XM-1 be i.i.d. N(O, 1) random variables. If Y0 , Y1, 

... ,YM-l are defined by 

Yi = <XXi + /3Xo, for i = 1, 2, ... , M - 1, 

then the Yi 's are normal random variables with mean 0 and covariance 

{ 
Q'.2+132' 

Cov(YiYj) = 132 , if i = J, 
zfic:JJ. 

Recall that for arbitrary s = s 1s 2 ···Su, si a prime power, we have constructed 

a sequence of generalized triply orthogonal codes with s symbols, length n = s3m 

and M = min(sf +1, s2+1, ... , s:"+l) codewords form= 1, 2, .... The following 

theorem is a generalization of Theorem 2.2. 

Theorem 2.3 For symmetric Class I VNCs with s inputs, zf moderate noise is 

assumed, the family of generalized triply orthogonal codes of s symbols achieves 

Ac, which is the minimum resource per information bit needed as z ---+ 0. 

Proof. Let C = {x0 , Xi, ... , XM-d be a generalized triply orthogonal code of 

length n and s symbols. This code is used on a symmetric Class I VNC with s 
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inputs. Suppose x0 is transmitted and y is the received. From the symmetry of 

generalized triply orthogonal codes, the decoder error probability is independent 

of which codeword is transmitted. A maximum likelihood decoder will successfully 

recover the originally transmitted codeword if and only if 

for i = 1,2, ... ,M- l. 

After cancellations and taking logarithms, we obtain 

for i = 1,2, . .. ,M -1, (2.33) 

where Nf'm(y) is defined to be the number of components of y equal toy when the 

corresponding components of x 0 and Xi are l and m, respectively. The value of 

ln(p(yll)/p(ylm)) always exists because this channel is of Class I. Since codewords 

of generalized triply orthogonal codes are rows of orthogonal arrays of strength 3, 

for l, m E X and l #- m. (2.34) 

Define s(s -1) sets of i.i.d. random variables by their common probability distri-

butions: 2 

Pr (u1·m = ln p(yll) ) = p(yll), y E Y, 
p(ylm) 

where l, m E X and l #- m. If we define 

Si= L L (U1·m,gl,m(xo,xi)), 
lEX mEX 

mi:l 

for i = 1,2, ... ,M-1, (2.35) 

where U 1 ,m = ( ui·m' u;·m' ... ' u~m) and g1 ,m = (gi'm' g~m' ... ' g~m) are defined by 

if at = l and bt = m, 
otherwise, 

2 If ln(p(yJl)/p(yJm)) = ln(p(y'Jl)/p(y'Jm)) for some y # y', then we define Pr(U1•m 

ln(p(yJl)/p(yJm))) = p(yJl) + p(y'Jl). All the derivations still hold. 
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fort = 1, 2, ... , n, then from (2.33) the probability of correct decoding becomes 

Pc=Pr{Si>O, i=l,2, ... ,M-1}. (2.36) 

Since Si is the sum of s(s -1) i.i.d. random variables, for large M, and hence for 

large n, Pc can be computed via the central limit theorem. 

Now we want to find the first and second moments of the Si's. By the definition 

of ui,m, similar to (2.19), (2.20), (2.21), and (2.22), 

E(Ul,m) = L p(yjl) ln p(yjl) ' 
YEY p(yjm) 

and 

Var(U1·m) = L L p(yjl)p(y1Jm) ln2 p(yjl)p(y'[~). 
YEY y'EY p(yf m)p(y fl) 

y'>y 

Also from (2.34) and (2.35), for i = 1, 2, ... ,M - 1, 

and 

n 
Var(Si) = 2 L L Var(U1•m). 

s lEX mEX 
mf=l 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

From the properties of generalized triply orthogonal codes, we show in Appendix 

2.C that, for any i =/= J, 

Cov(Si, Sj) = ~ L L Var(U1·m) + L L L Cov(U1·m, U1·t) 
s lEX mEX 

mf=l 
lEX mEX tEX 

mf=l tf=m 
tf=l 

(2.41) 

Since E(Si), Var( Si), and Cov(Si, Si) are independent of i and J(=/= i), we change 

the notation to E(S), Var(S), and Cov(S,S'). Define Ii, i = 1,2, ... ,M -1, by 

Ti= Si - E(S). 
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Then the Ti's have mean zero and covariance matrix the same as that of the 

S/s. From Lemma 2.5 and the central limit theorem, for large M, Ti can be 

approximated by 

where the Xi's are N(O, 1) random variables and 

a= Jvar(S) - Cov(S, 8 1
), 

(3 = Jcov(S, S'). 

Thus, from (2.36), 

Pc ~ Pr {Xi > - E(S): f3Xo, i = 1, 2, ... , M - 1} 

!
00 

P (E(S) + f!__x) M-l Z(x) dx. (2.42) 
-oo a a 

Since the channel is of Class I, similar to (2.27), (2.28), (2.29), and (2.30), for 

l i= m, (2.37) and (2.38) can be reduced to 

Ez ( 1 ) E(U1•m) = - · L -(-) (a(l, y) - a(m, y)) 2 + 0(E3
), 

2 yEY W y 

and 

Var(U
1•m) = £2 

• (~ w~y) (u(l,y) ·· u(m,y))') + 0(£
3
). 

Similarly, for l i= m i= t, 

Cov(U1·m, U1
·') = £

2 
• (1 w~y) ( u(l, y) - u( m, y)) ( u(l, y) - u(t, y))) + 0( £3

). 

Therefore, 

nE

2 

( 1 ) E(S)=-2 • I:-(-)L L (a(l,y)-a(m,y)) 2 +0(E3
), 

s yEY W y lEX mEX 
m>l 
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2nE
2 

( 1 2) Var(S) = - 2 • I:-(-) L L (a(l,y) - a(m,y)) + 0(E3
), 

8 yEY W y lEX mEX 
m>l 

and 

Cov(S, S') - (3 2 

Also 

- 2n3E2. (L~() (LL (a(l,y)-a(m,y))2 
8 vEY W y lEX mEX 

m>l 

+ L L L (a(l, y) - a(m, y)) (a(l, y) - a(t, y)))) + 0(E
3
). 

lEX mEX tEX 
mfl t>m 

tfl 

a 2 = Var(S) - Cov(S, S') 

- 2n3E2 . (L ~(1 ) (L L (s - 1) (a(l, y) - a(m, y))2 
8 yEY W y lEX mEX 

m>l 

- L L L (a(l, y) - a(m, y)) (a(l, y) - a(t, y)))) + 0(E3
) 

lEX mEX tEX 
mtl t>m 

tfl 

- 2n3E2. (I:-(1) (s(s-1) L:a2(l,y)-sL L a(l,y)a(m,y))) +0(E3) 
8 vEY W y 2 lEX lEX mEX 

m>l 

_ n:
2

. (I:-(1) (L(s- l)a2(l,y) - L L 2a(l,y)a(m,y))) + 0(E
3

) 
8 vEY W y lEX lEX mEX 

m>l 

nE
2 

(" 1 " " 2) 3 - - 2 • 0-(-)L,, L,, (a(l,y)-a(m,y)) +O(E). 
8 vEY W y lEX mEX 

m>l 

Let D denote the quantity LyEY w(l) LZEX LmEX (a(l,y) - a(m,y)) 2
• Then 

y m>l 

E(S) yn E2D + 0(E3) yn EVD + 0(E2) 
-

(3 s .;E2D + 0(E3) - -----;- · .;1 + O(E) · 
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Note that both the numerator and the denominator of (3 /a are of the order y'n · E. 

From (2.42), a necessary condition for Pc-+ 1 as M-+ oo is 

lim EVn = oo, 
M-+oo 

which is satisfied for the case of moderate noise because, for large M, 

For each finite x, 

lim p (E(S) + (3 x)M-1 
M-+oo a a 

lim p (E(S))M 
M-+oo a 

lim p (~rn · vn)M 
M-+oo S 

Therefore, 

lim ln Pc 
M-+oo 

J~()() ( M ln ( p ( EVD Is . vn))) 

lim (M ln (i -z ( EVD / 8 
• v'n) ) ) 

M-+oo EVD / S · yn 

I. ( 1 sM -E2Dn/2s2 ) Im --- · e 
M->oo y'27r EVD. yn 

lim - · --;=:==== 
( 

s M 1
- 2~;~~2 ) 

M-+oo V2ifJ5 Jk1A log2 M 

lim - · --;===== ( 
s M

1-/c ) 
M-+oo V2ifJ5 J ki A log2 M 

by recognizing that Ac = 2s2 ln 2/ k 1D. Finally, 

lim Pc= { l, 
M-+oo 0, 

which completes the proof. 

if A> Ac, 
if A< Ac, 

I 
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2.8 Discussions 

In Section 2.6, we find counterexamples showing that results similar to Corol-

lary 2.1 do not hold in general for symmetric Class II channels. However, one can 

show that if moderate noise is assumed, the family of orthogonal codes can be 

used to achieve Ac for the very noisy binary erasure channel (which is of Class 

II). (The proof is omitted from this thesis.) This makes one suspect that results 

similar to Corollary 2.1 may hold for subclasses of symmetric Class II channels. 

In Section 2.3, we construct a sequence of orthogonal arrays of strength 3 for 

an arbitrary number of symbols. However, the number of rows in the construction 

is away from the upper bound. We think that, by different choices of the matrix 

C in Lemma 2.2, one can make an improvement over the given construction. 

Appendix 2.A Derivations of (2.11) and (2.12) 

The computation of R0 requires a longer expansion of p(ylx): 

where the 17(x, y)'s satisfy the same condition as the o-(x, y)'s: 

I: 17(x,y) = O, for all x EX. 
YEY 

(2.43) 

However, as we will see, the final expression for the first order approximation for 

Ro does not contain the new term 17(x, y). For Class I VNCs, since Y2 = 0, 

2::: yf p(y!O)p(y!l) 
yEY 

2= 
yEY 

E2 

w(y) + E · o-(0, y) + 2 · 17(0, y) + 0(E3 ) 

E2 

w(y) + E • o-(1, y) + - · 17(1, y) + 0( E3 ) 
2 
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- L w(y) (i + E · -(
1 

) (o-(0, y) + o-(1, y)) + E2 · (+( ) · o-(0, y)o-(1, y) 
yEY w y w y 

1 

+ 
2
:(y) (rJ(O, y) + rJ(l, y))) + 0(E3)) 

2

. 

Using (1 + o) ~ ,...., 1 + o /2 - 82 /8 as o -+ 0, (2.3), (2.4), and (2.43), we have 

L VP(YIO)p(yll) 
yEY 

- L:w(y) (1+~·-(1 ) (o-(O,y)+o-(1,y))+ E

2 

• (+() ·o-(O,y)o-(1,y) 
yEY 2 W y 2 w y 

1 ) E
2 

1 2 3 ) + 
2
w(y) (rJ(O,y) + rJ(l,y)) - S · w2(y) (o-(0,y) + o-(1,y)) + O(E) 

- L w(y) + i · L (o-(0, y) + o-(1, y)) + ~ · (L w(l ) · o-(0, y)o-(1, y) 
yEY yEY yEY y 

+ ~ L (rJ(O, Y) + rJ(l, y))) - ~ L w(l ) (o-(0, y) - o-(1, y)) 2 + 0(E3) 
yEY yEY y 

- 1- E2. L _1_ (o-(0,y) - o-(1,y))2 + 0(E3). 
8 yEY w(y) 

Substituting into (2.10) and using ln(l - o) ,....., -o as o -+ 0, we obtain 

R0 = E
1

2 

• (L __!__( ) (o-(0,y) - o-(1,y)) 2
) + 0(E3) 

16 n2 yEY w y 

for binary-input Class I VNCs. 

For Class II VNCs, since Y2 # 0, 

L VP(yjO)p(yjl) 
yEY 

- L ( Vw(y) + w(O, y) + 0(E2) · Vw(y) + w(l, y) + 0(E2)) 
yEY1 

+ L VE. o-(0,y) + 0(E2). VE. o-(1,y) + 0(E2) 
vEY2 

- L w(y) /l+E·-(
1

) (o-(O,y)+o-(1,y)) +0(E2) 
yEY1 v w y 

+ L VE2. o-(0, y)O"(l, y) + 0(E3) 
yEY2 
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- L w(y) + ~ · ( L (a(O, y) + a(l, y)) + L 2y'a(O, y)a(l, y)) + 0(E2) 
YEY1 yEY1 yEY2 

- 1-~· L (a(O,y)+a(l,y)-2y'a(O,y)a(l,y)) +0(E2) 
yEY2 

- 1-~· (L (Ja(O,y)-y'a(l,y))
2

) +0(E2). 
yEY2 

Therefore, 

Appendix 2.B Derivations of (2.27), (2.28), (2.29), and (2.30) 

To derive (2.27), (2.28), (2.29), and (2.30), we need a longer expansion of 

p(ylx) as in the last appendix: 

E2 
p(ylx) = w(y) + E · a(x,y) + 2 · ry(x,y) + 0(E3). 

However, the final expressions for the first order approximations do not contain 

the new term ry(x, y). We have 

E(U) = L p(y!O) ln p(y!O) 
yEY p(yll) 

- L ((w(y) + E · a(O, y) + E
2 

· ry(O,y) + 0(E3)) 
yEY 2 

· ln 2 • 

w(y) + E. a(O, y) + €;. ry(O, y) + 0(E3)) 
w(y) + E · a(l, y) + €2 · 17(1, y) + 0(E3) 

By using ln(l + x) ,....., x - x2 /2 as x-+ 0, 

ln ( w(y) + E. a(O,y) + ~. ry(O,y) + 0(E3)) 

- ln w(y) + ln ( 1 + E · a~~~~) + ~ · rJ~~~~) + 0(E3)) 

- lnw(y) +E· a(O,y) + E2. (rJ(O,y) - a2(0,y)) +0(E3). 
w(y) 2 w(y) w2(y) 
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Similarly, 

ln ( w(y) + E · a(l, y) + ~ · 17(1, y) + O(t:3)) 

- lnw(y) +t:· a(l,y) + E2. (17(1,y) - a2(l,y)) +0(t:3). 
w(y) 2 w(y) w2(y) 

Thus 

I 
w(y) + E. a(O, y) + %- . 11(0, y) + 0( t:3) 

n 2 
w(y) + E · a(l, y) + €2 · 17(1, y) + 0( t:3 ) 

1 t:
2 

( 1 - E · w(y) (a(O,y) - a(l,y)) + 2 · w(y) (17(0,y) -17(1,y)) 

+ w2~y) (a 2 (1,y) - a2 (0,y))) + O(t:3). (2.44) 

Hence 

E(U) = E· L (a(O,y) -a(l,y)) + E

2 

• (L (17(0,y)-17(1,y)) 
yEY 2 

vEY 

+ 2:-(1
) (a2(1,y)- a2 (0,y) + 2a2 (0,y) -2a(O,y)a(l,y))) + O(t:3) 

yEY W y 

_ E

2 

• (L _(l ) (a 2 (0, y) - 2a(O, y)a(l, y) + a 2 (1, y) )) + O(t:3) 
2 YEY w y 

_ E

2 

• (L ~( ) (a(O, y) - a(l, y)) 2
) + O(t:3). (2.45) 

2 yEY w y 

Similarly, 

E(V) - I: v(y/1) ln v(y/l) 
YEY p(y/O) 

_ E
2

• (L ~( ) (a(O,y) - a(l,y)) 2
) + O(t:3). 

