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ABSTRACT

This dissertation is concerned with the mathematical modelling of
01l recovery by steam injection using analytical techniques.

An integral method for generating approximate solutions to the one-
and two- (three-) dimensional steam injection processes is presented.

Due to the qualitatively different character of the problem the one- and
two- (three-) dimensional cases are examined separately.

The applicability of the method for the determination of the rate
of growth of the steam zone volume in one-dimensional systems is considered.
An extensive study of the heat transfer in the surroundings and the hot
Tiquid zone is carried out to compiement theone-dimensional implementation
of the technique. The resulting class of moving boundary problems and
their methods of solution are discussed in detail. The results obtained
are then combihed with the integral technique to derive upper and lower
bounds, asymptotic solutions and approximate solutions to the rate of
growth of the steam zone. The important physical parameters are identified
and their significance in the design of the process is outlined. In
particular, the very important effect of heat transport in the surroundings
and the hot liquid zone is fully accounted.

For two- (three-) dimensional systems, a more detailed version of the
integral method is developed to account for the effect of gravity segre-
gation in the determination of the steam front shape. A non;1inear partial
differential equation that describes the evolution of the steam front shape
in gravity dominated systems is derived. The significance of the various

physical parameters in the performance of a three-dimensional steam



v
injection process is discussed by providing a solution to the .equation
derived, in the 1imit of predominantly viscous flows.
A critical evaluation of the existing analytical models is presented
and the regions of their validity established. The potential of the
techniques devc1oped, particularly in the heat transfer area, to treat a

class of in-situ thermal methods is also clearly indicated.
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Chapter I. Introduction

The upsurge of reservoir engineering activity can be associated with
the year that the U.§. became a net importer of crude o0il: 1948. The
competition of relatively low cost foreign oil, together with the rising
cost of finding and developing new reserves, Tled the o0il industry to
increase its research efforts to improve recovery from existing fields.
Although these forces ;ti]] play a role, an awareness of the coming
hydrocarbon shortage has been a more dominant force, in recent years,
not only in improving recovery efficiencies but also in obtaining fluid
fuels from organic solids such as 0il1 shale and coal. The importance
attached to an increase in the low recovery efficiencieé (~ 30%), that
are so far obtained from the average 0il reservoir (Figure 1), is em-
phasized in a recent study by Doscher and Wise (1976), who concluded
that development of more efficient recovery schemes is seen to have com-
parable importance to exploration in frontier areas. Thus, they point
out that the erstwhile new frontier, now peaking out, Gulf of Mexico,
will contribute 6.3billion bbl of estimated ultimate crude oil while an
increase in recovery efficiencyvof only two percentage points would add
a reserve of slightly more than 8 biilion bbl.

During the production history of a newly discovered reservoir, the
various steps that are commonly followed are shown in a chronological
order in Figure 2. Initially, oil flows out of the reservoir under its
own pressure (or scie other inherent natural drive) until the production
rates are reduced to Tevels of insignificant recovery. Under natural

pressure (primary recovery), oil wells generally yield only about 20% of
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the 0il originally in place (OCIP). This yield can be further increased
to about 30% by the subsequent injection of water, in a secondary
recovery operation (waterflooding), that drives another portion of the
0il out of'the reservoir. Today, roughly half of all U.S. production
.pends on waterflooding [Bus. Week (1976)]. An estimated 70% of 0QIP
remains under the ground after the combined application of the above
conventional recovery techniques. A very considerable challenge then
exists to pinpoint factors that limit o0il recovery and to find solutions
that permit economic production of much of this unrecovered oil.

Although any improvement in production technology can lead to lower
operational costs and thus to increased oil recovery, a great deal of
research has been directed towards supplementary displacement processes
which offer improvement over conventional primary and secondary techniques.
To be of interest, such an "enhanced oil recovery (EOR)" process must
satisfy the following requirements: (1) It must have the capability for
mobilizing 011 that does not respond to conventional methods. (2) It
should provide a high volumetric sweep efficiency. (3) It must have an
economically attractive application. Currently, the vast majority of
EOR processes which satisfy these conditions are based on fluid injection.
To understand the growth and applicability of fluid injection processes,
we will briefly discuss the recognition and appreciation of factors con-
trolling unrecovered oil.

Unrecovered oil may be Teft within individual pores, within clusters
of pores containing relatively more 0il than adjacent portions of the
formation, and in bypassed volumes of the reéervoir. When the oil

within the pores is disconnected, it is trapped by capillary forces,



which in general correspond to pressure differences across the curved
interface between two inmiscible liquids, and are in turn affected by
the physical properties of the liquid and the rock. Low recovery resulting
from the bypassing of clusters of pores by an advancing front, is a conse-
quence of capillary trapping’and viscous fingerina (unstable dis-
placement due to inhomogeneities) and is more pronounced at higher values
of the oil/water viscosity ratio. On a much larger scale, unrecovered
0oil exists in regions that remain unflooded at the time the flood is
terminated. This gross bypassing is affected by the viscosity ratio,
gravity and capillary forces. A detailed description of these phenomena
can be found in any book sn fluid flow through porous media [e.g., Bear
(1972)]. For a concise literature review on the subject, the reader is
referred to Prats and Miller (1973).

The prime target of the fluid isijection based EOR processes is to
eliminate the forces that control unrecovered oil. There is currently
no exact procedure for predicting the magnitude of the above factors, for
any given rock,and there is no assurance that a particular fluid in-
jection will succeed in any one reservoir. But for any set of reservoir
conditions, there are some processes that are more likely to succeed
than others. Thus, depending on a combination of the reservoir charac-
teristics, geometry and location, oil properties and operational
availability, a variety of enhanced (tertiary) recovery methods have
been developed such as miscible (COZ) flooding, chemical (polymer or
surfactant) injection and thermal flooding (Figure 2). With the

exception of thermal methods, EOR production today exists on a small and
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rather experimental scale. A good overview of the present status of EOR
.processes,and their applications in laboratory and field tests, is pro-
vided by the above-mentioned article of Prats and Miller (1973). A very
considerable amount of research is still being conducted in the area of
enhanced recovery. These efforts, prompted by continuously increasing
concern about shrinking reserves and rising demand, aim, under optimal
conditions, to double the U.S. present proved reserves of 32.7 billion
bbl [Bus. Week {1976)]. (See also Figure 3.)

For the vast deposits of very heavy oils throughout the world,
thermal recovery is the most efficient if not the only practical, en-
hanced recovery method. Because of the low mobility of the oil in such
reservoirs, recoveries ;nd production rates are generally low. Even in
the early stages of the oil industry, it has been recognized that, due
to the strong temperature dependence of o0il viscosity (see Figure 4),
heating heavy crude oils would enormously increase their mobility and
significantly improve the performance of the recovery. With this
objective, a variety of thermal techniques have since been developed,
that can be generally classified into two broad categories:

(1) Those inwhich the heat is injected into the reservoir from an

external source.

(2) Those in which the heat is generated in situ.

External heat injection can be carried out in two ways. The first is
simple well heating to increase recovery rate, and consequently, the
economic 1ife of a well. The second method is the injection of a hot
fluid, such as hot water (hot waterflood) or steam (steam injection and

steam stimulation). The in situ method of hea. yeneration (in situ
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Figure 3. Potential EOR Rates from Known Fields.
Notes: 01l prices in 1976 constant dollars.
Recoveries calculated on 10% minimum rate of
return. Figures shown represent mean of expected
results. [Source: "tic facts", J. Pet. Tech.
(May 1977) 520.]
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combustion) involves injection of air (dry or wet) that burns a part of
the hydrocarbons in place to provide the necessary heat. Combustion
gases and a steam zone formed ahead of the combustion front displace oil
to the production well. (Figure 5)

Thermal recovery techniques are currently being conducted in many
parts of the world, including U.S., Canada, Venezuela and Holland. At
today's prices of crude oil, they are considered to be the most economical
EOR methods (see also Fig. 6). In numbers of 1973, at least 140,000 B/D,
or 15 percent of California's production was attributed to these recovery
processes. Steam stimulation (injection into and production from same
well) has been the most popular among thermal recovery processes. However,
experience has shown that the response to stimulation diminishes with
successive cycles. Consequently, steam drive (injection and production
at different wells) becomes of interest with decreasing economic
attractiveness of the stimulation phase. Currently, steam injection is
being applied on a commercial scale in California and Venezuela. By
contrast, commercial interest in in situ combustion has remained at a
relatively low level as compared to steam injection, although a modifi-
cation that involves injection of air and water (wet combustion) is still
receiving considerable industry attention.

From a fundamental viewpoint, the thermal recovery processes are
perhaps the most complex, since their description entails, in addition
to the usual hydrodynamic and interfacial phenomena common to other
displacement processes, a detailed accounting for thermal energy and
chemical reaction kinetics. These hydrodynamic, energy, and reaction

kinetic factors are, in general, coupled together and a complete



Unaffected 0i1 Sand

’
Steam Hot Liquid
Zone Zone
a. Steam Stimulation

,“yhb.”..,_. - ‘—\\g
- s’\\
” L:
S E.
by Ly
o
L1 — | s
Steam * Hot Liquid Unaffected 0i1 Sand
Zone Zone
b. Continuous Steam Injection
(Steamflood, Steam Drive)
|
| Y 4 |
. \ 4 .
Burned  Coké " Hotk Light > 0i1 Bank  Unaffected 0il
Region  ~ Liquid Zone Hydrocarbons Sand

¢. In situ Combustion

Figure 5. Schematic Representation of Thermal Recovery
Processes.



10

description of the thermal recovery process would necessitate their
simultaneous consideration. To elucidate basic mechanisms of thermal
recovery, a large number of mathematical, laboratory and field studies
have been undertaken [SPE Repr. Ser. (1972)]. A detailed discussion of
the current status of steam injection follows. For the reader interested
in the other thermal techniques, the articles by Wilson et al. (1958),
Gottfried (1965), Dietz and Weijdema (1968) and Beckers and Harmsen (1970),
in the area of in situ combustion, and by Boberg and Lantz (1966),

Clossman et al. (1970) and Niko and Troost (1971) in the area of steam
stimulation, are an excellent source of reference.

The steam injection process (steamflood, steam-drive) is quite
complex, and defies an exact description. As soon as steam injection
begins, the leading edge of the steam front starts advancing into the
originally cool reservoir. Simultaneously, part of the steam condenses
and abank of water and displaced oil forms. The reservoir may then be
divided in two regions separated by a moving boundary: (1) a region
occupied by steam (steam zone) and (2) a region containing the dis-
placed fluids, o1l and water (hot liquid zone). The second region, in
turn, consists of a hot zone and an initial cold zone [see Figure 7 and
Wu (1977)1.

The main elements of continuous steam injection, as a displacement
process, were thoroughly analyzed in a landmark paper by Willman et al.
(1961) who reported experimental studies and identified the principal
mechanisms responsible for the enhanced 0il recovery as: (1) thermal
expansion of the displaced fluids, (2) viscosity reduction of oil and

(3) steam distillation. They remarked that although the first two would
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also enhance recovery in a hot waterflood, they are more effective with
steam due to its lower density (see also Table 1). The displacement
mechanism in the hot 1iquid zone was further elucidated by the investi-
gations of Edmonson (1965), Poston et al. (1970) and Weinbrandt et al.
(1975) concerning the temperature effects on the oil-water relative
permeabilities. The results of Weinbrandt et al. (1975) indicated that
the relative permeability to oil increases while the absolute permeability
and the residual oil saturation decrease with temperature increase. The
resulting effect on 0il recovery has not yet been established. The
significance of steam distillation on the performance of a steamflood is
also still debatable. Willman's experimental work showed that distillation
functions as a recovery mechanism within the steam zone, for light crude
oils, and this conclusion was further supported by Johnson et al. (1971)
and Wu (1977). By contrast, inclusion of distillation effects in a
numerical simulation by Coats (1976) resulted in only moderately increased
0il recovery, which was further shown to be very sensitive to the equi-
librium values of the distillable component. In three-dimensional
reservoirs of considerable thickness, the density difference among steam,
water and o0il generates another important steamflood mechanism, that was
not detected by Willman et al. (1961), and is known as gravity segregation.
As observed in field trials by Blevins et al. (1969) and Blevins and
Billingsley (1975) and in laboratory experiments by Baker (1973), steam
channels to the top and bypasses a large portion of the original oil
(Figure 7) with a pronounced effect in the performance of a steam drive.
The aforementioned mechanisms that make oil &isplacement more

effective were further validated and extended by the additional laboratory
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experiments of Baker (1969) and Ozen and Farouq (1969) and the field

tests of van Dijk (1968), de Haan and Shenk (1969), Bursell (1970),

Volek and Pryor (1972), Hearn (1972), Hall and Bowman (1973) and Smith

et al. (1973). In summary, one can presently identify the main steam-
flood mechanisms as: steam displacement, steam distillation and gravity
segregation, in the steam region; viscosity reduction, thermal permeability
variation, thermal expansion and gravity segregation, in the hot . yuid
region.

Along with laboratory and field experiments, mathematical models
were sought to aid in understanding and designing the complex steamflood
process. A mathematical model can reveal the process dynamics and show
the relative importance of various process variables, although this ability
may be often limited by restrictive assumptions. Furthermore, the
relatively high cost of the injected fluid and the risks involved in the
large scale operation of steam injection requires a careful and imagin-
ative project design. To a varying degree of success this can be
achieved by the most useful tool of mathematical simulation.

The engineering evaluation of steamflood processes is based mainly
on a simplified mathematical description of reservoir heating by hot
fluid injection presented by Marx and Langenheim (1959). This theory
was subsequently used by Willman et al. (1961) to determine the growth
of the steam zone, provided the flow of heat from the steam zone into
the hot liquid zone ahead of the condensation front is neglected. This
method of solution, in spite of its restrictive assumptions, has found

considerable applications in calculating steamflood performance. Mandl
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and Volek (1969), in a combined theoretical and experimental study, were
the first to call attention to the fact that neglect of heat transport
into the hot liquid zone in the Marx-Langenheim model leads to over-
optimistic results regarding the steam zone volume and the recovery
rates. By further considering some aspects of the heat transport, they
were aple to develop a slightly improved approximate description of the
steam zone growth based on approximate upper and lower bounds to the
exact solution of the problem.

These early efforts in mathematical modelling of steam injection
focused mainly on approximately simulating the heat flow in geometries
where the process variables are allowed to vary along one direction.
Thus, they did not account for the distribution of the various phases in
the two regions and for the important effects caused by gravity segre-
gation. To account for the fluid flow in the hot liquid zone,Shutler
and Boberg (1972) developed an approximate technique that relies on the
Marx-lLangenheim model, for heat transfer calculations, and on the well
known Buckley-Leverett (1942) method for calculating the distribution
of the liquid phases inside the hot liquid zone. Although based on a
number of assumptions (for example, viscosity reduction inside the hot
1iqu1d zone was neglected and fluid flow inside the steam zone was
rather crudely approximated) this study gave fairly accurate results in
predicting oil recovery rates.

The first theoretical effort that attempted to include the effects
of gravity segregation was undertaken by Neuman (1975) who considered
the problem of calculating the rate of growfh of a three-dimensional

steam zone that expands in both the horizontal and vertical directions.
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Although this also was the first analytical study to include. thermal
effects on relative permeabilities, the validity of the derived model
was limited by the underlying assumption that the mechanism of growth in
the vertical direction is identical to the mechanism of areal growth,
which in turn was approximated by the Marx-Langenheim model. A different
approach was followed in a recent work by van Lookeren (1977). Based on
segregated-flow principles such as previously used by Dietz (1953), he
derived approximate analytical formulae that permit fast and simple,
although approximate engineering, calculation of the performance of a
steamflood in a three-dimensional reservoir. One should also mention
the very interesting study of Miller (1975) on the stability character-
istics of the steam front under idealized conditions.

In parallel to the analytical efforts, an increasing number of
investigators concentrated on the development of fast and reliable
numerical models that describe the physical phenomena of a steamflood
with greater detail and make use of fewer restrictive assumptions.

Within the past ten years a large number of papers studying the numerical
model1ing of the steam flood and other thermal methods has been published.

Three-phase numerical steamflood models were derived by iShutler (1969),
(1970) for one- and two-dimensional.flow; by Abdalla and Coats (1971} for

two-dimensional flowjand by Coats et al. (1974), Coats (1976) and Weinstein
et al. (1977) for three-dimensional flow. The principal advantages of the
last three models 1lie in the simultaneous solution of °

the mass and energy balances and in the implicit treatment of the various

properties that are functions of the dependent variables. In addition,
the Tast two models account for steam distillation. The development of

such sophisticated numerical simulators was greatly aided by parallel
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advances in the numerical solution of coupled, non-linear, parabolic
"partiaT differential equations in moving boundary regions, and by the
increasing availability of faster and cheaper computers. In spite of
their high'degree'of sophistication, however, the Tatest numerical
simulators are still troubled by stability and reliability problems, and
by large computational-time requirements. Towards improving upon these
features, a considerable amount of industrial research is cﬁrrent]y
conducted.

Complementing physical and analytical models, the comprehensive
numerical models find their primary utility as research tools. They
serve as an aid in understandiig the nature of the process and interpre-
ting laboratory experiments, in optimization studies [Chu (1977)] and in
evaluating and developing simpler mathematical models. On the other
hand, the primary utility of the analytical models 1ies in their routine
use as an aid in engineering design. It is the growth in the total
volume of the steam zone that governs the amount of o0il that can be pro-
duced, hence, the economics of the process. Therefore; if an analytical
model adequately defines the volume of the steam zone as a function of
steam injected, it provides us with an appropriate measure of how much
01l can find its way to a producing well as a result of steam injection.
In this context, the use of a reliable analytical model for the determi-
nation of the steam zone growth is much preferred over highly‘sophisti—
cated and expensive numerical simulators, the latter being more apt in
providing information regarding finer characteristics of the process.
Favoring this view is the fact that the re1iébi]ity of a numerical model

is, more bften than not, tested by checking numerical results concerning
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integral characteristics of the process. such as the volume of the steam
zone of the 0il recovery rates, against existing analytical expressions.
Furthermore, it should be kept in mind that the optimal application, in
field cases, of the high-cost numerical simulators requires a detailed
knowledge of the distribution of the various physical, geological and
geometrical parameters. Such information is not always readily accessible.

The relative importance attached to the development of reliable and
easily applicable analytical models is evidenced in a number of recent
studies dealing with the engineering evaluation and economic appraisal of
steam injection in actual field cases [Gomaa (1976), van Lookeren (1977),
Myhill and Stegemeier (1978) and Doscher and Ershaghi (1978)1. It is
also common knowledge that good theoretical models can be of great help
in understanding and clarifying still unresolved issues about basic
mechanisms of the process. Indirectly, they serve as a check for the
validity of the numerical simulators which in turn provide useful
information that cannot be otherwise obtained. In spite of the progress
that has been made, it appears that an analytical model that accurately
simulates the steam injection in one- and particularly in two- (or three-)
dimensional systems has not yet been achieved. Additional research is,
therefore, needed towards developing a more reliable model. In particular,
this model should be capable to provide answers to two important
unanswered questions:

1. What is the effect of the heat transport into the oil/water

region ahead of the steam zone, on the rate of growth of the

steam zone.
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2. What is the vertical coverage of displacement and how does

gravity affect the displacement front.

In the present study, we attempt to clarify both these topics by
constructing analytical models that incorporate the above effects. More
specifically, we concentrate on deriving an improved one-dimensional model
that includes a detailed account of the heat transfer and a new two- (or
three-) dimensional mndel that accounts for the effects of gravity. For
‘this purpose, an integral technique is developed by means of which the
basic conservation laws of the process are cast in an integral form for
a reservoir of arbitrary geometry. The mechanism of heat transfer is
further studied in detail. The arising moving boundary problems are
then analytically solved and the solutions obtained are inserted in the
conservation equations. According to the methods used in handling heat
transfer, we obtain new expressiviis for bounds, asymptotic solutions and
approximate solutions that, to a varying degree of accuracy, describe the
one-dimensional steam zune growth. In the course of this pursuit the
existing models are critically reviewed, the assumptions they are based
upon reevaluated and the range of their validity delineated. In the
novel area of modelling the three-dimensional steamflood two approaches
are followed. In the first, upper bounds including the effects of
gravity segregation are derived for the volume of the steam zone. These
effects are further studied using a finer integral techniqué,by means of
which we construct a new model for the shape of the steam zone in two-
(or three-) dimensional systems. It should be noted that although we
are primarily concerned with modelling the continuous steam injection

process, some of the results obtained can be also applied to steam



20

stimulation. Similarly, due to common heat transfer characteristics, the
heat transfer results can be very useful in analyzing other thermal
recovery processes.

Because of the qualitatively different character of the disp1acement;
we discuss the one- and the two- (or three-) dimensional steamflood
separately (Chapters IV and V, respectively). In Chapter II we outline
the integral techniques which form the basis for the construction, in
Chapters IV and V, of the analytical models for the steam zone growth.

The important topic of heat transfer is separately treated in Chapter III.

As a final note, it should be noted that in selecting symbols we
followed the notation recommended by the Society of Petroleum Engineers
(SPE) (1965), (1972) while a1l units employed in the numerical examples

are SI units according to SPE directions (1977).
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Chapter II. Mathematical Formulation. The Integral Balance Approach.

2.1 Introduction

In the first two sections of the present chapter we focus on the
physical and mathematical description of the steam injection process.
Part of Section 2.2 summarizes and outlines the definition of various
terms that are commonly used in the area of oil recovery. In 2.3
follows a rigorous mathematical formulation of the process. The
resulting moving boundary problem is, subsequently, treated by an
approximate technique based on integral balances. The first part of
Section 2.4 deals with the application of the technique to systems of
one, two or three dimensions in order to derive information regarding
average properties of the process. The second part of Section 2.4
outlines the implementation of the technique to two-dimensional,
gravity dominated systems, in an effort to determine the finer structure
of the propagating steam front. In the final Section 2.5, we attempt
to derive, by dimensional analysis, the most important dimensionless

groups of parameters and their significance in scaling.

2.2 Some Basic Definitions and Description of the Process

Before we start modelling steam injection (or steam drive) it is
necessary to define some basic terms and concepts that are common in
the area of thermal o1l recovery and reservoir engineering in general.

[See SPE Repr Series (1972).1

An 0il reservoir is a three-dimensional, porous geologic formation,

R, permeable to fluid flow, that contains in its pore space, in addition
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to water and a mixture of hydrocarbon (oil or gas), in a 114uid or
gaseous phase. The reservoir is characterized by the macroscopic

properties of porosity and permeability which determine fluid flow

and accumulation.

The reservoir is bounded by rock formations impermeable to fluid

flow commonly referred to as the over- and under-burden (see Figure 8).

Very often, due to geologic stratification, the reservoir is confined
between two parallel planes, that are inclined with respect to the
horizontal, in general.

An 0il well represents a point, line or cylindrical (according
to geometry) mass source or sink. It is characterized as a production
or injection well according to its function in producing or injection
fluids, respectively.

During a steam driVe, steam of a certain temperature, pressure
and quality is injected through one or more injection wells and dis-
places oil towards the producing wells. At any stage during the process,
‘we can distinguish the following two distinct régimes inside the
reservoir:

a. A steam-zone (S.Z.), which is that region of the reservoir

which is occupied by the injected steam. The steam zone also

contains liquid water (initially present and due to steam conden-

sation) and oil at its residual saturation.

Mainly because of viscosity reduction due to the temperature
increase, 01l is continuously displaced ahead of the moving steam

zone. The oil which is left behind is at a saturation (residual)
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24

that cannot be further reduced by steam or water drive.

The steam zone is delineated by a moving surface called the
steam front (S.F.), the dynamics of which play a most important
role in determining the performance of a steam drive.

b. A hot liquid zone (H.L.Z.) in which water and o0il pushed

ahead of the steam zone flow towards the production wells.
Very often due to density difference in the flowing phases,
the steam zone tends to ride over the top of the hot Tiquid zone,

thus forming a gravity tongue (see Figure 8). This gravity

override, frequent in gravity dominated systems, severely limits
the efficiency of the recovery along the vertical direction

(vertical sweep efficiency).

The production pattern usually exhibits a periodic configuration

consisting of repeated square or hexagonal unit cells, 5-spot or 7-spot,
respectively (Figure 9). Due to this symmetry it is sufficient to
focus our attention to a single unit cell, where a centrally located
well is surrounded by 4 or 6 production wells, respectively.

The mathematical description, on a macroscopic scale of the
phenomena associated with steam injection, makes use of the continuum
hypothesis. According to this approach, the actual porous medium is
replaced by a fictitious continuum: a structureless substance, at any
point of which we can assign kinematic and dynamic parameters and
variables that are continuous functions of the spatial coordinates and

time. These variables averaged over a representative elementary volume

(REV), enable us to describe transport and other phenomena in a porous



L7
S o o O—
{g o | o
Ty
5-Spot

| |
\O/O\/O\/

| T
O | o

/O \O/O\O /O ~
o |

Figure 9. Schematic Diagram of 5-Spot and 7-Spot Production
Patterns.



26

medium, in terms of partial differential equations [see Whitaker (1970),

Bear (1972)1.

2.3 Mathematical Formula:ion

2.3.1 The Differential Equations

We start the mathematical formulation by considering the partial
differential equations that describe mass, momentum and energy transfer
inside the reservoir. The well known Darcy's law for low Reynolds number
flow in a porous medium provides expressions that relate the volumetric
velocity vectors to the pressure gradients.

In the absence of steam distillation of o0il, the equations read:

a. In the steam zone

steam, liquid water and o0il mass balances:

U
=
™~
—

~—

b 35 (pgSg) + V+(ogu,)

i
]
=
—
™
~N
~—

9 .
¢ 5{'(Pw3w) + v (DWEW)

§
<
—_
N
(98]
~—

¢ -g-f (pSy) + Velp uy)

Volumetric balance:

S +S, +S, = 1 (2.4)
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Linear momentum balances (Darcy's Law):

k
= oIS .
T AR X (2.5)
= ....m L] - 2..6
Yy 0, k(% - 0,Q) (2.6)
= ._.._r_‘.._. ® 2.7
ug T K+ (Tpy = 0o9) (2.7)

Assuming thermodynamic equilibrium,
- (2.8)
Ta T (pg)

the above

The tensor K is the second order symmetric permeability tensor,
which for a homogeneous isotropic reservoir reduces to kI, with
k the scalar permeability and I the identity tensor.

The relative permeability of each phase, k_., 1s in general a

ri
function of Sj, determined experimentally from laboratory tests.
{Coats et al. (1974), Hagoort et al. (1977)1.

The density e and viscosity Hys of each phase, are temperature
dependent.

The pressure is different in each of the three phases due to the
presence of capillary pressuie terms.

For a water wet porous medium,

Py = Py = PeowSueSs) (2.9a)
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Ps = Py * Prog(SysSs) (2.9b)

where again the dependence on S? fs to be established from exper-
jmental data. Except in regions of sharp saturation gradients,
the capillary terms in (2.9) are much smaller than the absolute
pressure terms and they can be safely neglected in our calcu-
lations.,

Equation (2.8) 1s the usual thermodynamic equilibrium temperature-
pressure relationship tabulated in steam tables [N.E.L. Steam
Tables (1964)1. In reality, capillary pressure effects may result
in a laowering of the vapour pressure at any given temperature
(Calhoun et al. (1949)]1. This effect is not significant, however,
at the elevated temperatures and pressures of a regular steam
drive, a fact that has been also confirmed in the work of Cady

et al. (1972) concerning geothermal reservoirs. As a result, the
thermodynamic equilibrium relation (2.8) is consistently employed
in all reported mathematical models of steam injection and geo-
thermal reservoirs. [Coats et al. (1974), Martin (1975),
Weinstein et al, (1977)1.

Mg is an interphase mass transfer term allowing for steam con-
densation. In some numerical models, an explicit expression
which is T and P dependent is developed for Mg [Shut]ér (1969)1.
Alternatively, it is more convenient to eliminate M_ by adding

g
(2.1) and (2.2) in order to express the total water mass balance

P2} .
¢ 5t (pgSs * o, S, * Velpgu, +pu} = 0 (2.10)
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In writing down the energy equation, we assume that thermal equi-

Tibrium between the fluids and the rock matrix is instantaneously

achieved [Bear (1972)], and that natural convection is not sig-

nificant [Rubin and Schweitzer (1972)] for the prevailing conditions

of rather high volumetric velocities. For small variations
in pressure, inside the steam zone, the thermal energy balance

becomes

oh

¢ %? [pgSshg + o, S, + pgSohyl + (1 = #)og 5?5' = VkprVTR

= Veloguhg + o+ ooy ol (2.11)
Combined with Eqs. (2.1}, (2.2), (2.3), the energy equation
transforms into

on ah ah BhR

s w 0 = o
g5 5 T 90Sw TE T 40eSo 3E T (L - dleg g = VokppWTg

- (pgUg+Vhe + pu +Vh + o u .Vh) - MLy (2.12)
where Lv = hS - hw is the water latent heat of vaporization.
Similarly, in the hot 1iquid zone, we have
Water and oil mass balances
¢ 35 (0,5,) *+ Tlpg,) = 0 (2.13)
¢ %t— (pgSg) + Velpgu,) = 0O (2.14)
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Volumetric balance
Syt Sy = 1 (2.15)

The linear momentum balances are expressed through Darcy's Law

[Eqs. (2.6), (2.7)1, as before,

Thermal energy balance:

3 O
¢ 5T [PuSyNy * PSohel * (1 = @leg 5

= VokiaVUTR = T Ip, 4,0, * Poohe] (2.16)

In the surrounding formations which are permeable to fluid flow,
the thermal energy balance is described by the pure heat con-

duction equation

oh
(1 -9) of ﬁf' = Ve (K eVTe) (2.17)

The systems of the nonlinear-PDE's (2.1) to (2.17), in each of
the three different regions (steam zone, hot Tiquid zone,
surrounding formations), are coupled to each other by means of the

following interfacial, boundary, and initial conditions.
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2.3.2 The Boundary Conditions

2.3.2.1 Interfacial Conditions

. Let

S(rst) = 0 (2.18)
define the moving boundary interface between any two regions (surrounding
formation-steam zone, surrounding formation~hot 1iquid zone, steam zone-

hot Tiquid zone). Since S is a material surface

Dt~ 3t VS ° (2.19)

where v is the velocity vector of any point of the interface.

Let, also

Vs

1% T (2.20)

be the outwards pointing unit vector normal to the interface (see Figure 10).

Then, the normal component of the velocity at the interface is given by

s

t
Vo © ‘Tg‘Tvs (2.21)

Each of the equations (2.3), (2.10), (2.11), (2.13), (2.14), (2.16)

(2.17) can be cast in the general conservation equation form

H4geq = 0 (2.22)
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where ¢ is a conserved physical quantity with flux q. If ¢ is conserved
in any two different regions, it must also be conserved across the inter-
face separating the two regions. Integrating (2.22) over an infinitesimal

volume of the interface we obtain, in the absence of surface sources,

vt B alas = I B gl (2.23)
on S(Y‘,t) = 0

(See Appendix I for derivation.) Here the superscripts I, Il indicate
inner and outer side of the surface, respectively, as defined by n.

Substitution of (2.21) into (2.23) leads to:

ar = v, =l -ty (2.24)

Applying Eq. (2.24) successively to the mass and energy balances,

Equations (2.10) - (2.13), (2.3) - (2.14), (2.11) - (2.16) we derive the

following interfacial conditions:

Z. On the steam zone-hot liquid zone interface:

water mass balance

Ir,l I I, 1 I 11, 11 11
pglugy = 8Sgv) *+ pyluyn = 05w ) = oy (U = 45,7vy) (2.25)
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0il mass balance
I, 1 _ 11, 11 II
o (u ¢S v) = Py (U, = ¢SV ) (2.26)

oon o n

thermal energy balance

d(p.S

U)H

)

I ) I
whw * posoho) +(1- )pRhR] Yn
aT,\ II
IT II I1 TI,I1 11 R
Py hw U * Po ho Yon ~ QhR 'a'rT'>

[(pusuhu IISélh(IJI) £ (1 - MDRhH] (2.27)

1]

Eq. (2.27) combined with Eqs. (2.25), (2.26) assumes the simpler form
LI, 1 I _
Lv(usn - ¢Ssvn) - (hR an> (hR 8n>
+ (1 - $)ag(hg - hilyv (2.28)

2Z. On the surrounding rock-steam zane (rock-hot 1iquid zone) inter-

face, we have
Vy = o, us> = 0 i = s,w,o(i = w,0)

and the corresponding interfacial conditions become
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S.Z

H.L.Z.

Figure 10b. Schematic Diagram of the Interface Between
Steam Zone and Hot Liquid Zone. Enlargement
of the Encircled Portion of Fig. 10a.
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I1 11
psusn + Dwuwn = 0 (2.29a)
ol = 0, ¢ k-hot 1iquid
wwn » for rock-hot Tiquid zone) (2.29b)
I 1 _
Py = O (2.30)
oT, \ I 3T .\ Il
11 _ 1. R £ .
PsUsn = [T' (th 53_') - <khf 55—) (2.31a)
v
BTR I BTf II
Kip 57| - Kis F = 0 for rock-hot (2.31b)
1iquid zone

In addition, the absence of heat sources at the steam front dictates

a continuity in temperature

1= gl (2.32)

At this point it should be noted that most of the previous analytical
models [Marx and Langenhcim (1959), Shutler and Boberg (1972)1] consider
a step temperature change across the steam front. This approximation
violates the continuity condition (2.32) but does not contradict the

conservation Equations (2.28), (2.31a).

2.3.2.2 A Pressure Dynamic Condition

Across the steam front the pressures in the oil and water phases
are continuous and related to each other and the steam pressure by means

of the microscopic capillary terms [Egs. (2.9a), (2.9b)1.
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By its definition, the steam front is not the actual microscopic

surface separating two phases but rather a macroscopic interface where
fluctuations from pore to pore have been smoothed out over macroscopic

unit distances. Therefore, it can be assumed that the pressure difference

across this macroscopic interface is related to the capillary pressure
through the familiar macroscopic expression

I IT , - 2.33a)
P = Pj Pci +(Te(c1 + CZ» i= w,0 (

where Cqys Cy are the principal curvatures of the macroscopic interface
and Te is a macroscopic “effective interfacial tension” [Chuoke et al.
(1959), Outmans (1962 )]. In other words, with relation (2.33a) we
attempt to satisfy, in a macroscopic sense, the conservation of linear
momentum across the steam front.

Although the validity of such a representation is questionable for
a wide range of operating conditions, its adoption can greatly facilitate
the analytical determination of the steam front shape, in gravity domin-
ated reservoirs. By differentiating Eq. (2.33a) along the coordinate
para11e1 to the interface, s, we get

apl il P

s _ 1 2 ci .9 -
3s 35S 35 r 59S (Te(cl * 02)) i=w,0

If we, furthermore, assume that the macroscopic curvature and capillary

terms do not change considerably along the interface, we get the simple

interfacial condition
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api aPﬁI
L H (2.33b)

The above approximation very often employed in analytical modelling of twq-
dimensional, two-phase, inmiscible displacement, [Sheldon and Fayers (1962),

Beckers (1965)1, is usually referred to as the pressure dynamic condition.

2.3.2.3 Boundary and Initial Conditions

2. Boundary Conditions
These involve the specification of steam injection rate, steam

quality and temperature (pressure) at the injection well and

pressure at the production well.

- pUgndh = w (t) (2.34)
Ainj

= | ethndA =W (t) (2.35)
Ainj

TRlrst) = To  reAy . (2.36)

where Ainj is the injection area, w; the mass injection rates.