2 YEY w y 

We proceed to find the first order approximations for Var(U) and Var(V). By 

definition 

Var(U) = E(U2
) - E 2(U). 
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We have 

E(U2
) - L p(y/O) ln2 p(y/O) 

vEY p(y/l) 

- ~ ( ( w(y) +,. u(O,y) + ~ · ~(O,y) + O(E')) 

2 W ( Y) + E • a ( 0, y) + E; · 1J ( 0, y) + Q ( E3
) ) 

· ln 2 • 
W ( y) + E • a ( 1, y) + €

2 • 1J ( 1, y) + Q ( E3) 

From (2.44) 

So 

E(U2
) = ,2 

• (~ w~y) (a(O, y) - a(l, y)) 2
) + O(,'). 

Therefore, from (2.45) we can obtain 

Similarly, 

Var(U) - E(U2
) - E2 (U) 

- E(U2
) + 0( E4

) 

- c
2 

• (~ w~y) (a(O,y) - a(l,y))') + 0(€
3
). 

Var(V) = E
2 

• (~ w~y) (a(O, y) - a(l,y))
2

) + 0(€3
). 

Appendix 2.C Proof of (2.41) 

We begin with the following definitions: 

Jl 1
•m = { ')' : x 0"1 = l and Xi"! = m, 1 :::; ')' :::; n}, 

and 
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for l,m EX and l # m, where x0 .. /s, xi/sand Xj .. /s are components ofx0 , Xi, and 

xi, respectively. Since the codewords of generalized triply orthogonal codes are 

rows of orthogonal arrays of strength 3, for l # m # t, 

and 

By the definition of Si in (2.23), for i # j, 

E(sisj) = E ( (L 2: 2: u~m) (2: 2: 2: u~·m)) 
lEX %Vi aEAl,m lEX %~1 {3EBl,m 

L L L L E (u~mu~·m) + L L L L L E (u~mu~·t) 
lEX mEX aEAl,m f3EBl,m lEX mEX tEX aEAl,m {3EBl,t 

mf'l mf'l t,tm 

+ L L L L L L E (u~mu~',t) 
lEX mEX l'EX tEX aEAl,m (3EBl 1,t 

mfl l1f'l tf'l 1 

to;tl 

Fr Ir (aEA1~31,m E ( (u~m) 2 ) + aE.m f3fr.m E (u~m) E (u~·m)) 
mfl {3,ta 

+ l~ Ir ~ (aEA~n31,t E (u!·mufl) + a"E.m f3~,t E (u~m) E (u~·t)) 
mfl tfm {3,ta 

tfl 

+ L L L L L L E (u~m) E (u~',t) 
lEX mEX l 1EX tEX aEAl,m (3EBl 1,t 

mfl l1 f'l tfl' 

~ L L E ( (uz,m)2) + (n: _ ~) L L E2 (uz,m) 
S lEX mEX s S lEX mEX 

mfl mf'l 

L E (u1,mu1,t) + (n: _ ~) L L 
tEX s S lEX mEX 
to;tm mf'l 
tfl 

2 

+ n
4 
L L L LE (u1·m) E (u1',t). 

s lEX mEX l'EX tEX 
mfl l'fl tf'l 1 

L E (u1,m) E (ui,t) 
tEX 
to;tm 
ttl 



And, from (2.39), 

Then, for i /: j, 
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2 2 

n4 L L E2 (u1,m) + n4 L L L E (u1,m) E (u1,t) 
s lEX mEX s lEX mEX tEX 

m;tl m;tl t;tm 
t;tl 

2 

+ n
4 
L L L LE (u1,m) E (u1',t). 

S lEX mEX l1EX tEX 
m;tl l';tl t;tl' 

E(SiSi) - E(Si)E(Si) 
~I: I: (E ( (u1,m)2) _ E2 (u1,m)) 
s lEX mEX 

m;tl 

; L L Var (u
1
,m) + L L L Cov (u

1
·m,u

1·t) 
lEX mEX lEX mEX tEX 

m;tl m;tl t;tm 
t;tl 
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CHAPTER 3 

PERFORMANCE OF BINARY BLOCK CODES AT 
LOW SIGNAL-TO-NOISE RATIOS 

3.1 Introduction 

It is well known that for block codes of a given rate, the larger the minimum 

distance, the better the code will perform at h£gh signal-to-noise ratios. An equally 

important problem is the behavior of block codes at low signal-to-noise ratios. In 

[1] Posner studies the properties of binary block codes over an AWGN channel 

at low signal-to-noise ratios. Most of the results in [1] assume hard decision on 

the channel output, and only results based on soft decision are for orthogonal 

codes. In this chapter we derive error probabilities of general binary block codes 

used on an unquantized AWGN channel at low signal-to-noise ratios, assuming 

maximum-likelihood decoding. 

The formulation and derivation in this section are based on [2]. Let C = 

{x0,x1, ... , XM-i} be a binary block code (with components 0 and 1) of length 

n and rate R = (log2 M) / n. We shall evaluate the performance of C on an 

unquantized AWGN channel as a function of the bit signal-to-noise ratio Eb/No, 

which we denote by .;\2 • Suppose each codeword is equally likely to be selected 

for transmission. The codes we are interested in are all "symmetric" in the sense 

that the error probabilities are independent of which codeword is transmitted (all 

linear codes have this property, for example). Therefore, we assume that x0 is 

transmitted. 
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If x0 is the counterpart of x 0 with its components 0 changed to -1, then the 

output of the channel becomes 

Y = VS:Xo+z, 

where the quantity .JS = A.y'2Ji and the vector z = (zi, z2 , ••• , zn) has all com­

ponents i.i.d. normal random variables with mean 0 and variance 1. (Here we 

normalize the noise power instead of the signal power as in some other formula­

tions.) The maximum-likelihood decoder outputs the codeword with the minimum 

Euclidean distance to the received vector y. This will be the correct decision if 

and only if the decoded codeword was actually transmitted, or equivalently, 

for i = 1, 2, ... , M - 1. 

This inequality can be rewritten as 

Let di be the Hamming distance between X; and x 0 and u; be the vector in the 

direction of X; - x0 with magnitude y'd;. (Actually u; is just x; if x 0 = 0.) Then 

.JS(xi - x0 ) = 2A.v'2Jiu;. If we define the normal random variables 

for i = 1, 2, ... , M - 1, (3.1) 

then Pc, the probability of correct decoding, is given by 

Pc= Pr{T; < A.V2Jid;, for i = 1,2, ... ,M-1}. 

If the distribution function of Ti, T2 , ••• , TM-l is denoted by F(x1 , x2 , ••• , XM_ 1), 

then Pc can be written as 

(3.2) 
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Note that Ti, T2 , ••• , TM-I are M-1 normal random variables with mean 0 and 

covariance matrix V with components 

If uI, u 2, ... , uM-I are independent, then V is nonsingular and the density 

function of Ti, T2 , ••• , TM-I is given by 

We can therefore write Pc as an M-1-fold integral: 

J>.,,/2Rd1!>.,,/2Rd2 !>.,,/'iRdM-1 
Pc= · · · p(x) dx. 

-oo -oo -oo 

However, if uI, u 2, ... , UM-I are not independent, then V is singular and TI, T2, 

... , TM-I are "degenerate" in the sense in [3, p. 87], and we cannot convert Pc 

to an integral. This is true for most practical codes because usually M » n. For 

example, the (24, 12) extended Golay code has M = 4096 and n = 24. 

The approach we take is to view Pc in (3.2) as a function of,\ and approximate 

Pc by Pc (0) + -\Pb(O) in the neighborhood of,\ = 0. Since the codes we consider 

are "symmetric," 

1 
Pc(O) = F(O,O, ... ,0) = M (3.3) 

because each codeword is equally likely to be decoded if there is no signal at all. 

By the chain rule for partial differentiation, 

M-I 
P~(o) =I: v'2Rdi·Fi(o,o, ... ,o), 

i=I 

where 

We can further express Fi(xi, x 2 , ••• , xM-I) as 
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where Gi is the conditional distribution of (xi, ... , Xi-1, Xi+i, ... , XM-l) given that 

Ti= xi, and ft(xi) is the marginal density of Ti. Since each Ti is a normal random 

variable with mean 0 and variance di, fi(O) = 1/ yf2ir(Ii. Therefore, 

(3.4) 

where Pi is the conditional probability that T1 < 0, ... , 'Ii-1 < 0, 'Ii+i < 0, ... , 

TM-l < 0, given that Ti= 0. The block error probability PE= 1- Pc, and hence 

(3.5) 

In the next section we find a similar expression for the bit error probability 

at low signal-to-noise ratios. Some properties of Pi are explored in Section 3.3; 

we then discuss as examples orthogonal codes, bi-orthogonal codes, the (24, 12) 

extended Golay code and the (15, 6) expurgated BCH code in Section 3.4. The 

asymptotic coding gain at low signal-to-noise ratios is studied in Section 3.5. 

Finally, in Section 3.6 we make some conjectures. 

3.2 Bit Error Probability 

Maximum-likelihood decoding of binary lz"near block codes on an unquantized 

AWGN channel is now considered. We define Pb, the bit error probability, to 

be the ratio of the expected number of information bits in error to the length of 

information bits. Let C = {x0 ,xi, ... ,XM-l} be a binary linear block code of 

length n and rate R = k/n, where M = 2k. Assume x 0 = 0 is transmitted so that 

y = VS:X:o+z 

is received, where x0 , z, and VS were defined in the preceding section. If the 

decoder chooses to output Xi, then it will make Wi bit errors, where Wi is the 
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number of l's in the information sequence corresponding to Xi. The expected 

number of information bits in error is 

M-1 

b = L Wi Pr {The decoder outputs Xi.}. 

i=l 

Hence, the bit error probability Pb = b/ k. 

It remains to find the probability that the output codeword is Xi. The maximum-

likelihood decoder will output Xi if and only if the Euclidean distance between 

the received vector y and Xi is the smallest among all the codewords, i.e., 

for all j =/:- i. 

This inequality is equivalent to 

for all J. =I- i. (3.6) 

If we define dij to be the Hamming distance between Xi and Xj and Uij to be the 

vector in the direction of Xj -xi with magnitude~' then (z, xi-xi) = 2(z, uij)· 

Also, VS(xo,Xi-xj) = 2A.v'2ii(dj-di), where di is the Hamming distance between 

Xi and x 0 . Therefore, (3.6) is equivalent to 

for all j =I- i. 

For i =/:- j, we define the normal random variable Tij = (z, Uij), which has mean 0 

and variance dij· The bit error probability is then 

l M-1 

Pb= k L wi Pr{ ~i < 2V2.R(dj - di), for all j =/:- i }. 
i=l 

Using the same approach as in the previous section, we view Pb as a function 

of A. and approximate Pb by Pb+ A. P~(O) near A. = 0. By the chain rule for partial 

differentiation and then proceeding as in the last section, we can obtain 
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where pi is the distribution function of TiO, ... , Ti,i-1' Ti,i+l, ... , Ti,M-l· Also 

P:(o) = ! {R 1:1 
wi I: (di - di) Pij, 

k v -; . 1 ·-.<. r;f; 
i= Jri v Uij 

where Pii ( i :/=- j) is the conditional probability that Tii' < 0, for all j' :/=- i and 

j' :/=- J·, given that Tii = 0. We now use the linearity of the code to simplify 

both the expressions of Pb(O) and P£(0). For every pair of codewords Xi, Xj, we 

can always find another codeword X1 such that Xi EB Xj =Xi, where EB means the 

modulo-2 addition. Since the normal distribution is symmetric about the origin, 

up to a permutation of the parameters, pi for i = 1, 2, ... , M - 1 are equivalent 

to Pin the last section, and Pij =Pi, where x 1 =Xi EB xi. By (3.3), it follows that 

1 M-l 1 Mk 1 
Pb (o) = kM != Wi = kM . 2 = 2' 

i=l 

as expected, because each information bit is right or wrong with equal probability 

when there is no signal at all. Now using the fact that dii = d1 if Xi EB Xj =Xi, we 

obtain 

1 l~M-1 
Pb ,...., - - .\ . - - L Wi L 

2 k 7r i=l j:f:.i 
{3.7) 

X;©Xj=Xz 

Note that the above approximation applies to all binary linear block codes. If 

we make more assumptions about the code C, we can further simplify (3.7). Now 

suppose C is systematic and has the symmetry property such that each bit in the 

codeword is "permutationally equivalent" to each other bit, e.g., C is cyclic, or 

more generally, its automorphism group (see definition in Section 3.3) contains 

a transitive permutation group. Then the bit error probability can be found, 

alternatively, by dividing the expected number of codeword bits in error by the 

block length n. All the derivations remain the same as before except that k and 

wi will now be replaced by n and di, respectively. Then, 

1 l~M-1 
Pb ,...., - - .\ . - - L di L 

2 n 7r i=l 
{3.8) 
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After a few manipulations we can show that 

M-1 

I: di I: 
i=l jf-i 

X;©Xj=Xz 

where d(xi EB xz) denotes the Hamming distance between Xi EB Xz and x 0 • If we 

further assume that the code C contains no repeated columns, i.e., there are 

no two positions in the block where the corresponding bits are the same for all 

codewords, then from Appendix 3.B 

M-1 

L dJ = n(n + 1)2k-2
, (3.9) 

i=l 

and 
M-1 

L di d(xi EB x 1) = n(n + 1)2k-2 - d12k- 1
• (3.10) 

i=l 

Equation (3.8) can hence be written as 

(3.11) 

The unknown quantities in both (3.5) and (3.11) are Pi, i = 1, 2, ... , M - 1. 

3.3 Properties of Pi 

The probability Pi for i = 1, 2, ... , M - 1 is defined to be the conditional 

probability that T1 < 0, ... , Ii- 1 < 0, Ti+l < 0, ... , TM-l < 0, given that Ti < 0. 

In order to illustrate the calculation of the Pi 's, consider the M = 4 orthogonal 

code { x 0 = 0000, x 1 = 0101, x 2 = 0011, x 3 = 0110 }. By (3.1) we have the 

following random variables: 
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where zi, z2 , z3 , z4 are i.i.d. N(O, 1) random variables. Therefore, 

P1 Pr{T2 < O,T3 < OIT1 = o}, 

P2 Pr{T1 < O,Ts < OIT2 = O}, 

Ps Pr{T1 < O,T2 < OITs = O}. 

Since z2 , z3 , z4 are i.i.d., it is easy to see that P1 = P2 ~ P3 • It remams to 

find the probability that z3 + z4 < 0, z2 + z3 < 0, given that z2 + z4 = 0, which 

is the conditional probability that a random point with a normal distribution 

in 3-dimensional space falls in a region described by z3 + z4 < 0, z2 + z3 < 0 

given that it is on the plane z2 + z4 = 0. We shall show in the next section that 

P 1 = P2 = P3 = tan-1 -/2/7r. However, for most practical codes with M ~ n, a 

closed form expression for Pi is not expected to exist. 

Definition 3.1 The set of coordinate permutations that map every codeword in 

the code C into a (possibly different} codeword in C is called the automorphz'sm 

group of C, denoted by Aut(C). 

It is not difficult to show that Aut(C) is indeed a group. The permutations in 

Aut( C) partition the codewords in C into equivalence classes. Codewords xi and 

Xj are in the same equivalence class if there exists a permutation in Aut( C) that 

maps Xi to Xj· 

Theorem 3.1 If Xi and Xj are in the same equivalence class partitioned by per­

mutations in A ut( C), then Pi = Pi. 

Proof. If xi and Xj are in the same equivalence class, a permutation </> that 

maps xi to Xj will map all the codewords other than x 0 and Xi to codewords 

other than x 0 and Xj. It is impossible that two different codewords are mapped 
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to the same codeword because cP- 1 is also in Aut(C). Recalling (3.1), we obtain 

that Ti will be accordingly mapped to Ti and { 1i : 1 :S l :S M - 1, l ::/=- i} to 

{ 1i : 1 :S l :SM - 1, l ::/=- i }, which implies that Pi =Pi. I 

In the preceding orthogonal code example, the permutation cf>= (2 3 4) maps 

x 1 to x3 , x3 to x 2 and x 2 to Xi, so P1 = P2 = P3 • For many codes, all the codewords 

of the same weight are in one equivalence class (but this is not generally true), so 

their corresponding P/s are equal. Thus, we can use the notation Pd for all the 

codewords of weight d ( as we shall do in later sections). For this case, (3.5) can 

be simplified to 

PE,..., 1- __!___ - ,\ •. [R l:Adv'dPd, 
M y-; d 

(3.12) 

where A(z) = L:d Adzd is the weight enumerator. Similarly, we can simplify (3.11) 

to 

1 M~ Pb,..., - -..\ · - - LAdVtlPd. 
2 2n 7r d 

(3.13) 

(Recall that the original assumption for (3.11) to hold is that C is linear systematic 

with no repeated columns and Aut( C) contains a transitive permutation group1 
.) 

Automorphism groups of several block codes are discussed in [4] [5] [6]. There are 

computer search algorithms [7] [8] for finding the entire automorphism group of a 

code. Furthermore, the entire automorphism groups of all 2, 3, 4-error correcting 

binary primitive BCH codes have been determined algebraically in [9]. 

Definition 3.2 Let u and v be binary vectors. If u has a 1 in every posit£on that 

v has a 1, then we say that u covers v. 

Theorem 3.2 For a bz"nary linear block code, if the codeword Xi covers another 

(different) nonzero codeword xi, then Pi= 0. 

1 A permutation group G is transitive if, for any two symbols i and j, there is a permutation cp E G 
such that icp = j. 
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Proof. Let Xz = Xi EB Xj. It follows that Xz is covered by Xi because Xi covers x 1·• 

We can now have the random variable Ti = Tj + Tz. It is therefore impossible that 

both Tj and Tz are less than 0 given that Ti = 0. The theorem follows from the 

definition of Pi. I 

For most practical codes, M ~ n, which means that there are many more 

random variables Tj in the definition of the P/s than the code dimension n. Hence, 

it is desirable to eliminate some redundant random variables Ti to reduce the 

complexity of computing Pi. One simple result is that Tz < 0 can be eliminated 

from Pi if the codeword Xz covers another nonzero codeword Xj with Ti < 0. This is 

proved by letting Xm = Xt EBxj, and then Tz =Ti +Tm and Tj < 0, Tm< O(or = 0) 

guarantee that Tz < 0. The following theorem tells us in general how we can 

eliminate redundant Tj. We prove the theorem in Appendix 3.B by using the 

Farkas Alternative [10, p. 56]. 

Theorem 3.3 Let the set A = { x : Ax < 0 and dT x = 0} 2 3 be nonempty. 

The i'nequality bT x < 0 holds for all x E A i'f and only i'f b 

b' E {AT y : y 2: 0 and y f 0} 4 and a ER. 

b' +ad, where 

To interpret this theorem, we view each Ti < 0 as an inequality in z1 , z2 , ••• , Zn. 

The theorem implies that given Tj < 0, J = 1, ... , i' - 1, i + 1, ... , M - 1, and 

~ = 0, the particular Tz < 0 is redundant and can be eliminated if and only 

if Tz = I:,AJ;;11 aiTi + aTi, where aj 2: 0 (not all zero) and a E R. Note that 
#i,l 

setting a = 0 reduces to the case stated previously: T1 < 0 can be eliminated if 

the codeword x 1 covers another nonzero codeword Xj with Ti < 0. On the other 

hand, if we somehow want to create another redundant inequality T1 < 0, then T,, 

2 Here x, y, d, b, b' are column vectors, and A is a matrix. 

3 We say a vector x < 0 if all of its components < 0. 

4 We say a vector x cj= 0 if there exists one component cj= 0. 
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must be in the form of I:tJ.1 ajTj +a.Ti with ai 2: 0 (not all zero) and a ER. 
#i 

Theorem 3.4 

Pi= Pr{ ViiTi - Vii Ti < 0, j = 1, ... , i - 1, i + 1, ... , M - 1 }, 

Proof. Pi is the conditional probability that T1 < O, ... , Ji_1 < 0, 1i+i < O, ... , 

TM-l < 0, given that Ti = 0. Since Vii < 0, given Ti = 0, Pi remains unchanged 

if each Ti< 0, J. = 1, ... , i - 1, i + 1, ... ,M - 1, is replaced by ViiTj - ViiTi < 0: 

Pi= Pr{ ViiTi - ViiTi < 0, j = 1, ... , i - 1, i + 1, ... , M - 1 J 1i = O }. 

It should be noted that the covariance between Vi;Tj - Vii1i and T; is zero: 

Cov(V:.·Y. - V:. ·T· T·) n J tJ i' i V:.·E(Y.T·) - V:. ·E(T~) ti J i tJ t 

V:. .V:· . _ TT .. V:. . 
it tJ y iJ H 

0. 

Since uncorrelated normal random variables are independent, the condition T; = 0 

can be dropped without affecting Pi, completing the proof. I 

Note that Vii = (ui, u;) = di, and for codes with x 0 = 0, Vii is the number 

of positions where Xi and Xj are both 1. As mentioned before, for most practi­

cal codes of interest, M ::P n; even after the redundant Ti < 0 are eliminated 

according to Theorem 3.3, the number of remaining conditions is still very large 

compared with the code dimension n. Hence, it is difficult to find P; analytically, 

so Monte Carlo simulations are used to find approximate values. Since conditional 

probabilities are usually more difficult to simulate than unconditional ones, Theo-

rem 3.4 gives us an easy way to simulate Pi. First n i.i.d. normal random variables 
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Zi, i = 1, 2, ... , n, with mean 0 and variance 1 are generated; then all necessary 

(nonredundant) conditions ViiTi - ViiTi < 0 are tested. If all are satisfied, we 

record this event as a "success." If any one of the conditions fails, we record this 

event as a "failure." The procedure is repeated a large number of times; then the 

relative frequency of "success" will be an approximate value for Pi. 

3.4 Examples 

We now apply the results in previous sections to orthogonal codes, bi-orthogonal 

codes, the (24, 12) extended Golay code, and the (15, 6) expurgated BCH code. 

3.4.1 Orthogonal Codes 

We consider orthogonal codes with M = 2k codewords, which may be obtained 

by the Sylvester construction [4, Chap. 2, §3] (or see Section 2.3). (Here all the 

codewords begin with 0.) It is easy to see that all the nonzero codewords are in 

the same equivalence class. By (3.12) near .\ = 0, the block error probability can 

be approximated by 

(3.14) 

By using Pb= (2k-lpE)/(2k - 1) [11, pp. 100] or (3.7), then 

(3.15) 

We now want to compute the value of P2k-1, which is the conditional probabil-

ity that T1 < 0, T2 < 0, ... , T2L 2 < 0, given that T2L 1 < 0. By the structures of 

orthogonal codes, Ii, i = 1, 2, ... , 2k - 1, are normal random variables with mean 

0 and covariance 

if i = J, 
if i i= J°. 
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With trivial verification, the random variables Ti, i = 1, 2, ... , 2k - 1, can be 

modeled by 

where X 0 , Xi, ... , X 2L 1 are i.i.d. N(O, 1) random variables. The probability P2k-1 

is hence equivalent to the conditional probability that X1 + X 0 < 0, X2 + X 0 < 

0, ... , X 2L 2 + X 0 < 0, given that X 2K _ 1 + X 0 =i.l. Thus 

1
. Pr{ X1 < -Xo, ... , X2L2 < -Xo, -Xo :S X2L 1 :S -Xo + Lx} 
Im 

L'>x-.o Pr{ 0 :S X2L1 + Xo :S Lx} 

Since X 2L 1 + Xo is N(O, 2), Pr{ 0 :S X2L 1 + Xo :S Lx} = Lx · Z(O)/VZ = 

Lx/yf4ir as Lx ---+ 0, where Z(t) is the density function of an N(O, 1) random 

variable. We also have 

lim Pr{ X1 < -X0 , ... , X2L 2 < -X0 , -X0 :S X 2k_1 :S -X0 + Lx} L'>x->O 

Joo zk 2 
l~~o _

00 

Lx · Z(-t) [P(-t)J - Z(t) dt 

D.x Joo k lim . ~ Z(J2t) [P(t)J 2 -z dt, 
L'>x->O V 27r -oo 

where P(x) = J:: 00 Z(t) dt. Finally we obtain 

Joo zk 2 
P2k-1 = J2 _

00 

Z( J2 t) [P(t)] - dt. (3.16) 

The same result was obtained in [1] by directly expanding into a power series 

the expressions of the error probabilities for orthogonal codes from [ 12]. Our 

P2k-1 is equal to y2 A2L 1 in [1]. In particular, for k = 2, A 3 was shown to 

be tan- 1 VZ/(7rJ2); it follows that P2 = tan- 1 J2/7r. Since it was shown that 

A 11 ~ (2/v2)V7rlnv for large v, 

P2k-1 ~ (
2

k ~ l) 2 V27r ln(2k - 1), for large k. 
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k P 2 k-1 (2k - l)Vk/(27r) P 2k-1 2k- 1 Jk/(27r) P 2k-1 

2 3.0409e-1 5.1469e-l 3.4312e-1 
3 9.0117e-2 4.3589e-1 2.4908e-1 
4 2.6084e-2 3.1219e-1 1.6650e-1 
5 7.3959e-3 2.0453e-1 l.0556e-l 
6 2.0606e-3 1.2686e-l 6.4436e-2 
7 5.6580e-4 7.5845e-2 3.8221e-2 
8 1.5351e-4 4.4170e-2 2.2171e-2 
g 4.1242e-5 2.5222e-2 1.2636e-2 
10 1.0991e-5 1.4185e-2 7.0995e-3 

Table 3.1: P2k-1 for orthogonal codes. 

(3.16) has been integrated numerically for k = 2 to 10, and the results are listed 

in Table 3.1, as are the quantities (2k - l)Vk/(27r) Pzk-1 and 2k- 1 Jk/(27r) P 2k-1, 

which are the key elements of (3.14) and (3.15), respectively. Note that, for or-

thogonal codes at very low signal-to-noise ratios, the bit error probability increases 

with k, or the number of codewords M. 

3.4.2 Bi-Orthogonal Codes 

A bi-orthogonal code consists of the codewords of an orthogonal code and their 

complements. We consider bi-orthogonal codes with M = 2k, k 2: 2, codewords. 

The bi-orthogonal code is the first-order Reed-Muller code if the corresponding 

orthogonal code is obtained by the Sylvester construction [4, Chap. 11, §3]. All 

the codewords except the all-zero and all-one codewords have weight 2k-z. 

Proposition 3.1 All the codewords except the all-zero and all-one codewords z"n 

a bi-orthogonal code are in the same equz"valence class. 

Proof. For a bi-orthogonal code with M = 2k, k 2: 2, there are 2k- 2 codewords 
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of weight 2k-Z. 2k-l - 1 of them begin with 0 because they are codewords of 

an orthogonal code, while the remainders begin with 1. Since all the nonzero 

codewords in an orthogonal code are in one equivalence class, it follows that 

there are at most two equivalence classes for codewords of weight 2k-Z in a bi-

orthogonal code, one for each half. However, since the automorphism group of 

a Reed-Muller code contains the general-affine group that is triply transitive5 

[4, Chap. 13, §9], there exist permutations in the automorphism group of a bi­

orthogonal code (which is the first-order Reed-Muller code) that map a nonzero 

codeword beginning with 0 to a codeword beginning with 1. It hence follows that 

all the codewords except the all-zero and all-one codewords lie in one equivalence 

class. I 

The all-one codeword covers every codeword of weight 2k-z, so from Theorem 

3.2 the corresponding Pi is zero. Putting everything together, by (3.12) we now 

have 

1 ( k ff PE "' 1 - - - ,\ · 2 - 2) - P2k-2. 
2k 21f 

Since a bi-orthogonal code contains no repeated columns, can be encoded as a 

systematic code, and its automorphism group contains a triply transitive group, 

by (3.13) for ,\ near 0, 

1 k ff Pb ,..., - - ..\ · (2 - 2) - P2k-2. 
2 21f 

Now our goal is to find an analytical expression for P2k-2, the conditional 

probability that T2 < 0, T3 < 0, ... , T2L 1 < O, given that T1 = 0. (Here we 

number the codewords in such a way that Xi, i = O, 1, ... , zk-l -1, are codewords 

of a corresponding orthogonal code and Xzk-i+i' i = O, 1, ... , 2k-l - 1, are the 

complements of xi-) Since the all-one codeword Xzk-1 covers every codeword of 

5 A permutation group G is t-fold transitive if, given t distinct symbols i 1, i 2, ... , it, and t distinct 
symbols i1,J2, ... ,Jt, there is a permutation</> E G such that i1</> = i1, i2</> = J2, ... , it<P = Jt· 
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weight 2k-z, the condition T2 k-1 < 0 is redundant and can be discarded. From 

the structure of bi-orthogonal codes, the covariances between Ti and Th z,J = 

1, ... , 2k-l - 1, 2k-l + 1, ... , 2k - 1, are given by 

{ 

2k- 2 , ifi=J·, 
Vij = o, if Ii - JI= 2k- 1 , 

2k-3 , otherwise. 

We then model the random variables Ti, ... , T2k-L 1 , T2k-1+i, ... , T2L 1 , by 

and 

where i = 1, 2, ... , 2k-l - 1 and X 0 , Xi, ... , X 2k_ 1 are i.i.d. N(O, 1) random vari-

ables. Thus 

lim Pr{ Xo - X1 < O and X 0 +Xi < O, X 0 - Xi < o, i = 2, 3, ... , 2k-l - 1, 
b.:z:--+O 

lim Pr{ Xo < 0, -Xo::::; X 1 ::::; Xo + l:,.x, and Xo <Xi< -Xo, 
b.:z:--+O 

i = 2, 3, ... , 2k-l - 1} / Pr{ 0 ::::; Xo + X1 ::::; l:,.x} 

f~00 l:,.x · Z(-t) [P(-t) - P(t)] 2
k-l_z Z(t) dt 

lim 
b.:z:--+O !:,. x I V47f 
J2 fo 00 

Z( J2 t) [P(t) - P(-t)J 2
k-l_z dt. 

The same result can be obtained if we expand, into a power senes m >.., the 

expressions for error probabilities in [12]. We have integrated numerically the 

expressions for P2k-2, k = 3, 4, ... , 11, and listed the results in Table 3.2, along 

with the quantities ( 2k - 2 h/ k / ( 2n) P2k-z. Again note that, for bi-orthogonal 

codes at very low signal-to-noise ratios, the bit error probability increases with 

the number of codewords. 
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k P2k-2 (2k - 2)Jk/(2n) P2k-2 

3 l.0817e-1 4.4848e-l 
4 2.8223e-2 3.1526e-1 
5 7.6703e-3 2.0527e-1 
6 2.0968e-3 l.2704e-l 
7 5.7062e-4 7.5889e-2 
8 l.5415e-4 4.4180e-2 
g 4.1327e-5 2.5225e-2 
10 l.1003e-5 l.4186e-2 
11 2.9114e-6 7.8817e-3 

Table 3.2: P2k-2 for bi-orthogonal codes. 