Since there is no flow of 0il at the injection well
uon(g,t) = 0 , fEAinj (2.37)

We finally consider the temperature condition at infinity

Te(rst) = T, as  |r| » = (2.38)
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iz, Initial Conditions
Before steam injection begins, we have static and thermal equi-
Tibrium with no flow of either water or oil,constant saturations

and temperatures inside the reservoir and the surrounding rock

formations

Sw(r,o) = S (2.39a)
So(rs0) = S, (2.39b)
Tp(rs0) = T, (2.39c)
u,,(r,0) 0 (2.39d)
ug(r,0) = o (2.39%)
Telrs0) = T, (2.39f)

The above sets of partial differential equations, interfacial and
boundary conditions complete the description of a complicated but well-

posed mathematical problem.

2.4 The Integral Balances

2.4.1 Introduction

The foregoing mathematical formulation indicates that in steam
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injection we are dealing with momentum and heat transfer in two different
regions coupled by interphase transport through a moving boundary and
accompanied by a phase change. The last two features characterize a
general class of problems known as Stefan problems [see Rubinshtein
(1971), Ockendon and Hodgkins (1974)3. In this context our case,which

in addition involves heat transfer to the surroundings (heat losses), can
be classified as a generalized Stefan problem.

Unfortunately, the techniques developed for the analytical solution
of Stefan problems, cannot be effectively applied in this situation, due
mainly to the unique aspects of multiphase flow and heat losses. On the
other hand, it is pretty clear that, aiming at an exact analytical
solution, even for the simpler one-dimensional case, would be a rather
fruitless project.

The complexity of the problem calls for a numerical solution.

Indeed, detailed numerical simulators have been already developed [Shutler
(1969), Coats et al. (1974), Weinstein et al. (1977) and used with increasing
frequency. Despite substantial improvements during the recent years,
however, they still suffer from large computational time, stability

problems and in addition they are available at a rather high cost. It is
also understood that optimal use of & numerical simulator in a field case,
requires fairly accurate knowledge of the various geometric, geological

and dynamic variables, their spatial distribution and their functional
dependence.

Alternatively, one can use analytical techniques in order to extract

as much information as possible regarding important integral aspects of
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the process, such as the oil recovery efficiency or the 0il1. (produced)
to steam (injected) ratio. 1In addition, an analytical approach may
result in a better understanding of the mechanisms that govern the
process. This alternative, to be viable, should be based on two key steps:

1. Adoption of an Integral Balance Approach.

2. Decoupling of the heat and momentum transfer, whenever feasible.

e elect to follow this procedure with the two-fold objective to
analytically determine the rate of growth of the steam zone volume and
the steam front shape on a plane perpendicular to the reservoir bedding
plane.

The integral balance approach involves integration over a volume or
an area according to the geometry of the reservoir. The method bears a
conceptual similarity to the integral techniques employed in boundary
layer theory [see Schlichting(1955), for example ], although the degree of
complexity and the approximations to be used are different. The utili-
zation of this approach allows us to shift our emphasis on the second
step, which involves heat and momentum transfer (Chapter III). The com-
bined application of the two steps provides rigorous analytical bounds

or approximate solutions to the quantities of interest.

2.4.2 Volume (Area) Integration

Consider the volume V(t) occupied by the steam zone at time t. Let
A(t) denote the surface enclosing V(t), composed of Af(t), the interface
with the surrounding formations, AF(t), the steam front area and Ainj’
the injection area (See Figure 11). Integfating Eq. (2.11) over the
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control volume V(t) and using a modified version of the General Transport

Theorem [Whitaker (1968)] we get

gf' J Bp(pssshs oSyl t PSohy) * (1 - ¢)pRhR] dv
v(t)
* j [pshs(gs - #Sgu) * o by - oS y) Poflglg = $SY¥)
Alt)
- (1 - $)pghey] nah = f KT ndA (2.40)

A(t)
Employing the interface conditions Egs. (2.29a), (2.30), (2.31a) and

Egs. (2.25), (2.26), (2.28) in evaluating the integrals over Af(t) and
AF(t), respectively, and the boundary conditions Egs. (2.34), (2.35)

j? we obtain

d
at J [ Z bo54hy + (1 - ¢)pRhR]dV+
v(t) A

i=s,w,0

over Ain

I, 11, II 1
I [ Z Py Ny (Ugy = 955 vy)
F(t) i=w,0

- (1 - ¢)pRhFI{Ivn] dA + {
Ac(t) A(t)

aT_ \ 1
= R
hsws(t) + hwww(t) + J (th -a—ﬁ-—) dA (2.41)
inj
which is a simpler version of the integral thermal energy balance over

the moving control volume V(t).

Similarly, working with the water mass balance (2.10), we obtain
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44
%—5 f (¢ Sg * ¢p,S,)dY
v(t)

+ J [og(ug - #50) + o, (y,, - ¢Swy)] ‘ndA = 0 (2.42)
A(t)

which can be transformed through (2.25), (2.29a), (2.34) to
d
at J' (60 S + ¢p,5,)dV + J o,},r(uvl,i - ¢S£Ivn)dA
Wt) Ap(t)

BRALIRENCY (2.43)

Eq. (2.43) represents the integral water mass balance over the volume

V(t). Finally, the integral oil mass balance becomes

d
e f 30,54V + f oo (utr = ¢sily yaA = o (2.44)
) AL(t)

The above volume (area) integrals reduce accordingly to area (line)

integrals when the reservoir exhibits an additional degree of symmetry.

2.4.3 The Constant Steam Zone Temperature Approximation

It is common practice, in steam injection, to consider the steam
zone as a constant temperature region. The assumption, particularly
useful for analytical purposes, has been verified by both experimental
[Willman et al. (1961), Baker {1969), Baker (1973)] and numerical inves-
tigations [Shutler (1970), Coats et al. (1974)3. A theoretical proof
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outlining the conditions under which the approximation is valid, can be
provided by simple dimensional arguments.
For negligible temperature drop inside the steam zone, expression

(2.41) simplifies to

(1) d (1) d
¢ zi: hi el j piSidV + (1 - ¢)hR It J deV

i=S,W,0 ut) v (t)
AF(t) 'i=W’0
8T¢ \11 BTR)II
+ I (-khfé-ﬁ-) dA + J (_thﬁ_ 4
Ag(t) Ac(t)
= p{1) (1)
T g Mg Ty (2.45)

+here the superscript (1) refers to the steam zone.
Multiplying Eq. (2.43) by h&l), Eq. (2.44) by hgl) and subtracting
their sum from Eq. (2.45) results to the integral steam mass conservation

equation

(1) d é T
(M‘V ac I psSSdV + [ [ (hgl - hgl))p?(uﬁ - CbS%'IVn)
V(t) Ae(t)-1=w,0

aT. \ II
- (1= o) (ng! - hél))pRvn‘JdA + ( Kng 5{-) dA
Ag(t)

8Ty \ 11

- Ky =R . (1
¥ J ( KhR 3 ) dA = L, )Wg (2.46)
Ap(t)
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In both (2.45),(2.46) we have formally allowed a differentiation

(1) II

between hi and hi . It is now obvious that, by assuming the step-

temperature distribution [as in Marx-Langenheim (1959)1] and choosing Ti

as the reference temperature, the coupling convective and conductive
II
i

equation, the solution of which can be developed fairly easily.

terms in Eq. (2.45) vanish (h.;" = 0). This results to a much simpler
The corvect physical picture, however, involves a continuous change
in temperature across the front. Regarding T as a continuous variable

and with the convenient choice of Ti as reference temperature, we rewrite

Eq. (2.45)

d . BTf I
AT aF J MIdV + ATAF(t) WF(t) + QF(t) + J (.. khf T dA

v(t) Ag(t)
= [wg(e) + w (8] e a7 + m(en ) (2.47)
where AT = TS - Ti' Here
L(1)p s
My = Z $Cp1P1 S; * (1 - ¢)pchR + ¢ J‘—ATE-—S— (2.48)
i=s,W,0

is the volumetric heat capacity of the steam zone,

j 11, I1 11
NF(t) = 2{: cp_i J Py (uin - ¢Si vn)dA -
1 i=w,0 AF(t)

- (1 - ¢)ch [ pRvndA AF(t) (2.49a)
A1)
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is the net convective heat flux through the steam front and

aT, \II
Qe(t) = (— kp uuﬁ.) dA /AT
R (t)
Ai(t) an A (2.49b)

is the conductive heat flux through the steam front.

Similarly, Eq. (2.46) can be recast in the form

d 3T\ II
a‘ff MpdV + ATAC(t)Qp(t) + J “Kppan | dA

u(t) Ag(t)
Ry |
. wg(t)L (2.50)
(1)
L S
My =¢ LSS (2.51)

is a modified volumetric heat capacity of the steam zone.

Notice that by subtracting Eq. (2.50) from (2.47) we recover the
total water mass conservation Eq. (2.43), which indicates that only two
out of the three Egs. (2.43), (2.47), (2.50) are linearly independent.
Together with the oil mass balance, Eq. (2.44), expressions (2.47) and
(2.50) constitute our basic integral conservation equations. Further
development on the heat transfer and the saturation distribution terms
will Tead to the determination of bounds and approximate solutions on

the steam zone volume growth rate.

2.4.4 Area (Line) Integration

A three-dimensional averaging, such as the one described in the

previous two sections, leads to the determination of volume averaged
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guantities. In certain cases, however, it is necessary to obtain more
informétion regarding the finer structure of the steam zone, for example,
the steam front shape. A more accurate description towards this end
necessarily requires a lower degree of integration.

For simplicity, we will consider a reservoir bounded by two parallel
planes with a steam front of an arbitrary smooth shape (see Figure 12).
We further assume that the reservoir is uniform along one of the
Cartesian coordinates y, in rectangular geometries, or radially symmetric,
in radial geometries.

Let us now integrate the thermal energy, steam mass, total water
mass and oil mass balances along a vertical cross section of the steam
zone bounded by the upper reservoir boundary from above and the steam
front from below (see Figure 12). Using a two-dimensional version of
the General Transport Theorem and the appropriate interfacial conditions,

we get from the energy balance, Eq. (2.11):

] (x,t)
a‘t_ [ Z ¢Q1S1h] (1 = (p)pRhR dz
0 i=5,W,0

I 7, 111, oTp |11
+[Z (1-n-q>s1 o) - (1= ¢)oph ]IVFH(- k,.,Rg;,—) | VF |

1=wW,0

. I1 . 3 z(x,t)
hf Bn T T X {j P{Uixg

0 iTS,w,0

thax )]dz} (2.52a)

when the reservoir is uniform along the y-direction,and

+
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4 (zxt) -
HE'J . 903550y + (1 - ¢)pgh R] dz

0 i=5,w,0
1,11, II I, oTp {11

+ .'h - -

[Z o3 hi (uin = 0 S1Tv ) = (1-9)pghilv JIVFI ( kng 3| 17F

i=w,0 ‘
( ) _I_t)“ __1a [0 T h
hf 2 r ar l_ “1u1x i
0 1=S,wW,0

oTp
' ( “hR 5?") dz} (2.52b)

in the radially symmetric geometry.

Here,

z - F(x,t) =0 (2.53a)

z - F(r,t) =0 (2.53b)

defines the steam front shape as a function of the coordinate x, or r and

time. Clearly,
| VF| =Y (gﬁ} e or ]/& + (QZJ 2
ar

We now invoke the constant temperature approximation of Section 2.4.2

and rewrite (2.52a), (2.52b) in a uniform notation:

z(x,t) 5Ty ) II aT. V11
AT %EAJ Midz + ATH (x,t)|VF] + (- k -—Ji) [VF| + (_ k _*ﬁ)

. hR 3n hf 9n
3 Z(X,t) L'\(ll)
= e T e ) ~
A J PiCpitix T og AT Usy dz (2.54)

0 i=5,W,0
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Figure 12. Geometries Examined in Subsection 2.4.4.
Notation for Area (Line) Integration.
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where x stands for length or area, aix = u,, or Zﬂruix in rectangular or

radially symmetric geometries, respectively.

Similarly, for the total water and oil mass balances in the steam

zone
z(x,t)

a_ . 11, 11 IT )

de Jo (#0555 * 90,8, )dz + o, (U, - ¢Sy Vn) [VF]
) 5 z(x,t) R R
- ﬁ{[ (pSqu * pwuwx)dz} (2.55)

0

d_(z(x:t) I1, II I

at JO 045edz + o (ug - ¢ S, v, ) |VF ]|
- a z(x)t) A
- SZ‘J Poloy 2 (2.56)

Subtracting the proper linear combination of (2.56) and (2.55) from

(2.54) we recover the steam mass balance:

q (z(x,t) ( aTR) I1 AT\ I1I
AT S M - R - _f
dt JO i W S A ( “hf Bn )
_ 3 Z(X,t) (1),\
o 5;[1 pSLV usxdZ (2.57)
0

The analogy to the volume (area) averaged conservation Equations
(2.47), (2.50) is obvious. Notice the convective term in the RHS of

(2.54) - (2.57) 1in contrast to the source terms appearing in Egs. (2.43)
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(2.47), (2.50).

For the purpose of determining the steam front shape, it is necessary

to integrate the water and o0il mass balances inside the hot liquid zone as

well

a [N 7, II IT 5 (0

ME'J 90,5,92 = o (U, = 45, Vn)IVFI - 5§'J Pulluxd? (2.58)
Z(X,t) Z(,X,t)

a [N 1, 11 IT 5 (M .

dt J $058od2 - 0 (ugy = 95,V ) IR = - 5 Poloxdz  (2:59)
Z(.Xst) Z(X,t)

Averaging along any other coordinate surface (1ine) is possible, of
course. However, it seems that the above vertical integration is
optimal, for it allows us to employ sound approximations in the modelling
of the process. The technique of area (1ine) averaging is used in
problems of two-dimensional, isothermal displacement [Sheldon and Fayers
(1962), Beckers (1965)1 and in ground water flow calculations [Bear (1972)1.
In steam injection calculations, based on both volume or area integration,
we have to deal with the additional coupling effect of interphase heat and

mass transfer. This topic is studied in detail in later chapters.

2.5 Dimensional Analysis

To complete the study of the complex physical process of steam
injection, before introducing any approximate techniques, we perform a
dimensional analysis. The resulting dimensionless groups of parameters
give rise to scaling rules for the design and comparison of laboratory

and field projects and they help us obtain a first estimate on the
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importance of various physical terms. The topic is not an integral part
of the previous analysis and it is presented for the sake of completeness.

Dimensionally scaled models of 0il reservoirs under conditions of
isothermal and non-isuthermal waterflooding are discussed by Geertsma
et al. {1956) and van Daalen and van Damselaar (1972). 1In the area of
steam injection, Niko and Troost (1971) provided a partial list of dimen-
sionless groups together with the appropriate set of scaling rules.

To derive the important groups of parameters that are related to
steam injection, one should proceed with a complete inspectional analysis
of the relevant equations and boundary conditions derived in Subsections
2.3.1, 2.3.2. Details for this straightforward procedure are shown in
Appendix II, where a compilation of the most important dimensionless
groups is also presented.

Alternatively, an inspectional analysis of the integral balances
would result to dimensionless groups that characterize the process in an
integral sense. Thus, by nondimensionalizing the integral balances, Egs.
(2.47), (2.50), we recover the following groups shown in Table 2 (where

asterick denotes a characteristic dimensional quantity).

The groups in Table 2 also serve to define characteristic values
™

for the two characteristic lengthsand time.Thus, by letting m = 16 »

*
Ig = %*, we determine t*, L(l) (compare with Section 4.3). They can

also provide a first estimate on the integral distribution\of the heat
injected into heat losses to the surrounding formations and to the hot
Tiquid zone. Together with the mobility ratios (see Appendix II) they
constitute a set of the most important dimensionless groups for steam

injection. Since, however, a broader discussion falls outside the scope of
the present sutdy, we will not proceed on this subject any further.
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Group Name Physical Meaning
I PeCpr ogt Fourier [Heat loss to surroundings]
1 M* h2 Number LS.Z. heat content rate of
1 change]
o{L)ar [Sensible heat ity]
W ensible heat capacity
i «E—(~y Stefan :
2 Lv1 Number: LLatent heat capacityl
*x
. _ﬁg . [S.Z. latent heat content]
3 M* [S.Z. total heat content]
1
*
Ws
My e = Steam Steam
W, + W, Quality Quality
. * (1 (1)
I [kws W )C AT +w L ]t . [Total heat injected]
5 M ATh[L(l) ]2 [S.Z. total heat content]
*t* 1
1 Wp _ [Heat convection to H.L.Z.]
6 M*LZIS* [S.Z. total heat content]
1
w2y
1 F Peclet [Heat convection to H.L.Z.]
7 th Number- [Heat conduction to H.L.Z.1]
(H.L.Z.) '

Dimensionless Groups Arising from a Dimensional
Analysis of the Integral Balances (2.47), (2.50).

Table 2
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2.6 Conclusions

In summary, the present chapter deals with the development of an
integral technique the two versions of which, for one- and two- (or
three-) dimensional systems, will be further utilized in the determination
of the rate of growth of the steam zone volume and the steam front shape,
respectively. The approach consists of a rigorous mathematical descrip-
tion of the steam injection proceSs and a subsequent integration, along
suitable coordinates, of the basic conservation equations. The region
of integration varies, depending upon the particular purposes, from a
three- to a two- (one-) dimensional domain. The resulting integral
balances are exact. The unknown heat transfer and fluid flow terms that
arise are further discussed and modelled in the chapters tuv follow. A
preliminary analysis based on dimensional considerations has also been
carried out in order to determine the important dimensionless groups of

steam injection.
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Chapter III. Heat Transfer Considerations

3.1  Introduction

The present chapter studies in detail the mechanism of heat
transfer in the surrounding formations (Part A) and the hot liquid zone
(Part B). As invoked from the integral formulation of Chapter II,
modelling the heat fluxes that emanate from the steam zone is essential
for the determination of the front dynamics. Since this is equally true
for any other thermal method, the discussion is not restricted to steam
injection exclusively but intends to cover a variety of other thermal
methods.

In Section 3.2, we develop analytical expressions for the heat
flux from the reservoir to the over- and under-burden (lateral heat
losses) in terms of the temperature distribution inside the hot liquid
zone. Various approximate solutions to the temperature distribution are
obtained and the respective heat fluxes from the steam zone are computed
in Sections 3.4 to 3.8. The intermediate Section 3.3 deals with the
derivation of vigorous bounds on the various heat flux terms, with the
objective of obtaining exact information regarding the front progress

without recourse to approximate techniques.

Part A. Heat Transfer in the Surrounding Formations

3.2 Method of Approach

Heat is transferred to the surrounding formations by pure heat

conduction as described by Eq. (2.17). This equation is coupled with
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the convective and conductive heat transfer in the reservoir via the
1nterféce conditions, Egs. (2.13a), (2.13b).

In most practical cases, convection dominates over conduction in
the reservoir. Then, one can reasonably assume that heat transfer inside
the surroundings occurs mainly through one-dimensional conduction along
the coordinate vertical to the bounding surface of the reservoir. The

effectiveness of the approximation depends upon the magnitude of the

local Peclet number

L(Z)*WR
Pe = RN . (3.1)
‘hR

* —
where L(z) is a characteristic length along the boundary and NR

represents an average convective heat flux term. (See also Sections 3.7
and 3.8.)

For most steam injection processes, Pe is large enough, 0(102),
(see Section 4.5) to justify the use of the above simplification, when
calculating the amount of heat transferred from the reservoir to the
surroundings. [Chase and 0'Dell (1973), compare also with Lauwerier
(1955), Marx and Langenheim (1959) and Avdonin (1964)].

The approximation has been tested by both analytical [Thomas
(1967)1 and numerical methods [Spillette (1965), Coats et al. (1974)]
with the result that including horizontal conduction in hot water or
steam injection calculations does not produce significant differences.
The reservoir geometry plays also an important role, the assumption

being better as the boundaries have a smal]ér curvature. Due to



58
stratification, most reservoirs have relatively unjform'width and
straight boundaries, hence this condition is usually satisfied.
Having made the above assumption, we can calculate the lateral
heat losses, - khf (;;f) II, by considering the heat flux at the origin
of a one-dimensional, semi-infinite, heat conducting medium with a

surface temperature which is an arbitrary function of time and the

horizontal coordinates,and an initial temperature, Ti’ constant.

3.2.1 Calculation of the Heat Flux

Consider the Cartesian coordinate system XY »2 shown in Figure 13.
Let z' = - z be the coordinate along which heat is conducted, Tf(x,y,z',t)

the formation temperature. Then,

Y (3.2)

with

[
-

Tf(x,y,z',o)
.
£(x,y,0,t)

n n
B
—da
-+
-
o
9
-
<
-
ﬁ
o

Tf(x aY:mst)

In calculating the heat flux at z' = 0, we can follow a straightforward
Green's function approach [Stakgold (1968)] or make use of the following

shortcut:

Define T(x,y,z',t) = Tf(x,y,z',t) - T, and rewrite (3.2)



59

Tf(x,Z' WYst)

Overburden

Tf(x,o,y,t)

Plan View

Figure 13. System of Coordinates and Notation for Subsection 3.2.1.
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2

& - afi—;_,; (3.3)
with

T(x,y,z',0) = 0

T(x,y,0,t) = ¢lx,y,t)

T(X,Ysst) = 0
Let LtF, LzF represent the Laplace Transform of the function F with
respect to t and z' and denote the transform variables by s and ¢ ,
respectively. Take the Laplace Transform of (3.3) successively with
respect to z',t. Then,

e LT = ufchzT - aego(x,y,t) - agg(x,y,t) (3.4a)

SLLT = oefL LT - agilié - oclq (3.4b)

ik o

LthT = ;;Ei—j—; Lo+ ;;Z§~:—; Leq (3.4c¢)
where

alx,y,t) = 2L . (3.5)

Inverting (3.4c)with respect to z' and recalling that Lt’ Lz commute, one

obtains

Q.
LiT = cosh (,ﬁi; z‘) Lo ﬁ/{zg sinh (//gg zd LiQ (3.6)
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[Abramowitz and Stegun (1965)]. But LtT is a finite function of z', for
all z', and this can only happen if, in (3.6),

Lg = - /> (3.7)
t /; to

Inversion of (3.7) for a continuous and piecewise smooth function

o(x,y,t) results to

t
qx,y,t) = - — “g'i‘ f X,¥,1)dt (3.8)
/'rraf 0 vt - T
and finally
M VIT - ke 5 4(x,y,1)dt
ke \mmo ] T T—= "% — (3.9)
/ﬂaf 0 t~-T

In terms of fractional calculus notation [01dham and Spanier (1974)]

- khf(-g-:—f) . 4 1%)4(x,y,t) (3.10)
/o

We thus expressed the local instantaneous heat losses from the reservoir
to the surrounding formations, in terms of the temperature history at
any pcint of the reservoir boundaries. Note that the above result is
valid for any thermal recovery process and it may considerably facilitat.
heat transfer calculations [compare with Chase and 0'Dell (1973), Weinstein
(1972), Weinstein (1974)]. According to the functional form of ¢(x,y.t),

we consider the following subcases.
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3.2.2 Hot Water Injection

Here, ¢(x,y,t) is a continuously differentiable function of t

(see Figure 14a) and (3.9) reduces to:

5T, \ 11 ke (t
f hf solx,y,t) - _dt
g (‘__) - [ ¢gTAy ) (3.11)

VAR t-r1

3.2.3 Steam Injection. Continuously Advancing Steam Front

For a continuously advancing steam front (vn > 0), a typical
temperature distribution at the reservoir-overburden interface would be
(see Figure 14b)

¢(x,y,t) 0 <t < Alx,y)

$(x,y,t) = (3.12)
T =T, A(x,y) <t

with ¢(x,y,t), 0 <t < A(x,y) a continuously differentiable function of t.

Therefore, (

[ 9¢(x,y,1) . _dt 0 <t <Alxy)

(an) T ke J o t-T ]
“kpelmm ) G
L[e)
£ T -T. A(x,y)
s 1__:__%_[ M:.%.Edf AMxoy) <t
\ Yt = A(x,y) 0 (t

(3.13)

Related to this case is the step temperature distribution assumed by Marx-

Langenheim (1959) (see Figure 14c)

0 0 <t < A(x,y)
p(x,y,t) = (3.14)
- T, A(x,y) <t
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Ts
A
]
t t
a. Hot Waterflood b. Steamflood
Ts 1s
A A A
\ } ‘2 ‘3
t t
c. Marx-Langenheim d. Steam Stimulation

Figure 14. Typical Temperature Profiles at a Point at the Reservoir-
Surrounding Formations Interface, for Various Thermal
Recovery Processes.
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Then, from (3.9)

arf) 11 0 0 <t < Ax,y)

-k L = (3.15)
hf (Bn
kne | (Ts - T4)

/naf Yt - A(x,y)

Alx,y) < t

the well-known formula, widely used in previous analytical modeling of
steam injection [see also Mandl and Volek (1969), Shutler and Boberg
(1972)1. In both (3.13) and (3.15), A{x,y) represents the time it takes
for the front to reach the point (x,y), and is a single-valued function

of (x,y), for continuously advancing fronts.

3.2.4 Steam Injection. Arbitrary Propagation of the Steam Front

In arbitrary steam injection, the front is not necessarily
advancing at all times. Depending on the injection rates and other
reservoir characteristics, such as inhomogeneities, etc., the front may
locally or globally recede on a certain time interval. The boundary
temperature ¢(x,y,t) follows an analogous variation (see Figure 14d).

o1 (X5¥st) A (Xay) st € Ay (X0y)
$(x,y,t) = k =0,1,2,... (3.16)

TS - T1 A2k+1(x,y) sts A2k+2(x,y)

where, now, A{x,y) is a multi-valued function of (x.y).
Such a situation is most commonly realized in steam-stimulation
operations where injection rates vary periodically between zero and

constant levels [Boberg and Lantz (1966)]. It is also frequent in steam
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injection, when injection rates cannot sustain a continuous .rate of

advance.

- The resulting heat flux is given by the lengthy but simple

expression:
- k (?.I_f.) II = khf .
hf \ an m
- -1 MoK+ -
L& L 1¢2k+1(x,y,r)dr T -T) e 1
] J 3/72 T Vs T Y4
k=0 "3, (e-) =1 VACREYIRCRY
t donq(Xsysr)de
- 1 + gf'[ 2m+1 XZm(X,y) < t< A2m+1(st)
Vvt A (0y) A
A2k+1
m m=1
2 (t - 1)3/2 S i
= k0| /'t - dypap (o)
: 1 ¢ tls 1T (x.9) (x:9)
: A Xs¥) < t <A Xy
L / t- A2k+1(x’y) / t- )‘2m+1(Xs}’) 2m+] B 22

(3.17)
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Obviously, the lower part is used when the point (x,y) is located inside
the steam zone, otherwise the top formula prevails. Analogous results
are also obtained for other thermal processes, such as combustion, the

detailed study of which is outside the scope of the present discussion.

3.3 Derivation of Bounds on the Heat Fluxes

The above equations express the heat losses from the reservoir to
the overburden and underburden as function of the temperature at the
reservoir boundaries, ¢(x,y,t). The latter is an unknown function to be
determined by the simultaneous solution of the heat and momentum transfer
in the hot liquid zone and the surrounding formations. This problem will
be treated by two methods. One is an approximate analytical solution
developed in Part B. The other utilizes known properties of ¢(x,y,t), in
order to derive useful bounds for the heat losses to the surroundings and
the heat flux to the hot liquid zone. These will eventually be used to

obtain rigorous bounds for the rate of growth of the steam zone.

3.3.1 Bounds on the Heat Losses to the Surrounding Formations

In steam injection, the function ¢(x,y,t) satisfies the constraints

0s ¢(XSYst) s T, - T'; V(X,y)ER, t>0

S 1

In view of this, the following inequatlities result for any (x,y) inside

the steam zone
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k (T, - T, TN\ II /k (T, - T.) :
he s~ Ty) <} - (sﬁt) <i hf . > 1 (3.18a)
/‘ﬂ?ﬂ_.f_ D}E ’/ﬂaf /t = )\Zm_‘_l(x :Y)

where X2m+1(x,y) <t < X2m+2(x,y), m arbitrary. Recall that for con-
tinuously advancing front, m = 0 in (3.18a).
In physical terms, the upper bound in (3.18a) represents the

instantaneous heat losses that would result out of a step temperature

distribution

) T 058 < Apy(xy)
R Xs¥,t) = A <
Ts 2m+1(x’Y) t

while the lower bound corresponds to the heat losses that would result if the
temperature assumes the constant value TS as soon as steam injection begins.
When heat transfer in the hot liquid zone is conduction dominated, the

actual heat losses approach the upper bound, whereas when convection
dominates, the heat losses term is closer to the lower bound.

Integrating (3.18a), we establish bounds on the integral heat losses:

kpe(T. = T2) T\ 11 k, (T - T.)
hfl's = i/, ___1_[ dA<J (- ke ’a‘,Tf‘) dA< hft's = i’
I G WO SO frog
_ J dA | (3.18b)
/oty (x0y)
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3.3.2 Bounds on the Heat Fluxes to the Hot Liquid Zone

By the very definition of the hot liquid zone TR(r‘,t) < Ts’ thus,

the local conductive heat flux into the hot liquid zone is non-negative
aTR)II
Integrating over the steam front,
R) 11
ATAF (t)QF(t) = f - Kor T dA20 ¥ >0 (3.19b)

which serves to bound the total conductive heat flux from below.
In order to bound the net heat flux through the steam front we
consider an entropy balance across the steam front. Recalling the

second law of thermodynamics, for an irreversible process, we define,

3T, \ 11 Z
) R 1L 11 Il
( kpg ’SE‘) AT L Py Cpi(ugy - 985 vy)
i=w,0
- (L-0)Toe v, = TR >0 V>0 (3.20a)

and a fortiori

TA(E) TH(t) + Qu(t)} = (AT Z c . o L(uIl _ gty yaa
F F F { i=w;0 P’ JAFu:) P

- ( BTR) I
- (1 - ¢)aTe [ pvdA+J -k =R

T, f pdA> 0 V>0 (3.20b)
A (£)
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where Ai is a positive entropy source at the interface [see Delhaye
(1974)]. The above inequalities state that the steam front must move in
such a way so that the net heat flux through the steam front is positive.
Expressions (3.19b), (3.20b) provide lower only bounds for the heaf
fluxes to the hot liquid zone, in contrast to (3.18b) which bounds the
heat losses from above as well. It is also easily verified that the
bounds in (3.18b) and (3.19b), (3.20b) are independent from each other,
which implies that in the process, we uncoupled the heat transfer in the
hot 1iquid zone and the surroundings. This, in turn, suggests that we may
be able to arrive at closer bounds, but only after a detailed study of the

heat transfer in the hot 1iquid zone.

Part B. Heat Transfer in the Hot Liquid Zone
3.4 Method of Approach

The differential equations (2.13), (2.14), (2.16) coupied to Eq.
(2.17) describe the momentum and heat transfer in the hot liquid region
of any thermal method (steam flood, hot waterflood, combustion). Because
the complexity of the problem prohibits a complete, analytic solution for
an arbitrary geometry, we propose to proceed from simpler to more complex
systems (depending on the approximations made and the dimensionality of
the problem) as shown in Figure 15.

Our investigation starts with one-dimensional heat transfer with
zero heat losses (Section 3.5). The resulting solutions form the basis
for approximate solutions in harder two-dimgnsional systems (Section 3.6)

and are also utilized in connection with exact solutions of one-dimensional
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heat transfer including heat losses (Sections 3.7, 3.8). The underlying
approximation in all cases involves decoupling momentum from heat
transfer. Quantitatively, this amounts to considering the convective
term in the heat equation as either constant or a known function of the
independent (or dependent) variauies. This assumption becomes better as
the difference between the volumetric heat capacities of water and oil
gets smaller. Indeed, from a linear combination of (2.13), (2.14) and

for slowly varying heat capacities one obtains:

3 - -
¢ 3¢ (pwcpwsw * pocposo) ty (pwcpwgw * pocpogo) =0

poso) is fairly insensitive to variations

in 1iquid saturation [Prats (1969)1and then

Now, the quantity #(p, g5, *+ pyc

VP Loty ¥ PoCpoldy) = 0

In one-dimensional geometries this further implies

o = const.

wpr“wx * pocpouox
as postulated. In the spirit of this approximation, viscosity reduction
plays an important role in determining the saturation distribution and

0i1 recovery, but does not significantly alter the heat transfer

mechanism.
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3.5 One-Dimensional Heat Transfer in the Hot Liquid Zone by
Conduction and Convection, with a Steady or Moving Boundary but
with no Lateral Heat Losses

The one-dimensional thermal energy equation reads as follows:

aT
: R
(¢Sw°wcpw + 48P0 + (1= 0)0pe ) 3t
| 2Ty 25T,
* (“wxpwcpw tUoPtoo) Tx T KR W (3.21a)
in linear and
‘ BTR
(¢Swpwcpw * 9S5PCpo * (1- ¢)pR°pR) a3t
oT k T
‘ R __hR3 [ "R
* (uwrpwcpw * ”orpocpo) ar  r or (r or ) (3.21b)

in radially symmetric geometry. The boundary conditions involve a moving

boundary:

where v(t) # 0 for steamflood or combustion, v(t) = 0 for a hot water

t .
flood. The domain of integration of (3.21) is x,r> I v(t)dr, 0 < t.

0
We can now examine the following cases depending on the functional form

of v(t).
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3.5.1 Constant Boundary Velocity

3.5.1.1 Constant Boundary Velocity, Linear Geometry

Let
'M(2)=¢Spc +¢Spc + (1-9)p,C (3.23a)
W W pw 0 0 po R7pR :
= - wl2) .
Wp uwxpwcpw + uoxpocpo MYy (3.23b)

For typical values of P C p

wopw® QRCPR’ the volumetric heat capacity

c
o po’
term M(z) remains approximately constant and, as already shown, the same
is true for the convective term. For a boundary moving with constant

velocity, both M(Z), wF can be treated as constant.

Going over to a system of coordinates t, & = x - vt and sca]in?
T, - T, with T £ with x* = [hR d ti ith t* = x 22
R Ty wi s " Ti’ with x = TWFT and time t with t = —E;E———

we get in dimensionless notation (subscript D indicates dimensionless

quantity)

0T

+ 0<§, <=, 0<t (3.24)
3tD 'WFI QED agg D D

with

The solution of (3.24) is easily obtained by a Laplace transformation

[see also Carsiaw and Jaeger (1959)]



Wp
T, = 1 {erfc (ED-tDleI )
1.
We
EE
W Eo o+t
F p* tp ! ¥
+ exp( & ) erfc ( ) (3.25)
[Wel °D z(tD);/*

Figure 16 shows typical profiles of TD versus ED, for various tpy for
constant boundary temperature. The quantity of most interest, for steam

injection calculations, is the conductive heat flux through the moving

origin:
, o
W 4 t
| =3 = *‘Iz“e"f( “2—0) (3.26)
D0 F L%}
As tD+°° s
3T "t'D‘
W 4
D| . 1 F ) (e )
N S1) o+ ol e (3.27)
%plo 2 (”‘Fl t

The convergence, being exponential, is very rapid and we can, thus, deduce:

(1) When NF < 0, i.e., when the net convective heat flux through

the front is negative, 2111 approaches exponentially - 1.

%p o
One can easily show that the corresponding temperature dis-

tribution approaches the quasi-steady solution:

Ty e (3.28)
[see Figure 16band Miller (1975)]
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Figure 16a. Temperature Profiles of Eq. (3.25) for
WF = 1 and tD = 0.4, 0.8, 1.6, 3.2, 6.4,
12.8, 25.6.
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Figure 16b. Temperature Profiles of Eg. (3.25) for
WF = -1 and tD = 0.4, 0.8, 1.6, 3.2, 6.4,
12.8, 25.6.
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(2) When wF > 0, i.e., when the net convective heat flux through
the front is positive, ?J}Z approaches exponentially zero.

13
D

0
The corresponding expression for the dimensional conductive

heat flux is

(Tg = T5) [We| Wg <O
t " (3.29)

0 TR

- ks

*
The characteristic time for convergence to the steady state is 0(4t )

4 hR
Wg
the absolute value of the net convective heat flux through the front,

and in dimensional variables ( k -M(z) ) . Accordingly, the larger
0

the faster the approach to the quasi-steady state conditions.

3.5.1.2 Constant Boundary Velocity, Cylindrical Geometry

In cylindrical coordinates, the constant convection approximation

translates into:

= 4
UwrPWwCpw T UorPe® po 2mr (3.30)

where q > 0 is assumed constant. Scaling the independent variables by
*

E;Z = M—a— we obtain the following dimensionless version of (3.21b), in
r

fixed coordinates



77

oT oT T
__._,Q.’._Z__ﬂ]'__.._a__g = _%._n.l.._.g.—_. Y‘D-a-FD-) O<I"D<00,O<t0 (3-31)
) n e Yp D
with
tD = 0; TD =0
r‘D >y Tp+0
rp = 0; TD =1

In solving (3.31), we first note that when Pe = (41—) is equal to 2,

Knr
Eq. (3.31) reduces to the thoroughly examined, pure heat conduction
2
equation. When Pe # 21 the similarity transformation n = 27"‘D leads
tp
to the equation
dT dT dT
R e
e dan n
with solution 9
Per
=1 - D 3.32)
TD 1-P[B, 4tD (3.
where P(a,x) is the incomplete Gamma function, B8 = %% .

When the radial velocity of the boundary is constant, the problem
is not as easy to solve, except in the special case Pe = 2n. However, we
can still obtain the steady state solutions. In the moving coordinates

t,p=r-vt

the dimensionless equation reads:



2
T, 1 RV AT T AT T S Al
BtD Zw(pD + thD) D apD Pe apg Pe (pD + thD) 30p
(3.33)
with
tD =0 3 TD =0
Pp > TD + 0
by = 0; TD =1
In the limitof large tD we can extract the steady-states
T, . a?-TD |
“Vom, R 52 (3.34)
D BpD
- Pev.p
T,V e DD (3.35)

analogous to Equation (3.28) of the linear problem. The conductive heat

tiux at the moving origin, in dimensional notation, becomes

aT

= Kpr 31

T T u(2) (3.36)
=y

which indicates that in such a case the convective heat transfer is

dominated, at large times, solely by the steam front velocity [compare

to (3.29)].

3.5.2 Convective Term a Function of Time

3.5.2.1 A Particular Solution. Linear Geometry.

When the net convective heat flux wFDis proportional to 1//%5, the
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heat transfer problem is defined by

2

ar ol > T

D o] D D

- . = ;3 0 <ty »0c<¢g (3.37)

BtD “ﬂ; QED Bég D D
tD=0;TD=0
3 '*°°;TD->O
€D=0,TD=1

This situation is often visualized in a pure heat conduction problem

with a boundary moving with velocity Vp © 2

"t

The solution of (3.37) is obtained via the similarity transformation
= b
n &DIZtD +a. Then,
2
dT d T
b . 1 D
- g 5 .___.d 5 (3.38)
n
which, if solved together with the appropriate boundary conditions,

generates the solution of (3.37) in terms of Epotp’
1
TD(tD,ED) = erfc{ F;D/ZtD2 + a} Jerfco, (3.39)

Figure 17 shows typical TB profiles for various tD and o. The important

conductive heat flux at the origin becomes

3T
To| . __1 . exp(-4? (3.40)
%o mE,  erfca

D
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Figure 17a. Temperature Profiles of Eq. (3.39) for o = 0.5 and
tD = 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6.
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which as expected tends asymptotically to zero.

3.5.2.2 Cylindrical Geometry

The analogous situation, in cylindrical geometry, corresponds to a
front travelling with a radial velocity proportional to /fa. In dimen-

sionless notation, the front position rep satisfies the equation

= ety (3.41)

which shows that the area enclosed by the front increases linearly with
time. Inserting the B.C. (3.41) in (3.31) and using the similarity

transformation defined in Subsection 3.5.1.2, we derive the solution

Pe rg
1-P§{B , YT
tp
T. =

" (3.42)
o E])

which reduces to (3.32) when ¢ = 0.

The conductive heat flux at the origin

1 Pec
2.2 [c)F72 [pe) B o
) T g » (3.43)
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tends to zero asymptotically with tD‘ in much the same way as the con-
ductive heat flux in the linear case, Eq. (3.40). The above results of

Section 3.5 are further utilized in connection with Sections 3.6, 3.7,

3.8.

3.6 One-Dimensional Treatment of the Two-Dimensional Heat Transfer

In a two-dimensional geometry, the energy equation assumes the more

complicated form (2.16):

ol
R
(¢Swpwcpw * 954PgCp0 * (1 - ¢)PRCpR) 3t

+ (gwqwcpw + gopbcpo)'VTR = thVZTR rer(t)
The region of integration R(t) is bounded by the reservoir boundaries and
the advancing front and generally has an irregular shape (see Figure 18).
According to its geometry, we may consider two distinct cases. In the
first (Figure 18a), properties are uniform with respect to the vertical
coordinate (thin reservoirs), whereas the second case involves radial
symmetry and relatively large thickness (Figurel®). The analysis to
follow is primarily concerned with the second case, in which heat losses
from the hot liquid zone to the over- and under-burden are not as

important as in the first case. In both cases, the B.C. are:

t=0; TR = i

P> Tp> T
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H.L.Z.

Figure 18a. Region of Integration R(t). Thin Reservoirs.

H.L.Z.

Figure 18b. Region of Integration R(t). Thick Reservoirs.
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S(x,z,t) 20 ; Tp = T, (B.C. at the front)

Introduce the system of the natural orthogonal coordinates n, o,

where n(x,z) - x = S(x,z,0) = 0 implicitly defines the front position at
time X and o = o(x,z) is the coordinate running along the steam front.

Thus, the family of curves n(x,z) = const. gives the successive positions

of the front in the (x,z) domain whereas the curves o(x,z) = const,define
its orthogonal trajectories (see Figure 19). In the new coordinate

system, Eq. (2.16) transforms into:

al
R
Gbswphcpw * 8SPeCpo * (1- ¢)pchR) S

aT

aT
1 'R 1 R
* (uwnpwcpw * ”onpocpo) h 5 (uwopwcpw ¥ uoopocpo) h, 3o
o o) L g (1) (2.0
hghy, | @n \h, 3n 3¢ \h_ 30

where hi(i = n,0) are the scale factors, u,; the components of gj along

ji
the coordinate i. The region R(t) maps into R'(t) (see Fig. 19) and the
B.C.'s into:

t=0; TR = Ti
n-> o ,TR+T]
n=t; Tp= T

Introducing the moving coordinates t,¢ =n - t, we immobilize the
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moving origin. Now

: ot FE 3¢ Fo 30
k aT h 5T
- R [a___ (:ﬁj) ¢ o (h.n_ __R_” T (3.45)
M L3g \ by ag 90 o 90
(£,0)eR"
where:
) 1. w2
NF;; (uonpwcpw + uOT]pOCPO) hn M
W = (u pc. +u pc_) L
Fo WO W pw 0070 po hc

The region R", shown in Fig. 19, is fixed in space. The B.C.'s become

R i
g+oo;TR+T_i
£ =0 ; TR = TS

On the lateral boundaries we have the interfacial conditions that couple
the heat transfer in the reservoir and the surroundings through the heat
losses. In addition, the energy Equation (3.45) is coupled to momentum
transfer through the convective terms. So far everything is exact.

In order to simplify the problem we are going to assume a constant
convection term, as before. Then, one could apply approximéte analytical
techniques [such as those employed by Poots (1962), Goodman (1964)1. The
boundary condition at the front, however, suggests that, at least near
the front, TR is not a function of o, the front coordinate. The extent

of the validity of this claim may be shown to increase with Peclet number.
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For re}ative]y thick reservoirs and for high convection terms, therefore,

we can approximate (3.45) by the one-dimensional model:

aT oT
w(2) 2R

K h ot |
R _ “hR 3 [ o, °R
5t " WFE3E  hoho aE (h a&) (3.46)

and
t=0;Tp= Ti
£+ o TR + Ti

E=0;3Ty=T

R S

The Tatter has a closed form solution for particular geometries.

3.6.1 The Quasi-Steady State Approximation (No Lateral Heat Losses)

For an arbitrary geometry one can apply a version of Goodman's (1964)
integral technique. However, if the temperature penetration depth, along
the £-coordinate, is small relative to the radius of curvature of the
front (or in cases of flat geometry), we can make use of the one-dimensional
considerations of the previous Section 3.5. Neglecting lateral heat losses,

under steady state conditions:

(Ts - Ty) \
)Ty S gl Wpe < 0
— N
% 1o 0 : g > 0
= 1 - |
Now, hy = Kl [Pearson (1974)1, Vo = Vq raﬁr', from (2.21) and the

definition of n. Thus, the normal component of the conductive heat flux

through the moving front is approximated by'



" ‘ (3.47)

where an = uwnpwcpw * uonpocpo h (¢Swpwcpw * ¢Sopocpo +(1- ¢)pchR) Yo

It should be stressed, that the above asymptotic expression is
based upon several approximations, which become more accurate as the
assumptions of high volumetric velocities (injection rates), small
curvature and large thickness (smaller heat losses) are better satisfied

[compare with Miller (1975)].

3.6.2 The Zero Net Convection Approximation (Includes
Lateral Heat Losses)

So far, the only attempt to estimate the heat transfer in the hot
liquid zone, for a two-dimensional geometry, was made by Neuman (1975).
Under the assumption of flat fronts, he derived a one-dimensional version
of the energy equation similar to (3.46). By further assuming that the
net convective heat flux through the front is negligible, he converted
the problem to one of pure heat conduction. If we insert this approxi-

mation into Eq. (3.46) we get

oT k h_ T
(2) °'R _ hRB(c R)

M - —_— (3.48a)

5t T Tghy %€ (R % |
and

t=0; TR = Ti

£+ 3 TR‘* T1

£ =0 TR = TS
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‘Assuming, further, negligible front curvature we obtain for the conductive

heat flux:
A ul2) -
- th -S‘E— = . (3.48b)
F e v/t

which is the usual expression for heat conduction in a semi-infinite
medium [compare to (3.15)].

Equation (3.48a) describes well the heat transfer inside the hot
1iquid zone, in those cases where heat conduction to the surroundings is
the dominant heat transfer mechanism. This is clearly favored by low

volumetric velocities (low injection rates) and small thickness (larger

heat losses).

3.7 One-Dimensional Heat Transfer in the Hot Liquid Zone by Convection,
a Steady or Moving Boundary and Lateral Heat Losses (No Horizontal

Conduction)

3.7.1 General Formulation

Heat transfer in a hot liquid zone with lateral heat losses and
moving boundaries is typical of steam injection and cumbustion processes,
where, due to the occurring phase change, the front which separates con-
densed and gaseous phases, propagates through the reservoir continuously.
When the boundary is fixed (no travelling front) we deal with a typical
case of hot fluid injection (hot waterflood).

To decouple the heat and momentum transfer, Equations (2.13), (3.14),
(2.16), we assume, as before, constant convection and volumetric heat

capacity. We integrate the heat balance, Eq. (2.15), along the vertical
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coordinate z (Figure 20) and use the energy boundary condition (2.31b),

to obtain the following one-dimensional equation:

oT
R
k’swpwcpw + ¢SODOCDO + (1 - ¢)DRCPR) 3t

oT, 227
* (uwxpwcpw * uoxpocpo) ax

2k o foT

R, 2nf (a f)

k + (3.49)
R5Z " Th Bz ),

Substituting the expression for the heat losses, Eq. (3.13),we further

obtain

M(Z)BTR*-(U pc.+u c )aTR
9t wxwCpw T YoxPoCpo’ Tx

52
=

TR Zkps g Jt TR _dt (3.50a)
hR axz h ﬁ&; o ot s
and similarly in cylindrical geometries

3T T
(2) °°R _R
Mttt (uwrowcpw * uorpocpo) ar

k aT 2k taT
- _hR %F (r R) _hf 1 I R _dr (3.50b)

r " e lo T vETE

t 2
0<t, [ v(t)dt < x, o

0
The B.C.'s are:

[ g
]
o
v
-4
L]
—

R i
X,r + ® . : TR +T1.
x,nrz = J v(t)dT TR = Ts
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“With the additional assumption of negligible horizontal conduction, we

~get

" t
w2 TR, 08T ZKye J TR 4y (3.51)
ot F oX hif'!‘T.(;fT 0 ot /.E“:——%- )

0. . . . .
where Wp uwxpwcpw uoxpocpo An identical equation is also derived

for cylindrical geometries where wrz takes the place of x and q of wg

[see also Eq. (3.30)]. With this in mind we can now introduce the

Te- Ty
dimensionless variables T, = s——= ,
X t

t
X = =
. W] th(z)) D ((M(Z) )2 hz)
—_—— c 4o

and rewrite (3.51) in a uniform notation for both linear and cylindrical

geometries

t
+ . y =—l....f D aTD . dTD
at 0 X v/ : )
t

D
in the domain 0 < tD"L VDGrD)dTD S Xp with B.C.:

(3.52)

tD =0 ; TD =0
Xo > 3 TD + 0
)
D-"{O V(TD)dT > D=1

>
1

3.7.2 Solution of the Integro-Differéntia1 Equation (3.52)

The main difficulty associated with the solution of (3.52) arises
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from the existence of the moving boundary. Fixing the boundary by a
simple translation of coordinates does not help in this case, so we
would rather proceed differently.

We first observe that (3.52) is composed of a hyperbolic part (LHS)
and a sink term of the convolution integral type (RHS). Since the initial
condition is TD = 0, we expect a non-trivial solution to exist if and only
if wg >0. The non-trivial part of this solution lies in the domain

0< tp, Xy <t (see Figure 213) outside of which Tp = 0, as can be easily

verified by a direct use of the Laplace Transform. On the other hand, the
variable X in the region of interest, satisfies )

t
D .
JO vDCrD)er < Xpe Combining with Xp < tps gives rise to the following
constraint on vD(tD)

t

D
[ vplepeey < 5, v o0<ty (3.53)
0

for a non-trivial solution to exist. The constraint simply states that,
since we neglect horizontal conduction, heat transfer can only occur if
the convective heat wave travels faster than the moving boundary.

Let us now introduce the new coordinate system (x 8) such that
0~ Xp * X = X (3.54)
The region of integration in the new system becomes

>0, X2T@®) (see Fig. 21b)
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ty

VWhere x = T(06) is the image of the curve Xp = c(tD) = I ‘vD(rD)dTD,

under the above transformation. Thus, T'(8) is implicitly defined by

0+X
X = J VD(TD)dTD (3.55)
0

and the respective boundary velocity

volty)

w(9) = i—:.T’-DTEEy (3.56)

=53

In the new variables, TD(xD,tD) = 0(8,yx) and our integro-differential

equation takes the form:

(3.57)

with B.C.:
o]

it n
—— O
@@
s
£ (o)
—
~ [ []
S
[~ (e
~
-
(o]
u
[y

X

We now claim that Eq. (3.57) admits every solution of the pure heat con-

duction equation and vice-versa:

0 _ 30 |
20 > (3.58)

X
with I.C.8 =0;0 =0

and B.C. x »« ;0 -0
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o= e esn
0

Indeed, by taking the Laplace Transform of both (3.57), (3.58) and the
respective B.C., we see that, within a multiplicative factor, A(s), to
be determined from the moving boundary condition, both equations give
rise to the same transformed expression:

A(s) exp (- x Vs)
Invoking uniqueness in the inversion of Laplace Transform, one concludes
that every solution of (3.58) does indeed satisfy Eq. (3.57) and its
boundary conditions and vice-versa.

We, thus, showed that a solution to the problem of heat transfer

by convection along the x direction of a semi-infinite thin layer and by
conductionalong the z direction of a semi-infinite medium, is provideq

by solving a pure heat conduction problem along the x-direction, in a time
coordfﬁateshifted by fhe space coordinate X.

The resulting moving boundary problem (3.58) can be solved in
either of the two ways:
(a) By the application of the h-transform [Widder (1975)] to (3.58)
with the result

)
olesx) = f Alt)h(x 6 - t)de
)
where 0
2
hix.8) = —%X— exp { - %—} and A(®) an unknown, yet,
VAN

function to be determined as a solution of the integral equation:

8 0
J A(T)h[[ w(Adr, 6 - T]d'l‘= 1 (3.59)
0 0
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6
(b) By going to the moving coordinates 6, £ = x - I ‘w(t)dt, thus

immobilizing the moving origin (Fig. 2lc). 0

520

90 a0 |
- %) = — .
75 - “(®) 5 262 (3.60)

with B.C.

8 =0;0=0

£ » »;0-+0

§¢ =0;0=1
From a previous discussion (Subsection 3.5.1.1) we recall that this
problem admits analytical solutions for certain classes of functions
w(8). The following subsections examine several cases of practical

interest in thermal methods.

3.7.3 Fixed Boundary

This case is typical of hot water injection (hot-waterflood) with
negligible horizontal conduction. Here vD(tD) =0 and, by (3.56),
w(8) =0. Also £ = x and (3.58) reads:

56 gzg (3.61)
with

6=0; 0=90

E+rw; 0-+0

£E=0; 0=
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solving [ Stakgold (1968)] we get:

0(8,6) = erfc {}f;€}. H(e)
2/8

and,by back transformation to the original variables,

T (t..x.) = erfc {:———~i9—_-~\. H{t. - x.) (3.62)
p'tpXp 2/€5-:~§5-j D~ *p

where H(t) is the Heaviside step function. Figure 22 shows temperature

profiles for various times. From (3.62)

aT
§§Q R | (3.63)
D /Tt

D

which shows that the conductive heat flux at the origin approaches zero,
as ty > «, but not as fast as in the case of zero lateral heat losses
(Subsection 3.5.1.1).

An identical to (3.62) solution has been obtained by Lauwerier (1455)
by more complicated means. We believe that the present method is much
simpler and can be easily applied to cases with different boundary con-
ditions. For example, in case of variable boundary temperature gD(tD)’
one can easily derive by superposition:

L) xg gD(tD - TD)
exp {} 4T0j} Tg/Z drH(ty - xp) (3.64)

To(thsxpy) = — f
DMD*D
% 0

[ws]
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3.7.4 Constant Front Velocity

We consider steam injection where the front travels with constant
velocity vD(tD) = ¢, In the absence of horizontal conduction, the constraint
(3.53) dictates ¢ < 1 and in dimensional variables

u2)y, < N(F) (3.65)

From (3.56), w(p) = i f - > 0. The curve C : Xp = ctD maps onto T :

X = ﬁ—f—a—e (see Figure 23), hence ¢ = x - '(‘r(.:“c‘)‘ 6 and the heat

transfer equation reads:

—a'é'—m-a—g':——é‘ 0<9; O<€ (3'66)

8 =0;0=0
E +o ;00

E =0;0=1

According to Section 3.5 , we get

C

ErT-o¢h
0 (8,6) = 3¢ erfc{ ————)+
2/8
E - 7o
+exp - i;%;ﬁ;) rerfc ( —————— 3> Hlp)
2/8

and, in terms of the original variables,
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1 *p c.
TolthsXn) = = erfc(-———-————-———-) + exp {- — (x4, - Ct 9

xD(l +c) - 2ct), _
* erfc H(tD - xD) (3.67)
2(1 - c)/ED =X

0 <tD, ctD< xD

Figure 24 shows various profiles of TD versus xp for different tp and
¢. The temperature distribution is seen to approach a quasi-steady state.

Indeed, from (3.67), we can verify that TD(tD,xD) approaches, as ty > =,

the travelling wave solution

TD(tD,xD) = exp {E z}fuﬁLE?-(xD - CtDi} H(t'D - xD) (3.68)
- C

In other words, the temperature profile assumes, at large times, the form
of a wave which travels with a velocity ¢ imposed by, and equal to, the

moving front velocity.

The dimensionless conductive flux through the front

2
aT ct

D c 1 1 D
— == - —= exp \ - - +
p 2 m - s <)

. (1-c)
xD.ctD D

¢/t
+ ...___.(.:..__...2. erfc {—-—-—-—-—-—D—— (3.693)
2(1 - ¢) 2/T=¢
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Figure 24a. Temperature Profiles of Eq. (3:.67) for ¢ = 0.2
and t, = 0.25, 0.5, 1.0, 2.0, 4.0, 8.0.
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Figure 24b. Temperature Profiles of Eq. (3.67) for c = 0.8
and tD = 0.25, 0.5, 1.0, 2.0, 4.0, 8.0.
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C

(1-c)
istic time for the approach to this asymptotic value is of the order of

approaches exponentially the non-zero value - 5 . The character-

[(1 °2C) (ﬁﬁ(Z)) ? hg] » in dimensional variables. The larger the
. fpf)  °f
front velocity, the faster the convergence but also the steeper the
T-distribution (Figure 24). Note that it is the front velocity alone
that controls the approach to the steady state values and not the net
convective heat flux as in Subsection 3.5.1.1.

For future reference we consider the behavior of (3.69) for small

values of c. Then, the dimensionless conductive heat flux approaches

the front velocity ¢

2

oT ct (4
3—2 v ¢ - —L exp {- T'D"} + & er-fc{——é-'l (3.70 )
) - Yyt 2

The applicability of the above results in real cases is restricted, by the
constraint (3.65), to those cases where the net convective flux through

the front is positive

3.7.5 Front Velocity of the Form vD(tD) = o

Yt + az

D

The class of fronts characterized by the velocity expression

Vp = S B s 00 > 0, is of considerable interest to us for the following

vt * az

D

two reasons: (i) it can fairly accurately describe the steam front

velocity for large times, (ii) it leads to an analytical solution.
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Now, the curve C is described by: Xg = - 2a2 + 2a /tD + aa, which
maps onto I': x = 20/8  (Fig. 25). From (3.56), we obtain w(8) = &
and € = X~ 20/8. Note that the constraint (3.53) is satisfied for any

o > 0. The subsidiary Equation (3.60) becomes:

2
M _ _ o, 906 . 20 (3.71)
26 5 'l agZ
with
8 =03;0=0
£E=0;0=1

This problem has been already discussed in Subsection 3.5.2.1, where we

developed a similarity solution for ©@. In terms of the original variables

X
TD(tD’xD) = erfc B erfca: H(tD - xD) (3.72)
2/ tD - Xp

on - 20" + 2 ty +a < Xp

Expression (3.72) is the same, within a multiplicative constant, with
Lauwerier's solution, Eq. (3.62), obtained for non-moving frents. In fact,
for o = 0, Eq. (3.72) reduces to (3.62), as expected.

In Fig. 26 we show typical TD profiles for various times and values
of a. Variations in o have a significant effect. As a inéreases, the

temperature profiles become steeper, due to the increased front velocity.

The conductive heat flux at the origin
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Temperature Profiles of Eq. (3.72) for a
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aTD - az tD - a/tD + aa + az
s | T - € . (3.73)
D XDEC /i erfea (tD -0/t ol + 2&2)3/2

D

, 2
approaches zero like exp(-o7) . 1 s as t, »«,. This asymptotic

/T erfou /EB D

behavior is identical to that of a pure heat conduction problem with a

moving origin of velocity 23— (see Subsection 3.5.2.1). The results
vVt
D

of this Section 3.7 and in particular the asymptotic behavior at large

tD’ are applied in Chapter IV to determine the steam front velocity.

3.8 One-Dimensional Heat Transfer by Convection, Conduction, Lateral
Heat Losses and a Steady or Moving Boundary.

3.8.1 General Formulation

Including horizontal conduction along the x-axis, allows for more
realistic results and. it also removes the constraint (3.53) imposed upon
the front velocity when conduction is neglected. The governing equations
(3.50a,b), in dimensional notation, have been derived in Section 3.7.1.
The addition of horizontal conduction does not permit a uniform repre-
sentation for both linear and cylindrical geometries [in contrast to
(3.51)1, therefore we consider the two geometries separately.

In a linear geometry, non-dimensionalizing as in Section 3.7.1 we

get:



o, M T 1 “D__l_JD My 4
ot 0 ox R ot
D [wg| D axp /Ty D Vi, =T,
tp
0 <ty [ VD(TD)dTD < Xp (3.74a)
0
with
tD =0 ; TD =0
Xp >3 Tp >0
tD |
Xp = J -VD(TD)dTD; TD =1
0
uh2 o
The dimensionless group R = —— ' 5o can be regarded as a modified
4k R
hf

Peclet number because it expresses the product of the two ratios

(convection x-direction) (convection x-direction) Usually o = @

(conduction x-direction) * {conduction z-direction) = ™, Y% = O
Weh

thus R is simply the square of a Peclet number equal to E%;F

In cylindrical geometries, introducing the dimensionless notation

T, - T
R T t
T, = =———=— , t, = and
D TS-Ti D (M(Z) )2 h2
PeCpr | fag
r
r =
D 2)
n2) b e
(pfcpf) 2/ o hle

we transform (3.50b) to:



. — - . : (3.74b)
tp
2
0< tps f vD(TD)er < mry
with 0
tD =0 TD =0
rp>® 3 Ip> 0
t
Ty = f VD(TD)dTD H TD =1
0

Notice that now, the Peclet number, Pe = Eg_ » replaces R as the
hR

important dimensionless group.

For arbitrary R, Pe and vD(tD), the above equations are not easily
amenable to analytical treatment. Particular values of R and a certain
class of functions vD(tD), however, allow analytical or asymptotic solutions.
This is not equally true in cylindrical geometries except in the special
case Pe -~ « which, however, has been already treated in Section 3.7.
Therefore, our discussion will be limited to linear geometries only,

while keeping in mind that the asymptotic results as R, Pe » = are

identical.

3.8.2. Fixéd Boundary, Arbitrary R

By removing the complexities associated with the moving boundary, we
are able to solve the linear Equation (3.74a). This problem, which is a
more realistic representation of a hot waterflood than Lauwerier's

problem, (Section 3.7), is briefly discussed in a review paper by Spillette
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(1965) who also presents the resulting temperature distribution as

derived by Avdonin (1964). Since Avdonin's work is not readily available,
we sketch the method of solution of the integro-differential Equation
(3.74a) and comment on the results. ‘

Using a Laplace Transformation on Eq. (3.74a) and the B.C. we get,

after inversion

t 0 2
D
xD¢§' RT, XpHE
TD(tD,xD) exp (- —— - 5
2/1 0 TD|WF|
T dr
.- erfc { J_D } 3[/)2 , (3.75)
2ty = TpJ) T

which, within a multiplication factor, is identical to the expression
presented by Spillette (1965). (The disagreement is probably due to a
typing error.) Note that, now, Eq. (3.75) is valid for any wg, in con-
trast with Lauwerier's solution, where the condition wg > 0 was necessary
for the existence of a non-trivial solution.

The above integral simplifies considerably when R = 1. Then (3.75)

reduces to:

X
T (tnsXn) = erfc (-—Jl—) K2 > 0 (3.76)
- X X
TD(tD,xD) = e D erfc (—~£L-) wg <0 (3.77)
2/?5

(see also Subsection 3.8.4.1). Figure27 plots T, profiles for different

times and R = 1 in the two cases, wg > 0, Wg«< 0. When w2:> g, the
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Figure 27b. Temperature Profiles of Eq. (3.75) for NF = -1,

R=1 and ty = 0.25, 0.5, 1.0, 2.0, 4.0, 8.0.
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profiles are close to Lauwerier's profiles except for large Xps when the
heat wave penetrates farther into the unheated zone. When wg <0, the

TD profile slowly approaches the steady-state solution

Tp = exp [- xyR] (3.78)

As R increases, the two profiles come closer and as R ~ « they eventually

coincide.

The conductive heat flux at the origin assumes the following

asymptotic form as tD - oy

0
T r
0| . [ R._ 1, /L
Fo_q) R 0 [~k (3.79)
| (!wgl ) 2y (tg/z)

The first term in the above expansion is similar to that obtained by
conduction and convection alone [Eq. (3.27)], the second is of the
Lauwerier type (3.63), the third etc. are of mixed type. In the limit

of large times, the results are very similar to those obtained in Section

3.5 where heat losses are neglected.

oT
(i) When w? <0, 3;9- " - R which, if translated in terms of
D 1o
BTD
the scaling employed in 3.5.1.1, is equivalent to PY vo-1,
‘ D
exactly as in Eq. (3.27). 0
0 Ty
(ii) When wF >0, v v (0 , as before.
D
0

The above results imply that after sufficiently large times, the

effect of lateral heat losses becomes insignificant and the process is
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dominated by horizontal convection and conduction. However, the con-

vergence to the steady state is much slower than the exponential con-

vergence of (3.30).

3.8.3 Constant Boundary Velocity, Steady States for Arbitrary R

When the boundary has a constant (or asymptotically constant)
velocity, we can easily extract the steady state solutions. Introducing

the moving coordinates tD’ ED = Xy- ctD we rewrite Eq. (3.74a) and the

B.C.
0 2
3 3
aTD+(wF-C)s;~Q=-1~'aTD
t 0 =4 R 2
D !wFl D PE]
BT dr
1[ D D
- —_ = |Tns £4 + (t, - TH)C)] ————
/i b, 5u; ( D® D D~ D ) R
t. 5T dr
/ 2 Vil - 1
0 D~ 'D
tD =0 ; TD =0
gD—)— w0 3 TD+ 0
ED =0 3 TD =1

where ¢ is the velocity of the boundary and Uy U, are the independent
variables of the function TD(u1 "2)' Being unable to develop exact
solutions for arbitrary R, we are interested in the steady states, if

any, of (3.80). 1In the limit tD<+ ©



0 2 u
We | D 3L v £ 2
dt
Db (3.81)
"t = Tp
which becomes
0 2
W 0T T aT
B Rl R O I X e
IwFl D 2ES v/ g /o
with B.C.
€D+w ;TD'+0

ED =0 ; TD =1

The sclution of this simpler integro-differential equation in one inde-
pendent variable provides the steady-state solutions. Notice that, now,c

is not bound by the condition (3.53).

To make the presentation simpler, we introduce- the notation:

oT
= =__..Q. =——-———-—-——-——‘/E = 1
X = ED s O(x) agD Y wo it 0
F N
op € T
Mg F
e |
where we assumed c # T—%T and ¢> 0. (An identical analysis can be
W
F

followed when ¢ <0). We, then, obtain



116

(o]

o(x) = wo'(x) + %;fo oo +x) & (3.83)

T Vo
In Appendix III we show that Eq. (3.83) can be reduced to the ODE

2

" (x) - 2on(x) + Lo (x) + 5 0(x) = 0 (3.84)
H M 112
which admits the general solution
d(x) = Alexp(zlx) + Azexp(zzx) + A3exp(23x) (3.85)

where the roots Zys Zy5 Z3 satisfy the algebraic equation:

2
1,2, A" _
z(z - ﬁ') t— = 0 (3.86)

2
Depending upon the sign of §%ﬁ’+ 52- we have one negative and a pair of
complex conjugate roots (positive sign), or three real negative roots

(negative sign).

Returning to the original notation and integrating, we get the

physically acceptable solution

TD(£D) = exp(zliD) (3.87)

BTD

| " (3.88)
0

where Z4 is the real negative root of (3.86). Values of z for various
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c R Z
100 100 -9,910
10 - 993
, 1 - 100
| 0.1 - 10.21
10 100 - 910
10 - 93
1 - 10
0.1 - 1.1
1 100 - 21.54
10 - 4.64
1 -1
0.1 - 0.21
0.1 100 - 0.1231
10 - 0.1202
1 - 0.1
0.1 - 0.050
0.1 R+ - 0.1234

Values of Zy for various values of R,c.

Table 4
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Figure 29a. Temperature Profiles of Eq. (3.87) for R = 103
and ¢ = 0.2 and of Eq. (3.89) for ¢ = 0.2.
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Figure 29b. Temperature Profiles of Eq. (3.87) for R = 10
and ¢ = 0.8 (upper curve) and of Eq. (3.89)
for ¢ = 0.8 (lower curve).
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R, c are tabulated in Tables 3,4. As expected, the larger R and/orc is,
the steeper the temperature gradient at the moving origin. These results
should check with the steady states discussed in Section 3.7. Indeed,

for R~ u >0 and Eq. (3.86) admits the unique solution z = - %2, hence,

TolEps Ry ™ =) = exp [- —S—5 & (3.89)
D'*p* "p e"p[(l_c)z D}

which agrees with expression (3.68). Figures 29, 30 show steady-state
profiles for various ¢, R. Note that as R increases, at constant ¢ < 1,
the temperature profiles approach the solution (3.68), with horizontal
conduction neglected. The agreement is better for large R and small ¢
(Figure 30, Table 4) as this can be easily shown by a regular pertur-

bation of (3.86) when ¢ << 1,

3.8.4 R =1, Arbitrary Velocity

As with 3.8.2, the integro-differential Equation (3.74a) admits a
simple solution when the parameter R takes the value 1. In order to
derive an analytical solution, we take the Laplace Transform of (3.74a)
with respect té time. For an arbitrary R,the resulting expression is

very complicated. If R = 1, however, we get the simple result:

0

W

= B .

Ly {TD} = A(s) exp (\wol ) Xq (3.90)
___f_.é.____-/g

where A(s) is an unknown function of the transformed variable to be

determined from the boundary conditions.



0

Consider, first, We > 0. Then (3.90) becomes:

b

Lo Ty) = A(s) expl- x,v5 ] (3.91)

which shows that TD(tD;xg) satisfies the pure heat conduction equation in

the plane (tg’xu):

(3.92)

In other words, in the particular case R = 1 the lateral heat losses are
exactly counterbalanced by the convective heat flux and, as a result,

heat transfer is governed by pure heat conduction. Similarly, when

wg < 0, we deduce that TD(tD,xﬁ)'satisfies the PDE
. 2
oT oT 2 T,
D °Xp 8 %5

Here, convection is negative which makes the temperature profiles
X
steeper. Indeed, we can easily check that it is the function € DTD(tDQXD)
that satisfies the heat conduction equation and not TD(tD,xD) alone, as
0
- 0.
Before exploring various special cases of boundary motion, we

in the previodus case W

restate the conditions under which the interesting case R = 1 arises.

Since

R = =5t g s then K = 1 ‘mplies We = Sl which, for
aKE R “f



o * g (as it is usually the case), shows qualitatively why convection

counterbalances conduction in the over- and under-burden.

3.8.4.1 Fixed Boundary

This problem is discussed in Subsection 3.8.2. In light of the
above analysis, one can immediately deduce the simple results attained
when R = 1.

3.8.4.2 Constant Front Velocity

= i { £ = -
Now,vD(tD) ¢ and in moving coordinates tys &y = Xy - cty we

encounter the familiar equation:

o2
of oT a°T
D D D 0
T = O omp ® e W >0 (3.94)
D
with B.C.
tD =0 ; TD 0

We limit our discussion to the physically realistic case wg > 0. Solving

|

o | X = 2¢ct
T, = %- erfc < gm) 4~exp(“ c(xy - Ctn))-erfc (—Q-- D)f (3.95)

(3.94) as in Section 3.5, we get

/
2/, 2/53
Cty < xp
which, in the Timit of large times, leads to the steady state solution:
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Ty = expl~ c(xy - ctp)] (3.96)

Figure 31 shuws Ty profiles for various ty and ¢ equal to 1.