3.4.3 The (24,12) Extended Golay Code 

The (24, 12) extended Golay code is obtained by adding an overall parity 

check bit to the perfect triple-error-correcting (23, 12) Golay code. Its weight 

enumerator is A(x) = 1+759x8 + 2576x12 + 759x16 + x24
• Note that the codeword 

of weight 24 is the all-one codeword, which covers all other nonzero codewords. 

The automorphism group of the (24, 12) Golay code is the Mathieu group M 24 [4, 

Chap. 20, §4, Corollary 5] which is five-fold transitive [4, Chap. 20, §3, Theorem 

2]. 

Proposition 3.2 [4, Chap. 20, §3, Problem (6)] All the codewords of we£ght 8 

are £n one equ£valence class. 

Proposition 3.3 [4, Chap. 20, §4, Problem (11)] All the codewords of we£ght 12 

are £n one equ£valence class. 

Proposition 3.4 All the codewords of wei'ght 16 are £n one equi'valence class. 
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Proof. The permutation that maps one codeword to another (possibly different) 

codeword will do the same to their complements. Since the complement of any 

codeword of weight 8 is a codeword of weight 16 and vice versa, the proposition 

follows from Proposition 3.2. I 

Proposition 3.5 Every codeword of weight 16 covers codewords of weight 8. 

Proof. The following is a generator matrix for the (24, 12) extended Golay code 

[4, Fig. 2.13]: 

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 
1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 
1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 
1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 
1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 
1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0 
1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 
1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 
1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

The codeword obtained by taking the modulo-2 sum of row 1, row 2, ... , row 10 

is of weight 16: 

011111111110010111000101. 

The modulo-2 sum of row 1, row 3, row 6 and row 8 gives a codeword of weight 8: 

010100101000010111000000, 

which is covered by the previous codeword of weight 16. Also note that the 

modulo-2 sum of these two codewords is a codeword of weight 8 covered by the 

first codeword. Now the proposition follows from Proposition 3.4. I 

By the above propositions, along with theorems in the previous section, near 
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A = 0 the block error probability can be approximated by 

4095 {f ( ) PE ,....., -- - A · - 759Vs Ps + 2576VJ:2 P12 , 
4096 27r 

and the bit error probability can be approximated by 

Unlike the last two examples, we do not expect exact analytical expressions for P8 

and P 12 . The procedure described in the last section is used to simulate P8 and 

P12. The results are P8 ~ 4.0 x 10-6 and P 12 ~ 4 x 10-8 • (Since P12 is very small, 

the reliability of the exact value is doubtful but the magnitude is correct.) Then 

4095 
- A · · fl (s.6 x 10-3 + 3.6 x 10-4) 

4096 v 2-; 
4095 ( 3) ~ -- - A · 3.6 x 10-
4096 ' 

and 

! - A. 
256 fl (8.6 x 10-3 + 3.6 x 10-4) 

2 3 V2; 
1 

~ "2 - A· (0.30). 

Note that the terms above for weight 8 codewords (codewords at the minimum 

distance) are much larger than the terms for P12 . 

3.4.4 The (15,6) Expurgated BCH Code 

We now consider the (15, 6) expurgated BCH code with generator polynomial 

( x 4 + x + 1) ( x 4 + x3 + x2 + x + 1 )( x + 1) = x 9 + x 6 + x5 + x 4 + x + 1. Its weight 

distribution is as follows. 

d: 0 6 8 10 
Ad: 1 30 15 18 

It is known [8] [9] that the complete automorphism group of the (15, 7) primitive 

BCH code with dmin = 5 is the group {bx2; + b'x2;+z : b,b' E GF(24 ), b22
+1 i-
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b'
22

+1 and i = 0, l}. We also know that the automorphism group of an expurgated 

code contains that of the corresponding primitive code. With the above facts in 

mind, by examining the codewords of (15, 6) expurgated BCH code, we find that 

all the codewords of equal weight are in the same equivalence classes. Therefore, 

the error probabilities near A = 0 are approximately 

63 vz;2 PE ,...., - - A . - (3ov'6 Pe + 15VS Pa + 18yli0 Pio) ' 
64 57r 

and 

1 32 (2 ( ) Pb ,..., 2 - A · 
15 

y ~ 30J6 Pe + 15VS Pa + 18yli0 Pio . 

From a Monte Carlo simulation, Pe ~ 4.1 x 10-3 , Pa ~ 8.9 x 10-4 and Pio ~ 

9.4 X 10-5 • Thus 

and 

63 
- A . (2 (o.30 + 3.8 x 10-2 + 5.4 x 10-3) 

64 v~ 
63 

~ 
64 

- A· (0.12), 

1 
Pb ,...., - - A· (0.26). 

2 

Note again that the terms above for codewords at the minimum distance are much 

larger than the remaining terms. 

3.5 Asymptotic Coding Gain 

The coding gain is the ratio of the signal-to-noise ratio without coding to the 

signal-to-noise ratio required when using an error-correcting code to achieve the 

same error probability. We define the asymptotz"c coding gain as the limit, as the 

signal-to-noise ratio approaches zero, of the coding gain. Two theorems based on 

the criterions of PE and Pb, respectively, will be given. 
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We now derive approximations to PE and Pb at low signal-to-noise ratios when 

no coding is used. For an unquantized AWGN channel, if no coding is used, the 

bit error probability is 

where Q(x) = fx00 e-t
2
f 2 j.;zirdt. Thus near,\= 0, 

1 1 
Pb,...., - -,\ · -. 

2 V7f 
(3.17) 

If we group k bits as a block, when no coding is used, a block error occurs when 

there is at least one erroneous bit and so 

which gives the following approximation near ,\ = 0: 

1 k 
PE ,...., 1 - - - ,\. . (3.18) 

2k 2k-lV'if 

Comparing (3.5), (3.7), (3.11), (3.17), and (3.18), we obtain the following: 

Theorem 3.5 For binary block codes, with the criterion based on block error prob-

abilz"ty, the asymptotz"c coding gain at low signal-to-noise ratios is given by 

_ 22(k-l) (M-1 {-;- ) 2 

GE- k LVdiPi 
n i=l 

Theorem 3.6 For binary linear block codes, wz'th the crz"terion based on bit error 

probability, the asymptotic coding gai'n at low signal-to-noise ratios is given by 

If the code used is systematz"c with no repeated columns and its automorphism 

group contains a transitive permutation group, then the asymptotic coding gain 

can be simplified to 
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which is equal to (k/n) 2GE. 

We now apply the results in Theorems 3.5 and 3.6 to the codes discussed in the 

previous section. For orthogonal codes with 2k codewords, based on PE-criterion, 

the asymptotic coding gain is 

which approaches 7f ln 2 ~ 3.38 dB as k --+ oo. For the Pb-criterion, the asymptotic 

coding gain becomes 

which is asymptotic ink to (7rln2)k2/22k. The same results were obtained in [1]. 

We list the asymptotic coding gains based on criterions Pe and Pb for orthogo-

nal codes in Table 3.3. Note that, based on the PE-criterion, except for k = 2, 

orthogonal codes result in positive coding gain compared with no coding at low 

signal-to-noise ratios and the gain increases with the number of codewords. How-

ever, for the Pb-criterion, there is always a coding loss when using an orthogonal 

code and the loss increases with k. 

For bi-orthogonal codes with 2k codewords, based on the PE-criterion, 

22(k-l)(2k 2)2 ( rX) k 1 ) 2 
GE= k - lo Z(J2 t) [P(t) - P(-t)] 2 

- -
2 dt , 

For the Pb-criterion, 

( 

[
00 

k 1 ) 2 
Gb = k(2k - 2) 2 lo Z(J2t) [P(t) - P(-t)] 2 

- -
2 dt 

We tabulate these asymptotic coding gains for bi-orthogonal codes in Table 3.4. 

It is observed that with the criterion PE, there is a positive coding gain when 

using a bi-orthogonal code and the gain increases with the number of codewords. 
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k GE Gb 

2 -0.798 dB -4.32 dB 
3 0.258 dB -7.10 dB 
4 0.880 dB -10.6 dB 
5 1.29 dB -14.6 dB 
6 1.58 dB -18.8 dB 
7 1.79 dB -23.4 dB 
8 1.96 dB -28.1 dB 
9 2.09 dB -33.0 dB 
10 2.19 dB -38.0 dB 

Table 3.3: Asymptotic coding gain at low signal-to-noise ratios for orthogonal 
codes. 

k GE Gb 

3 0.505 dB -1.99 dB 
4 0.965 dB -5.06 dB 
5 1.32 dB -8.78 dB 
6 1.59 dB -12.9 dB 
7 1.80 dB -17.4 dB 
8 1.96 dB -22.1 dB 
9 2.09 dB -27.0 dB 
10 2.19 dB -32.0 dB 
11 2.28 dB -37.1 dB 

Table 3.4: Asymptotic coding gain at low signal-to-noise ratios for bi-orthogonal 
codes. 
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Again, using the Pb-criterion, there is always a coding loss and the loss increases 

with k. 

For the (24, 12) extended Golay code, 

222 2 

24
. 
12 

( 759yS P8 + 2576Jl2 P12 ) 

~ 1.16 ~ 0.66 dB, 

which is a gain over no coding. Also 

G, = ( ~) 
2 

GE "'0.291"' -5.3 dB, 

which is a loss. For the (15, 6) expurgated BCH code, 

and 

210 2 

-- (3oV6 P6 + 15vS Ps + 18v'i0 Pio) 
15. 6 

~ 1.35 ~ 1.3 dB, 

G, = ( ~) 
2 

GE "' 0.216 "' -6.6 dB. 

It was shown in [1] that if hard quantization is used on an AWGN channel, 

using the bit error probability criterion, any coding scheme results in a loss at 

low signal-to-noise ratios. Note that for all the codes discussed in the last sec-

tion, based on the Pb-criterion, there is always a loss with respect to no coding, 

as we expect. However, one should understand that, at low signal-to-noise ra-

tios, maximum-likelihood decoding is not the scheme that minimizes the bit error 

probability. 

3.6 Discussions 

The preceding sections show that the performance of binary block codes at low 

signal-to-noise ratios depends heavily on codes' geometries through the important 
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quantities Pi. Since the number of inequalities involved in Pi is much larger than 

the dimension for most codes of interest, closed form expressions for Pi are not 

expected to exist. We have tried some general lower and upper bounds, but all 

the resulting bounds are pretty loose. Further research can be done in finding 

good lower and upper bounds for Pi by using the codes' algebraic structures. 

Now we state a conjecture about the property of Pi,...which we cannot prove: 

Conjecture 3.1 For codewords xi, xi EC, if di< di, then Pi> Pi. 

Consider the quantity 'Ef:!11 y<I;, Pi, which plays an important part in expressions 

of both the block error probability and the bit error probability. Based on what 

we have observed, we boldly make the following conjecture: 

Conjecture 3.2 The sum of terms \(di Pi at code's minimum distance is larger 

than the sum of the remaini'ng terms. 

Appendix 3.A Derivations of (3.9) and (3.10) 

We need several equalities before we can show (3.9) and (3.10). If the code C 

has no zero columns and no repeated columns, then it is easily shown that 

M-1 

M-1 

"" x~. = 2k-1 
L.., iJ ' 
i=l 

M-1 

L XijXij = o, 
i=l 

for J·=l,2, ... ,n, 

for J = 1,2, ... ,n, 

"" 2k-2 L.., XijXil = ' for J,l=l,2, ... ,n and J"#-l, 
i=l 

M-1 
"" - 2k-2 L.., Xij Xil = , for J,l=l,2, ... ,n and J#-l, 
i=l 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

where Xij, J. = 1, 2, ... , n, are the components of Xi and Xij is the complement of 

Xij· (Note that the symmetric assumption we made about each bit position in the 

codeword implies that there are no zero columns.) 
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We have 

If J = m, then by (3.19) 

j=l i=l 

On the other hand, if J :/= m, then by (3.21) 

Therefore, 

n n M-1 

L L L XijXim = n(n - 1)2k-2
• 

j=l m=l i=l 
moj.j 

n 2k-l + n( n - 1)2k-2 

n(n + 1)2k-2
• 

This ends the derivation of (3.9). 

Similarly, 

If J = m, then by (3.19) and (3.20) 

~l ( ) { 2k-l, if X/j = 0, 
~-=l xii xii EB Xzj = O, "f 1 • 1 X/j = . 

Since there are (n - d1) of x1/s such that Xtj = 0, 

n M-1 

L L Xij(Xij EB Xzj) = (n - d1)2k-l. 
j=l i=l 

On the other hand, if J. :/= m, then by (3.21) and (3.22) 

It follows that 

M-1 

L Xij(Xim EB Xtm) = 2k-Z • 
i=l 

n n M-1 

L L L Xij(Xim EB Xtm) = n(n -1)2k-2
• 

j=l m==l i=l 
moj.j 
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Finally, 

M-1 

L di d(xi E9 xz) (n - dz)2k-l + n(n - 1)2k-2 

i=l 

n(n + 1)2k-2 - d12k- 1 , 

which is the result of (3.10). 

Appendix 3.B Proof of Theorem 3.3 

In this appendix x, y, b, b', d are all column vectors and A is a matrix. We 

say a vector x > 0 if all its components > 0. 

The Farkas Alternative [10, p. 56] E£ther the equatz"on 

Ax= b has a solut£on x 2 0 (3.23) 

or {exclusively) 

yT A 2 0, yTb < 0 has a solution y. (3.24) 

Lemma 3.1 Ez"ther the equation 

Ax+ ad= b has a solution x 2 O, a ER (3.25) 

or (exclusively) 

yT A :S 0, yT d = 0, yTb > 0 has a solution y. (3.26) 

Proof. The assertion (3.25) is not yet of the form (3.23) in the previous lemma. 

So we use a trick: we set the unconstrained a = u - v and require u 2 0 and 

v > 0. Now (3.25) becomes 

Ax+ (u - v)d = b has a solution x 2 0, u 2 0, and v 2 0. 
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Multiplying both sides of the equality by -1, we now have 

(-A)x - (u - v)d = -b has a solution x 2'.: O, u 2 0, and v 2'.: 0. 

In partitioned form, this says 

[-A, -d,d] [: ] = -b ha.s a solution x 2: 0, u 2: O, and v 2: 0. 

Now we have a Farkas case (3.23). By (3.24), the alternative is this: 

yT [-A, -d, d] 2 O, -yTb < 0 has a solution y. 

If we unpack the first inequality, we can obtain 

which is equivalent to 

completing the proof. I 

Lemma 3.2 Suppose the set A = { x : Ax < 0, dT x = 0} is nonempty. If 

Ax :::; O, dTx = 0, bTx > 0 has a solution x, then Ay < 0, dTy = 0, bTy > 0 

has a solut£on y. 

Proof. Let x = x 0 be a solution of Ax :::; O, dTx = 0, bTx > 0. Choose 

y = x 0 + E z, where z E A and E > 0. We will show that for small enough E, y is 

a solution of Ay < 0, dT y = 0, bT y > 0. First since Ax0 :::; 0 and Az < 0, 

Ay = Ax0 + E Az < 0. 

Second we obtain 
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Finally we can have 

Since bT x 0 > 0, the condition bT y > 0 holds for sufficiently small E. I 

Theorem 3.3 Let the set .A = { x : Ax < O, dT x = 0} be nonempty. The 

inequality bT x < 0 holds for all x E .A zf and only if b = b' + o:d, where b' E 

{ AT y : y 2: 0 and y f= 0 } and o: E R. 