The conductive heat flux through the origin

; 2 i
oT ¢t ¢/t
D I B c _—]
5;5 =~C - - exp[. i ] + 5 erfc ( 5 ) (3.97)
x0=ctD D

tends asymptotically to - ¢. One can accordingly estiwate the character-

. . 1 [ 2\ 2y o
istic time of convergence to be 0 R =1 s in dimensional
¢® \"'fopf f

variables. Note that it is inversely proportional to the square of the
boundary velocity v, while the characteristic time obtained in Subsection
3.4.1.1 for the case of no lateral heat losses is proportional to the
square of the net convective heat flux. A comparison of the corresponding
steady state conductive heat fluxes shows that in (3.97) an asymptotic
nonzero flux applies for any value of the net convective heat flux, pro-
vided ¢ # 0. On the other hand, when lateral heat losses are neglected,
the conductive heat flux approaches a non-zero value only if the net con-
vective heat flux is negative.

It is also interesting to compare the heat flux (3.97) to the
corresponding expression when R~ © {(no horizontal conduction)w As shown
in Section 3.7.2, the two expressions are identical when the front
velocity is small. This, in turn, suggests that, for small front
velocities, including horizontal counduction has almost no effect in

determining the conductive heat flux through the steam front .
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In dimensionail notation, we get for large times

at

-k —x Vv (3.98)

which may serve as the basis for a quasi-steady state approximation

including laterdl hedat losses, to be used in Section 4.6.

3.8.4.3 Front Velocity of the Form QD(tD) = 2

Ty

In the context of steam drive calculations, it would be also
desirable to derive the temperature distribution corresponding to fronts
whose velocity decreases with time. A sui hle class of fronts for
which an analytical solution is possible, is described by the velocity

profiles vD(tD) = ;%: » ®arbitrary. The practical importance of such
t
D

fronts, in the one-dimensional modelling of steam injection, is high-
lighted in the next chapter.

According to Section 3.5, the resulting temperature profile is

provided by
XD
TD(tD,xD) = erfc {”Tf?”} erfc o (3.99)
and the dimensionless conductive ncat flux by

- 1 . exp(" ("1,2) (3 100)
o erfco '
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‘The results are plotted in Figure 32 for various tD and o.
There exists a vemarkable simiiarity between expression (3.100)
and that obtained when heat lTosses are neglected (R -~ «), Eq. (3.73).
As tD increases, the front velocity in 3.6.2.3 approaches the velocity
under consideration, —— , and the dimensionless conductive heat flux,
Y

Eq. (3.73), behaves asymptotically like Eq. (3.100). In such a case,
including horizontal conduction (R = 1) in the large time description
of the heat transfer through the front does not appreciably alter the
results when horizontal conduction is neglected (R > «). This is a
significant result that is further used in connection with Section 4.5.

Before we conclude this chapter, we would 1ike to discuss in a
more systematic way the solution of the class of integro~differential
Equations (3.74a). In Appendix IV we comment on the transformation of
the integro-differential Equation (3.74a) to a partial differential
equation of higher order. The proposed technique may be useful in

treating other problems that also belong to this c¢l. ..

3.9 Conclusions

The results of the foregoing analysis on heat transfer can be
briefly summarized as follows.

Heat transfer into the over- and under-burden is sufficiently well,
within the scope of thermal recovery modelling, approximated by one-
dimensional heat conduction along the vertical direction. The degree
of the approximatibn increases with the injection rates; under normal

steamflood conditions the error introduced by tne approximation is
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—
\_\Nh\\ R
Front Velocity o #1 1
Zero Yes Yes Yes

(3.7.3, 3.8.3, 3.8.4.1)

Constant Yes Steady Yes
(3.7.4, 3.8.3, 3.8.4.2) States
Parabolic Yes ’ -— Yes

(3.7.5, 3.8.4.3)

Studied cases that admit analytical solution.

Table 5
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insignificant. On this basis, we developed analytical expressions for
the heat losses at a fixed point, in terms of the temperature history of
the point under consideration. By further employing known thermodynamic
relationships, we were able to bound the conductive and convective heat
fluxes to the hot liquid zone, with the objective of deriving bounds on
the stuain zone volume.

Heat transfer in the hot liquid zone has been treated according to
the geometry of the system and the magnitude of the heat conduction along
the horizontal direction. In one-dimensional systems, the resulting
moving boundary problems have been successfully solved in a number of
cases, as snown in Table 5. The results corresponding to a fixed boundary
are useful in the context of hot waterflood, while the two other cases
will be utilized in modelling steam injection and (eventually) in-situ
combustion. In particular, the constant velocity subcase leads to the
formulation of a quasi-steady approximation, while the subcase of parabolic
steam front movement will be further utilized in the development of
asymptotic solutions. In this last ca.e, it is important to notice that
the temperature profile, in the Timit of large times, is not sensitive to
the magnitude of horizontal conduction.

For the purpose of developing analytical expressions we approximated
the two-dimensional heat transfer in the hot 1iquid zone by one-dimensional
models. The approximation is seen to be reasonable near the steam front
and to introduce larger errors near the reservoir boundaries. Still, it
provides us with a handy expression, that will be further employed for the

derivation of a first-order approximation to the steam front shape.
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Chapter IV. Application to One-Dimensional Reservoirs

4.1 Introduction

With Chapter IV we start the combined application of the integral
balance technique and the heat transfer considerations developed in the
previous two chapters to steam injection modelling. The geometries
examined here are one dimensional, l1inear or cylindrical, (see Figure 33)
and represent processes that exhibit symmetry along two coordinate
surfaces. The linear geometry model is most frequently encountered in
laboratory simulations whereas the cylindrical case is a more realistic
representation of actual field tests because of its two-dimensional
(areal) character. It is important to notice the absence of any symmetry
distortion that might be caused by the production wells. Since this is
often not the case, the geometries under discussion are rather idealistic
representations of an actua: field pattern (compare to Figure 9). Never-
theless, modelling such processes provides a good insight on the parameters
and variables that control the steam zone growth and, in any case,
most of the derived results can be extended to more realistic configurations
with lesser degrees of symmetry {Chapter V).

In Section 4.2 we reformulate the integral balances and outline the
approach used by other investigators in modelling one-dimensional steam
injection. We subsequently develop exact upper bounds (Section 4.3),
lower bounds (Section 4.4), asymptotic solutions (Section 4.5) and approx-
imate numerical solutions (Section 4.6). The interrelation of the various
solutions, the physical significance of the various parameters and the

impertance of the derived results in actual field cases are extensively
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coverad. The final Section 4.7 provides solutions to the saturation dis-

tribution inside the steam zone, in the absence of steam distillation.

4.2 General Considerations

4.2.1 Reformulation of the Integral Balances

We start with the integral balances {2.47), (2.50) of Chapter II
which reduce to simpler expressions due to the symmetry displayed in the

present problem. Terms of the form

J plr,t)dr J elr,t)dr
u(t) Ag(t)

simplify to

LF(t) LF(t)
bh fo J(xt)dx , b [ J(x,t)dx
0

in linear and to

Re(t) Re(t)
2rh [ rpir,t)dr 2 [ Fp(r t)dr
0 0
in cylindrical geometry. Here b is the width, h the thickness of the
reservoir, LF(t) the length, RF(t) the radius of the steam zone and § the
cross sectional averaye of a scalar quantity ¢.

Equations (2.47), (2.50) can be written in a uniform notation:
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. gg‘sz(t)MldX . HF(t)AT‘(WF(t) + QF(tD*'%“JzF(t)('khf ;;i)lldx
= gty +w (0)] a7 + w e (4.1)
()
N [d Mydx + 1-(t)aT Q(t)

Subtracting (4.2) from (4.1) we get the water mass balance:
M3dx + HF(t)AT Np(t) = [ws(t) + ww(t)] cprT (4.3)

where M3 = M1 - M2' Here HF(t), a measure of the steam front perimeter,

is equal to 1 or 2wRF(t); XF(t) stands for steam zone length or area and
the injection rates are expressed per unit injection area or unit thickness
in linear and cylindrical geometries, respectively.

Throughout this chapter we are mainly concerned with the determination
of the steam zone volume, XF(t), as a function of time. For this purpose
we need, besides (4.1) and (4.2), information regarding the distribution of
the volumetric heat capacities Mlg M2 and the coupling heat flux terms
WF§E), Qp(t). As will be seen in Section 4.7, the average values of Mi
remain approximately constant,which considerably facilitates a further
development of the model. In contrast, as already indicated, the heat
transfer terms are harder to handle and, since they play a dominant role

in the determination of the front dynamics, particular care shiould be taken
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in dealing with them.

While the structure of Egqs. {4.1), (4.2) is non-lincar with respect
to XF(t), further inspection reveals that both equations consist of the

sum of an almost linear and a non-linear part
LLj {XF(t)} + LNj {XF(t)} = ‘I’j(t) j=1,2 (4'4)

where the subscripts 1,2 refer to energy or steam balances, respectively,

and

oy(t) = will) 4 (g + ¥, )G AT (4.5a)
2,(t) = wSL\(,l) (4.5b)

The almost linear operator LLj has a common structure in both equations.

For continuously advancing fronts we get, invoking (3.13)

Xe(t) Xe(t)
L ; {XF(t)} = %f I fy(x,t;XF(t» dx + d J _dx
J 0 J 0 - Alx
o j=1,2 (4.6)
ZkthT
where d = The function f.(x,t;XF(tﬂ = ATM; is a slowly
thaf J J

varying function of XF(t), hence the term "almost linear". We will refer
to LLl as the Marx-Langenheim operator.
Before we proceed with the solution of (4.1), (4.2), it is interesting

to discuss the methods employed by previous investigators in their attempts
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to determine the one-dimensional steam zone growth.

4.2.2 The Marx-lLangenheim (1959) and the Mandl-Volek (1969)
Approaches

Harx and Langenheim (1959) modelled the one-dimensional, linear,

steam drive with constant injection rates, by assuming constant satur-
ations inside the steam zone and a step-temperature distribution [compare
to (3.14}1, which results to zerc heat flux into the hot-liquid zone.
Thus, they were able to arrive at an approximate energy balance which is
Tinear with respect to XF(t),
the Marx-Langenheim equation, which is here corﬁected to include

terms involving Ssg that did not appear in the original equation, con-
sists, therefore, of the almost linear part alone, thus making the
problem analytically tractable:

[t Xy (A)dA _

L, {X, (t)} = M. AT X (t) +d ! — ® (4.7)
L1 "7ML 1 ML i —— 1

Here Ml is considered constant, the subscript ML refers to Macrx-
Langenheim and dots denote differentiation. An identical equation can be
obtained directly from the exact expression (2.45) by following the above
stated assumptions (TEI = Ti)‘

The solution of (4.7) follows by a straightforward application of
Laplace Transform, for both constant injection rates (as originally
presented by Marx and Langenheim) and arbitrary injection rates [as gener-

alized by Ramey (1959)]. Dencting the steam front velocity by v,, (t) we

ML
get, for constant @1
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] 2
1 qd”t dvnt
v, (t) = i erfc [-u*ﬂr] (4.8a)

the well-known Marx-Langenheim expression. When ¢, varies [Ramey (1959)]

o (t) 2 gt Y- g
Wt = gt 3J R [EL%L e
1 (M8T)™ 4 (H,4T) ]
: Ld/?(f"‘«“ﬁ] J et A (4.80)
My aT A - 1

Incidentally, Ramey's extension, although mathematically valid, does not
provide the actual rate of growth, even within the approximate Marx-
Langenheim framework, in cases of receding fronts.

The Marx-Langenheim model which found considerable applications in
the past, has three main drawbacks: (1) It neglect: the heat flow to the
hot 1iquid zone. (2) It is based solely on the total thermal energy
balance, thus predicting a non- zero steam zone growth even if hot water
only is injected. (3) It does not apply to variable injection rates that
give rise to receding fronts. Therefore, use of Equations (4.8) will
produce realistic results only when the front advances continuously, and
for small times, when the heat penetration into the hot liquid zone is
small.,

Mand? and Volek (1969) were the first to object the universal validity
of the Marx-Langenheim model. Based on an inequality, which in view of
the considerations of Chapter III, is easily interpreted here as the con-
straint (3.19b) on the mass balance (4.2), they concluded that expression

(4.8a) portrays indeed the actual velocity of the front,but only up to a
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critical time tc. After this time, they show qualitatively that (4.8a)
vserves as an upper bound on the actual front velocity.

Regarding these conclusions one can remark the following: Equation
(4.8a), based on the restrictive assumption of negligible heat flow to
the hot liquid zone, is certainly not an exact solution to the problem,
although it may be close to it for some limited time after injection
starts. (See Subsection 4.5.3.) It is also not obvious from the quali-
tative arguments they present, that ViL is aﬁ upper bound to the actual
velocity after time t.- In fact, if translated in mathematical terms,

their argument is equivalent to the following logical deduction scheme:
¥ x(t) > 0: LLl{x(t)} >0 Vt>0=x(t) >0 ¥t>0 (4.9)

which can be shown not to be true foreachx(t) > 0. On the other hand,

in case of variable injection rates, in particular, one should concentrate
on providing bounds for the steam zone length (area) rather than the steam
front velocity. Nevertheless, their analysis is the first reported that
takes into consideration important aspects of the problem other than the
integral energy balance.

The possibility of a more accurate solution of (4.1), (4.2) depends
mostly on our ability to relate convective and conductive heat fluxes into
the hot liguid zone to the dynamics of the front. As demonstrated in
Chapter III, this interrelation is furnished by two different approaches:
(1) By the exact inequalities (3.18), (3.19), (3.20) which are valid for
any geometrical configuration or steam froni motion. (it) By the approx-

imate analytical treatment of the heat transfer inside the hot Tiquid zone
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under various assumptions and geometries. The first approach will give
rise to rigorous analytical bounds, whereas the second provides approximate
analytical expressions for the steam zone volume. Both methods are dis-

cussed in the following sections.

4.3 Upper Bounds

The method of describing the solution of a complicated problem by
placing it betwee: upper and lower bounds hag been successfully employed
in several theoretical and engineering problems. In particular, Stefan
and Stefan-like moving boundary problems comprise an area where, due to
the complexity of the problem, this approach has attracted considerable
{nterest [Mori and Araki (1976}, Glasser and Kern (1978)] and led to
successful results. From much of the foregoing discussion it is clear
that steam drive is a potential candidate for the application of such an

approach. We start with the derivation of upper bounds.

4.3.1 Upper Bounds Derivation

We use inequalities (3.18), (3.19), (3.20) to bound the non-linear
part of (4.1), {4.2). Then, it is easy to show that

XF(t)
\d d
(LLj + LNj){xF(t)}/'af'f fj(x,t;XF(t)dx + = XF(t) j=1,2 (4.10)
0 vt
therefore,
X (t)
d

L]

) 4 : ‘
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The above inequalities are a direct consequence of the physical con-
straints that the net heat flux through the steam front and the net

steam flux reaching the front are positive. We now define X}(t) such

that

+
X;(t)
d 4 d

Ef'f@ £y {atsxa(e) de o xg(t) = o.(t) VO<t (4.12)

xg(o) = 0, j=1,2

One can then prove, (Appendix V), that both X;(t), Xg(t) provide two
independent upper bounds on XF(t), for any rate of steam front propagation
ind <t.

The integro-differential equation (4.12) has an exact svlution for

specific functionals f,(x,t;XF(tﬂ . Since f, is not known we employ the

j 3
relationship
Xj(t)
= +
I sotxpe) ex = FenGe) g =1 (4.13)

where ¥3(t) is the average volumetric heat capacity, a linear function of

the average steam saturation. With (4.13), Equation (4.12) admits the

solution
t t
X;(t) = Ll J @.(1) exp {}-d f ::_iﬁL__::} dr  j=1,2 (4.14)
T;(t) Jo J | © F;(0 /&

Equation (4.14) provides a closed form expression for the calculation of
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upper bounds, when ?s(t) is known. Now

flotxg(e)) = a1 > 45:P4¢,1

i=$ .0 (1)1
¢SSDSLV

+ {1~ B)ope p * —--ﬁww-f (4.15a)
fz(x,t;XF(t» = ¢SSpSL§1) (4.15b)

Experimental evidence [Willman et al. (1961)] indicates that the oil
saturation inside the steam zone reaches a constant residua] value which
is {independent of its initial value and can, in principle, be determined
from the parameters of the system. It is also commonly assumed that the
average steam and water saturations do not vary considerably. In this

work, this assumption is further corroborated (Section 4.7) by showing
that

1S, dxt(t) |
o x’;(t) < —gr— it j=12 i=sM (4.16)

as long as the injected steam has constant quality.

Therefore one can reasonably assume that the average volumetric heat
capacity inside the steam zone is constant and furthermore ?}(t) = MjAT.
Instead of this approximation one can rigorously proceed by simultaneously
solving for the steam saturation distribution and the steam front growth
rate. However, this is a complicated procedure with little expected gain,

as evidenced in Section 4.7. Substituting in (4.14), we qei:



X+(t) = "t ( o.(1) exp 24Vt dr (4.17)
j Im fo 3 M, AT .

Let us now define the characteristic variables

¢.(0)M.4T
= uim_m?iwm- (length or area) (4.18)

d L
B, = (t]me 2)’ 1.
MjAT J od

J
and dimensionalize time with (28174§1ength with 1;, injection rates with
@1(0). The selection of these characteristic values for non-dimension-
alization is not arbitrary but follows directly from Section 2.5. 1In
Table 6 we present the physical variables of a steam drive and their
magnitudes under normal field conditions. We note that.by using (4.18), the
characteristic time turns out to be of the order of 2.65 years and the char-
acteristic radius of the area of the steam zone of the order of 100 m.

If now subscript D symbolizes a dimensionless quantity, we get (4.12)

in dimensionless form:

4+

. X (t)
ot S I LA
AXID(tD) + - QID(tD) (4.19)
D
g |
B, . Xonltn)
1 2DY°D
2 == X (t) + =22 = g (t) (4.20)
82 20D ft—g 200D

and similarly, Eq. (4.17)

D
+ S —
XID(tD) = %—exp {5 thi}‘ ja QID(TD) exp (y%n:)dxu (4.21)



Parameter
L, R, length
b, 8, width
h, thickness
¢, porosity
k, permeability
Cow? heat capacity
cpo' heat capacity
pchR, vol. heat ¢
PFCp> vol. heat ¢
L ther. conduct

khf’ ther. conduct

pg » density
Vo densi
Py ensity

pé ,» density

Hois Viscosity

ui, viscosity

1

Wy viscosity

ué, viscosity

Ti’ temperature
TS, temperature
Pgs Pressure

fst’ steam quality
Lv’ latent heat

mg s injection rate

[van Lookeren (1977),* Chu and Trimble (1975)]
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KJ/kg*
Kd/kg-
M3 /m 3.
MJ/m 3.

apacity
apacity
jvity
ivity

W/m°eK
W/meK

kg/m3
kg/m3

kg/m?3

mPa-s
mPa’s
mPa.s

mPa-s
°C
°c
bar

MJ/kg
kg/s

Linear Radial
Steam Drive Steam Drive
508 120
254 2n
25.4 19
0.345 0.345
2.46 3.80
4.186* 4.186*
2.093* 2.093*
2.345% 2.345%
2.345% 2.345%
2,768* 2.768*
2.768* 2.768*
960.00 - 800.00
823.31 802.18
14.77 19.29
180.00 2.6
1.50 0.41
0.10 0.1
0.01 0.01
38 40
233 248
29.55 38.450
0.88 0.88
1.79 1.72
5.34  6.53

Basic Data for Steam Injection

Table 6



in(tg) = 5 exp {} §-/f§} QZD(ID) exp gi-/?a dTD (4.22)

The corresponding dimensioniess Marx-Langenheim equation becomes
. (v )de
. MLD''D'T'D
Zhy (tp) + [ MDD =gt (4.23)

with solution

*woltp) = '2“[0

-

<I>w('r p) exp (% (t, - TD?} erfc {\/—%— v’tD - %’E} dt
(4.24)

Comparing the kernels in the integrals (4.21), (4.22), (4.24) we can show
that, depending on the functional form of <%D(tD),we may have XMLD(tD)
smaller, larger or equal to X?D(tn) in various ty regions.

Interpreting the bounds in physical terms, we may view X;D(tg) as the
dimensioniess length (area) of the steam zone in the fictitious process,
where every point of the steam zone lose. heat to the over- and under-
burden at the same rate and no net heat is transported through the front
to the liquid zone. In this way the unaccounted part of heat losses is
partly counterbalanced by the assumed zero net heat flux to the hot liquid
zone. On the other hand, X;D(tu) may be viewed as the steam zone length
{area) in the fictitious process, where every point of the zone losses heat
to the surrounding formations at the same rate and the conductive heat flux
to the hot liquid zone is identically zero..we, therefore, expect X;D(tn)

to be closer to the actual solution at small times, when heat has not had
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enough time to penetrate deeply inside the liquid zone, whereas XED(tD)
.is close to the actual solution at larger times, when the temperature of
the liquid zone has been significantly raised.

Depending on how ¢jD(tD) varies with time, the difference between
Xiﬂ(tu) and X;D(tﬁ) may be negative, zero or positive in certain t,
regions, thus suggesting that the lowest upper bound may alterunate

+ + . . ;
between XlD(tD) and qu(tu) (See Figure ’54}, The puints where the
lower upper bound shifts branch are the real solutions tDm of

+
oty = x;B(tm) m=a,b,c,... (4.25)

X
and they can be assigned the following physical meaning. Considering
X;D(tb) for X;D(tb)] as the solution of the actual physical process, we
require that they also satisfy the constraints (4.10). The constraints
for energy and steam mass are obeyed by X;D(tg) and XZD(tD), respectively,
at any time. However, the steam mass and energy constraints are satisfied

+ + . . .

by xlD(ﬁﬁ) and Xzo(tn)* respectively, only in regions where
+ +
XID(tD) - XZD(tD) <0 and

ooy Lot "
xlu(tﬁ) XZD(tD) > 0 , respectively.
Thus, the physical interpretation given to X;D(tn) [or X;n(tﬁ)]is consistent
+ +
whenever xlD(tD) - xzn(tﬁ) <0 {or > 0). The constants Lo M = a,b,C,eu.

delineate the time intervals where this h&pﬁens. From (4.19), (4.20) we
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also conclude, that at tmn’ the following relationship holds:

+ . . )
Xpltg)  o1pltny) = &plty,)

dt,) = 3 (4.26)

where we made use of the inequality Bl << Bz (see Table 6).

We next rewrite the water mass balance, Equation (4.3), in dimen-

sfonless notation:

5y E'.)_(.Eﬂ
2t - E‘;) at, " %0 T Y07 % (4.27)

where wFD is the dimensionless net convective heat fiux through the steam
front, which may be positive or negative. At the times tDi’ i=1,2,3,...,

when WFD changes sign, we accordingly have:

dX, op{tpi) - oopltyy)
FD . hittoi 2D “pi
~at, (i 2 (4.28)

Therefore, at tDi the conduction dominated heat transfer in the hot liquid
zone becomes convection dominated or vice versa, depending on whether WFD
turns positive or negative. Comparing (4.26) to (4.28) we can establish a
relationship between tDm and tDi’ which depends, among others, on the
injection rates ¢1D(tD)’ ¢ZD(tD). In particular, for constant injection
rates, it is not difficult to show that tmn,m = a,b,c,... are upper bounds
to tDi’i = 1,2,3,...

In the rest of Section 4.3 we examine the application of the derived

bounds on steam injection with various injection rates.
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Figure 34. Schematic Diagram of Upper Bounds X;U’ X;D'

~ | ower Upper Bound.
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4.3.2 Variable Injection Rates

We first discuss typical cases where the injection rates are functions
of time. The examples to be studied are representative of field cases
where the rates are allowed to vary, but the operating conditions {steam
temperature, steam quality) are held constant. Thus, the dimensionless

ratio A = fgg‘tn) remains constant throughout the process.

o1p(tp)

4.3.2.1 Square Pulse Injection Rates

In the first example, steam is injected at a constant rate,
(¢ID = 1.0}, for a certain period of time at the end of which, (tD = 0.25),
injection ceases. Figure 35a shows @10 plotted vs. tD' The injection
parameters take the values A = 0.5, B = 81/82 = 0,02. Such a case is
typical of the first soaking cycle of steam stimulation operations [SPE
Repr.  Ser. (1972)1.

The resulting upper bounds X;D’ X;D and the Marx-Langenheim solution
XMLD are plotted versus ty in Figure 35b, Shown also is the lowest
upper bound that consists of successive branches of X;D, X;D. Initially
and for as long as injection lasts, X;D is much smaller than XZD. As soon
as injection stops, however, X;D declines very rapidly, crosses X;D and
approaches zero much faster than X;D does. Thus, the actual steam zone
length, which is bounded from above by the lowest upper bound, increases
as long as injection continues and rapidly decreases to zero when injection
is disrupted.

This is in sharp contrast to the results obtained by use of the Marx-

Langenheim solution. The latter follows X;b very closely, which is



*punog J4sddp UBMOT) s

-0My yoianyos

EwmxcmmaMJ-mezmxu v:m.mmx “mwx mn:ncmgmanz.nmm,muumwu

0,
ooe’ pGs8' o Q0h'0 00

m -

0°0

goh°o

50 =y (3sind
23 3s4enbg) 1°2°€°H 952) 404
— sajey uot3dalul  cegp a4nbiy

3
!

008° 0

1

(9%

0'1

{
i

gog° 1

pt
~H
S
\L”.'.'J
+ .,
o
01 = WRLIYS TTHIS~—
l
Q0c" 1

B
I

000-2



151

expected since both are based on the total thermal energy balance. When
X;D is the dominant branch of the lowest upper bound, there is no sig-
nificant error in using XMLD as an approximate solution to the steam zone
length. When, however, injection is halted, the Marx-Langenheim solution.
predicts a much slower decline of the steam zone volume.

We conclude that the rate at which the steam zone decreases in size
is much larger than the rate predicted by Marx-Langenheim type of calcu-
lations. This is a useful result regarding ihe optimal design of an
injection pattern for steam stimulation which, so far, is based on the
Marx-Langenheim model [Boberg and Lantz (1966)]. An injection pattern
usually consists of repeated square pulses of uneven duration in general.
Each pulse is followed by varying periods of zero rates in order to allow
for oil to flow back to the injection well (which also serves as a pro-
duction well). A periodic pattern with injection rates @10 =1, QZD = 0.5,
equal duration intervals and periocd 0.5 is shown in Figure 36a. The upper
bounds and the Marx-Langenheim solution that correspond to this input are
plotted in Figure 3ob,

The resulting behavior in the first cycle of the injection pattern is
identical with the one discussed previously. Just before injection
restarts (tD = 0.50), the steam zone volume is negligibly small. With the
onset of re-injection, the upper bound XID regains control of the rate of
growth and continues to do so throughout the injection interval. The
upper bound X;D shows very drastic changes at the edges of discontinuity,
shoots high above X;D as injection begins and assumes a dominant role

after it ceases. The quick response of the function X;D to changes in the
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input is attributed to the smallness of the parameter B which expresses
the ratio of the volumetric latent heat capacity of steam to the volu-
metric heat capacity of the steam zone.

We further observe that the rate of decline of the steam zone volume,
in periods of no injection, is very rapid, in spite of the preheating of
the surrounding formations that occurred during the first cycle. This is
also noticeable, although to a smaller degree, in the next cycles. In
contrast, the bound X;D resumes control at nearly the same levels and
continues to increase with a steady rate which, in turn, indicates that
heating of the surrounding rocks in the previous cycles considerably
lessens their thermal resistance to the steam zone growth.

As before, by comparing XMLD with the derived bounds, we confirm the
relative inability of the Marx-lLangenheim solution to adequately describe

the steam zone rate of decrease in periocds of zero injection.

4,3.2.2 Twu-Level Injection Rates

Another interesting case that is likely to occur in any steam in-
jection process involves operation at two different injection levels. In
the simulation shown in Figure 37athe dimensionless rate QID = 1.0 is
sustained up until time tD = 1.0 and subsequently reduced to QID = 0.5.
Here, again, A = 0.5, B = 0.02 throughout the process.

Much as in the previous example, the lowest upper botnd, which

;D initially, experiences a rapid decline as

consists of a branch of X
soon as X;D takes over. The latter controls the steam zone dynamics from

then on. The effect of preheating is rather well manifested by the quick
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recovery of the steam zone rate of growth after the fast decrease
imposed by the sudden change on the injection rates (Figure 37b).

The Marx-Langenheim solution is seen to lie above the lowest upper
bound after the change takes place and to cross bhelow it shortly there-
after. Onecan then conclude that it behaves reasonably well for this
particular case. This is not the case, however, when the latent heat
injection rate o,y 98ts smaller. The results of a simulaticn with A = 0.3
are shown in Figure 38. Now one can see that the upper bound QZD assumes
& dominant role at early times. The solution XMLD is satisfactory,
initially, but fails to describe the actual rate of advance after the
change in injection rates. In this case the use of the Marx-lLangenheim
approximation would result to misleading over-optimistic predictions
regarding 0il recovery efficiency.

The above suggest that A plays an important role in the rate of
steam zone growth and the extent of the validity of the warx-Langenheim
solution. This will become evident in the next subsection which deals

with constant injection rates.

4.3.3 Constant Injection Rates

The majority of both laboratory tests and actual field cperations
with steam 1injection are carried out under constant injection rates.
Under these conditions, the upper bounds expressions (4.21), (4.22)

become :

X (&) = &

" 1 + exp{~ /fD) (4.29)
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Kty = A {/E; - B + B exp(- %— Eg)} (4.30)

and, similarly, the Marx-Langenheim solution, (4.24):

i s
2 ) Ty ('"D)}
XMLD(tD) = E'{}tD -~ 1+ exp (~3~) erfc 5 (4.31)
3 By
where A = ro B = B as before. The dimensionless parameter A
1D 2
expresses the ratio of the Tatent to the total heat injected and can also
be written
f.
A 53 -.——....f‘?_t—— (4’03&)
fst * St

where fst is the steam quality at the injection point (downhole) and
wAT

St = -fTTT is the Stefan n. Ler. The latter is the ratio of the
v

sensible to the latent heat content of saturated steam and, as shown in
Table 7, it increases with the steam temperature and decreases with the
initial formation temperature. Similarly, the parameter B expresses the

ratio of the latent to the total heat capacity of the steam zone and is

also equal to:

B = : (4.33)
1+ /14 Pe%0 Spo L {1-0) PROpR
t fft S. ¢ S ¢
2L Py bpy Ps s “pw

For typical values of reservoir parameters and operating conditions
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Injection Temperature Stefan Number
T.(°C) T, =200 | T, =30°C | T, = 40°C
150 0.259 |  0.239 0.219
160 0.284 0.263 0.243
170 0.309 0.289 0.269
180 0.337 0.316 0.296
190 0.365 0.344 0.323
200 0.396 0.374 0.352
210 0.428 0.406 0.384
220 0.462 0.440 0.419
230 0.499 0.476 0.453
240 0.540 0.516 0.492
250 0.584 0.559 0.536
260 0.632 0.607 0.581
270 0.686 0.660 0.639
280 0.747 0.720 0.691
290 0.816 0.780 0.763
300 0.897 0.868 0.838
310 0.994 0.963 0.932
320 1.113 1.080 1.054
330 1.270 1.228 1.204
340 1.470 1.430 1.387

Stefan number for various values of steam temperature, Ts’

and initial formation temperature, Ti'

Table 7



A ‘o ‘b ‘o1
0.70 10.2211 w 3.4269
0.65 7.0575 » 2.2837
0.60 4.,9800 >>1 1.5605
0.55 3.5552 >>1 1.0813
0.50 2.5395 15.4716 0.7531
0.45 1.8062 7.0345 0.5230
0.40 1.2684 3.6086 0.3593
0.35 0.8717 1.9591 0.2421
0.30 0.5797 1.0882 0.1580
0.25 0.3670 0.5896 0.0983
0.20 0.2154 0.3054 0.0568
0.15 0.1117 0.1424 0.0290
0.10 0.0460 0.0535 0.0118
0.05 0.0106 0.0114 0.0027

Values of the characteristic times tDa’ tDu’

for various values of A.

Table 8




(Table 6) one obtains:

1+5S ’

0<A <=t 0<B=0.02 << 1 (4.38)
t |

In view of (4.34), one can easily show that

+ ot . . »
Xip{tp) < Xop(ty) 0 <ty &ty (4.35a)
Xy (tn) < Xbo(t) t. <t (4.35b)

2t tp/ = *1p'tp Pa = “0 .

In other words, the upper bound X?D(LD) dominates at the beginning of the
process until the critical time tDa,after which the upper bound X;D(tD)

. , + ot s
assumes control. The time thy where XlD(tDa) = XZD(tDa)’ satisfies the

algebraic equation:
Jzng (1-A) = 1~ exp(- V%Da) (4.36)

Table 8 shows typical values of tDa as a function of A. We notice that
tDa is an increasing function of A, which indicatc. that the samller A is,
i.e. the smaller fst or the larger TS, the faster X;D crosses below the
Lot
bound XID'
Due to the exponential convergence in (4.29), (4.30) the two bounds

rapidly assume their asymptotic behavior:

+ .
XID(tD) " /EE ty > 16 (4.37a)
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+
Xop(ty) = A/t—[; t, > 0.006 (4.37b)

The above characteristics are very well exhibited in the following Figures
+ + . '
which show plots of xlD’ XZD’ XMLD vs. tD for various values of A.
Regarding the location of XMLD with respect to the bounds, one can
draw the following conclusions: We first observe that XMLD is smaller than
'X;D fur any ty. Indeed, from (4.29), (4.31) one can show (Appendix VI)

that

+
XMLD(tD) < xlD(tD) ¥0<t, (4.38)

Inequality (4.38) is valid in any time domain and, for this reason, has a
specific importance from a strictly mathematical viewpoint since it gives
rise to an upper bound on the function erfcz (Appendix VI).

Returning to Figures 39 - 42, we notice that X is well beluw the lowest

MLD
upper bound for high values of A. As A decreases, however, there exists

a critical time thwhen_the Marx-Langenheim solution crosses above the

upper bound X;D and keeps deviating thereafter. Thus, from (4.30),
2

(4.31) one can prove that, if A >3

+
XMLD(tD) < XZD(tD) ¥0 < ty, (4.39)
whereas, if A <‘%
+
XMLD(tD) < XZD(tD) 0 < ty <ty (4.40a)

+
XZD(tD) < xMLD(tD) tDa <ty (4.40b)
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N , + e . .
The time tDa’ where XMLD(tD) = XZD(tD)’ satisfies the algebraic equation

) i pm
/qi; ( - %ﬁ) = 1 - exp (ﬁfki)erfc (L% Jtna) (4.41)

and it is an increasing function of A as shown in Table 8.

We, thus, conclude that, if A < %-, the Marx-Langenheim solution
will eventually intersect the Towest upper bound X;D and will start to
deviate increasingly from the actual solution. This discrepancy is much
more pronounced for small A, i.e., for low injection downhole quality and
high injection temperature. In such cases, use of XMLD for the description
of the ;rocess will inevitably lead to over-optimistic results regarding
the progress of the steam zone, withan error that may reach 30% at large
times (A = 0.3, Figure 42). In fact, for the extreme situation of hot
water injection, (A = 0), the Marx-Langenheim solution will erroneously
predict a steam front propagation, even though no steam is injected.

Due to wellbore heat losses, low injection steam qualities at the
downhole site are not uncommon. Table 9 presents the operational variables
of various field projects, as reported by Myhill and Stegemeier (1978).
Based on this table, we can locate their operational points on a TS VS, fst
diagram (Figure 43), assuming one-dimensional (linear or radially
symmetric) propagation. Concerning this diagram one should note that due
to the different initial temperatures of the various formations, the
temperature of each point in the diagram has to be slightly readjusted to
conform with the formation temperatuvre of 30°C used as a basis for the

construction of Figure 43,
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Table 9.
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From the Figure 43 it is clear that, although several operational
points lie below or close to the critical curve A = %-, another significant
number of reservoirs operate at conditions prohibiting the use of the
approximate Marx-Langenheim solution after a certain time has elapsed.
Instead, one should rely on the rigorous upper bound XED for a better
estimation of the steam zone growth.

We complete this section by discussing a little more explicitly, in
iight of the previous analysis for constant 5njection rates,the Mandl and
Volek (1969) approach. As outlined in 4.2.2, the approach regards the
Marx-Langenheim solution as an exact solution, up until a critical time
when the net convective heat flux, WMLD’ turns positive. According to

(4.28), this occurs when

dx .o (tn,) - &,.(tn,)
MLD . 1Dv'Dl 20 D1
dtD (tDl) - 2 (4042)

ov, after rearranging and using (4.31), when

nt
1-A = exp [~Egl} erfc [ig Jfgi] (4.43)

Table 8 shows that tDl < tna for every A. Mandl and Volek subseguently

claim that XMLD is an upper bound to the actual soluticn thereafter. In

light of the previous discussion, this is true whenever A(%, in which

case, however, X;D(tD) provides a better upper bound. On the other hand,
2

the claim that XMLD is an upper bound cannot be justified, if A > T
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4.4 Lower Bounds

To derive lower bounds on the steam zone rate of growth, we must
provide upper bounds on the heat fluxes to the surroundings and the hot
Tiquid zone. For the heat Tosses to the over- and under-burden, we use
inequalities (3.18a) and (3.18b). However, in contrast to (3.19b) and
(3.20b), which bound the heat fluxes to the hot liquid zone from below,
upper bounds for these guantities are not readily available from direct
physical arguments. In principle, such upper bounds can be developed by
further studying the heat transfer mechanism inside the hot liquid zone
for an arbitrary front velocity (Chapter I11). It is very likely, however,
that the bounds derived in this way will be coupled to the history of the
front velocity, just 1ike the bounds on the heat losses, (3.18a). This
coupling would be a serious obstacle in finally deriving explicit lower
bounds for the volume of the steam zone. This topic requires further
study.

On the other hand, under constant injection rates, we can readily

develop the asymptotic behiavior of a lower bound to the steam zone volume.

4.4.1 Asymptotic Behavior of a Lower Bound at Constant
Injectinn Rates

We consider the steam wmass balance, Eq. (4.2). Using inequality

(3.18b) it is easy to show that

Xp(t)
d [x,tsxa(t)) dx
(LLZ + LNE) {xF(t)} < dt J‘O f2 X, S‘F
o)
+ d J ...__._}1{;__%_.“ + ZHF(t)ATQF(t) (4.44)
0 B A{x)



171

therefore,
XF(t) XF(t)
d

o,(t) < J foix,ty%(t) dx + d J wimﬁéﬁ.___
2 dt 0 2( F ) 0 Y Y]

+ T (£)aTq,(t) (4.45)

In Subsection 4.3.3 we established that XFD(t) grows, asymptotically, no
stronger than ~ AJfE . In Sections 3.7, 3.8, we concluded that, for any
R, the conductive heat flux through the origin tends to zero, as t + =,

when the front velocity behaves asymptotically as-;% where ¢ is a constant.
t

One can, thus, deduce that QF(t) + 0 as t + =, and accordingly

inaequality (4.45) reads:

(1) Xe(t)
oy o d i S
¢5n<a¥h Qh¢¢gn)m+afo e (4.46)

as t + w,

Let us now define Xé(t) such that

X5{t) X,(t)
9‘—-{ 0 tsXe(8) dx + d J X =0 (t) VO <t (4.47)
dt 0 2 F 0 r‘—‘——(‘t = )E‘)' 2

xg(o) = 0

One can then prove (Appendix VII}, that Xg(t) is a Tower bound on XF(t), in
the limit as t & cw,

In solving (4.47) we invoke the assumption (4.16) and rewrite (4.47)
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in the dimensionless notation of Section 4.3.1

t. .
Dx"‘

B, ._ ~{th)dt
2 5 Xoplty) + [ 2020770 . , (4.48)
2 o /%D - 1y
with solution
t Vo vt
- 22 [ i D |
XZD(tD) - A {}%D - B+ exp [Zgj] erfc [}*fﬁw—:Jj> {4.49)
which, in view of (4.34), becomes for ty > 0.002
- 2
XZD(tD)- ;‘A /fa (4.50)

This behavior is consistent with the upper bound XZD(tD), Eq. (4.37b).
The actual steam zone volume would then be located, in the limit of large

+ -
t;» between XZD(tD)’ XZD(tD)'

Xpp v A VEg % <n<l (4.51)

t

D+0°a

Obviously, the region of validity of the asymptotic expression {(4.51)
largely depends on how fast the conductive heat flux, QF(t), converges to
zers, which in turn implicitly depends on n. The problem of determining

n brings about a new topic, which involves studying the 1imiting behavior

of the exact solution in both large and small times.

4.5 Asymptotic Solutions

4.5.1 Introductory Remarks
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Just as in the derivation of bounds, we again make use of the one-
dimensional integral balance formulation (Section 4.2). In developing
approximate solutions, however, we need, in addition, a detailed de-
scription of the heat transfer inside the hot liquid zone, such as the
one outlined in Chapter III. The important dimensionless groups related

to one-dimensional heat transfer are

N02h2 a
R = —fg—- i Pe = & (4.52)
4k ¢ OR hf

in linear and cylindrical geometries, respectively. From Table 6 and the
water mass balance (4.3), we can estimate the magnitudes of R, Pe for a
typical steam drive.

To evaluate R, we first note that

0 .

We = Uy Py Cow + UoxPoCpo (4.53a)
and due to (3.23b)

Wl = e + By () (4.53b)

For a linear steam drive, the water mass balance, Eq. (4.3), together with

the assumption (4.16) leads to:

aTud = 0p(t) - o,(t) - aT(My - M2k (t) (4.53¢)

Now M, = ¢§;pscpw * ¢§prcpw ¥ ¢§600°po + - ¢)pRCpR

M(z) = ¢§W(2)p

= (2) B}
WCpw ¥ 95 PoCpe T (1 - dlopcyp
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and, within the approximations made, M3 = M(z). Therefore, from (4.53c),

o

AT NF = @l(t) - ‘Dz(t) (4.54)

Substituting in (4.52) and reading the values of the parameters from
Table 6, we get R = 640 for a typical linear steam drive.

A higher order of magnitude estimate is obtained for Pe = =4 in

cylindrical geometries. By definition "

q = Z“RF(t)(uwrpwcpw + uorpocpo) | (4.55a)
and rearranging the water mass balance, Eq. (4.3),

aTq = oy(t) - ay(t) - at(My - M(Z)x (1) (4.55b)
which leads to

ATq = ¢l(t) - ¢2(t) (4.56)

as before. Substituting back in and using the cylindrical reference field
case of Table 6 we find Pe = 10,320, for a typical cylindrical steam drive.

One can accordingly conclude that the heat transfer in the hot liquid
zone of a one-dimensional steam drive is convection dominated. This,
firstly, verifies the assumption of negligible horizontal conduction,
introduced in Section 3.2 for the calculation of the heat losses in the
surrounding formations. In addition, it provides sound evidence that one
may use the results of Section 3.7, (R -+ =), with confidence in steam

injection calculations for both Tinear and cylindrical geometries.
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Before we proceed any further we recall that the dimensionless
notations in Sections 3.7 and 4.3 ave different. To convert to a unifovm

. notation, we consider the ratios of the characteristic variables

in the two cases:

*

Y. 20 -m) L nl®
*

{4.57a)
ﬂ M

*

t (2)\2

iII = %’(%%--) (4.57b)
t \M

1v

and, therefore, the two dimensionless velocities are related to each

other by

(2)\ .
vpltpy) = 11 ? ) (21 ) Xppltp) {4.58)

We choose first to discuss the asymptotic forms of the exact solution

for larye times, under sustasined injection at constant rates.

4.5.2 lLarge Times Behavior at Constant Iniection Rates

In Section 4.4 we concluded that, in the limit of large tD’ the

actual solution XFD increases monotonically in the manner indicated by

Eq. (4.51). Consequently,

A A
FSa<s (4.59)

where a has to be determined. Due to the dffferent formalism in linear

and cylindrical geometries,we examine the two cases separately.
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4.5.2.1 Llinear Geometries

The heat transfer problem associated with such a front velocity has
been studied in Chapter III for both R + = (Subsection 3.7.5) and R = 1

(Subsection 3.8.4.3). It was shown that, for large tD’ we obtain identical

results in both cases, which further implies that this is true for any R
in the region (1, ) and, therefore, for our R = 640, as well. We can,

thus, use the solution of either problem in evaluating
the asymptotic behavior of the steam zone volume. Because of the large R,
we choose to follow the case R + =, (In Appendix VIIIwe also present the
derivation for R = 1, which leads to identical results.)

Consider the steam mass balance, Eq. (4.2). In the dimensionless

notation of Section 4.3, the linear geometry version of (4.2) reads:

t
D
- 2(1 - A)° (M(Z)) D, [ ( e
M 0

r(tp) - T TS ) 56“)DXFD(*D) dip = A (4.60)

where R = 640 >> 1. Assuming that the front behaves as portrayed in (4.59),
the temperature of the hot liquid zone is, according to (3.72), (4.57a,b),
(4.58):

)

‘JL o2 (M(z) )x
D (1-A)\M D

(2)
2 M . 4.61
H(tD'(l-A) (Ml )XD) ( )

erfcb

= /1 *
TD(tD,xD) erfc 51 1 oy

where b = /Ta/(1 - A). Similarly, the conductive heat flux at the origin,
Eq. (3.73), gives
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D 1

_— n,

- —— exp(- bz)/erfcb (4.62)

in the dimensionless notation of Chapter IV.
To evaluate the heat losses term in Egq. (4.60) we make use of Eg.
{3.13):

A
D i
BTD er

[ arf) [
R

= 1y (tpap) (4.63)

D

The last integral Il(tD,AD) is calculated in Appendix IX:

( :

I (thshn) = 1 ; ©exp { - —Ty
LT \/{ 2 (M(m) a1 - A)°
D~ {T-A) \N] *p
2
D
(2)
2 M
(tn " AT(Ml )"D)
/r Xp)
erfc ?(i—:—ﬂ .
\ (2) (tE - )L[))ré (2) _
2 M 3 o M Z
l:‘to By (Ml ) XD] [)‘D Y] (P41 )XDJ ]

(4.64)
We now substitute (4.64), (4.63), (4.62) in (4.60) and get the integral

equation:



. 0 (@) 2
o 2(1 - A) M( exp(- b%) 1
2Bhey(tp) *+ =g (M,l ) erfch .
- 0
'
‘ fo Kep U T (tga2g)dig = A (4.65)

the solution of which determines the asymptotic behavior of the exact

solution.
Since we have already assumed kFD(tD) = ——~41~«1; , (4.65) becomes
Vi a-
a 201 - A) (MDY exp(- 68y 1 it 1) (tpadpldyy
ZB i ¥ R M erfch —*ta : ~ A (4.66)
b 1 "ty 0 KD ¥ al
An asymptotic analysis of the integral
t
D
I.(t.,A,)dn
Ir(tp) = J — (4.67)
0 L
indicates that (Appendix IX)
: 2
YT a exp{- b°) 2 . 2
I(ty) » T2 EXBL [l - exp(b®)erfeb] 10b° < 1, (4.68)

Substituting in (4.66) and collecting terms of the same order we find that

a satisfies the algebraic equation

2y, e
A = bA exp(b )Zerrub » (4.69)
VT 1 - exp(h®)-erfech

Finally, substituting for b, we find the unknown parameter a as the sclution

of the algebraic equation:
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A a bty = 10b2‘
0.90 0.3135 5.5566 308.76
0.86 0.3059 3.8728 149.98
0.80 0.2993 2.6524 70.35
0.76 0.2915 2.1527 46.34
0.70 0.2777 1.6407. 26.91
0.66 0.2672 1.3929 19.40
0.60 0.2498 1.1068 12.25
0.56 0.2372 0.9555 9.13
0.50 0.2169 0.7688 5.91
0.46 0.2025 0.6646 4.41
0.40 0.1798 0.5311 2.82
0.36 0.1639 0.4539 2.06
0.30 0.1391 0.3522 1.24
0.26 0.1219 0.2919 0.85
0.20 0.0953 0.2111 0.44
0.16 0.0770 0.1624 0.26
0.10 0.0488 0.0961 0.09
Values of the parameters a, b, tD = 10b2

for various values of A.

Table 10
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2 —
exp {}Tﬂ%jﬁi} erfc {}Tﬁééﬁi} =1-A (4.70)

An identical equation is derived in Appendix VIII for R = 1.
The solution of (4.70) is plotted vs. A in Figure 44 . Plotted also

are the respective proportionality constants of the upper and lower bounds,

%. and %-, respectively. We verify that, as anticipated, %—< a < %».
(See also Figure 49.) From (4.66), (4.68) follows that the large times

behavior of the exact solution is solely determined by a balance between

the cumulative heat losses and the injection rates. When A is small, the
actual steam zone volume is close to the upper bound expression, X;D(tD)’
whereas for A near 1, it approaches the Tower bound, XéD(tD)' (See also

Figure 49.)

Due to R >> 1, B << 1, the convergence of the front velocity to the
form (4.59) is solely dependent on the asymptotic properties of IZ(tD)'
Choosing the time 10b2 as a characteristic time for convergence,we See
that conversion is faster when A is smaller, for b is an increasing function
of A, For A = 0.33, for example, b = 0.419 and the front assumes its
asymptotic behavior when tD > 1.76. On the other hand, for A = 0.66,

b = 1.39 and the asymptotic form is never reached, within practical limits,
(Table 10 ). The magnitude of R plays a significant role in determining
how fast the solution approaches its asymptotic form. The larger R the

faster the convergence (See Appendix VIII).

8.5.2.2 Cylindrical Geometries

The above results carry over unchanged‘to the case of cylindrical

geometry. There the relevant dimensionless parameter is the Peclet number.



5.000

4.000

T

3.000

1

2.000

1.000

0.0

181

10

SCALE FACTIOR

Figure 44.

0.400 0.800
A

The Asymptotic Coefficient a of the
Upper Bound X3, , the Lower Bound

XED and the Exact Solution X
Plotted vs. A.

D’




182

Since Pe >> 1, thevassociated heat transfer problem, Eq. (3.74b), reduces
to its limiting case (Pe 5 =), the solution of which has been studied in
Subsection 3.7.2. Accordingly, the heat transfer considerations are the
same as the ones discussed in the previous section. The only difference

is in the steam mass balance, Eq. (4.2), the cylindrical version of which

becomes :

. (1 - A)Xcn(tn) ol P( 3T ) .
FD'*D D f =
ZBXFD(tD) - Pe * axD + [O - an DXFD(XD)d)\D A (d‘o71)

where Pe = 10,320 >> 1. (Notice the difference in the second term.)
Because of the assumed behavior of XFD’ Eg. (4.59), and the resulting
conductive heat flux, Eq. (4.62), the second term on the LHS approaches a
constant value, as tD becomes large. Due to the large Pe, however, its
contribution to an egquation like (4.66) is negligible and, as a result,
there is no change in the value of a, as defined by Eg. (4.70). One can
thus conclude that the previous results on asymptotic solutions for linear

geometry carry over to the cylindrical geometries by a simple substitution

of R by Pe.

4,5.3 Small Times Behavior at Constant Injection Rates

When R, Pe >> 1, the constraint (3.53) is in effect. Because of this
constraint and the relative high initial front velocity, the heat wave
cannot significantly penetrate in the hot liquid zone, for some time after
injection starts. Thus, the total heat flux in Eq. (4.1} is very small

and the temperature of the hot liquid zone assumes a distribution similar



to Marx-Langenheim's, Eq. (3.14)

In the dimensionless notation of Section 4.3, we then have

ty .
Xepltpldty

i 1D

D~ Tp

v 7 [
ZXFD\tD) + JO N Do (4.72)

XFD(O) = 0

which is the Marx-Langenheim equation and has the solution

2 'ntD J"ED
Ypltp) = 7 {fp - 1+ exp =) erfe {—=/ 1,

0 <ty< tDO (4.73)

At tDO’ the front velocity has been reduced to the critical value

vD(tDO) = 1, beyond which heat starts propagating inside the hot liquid
zone. By (4.58)

Xepltpg) = (l 2 A)(

and substituting in (4.73), one finds that tho satisfies the algebraic

" ) (4.74)
2 '

equation:

M 7wt
(1 - A& <~%§7> = exp [ 400] erfc [Zg JTDO] (4.75)
M

Finally, in view of M1 % M(Z), tho turns cut to be the same time constant,
tpy» derived by Mandl-Volek (1969) and tabulated in Table 8. We, thus,
reach the conclusion that for injection rates such that R, Pe »>> 1, the

results of Mandi-Volek regarding the small times behaviors of the steam
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front are correct. For some initial time period, the actual solution
follows closely the Marx-Langenheim expression.

Consulting Tables 3,4, we can develop a criterion on R, and conse-
quently the injection rates, that outlines the conditions under which

the above behavior is exhibited. The reasonable estimate

R > 100
sets safe lower bounds on both R and the injection rates for this to
occur. As already noticed, in a typical steam drive R is quite large
and the above description of the process is sufficiently accurate for small
times. When low injection rates are used, however, R = 0(1) and there is
significant penetration of heat in the hot liquid zone, as soon as
injection begins. The resulting preheating of the rock cannot be
neglected anymore and the more reliable upper bounds must be used to

describe the growth of the steam zone.

4,5.3.1 Modified Upper Bounds. R, Pe >> 1.

When the operating conditions justify the initial behavior described
by Eq. (4.73), the upper bounds derived in Section 4.3 can be slightly
modified. It can be easily shown that the two functions XEMD (i =1,2),
defined by the ODE's (4.19), (4.20), but with different initial conditions

Ei.'+ (t.) EEMQSEQL (4.76)
2 Xepnltn) + = 1 ¥V t,<t .

¥ _
Yimpltpo ) = *mp(tpo)

are upper bounds to XFD(tD), Vtp < ty-
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Solving (4.76) in conjunction with (4.74), (4.75) one finds

=3 [rs
o

Xmlto) = /% - 1*{‘&—“ A= Vit 1}‘3"9[ vty * ‘/rno} (4.77)

" *+ g
ool *p) = A{"f_ ) } { -2 Avtpg * A%exp 3 (4.78)

. + + . .
Figures 45, 46 plot XlMD(tD), X2MD(tD) for various values of A. As it can also

be seen from (4.77), (4.78), they both approach the original bounds
X;D(t )s X;D(t ) although at varying rates. The upper bound XIMD(tD)
rapidly crosses above the bound XID( ) and approaches it asymptotically
at large times. In the initial short time interval leD(tD) provides a
better upper bound than XlD(tD)' On the other hand, XZMD(tD) approaches
very rapidly the upper bound X;D(tD) due to the smallness of B. In the
regions where XZD(t ) dominates, the two bounds XZMD(tD) XZD(tD)
practically coincide. One can, thus, conclude that there is 'no signif-
icant improvement in the description of the process by making use of the

above derived modified bounds.

4.6 PApproximate Solutions

4.6.1 The Quasi-Steady State Assumption

To completc the subject of determining the front velocity of a one-
dimensional steam drive, we would like to have a representation for the
solution at intermediate times. As before, to develop such a solution
we will make use of the integral balances of Chapter II and the heat
transfer results of Chapter III.

We start with the steam mass balance, Eq. (4.2), in its dimensionless
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form for linear and cylindrical geometries, Egs. (4.60) and {4.71),
respectively. In dealing with the heat flux terms we encounter the
problem of a suitable heat transfer model. In contrast to the limiting
cases discussed in the previous sections, the solution of a heat transfer.
problem involving an arbitrarily moving boundary is not readily available.
" To resolve this difficulty we introduce a quasi-steady state approximation
which postulates that the temperature distribution of the hot liquid zone

quickly reaches a quasi-steady state with respect to the moving front. If

this is the case, one can use the steady state expressions developed in 3.7.4
and 3.8.3 in calculating the heat fluxes. Clearly, the use of the assumption
is restricted to those regions where the characteristic time of convergence
to quasi-steady state values is very small compared to the characteristic
time of the front motion. From Eqs. {3.69 ) and (3.97) one can easily

deduce that this occurs at regions of relatively high velocity, where

41 - yylty) 1 [ mf2))2
VD(tD) «< = ( ﬁz——) (4.79)

[compare to (3.69 ), (4.57b)]. Thus, we expect the assumption to produce
reasonable results at small and intermediate times under conditions of
high injection rates (R,Pe >> 1).

Employing the quasi-steady state approximation we cobtain for the

temperature of the hot Tiquid zone in linear geometries

M

TD(tD,xU) = exp {fﬁ—%(;{%ﬂ) 11[.’_(0 - XFD(tbﬂ} (4.80)

The corresponding heat flux is given by
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. M
s = m 1
ax 2(T-A) ( (2)) | (4.81)
Dy =X (t,) M
D "FD'D
where zy is the negative root of Eq. (3.86) and depends on iFD’ R among
others. To evaluate the heat losses term in Eq. (4.60) one makes use of

. Eq. (3.13), as before:

A

oT. D 3T dt

( f) =J 0__ D (4.82)
D

an 0 BTD qi;f?ﬁﬁ;

We can now substitute (4.81), (4.82) in the steam mass balance, Eq. (4.60),

and derive the integral equation:

: oA e tp . ' a1y dry
2Bk (ty) - Lm B (x iR + [O ep(hg) | dr. = A

o 9 g D

(4.83)
the solution of which provides the front velocity and, consequently, the
steam zone volume as a function of time, for linear geometry. Since for
large R, the temperature distribution is almost identical in both linear
and cylindrical geometries (Sections 3.7, 3.8), we expect Eq. (4.83) to be

equally valid in cylindrical geometries as well, when R is large.

4.6.2 Numerical Solution at Constant Injection Rates.

Due to the exhibited strong non-linearities in (4.83), an analytical
salution is not possible and therefore we will follow a numerical pro-
cedure. The numerical technique used involves approximating the integrals

by a simple quadrature (trapezoidal rule) and solving the resulting
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algebraic equation’by use of standard routines. The initial value of

the front‘velocity, XFD(O), is obtained by solving the algebraic equation
that results when the integral term is set equal to zero. To test the
accuracy of the numerical scheme,we soived Eq. (4.83) in the special case
R = 1and where the heat Tosses were evaluated by means of the Marx-
Langenheim expression. This modified version of Eq. (4.83) also admits
an analytic solution which is shown to be in very good agreemant with the
respective numerical one, particularly at small times.

The numerical solution of Eq. (4.83) for the values A = 0.5 and
R =1, 100 and 640, is shown in Figures 47, 48, 49, respectiveiy. Plotted
also are the two upper bounds X;D, XZB, the Marx-Langenheim solution XMLD
and the asymptotic expressions of the lower bound XED’ and the exact
solution XFD,as evaluated in Section 4.5. The curves corresponding to
R = 160, 640 are close to XMLD’ initially, and tend to XFD at large times,
as expected from Sections 4.5 and 4.6. Notice that the convergernce of the
exact solution to its asymptotic form is obtained at times larger than
5.91 {see Table 10 for A = 0.5) whith explains the not so good agreement
of the numerical with the asymptotic results. On the other hand, the
solution for R = 1 is quite smaller than XMLD and approaches the
asymptotic expansion very slowly. Again this behavior is justified due
to the slow convergence when R = 1 {see Appendix VIII}.

The above results seem to indicate that the quasi-steady state
approximation 4.6.1 is quite reliable in the calculation of the steam
zone volume rate of growth and can be used with confidence. This should
be further tested by using amore accurate numerical model (such as

Simpson's rule or another higher accuracy quadrature) and a wider range
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of values of the parameter A. It is very reasonable to expect that this
much simpler numerical procedure could be used as an alternative to the
much more sophisticated numerical simulators that are currently employed

for the prediction of the steam zone growth in one-dimensionai systems.

- 4.7 The Saturation Distribution Inside the Hot Ligquid Zone

4.7.1 Introduction

In the previcus sections of this chapter we were able to obtain
explicit bounds and approximate solutions for the position of the steam
front based, among others,on the assumption that the average saturations
inside the steam zone are constant. This assumption which has been
frequently employed in past theoretical investigations [Marx and Langen-
heim (1959), Mandl and VYolek (1969)] draws its main support from reported
experimental data. In this section we develop a theoretical modeil of the
fluid flow and heat transfer phenomena of the steam zone with the objective
to determine the saturation distribution and test the validity of the above
approximation. Thus far, the only reported theoretical analysis on this
subject was presented by Boberg and Shutler (1972) who discuss the fluid
flow inside the steam zone by using an approximate analytical technique

which neglects the local steam condensation due to heat Tlosses.

4.7.2 Theovetical Considerations

In a one-dimensional, linear or cylindrical, geometry the respective
mass balances for steam, liquid water and oil in the steam zone [Equations

(2.1), (2.2), {2.3)3 read:
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353 aﬁg
Q) -5-{—' + '""'X"‘ = - 'YG(X.,t) (4'84)
35S oY
Wy ¥
T el (4.85)
35S au
9.0 =
¢ 5+ 5 0 (4.86)

where ﬁi stands for volumetric velocity per unit cross-sectional area or
unit thickness, dx is the length or area element,in linear or cylindrical
geometry respectively.

The development of (4.84) to (4.86) is based upon the assumption of
constant steam zone temperature, negligible steam distillation and uwiform
properties along the vertical coordinate of the basic Equations (2.1) to

P
(2.3). We denote by y the density ratio 5!' and by G(x,t) the volume of
3

liquid water, generated by steam condensation at x,t, per unit reservoir
volume and time. The quantity G can be expressed in terms of the local

heat losses

2K, et
hflsz 220
9]

Adding {(4.84), (4.85), (4.86) and recalling (2.4}, we get

X
- 1) [0 G(x',t)dx'  (4.88)

=>
li
&=
o+
b
-+~
<>
i
——
<>
L
[ andd

* uo)inj -y

which defines u, the total volumetric flux at any point, as an explicit

function of x,t.
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We, next, introduce

g ‘iio

fo o= = foo= . (4.89)
+ + ’ + + .

S us uw UO O us uw Uo _

the fractional volumetric flow of steam and oil, respectively. For
simplicity we confine our attention to horizontal reservoirs. The
subsequent analysis can be easily extended to include gravity terms.
Assuming negligible capillary effects, we can easily deduce, through
Darcy's law, that fs’ fo are functions of the saturations SS, S0 alone

(for the case of constant temperture). In fact,

£ | Kps/Ms Cf - Kpg/Mg
s Kps/Hg + Kk /i ¥k /vy 0 KpglHg ¥ ke Su + kg

(4.90)
The unknown volumetric velocities can thus be eliminated from (4.84),
(4.85), (4.86):

33 BSO

1 s o
#1955+ 05

5 1is re 1 \» _
+ 2= v[{l - ;)fs(as,so) * £,(8.,8,) - 1Jl..,<,t-)} 0 (4.91)

oS
T - ory s A
b5t 5r (F(54,5,)u(x,t)) ¥&(x,t) (4.92)
Equations (4.91), (4.92) form a system of two quasi-linear, first order,
hyperbolic, partial differential equations which aleng with appropriate

initial and boundary conditions can be solved numerically by the method
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of characteristics [Whitham (1974)]. On the other hand,in certain cir-
cumstances, the functions fs’ f0 assume a certain convenient form which

"allows an analytical solution.

4.7.3 011 Saturation at its Residual Value

Inspection of Egs. (4.91), (4.92) reveals that the system becomes
uncoupled when fs is a functive only of the variable Ss' Such a case
can be realized, in principle, when an exceptional combination of the
proper 0il and reservcir characteristics exists. A more likely situation
occurs under conditions of a typical steam drive. It has been experi-
mentally proven [Willman et al. (1961)] that the oil left behind in the
steam zone 1is practically unrecoverable, in other words, near its
residual value. Then k. << 1, ﬁo <<

Eqs. (4.91), (4.92) reduce to:

g SO that fS = fs(ss). Thus, both

2SS
S 49 X\ .
b 5p+ 5y A (F(Ss) - 77 7} u(x,t)} 0 (4.93)
where, now, fs(ss) = —-——%;;a; , i.e., the usual fractional flow function
1+ S
Kpshy

one encounters in isothermal, two-phase, immiscible displacement [Bear
(1972)] (see Figure 50).

Equation (4.93) is a typical conservation equation with a sink term
to account for steam condensation. If u(x,t) was position\independent,
(4.93) would be identical to the Buckley-Leverett equation, which governs

isothermal, two-phase, immiscible displacement [Buckley and Leverett

(1942)]. To solve Eq. (4.93), we use Eq. (4.88) and denote
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~ w W

X
6wt %;{(fs(ss) - TLT) (ﬁo(t) - (y - 1)[0 G(x',t)dx')}= 0 (4.94)

Note that if capillary and gravity terms are included, we get the more

general form:

as X
o s+ ax{(f(S)-——l—T)( {8 - (1 - 1] ot thax

k
v ¥e r‘w 2
- 9.(p, - pg) N f (S.) - 33, f (s) } (4.95)
W

where 9de is the component of the gravity vector along the direction of
flow.

The domain of integration of (4.94) ié the steam zone (Figure 51).
Since the equation is of hyperbolic nature, we need one boundary (or

initial) condition, which is supplied by

SS(G,t) = Ss,inj(t) Yyo<t (4.96)

a function of the steam quality at the injection point, fst‘ Provided
that fst is constant with time, the above condition allows for a smooth,
no-shocks solution.

Borrowing the dimensionless notation ofChapter 4.3.1, we can rearrange

(4.96) to the form:



199

Figure 50. Typical Two-Phase Fractional

Flow Curve

Steam Zone
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Figure 51. Domain of Integration of Eq. (4.89)
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Sy [ E , 3p
3, T2 Uppltp) = 3 (CHLYG 1 Fop(Sp) o
I P _x \E
{: st(SD) + _— {} 5 (HL)D (4.97)
spl0sty) = 1.0
where :

MAT(F .y ~ f_. +1) v - 1M, AT
D= st ) st s E & o 1 (1) are dimensionless

¢pwss,inij (fst +5t) ¢pwsz,:ﬂjLV

groups, (CHL)D the dimensionless expression for the cumulative condensation

X
(y - 1)[ G{x',t)dx"', (HL)D the dimensionless expression for the instan-
0

taneous condensation (y - 1)G(x,t), and S, is normalized by S

(CHL)D, (HL)D are 0(1}.

s,inj’ Both

For typical values of reservoir parameters, the dimensionless
groups D, E are of the order of 102, j.e. D,E »> 1. (See also Table 6

Ti.crefore, (4.97) can be approximated by the simpler equation:

D } ' , asD - - X
{“E"Uon(tu) - (CiL)p p Fsp(Sp) i FoplSp) + 3= (HL)p

SD(O,tD) = 1.0 (4.98)
or
..a.._.... g i ~ i NI R N " =
o { [}: 6 gplty) (CHL)D] L - fsh(sg}]} 0 (4.99)
SD(O,tD) = 1.0

tquation (4.99) is the quasi-steady state form of (4.97) and applies when
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the characteristic time for saturation changes is much smaller than the
characteristic time for the steam zone growth.

We can now solve (4.99) to get:

-1 F (CHL),
{1 TN !
D Uapltp

in terms of XD’tD and the cumulative heat losses (CHL)D. Given a dis-

—X— - f (1)
fop(Sy) = % [ falb) (4.100)

tribution for the reservoir temperature, we can employ expression {(3.13) in
the definitions of G, (CHL)D to explicity determine st(Sﬁ) and 5, as 4

function of x., t

D* "D’

It is of interest to examine the saturation at the front, Sé, which
is expected to decrease with time. At large tD’ the cumulative heat losses
consume all injected heat (see Subsection 4.5.2.1) and the total heat losses
at the edge of the front (CHL)D -+ AUGD(tD)‘ Thus, Eq. (4.100) gives, after

lengthy calculations,
I ) Z )
folSh ~0  as - (4.101)
whtich is equivalent to
51+ 0 as ty + (4.102)
Note that the derivation of (4.96) made use of the relationship

e
Yfrt - fst + 1

<

fop (1) (4.103)

Analogous considerations apply to the average steam saturation
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Xepltp)

Sadx
0 D7D

Xep(En)

§b(tD)

which is the most important quantity with respect to the growth of the

steam zone. After integrating by parts, we can rewrite

1

JHI xp{Spsty)dsy
- R
Splty) = Sp+

XFD(tD) (4.104)

which indicates that the average steam saturation slowly decreases with

time. Indeed, since as tD +> o, Sé + 0, we deduce that §b(t0) tends to a
liniting value §b(m):
1
- Jo Xp(Spsty)dSy
Sa{o} = T1im (4.105)
D Xep (to)
FD'"D

t. +

D

The utilization of the above results in checking the validity of the
simplifying approximations (4.16) requires that we choose a specific
temperature distribution in order to evaluate the heat losses term (see
Chapter 3.2}. Here we shall examine two limiting cases, one in which the
heat iosses are approximated by the lower bound, Eq. (3.18a), and another

one in which they are apprc.imated by the upper bound, Eq. (3.18a).

4.7.4 Heat Losses Bounded from Below

Now . .
Glx.t) = akhf AT

? (1)/
hprv wuff

(R I
VK
D
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(CHL)D = and Eq. (4.97) assumes the form:

S

3Su+{0 () - E. 20 (S)c
3T, 5 Yo'ty) - 3 ‘,t_,} 5045’ B,

D

E
- {: fSD(SD) + - i 1:} 2 (4.106)

SD(O,tD) = 1.0

The solution of (4.106) can be cbtained analytically by a transformation
of variables and a subsequent hodograph transformation without recourse
to any approximation. lLet ™ * /fa be the dependent variable, a function

of XD’SD' Then, Eq. (4.10€} becomes:

3 2
[PrgUoptp) - Exp)f'sp(Sy) a:g - E [v Ty - fop(S )] Tg =1 (4.107)

which 1s solved by the method of characteristics:

dp | 1
ds _ ,
D E (-—-Y—-—Y X st(sD))
dx f'o{5.)
D !’D 507D |
—r = e U (1) ~ X : (4.108)
AN | 0
The pair of Equations {4.108) with the boundary condition

SD(D,TD) = 1, admits the solution:
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S

D
=. 0. 1 . - . 21 1
0T TE T Tt o) f Fiple) Ygp{rp - £ K(Sp) + ¢ K(e)) e
[‘Y -1 sDYD 1
3

‘g L F op(@plt - 3 KISy + £ k() - k() - k(sp)dey  (4.109)

‘whera
dr'

Kig) = - : (4.110)
fl [:{—’_f——l- - fSD(CI)}

Recalling that £ >> 1, we recover the quasi-steady solution by neglecting

the term of order (%) :

1 9
[___.x__ s (S% U ) 1 {Fep(1) = Fop(Sp) (4.111)
y=-1 'sD*b

bl
=

i
i

which is the particular form of Eq. {4.96) when the heat losses term is

1
proportional to —= .