Proof. The proof for the sufficient condition is straightforward. We have 

which is < 0 because y 2: 0, y f= 0 and Ax < 0. Now comes the proof for the 

opposite direction. Suppose the necessary condition is wrong. First we assume 

that b = b' + ad but with b' = 0. Then bT x = o:dT x = 0, contradicting that 

bTx < 0 for all x E A. Second we assume bis not in the form of b = b' +o:d, where 

b' E {A Ty : y 2: 0} and o: E R. It follows that the equation A Ty+ o:d = b 

doesn't have a solution y 2: 0, a ER. Therefore, the case (3.25) of Lemma 3.1 is 

wrong, and we must have the alternative: 

xT AT:::; 0, xT d = 0, xTb > 0 has a solution x, 

which is the same as 

Ax< 0 dTx = 0 bTx > 0 has a solution x. 
- ' ' 

By Lemma 3.2 this implies 

Ax< 0, dTx = 0, bTx > 0 has a solution x, 

which contradicts the assumption that bT x < 0 holds for all x E A. I 
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CHAPTER 4 

ON THE PATH WEIGHT ENUMERATORS OF 
CONVOLUTIONAL CODES 

4.1 Introduction 

In the study of convolutional codes, we are particularly interested in distance 

properties because they are of great importance in performance estimation. Usu-

ally we consider the convolutional code encoder as a finite state machine; then the 

behavior of the encoder can be completely described by the corresponding state 

diagram. There is a one-to-one correspondence between the possible output code 

sequences from the encoder and the paths through the state diagram beginning 

and ending in the all-zero state. We call a path beginning and ending in the all-

zero state without intermediate returns a fundamental path, and for each d denote 

by Ad the number of fundamental paths of weight d. The path weight enumerator 

[1] A(x), which is the generating function of Ad: 

00 

A(x) = 2: Adxd 
d=O 

provides weight distribution information of the corresponding convolutional code. 

The free distance of the code is defined to be the least d such that Ad is not zero: 

drree = min { d ~ 0 : Ad > 0 } . 

It is well-known that for a given code rate, the larger the free distance, the better 

the code will perform at h£gh signal-to-noise ratios. In this chapter, we introduce 
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a quantity, called the domz"nant root of the code, which tells us the growth rate of 

Ad at large distance: 

a:= limsupA~/d. (4.1) 
d->oo 

The importance of a: can be seen from the following transfer function bound for 

the first-event error probability (which is the probability that the correct path is 

excluded for the first time during Viterbi decoding): 

(4.2) 

where 1 is the channel's Bhattacharyya parameter [1]. For a binary-input DMC 

with output alphabet Y, 

1 = L jp(y!O)p(yll). 
vEY 

For the unquantized AWGN channel, 

where Es/ N 0 is the channel symbol signal-to-noise ratio. The largest positive 

value of 1 for which the bound 4.2 converges is the radius of convergence of A(x), 

which by a well-known theorem [3, p. 213] is a:- 1 , where a: is defined in (4.1). 

In principle, the path weight enumerator A(x) can be computed by applying 

Mason's gain rule, or some other standard combinatorial technique, to the code's 

labelled state diagram [1] [4]. In general, A(x) is a rational function, with integer 

coefficients: 

A( ) = N(x) 
x D(x). 

Since the coefficients Ad of A(x) are nonnegative, it follows from [3, Theorem 

7.21] that x = a:- 1 is a singularity of A(x), i.e., that D(a:- 1) = 0. Thus a: is the 

reciprocal of the least-magnitude root of the equation D(x) = 0. 
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In this chapter we shall investigate the dominant roots of various convolutional 

codes. In Table 4.1 we actually compute a for some (2, 1) convolutional codes of 

constraint length 1 K from 4 to 12. For K :::; 7, a is computed directly from the 

denominator of A(z). For K > 7, we compute a as follows. From [5], it is known 

that the maximum number of consecutive all-zero branches that can occur in a 

nonzero fundamental path is K - 2 for a rate 1/2 code of constraint length K. 

Hence any fundamental path of weight d has length :::; (K - l)d branches. We 

then compute Ad from the trellis diagram up to some large enough d for a given 

code and found o: approximately by either Ad/Ad-l or )Ad/Ad-2 for some large 

d. (For some codes Ad = 0 for odd d, so we compute ) Ad/ Ad_ 2 for large even d 

instead of Ad/ Ad-d 

One should note that for a fixed constraint length, all dominant roots are close 

together, and, furthermore, they seem to approach a limit for very large K. We 

explain this interesting phenomenon in Section 4.2 by considering the ensemble of 

fixed convolutional codes as a subset of the ensemble of time-varying convolutional 

codes, and then computing the average distance profile for a random time-varying 

code. The result gives a surprisingly accurate prediction of the growth rate of 

the number of fundamental paths at large distance for fixed codes. In Section 

4.3, the corresponding generating functions are found, and their pole locations are 

investigated. In Section 4.4, we estimate the average free distance for time-varying 

convolutional codes and obtain, for each finite constraint length, a Gilbert-like 

free distance lower bound that performs asymptotically as well as the asymptotic 

bound in [6]. A similar random coding analysis for the total weight of information 

bits for fundamental paths at each distance is given in Section 4.5. An interesting 

example of the performance of several convolutional codes at low signal-to-noise 

1 Following [1], we define the constraint length K to be m + 1, where m is the code's memory. 
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Generator polynomials 

K gl gz dfree a 

4 1101 1111 6 2.20557 
4 1011 1101 6 2.21750 
4 1001 1011 5 2.20557 
4 1110 1101 6 2.08931 
4 1010 1101 5 2.07766 
4 1111 0111 4 2.06709 
4 1001 1000 3 1.93013 

5 10011 11101 7 2.31266 
5 10101 11101 6 2.29655 
5 10111 11111 6 2.30147 
5 11101 11001 7 2.29503 
5 10001 11111 6 2.34632 
5 11111 01111 4 2.25692. 
5 10101 10000 4 2.09504 

6 110101 101111 8 2.35695 
6 110001 101001 6 2.35830 
6 100101 111111 8 2.36326 
6 110011 111011 7 2.35927 
6 100011 100111 7 2.34530 
6 101111 011001 8 2.35089 
6 110101 100000 5 2.18396 

7 1011011 1111001 10 2.38762 
7 1100101 1000101 7 2.37357 
7 1001001 1110011 8 2.38751 
7 1100111 1111111 6 2.38699 
7 1001111 1100011 8 2.38929 
7 1110011 0101001 8 2.38219 
7 1111001 1000000 6 2.24920 

8 11100101 10011111 10 2.40007 
8 11011011 10011011 7 2.39711 
8 10011101 11010011 8 2.39768 
8 10001001 10101101 8 2.39200 

Table 4.1: Dominant roots for some (2, 1) convolutional codes. 
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K gl gz dfree a 

8 10000101 10111001 8 2.40034 
8 10111001 01110001 9 2.38478 
8 11101111 10000000 6 2.32136 

9 101110001 111101011 12 2.40733 
9 100100101 100100001 7 2.41385 
9 110000001 110101101 9 2.40651 
9 101011001 110100111 11 2.40672 
9 111100011 101001101 11 2.40582 
9 101111011 011001111 10 2.40383 
9 111010111 100000000 8 2.34476 

10 1001110111 1101100101 12 2.41046 
10 1011101001 1001010011 9 2.40925 
10 1010011001 1001111011 12 2.41026 
10 1101101001 1011110101 12 2.41019 
10 1111100011 1000011011 10 2.40888 
10 1100100011 0111010001 10 2.40999 
10 1110111001 1000000000 8 2.35743 

11 10011011101 11110110001 14 2.41212 
11 11100110111 10001101111 11 2.41125 
11 11010000001 10010011111 11 2.41247 
11 11000010011 11001001101 11 2.41172 
11 11001010101 10000101011 11 2.41251 
11 11110101001 01101100001 12 2.40988 
11 11110110001 10000000000 8 2.36820 

12 100011011101 101111010011 15 2.41303 
12 111110110111 111101011011 11 2.41191 
12 101001001101 111000100111 12 2.41321 
12 110110111001 100001100101 13 2.41318 
12 101011011001 100100001001 10 2.41355 
12 101100000101 010100010111 11 2.41259 
12 110001100001 100000000000 6 2.40774 

Table 4.1: (Continued.) 
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ratios is given in Section 4.6. Finally, possible extensions to this work are discussed 

in Section 4.7. 

4.2 Average Distance Structure for Random Convolutional Codes 

In this section we shall compute the average distance profile for the ensemble 

of time-varying convolutional codes. A time-varying convolutional code [l] [7] 

is a convolutional code whose generator polynomials may be changed after each 

time unit. In other words, the tap positions of modulo-2 adders in the shift 

register encoder are reselected after each shift of the bits. Now consider the 

ensemble of all time-varying convolutional codes, which include the ensemble of 

fixed convolutional codes as a subset. A uniform probability measure is imposed 

on each code by randomly reselecting the encoder tap positions after each shift. 

This can be done by hypothetically flipping a fair coin for each tap position. Then 

the encoder output will be a random binary vector after each shift. 

Let Ad denote the average number of fundamental paths of weight d in the 

ensemble of all ( n, k) time-varying convolutional codes of constraint length K. 

We consider only the (n, k) codes with 2k(K-I) states, whose encoders have k shift 

registers all of the same length K. One of the main results in this chapter is the 

following theorem: 

Theorem 4.1 For K > 2, 

where 

{ 

1 - 2~' 
Bd = _ill 

zn ' 
o, 

if d = o, 
zf 1 :S d :S n, 
if d > n, 
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and ri, i = 1, 2, ... , K - 1, are the reciprocals of the roots of 

K-1 

1 - (2k - 1) I: yi = o. 
j=l 

Proof. Let Ad,l be the number of fundamental paths of weight d and length l so 

that 

(4.3) 

Under the uniform probability measure, each branch of a trellis path is a random 

n-dimensional binary vector, and each nl-dimensional binary vector has the same 

probability of being a fundamental path of length l. Let Ti denote the number of 

fundamental paths of length l for any ( n, k) convolutional code of constraint length 

K. Then the probability of being a fundamental path for any nl-dimensional 

binary vector is Ti/2nl. Since there are (nd) nl-dimensional binary vectors of 

weight d, 

- (nl) Ti Ad,l = d 2n1· (4.4) 

We show in Appendix 4.A that the generating function T(y) of Ti for any ( n, k) 

code of constraint length K being considered is given by 

(4.5) 

Cancelling the common factor (1 - y) in P(y) and Q(y), we obtain 

(4.6) 

The denominator Q(y) can be shown to be squarefree for K > 2 by proving that 

Q(y) = (1 - y)Q(y) = 1 - 2ky + (2k - l)yK is squarefree: 

gcd ( Q(y), Q'(y)) = 1, for K > 2, (4.7) 
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The derivation of {4.7) can be found in Appendix 4.B. For K > 2, T(y) can 

therefore be partial-fraction expanded to 

K-1 c· 
T(y) = 1 - y + L i ' 

i=l 1 - riy 

where ri, i = 1, 2, ... , K-1, are the reciprocals of the roots of l-(2k-l) L:f=J.1 yi = 

0 and 

Therefore, 

where 

K-1 

Ti = cPl + L Cid, 
i=l 

{ 

1, if l = 0, 
<P1= -1, ifl=l, 

o, if l ~ 2. 

Ford> n, from (4.3), {4.4) and (4.8) 

(4.8) 

where rj/n is any n-th root of ri. In order to compute the above series, define 

f(t) = 1 + tn + t 2n + · · · + tln + · ·" Then the d-th derivative of f(t) is 

00 

J[dl(t) = cd I: nt(nz -1) ... (nz - d + l)tn1. 
1= r ~1 

It thus follows that 

ford> n. {4.9) 

It is not difficult to see that 

1 1 n-l 1 
J(t) = 1 - tn = ; L 1 - wst' 

s=O 
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· 2rr 
where w = ein-. With f (t) in this form, its d-th derivative is easily found to be 

l n-1 
J[d] (t) = - L d!. wsd. (1 - wstt(d+l). 

n s=O 

Combining (4.9) and (4.10), we get 

- l K-ln-1 
Ci 

Ad=-LL .!. 
n i=l s=o r~ 1 - W 8 • -'--

2 

ford> n. 

(4.10) 

Since W 8 ri/n, s = O, 1, ... , n - 1, are all the n-th roots of ri, Ad can finally be 

expressed as the form in Theorem 4.1 for d > n. The proofs for d = 0 and 

1 ::; d ::; n are the same as the above except that a few modifications for the offset 

()d are needed. I 

Now we want to investigate the behavior of Ad when d is large. Let t5 be 

any n-th root of any ri and let r be the reciprocal of the least-magnitude root of 

1 - (zk - 1) 'I:f=J.1 yi, the denominator of T(y). From [3, Theorem 7.21], r is real 

and positive because T(y) is a nonnegative series. Since 

1
_8_1 < /8/ < _ylr_n r_ 
2 - t5 - 1/2/ - /81/ - 2 - \IT' 

it follows from Theorem 4.1 that for large d, Ad satisfies 

where (J is some constant independent of d and 

~ \IT a=---
2 - y1r· 

For large K, r is very close to 2k, and then&. is very close to 2Rj(2 - 2R), where 

R = k/n is the code rate. 

We compute &. for (2, 1) codes of constraint lengths from 3 to 12 in Table 4.2. 

Comparing Tables 4.1 and 4.2, we can see that for a given K, the a's in Table 
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K &. 

3 1.7473273 
4 2.1065695 
5 2.2699329 
6 2.3451684 
7 2.3806466 
8 2.3917176 
9 2.4060505 
10 2.4101566 
11 2.4121921 
12 2.4132048 

Table 4.2: Average &. for (2, 1) convolutional codes. 

4.1 are quite close to the &.'s in Table 4.2, especially for K 2: 7. Some kind of law 

of large numbers appears to be in operation. If we choose a convolutional code 

randomly, then its o: is expected to be close to the average &.. Note that for (2, 1) 

codes, &. will approach -/2/(2 - -/2) = 1 + -/2, which is 2.4142136 ... , for large 

constraint length K. All the above results can facilitate predicting Ad at large 

distance for codes of moderate to large constraint length. Also note that the a's 

for the codes usually used in practice, of which the encoders have both ends of 

shift registers tapped to the modulo-2 adders, are closer to the average & than 

those for systematic codes (the last row of each constraint length in Table 4.1). 

4.3 The Generating Function A(x) 

In this section we compute the generating function A(x) of Ad and then inves-

tigate the pole locations. From (4.3) and (4.4), 
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Changing the order of summations, we obtain 

A(x) = £: ~1 t (nl) xd = £: ~1 (1 + xt1 

l=O 2 d=O d l=O 2 

by recognizing I:~~o ( ~) xd = ( 1 + x) nl. Therefore A ( x) can be found to be 

A(x) T ( (1; x)n) (4.11) 

(2k - 1)(1 + x)nK 
znK _ (2k _ 1) 1.:f=J.12n(K-i)(l + x)ni. 

(4.12) 

All the poles of A(x) for n = 2, k = 1, and K = 7 are plotted in Figure 4.1. 

Observe that there is only one pole inside the unit circle, a fact that is proven for 

n ::S 4 and K > 2 by using the well-known Rouche's Theorem: 

Rouche's Theorem [3, Theorem 3.42] If f (z) and g(z) are analytic z'nsz'de and 

on a closed contour C, and Jg(z)I < lf(z)J on C, then f(z) and f(z) + g(z) have 

the same number of zeros z'nside C. 

Lemma 4.1 The polynomz'al Q(y) = l-2ky+(2k-l)yK has only one zero z'nsz"de 

the unit cz'rcle for K > 2. 

Proof. Chooser < 1 but sufficiently close to 1 such that 1- 2kr + (2k - l)rK < 0. 

This is possible because Q (y) lv=l = 0 and 

d~(y) I = -2k + K(2k -1) > o, 
y y=l 

for K > 2. 

Let C be the contour JyJ = r, f(y) = -2ky, and g(y) = 1 + (2k - l)yK. On C 

Jg(y) I = 11 + (zk - l)yK I < 1 + (2k - l)rK < 2kr = If (y) J. 

Since f (y) has only one zero inside the contour C, then by Rouche 's Theorem, 

Q(y) has only one zero inside C. The lemma follows from the fact that any zero 

inside the unit circle will be inside the contour C for r sufficiently close to 1. I 
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Figure 4.1: Pole locations of A(x) for n = 2, k = 1, and K = 7. (The circle shown 
is the unit circle.) 
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Since Q(y) = (1 - y)Q(y), where Q(y) is the denominator of T(y), it follows 

from the lemma that T(y) has only one pole inside the unit circle for K > 2. 

Since T,, 2: 0 for all l, the pole inside the unit circle is real and positive. Finally, 

we state the theorem as follows. 

Theorem 4.2 For n ::::; 4 and K > 2, there is only one pole of A(x) inside the 

uni"t circle. 

Proof. From (4.11), 

If xis a pole of A(x) and y is a pole of T(y), then 

(~)n= 2 y, 

o::: equivalently 

It follows that 

Jxl < 1 if and only if 

From Lemma 4.1, for K > 2 there is only one pole y (real and positive) of T(y) 

inside the unit circle, and hence for n ::::; 4 there is only one n-th root of y inside 

the circle Jz - (1/2) I = 1/2 as seen from Figure 4.2. I 

Thus for n::::; 4 and K > 2, the approximation 

is very accurate for large d because & is the reciprocal of the only pole inside 

the unit circle for A( x) and all the other terms neglected in the approximation 

approach 0 as d -r oo. 
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Figure 4.2: The unit circle !zl = 1 and the circle lz - (1/2) I = 1/2. 

4.4 Free Distance Bound 

In this section we first estimate the average free distance and then present a 

Gilbert-like free distance lower bound for time-varying convolutional codes. If we 

define drree to be 

drree =min { d: Ad~ 1}, (4.13) 

then intuitively drree constitutes an estimate of the average free distance for a 

random time-varying convolutional code. Furthermore, the following theorem 

gives a lower bound on free distance: 

Theorem 4.3 There exists an (n, k) time-varying convolutional code wz"th con-
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straint length K and free distance drree satisfying 

dfree 

LA;~ 1. 
i=O 

Proof. The sum L.ff:0• A; must be greater than or equal to 1 for any time-varying 

code of given rate and constraint length if drree is the corresponding maximum 

free distance. Since Ad is the average of Ad in the ensemble of time-varying 

convolutional codes, the theorem follows. I 

This lower bound guarantees the existence of at least one time-varying code 

such that the free distance is bounded below. We can easily see that the lower 

bound is not larger than drree· It will become clear that the bound in Theorem 

4.3 is Gilbert-like if we consider its analogy for binary block codes. For random 

( n, k) block codes, (~) /2n-k is the average number of codewords of weight d. The 

inequality L.f =o Ai ~ 1 is hence equivalent to 

which is just the Gilbert-Varshamov bound for block codes except that the upper 

limit of the summation should be d - 1 for the bound. 

Costello [6] obtained a Gilbert-type asymptotic lower bound on free distance 

for nonsystematic time-varying convolutional codes: 

1
. dfree > R(1-2R-l) 
Im --

K-+oo nK - H(2R-l) + R - 1' 
(4.14) 

where H(x) is the binary entropy function. Based on random coding arguments, 

Forney [8] gave a bound that is not restricted to linear convolutional codes. For 

the binary case, it says that there exists an (n, k) trellis code with memory m and 

free distance drree satisfying 

(4.15) 
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where () is a constant independent of m. It is shown in [8] that asymptotically 

(i.e., as m -+ oo), the bound (4.15) can be put in Costello's form (4.14). The 

following theorem is about the asymptotic behavior of the bound in Theorem 4.3. 

Theorem 4.4 Asymptotically, the bound in Theorem 4.3 can be put in Costello's 

form (4.14). 

Proof. We only need to show that the lower bound in Theorem 4.3 can be put 

in the form of Forney's bound (4.15). By using the Chernoff bound and the 

generating function A(x) of Ad, 

drree 00 L Ai ::; L Aie-a(i-drree) = eadfree A( e-a)' ( 4.16) 
i=O i=O 

Thus, the bound in Theorem 4.3 can be given by 

where the minimization occurs because we want the inequality in ( 4.16) as tight 

as possible. The above inequality can be rewritten as 

drree 2:: max _!._ (in ( 
1 

) ) . a2o a A e-a 
( 4.17) 

Using (4.12), we obtain 

nK[ln 2 - ln(l + e-a)] - ln(2k - 1) 

(4.18) 

K-l(l+e-a)nj < 
I: z -
j=l 

(4.19) 
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The inequality (4.19) will become an equality as K--+ oo. For (4.18) to be valid, 

we must have 
K-1 (l + e-a) nj 

(2k - 1) I: < 1, 
j=l 2 

and by (4.19) this yields 

2k < 1 (1+e-a)n 
2 ' 

which is equivalent to the required condition in the maximization domain of (4.15): 

(4.20) 

If we set 0, a constant independent of m, to be 

0 = n[ln2-ln(l+e-a)]-ln(2k-1) 

+ln{l-(2k-1) (1+2e-a)n /[1-(1+2e-a)n]}' 

then from (4.18), 

(4.21) 

which will become an equality as m--+ oo. Combining (4.17), (4.20), and (4.21), 

we have put the bound in Theorem 4.3 into Forney's form (4.15). I 

Based on the idea in [8], a more general lower bound on free distance for trellis­

coded modulation schemes was derived in [9] [10]. The bound can be applied to 

time-varying convolutional codes. For the binary case, it says that there exists 

an (n, k) time-varying convolutional code with memory m and free distance dfree 

satisfying 

where 

d ( 
E(a,p) O[E(a,p)]) 

free 2'.: max m + , 
E(a,p)>kln2 a a 

a>O 
O'.S'.p9 
p(y) 

E (a, p) = - ln [z= p(y) [ L p(y') e-ad(y,y')] Pl l/ P , 

yES y'ES 

(4.22) 

(4.23) 
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and 

( 4.24) 

The signal set S consists of all binary n-tuples, and p(y) is the probability of a 

particular n-tuple y; also d(y, y') denotes the Hamming distance between y and 

y'. Compared with Forney's bound ( 4.15), this bound has extra parameters p and 

p(y) in the maximization domain. However, we find that if E(a,p) is maximized 

by equiprobable signals, i.e., p(y) = 1/2n for ally E S, then 

E(a,p) 

n[ln 2 - ln(l + e-a)] 

regardless of what the value of p is. Since O[E( a, p)] is independent of m, we can 

hence put the bound (4.22) in Forney's form if E(a,p) is maximized by equal 

probabilities. For this case, the asymptotic behavior of the bound (4.22) will 

be the same as Costello's bound ( 4.14). We do not need the extra condition 

p = 1 as required in [9]. Although it is claimed in [9] that BE(a,p)/ap < 0 

and the asymptotic form of the bound (4.22) is tighter than Costello's bound 

(4.14), actually we will not get improvement by having p if E(a,p) is maximized 

by equal probabilities p(y). We conjecture that the asymptotic behavior of the 

bound ( 4.22) will always be the same as Costello's bound ( 4.14). 

In [9] another free distance lower bound is derived on expurgated sets of codes 

that meet some "adjacent distance" requirements. This bound has the same 

asymptotic behavior as the random coding bound ( 4.22) but gives better results 

for small constraint lengths. The random coding bound in [9] (Equation (4.22)), 

the expurgated bound in [9], our lower bound in Theorem 4.3, dfree in (4.13), and 
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K rand. bound 1 exp. bound 2 lower bound 3 drree maxdrree 4 

3 1 5 3 3 5 
4 2 5 4 4 6 
5 2 5 4 5 7 
6 3 6 5 5 8 
7 4 6 6 6 10 
8 4 7 7_ 7 10 
9 5 8 7 8 12 

10 6 8 8 9 12 
11 6 9 9 9 14 
12 7 10 10 10 15 
13 8 10 10 11 16 
14 8 11 11 12 16 
15 9 12 12 13 18 
16 10 12 13 13 19 

1 Random coding bound in [9]. 
2 Expurgated bound in [9]. 
3 Lower bound in Theorem 4.3. 
4 Maximum free distance for noncatastrophic fixed codes [11]. 

Table 4.3: Lower bounds on free distance for (2, 1) convolutional codes. 

the maximum drree of fixed noncatastrophic codes for (2, 1) and (4, 1) convolutional 

codes are listed in Table 4.3 and 4.4. For small constraint lengths, our lower 

bound is better than the random coding bound in [9] but slightly worse than the 

expurgated bound in [9]. As K increases, our lower bound becomes closer to the 

expurgated bound in [9]. It should be noted that either the random coding bound 

or the expurgated bound in [9] involves maximization over several parameters, 

while our lower bound is simpler and requires only computation of series expansion 

of a known rational function, which can be done by either long division or iterative 

methods. 
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K rand. bound 1 exp. bound 2 lower bound 3 drree maxdfree 4 

3 4 9 6 10 10 
4 5 10 8 11 13 
5 7 13 10 13 16 
6 8 14 12 14 18 
7 10 16 14 16 20 
8 12 17 16 18 22 
9 13 19 17 20 24 
10 15 20 19 22 27 
11 16 22 21 23 29 
12 18 23 23 25 32 
13 20 25 25 27 33 
14 21 27 26 29 36 

1 Random coding bound in [9]. 
2 Expurgated bound in [9]. 
3 Lower bound in Theorem 4.3. 
4 Maximum free distance for noncatastrophic fixed codes [11]. 

Table 4.4: Lower bounds on free distance for (4, 1) convolutional codes. 