For constant injection rates, (4.109) simplifies to:

1{S.)
D 1 i a0 D
Xp *F 7y [*su“‘) - fsn“uﬂ * s
[T% - fs,o(su)] E [TLI“T - fso(sn)]
s . (4.112)
where 5
D Te (1) - £ () de
1(Sy) = J —[SD b4 (4.113)

Lt o]

Lyuation (4.113) indicates that the steam saturation is constant along the

curves x; = 4 Vfb * a5, with ay, a, constant for fixed saturation. In
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Figures 52 - 54 we plot the characteristic curves XD(SD) for various values of
ty and foe (or A). We observe that the steam condensation near the front
increases with time. The rate of condensation is also seen to depend on
the injection quality. The higher Tot {or A}, the less steam is condensed
for fixed Xgs tD'

In Figures 55, 56 we plot the saturation at the edge of the front,

1

SD’ and the average saturation, §b, for various values of fst‘ The

variable Sé is a decreasing function of time, approaching zero slowly as
ty > in accordance with (4.102). By contrast, the average steam

saturation approaches quickly its Timiting value

T - D
SD(“') = - *E'A' 1(0) (4.114)

Table 11 shows that the final value §b(w) is not very sensitive to the
injected steam quality, except at very small values of fst’

To test the hypothesis (4.16),

dS
D y* d_ {47 .
&, Xjﬂ(tn)i << dt; (SDXjD(tD»I , we calculate the error
5,50 0]
| St . function of time for various values of
T (§'X+r(t » as a function of time for various values o
}th‘ p*jn' %o

D
fst (Figure 57). We verify that the approximation {4.16) is good for
small and particularly for large times when bound X;D(tﬂ) dominates the
growth rate. The calculated error is of the order 0(10"2). The approxi-
mation is not as good in an interwediate time interval when the bound

X;D(tn) predominates and the error may be significant for a short time
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Figure 52. Steam Saturation Distribution for Case 4.7.4
tu = 0.02, 0.1, 0.5, 1.0, 1.5, 2.0, 5.0.

= Q =
TS 250Y¢C, fst 0.84.



{1

4,000 £.006 8.000 10.000

2,000

0.0

20

7

' ™~
P AN
S \\\ \ ~
=2
Q \ \_\
w \ \\\
Lid
\
Sd.n
I |
0.0 0.400 0.800
X
D
Figure 53. Steam Saturation Distribution for Case
4.7.4. ty = 0.02, 0.1, 0.5, 1.0, 1.5, 2.0, 5.0,
= 4] = Y
TS 2500C, fst 0.56.

1.200



208

620 = ¥55 90062 = SL “0°G *0°Z “§°T “0°T ‘570 “1°D
Oy spe/-p 9Se 40 UOLINGLAISL] UOIFRARILS WRIIS

‘20°0 =

GcG°8 00673

CO0"h

4]
X 00072

"vG unbij

o

[

Yo 13ud IS

g0

0no*h 000t e

oot 9

000" 8

000° 01



209

"yTLy 5B u0j ¢,

"62°0 “95°0 ‘¥3°0 =

13

4 “300S2 = °

S ‘3u044 weals ay3 40 a6p3 Byl e UOLIRANIRS wes]

000" €

a

3

000°¢

000" 1

1
S °5G aunbiy

00G"0

m

pmm Buiseaddsq

I

D134 3738

l

000°8s

0°0

000" ¢

008" f

000" 8

000° 01



210

g
=
-
-
=
o -
5,(tp)
-
- | | |
0.000 1.000 t 2.000 3.000 4.000
D

Figure 56a. Average Steam Saturation, §b, for Case 4.7.4. Ts = 250°¢,
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Figure 56b. Average Steam Saturation, §b, for Case 4.7.4. Ts = 2509¢C,
f . =0.29.
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fotr Sp (=)

1.00 0.7300
0.90 0.7815
0.80 0.7933
0.70 0.7990
0.60 0.8015
0.50 0.8016
0.40 0.7992
0.30 0.7938
0.20 0.7841
0.10 0.7651

Limiting values of the average steam
saturation for various values of the
injected steam quality.

Table 11
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interval. This may be attributed to the fact that, locally, we over-
estimate the actual solution significantly by using the upper bound
X;D(tn). The approximation (4.16) also depends on the value of the
parameter A, and becomes better for small values of A. The resulting
conclusion is that use of (4.16) is reasonable,in calculating the upper
“bound X;D(tu),and very good in calculating the upper bound X;D(tn)’

In carrying out the above calculations, the function st(SD) was

approximated by the expression

1
f o(S.) = - ; (4.115)
sDYD
(1 - fst)ﬂv

Y iHg D
Sp

i
1+-2
‘W

which fits well the steam-water relative permeability data curve presented

by Martin (1975) (see Figure 58},

4.7.5 Heat Losses Bounded from Above

When the heat losses are evaluated by the upper bound of Eq. (3.18a)

2k 1 )

iy = Aplxpl

. )y

G(X;t) = (1) thr
hprv Vhaf v/t - A(x)

*b
[ dx’

SRR

i

(CHL)D

thus the governing equation reads
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Figure 58. Relative Permeability Curves for
Steam-Hot Water [Martin (197537].



s *p as
D.JD dx' D
Y u. (t.) - _.f £ (5,) —=
ot 2 0D*D 0 EB—:—XBTITT- SD*UD7 ax,

Y E
) + i — =
2/tD " J\D(xDS

a5

fop(Sp (4.116)

SD(O,tD) = 1

The corresponding expressions for the steam front position are given by
the Marx-Langenheim solution and the lower bauﬁd XéD(tD) derived in
Section 4.4.

In contrast to Equation (4.106), there is no easy way to soive
(4.116) analytically. Although a numerical solution is feasible, the
determination of SD.as a function of Xp and tD can be obtained from the

quasi-steady state approximation (4.95)

.
Foplsy) = L 25 - )
DD Y-1 Xy

(4.117)

- B .1 f dx’
D upp'tpy) Yo NERW )

Iso-saturation curves, for constant injection rates, are implicitly

*p
determined by { dx ' - a
— 3
0 VED - ADIx‘5

where aq is constant for fixed

S Plotted in Figs. 59, 60 are the characteristic curves XD(SD) for various

D

tD. The saturations SD and Sé are shown to vary faster than in the

previcus case due to the higher heat losses. The relative error introduced
by the assumption (4.16) when calculating the Marx-Langenheim expression

and the lTower bound is smaller than in 4.7.4 since, here, the steam

front veloc:vy is smaller. Overall, one concludes that the approximation

(4.16) is yood for small times, reasonable at intermediate times and very
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good at large times .

4.7.6 Some Additional Remarks

The foregoing analysis provides a pretty good description of the
saturation distribution inside the steam zone and defines the regions of
‘ validity of the assumption of the constant averaye saturation, under the
conditions of residual oil saturation. As a1ready emphasized, identical
results hold under any other assumption, as leng as the fractional
volumetric flow of steam, fSD, is a function of the steam saturation alone.
This is tantamount to replacing the three-phase flow problem by a two-
phase flow problem with steam as one of the two flowing phases. These
lines can be extended to other problems, for example, the steam-oil flow
system described by Shutler and Boberg (1972), where now we take into
account local steam condensation.

Another approach can be followed in systems where f, = ﬁ)(gj), i.e.
a function of the oil saturation alone. We can then define the new
u QY and rearrange

5 +
s
s VU0

variables St = Sw + Ss’ ut = U, + Ues ¢ = 5

Eqs. (4.91), (4.92) to obtain:
3. [ X 3S,
) 5_{;.:. + Uﬂ(t) - (y - 1) JU G(x',t)dx}f.&(st) T

= - [{(l - ft(stﬂ + ft(st{} G{x,t) (4.118)
This is equivalent to (4.93) with St replacing SS, thus the previous
analysis holds throughout. Proceeding in this way we may get a fairly good

estimate of the oil saturation di..ribution in the steam zone. Since,
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however, ft(St) is expected to be fairly close to a step-distribution

due to the high oil viscosity, the resulting average oil saturation should
not lie significantly above its residual value. This should provide
additional evidence that the oil left behind in the steam zone 1is at an

irreducible saturation that cannot be further reduced by steam drive.

4.8 Conclusions

Summarizing the above we are Jed to the conclusion that the integral
balance technique of Chapter 11, combined with the proper heat transfer
models of Chapter ITI, can be successfully applied to describe the one-
dimensional steamflooding. 1In addition, a reliable, although approximate,
account of the steam saturation distribution revealed that variations in
the average saturations inside the steam zone do not significantly affect
the performance of a steam drive. Since an exact representation of the
steam zone volume as a function of time is not feasible, we concentrated
on deriving bounds, asymptotic and approximate solutions instead.

An upper Timit on the steam zone rate of growth and the expected
recovery efficiency is provided by two upper bounds that are derived from
the total thermal energy and the latent heat balances, respectively. [Lach
cf the two bounds assumes control of the rate of growth in certain time
intervals depending on the heat transfor characteristics. In particular,
under constant injection rates the bound based on the steam mass balance
controls the rate of growth arfter some initial time has elapsed.

The asymptotic behavior of the solution at large times is obtained by

a balance between the heat losses and the injection rates. 1t is shown
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that the steam zone volume behaves as a parabolic function of time, at
large times. This expansion is consistent with the upper and lower bounds
description and is insensitive to variations in the horizontal conduction
term and the injection rates, as long as R varies between 1 and o, a1thougﬁ
the time of convergence does depend on R. The solution behaves more like
“an upper bound for small A and more like a lower bound for large A.

By formulating a quasi-steady state approximation for the heat
transfer in the hot 1iquid zone, we were able to obtain an integral equation
the numerical solution of which provides the steam zone volume as a function
of time, under constant injection rates. The approximation seems to work
pretty well in the cases studied which provides us with a fairly good tool
for a uniform description of the solution.

The validity of the Marx-Langenheim solution has been carefully re-
examined. It is shown that for Targe values of R (high injection rates) it
describes the §olution pretty well up until some critical time beyond which
it increasingly deviates. This deviation becomes more significant as A
decreases and for small A it may lead to high over-optimistic predictions.
It is established that when A*<%— the description based on the upper bounds
gives a more realistic picture of the actual process. These conclusions
have a significant importance on the design of a large class of actual
field cases which operate at high injection temperatures and Tow downhole

qualities.
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Chapter V. Application to Two-Dimensional Reservoirs

5.1 Introduction

This final chapter consists of two parts. In Part A we generalize
the discussion of Section 4.3 regarding upper bounds, to three-dimensional
geometries where the steam zone assumes an arbitrary shape. Section 5.2
deals with reservoirs of small thickness where one can reasonably expect
vertical fronts. The results obtained extend the validity of the results
of Section 4.3 to reservoirs where the steam zone areal extent is non-
symmetric due to areal inhomogeneities or the particular production
pattern. In Section 5.3 and in Part B we consider three-dimensional
systems that exhibit another kind of symmetry, along the lateral (-y)
direction, in the so-called rectangular geometries,or along the angular (-6)
coordinate, in the so-called radially symmetric geometries (see Figure 62).
To facilitate the discussion, we isolate two particular modes of displace-
ment, separable fronts (Subsection 5.3.3) and parabolic displacement
(Subsection 5.3.5). In Part B we attempt to develop a model for the
determination of the steam front shape for the above referred geometries
(Section 5.5). The resulting partial differential equations are derived
in Section 5.6)and their structure and methods of solution are further

discussed in Section 5.7.

Part A. Integral Characterization of the Steam Zone Growth

5.2 Three-Dimensional Reservoirs with Vertical Fronts (Thin Reservoirs)

In thin reservoirs the steam front is vertical and the character of
the displacement is essentially two dimensional (Figure 61)} Due to the

symmetry along the vertical (-z) direction, the integral balances (2.47),
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(2.50) transform to:

AT -‘Lf Md, + T(t)ATIH{L) + Q.(t))} + ?—J (— k ?lf:)um\
dt Aeg () 1A 7 UF F F h A (1) hf 3n
= g (£) + w(8) I, AT + w(0)LlD) (5.1)
d i 9 [ an)II
AT =+ M dA + T.(t)ATQ.(t) + + (- k, o —| dA
dt Aﬂ)(t) 2 F F h f’d\fo(t) hf 3n
- (1)
= ws(t}Lv (5.2)

where Afo(t) is the reservoir-overburden (or underburden) boundary surface,
HF(t) the perimeter of Afo(t))and ws(t), ww(t) are expressed per unit
reservoir thickness. To derive upper bounds for the steam zone volume,

we recall inequalities (3.20a), (3.20b), (3.20c), which are good for any
geometry, and proceed along the Tines of Subsection 4.3.1. Then,the

following inequalities result:

. d , .
Fia !A t)fj(xsy,t,Afo(t))dA + . Afo(t) < @j(t) VOct (5.3)

J=1,2

The similarity between (5.3) and (4.11) indicates that the analysis of
Section 4.3 concerning one-dimensional upper bounds can be easily carried
over to the present geometry,by simply substituting XF(t) by Afﬁ(t), and

Xg(t) by A;(t). As a result, the properly non-dimensionalized quantities,
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L i

Hot Liquid Zone

Figiire 61.  Two-Dimensional (Thin) Reservoirs
Examined in Section 5.2.
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A}D(t) (i = 1,2), defined by

+

. A, (t)
oAt () + 200 o 5 (t) (5.4)
1070 10V "D
Ry
+
B, . A (t)
1 ,;+ 207D _
+
AjD(O) =0

are upper bounds to the dimensionless steam zone area of an arbitrary
two-dimensional steam drive involving vertical fronts, for arbitrary
injection rates. Similarly, the dimensionless Marx-Langenheim expression
for such a geometry is simply given by:
' 0 Ay p(rp)dny
2y o(ty) +[ ML DD L () (5.6)

0 A -1

[compare with Eq. (4.23)1.

Clearly, the discussion in Section 4.3 regarding varying or constant
injection rates and the lower bounds of Section 4.4 follow in a straight-
forward manner. In short, we are able to bound the steam zone area of a
two-dimensional steam drive, regardless of the steam front shape, pro-
duction pattern or areal inhomogeneities, as long as the front remains
vertical. Obviously, this extends the region of validity of the results
of the previous Sections 4.3, 4.4, to more realistic cases. On the other
hand, all the approximate solutions to the steam zone growth that are based
on the assumption of one-dimensional heat transfer (Sections 4.5, 4.6),

cannot carry over to this geometry, in general. Similarly, a separate
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analysis should be carried out for the determination of the saturation

distribution inside a two-dimensional steam zone,

5.3 Three-Dimensional Fronts with One Degree of Symmetry
{Rectangular or Radially Symmetric Geometry)

A more realistic case involves geometriés that do not display
vertical fronts. For simplicity of the discussion, we confine our
attention to systems that exhibit one degree of symmetry along the
lateral (-y) or the angular (-0) direction (rectanguTar or radially

symmetric) as shown in Figure 62,

5.3.1 Reformulation of the Integral Balances

In such a case the integral balances (2.47), (2.50) assume slightly

simpler expressions. Terms of the form

J y(r,t)dr, f ¢(r,t)dr
v(t) Ag(t)
transform to
LFo(t) LFu(t)
b [ (r,t)dr, b [ B(x,t)dx + f P(x,t)dx
A(t) ] 0
and to
Rz, () Re, ()

r
[ glr,t)dr , 2 I ry(r,t)dr+ 24 [ rp{r,tidr
v(t) 0 | 0

in the respective gecometries. Here subscripts Fo, Fu stand for overburden
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and underburden, respectively, A(t) is the cross section of the steam
zone along the plane of symmetry in rectangular geometries (Figure 62a).

In a uniform notation,we rewrite (2.47), (2.50) as follows:

d
AT a?fm) My (rst)dr + Tp(t) AT MR(t) + Q(t))
" Xe (t) Xe, (t)y
Fo an I Fu an) I1
] ( khf'a‘ﬁ‘) d"*fo ( “nf 30| O
= ¢ (t) (5.7)
Xe (t
. Fol®) oT¢ |11
AT 3 fn(t) My(r,t)dr + n.(t)aTQe(t) + Jo - Kpg 'a’:ﬁ') dx
Xy (t) 3T, \ 11
+ . (- Ky ¢ 377) dx ) = ¢,(t) (5.8)

where R(t) stands for A(t) or V(t), XFO(t) and XFu(t) represent boundary
length or area,and HF(t) refers to steam front perimeter or steam front
area)in rectangular or radially symmetric geometries, respectively.

In deriving rigorous upper bounds, we employ inequalities (3.20a),

(3.20b), (3.20c), as before, to obtain

hKgo(£) + Xp (t)
%E.[ ¥ {x329t)dXdZ + g— . ( Fo 5 Fu )
R(t) Y %

< @j(t) YO0c<ct

j=1,2 (5.9)

which is a generalized version of the one-dimensional constraints, (4.11).

In particular, the heat losses term has a spatial dependence given by the
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b Steam Zone
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///f:::::;;;f Hot Liquid Zone

e Steam Front

[ 4i\l
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""’"l]-u(t)

a. Rectangular

Steam Front

Hot Liquid Zone

b. Radially Symmetric

Figure 62. Three-Dimensional Geometries Examined in Chapter V.
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g () g (1) -
expression 5 [ compared to hX{t)] which represents the

area of a frapezoida1 with sides LFO(t), LFu(t) (Figure 63a) or the
volume of the frustum of a paraboloid of revolution with sides of area
AFo(t)’ AFu(t) (Figure 63b) in rectangular or radial geometries, respec-
tivaly. Since the area (volume ) A(t) of R(t) is a function of time
alone, we can define F, a iunction of A(t), such that

hiXx,. () + X (t)
FA) = ( Fo 5 Fu ) (5.10)

The function F characterizes the steam front shape in an integral sense
and varies with the assumed kind of displacement. For example, for vertical
fronts (Section 5.2),F(A) = A. Once the steam front shape is known, one is

able to calculate F explicitly as a function of A,

5.3.2 The Assumption of Uniform Propagation

Because of the many complexities associated with the determination of
the steam front shape of a three-dimensional steam drive, (Section 5.6},
ve elect instead to proceed by introducing certain assumptions regavding the
properties of the displacement. In so doing, we will get information regarding the
zorie volume rate of growth without recourse to the exact solution of the
steam front shape. HWe first introduce the assumption of uniform propagatieq)
which postulates that the function F(A) defined by Eq. (5.10),is an
increasing function of the steam zone extent, A. In other words, we assume
that the arithmetic mean area (volume) increases with the steam zone area
{volume). The assumption is expecied to be valid as long as the:heat losses

to the surroundings are the controlling factor in the propagation of the
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v
<

Figure 63. Trapezoidal (a) and frustum of a

cone (b) referred to in Subsection
3.5.2. :
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steam zone ,and there are no acute inhomogeneities inside the o0il reservoir,
such as a highly permeable streak. It is also expected that the assumption
is not valid in cases of u..table propagation that favor growth of
"fingers".

We can now define A;(t) such that

d . d + -
d JA}_(t)fj(r,t)dxdz P F(E) = (0 (5.11)
AZ(0) = 0 i=1,2

Using the dimensionless notation of Chapter IV and invoking the constant

average saturation assumption, we recast (5.11) in the form:

2§1A+(-t)+-1—F(A+(t)) = 0. (t) (5.12)
B, "in'to p\*jp'tp j'tp '
1 Ve

Aip(0) = 0 j=1,2

In view of the above assumption, one can then prove (Appendix X) that
AED(tD) (j = 1,2) are two independent upper bounds of AD(t), for any
injection rates, just as in the one-dimensional case. In an analogous

manner we can de.:lop the three-dimensional analog of the Marx-Langenheim

solution
t
D
. Fo lAy w(Th)
2Ay p(tp) +J D(MLD D) dry = 9p(tp) (5.13)
0 VtD - TD

AMLD(D) = 0
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Equation (5.12) is a first order, non-linear ODE, the solution of which
largely dépends on the fuactional form of the unknown function FD{AD).
The determination of the front shape (and FD) is fully discussed in
Sections 5.5, §5.6. Here,we shall only develop the solution of (5.12)
when FD assumes simple functional forms. Such an approach, although
approximate in nature, will significantly clarify the effect of the steam

front shape in the performance of a steam drive.

5.3.3 Vertical Fronts

When the front remains vertical to the bedding plane, FD(AD) = AD
and the uniform propagation assumption is satisfied. Then, Eq. (5.12)

reduces to the well studied Egs. (4.19), (4.20) (Sections 4.3, 5.2).

5.3.4 Separable Fronts

A more general linear dependence is provided by the relationship

Fo(AL) = KAD, where < is a positive constant. Such fronts have the

property that the area of any cross section of the steam zone parallel to
the reservoir bedding plane is a separable function of time and the
vertical coordinate. In dimensionless notation
£ - ; 9 1. 4 e v <
XD\ZDutD) - TD(tU)ZD(ZU) ¥ 0 < 'C.D, O < ZE) -1 (5.14)
where TD’ ZD are arbitrary functions (see Figure 63). We refer to fronts
with this property as separable fronts. From (5.14) une deduces that the

ratio of the areas of any two cross sections of the steam zone is constant
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with time. In particular, the ratio of the leading to the trailing edyes
xﬁ(o,tD) ZD(O) ] ; :

. U remains constant and so does the vertical sweep
Xp(Tot,) (1)

efficiency of the steam drive, Ev, defined as the ratio of the steam zone
area (volume)to the area (volume) under the steam zone's leading edge

[Baker (1973)]

EV = “-—-“2“9—(‘0—5*" (5.15)

In view of {he above, the parameter ¥ assumes the form

z.(0) + Z.(1)

D D
K = ; — - {5.16)
Iy Iplzpldz,

which is the ratio of the area {volume) of a trapezoidal (paraboloid of
revolution) with sides ZD(O) and ZD(I))tu the area (volume) of the steaw
zone.

Experimental evidence [Baker (1973), van Lookeren (1977)] suggests
that fronts of this type are actually realized under both laboratory and
field conditions. van Lookeren {1977) developed a simplified wodel for
the determination of the front shape in a three-dimensional, radially
symnetric steam drive, which enables us to express ¥ in terms of the
physical parameters of the system. In our notation)his model is equiva-

lent to:

IS
In]
foee I o4

XD(zu,tD) = TD(tD) exp (- — (5.17)

xR
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g_m Y
AR = 5 S 5 (5.18)
mpy = PNk pg
then
2
1+ exp(- 2/A7) .
e = 2 , R] (5.19a)
/i Ay erf[/Z/A]
which, when Ay < — ,simplifies to
/2
2 1
2(p, - p.Jgh“k p. |
Kg*’7=[° s s (5.19b)
Ap /i Hg M

Expression (5.19b) shows that in this case ¥ varies inversely proportional
to the dimensionless group AR. For a typical radial steam drive (Table 6
of Section 4.3) we estimate Kk = 2.65.

In Section 5.7, we derive an analogous model for a stable radial

steam drive. Now the zp dependence and the group AR are slightly different

XD(ZD,tD) = TD(tD)EXp T (5.20)
R
( p{2)c . s
(1) EE: I
(1 -N) [(ms + mw)cprT + mva ][_ NU
A = .l"'w-,p 1
<" (1) (1) ?
1
n h2kgat P11, Z (2), _('_‘_71”( o)
% ST | ige T1 PRy ) P P
~ 1=5,W,0 i ? ' 7

(5.21)
where, Ng s N£I are defined in Subsection 5.5.1.2, Based on this model the

parameter ¥ becomes:
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. 5 -
1+ exp(~ 2/A3)
oL v (5.22)
2An [1 - exp(- Z/AR)]

which varies inversely proportional to the square of AR’ for smali AR.
Both models above demonstrate the usefulness of the concept of
separable fronts in simulating a three-dimensional steam drive. Table 12
shows values of the parameter « calculated from (5.19b), for the various
field projects reported by Myhill and Stegemeier (1978).
Returning to Eq. (5.12), we now define the upper bounds A;D(to):

+
B. . KA. (tn)
P oat jp‘*n’
2 g7 Myplep) + ———— = o(ty) (5.23)
1 Ve
+ .
Asp(0) =0 j=1,2

which admit the following solution in case of constant injection:

oy = ;.... E L 4+ - K ;

Aw(tD) =7 {}v”tn 1 exp[ K./tD]} (5.24)
Kyt

+ = _B.,.. Y. - D .

Azu(tn) "3 {»/tn B + B exp [ 5 :l} {5.25)

Hotice that expressions (5.24), {5.25) can be obtained from the respactive

one~dimensional ones, Eqs. (4.29), (4.30) by simply rescaling the dimen-

2

sionless rates by 1/x and the dimensionless time by . Therefore, the
Y

equivalent Marx-Langenheim model in three dimensions would simply be:

) [ _ melty [‘Kﬁfg] o
At (g = = Li<./tD - 1+ exp | erfo | —5— (5.26)




*

Field <
Brea ("B" Sand) 15.34
Coalinga (Section 27, Zone 1) 2.83
E1 Dorado (NW pattern) 2.17
Inglewood 2.34
Kern River 5.25
Schoonebeek 4.25
S$locum {Phase 1) 2.28
Smackover 0.90
Tatums {Hefner steam drive) 2.65
Tia Juana 9.70
Yorba Linda ("F" Sand) 1.

*
Calculations based on a reservoir permeability of 2 pmz.

Values of the parameter k for field cases renorted
by Myhill and Stegemeier (1978)

Table 12
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The above equations reduce to their one-dimensional analogues when « = 1,
as expected. Figures 64, 65, 66 plot AID(fU), AZD(tD), AMLD(tD) for
various characteristic values of wand A = 0.5. Comparison with the one-
dimensional case reveals that the relative magnitude of « plays an impor-
tant role in the growth rate of the steam zone area (volume). When ¢ <1,
" i.e. when the steam zone area (volume) is larger than the corresponding
trapezoidal (or paraboloid of revolution) of Figure 63 the two upper bounds
and the M-L expression are larger than the ones corresponding to ¢ = 1.

On the other hand,when « > 1, i.e. when the steam zone area (volume) is
smaller than in the corresponding trapezoidal (or paraboloid by revolution),
the upper bounds and the Marx-Langenheim expression are smaller than in the
case ¢ = 1 (see Figures 65, 66). These effects are more pronounced
as ¥ becomes smaller or larger, respectively. (Figures 64, 66). .

For example, when Kk = 2 the calculated upper bounds and the M-L expression
are smaller than half the values of the expressions corresponding to

K= 1. Even lower values are obtained when k = 5 (Figure 66).

The effects of the relative magnitude of « can be physically interpreted
as follows: When K > 1, the steam zone tends to propagate along the top of
the reservoir more rapidly, due to (5.16), thus creating a finger (tongue)
which grows with time faster than the remaining part of the steam zone
(Figure 67a). This effect,usually called gravity override, is largely due
to the large density difference between the displacing (steam) and displaced
(water and oi1) phases and is very frequently occurring in three-dimensional
steam drives. As one can see from (5.19b), the override is favored by a
large density difference, steam mobility andlreservoir thickness but

decreases with the increasing injection rate. On the other hand, when x <1,
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//’_- " -
- - /
Steam Zone j,f’

d//’ Hot Liguid Zone

Tonque{Finqer) Formation Due to Gravity
Segregation.

{a) Override.
(b) Underrun.

Figure 67.

(Not Realized in Steam Drive)
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the steam zone tends to propagate along the middic of the reservoir

(Figure 67b) resulting in less heat loss. Such = situation, although

common practice when the displacing phase is more dense than the displaced one
[Chucke et al. (1959}3)15 not realized under steam injection conditions

and, therefore, we will not carry the discussion any further.

We can, thus, conclude chat if we ignore any geometrical or gravity
considerations, and estimate the steam zone area {volume) by employing
the usual one-dimensional methods {(« = 1), we‘introduce an error which
may be very significant [compare with Blevins and Billingsley (1975)].

In fact, it the three-dimensional character of the process is not properiy
recognized,the 01l recovery is overestimated by about 100% in a typical
case (K = 2.65) and by about 400% when «x = §,

Another interesting observation can be made regarding the region of
applicability of the upper bound A;D and the Marx-Langenheim solution,
AMLD’ in its modified form. As evidenced fromFigures 65, 66, both curves
cross over the upper bound AZD much earlier when K > 1 than when « = 1
and this is shown to become pronounced as ¥ becomes larger, Table 13
shows the values of the tiwe instants tDa’ tDa when this occurs, for
varicus values of ¥ and for A = 0.5, Notice that, as in Section 4.3,
a necessary condition for AZD and AMLD to intersect is A < % . Conse-
quently, the upper bound AZD assumes control of the growth of the steam
zone much earTier when ¥ > 1 and,for this reason,describes the steam zone
rate of growth more accurately than the upper bound A;D and the modified

Marx-Langenheim solution, for a larger time domain.
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"D toy

1.0 2.5395 15.4716
1.5 1.1286 6.8762
2. 0.6348 3.8679
2.5 (1.4063 . 2.4754
3.0 0.2821 1.7190
3.5 0.2073 1.2629
4.0 0.1587 0.9669
4.5 0.1254 0.7640
5.0 (0.1015 (.6188

Values of tDa’ tD for various values

of « and A = D.5.

Tu;~;

o
[
(@8]
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5.3.5 Parabolic Displacement

In the last subsection we dealt with steam drives characterized by
the Tinear expression FD(AFD) = KA. It s interesting to see how other
functional forms influence the steam zone propagation. 1In this context,
we willexamine the parabolic form FD(AFD) = AAED , A a positive constant.
To the author's knowledge, fronts of this type have not been reported in
either theoretical or experimental investigations. Still we are interested
in studying the solutions they give rise to, in order to shed some Tight

in displacements governed by a stronger-than-linear dependence of FD on

AFD' Our upper bounds are now defined by

B. (t
2 E“l D + }\—[——J-D-———]-—- = @D(tD) (5.27)
1 9 7ty J
+ .
AjD(O) =0 j=1,2

which admits an exact solution, in the case of constant injection rates.
. ) . - - /A .
To show this, we introduce the variables T, = /fa and T, —//; /EE and

rewrite (5.27):

dAT (T, )
10! "1p + 2 _
"'"a"r‘l'u""'k[“m(ﬁn)] = Tip (5.28a)
+ —
AT,(0) = 0
A (v ), .
20' 2D x) o T2
—t e — A (E ) = T (5.28b)
4t (r——AB [A0¢700)] 2D
+ —
Ryp(0) = 0
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Equations (5.28a), (5.28b) are of a particular Ricatti type that
gives rise to analytical solutions [Davis (1962)]. 1In terms of the

original time variables, the solutions read

/4 (g 3/ 1/?)
ooy L B ity -

Aplty) = VN TRY (5.29)

R VE (§ )

172

20/ 30,172
. e AL TE (3 B ) o
Yaltp) = Tz 2 A2 370,172 (530
a3 5 W

where Iv(z) the modified Bessel function of the first kind of order wv.

The parameter ) is again a function of the physical variables of the

system. Figures 68, 69, 70 plot the two bounds A;D(tD), A;D(tn) as a

function of time for A = 0.1, 1, 10.0. The upper bound A;D(tD) is initially
. + _ . + e .

larger than AlD(tD)3b”t later crosses below AlD(tD)’ just as in the linear

case. As it is expected, the larger i the sTower the rate of steam zone

growth. An asymptotic analysis reveals that as t

g
A (tg) o 1/4/A1/2 (5.31a)

which indicates that the growth of the steam zone is much slower {~ té/4)

17
than in the previous case (v té’“). [t is also easily shown that when the

dependence of FD in AFD ~is given by the general non-linear relationship
FD = A?D » where n positive, the rate of growth behaves asymptotically
\ f]/Zn' One cari, thus, conclude that when the steam front obeys a higher

order relationship the estimated oil recovery iz smaller
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than the recovery predicted when the function FD is linear.

Part B. Determination of the Steam Front Shape

5.4 Introductory Remarks

In Sections 5.2, 5.3 we stressed the importance attached to
integral characteristics of the steam front shape in estimating the steam
zone volume growth rate and the vertical efficiency of the process. As
already indicated, gravity plays a most important role in the front shape
evolution by forcing the steam zone to spread alaong the top of the reserveir
much faster than at the bottom (see Fij. 67 ). As a result, at the time
when steam breaks through the producing well, which for all practical
purpeses spells the termination of the process,a significant portion of
the original oil in place has been bypassed by the leading edge of the
steam front. and cannot be recovered. It is imperative that the mechanism
of this displacement be well understood, so that appropriate control policies
can be developed to -improve the vertical efficiency and increase cil recovery.
The first reported attempt to tackle this complex problem analytically was
undertaken by Neuman (1975), who obtained results of rather 1imiting validity.
Recently, van Lookeren (1977) constructed simple models for stable displace-
ment, which however, neglect the important effect of heat losses to the
surroundings. The absence of a reliable model for the important effect of
gravity override calls for additional research in this area..

In this section we will devote our efforts to the description of the
dynamics of the steam front shape by using the line (area) averaging
method outlined in Section 2.4. The method borrows concepts and assumptions

frequently employed in the modelling of two-dimensional, isothermal,
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immiscible displacement . In addition, we will incorporate the two-
dimensionai.heat transfer considerations developed in Section 3.6, 1in
order to account for the complicated mechanism of heat fransfer to the
surroundings and the hot liguid zone. For simplicity, we will limit, as
before, our discussion to symmetric (rectangular and radially symmetric)

geometries.

5.5 Mathematical Formulation

In the notation of Section 2.4, the energy balance at (x,t) averaged

over the thickness of the steam zone)(Fig. 71 ), reads [Eq. (2.54}1:

z(x,t) -
SRS I
{0 Mydz + AT Z? ot entlugn - 953l

[« B el

AT %

aT II AT\ 11
11 11 - _ig) : ) _f)
- {1 - 4)og “pRYn [VF] (“ Kip 3w [VF} + ( “nf Tn
) (x,t) 0 0 (1) 0
- c 1 ~{1) v ,
= o AT e JO P Cpi“ix R dz (5.32)

By adding Eqs. (2.55) and (2.58), we get the total water mass balance, at

any point of the front (x.t), averaged over the thickness of the reservoir

o . [ (2)(2)
%f JO (¢055£1) + 99(1) ( ))dz + ai“z(x,t) 0, )SWL dz
" z{x,t) h
= - gi‘ . (pxﬁii) + o&l)u(l))QZ - g} ka(xst)oéz)ﬁéi)dz



Steam Zone

g, (L)

a. Rectangular

Steam
Zone

i
tw
Area of H Hot Liquid Zone
[ntegration —~~
b. Radial

Figure 7i. Geometries Examined in Section 5.5.
Notation for Area {(Line) Integration.



where superscripts (1), (2) refer to the steam or hot liquid zones,
respectively. Similarly, adding Egs. {2.56) and (2.59) we recover the

total o011 mass balance

z(x,t) (1) h ( Z(X,t)(
5L~j pptHst s o ﬂm-[ op\2)5(2)yy - o f p{ 151}y,
dt J, dt 2(x,t) Y oX 0 0x
n
- ( p(z)agg)dz (5.34)

dy Yy(x,4) O OX

Multiplying Egs. (5.33), (5.34) by prAT’ CpoﬁT, respectively and sub-

tracting their sum from (5.32), we obtain

CMEL

rZf(x t) 0 (1)
v O y 1 S &
AT Gt jO (qpsss A v (- d)epe pR)

h

r dt

-

woopWwW o “poo |

{%Q(Z)C 5(2) + ¢p(2)c S(zildz
(x,t)

+

0T\ 11
T 8) + 0O t)E TR + (oK o o

z{x,t)
- (1); (1) AT O
= . 8«)—(— J ‘) L d z + ! AT 5—)-(—

.
P
H i

h
2 ~ {2 2) (Z -
Jz(x t) [}é )CPWUW§ ) ¥ pé Cpo ox)} d;] (5.35)

which is a Tinear combination of the thermal energy and the lateni heat

(steam mass) bhalances. The two conservation relations (5.32), (5.35) are



the basic equations, just as in the one-dimensional case, upon which we
will develop our model.