4.5 Average Weight of Information Bits for Fundamental Paths 

In this section we give a similar random coding analysis for the total Hamming 

weight of information bits for fundamental paths at each distance. The complete 

path enumerator [1] is defined by 

- ~~~ d l i A(x,y,z) - ~~~Ad,l,ix y z, 
d l i 

where Ad,l,i is the number of fundamental paths of distanced, length l, and input 

weight i. In principle we can compute A(x, y, z) by the same method in obtaining 

A(x). The complete path enumerator A(x,y,z) is in general a rational function 
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with integer coefficients: 

A( ) 
_ N(x,y,z) 

x,y,z - ( )" D x,y,z 

Define Ed = 2:1 Li iAd,l,i, the total number of information bits for fundamental 

paths at distance d. Then the generating function E(x) of Ed is 

E(x) BA(x, y, z) I 
az y=z=l 

Nz(x, l, l)D(x, 1, 1) - N(x, l, l)Dz(x, 1, 1) 
D 2 (x, 1, 1) 

Nz(x, l, l)D(x) - N(x)Dz(x, l, 1) 

D2 (x) (4.25) 

where N(x) and D(x) are the numerator and the denominator of A(x), and the 

subscript z means partial differentiation with respect to z. The values Ed are 

important because for maximum-likelihood decoding the bit error probability can 

be bounded above by 

P, < _!. BA(x,y,z)I = _!.E(x)I 
b - k az k = ' X="f,y=z=l X "f 

(4.26) 

where / is the channel's Bhattacharyya parameter [1 ]. It is important to note 

that the bound diverges at 0:- 1 , as does that for the first-event error probability. 

Now we want to find the average Ed in the ensemble of all ( n, k) time-varying 

convolutional codes of constraint length K. Let T,,,i denote the number of fun-

damental paths of length l and input weight i. By using a uniform probability 

measure, 

Thus, 

- (nl) T,, i Ad,l,i = d 2~1 • 

00 00 

Ed LL iAd,l,i 
l=O i=O 

00 (nl) 00 

~ _d_~iTi ·. 
L 2n1 L l,i 

l= J ~l i=O 
(4.27) 
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The generating function T(y, z) of T1,i is found in Appendix 4.A. Define 

00 

Si= Li1i,i· (4.28) 
i=O 

Then its generating function is 

S(y) = 8T(y, z) I 
az z=l 

Similar to Section 4.2, S(y) can be partial-fraction expanded to 

S(y) = L ei + i , K-1 [ j l 
i=l 1 - riy (1 - riy) 2 

where ri, i = 1, 2, ... , K-1, are the reciprocals of the roots of 1-(2k-1) I:f=,J.1 yi = 

0 and 

Therefore, 

1 d I ei = -- - [S(y)(l - riy)] , 
Tj dy -1 y=r . . 

fi = S(y)(l - riy)2'y=r:-1. . 
K-1 

S1 = L [eid + fi(l + l)d] · 
i=l 

( 4.29) 

(4.30) 

(4.31) 

Substituting (4.28) and (4.31) back to (4.27) and using the same technique in 

Section 4.2, we finally obtain the following theorem: 

Theorem 4.5 For K > 2, 

-:Z::Z: ei+i_u_ 1 K-1 { f, ( i:: ) d 

n _§_ 2-8 i=l o:on=r; 1 2 

+- -- -- + . d --1 [ Ji ( {; ) d+I Ji ( /5 ) dl } 
n 1 - % 2 - /5 (l _ ~)2 2 - {; ' 

whereri, i = 1,2, ... ,K-1, are the rec£procals of the roots ofl-(2k-l)L:f=,J.1 yi = 

0 and ei, Ji are given in (4.29} and (4.30}, respect£vely. 
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Hence for large d, 

ifi ifi 
( )

d ( )d B d ~ f31 
2 

_ ifi + f32 • d 
2 

_ \IT , 

where r is the reciprocal of the least-magnitude root of 1 - (2k - 1) I:f=,11 yi = 0. 

This result can be expected from the expression of (4.25). 

Similar to A(x), the generating function B(x) of Ed is found by 

4.6 An Example of the Behavior of Convolutional Codes at Low Signal-

to-Noise Ratios 

In this section we shall give an interesting example about the behavior of con-

volutional codes at low signal-to-noise ratios. In [12] we conjecture that for a given 

code rate, the smaller the value of the dominant root, the better the convolutional 

code will perform at low signal-to-noise ratios. However, after extensive computer 

simulations, the conjecture is proved to be false by the following counterexample. 

Here we have three (2, 1) convolutional codes all with constraint length 5: Codes 

A, B, and C. Their generator polynomials, free distances, dominant roots, and 

distance spectrums are shown in Table 4.5. 

Results of computer simulations for these three codes with Viterbi decoding 

(with 32-bit truncation length) on an unquantized AWGN channel with binary 

phase-shift keying (BPSK) are illustrated in Figure 4.3. The bit error probability 

Pb is plotted as a function of the bit signal-to-noise ratio Eb/ N0 in decibels. Shown 

also in Figure 4.3 is the no-coding curve. Code A has the largest free distance 
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Code A Code B Code C 

gi, gz 11001, 11011 10001, 11111 10001, 10101 
drree 7 6 5 

a 2.30034 2.34632 2.32637 

d Ad Ed Ad Ed Ad Ed 

5 0 0 0 0 1 1 
6 0 0 1 2 2 4 
7 2 4 1 1 4 12 
8 4 12 3 10 8 32 
9 6 26 5 15 16 80 
10 15 74 12 52 34 196 
11 37 205 27 123 75 481 
12 83 530 61 346 170 1192 
13 191 1369 144 926 392 2984 
14 442 3504 334 2492 912 7520 
15 1015 8849 789 6675 2129 18995 
16 2334 22180 1847 17594 4973 47924 
17 5371 55235 4347 46091 11609 120509 
18 12353 136720 10203 119278 27074 301708 
19 28414 336732 23963 306475 63084 751860 
20 65364 825768 56246 781096 146889 1865284 
21 150359 2017233 132005 1978601 341870 4608678 
22 345876 4911042 309773 4983836 795453 11345518 
23 795636 11919854 726856 12494136 1850572 27840404 
24 1830234 28852304 1705495 31191560 4304973 68123240 

Table 4.5: Distance spectrums for Codes A, B, and C. 



1. 

-1 
10 

-2 

-3 
10 

-4 
10 

-1 

Code A 
Code B 
Code C 

- 105 -

No coding----

0. l 2 3 4 

Figure 4.3: Performance curves for Codes A, B, C, and no coding. 
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among the three codes, so it will perform the best at sufficiently high signal-to­

noise ratios. Note that Code C outperforms the other two codes for Eb/No less 

than 0.8 dB, although it has a larger dominant root than Code A (and has the 

smallest free distance). This hence gives a counterexample to the conjecture in 

[12]. Also note that Code C has both Ad and Ed larger than Code A for all d. 

Regarding Ad and Ed at free distance, Code A has A 7 = 2 and B 7 = 4, which are 

larger than Ae = 1 and Be= 2, respectively, for Code B. However, for Eb/No less 

than 1.8 dB, Code A performs better than Code B, showing that the so-called 

"error coefficient" at free distance (or the number of "nearest neighbors") is not 

a good criterion for the performance of convolutional codes at low signal-to-noise 

ratios. 

The transfer function bounds (4.2) and (4.26) diverge at Eb/No= In a/ R ~ 2.2 

dB for these three codes. This example indicates that, at signal-to-noise ratios 

where the transfer function bound diverges, conclusions drawn from the bound 

cannot be used to estimate or predict the code performance. 

4. 7 Extensions 

In this chapter we only deal with binary convolutional codes, and hence an 

immediate generalization of this work is to general q-ary convolutional codes. 

Another possibility is extension to trellis-coded modulation schemes, which find 

important applications to band-limited channels. But then the distance measure 

between codewords is Euclidean distance (real number) instead of Hamming dis­

tance (integer), and the codes are nonlinear. Nevertheless, we think that a similar 

random coding analysis can be done for trellis-coded modulation schemes. 
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Appendix 4.A Derivation of (4.5) 

In this appendix we shall derive T(y) given in (4.5) by extending the argument 

in [2, Sec. 4.6], where T(y) for any (n, 1) code is found. Actually we shall find 

T (y, z) first, where the z terms describe the Hamming weights of the corresponding 

input bits. Consider any (n, k) convolutional code of constraint length K with 

2k(K-I) states, whose encoder has k shift registers all of the same length K. Then 

T (y, z) is independent of n and the generator polynomials. It is a function only 

of k and the constraint length K. Since we shall use recursions on K to get 

the expression for T(y, z), we change the notation to TK(Y, z) to emphasize the 

constraint length. We claim that the following recursion holds, which is the same 

as [2, (4.6.2)]: 

(4.32) 

Consider all 2k -1 states with a branch into the all-zero state in the state diagram. 

Suppose that all paths reaching any one of these states are absorbed. Then the 

generating function enumerating those paths is just TK-i(Y, z) because we may 

ignore the initial inputs in all shift registers as if we had a code of constraint 

length K - 1. If the following input is all-zero, then we get a fundamental path 

and this case constitutes the first term of ( 4.32). If the following input is anything 

other than all-zero, then we are in the same situation as leaving the all-zero state. 

These paths are enumerated by TK(Y, z), justifying the second term of ( 4.32). 

The initial condition for ( 4.32) is 

because any input other than all-zero produces a fundamental path of length 1 for 
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a code of constraint length 1. Then from (4.32) by induction we can easily show 

[ ( 1 + Z) k - 1] yK ( 1 - y) 
T (yz)=~~~~~~~~~~ 

K ' 1 - y { 1 + [ ( 1 + Z) k - 1] ( 1 - yK -I)}" 

We therefore obtain the expression for TK(y): 

( 2k - 1) yK ( 1 - y) 
TK(Y) = TK(Y, z) lz=l = l _ 2ky + (2k _ l)yK, 

which reduces to [2, (4.6.6)] fork= 1. 

Appendix 4.B Derivation of ( 4. 7) 

In this appendix we prove that Q(y) and its derivative Q'(y) are relatively 

prime for K > 2, where Q(y) = 1- 2ky + (2k - l)yK, by showing that 

gcd ( Q(y), Q'(y)) # 1 if and only if K = 2 and k = 1. 

If K = 1, then Q(y) = 1 - y, which is squarefree. For K 2: 2, Q'(y) = 

K(2k - l)yK-l - 2k. We can now find their g.c.d. by Euclid's algorithm. By long 

division, 

A 1 A I ( 2k ( K - 1) ) Q(y) = ky. Q (y) + - K y + 1 . 

Hence gcd(Q(y), Q'(y)) # 1 holds if and only if 

2k(K - 1) I A - K y + 1 Q'(y), 

or equivalently, 

which yields 

(4.33) 

K cannot be odd and in fact ( 4.33) holds if and only if K = 2 and k = 1. Suppose 

K = p2t, where pis an odd integer. Then (4.33) becomes 

( 4.34) 
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As p is odd, gcd(pK, 2kK) = 1. It follows that for (4.34) to hold we must have 

PKl(p2t - l)K-1 . However, p A(p2t - l)K-l unless p = 1. Substituting K = 2t 

back into (4.34), we obtain 

which implies 

t = k and 2t - 1=1, 

so t = k = 1 and K = 2. 



- 110 -

References 

[1] R. J. McEliece, The Theory of Information and Coding. Reading, MA: 

Addison-Wesley, 1977. 

[2] A. J. Viterbi and J. K. Omura, Principles of Di'gital Communication and 

Coding. New York: McGraw-Hill, 1979. 

[3] E. C. Titchmarsh, The Theory of Functi'ons. London: Oxford University 

Press, 1939. 

[4] S. Lin and D. J. Costello, Jr., Error-Control Coding: Fundamentals and Ap­

pli'cati'ons. Englewood Cliffs, NJ: Prentice-Hall, 1983. 

[5] G.D. Forney, Jr., "Structural analysis of convolutional codes via dual codes," 

IEEE Trans. Inform. Theory, vol. IT-19, pp. 512-518, July 1973. 

[6] D. J. Costello, Jr., "Free distance bounds for convolutional codes," IEEE 

Trans. Inform. Theory, vol. IT-20, pp. 356-365, May 1974. 

[7] A. J. Viterbi, "Convolutional codes and their performance in communica­

tion systems," IEEE Trans. Commun. Technol., vol. COM-19, pp. 751-772, 

Oct. 1971. 

[8] G. D. Forney, Jr., "Convolutional codes: II - Maximum-likelihood decod­

ing," Inform. Contr., vol. 25, pp. 222-266, 1974. 

[9] M. Rouanne, "Distance bounds and construction algorithms for trellis codes," 

Ph.D. dissertation, University of Notre Dame, Notre Dame, IN, 1988. 



- 111 -

[10] M. Rouanne and D. J. Costello, Jr., "A lower bound on the minimum Eu­

clidean distance of trellis-coded modulation schemes," IEEE Trans. Inform. 

Theory, vol. IT-34, pp. 1011-1020, Sep. 1988. 

[11] K. J. Larsen, "Short convolutional codes with maximum free distance for 

rates 1/2, 1/3, and 1/4," IEEE Trans. Inform. Theory, vol. IT-19, pp. 371-

372, May 1973. 

[12] C.-C. Chao and R. J. McEliece, "On the path weight enumerators of convo­

lutional codes," Proc. 26th Annual Allerton Con/ ere nee on Communz"cation, 

Control, and Computing, Monticello, IL, Sep. 1988, pp. 1049-1058. 



- 112 -

CHAPTER 5 

ERROR STATISTICS OF VITERBI DECODING AND 
A MARKOV CHAIN MODEL 

5.1 Introduction 

The Viterbi algorithm is an effective way of decoding convolutional codes. It 

recursively finds the maximum-likelihood path through the code's trellis diagram. 

One of the characteristics of the Viterbi algorithm is that the decoding errors 

tend to occur in clusters or bursts. In some applications, burst error statistics 

can be important design considerations. One example is a concatenated coding 

system in which the inner convolutional code is Viterbi decoded and the outer 

code (sometimes interleaved) should correct most of the Viterbi decoder error 

bursts. In this chapter, a Markov chain model for the burst error statistics of a 

Viterbi decoder is developed. 

For simplicity, only ( n, 1) convolutional codes are considered here; the results 

are easily generalized to ( n, k) codes. The notation ( n, 1, K) g1 , g2 , ••• , gn denotes 

a rate 1/n convolutional code with constraint length Kand octal generator poly-

nomials gi, g2 , ••• , gn. Consider a sequence of Viterbi decoder output bits of the 

form 
B 
~ 

cc · · · c exx · · · xe cc · · · c 
'---v-' '-----v-'' 

K-1 K-1 

where the letter c represents a correctly decoded bit, e represents a decoder bit 

error, and x is either c or e. If the string xx·· · x does not contain K -1 consecutive 
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e's, then the string exx · · · xe is called a burst of length B. The string of e's between 

two bursts is called a guardspace (or wait£ng time) with length G 2: K - 1. 

It is shown in [1] that the average burst length distribution for time-varying 

convolutional codes can be upperbounded by a geometric distribution. In [2] ge­

ometric distributions are used to model both the burst length and guardspace 

length distributions. In [3] [4] Best shows that any convolutional coding scheme 

with maximum-likelihood decoding on a discrete memoryless channel can be mod- . 

elled exactly by a finite state Markov chain (a metric-state diagram), and hence 

the Viterbi decoder output burst and guardspace lengths are distributed asymp­

totically (but not exactly) geometrically. Although this approach yields exact 

Viterbi decoder output characteristics, the excessive amount of computation re­

quired makes it infeasible for practical codes. For example, the (2, 1, 3) 3, 5 convo­

lutional code on a binary symmetric channel has a 104-state Markov chain. The 

(approximate) Markov chain model described in this chapter has the same 2K-I 

states as the encoder. The resulting burst length distribution is asymptotically 

geometric and the guardspace length is distributed (exactly) geometrically. 

In Section 5.2, we review some results from [3] [4]. A Markov chain model 

to approximate Viterbi decoder output error statistics is developed in Section 

5.3. In Section 5.4, our Markov chain model is validated by computer simulations 

and it is compared with the geometric model. Based upon distance measures for 

burst length and guardspace length distributions, our Markov chain model is a 

better approximation to the actual simulation of the Viterbi decoder than the 

geometric model in [2]. However, both models closely approximate the overall 

decoder output error probabilities of a concatenated Reed-Solomon/ convolutional 

coding system. 
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burst 

guards pace 

Figure 5.1: Markov chain for the (2, 1, 2) 1, 3 convolutional code on a binary 
symmetric channel. 

5.2 Review of Best's Results 

In [3] [4] a method is presented by which any convolutional coding scheme with 

maximum-likelihood decoding on a discrete memoryless channel can be modelled 

as a finite state Markov chain (a metric-state diagram) whose transition proba-

bilities can be computed. Some states in the Markov chain correspond to error 

bursts, the others to guardspaces. An example of the Markov chain is illustrated in 

Figure 5.1 for the (2, 1, 2) 1, 3 convolutional code on a binary symmetric channel. 

The chain shown in Figure 5.1 is actually a metric-state diagram after merging 
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and deleting redundant nodes. There are two states 0 and 1 in the encoder's state 

diagram and five effective metrics A, B, C, D, and E for Viterbi decoding, which 

are [ 0 2 ], [ 0 1 ], [ 0 0 ], [ 0 -1 ], [ 0 -2 ], respectively. The notation 

CO corresponds to metric C and state 0. All the transition probabilities in Fig-

ure 5.1 can be calculated explicitly in terms of the channel's crossover probability. 

Based on this model, the first-event error probability, the bit error probability, the 

burst length distribution, and the guardspace length distribution may be derived 

exactly. 

For this example, the burst length distribution is 

where o:0 and a 1 are scaling factors, and IA.al > IA.1 1. Hence for large b, P(B = b) 

is approximated by the dominant term o:0 A.g, which is a geometric distribution. 

Similarly, the guardspace length distribution is 

where {30 and /31 are scaling factors, and 1µ01 > lµ1 I. The guardspace length 

distribution is approximated by the geometric distribution (30µ6 for large g. Since 

this method can be applied in principle to any convolutional code with Viterbi 

decoding on any discrete memoryless channel, the burst length and guardspace 

length distributions will be asymptotically geometrically distributed: 

and 

P(G = g) = Lf3iµ~. 
j 

Although the above analysis is exact, the number of the nodes in the model 

grows enormously with the code's constraint length, which makes the method 

infeasible for practical codes. 
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5.3 A Markov Chain Model 

The output of the Viterbi algorithm is a maximum-likelihood path traversing 

through the code's state diagram. Our model approximates the Viterbi decoder 

by a finite state Markov chain with the same configuration as that of the code's 