Before we proceed any furtheh,we once more introduce ithe assumption
of constant volumetric heat capacities in both the steam and the hot
1iquid zone [ccmpare with (4.16), Section 3.4]. Then M1 and M4, which

T s defined by

_ e N _
My = 00 S, 5+ (1 tb)ochR

(2) 0 (2) )
+ ¢ : +
P Condw o “pou
are considered canstant (or slowly varying) relative to the steam zone
rate of growth. Under this assumption,we can suitably approximate the

first term on the LHS of both (5.32), (5.35) hy

z2{x,t)
w1 4 Jo Modz = M. 6T o2 (5.37)
and subsequently eliminate g%-between (5.77) and (5.35) with the result:
z{x,t) l" - (1)
AT o { ‘(1)C ﬁ( ) f L.-—' (1 ~ w)ii ) dz
) i Tpitix S SX
0 -
.. - i=s W0 - o
h

L2, a2, @), a2
b f?(x t) [Dw ”pwuwx ! o Cpouox dz

AT\
+ (1 -a)L\.T{WF(X,t) + QF(x,t)HVF' + (1 -~ Of.)(— khf d"ﬁi) =0

(5.38)
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M

where o stands for the dimensionless parametei Ml.< 1. Equation (5.38)
4

can then be integrated with respect to x, over the interval LFu(t) to x:

2ty O\ (1)
AT [D Dgl)cpiﬁgi) + P —%T—~(1 - a)déi) dz

I i=s5,w,0

h
+ abT f [o(z)c a(2) {)(()2)0 G(Z)sz

7(X,t) W PW WX pO‘OX
X
+ (1 - a)AT { [HF(X',t) + QF(x‘,tﬂ |VF dx®
Lo {t)
Fu
X AT e\I1 |
+ (1 - o) J (- khf'ﬁﬁm) dx' = h@a(t) {(5.39)
I_Fu(t) i

Here Lg (t) is the position of the trailing edge of the front and Qa(t)

represents a heat input term at the site of the trailing edge:
h

o 4y = OT (1), (1)

AL A jo ; i Cpitlix

4 ~ 1) -
+ p. —7 (1 - u)u(, dz (5.40)
s AT SX ;szFu(t)

x={ Fu(t)

The conservation Equation (5.39) is important in relating in a quasi-

steady state manner the volumetric flow rates

z{x,t) h
ﬁ(i)dz, J hﬁgi)dz to the net total heat fiow rate to
0 T z(x,t)
X
the hot Tiquid zone, AT J EéF(x‘,t) + QF(x‘ﬁti}IVFldx’ , and
Lr(t)
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X .
aT \IT

. b T . - f -

to the heat Tosses to the overburden, fLFu(t) ( khf ar]) dx'. 1Its

physical significance is much more clear in isothermal, immiscible dis-
placement of oil by water. Then, the heat transfer terms drop out and
we get the conservation equation

Z(X’t) h h

~(1) ~(2) - ~(1)]
Gy 'dz + JZ(th)uox dz = JO i E dz (5.41)

which is the total mass balance for incompressible phases. Eqg. (5.39)

also acquires a simple physical meaning when o = 1, j.e. M M4. Then,

L =
after proper rearrangement, the sensible heat balance emerges

2(x,t) ¢—— . h )
ATJ Z o e 4. Wy 4 o J E{: ol2)e gl2)y,
0

) 1 P1aXx Z(X,t) ‘ 1 pPioIx
i=5,W,0 i=w,0
h
= AT f % ol gl dz (5.42a)
i “pitix |
0 x«LF_(t)
. ¥]
i=s ,w,0

Finally, if we neglect heat Tosses from the steam zone, we get a simplified
balance, by means of which we can relate the parameter o to tie rates of

)
injection, wgl), and the rates of production, wg‘):

AU L (D) (1), (1)
o = oS W W S (5.42b)
W(ﬂh‘(l) - W(Z)h(l) ’ W(l)L(i)
Wooow 0 0 s v
The next step involves the determination of the unspecified volumetric
- . Z(X,t) 3 h ] Lianm F ' . , SR
flow rates G(l)dz, ﬁg;)dz from Eq. (5.34). For this

0 1% 'Z(X,,'t)
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purpose we need to develop additional expressions that relate these terms

to each other. Clearly, the integral thermal energy and mass balances alone
cannot furnish such relationships. As a consequence, one has to employ

the linear momentum balance in its differential form, Darcy's Law, Egs. |
(2.5), (2.6), (2.7), and follow an integral balance approach after the

adoption ¢t suitable approximations.

5.5.1 A Momentum Integral Balance

5.5.1.1 The Dupuit Approximation

A most powerful tool for treating a large class of problems of flow
through porous media (unconfined flows in ground water hydrology, gravity
segregation in isothermal immiscible displacement in il recovery), is the
Dupuit approximation [Bear (1972)1. The underlying assumption,as formalized
in its final form by Dietz (1953),states that, at any point of the interface,
the volumetric velocity components parallel to the reservoir boundaries
are equal to the mean volumetric components. In mathematical terms,this
is shown to be equivalent with retaining only the first term,in a Taylor

series expansion about a point at the front (see Figure 72a):

z{x,t) |

fO Giii)dz = Z(x,t)ﬁix(x,z(x,t),t) + O(ZE(x,tﬂ . (5.434)

h ‘ ,, |
z(x,t)ugi) dz = [h -Az(x,t)Jufi(x,z(x,t)at) + 0((h - z(x,t))“} {5.43b)

The assumption is more closely satisfied as the vertical variations in Gix

are smaller,which is favored by high injection rates and relatively small
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reservoir thickness. Although the assumption is not of general validity,

we will make use of it in deriving a first order approximate solution to

the steam front shape of an arbitrary steam drive. By introducing the

Dupuit approximation, we can now substitute the integral volumetric velocities in
(5.39) by their local values at the steam front. The latter are related

to each other by means of the following dynamic boundary condition.

5.5.1.2 The Dynamic Boundary Condition

l.et us consider a fixed point along the steam front (x,z(x,t)} (Fig.
72 ). Neglecting capillary terms and using Darcy's law, we obtain for
the local volumetric velocities at the inner side of the steam front,

Gix(x,z(x,t),t):

k_u I
a1 ( rv s) nl
1] = —=1{ (5.44a)
WX krsuw SX

ko unil
~1 ( ro s) ~]
Q = u (5.44b)
ox krsuo X

[compare with Eqns. (2.5), (2.6), (2.7), (2.9a), (2.9b)]. From geometrical

considerations at the inner side of the front

% SN e

Ug,, = u_ cosd - Iusz|s1n6 (5.45a)

al = 6! sine + |61 |cos® ‘ (5.45b)
$S SX ¥4 *

and similarly at the outer side:

PSS RPN § ~11 -

Uy, = Ui, cosé + |u, |sing i=w,0 (5.46a)
I _ Al . AT -

Gy = uy, sind - {uizlccse i=w,0 (5.46b)
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where O is the angle between the horizontal and the outwards pointing

normal to the front (Fig. 72b). Employing the pressure dynamic condition,

Eq. (2.33b), and Darc, s law, we also have:

Il o
I ovin _ oana = 1)y All . -
o L(ni ps)g‘5 (k ') Uy i=w,0 (5.47)

As before, the superscript ~ runders the notation uniform for both rec-
tangular and radially symmetric geometries, thus §S =g, or Zﬂrgs in the
respective geometries, whereas the subscript s refers to the direction
parallel to the steam front (Fig. 72 ). We can now eliminate uI ol

ss? Yig
from {5.45a,b), (5.46a,b), (5.47) with the result:

gl = gl (511)11 s\ K fri 11(3 N T
Yin T Ysx Yy K - RN Pi 7 Ps’Y Eng
k NI
_ 1 ri i ~11 - g
+ (@szl ( “i> ( + 14 {} ad i=w,0 (5.48)
{H | (.'i_rzj_)“ (.:i%)l .
52 Hy Kng

k v 1 1 K I
e L (St o
e whe (G55t) s = () () e e

For simplicity of notation, we let Ji

guantity J. represents a convective heat flux term along the vertical (-z)

direction, while the dimensionless groups N1 N%T

express the ratio of
mobilities between steam and phase i, in the inner and outer side of the
front, respectively [mobility ratios, see Bear {1672)1. Using the above
equations we can express the local volumetric velocities at the steam front

in terms of the singie unknown quantity Gix. We are now in a position to
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Figure 72a.

Figure 72b.

Notation for Subsection 5.5.1.1 {The Dupuit
Approximation).

Notation for Subsecticn 5.5.1.2 (The Dynamic
Boundary Condition) Encircled portion of
Fig. 72a.
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develop the governing equations of the steam front.

5.6 Derivation of the Governing Partial Differential Equations

5.6.1 The Thermal Energy Equation

Employing the Dupuit approximation (5.43) and introducing expressions

{5.44a,b), (5.48) in the basic Equation {5.39), we get, after lengthy

calculations:
N h®u(t) -~ (1 - o){CNHF + CHL}
sx T TS (D) (1) (2)
. Pi Cpi Lv_ , .. Pi Cpj
z b oy e {1 = o) AT + (h - z)g ——i AT
) N S A ya N
H=5,W,0 i 1=W,0 i
{5.49)
. k AT {(p. - p.)g J.
; (2) ri i g/° i
oAl Z 4 Cpik W tand - L tano (h - z)
im0 i i=v,0
+ : .
IR— =
z '—’"“I“—'P"- + AT (1 - a)MaT + (h - Z)o Z_ T AT
L N 50 L N
1=5,W,0 i i=w,0 i
X

CHp(x'St) + Qx0T 1 Jax*

| X wa)rl
CHL = f' (1) (- ki ¢ o] dx

“Fu

with CNHF = AT f

Lo {t)

Fu

denoting respectively the cumulative net heat flux to the hot liguid zone and
the cumulative heat losses to the overburden. Expression (5.49) combined
with Eq. (5.44a,b) and inserted into the thermal energy balance, Eq. (5.32),
gives rise to a partial differential equation that the steam front satisfies.
To simplify notation, let the local net heat flux to the hot Tiquid zone be
denoted by '

NHE = ATIWE(x, ) + Qe(x,t) ] F] (5.50a)
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the local heat losses to the overburden by

9T \ 11
HL = (— kyg 5ﬁ-) (5.50b)

and the tutal (sensibie + latent) heat input at the trailing edge of the

front by
. n 1 | L(l)
T N I A A e} .
a YA x=Lg,(t) x=Lg,(t)
i=s,wW,0

(5.50¢)

(Note that Lp,(t)} = O implies @:(t)

®l(t)]. Also, consider the dimension-

1
less groups | 0{1)C _ (1)
_J____pi + OS .WY.__..
AT a7
6 (1 - ) ~175,W,0 ! (5.51a)
- (1) (1)
i P ' . o L
1 P1 + Sy (1 ~ OL)
e NI. AT f
'i: 0 1 4
a multiplicative factor of 0(1), and
- 1
L’E )Cp'i + \(/ (] - )
i___._; I [\T &

(Y T
N

'l

N is a most importani parameter expressing the ratio of the mobilities
of the steam and the hot liquid zones; it can be considered as a generalized

mobility ratic. Its physical meaning is more clear in isothermal,
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immiscible displacement. There, the displacing agent is water alone,

the displaced phase o0il,and N reduces to

pwC W Mo 1 krw "o
N = ?;?fl— B iR STl in accordance with the theory of
0 po Mw ro W

isothermal, immiscible displacement [Sheldon and Fayers - (1962)1].

Finally, let

(1) (1)
0 L II
i pi v (2) (_N_ -
- Y Py {Z i i\ s (01 P k8
Ll - 1=S,W,0 1 (;")'W,O (5.523)
W50 NII
denote a parameter that 1nc1ude the grav1ty terms and
cp1
I
i= s ,W,0 1 i=W,0 .
p(z)c ‘ (5.52b)
1P
J N.II

i=w,0
be a correction term that accounts for vertical heat transfer by con-

vection. Using the above notation, the thermal energy balance, (5.32),

reads after proper rearrangement

9z . 3 { zN 11 { i
MyT % ¢ & e 1J (t) - B {CNHF + cm..ﬂ

+2(h _ ~,,) AT[L]. - Jl]
zN+ h - z tané

0 (5.53)

Eq. (5.53) is the desired- partial differential equation, the solution
of which determines z, the steam front vertical position, as a function
of x, the horizontal coordinate, and time. To simplify further, we non-

dimensionalize x,t,¢i(t), {CNHF}, {CHL} by the dimensional variables of



262

Chapter IV,and z by h. From geometrical considerations at the front,

- %ﬁ- , rectangular geometry (5.54a)
tano =
- %g‘ , radial geometry (5.54b)

so that one finally obtains

5z \ g z N ety B
sl L { [ T - é”lj[ e A CHL'}J
D 0o Zp 0 1
z. {1~ z.,) Dz i}
b D . f)
ST G [l - €] 5 = 0 {(5.55a)
ZDN + 1~ Zp L1 Ok py
and

WU 1 ) B |
st 2 e - s g - - (CNKF + G |
g ey 9 P o Fid 2

zD(l - zp) oz
1 - €, 2me 2 g = .55
2N+ 1 -z Bt - Godpd 2 5 0 (5.550)

in the respective geometries. In tic above equations, the first term is
a transient capacity (storage) term, the second expresses the steam zone
growth due to & combination of viscous and heat transfer effects whereas
the third terw incorporates the effect of gravity on the steam front shape.

Out of the process of non-dimensionalization, the foliowing dimensionless

qroups emerge: X“"} ) (1) (J. opa—. ) . \‘\
R TIL L (@ [ -0y
AT i Tpi j

/ -
ya N >

G = hdqu JE5,wW,0 1 i?wso
(1 2 2
M ( 7 P C_p_l)
a IT
1=w:o Ny

(5.56a)



6. = hkanT Li=5,W,0 i

; L 1=W,0
71 29 ?
. Z °i Cpi
Wil
i=w,0 T
(2) (5.56b)
2
. Pu pr 4hd2 .
C. = (5.56¢)
5 p(z)c ke VI kgMZATz
) FiCpi (»——) (0; - p,) \KIM
1=wW,0 i

The two groups GLl’ th express the relative magnitude of a term repre-
senting a convective heat flux along the vertical direction, induced hy
Darcy’s flow, to the total injected heat flow rate, in the respective geom-
etries. On the othér hand, C1 is the ratio of the heat capacity of the hot
Tiguid zone to the above convective heat fiux term. For typical values of
reservoir parameters, c, # 0(10“2) (Table 6).

Equations {5.55a,b) are based on the total thermal enerqy balance.
Their functional form is very similar to that of the one-dimensional
saturation distribution, [q. (4.97), if GLI’ Grl are small, and to that
of Eq. {4.95) if GLI’ Gri are of 0(1). Therefore, one can eavisage Egns.

{5.55a,b) as the equations that govern the distribution of the steam

saturation in a one-dimensional steam drive)where the steam saturation

z.M
o > . 3 ~ ] 3 3 = ----m-......{.)..-—.—-—..--
is 2, the fracticnal flow curve is given by L A and the
‘ (1 - z5)6 ,[1 - ¢y9p]
capillary terms equal )N (and similarly in radially

symnetric geometries). 1In view of the above interpretation of st and
the capillary terms, we deduce that in such a case the relative permeability
curves and the capillary pressure vs. steam saturation curves are straight

Vines. (See Figure 73.) The above analogy is identical to the analogy
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ure 73. Fictitious Relative-Permeability {(a) and

Capitlary Pressure (b) Curves Corresponding
to the One-Dimensional Analog of Eqg. (5.55)
(C] <<1).
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between twp-dimensiona] and one-dimensional isothermal, immiscible, two-
phase displacement LLeFur and Sourieau (1963)). This similarity further

justifies the approach followed and validates Equation (5.53).

5.6.2 The Steam Mass Equation

In deriving (5.53) we used conservation Equation (5.39) which
provides explicit representation, by means of the Dupuit assumption ,
for the volumetric flow rates, followed by a substitution of the expressions
obtained in the energy Equation (5.32). The resulting differential Equation
(5.53) contains heat transfer terms that will be treated approximately
along the lines of the approximations 3.6.1 and 3.6.2. If instead of the
energy equation we make use of the linearly independent steam mass balance,
Eq. (2.57), we obtain another partial differential equation,the solution of
which mustbe identical to the solution of Eq. (5.53), barring any differences
in approximating heat transfer. The two solutions should complement each
other in regions where the approximations fail to properly account for the
heat transfer, in much the same way ‘the two upper bounds of Chapter IV do.
To derive the steam mass equation we substitute Eq. (5.49) in (2.57)

and get after lengthy calculations

9z, . z N [@' (t,) 8 ]
D 3 D 20' "D 2
B——+ - — {CNHF + CHL}
atD 3xD {%DN + 1 - ZD 2 2 D
z.(1 - z.) 9z
p'!t - 7 2V L1, _
- ZDN F— ZD GL2[1 - CQJD] axD:} + 5 {CHF + HL}D 0 (5.57a)

for rectangular geometries and



3z : z.N pi o (t.) B
D 1 1 0 2DVD 2 - . .
B s+ 5—— T Ty T [ - —5 LCNHF + CHL} ]
atD anD ory {}DN + ] Zn 2 2 D

z (1 - z.) ,_

0 ) . . ) ¥4 1 .

CIRFT T 0 Spald - Gpdplamy V_ﬂ} + 5 {CHF + HLYy
0 D oy

0 (5.57b)

for radially symmetric geometries. The notation is the same ong used

previously and, in addition,

CHF = AT‘QF(x,tHVF! (5.58a)

dengtes the local conductive heat flux to the hot liquid zone and

w{t) = AT jh Eé&iii (1) dz (5.58b)
& h 0 AT SX szFu(t)

denotes the latent heat input at the trailing edge of the front. The
dimensionless groups 82, GLZ’ Gr2’ C, are simply modified versions of

ﬁi‘ GLI’ Gri’ C,:

1
(D)
p O:YVT—.Q
8. = s o1 B (5.59%)
i p1 o, sV
NI a1
_i=5,W,0 i
;)»L(l)
A
= AT- - 5 &4
GlZ ,j(])c ' : L('l) GL} (‘).\be)
“iopd + .SV
. NI AT
i=5,W,0 i

and similariy for GrZ’ C? as indicated in Table 14b. Noticing the
similarity in form between the two sets of PDE's (5.55a,b) and 6.57a.b),

grnie needs to consider the solution of only one of the two.
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[ L(1)
= PO Ss A{ } -+ ¢pwcprW * ppJcposo +(1- ¢)DRCpR]
H
L.
< (2), (&), (2, (@), q . ]
[L‘sss g N R A
e R
g Kpg Hg Kes
{1 (1)
ps C s o]
- TEl.+ (1 - a) .§Z¥~_
- 1=5,wW,0 Ni
oldle
“ + 'IIJ-
1=w,0 Ni

Basic Dimensionless Groups for a 3-D Steam Drive

Table 1l4a
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n

L]

]

i=w,0

S
(1) (1)
{ L by
. N
- i=5,W,0 i
(1-2) (1) )
i %, Pty
Ip + (1 - a)
i=5,w,0 Ny ot
(1)
p -I:-v—-.—
S AT
(1-a) M. (D
Pi "Cpi v
T+ o 7 (1 - a)
. N s AT
1=5,W,0
k. \I1
2 (2) ri -
st {7 P (5000} )
M :
11 1=w,0
hkgAT Z of2)e ri II( - pg) ) BN 52 j=1,2
2¢1 . i “pi My Pi = Pg J {1 -« J=1s
1=w,0
(2),
_4hd? Pw_Cpu
2 72 K A\IT
kgM7AT (2). . (Zri -
1 Z of CP‘(“i) (o; - o)

Dimensionless Groups of a 3-D Steam Drive

Table 14b
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5.7 Methqu of Solution of the PDE for the Steam Front

Solving the pair of Eqs. (5.55a,b) or (5.57a,b) is not an easy task
due to the strong non-linearities and the need to model the unknown heat
transfer terms. To make some progress by analytical means we introduce

additional approximations.

5.7.1 Predominantly Horizontal Flows

Let us first simplify the problem by neglecting the net vertical
flow term, Ci = (0(i=1,2). For typical reservoir parameters Cy = 0(10'2),
(i=1,2), as already noted, therefore the assumption is often realistic.
Conditions that favor this approximation include larger reservoir thickness
and more permeable media, as can be seen from {5.56¢). With this approx-

imation, Eq. (5.55a) for rectangular geometiy, becomes:

Jz r£r ZnN
D9 b ‘l
. 1 =10 (t s X )
BtD BXU {\[?DN + 1 - zp, B ) D DD
z-(1 - 2) 32 :}
D D D
R . (5.60)
“lty) By .
where we dencte @D(tD,xD) = - [ CNHF + CHL]D, to simplify the

notation. This equation belongs to the general class of non-linear Fokker-

Planck equations:

g

3T g (5.6
35ty 2)alx,t) - glz) =] = 0 (5.61)

Various versions of (5.61) have been studied in different fields. For

example, if Q{x,t} is very small, we recover the non-linear diffusion
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equation, the structure and exact solution of which have been well
established [Philip  (1969), Ames (1972)]1. For constant Q, we get
Richards' equation that describes infiltration in porous media and is
extensively discussed by hydrologists [see Morél1-Seytoux (1973)1. When
oy ,in (5.60),1is a function of time only, the resulting equation is
identical in dimensionless form, to the one derived by buth Sheldon and
Fayers (1962) and Beckers (1965) for two-dimensional, isothermal,
immiscible displacement. Unfortunately, the above authors were not able
to provide an exact solution.

By adopting the approximation of predominantly horizontal flows,we
shift our interest into the solution of the basic equation (5.60), for
both rectangular or radially symmetric geometry, and the solution of the
respective equation that arises from the steam mass PDE's, Fas. (5.57a,b). As
indicated, we encounter two main difficulties. One, Jjust as in the one-
dimensional case, is associated with the represegtation of the heat flux
term @D(tD,xD), i.e. the heat flux to the surroundings and the hot Tiquid
zone. The second is strictly mathematical and concerns the solution of
(5.60) after the heat losses have been properly taken into account.
Finally, proper attention has to be directed towards the various dimen-
sionless quantities N, 81, 82, GLl’ Grl’ GLZ’ Gr? which in general are
functions of {he independent variables. Due to lack of information
regarding the above dependence, however, and in the spirit of the approx-
imations that have been already inserted in our model, we elect to consider

these quantities as constant (or slowly varying). We start the study of

Eg. (5.60) by considering the stability chafacteristics of the solution.
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5.7.2 Stability Criteria. Stable Displacement

By a hodograph transformation and after proper rearrangement, we

rewrite Eq. (5.60) in the more suitable form:

IX -
D J 1
= { (2, =~ ==) 0 (L, Xn)
dtD )LD l D 81 DY D7D
i ;m GLl ()ZD ZD(i - ZU) \ (5 62)
+ altp,xy) (N - 1) il EENCENCE Ty ixg | Z N+ T - sz :

In rectangular geometries a stable front, once formed, would travel
parallel to itself. As time increases the relative difference between

the leading and the trailing edges would have to decrease,thus one can
reasonably assume that @D(tD,xD) becomes essentially a function of t

D
alone. In such a case,

X ' L1 . 97 - 75)
pltg) + spltp)(h - 1) o [} el ) 3%] DN T

-

(5.63)

From this point on, one can directly follow Beckers' stability analysis
From {5.63) it is seen that if the gravity term is equal to 1, at every
point of the steam front, the front shape is a straight line and each

point propagates with the same velocity. In such a case the slope is:

azy apltp)(N - 1) (5.64)
axy C . .
) Ly
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and the front obeys the relationship

G
xg = Lp, (1) + mfgﬁ%—;ﬂ (zp - 1) (5.65)

The above conditions correspond to stable parallel displacement in

9z
rectangular geometries,which can be physically realized oniy if 5;9- is
b
negative, i.e. if
ot N - 1)
D “G <0 (5.66)

L1

Since @D(tD) > 0, from physical considerations, a stable front is reached

if and only if the following inequality is satisfied
N<l (5.67)

[Compare to immiscible displacement, Saffman and Taylor (1958).1 Sub-

stituting for N, this stability criterion translates into

A 1 (1), I (1) . I (1), (1) 1
<}s prkrs + Dy prLrwA+ Po ?karo + Py Lv krs 1 - ﬁl
uI u} UI ATUI M4v

e g

W o S .
: <1 {5.68)
M] {E(Z)C kII r‘25é 11

T Pw Cpwiew  Po Tpo’ro
M4 uII JII
M 0

}

When the resurvoir is inclined by an angle o above the horizontal,
this stability condition is easily extended to include the different
geometry

QD(tD)(N “ 1)

: < sinu {5.69)
Ll
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The above criterion is a generalization to three-phase flow in a steam
drive,of a previous condition derived by Miller (1975) and van Lookeren
(1977), for simpler systems. Both Miller and van Lookeren consider a
system with no heat Tosses, flow of steam only in the steam zone,and flow
of water or oil only in the hot liguid zone (see Fig. 74). Under these
conditions, their criterion can be easily obtained from (5.68). Now,
[ AT + L(l)]wS
(z>\T L,

i=w,0 [cdmpare to {5.42)) and the
S

(2)

W

inequality (5.68) reduces to
\ I My I1
-—-----— e ':. r
; ) P k) 1=W 0 (3.70)

¥s (‘_*
i 3

for Miller (i=w) and van Lookeren (i=0), respectively.

T."
w !

If we neg]ect heat losses, the genera1 stability criterion (5.68)

assumes the more conventional form in teri of injection and production

fiow rates
DD (wp o2
St oMt ;m‘ NN
S W 0 Y Py 0
> (5.71)
(EEE) Lok VT (kro) ! {(Eﬁﬂ_)lr N (Erg) II)
Hg \ Hw ) o \\ My Ho 1

The latter expression may be used to estimate the stability of the steam
front based on the volumetric rates that reach and leave the front (in-
jection and production rates), whereas Equation (5.68) depends on the

thermal and dynamic properties of the f]owing phases. Although both
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Figure 74. System Considered by Miller (1975).
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formulations are derived from the same basic assumptions, the latter
formulation, (5.71), may be regarded as a global stability criterion,
the former, (5.68), as a local one. The same stability condition is
derived from the steam mass Equations (5.57a,b) and the energy equation
in radially symmetric geometry, (5.55b).

Returning to Eq. (5.64), we rewrite the slope in dimensional notation:

Z p{2)¢

[ _L_*iﬁ} (N - 1)
11
N

9z _ Tl(t) 0 . i=W,0 i
DX 1) 1 T (2) k 2I1
Pi "Chy . psly [ Z P4 Cpi(_l"_l) (p; - ps):lkgAT
NI AT i=w,0 Hy
i5Sw0 3 ‘ (5.72)

which is very similar to van Lookeren's model for a linear steam drive

2z . 2s (b ) Lo - (5.73)
X T W ks | T G )
th N substituting for M" ( “0)” (kr‘s)I u?) o, d th
wi substituting for = — —_= * == an e
Ko Hg p(Z} Ws

total heat input substituting for the steam mass injection rate. Working

in exactly the same manner for radial geometries, we recover the stable

displacement slope:

azD ) ¢ID(tD)(N - 1)
D arD G

2nr (5.74)

rl

and after integration

et - W) X ]
zp -1 = - e n Pﬂ:(t). (5.75)
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Exprassion {5.75) is slightly different from the one presented by Van
Lookeren for.a radial steam drive due to the different assumptions used.
Notice also that in contrast to the parallel displacement obtained for
rectangular coordinates, the stable radial drive belongs tc the class of
separable fronts [see (5.20), (5.21)1.

if,instead,we work with the steam mass equation, we get i the two

coordinate systems:

@ 7
2,(t) [ iﬁﬂ]m - 1)
. N.

oz 1=W,0 i
o W[ N7 @), (ki o
1 2 ril
kgpcl| [ jg:‘ Pi " Cpi (—IZ;) (pi - psi}
i=w,0
and
3z o (taJ (N - 1)
p, P = 2D (5.77)
D arD Gr\2

respectively. The two sets (5.73), (5.74) and (5.76), (5.77) should, in
principie, be identical to each other. Within the approximations made, a

comparison shows that the two sets are close indeed.

5.7.3 A Viscous Solution Using lower Bounds for the Heat lLosses

The non-linear structure of Egs. (5.55%a,b) calls for a numerical
solution. This subject, although very interesting, requires further
study and, given the limitations of the present work, will not be dis-
cussed any further. Instead,we attempt to deveiop some simple analytical
solutions that arise when the term inv.iving the high derivative in Egs.
(5.5%a,b) can be neglected. Conditions that favor this assumption include

high injection rates and small thickness. The remaining terms produce a
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deformation that is solely due to the difference in viscous forces between

the steam and the Tiquid phases and the heat transfer characteristics

D, 2 [ 2! -—l}p (t x)} = 0 (5.78)
aty  3xy L zDN +1 - z; By D D7D :
" We solve this equation with the boundary condition that the trailing edge
of the steam front is stationary.

Clearly, by dropping the higher order derivative we also eliminate
the gravity term, the effect of which we would like to evaluate in the
first place. This contradicticn in objective is partiy removed by the
boundary condition of a stationary trailing edge. 1t is well known from
experimental data that due to gravity,steam rises and travels along the
top of the steam zone, and subsequently forces the steam zone to propa-
gate along the upper boundary of the reservoir with little or no movement
of the trailing edge along the lower boundary. The proposed scheme does
account for this effect by the proper selection of ths above boundary
condition. Other than that, Equation (5.78) generates a solution to the
steam front shape which 5 independent of the acceleration of gravity.

With this approximation,

fpltp)  #

@D(tD,XD) = 5 - m§-{CNH¥ + CHL]D (5.79)

and under counstant injection rates, Equation (5.78) reads in both

rectangular and radially svmmetric gecmetries
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azD

z,.N B -
3 b 1 [1 1, J )
+ e = = | 2w 2 [CNHF + CHL], = 0 (5.80)
atD axD [ZDN + 1 Zp 811 2 2 b

Orie has still to model the heat losses to the surroundings and the hot
liquid zone. To describe the heat fluxes to the overburden, we use

the lower bounds derived in Section 3.3. We will also use the quasi-

" steady state approximation 3.6.1 to model the two-dimensional heat
transfer inside the hot liguid zone. We expect the two approximations

to give a fairly good idea of the way the steam zone propagates. Then

-

3z

N X
D, 3 [ 2y 1}[ . D] )
+ - - E --- = 0 (5.81)

za(o,tﬁ) = 1.0

This is identical to Eq. (4.106) for the saturation distribution in the
steam zone in one-dimensional displacement with
z.N B8

D 1 -_...I___. = -...].'. and S

s D=1, E=-%,
zDN + 1 - e 2 Yy -1 Bl D

st

substituted by Zp Hence, the solution will be given by expression (4.112):

z. N
[ 1= 5 +Dl z } I{z.)
Z -
-2 .1 D D. 4 4 . D

1] 31 ?iw i zON } D Bi E_l ] ZDN }
By N+ 1oz, By Nt l-gzy

where

{(5.82)

z {4 - —N dn

) b M+ 1-n

I(zp) = [ | (5.83)
1 [%~, nN __1

81--&'\]‘*1"‘
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Note that 0 < Bl < 1, as can be easily shown from the definition of 51,

thus 9% > 1.
B)

The result (5.82) is the steam drive analog of the Dietz (1953)
approximation for isothermal, immiscible displacement. This solution
can consequently be regarded as an approximation describing a "viscous
finger" taking into account that the steam zone rides over the top of
the hot liquid zone. Also notice that expression (5.82), equally valid
for rectangular and radial displacement as well, is of the separable kind

X = f(zD)/fD + g(z

D D)

where'f(zD) anﬁ g(zD) are functions to be calculated from (5.83). A
check to the legitimacy of the obtained result is obtained by comparing
this form of steam zone propagation against inequalities (5.9) cast in
dimenisionless form. The energy inequality is satisfied as an equality
which indicates that the solution is actually an upper bound, in an
integral sense, to the steam zone volume. This is to he expected, since
we used an upper bound on @D(tD,xD)L On the other hand, the steam mass

inequality is satisfied up until time tDB’ where

Tne analogy to the one-dimensional upper bounds is clear., We expect the
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solution {(5.82) to be valid, in an integral sense, for a short time
interval extending up until tD3 beyond which the solution based on the

steam mass balance takes over. Table 15 presents values of t., for

b3
various values of A, for By ® 0.9 and N = 20, 100, Coiparing to tDa in
Table 8 we observe that tD3 is here a function of the generalized mobility

ratio N. The larger N the smaller t.., 1s, which indicates that Eq. (5.82)

D3
may be wused to describe the steam zone growth for a smaller time interval
than XTD. If, instead, we work with the steam mass Equations (5.57a,b),

we obtain, for sma11‘GL2, taking into account that B = 0(10"2)

.
.

. 2N oinlt.) B 3
) D [ 200p! P2 1 i
3%y {ZDN +1 -2 5 5 {CNHF + CHL}D}j“ 5 {CHF + HL}D 0

D
(5.84)
which can be integrated to give the quasi-steady state solution:
z.N A - {CCHF + CHL}
NF T AT AN O (5.85)
Zp D 2 D

In dealing with the heat transfer terms we will approximate CHL by the
Tower bound expressions, CNHF by the quasi-steady state approximation (3.6.1),
and we will consider a negliqible conductive heat flux, CCHF = 0. Under

this approximation, we get an explicit representation for x

- zDN
o+l -z .
XD = . : /T (5.86)

D




A tD3

N = 100 N = 20
0.25 $5.2132 1.0611
0.30 0.2447 1.2181
0.35 0.2838 1.4127
0.40 0.3331 1.6580
(.45 (G.4797 1.9731
0.50 0.5922 2.3875
0.565 0.7495 2.9476
0.60 0.9780 3.7305
0.65 1.3326 4.58725
8.70 1.9189 6.6321

Values of tD3 for various values of

A and for N = 100, 20. 61

Tabie 15

0.9.




which is

that Eq.

when (5.82) fails to satisfy the integral constraints (5.9).
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similar to the quasi-steady state part of (4.112).

75 vie plot the displacement Xp VS Zp as cbtained from (5.82) for

various values of time and N =

“lated by Eq.

(5.86).

= 100.

We expect

In Figure

The solution at tD = 0.5 is calcu-

(5.86) is the solution to the steam front shape at large times,

{5.82), while the solution for larger times is based on Eq.

then propagates along the top of the reservoir leaving unaffected the

main core of the original oil in place.

placement corresponding to ty = 5 for N = 1, 10, 100.

The results

In Figure 76 we plot the dis-

We observe that, very quickly, a viscous finger is formed, which

emphayize the importance of the generalized mobility ratio N to the dis-

placement.

the efficiency of the recovery decreases dramatically.

As N increases.

the override effect is wmore proncunced and

Slightly different results are obtained when we approximate the

{CNHF} =
(5.85) are:

Xp

and

{CCHF}

heat fluxes by the zeroc net convection approximation 3.6.2. Then,
= {CHL} and the respective solutions of Egs. (5.79),
1 |
Tz N + 1 -z I(z,)
g e e “
1 1 A 81 i zDN
I z N+ 1 - 2, zN + 1 -z,
[‘1 i zDN 1
zN+1 -2
%_ L 0 0
2 fl_., zDN
LBZ 2 N + 1 - ZD

The functional interdependence amony Kpys tD‘ zZy {s tdentical to that of

(5

«0

-

8)
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Egs. (5.82),_(5.86) with the exception of a proportionality factor of 2,
wiich is missing from the set of Egs. (5.87), (5.88).

We finally calculate the interesting index of vertical efficiency,
£y Initially, Ev is evaluated by using either of (5.82) or (5.88). It
is worth noticing that the expressions obtained are identical, regardless
‘of the particular heat transfer model employed {quasi-steady state
approximation or zero net convective heat flux assumption). This further
suggests that, in terms of estimating indices for the integral perfurmance
of a steam drive, the particular heat transfer approximations do not alter

the results significantly. At large times, £ is independent of time and

v
equal to:

. 1 N1 - ) / A\
fv T oTT Ro) - 11 {[N(l TR Tn EN(1 - 3,)] - I (5.89)

As shown in Figuire 77 the vertical efficien.y decreases rapidly, as N
increases, in accordance with experimental evidence [Baker (1973)1.
Although a rough approximation, the viscous sclution of this sub-
section serves to provide simple analytical expressions, by means of
which we can evaluate various interesting integral indices of the per-
formance. The results obtained show, in an approximate but, nevertheless,
covincing manner, the important role played by the generalized mobility
ratio, N, in the gravity override and the overall performance of & steam-
drive. This should become more clear by the compliete solution of the
general Equation (5.60). The latter should also provide the guidelines
for the development of suitable control policies to improve the vertical

sweep efficiency. From the foregoing preliminary analycis, it is evident
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that in implementing such policies particular attention should be given
on the magnitude of N. It is expected that the development of methads
that aim to control the magnitudeé of N at low levels would be of great

help in increasing the recovery efficiency of a three-dimensional steam

drive.