state diagram. This model is not strictly accurate, since the decoding state at time 

unit i depends not only on the decoding state at time unit i - 1 and the channel 

noise but also on the metrics at time unit i -1. However, computer simulations of 

decoder error statistics in the next section show that this approximation is good 

for some practical applications. Hereafter, the "Markov chain model" corresponds 

to the model developed in this section. 

An example of the Markov chain model for the (2, 1, 3) 3, 5 convolutional code 

is shown in Figure 5.2. The four decoder states are 0, 1, 2, and 3. The most recent 

bit in the encoder shift-register is the last bit in the state's binary representation. 

The Pij is the transition probability that the decoder will go to state J. at the next 

time unit, given that it is presently in state i . The transitions not shown all have 

probability 0. 

All the output statistics of the Markov chain model can be computed from the 

transition probabilities. In the following we compute some of them: the bit error 

probability, the guardspace length distribution, and the burst length distribution. 

Suppose a (n, 1, K) convolutional code is used and the all-zero code sequence is 

transmitted. (Since a convolutional code is linear, on a symmetric channel the 

decoding errors are independent of the transmitted code sequence.) The model 

has 2m states called 0, 1, ... , 2m - 1, where m = K - 1 is the code's memory. 

5.3.1 Bit Error Probability 

Let P = [Pii] be the model's transition probability matrix. Then the column 
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Poo 

p33 

Figure 5.2: Markov chain model for the (2, 1, 3) 3, 5 code. 

vector of stationary probabilities of the states, 7f = [ 7fo 7f1 · • · 7f2m_1 JT, is just 

the eigenvector of pT with eigenvalue 1: 

7f=PT7f. 

The bit error probability Pb is the sum of the stationary probabilities of the states 

whose binary representations have a 1 in the last bit: 

m 

Pb = L 7rzi-1. 

i=l 
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5.3.2 Guardspace Length Distribution 

The guardspace length G ~ m and is geometrically distributed: 

P(G = g) = { Po1Pbom, for g ~ m, 
0, otherwise. 

The average guardspace length is therefore 

- 1 
G=-+m-l. 

Poi 

5.3.3 Burst Length Distribution 

Let x(i), i = 0, 1 ... , 2m - 1, be eigenvectors of the transition probability ma­

trix P with corresponding eigenvalues Ai· Also let y(i), i = O, 1, ... , 2m - 1, be 

eigenvectors of pT with corresponding eigenvalues Ai· Assume all the eigenvalues 

are distinct. Define u1 to be the probability that a path starts from the zero state 

and arrives at the zero state (with possible intermediate returns) in l branches. 

For convenience, set u0 = 1. From [5], for l ~ 1, u1 is given by 

(5.1) 
i=O 

where 

1 
Ci= '\'"'zm-1 (i) (i) 

L-j=O xi Yj 

is a normalization factor and x}i), yy), J = 0, 1, ... , 2m - 1, are components of x(il, 

y(il, respectively. Since u1 must remain bounded for all l, it follows that /Ai/ ::::; 1 

for all i. The matrix P always has an eigenvalue 1, so without loss of generality 

we may put Ao = 1. All the other eigenvalues must satisfy /Ai/ < 1. Now define f 1 

to be the probability that a path starts from the zero state and arrives at the zero 

state for the first time in l branches. It will be convenient to let Jo = 0. From [5], 

!1 and u1 are related by 

for l ~ 1, (5.2) 
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or, equivalently, their generating functions F ( z) and U ( z) satisfy 

1 
F(z) = 1 - U(z). 

For our model, fi = u1 = p00 and f 2 = is = ... = fm = 0. From [5], the average 

f is 

- 00 1 
t = L z tz = (a) (a) · 

l=O CoXo Yo 
(5.3) 

Since by the definition in Section 5.1, the length of a burst is m branches 

shorter than that of a fundamental path through the state diagram, the burst 

length distribution is 

{ 

fb+m for b 2: 1, P(B = b) = 1-poo' 
0, otherwise, 

(5.4) 

where 1/(1 - p00 ) is a normalization factor. From (5.1), (5.2) and (5.4), we can 

compute the burst length distribution, which is asymptotically geometric. The 

average burst length is 

00 00 bf 
B = LbP(B = b) = L b+m 

b=O b=I 1 - Pao 

where f is given in (5.3). 

5.4 Simulation Results 

f - m + ( m - 1) Pao 

1- Pao 

In this section, our Markov chain model is validated by computer simulations 

and it is compared to the geometric model by using distance measures for burst 

length and guardspace length distributions, and output error probabilities of con­

catenated Reed-Solomon/convolutional coding schemes. The description of the 

geometric model proposed in [2] is given in Appendix 5.A. 
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5.4.1 Distance Measure 

A function p is a distance function for probability distributions [6] if p(F, G) 

is defined for every pair of F, G of probability distributions and has the following 

three properties: 

p(F, G) 2: 0 and p(F, G) = 0 if and only if F = G, 

p(F, G) = p(G, F), 

and finally the triangle inequality 

Two types of distance functions will be used here to measure the closeness of two 

distributions. The total distance TD is 

00 

TD(F, G) = L /Ii - gi/, 
i=O 

where Ji and gi are densities of discrete probability distributions F and G, respec-

tively. It satisfies 

0 :S TD(F,G) :S 2. 

The maximum distance MD is 

MD(F, G) = m?-X /Ji - gi/, 
i 

and it satisfies 

0 :S MD(F,G) :S 1. 

Computer simulations of the Viterbi software decoder, the Markov chain model, 

and the geometric model on a unquantized AWGN channel have been done for 

the (2, 1, 7) 177, 133 convolutional code and the (2, 1, 5) 23, 35 convolutional code. 

First, the Viterbi software decoder generates parameters, at several different bit 
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signal-to-noise ratios needed for both models, such as transition probabilities for 

the Markov chain model, and the average burst length, the average guardspace 

length, and the burst error density for the geometric model. Then distributions 

of the burst length and the guardspace length are computed for both models. 

Finally, other simulations for the Viterbi software decoder 1 produce statistics for 

the simulated burst and guardspace length distributions. 

The burst length distribution and the guardspace length distribution are com-

pared from three different sources: the Viterbi software decoder, the Markov chain 

model, and the geometric model, by using TD and MD measures. The results 

are listed in Tables 5.1, 5.2, 5.3, and 5.4. For the burst length distribution, 

the Markov chain model gives a better approximation to the actual data from the 

Viterbi software decoder than the geometric model for both convolutional codes 

at all bit signal-to-noise ratios tested. For the guardspace length distribution, the 

Markov chain model and the geometric model are almost the same since both 

result in geometric distributions. Note that, at relatively high bit signal-to-noise 

ratios (above 2.5 dB for the (2, 1, 7) code and 3.0 dB for the (2, 1, 5) code), the 

geometric distribution is not a good approximation for the guardspace length. 

This is because at those bit signal-to-noise ratios, short guardspaces are much 

less probable than one might expect from a geometric distribution. Based on the 

distance measure, we conclude that, for Viterbi burst error statistics, our Markov 

chain model performs better than the geometric model. 

5.4.2 Concatenated Coding Scheme 

One application of the Markov chain model is that, when different concate-

nated schemes (all with an inner Viterbi decoder) are studied, one may use the 

1 Here different seeds (from those of former simulations) in the random number generator of the 
Viterbi software decoder are used. 
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Eb/No, M&G M&S G & S 
dB TD MD TD MD TD MD 

0.0 0.09590 0.04013 0.1824 0.04451 0.2318 0.08464 
0.5 0.1245 0.05222 0.1618 0.03350 0.2235 0.08572 
1.0 0.1415 0.05982 0.1350 0.02276 0.2192 0.08258 
1.5 0.1562 0.06139 0.1557 0.03695 0.2555 0.09834 
2.0 0.1581 0.06008 0.1010 0.02735 0.2310 0.08743 
2.5 0.1737 0.05533 0.1050 0.02225 0.2317 0.05748 
3.0 0.2002 0.04970 0.1629 0.03347 0.2485 0.07204 

Table 5.1: Distance measure of burst length distributions for the (2, 1, 7), 171, 133 
convolutional code. (S: Viterbi software decoder, M: Markov chain model, G: 
Geometric model.) 

Eb/No, M&G M&S G&S 
dB TD MD TD MD TD MD 

0.0 0.1778 0.04105 0.09617 0.02019 0.2025 0.05009 
0.5 0.2114 0.04873 0.09874 0.01809 0.2334 0.05211 
1.0 0.2516 0.05837 0.08217 0.01510 0.2637 0.05040 
1.5 0.2971 0.07078 0.08021 0.02015 0.2989 0.05845 
2.0 0.3425 0.08406 0.06660 0.01018 0.3354 0.07387 
2.5 0.4010 0.09831 0.06406 0.01045 0.3914 0.09594 
3.0 0.4636 0.1308 0.08732 0.01334 0.4462 0.1205 
3.5 0.5667 0.1750 0.1572 0.03529 0.5356 0.1567 
4.0 0.6264 0.1739 0.2222 0.08532 0.5732 0.1849 

Table 5.2: Distance measure of burst length distributions for the (2, 1, 5) 23, 35 
convolutional code. (S: Viterbi software decoder, M: Markov chain model, G: 
Geometric model.) 
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Eb/No, M&G M&S G&S 
dB TD MD TD MD TD MD 

0.0 4.708e-6 1.368e-7 0.3062 0.04928 0.3062 0.04928 
0.5 4.816e-6 8.864e-8 0.3200 0.03973 0.3200 0.03973 
1.0 6.620e-6 6.752e-8 0.3519 0.03623 0.3519 0.03623 -
1.5 1.022e-4 4.946e-7 0.4437 0.02670 0.4438 0.02670 
2.0 3.869e-4 7.667e-7 0.5529 0.01674 0.5529 0.01674 
2.5 9.379e-4 6.171e-7 1.258 0.01362 1.258 0.01362 
3.0 l.47le-4 3.183e-8 1.907 0.02560 1.907 0.02560 

Table 5.3: Distance measure of gap length distributions for the {2, 1, 7) 171, 133 
convolutional code. (S: Viterbi software decoder, M: Markov chain model, G: 
Geometric model.) 

Eb/No, M&G M&S G&S 
dB TD MD TD MD TD MD 

0.0 8.689e-8 2.416e-9 0.1425 0.02420 0.1425 0.02420 
0.5 5.266e-7 9.657e-9 0.1542 0.01794 0.1542 0.01794 
1.0 l.610e-5 1. 775e-7 0.1850 0.01487 0.1850 0.01487 
1.5 l.305e-5 7.852e-8 0.2773 0.01148 0.2773 0.01148 
2.0 l.971e-5 5.756e-8 0.3270 0.005874 0.3270 0.005874 
2.5 4.262e-4 5.673e-7 0.4962 0.003859 0.4962 0.003858 
3.0 5.lOOe-4 2.800e-7 1.078 0.001656 1.078 0.001656 
3.5 3.024e-3 6.467e-7 1.797 0.01259 1.797 0.01259 
4.0 l.570e-3 1.888e-7 1.734 0.2254 1.736 0.2254 

Table 5.4: Distance measure of gap length distributions for the {2, 1, 5) 23, 35 
convolutional code. (S: Viterbi software decoder, M: Markov chain model, G: 
Geometric model.) 
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model to generate error sequences instead of simulating the Viterbi software de­

coder. The advantage is that large amounts of data can be generated quickly and 

inexpensively. For example, only about 2.2 minutes per million bits of computer 

time on a VAX 11/750 are needed for the Markov chain model of the (2, 1, 7) code, 

compared to 2.9 hours per million bits required for the Viterbi software decoder. 

Consider concatenated Reed-Solomon/convojutional codes on an unquantized 

AWGN channel. Monte Carlo software routines for the Markov chain model and 

the geometric model are used to generate Viterbi error sequences. (The required 

parameters for those two models are taken from simulations of the Viterbi software 

decoder as in last subsection.) Then concatenated Reed-Solomon word error and 

bit error probabilities are computed by using outputs from the Viterbi software 

decoder, the Markov chain model, and the geometric model. This is done for 

the (2, 1, 7) 177, 133 and (2, 1, 5) 23, 35 convolutional codes concatenated with 

the (255,223), (63,47), (31,23) Reed-Solomon codes with ideal interleaving or no 

interleaving. The computation of concatenated Reed-Solomon output word error 

and bit error probabilities is given in Appendix 5.B. 

Simulation results are shown in Figures 5.3 to 5.14, where the Reed-Solomon 

performance curves are plotted versus the concatenated bit signal-to-noise ratios. 

For all cases considered, both the Markov chain model and the geometric model 

give good approximations to the actual data from the Viterbi software decoder. 

In this regard, the geometric model seems advantageous because it is simpler than 

the Markov chain model. 

5.5 Discussion 

The required parameters for the Markov chain model (or the geometric model) 

are obtained from simulations of the Viterbi software decoder. It is useful to have 
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Figure 5.3: Performance statistics for the (2, 1, 7) 171, 133 convolutional code 
concatenated with the (255, 223) Reed-Solomon code, ideally interleaved. 
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Figure 5.4: Performance statistics for the (2, 1, 7) 171, 133 convolutional code 

concatenated with the (255, 223) Reed-Solomon code, noninterleaved. 



1. 

-1 
10 

-2 
10 

= 0 = ~ 
r.l 
r... 
0 -3 >- 10 t: = Ill 
< 
Ill 
0 = i:i.. -4 

10 

-s 
10 

-6 
10 

10 

1 

- 127 -

CONCATENATED 
REED-SOLOMON__/ 
BIT ERROR 
PROBABILITY 

+ VITERBI SOFTWARE DECODER 
Cl MARKOV CHAIN MODEL 
A GEOMETRIC MODEL 

2 

CONCATENATED 
REED-SOLOMON 
WORD ERROR 
PROBABILITY 

3 4 

Figure 5.5: Performance statistics for the (2, 1, 7) 171, 133 convolutional code 
concatenated with the ( 63, 4 7) Reed-Solomon code, ideally interleaved. 
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Figure 5.6: Performance statistics for the (2, 1, 7) 171, 133 convolutional code 
concatenated with the (63,47) Reed-Solomon code, noninterleaved. 
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Figure 5. 7: Performance statistics for the (2, 1, 7) 171, 133 convolutional code 
concatenated with the (31, 23) Reed-Solomon code, ideally interleaved. 
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Figure 5.8: Performance statistics for the (2, 1, 7) 171, 133 convolutional code 
concatenated with the (31, 23) Reed-Solomon code, noninterleaved. 
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Figure 5.9: Performance statistics for the (2, 1, 5) 23, 35 convolutional code con­
catenated with the (255, 223) Reed-Solomon code, ideally interleaved. 
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Figure 5.10: Performance statistics for the (2, 1, 5) 23, 35 convolutional code con­
catenated with the (255, 223) Reed-Solomon code, noninterleaved. 
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Figure 5.11: Performance statistics for the (2, 1, 5) 23, 35 convolutional code con­
catenated with the (63,47) Reed-Solomon code, ideally interleaved. 
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Figure 5.12: Performance statistics for the (2, 1, 5) 23, 35 convolutional code con­
catenated with the (63, 47) Reed-Solomon code, noninterleaved. 
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Figure 5.13: Performance statistics for the (2, 1, 5) 23, 35 convolutional code con­
catenated with the (31, 23) Reed-Solomon code, ideally interleaved. 
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Figure 5.14: Performance statistics for the (2, 1, 5) 23, 35 convolutional code con­
catenated with the (31, 23) Reed-Solomon code, noninterleaved. 
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approximate values for the transition probabilities for the Markov chain model 

analytically. Actually, the transition probability p01 can be upperbounded the 

same way as the first-event error probability. However, nothing similar is known 

for the other transition probabilities. 

Appendix 5.A Geometric Model 

A geometric model was proposed in [2] to model the Viterbi decoder burst 

error statistics. There are three parameters needed for the model: the average 

burst length B, the average guards pace length G, and the burst error density 0. 

The burst length is modelled as distributed geometrically according to 

P(B = b) = { q(l - q)b-1, for b 2:_ 1, 
0, otherwise, 

where q = 1/ B. Errors within bursts occur randomly with probability () (except 

that each burst begins and ends with an error). The guardspace length distribu­

tion is modelled as 

P(G = g) = { r(l - r)g-m, 
o, 

where r = 1/(G - m + 1). 

for g 2: m, 
otherwise, 

Appendix 5.B Computation of Reed-Solomon Error Probabilities 

Consider an (n, k) Reed-Solomon code with symbols from GF(2b) that corrects 

t = (n - k)/2 symbol errors. Suppose this code is used as an outer code in a 

concatenated coding system with a convolutional inner code. The Reed-Solomon 

input symbol error probability Vs is found by partitioning the Viterbi output bit 

sequences into disjoint b-bit sets and counting how many of the sets contain bit 

errors. A word error occurs when there are more than t (out of possible n) symbols 
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in error for a Reed-Solomon codeword. For the case of ideal interleaving, i.e., the 

symbols are interleaved at a sufficient depth so that symbol errors are independent 

at the Reed-Solomon decoder input, the word error probability is 

When more than t symbol errors occur, the decoder either detects the presence 

of more than t symbol errors but is unable to correct them, or miscorrects the 

received pattern into a codeword other than the transmitted codeword. Since 

the probability of decoder miscorrecting is very low [7] [8], assume the decoder 

can always detect the presence of more than t symbol errors. The Reed-Solomon 

output symbol error probability is then approximated by 

p ,._, ~ j_ (n) Vi(l - V )n-i 
81"'.' ~ ~ 8 S • 

i=t+1 n i 

If the bit error probability at the output of the Viterbi decoder is denoted by Vi, 

then the Reed-Solomon output bit error probability is approximately 

For the case of no interleaving, the Reed-Solomon output word error probabil-

ity is calculated by partitioning the b-bit sets at the input of the Reed-Solomon 

decoder into n-set blocks and counting how many of the blocks contain more than 

t sets in error. The bit error probability can be found by examining how many 

bit errors there are for those blocks with more than t sets in error. 
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