5.7.4 Neuman's (1975) Model

A final note should be added regarding Neuman's (1975) model, its
method of derivation and the range of its validity. In contrast to the
present model, Neuman considers injection through a point source at a
fixed location (preferrably the top of the injection interval). This
difference in operating conditions causes the steam zone to expand in a
more pronounced way along both the horizontal and the vertical directions,
much 1ike the growth of a plume. In spite of this, the approach used by
Neuman in modelling the steam zone growth is essentially the integral
téchnique employed here, although with a different set of assumptions.
Viewed from our frame of reference, the procedure followed consists of
three basic steps. First, a liquid water mass balance over the steam
zone is derived. It is our belief that, for the particular modelling
purposes, this is equivalent to the following linear combination of Egs.

(2.55), (2.56) and (2.57) of Chapter II:

z(x,t)
5+ 0550+ [1GEL - sty sf3lE - el o

0
_ ﬁ- th(%%) H) IVE| + ( khf(;i)n) b 2 UZ(X’U z} (5.90)

Q.IQ.
ot

L (1) X 0 (gwﬁwx + paloxtd
v v



288

The assumption of zero net convection, 3.5.2, is then introduced. Thus,
heat transfer in the hot liquid zone is approximated by one-dimensional
heat conduction along the vertical direction, and the net convective flux,
NF(x,t), is considered negligible. By further assuming that heat losses

obey a Marx-Langenheim distribution, the following expressions are derived:

T \I1 M@
_R _ hR AT
- kp 5] V] = . (5.91a)
TR
TN /nsPe%r _at
"k T - (5.91b)
JETX

Ccompare to (3.48b) and (3.15)]. Now, the second term on the LHS of ({5.90)
is approximately equal to wF(x,t) and, in the spirit of the above approx-
imation, it is considered negligible. The next simplification involves

the last term on the RHS of (5.90) which is set equal to zero, assuming

negligible flow in the horizontal direction. Combining the above, we get

£ @ }
(¢§'+¢‘s')i£=él[hRM Rt of

(5.92)

which gives the rate of growth of the steam zone thickness at any point,
in terms of the time elapsed after steam first arrived at the particular
point under consideration.

As it was pointed out in the introductory Chapter I, and can be
easily confirmed in the above derivation, the model does not differentiate
between the mechanisms of growth along the horizontal and the vertical
direction. This further indicates that gravity is not actually taken into
consideration and this is evidenced by the absence of any gravity terms in

the final expression (5.92). It is also clear, that the postulated
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mechanisin is essentially a balance between the latent heat released by
the condensed steam and the thermal resistance to steam zone growth due
to heat capacity requirements. In this sense, Neuman's model is closer
to the one-dimensional models of Chapter IV than the two~dimensional
models of the present chapter.

The above observations suggest that the region of validity of
Neuman's model is limited to steam injection processes under low injection
rates, and where injection is taking place at a fixed point ¢f the
injection interval. As soon as the steam zone reaches the upper and
lower boundaries of the reservoir, the pestulated mechanism ceases to
control the steam zonc growth and the model cannot practically be used
any further.

5.8 Conclusions

To elucidate the complex three-dimensional steamflood, we followed
two different gpproaches. The first deals with the integral character-
ization of the steam zone and is an extended version of the one-dimensional
method for the derivation of upper bounds. Based on various postulated
forms of displacement {separable, parabolic), we developed upper bounds
on the volume of the steam zone as a function of time. In contrast to
the one-dimensional case, the Lounds, hence the actual steam zone voluwe,
depend on a geometric parameter that measures the extent of gravity
override. For the frequently occurring case of separablie fronts, in
particular, we can evaluate the above parameter by means of simplified
models for the steam front shape. This gives rise to a reliable method

for the estimation of the steam zone growth in terms of the physical
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variables of the process. The results obtained warn against the use of
the simplified Marx-langenheim solution, even if it is properly modified
to account for gravity segregation.

The second approach involves the study of a finer characteristic
of the steam zone, the steam front shape. To develop a suitable model,
‘we employed the integral balance technique of Chapter II, as applied to
two-(or three-) dimensional systems, and madeluse of the Dupuit approxi-
mation and proper interfacial conditions at the steam front. Depending
on whether we base our calculations on the total energy or the latent
heal balance, respectively, we obtain two different partial differential
equations that describe the evolution of the steam front shape. In
principie, the two equations should be equivalent. Due, however, to the
different nature of the appr.ximations that we further employ to approx-
imate heat transfer in the two cases, the respective equations give rise
to different solutions, that complement each other in the same sense the
two upper bounds in Part A do. A stability analysis of the steam front
reveals that a suitably defined generalized mobility ratio determines the
stability characteristics of the propagation. Having not solved the
detailed partial differential equations, we developed, instead, approximate
sulutions in the limiting case where viscous forces control the evolution
of the steam front. The results indicate that the vertical sweep
efficiency is very sensitive to the magnitude of the generalized mobility
ration, rapidly decreasing as the latter increases. The relative signifi-
cance of the generalized mobility vetio in the performance of the steam
drive further suggests that in designing an effective steam injecticn

process, it is imperative fto keep its magnitude al Tow levels. The various
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means by which this can be achieved form the topic of another investigation.
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Chapter VI, Concluding Remarks

As emphasized in the introductory chapter, the principal cbjective
of the present work was to provide a reliable analytical madel for the
description of the steam injection process. 1t was particularly stressed
that the desired model should suitably account for the effects of: (1)
heat transfer in the hot liquid zone and the surroundings, aidi (2) gravity
segregation, on the performance of a steam drive. To a varying degree of
success this task has been accomplished.

We started with a rigorous differential (microscopic) description
of the physical phenomena associated with steam injection. We then
introduced an integral balance technique, which is essentially a three-
(or two-) dimensional averaging procedure and by means of which the basic
conservation equations were cast in an integral (macroscopic) form. Based
on the assumption that most of the relevant properties of the steam zone
have a spatial average which is constant (or slowly varying) with time,
the technique can be very ffectively applied to determi... the rate of
growth of the steam zone volume, which is, here, the principal quantity of
interest. A check on this assumption was further supplied by a simple
iterative scheme: After adopting the method, we solved for the properties
distribution and verified the postulated behavior. From a mathematical
viewpoint, adoption of the integral balance technique has greatly helped
us to simplify the complicated system of non-linear, coupled PDE's in
three different regions to a simpler moving boundary problem. As such,
we expect that it can be equally well applied to other systems of engi-
neering importance that are marked by similar properties and degree of

complexity.,
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The basic parameters that control the S.Z. growth, in an integral
sense, are the heat losses to the surroundings and the fluxes to the
H.L.Z. Estimating their magnitude was the topic of a separate analysis
dealing exclusively with heat transfer (Chapter III). A subsequent
rigorous investigation of the heat transfer in the H.L.Z. produced an
‘interesting new class of heat transfer problems, invelving a moving
bouridary, which are characterized by a novel dimensionless group, R, that
expresses the ratio of heat fluxes in orthogoné1 (conjugate) directions.
The key concept in formulating the above problems consisted of two basic
elements: simultaneous consideration of heat transfer in both the H.L.Z.
and the surroundings (coupling preserved) and separate analysis on the
fluid flow and heat transfer in the H.L.Z. (decoupling). Such an approach
seems to work pretty well: it renders the problem analytically tractable
without altering its nature. The analytical techniques that were further
devised for the solution of the resulting moving boundary problems are
very helpful not only in the context of steam drive calculations, but also
in modeiling other in-situ thermal methods. It is, for example, understood
that calculating commonly employed integral indices, such as the heat
efficiency of the process, can follow in a straightforward way from the
presented analysis. It is the author's belief that these techniques may
aiso apply to a variety of other problems of similar nat.re that involve
combined transport by diffusion and convection to two different (orthogonal)
regions and a moving boundary. 1In the same context, it would be interesting
to discuss a slightly non-Tinear version of the examined problem (convective

term a function of the dependent variable).
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The above considerations were incorporated in the integral
formulation of Chapter II and applied to determine the steam zone volume
rate of growth in one-dimensional symmetric geometries (Chapter IV).

Being unable to develop exact solutions, we concentrated instead on a

more explicit representation by deriving new expressions for upper and
Tower bounds, asymptotic sclutions and approximate overall solutions.

Each of the derived solutions has its own value and region of validity in
different time domains and under different operating conditions. In
particular, the upper bounds obtained hold for variable injection rates

in contrast to the rest of the solutions which are valid under conditions
of constant injection only. Due to the different modes that dominate heat
transfer in the H.L.Z. in different time regimes (conductive vs. convective),
we did not restrict ourselves in developing one upper bound only, but we
rather considered two different bounds which complement each other in
defining an overall Tower upper bound. The reasoning that dictates such an
approach can be briefly summarized as follows: The approximation to the
heat transfer terms in the energy balance breaks down at large times due
to the change in the heat transfer mechanism. In such a case, we may
additionally develop another conservation equation (steam mass balance)
the unknown heat transfer terms of which can be better approximated at
large times. In other words, we split the problem into two parts that
nicely complement each other in different time regions. Of course, had
we had an exact representation of the heat transfer in the H.L.Z., the

two equations would give rise to identical bounds. We believe that this
concept of generating additional conservation'equations, in situations

where important pieces of information are missing, can be very useful in



295

many similar fields, not only in providing complementary solutions but
also in checking the existing ones.

As also confirmed by the asymptotic expansion results, it is a
single dimensionless injection parameter A that regulates the growth of
the steam zone. The smaller A, i.e. the smaller the Tatent heat injected
is, the better the description by the bound based on the latent heat
balance. This has a significant importance in the context of evaiuating
the region of validity of the existing Marx-Laﬁgenheim model and designing
& steam drive. The smaller A is the more the Marx-Langenheim solution
deviates from the true solution. In particular, under the frequently
occurring conditions of A < 2/w, one should be careful not to base his
predictions on the Marx-Langenheim description, otherwise they are bound
to be over-optimistic with all due consequences in the economic sphere.

On the other hand, the Marx-Langenheim solution is shown to give reliable
results at the beginning of the process, provided rhat injection rates

are sufficiently high. The criterion developed defines a time and physical
parameters domain where this occurs, and provides a solid justification on
the old confidence on the Marx-Langenheim mode]vfor short times.

To obtain a better insight, we develuped the asymptotic expansion
of the exact solution. We observe that the asymptotic behavior is, at
the 1imit, controlled by a balance between the injected and the dissipated
to the surrounding heat alone, and it is solely depending on the parameter
A. The latter is decisive in determining how fast the asymptotic behavior
is reached. Small values of A favor fast convergence. Another significant
conclusion that has been extracted from the aéymptotic resuits deals with

horizontal conduction. It is seen that the magnitude of R (hence of
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horizontal conduction) plays no role whatsoever in the final expression
attained, although it significantly influences the characteristic time
for convergence. Although it was not pursued in the text, it is rather
easy to construct, based on the asymptotic expressions, a composite
approximate solution by appropriate curve fitting. On the other hand, we
‘did develop an approximate solution based on a quasi-steady state approx-
fmation to suitably account for heat transfer, which was shown to produce
quite reliable results in the investigated regions. Thus, we expect

this scheme to hopefully substitute the need for the sophisticated
numerical simulators in one-dimensional steam drive calculations. The
agreement obtained seems also to solidify the old existing respect to
quasi-steady state approximations, both in moving boundary problems and
in other fields, as a powerful analytical tool to describe complex
phenomena .

A basic guestion posed in the Introduction was related to the
effect that heat transfer in the H.L.Z. has on the S.Z. growth. The fore-
going analysis was hopefully quite convincing that this effect is indeed
significant in a twofold sense: Firstly, through the heat flux to the
H.L.Z. and secondly by virtue of the heat losses from the S.7Z. to the
survoundings, which, in turn, are depending on the H.L.Z. temperature
history in a rather strong coupling. The second effect is seen to affect
the hewt 1osses very drastically, as clearly evidenced in the asymptotic
expression. A quick comparison with a Marx-Langenheim type of calculaticn,
which is tnown not to include the aforementioned coupling, supplies
additional evidence. Overall, it was shown that heat transport in the

H.L.Z. and, by coupling, to the surroundings, will inevitably lead to
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Tower predictions and, as such, plays a crucial role in heavily influencing
the steam-drive performance.

The second basic gquestion introduced in Chapter I was concerned
with the effect of gravity on the steam zone growth of a three-dimensional
steamflood. This complicated topic was investigated by two different
approaches (Chapter V). In the first, we followed the familiar three-
dimensional averagingprocedure with the objective to set bounds on the
steam zone volume. The effect of gravity was reflected in a single
parameter that can be evaluated in terms of the physical variables of the
problem, by means of reliable simple analytical models for the steam front
shape. The resulting expressions constitutea new, simple, reliable, and
fast, engineering method to estimate firstly, the severity of gravity
segregation and, secondly, its quantitative effect on the steam zone
volume. Aiming at a better insight on the mechanism of gravity segregdtioh
we attempted to determine the steam front shape. The technigue used relies
on a two-dimensional averaging approach (integrai balances) similar in
concept to the three-dimensional averaging. DBue to the finer structure
(move information) we are seeking after in this case, however, the subse-
quent handling is more difficult and requives additional approximations.
Despite this, we believe that the approach fulleowed gives rise to a reliable
first order approximation to the problem of gravity segregation. From the
final formulation we produced a set of two novel, non-tinear POE's. In
spite of the fact that the two equations are equiVa1ent, the system is
not redundant, since the varicus approximations that are implenented
regarding heat transfer are better observed in mutually exclusive regions.

Thus, we expect the two equations to complement each other in two
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different regions, in an analogous way that the two previously derived
bounds do. Due to time Timitations, the rigorous solution of the resulting
PDE's has not yet been achieved. Instead, a preliminary stability

analysis and limiting solutions under the assumpti.i of predominantly
viscous flow have emphasized the importance of the newly defined
“generalized mobility ratio in the performance of a steam drive. These
results are expected to be corroborated by the rigorous solution of the
PDE's derived. This aspect is certainiy fresﬁ ground for future research.
To further advance on the subject one has, in addition, to proceed with a
more detailed analysis of the heat transfer inside the H.L.Z. The models
derived in Chapter III, under varicus approximations, certainly provide a
first step towards a better understanding. A careful look should also be
given to the generalized mobility ratio in order to single out the exact
parameters that determine its value. [t is imperative, i any progress at
all is to be made regarding gravity override control, to be able to develop
appropriate control policies on the magnitude of N.

A final question that has not been previously raised and deserves
particular attention concerns the effect of viscosity vreducticn on the
steam drive performance. As emphatically stressed in the Introduction,
the principal advantage of thermal methods, over other EOR methods, lies in
the very mechanism of viscosity reduction. By contrast, the majority of
the herein derived results do not touch upon this subject. This is
seemingly contradictory, but it becomes clearly consistent after the
following considerations: As repeatedly noted, here we are mainly con-
cerned with the steam zone volume growth. Dde to the postulated decoupling

of fluid flow and heat transfer in the H.L.Z., the S.Z. volume rate of
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growth is slightly, if at all, affected by viscosity reduction and the
same is true for the heat transfer in the H.L.Z. What is influenced by
viscosity reduction is the saturation distribution inside the H.L.Z. The
preceding analysis is based on the assumption of constant total volumetric
flow in the H.L.Z., but nevertheless allows saturations to vary. The
‘effect of temperature on the saturation distribution should be carried out
further by a separate analysis, which, in turn, would make use of the
already obtained heat transfer results. The new results are expected to
indicate a strong influence of viscosity reduction on the saturation
distribution, the 0il recovery rates and only slightly, if at all, affect
the heat transfer mechanism. Such a topic will further complement the
one-dimensional modelling by providing the much desired oil recovery

rates as a function of steam injected. By analogy to one-dimensional,
isothermal, immiscible displacement and recalling concepts of non-linear
wave propagation, we expect the oil recovery to be an increasing function

ot the S.Z. volume rate of growth.
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Nomenclature

CCHF

CHF

CHL

CNHF

Asymptotic coefficient of the steam zone volume, defined by
Eq. (4.59), dimensionless.

Injection parameter, defined by Eq. (4.31), dimensionless.
Area, [LZJ.

Geometric parameter for three-dimensional steam flood, defined by
Eq. (5.18), dimensionless.

Width of the reservoir, [L1.

Parameter related to characteristic time of steam zone growth,
[t7],

Parameter of the steam zone, defined by Eq. (4.31), dimensionless.
Velocity of moving front, dimensionless.

Specific heat capacity under constant pressure, [th‘zT’ll.
Dimensionless group related to three-dimensional steamflood,
defined in Table 14b.

Cumulative conductive heat flux to the hot 1iquid zone, defined

by Eq. (5.86), [mLt™31 or [mL2t™31.

Local conductive heat flux to the hot 1iquid zone, defined by Eq.
(5.58a), [mt—3].

Cumulative heat Tosses to the surroundings, defined by Eq. (5.49),
mLt™31 or [m2t™31.

Cumulative net heat flux to the hot liquid zone, defined by Eq.
(5.49), [mLt™31 or [mL2t™3].

Parameter related to heat losses, defined by Eq. (4.6), [mL—lt’S/zl.
Dimensionless group related to the steam saturation distribution,

defined by Eq. (4.93).
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Dimensionless group related to the steam saturation distribution,

defined by Eq. (4.93).

Vertical efficiency, defined by Eq. (5.15), dimensionless.
Heat capacity term, defined by Eq. (4.6), DﬂL_lt"ZJ,

Steam quality, dimensionless.

Fractional volumetric flow of phase i, defined by Eq. (4.89),
dimensionless.

Acceleration of gravity, £Lt'2].

Volume of Tiquid water generated by steam condensation per unit
reservoir volume and time, defined by Eq. (4.83), [t'lj.
Dimensionless group related to three-dimensional steam flood,
defined by Egs. (5.56), (5.59).

Thickness of reservoir, [L1].

Specific enthalpy of Phase i, [th”z].

Local heat Tosses to the surroundings, defined by Eq. (5.50b),
[mt ™31,

Dimensionless group related to three-dimensional steamflood,
defined in Table 14b.

Absolute permeability, [LZ].

Thermal conductivity, [mLt“3T'1].

Relative permeability of Phase i, dimensionless.
Characteristic length (area) of the steam zone, [L] ([sz).
Length (area), [L1 ([L?]).

Latent heat of vaporization of water, Rl

Water mass injection rate [mt™'l.

Volumetric heat capacity, L2171,
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Rate of steam condensation per unit reservoir volume and time,
~-3,-1

defined by Eq. (2.1), [mL 7t 1.

Coordinate along the direction normal to a surface, [L].
Generalized mobility ratio, defined by Eq. (5.51b), dimensionless.
Mobility ratio, defined in Tabl.: 14b, dimensionless.

Local net heat flux to the hot liquid zone, defined by Eq. (5.50a);

[mt'3].

1,-2

Pressure, [mL™*t “1.

1,-2

Capillary pressure between oil and phase i, [mL "t “1.

Peclet number, dimensionless.

Convective heat flux in radial geometries, defined by Eq. {3.30),
ImLt™5T711.

Conductive heat flux to the hot liquid zone, defined by Eq. (2.49b),
(mt 37711,

Coordinate along the radial direction, [L].

Dimensionless group related to heat transfer in the hot liquid
zone, defined by Eq. (3.74), dimensionless.

Radius, [LI.

Coordinate along the direction parallel to a surface, [L].
Saturation, dimensionless.

Stefan number, dimensionless.

Time, [t]

Temperature, LT].

Volumetric velocity per unit reservoir cross section, [Lt‘lj.
Volumetric velocity per unit injection area, [Lt_lj.

Steam front velocity, [Lt"l] or ELZt'l].
Volume, [L3].
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Water mass injection rate per unit injection area or unit injection
thickness, [mL™2t™ 7 or fL"lt13.

Net convective heat flux to the hot liquid zone, defined by Eq.
(2.49a), [mt 37711,

Space coordinate, [L1.

Steam zone length {area), [L] ([LZJ).

Space coordinate, [L1.

Space coordinate, [L1.

Root of Eq. (3.86), dimensionless.

Parameter of steam flood, defined by Eq. (5.38), dimensionless.
Thermal diffusivity of species i, [th'il.

Parameter of steam flood, defined by Eqgs. (5.51a), {5.5%),
dimensionless.

Density vatio, pw/ps, dimensioniess.

Entropy source at the steam front, [mt 37717,

Temperature difference, T, - T4 [T1.

Coordinate, [L1.

Time coordinate, [t].

Temperature, [T].

Parameter, defined by Eq. (5.16), dimensionless.

Parameter, defined by Eq. (5.27), dimensionless.

Viscosity, [mL" 1710,

Space coordinate, [L].

Perimeter of the steam front.

Dimensionless group of steam flood, defined in Table 2.
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P Space coordinate, [LI].

o, Density, [mL'3].

Y Space conardinate, [L].

T Time courdinate, [t].

¢ Porosity, dimensionless.

¢ Heat injection rate per unit injection area or unit injection
thickness, [mt™33 or [mLt™31.

X Space coordinate, [L].

Subscripts

D Refers to dimensionless quantity
f Rock formation
F Steam front

Fo,fo  Overburden

Fu,fu  Underburden

i Initial

ing Injection point

1 Linear geometry

ML Related to Marx and Langenheim
n Normal toc a surface

0 01l

r Radial geometry

R Reservoir

S Steam

W Water
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1 Refers to energy balance

2 Refers to steam balance

a Refers te a combination of energy and steam balances.
111 Related to Chapter III

Iy Related to Chapter [V

Superscripts

I Inner side of a surface

11 Outer side of a surface

(1) Steam zone

(2) Hot 1iquid zone

- Spatiail average

a Stationary
* Dimensional
+ Upper bounds

- Lower bounds

Refers to uniform nutation for hoth linear and radial geometry.

Script Symbols

A Area

C Curve in x,t plane

L Laplace Transform operator

LL Linear operator, defined by Eq. (4.6)

LNL Non-1linear operator, defined by Eq. (4.4)

R Domain (Reservoir)
v Yolume
I Curve in x,6 plane
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APPENDIX I

Consider a fixed arbitrary volume V, enclosing the moving interface

A(t), within which the quantity P is conserved.

Qﬁ + %g = 0 (A.1)
at z

In the absence of surface sources we integrate (A.1) over UV and decom-
pose the resulting integrals to an inner and an outer part, as shown in

Figure A-1,

[ '%% dv + J gondA = 0 (A.2)
. At
n dJ
Vl(” v (t)
+ J qI-QdA + J qII~QdA = 0 (A.3)

Applying Leibnitz's rule of integration [Aris (1967)]1

i ag_)_ z.g_..u
| e ]

v - j plv_da (A.4)
U (t) "

Alt)
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gy = 4 | I
j T J by + J vty dn (A.5)
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Figure A.1

Now V is an arbitrary volume and so is the enclosed area A(t). Hence,

(A.7) is valid for any A(t), which is possible if and only

11, _ 11 11 | .
N A T R (A.8)

Eq. (A.&) is the desired interfacial condition at any point of the interface.
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APPENDIX 11

We start the inspectional analysis by considering the partial dirier-
ential equations and the i.undary conditions of Sections 2.3.1, 2.3.2.
Characteristic values for T, Si’ u, are fixed by the boundary and initial
conditions (2.34) ~ (2.39f).

From the mass balance Egns. (2.10), (2.3) in combination with the
thermodynamic equilibrium expression (2.8) and Darcy's law, we get the non-

trivial groups:

f_. (steam quality), -, Y - ,
st [Lil)*]z posoilés P (pw ps)fsf]

PoYax Yz U5z sz
and the mobility ratios S| ] s B o
VWX WX Wz Wz

The enerygy equations (2.11) and (2.17) produce the groups

w () Ko M c
( SV ( )) (_ hf 1 (_Eg) and
1 ’ c .k i c
{ p
(w, + ws)cprT +w Ly \ Pfpf hR DV
o [ N (1)) ,*
kpgt L(wW - ws)cpw/_\T +owly 1t
7 : (* IV
Vl_z ) yfcpf hLX LZ MlAT

Working on the hot liquid zone equaiions we derive analogous mobility ratios

and the Peclet number inside the hot iiquid zone:
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oy (2)*
- * *
(“wcpwuwx * pocpouox)Lx

Kir

The interfacial conditons determine the important mobility ratios on both

sides of the steam front

1 I 17 11

PsUsp Polon Y (Pn“on
p UI ’ o UI ’ uI ’ \p uI
W wn W wn wh R

and the coupling group at the reservoir-steam zone boundary

I"Z SZ

kthT
T2
Pgly U
For scaling purposes we additionally need geometric similarity, constant ¢

and functional similarity in the functions kri’ His Pso Pci (i=5,w,0).
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Introducing the Weyl transform [Erdélyi et al. (1954)1 we rewrite

Fq. (3.83) as:

% .
Wx)y = up'(x) + W2 {a{x)} .
1 *® .
where W? {9}z i ( olo)do 4 phe Weyl transform of ¢, of order k.
Sy 47w X

Let us now take the Nﬁ transform of (C.1) and rearrange

WELO(x) b = uwEor(x)} + A[ ¢ (£)dE €.2)
X
o(x) - B (x) = WA (x)} + 28 | o(e)ae c.3)
X
Using the identity
L0 = WE (x) C.4)
in (C.1) and combining with (C.3) we obtain
T‘( L = e <yt 2 ‘rm NEAY TS roor
Py = ()= 00 et ia) +"  a(e)de €.5)
X
After differentiation
2 . 1 2 .
$"(x) - 5o (%) + =5 o' (x) ++ ¢(X) = 0 € .6)
1 p

which is the desired ODE.
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Let us consider the general form of the equations discussed in

Sections 3.7, 3.8:

t
0 2 D ,
BTD . wF . BTD 1 E;IQ ) ml.J BTD “ er
at, 0 ax R 2 ot e
D |wWl| D axy A0 U0 VBT
which can also be rewritten as
0 2.
oTp NI I WL 7% (T,} (D.1)
at 0 X R 2 D ’
D le! D BXD

in fractional calculus notation. Since we deal wostly with moving
boundary problems, we would like to express the above linear equation
under a form which is easier to handle. UWe operate on both sides of

(D.1) with

WY 2
P B 2 S ;.3“2
3t 0, 9X R ..
D W] °D R
Then,
Ty = - HTEHT (D.2)
ty 0 .

From known properties of fractional calculus, we can interchange the
order of operation in the RHS of (D.2), provided that TD(O,x{) =
[01dham and Spanier (1974}1. Thus,

- P N PR -
ATy = - 1 2y {7y} {0.3)

and using (D.1) to simplify the RHS of (D.3)
20 o _ N P i
HATE = [ {TD} (D.4)
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or

. 0 2 .
[;t . T %‘322 tpd = gfg_ (p.5)
D [Wl %0 Maxg,

We see that, by increasing the order of the original equation, we are
able, due to its convolution character, to get rid of the integral part.
Obviously, the two equations (D.1), (D.5) may not be equivalent since
every solution of the former satisfies the Tatter while the opposite may
not be true. Nevertheless, a partial differential equation is easier to
work with. If we succeed in solving it, we can, then, discard those
solutions that do not satisfy the original equation and the boundary
conditions.

We can look, for example, at the limiting case R + «» (Section 3.7).

Then, (D.5) reduces to:

2
W 3T
8y F 3 )y - 2D (D.6)
<BtD Iwg' axD) D oty
o
W
and by the transformation y = x5, 8 = t, - g X to
[ W
@ . 2%
26 2
X

which 1s exactly Eq. (3.58). To solve the more general Equation (D.5),

we attempt a factorization of the form:

atD X[y 2 at P

2 2
e \-(ca +D2—+ELs+FlT =0 (0.7)
axD) D D axp

where A, B, C, D, E, F are constants yet to be determined. It turns out
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that this sort of factorization is possible if and only if R = 1. Then,

(D.7} becomes

[ WO 2 2 "
3 Fa 3 5 32 |,
2 _ 42 S ry o= 0 (D.8)
ljtn Iwglaxn §xg oty ax%] D

"This suggests that for R = 1, the dependent variable TD satisfies either

of the two equations

2Ty 8°Ty 0.5
= et D.%a
5t 5
D axD
a7, W2 aT, BZTD (
+ 2 = + T D.9b)
Ty T ul) axg D

To select the proper solution we check the Laplace Transform, thus con-
fivming that (D.9a) is the governing eguation, when wg > 0, while (D.9b)
is the proper equation when wg < 0, as indeed postulated in Section 3.8.
From (D.5) we can also derive the steady-states obtained in Saction 3.8.
Other particular solutions, for arbitrary R, 'may be possible by some
ingenious transformation of (D.5).

Yseful information about the solution of (D.1) can alsc be obtained

from the use of the Laplace Transform. The transformed variable becomes:

Rx W2
T S < -w—-—D ---—.—--F - ———2 R E ;é
LttTD} A(s)exp 5 [JW?I o (4 t /S + s)j] (D.10)
We would like to find a value for R such that ,for example,

/§-+/§+s - B+ /S
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with B a constant. Carrying out the calculations, we confirm that this

is possible only if R = 1. Then, (D.10) becomes

Xp Ng 1 )
LTgr = Als)exp{ — T IJ - xDv"E] (0.11)
W
F - .

which can be inverted to either (D.9a) or (D.9b), as already proved.

The above technique may be employed to the solution of other

linear integro-differential equations, as well.
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APPENDIX V

Using the deiining Equation (4.12) and the inequality (4.11), one

obtains, for j=1,2

Xe(t) X (t)
d ) o+ -4 d_ ) .
% L) £ {otsxp(e) dx + = Xl < G [0 £5{x,taxp() dx
v 4 Xf(t) ¥ 0<t (E.1)
JE J
d [ .
i JO fj(x,t;XF(t))dx {U fj(x,t,XF(t))dx

+ o (x;(t) - xF(t)) > 0 (E.2)

Introducing the variables t = /t, u(t) = X}(t) - XF(t) we get

u(t)
a*{ L[O fj(l( * XF(T)iT’XF(T)}dX] ¥ au(*c) g(T) >0 ¥0 <1 (E..3)
wheve a = 2d and g{t) a positive function ¥ 7 > 0. By definition

u(0) = 0, thus from (E.3) one can easily deduce

> 0
=0

u(t)
g¥'{:j0 fj(x + KF(T),T;XF(T))d%}

hence, u(t) > 0 in the neighborhood of r = 0. We will show that u(z) >0

V 0 < 1. We integrate (E.3),
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u(T) T T

f.(x + XF(T),T;XF(T))dX + a [ u(A)drx = J g(A)dr >0 ¥0<T
0

o 9 0

(E.4)

Let us assume for a moment that u(Tc) = 0 for some T, >0, with

a(rc) < 0. Then for every t' > Tc,in some neighborhood of T We have
u{t') < 0. It follows then from (E.4)
Te Te
a [ d()dn = f g(\)dr > 0 (E.5)
0 0
U(T') T TI

. Fi{x + Xele)umtsx(e)) dx + a Jo u(A)dA = {Og(l)dk >0 (E.6)

Rearranging (E.6) and taking into account (E.5):

u(t') T T

Fleos ) e ax s o] uma = [ gm0 (E7)
, T

J
u(TC) TC C

By hypothesis u(rc) = 0, u(A) < 0 for every T, < A< T'. Also, fj >0
from physical considerations. Thus, the LHS of (E.7) is negative whereas
the RHS is positive, which is incompatible. Therefore the hypothesis is

not true; hence, u{t) >0 ¥ 0 < 1. In terms of the original variables:

X;(t) > Xg(t) VO <t j=1,2 (E.8)

as postulated in Subsection 4.3.1.
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APPENDIX VI

Consider the function f{x)

f(x)
_f(0)

2
x - 1+ exp(-x) - %'[5 - 1+ exp (Eﬁ—) erfc ({25)], 0<x (F.1)
0.

We will show that f{x) > 0 , ¥ x > 0. Successive differentiation

of f{x) gives

2 - .
f'{x) = 1~ exp(-x) - xexp (Eﬁ—) erfc (Zgi) (F.2a)
f'{0) = 0 (F.2b)
ﬁxz ??X
' {x) = exp{-x) - eap ~3] erfe N (F.3b)
2
- %—xzexp (E§~) erfc (ﬁgﬁ) + X (F.3a)
t“(0) = 0 |
y 2 =
f*"(x) = - exp(-x) ~‘%? Xexp (ﬁﬁm) erfc (”gx) t+ 2
2 2
- EK~x3exp (E%“) erfc (ﬁgﬁ) + I 2 (F.4a)
f0) = 1>0. {F.4b)

From (F.4b), f{x) > 0 in the right neighborhood of the origin. Also, it

is easily verified that

2 ¢ - X 2 2y L otk ‘
vl (x) = f(x) = 1-e" -x+=2(x~1)+=(1-e"") (F.5)



Therefore,
%g-f'(x) - f{x) >0 0 < x < xq (F.6a)
;%—f'(x) - f(x) <0 Xy < X (F.6b)
where x; is the positive rcot of the RHS of (F.5):
g(x) = x{x - 1) (%-— ) +-% - e X (% +'x) (F.7)

From a numerical calculation, Xg = 1.18.

If f(x) were non-positive for some value of x in 0 < x ¢ Xy then
it would have a positive maximum at some point & in 0 < £ < Xq because
f{x) is positive in the right neighborhood of the crigin and f{0) = 0.

Therefore,

f'(¢) = 0, f(&) >0 for some 0<¢gc« X s

which contradicts (F.6a). Hence, f(x) >0 ¥ 0 <x € Xy

Similarly, if f(x) were non-positive for some value of x > Xg» then
f{x) would have a negative minimum, since f(x) " x (1 “.ﬁj as X o o,
Hence, there would be an n such that

f'(n) = 0, f(n) <0 for some x5 < n,

which contradicts (F.6b). Therefore f(x) > O ¥ Xq < X.

We thus proved that

f{x) > 0 ¥ 0 < x (F.8)
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Rearranging (F.8), we obtain

(A"
b

-1, Vx>0 (F.9)

exp(xz}&rfcx <(~235 - 1) ( % - 1) + %exp (*
il

/T

3

This inequality provides a better upper bound to the function exp6<2)erfcx
than the bound reported by Abramowitz and Stegun (1965) in 0 < x < 0.53

and the bound derived by Boyd {1959) in 0 < X < 0.15.
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APPENDIX VII
Using the defining Equation (4.47) and inequality (4.46) one cbtains
Ke(t) 6 (t) ]
4 i_fo (x5 tsXe(t)) dx - {o (x5t 3Xp(t)) d%J

e o
+ d Jo [XF(A) : ié(*ﬂ

dx > 0 (G.1)

V‘t>tc

where t. is the time after which (4.4€) is valid. Introducing the

variable u(t) = XF(t) - Xé(t), we get

" u(t) t.
%E‘ {Jo £,(x + Xé(t),t;XF(t)}d;] + d [0 %éé%%% « g(t) > 0 (6.2)

Ut>t.‘w
where g{t) is positive V t > t.. Integrating (G.2) and recalling that
u(u) = 0, we get

u(t) t t
f. X5 ,E3X d d u(A)da = Vdr 6.3
fﬂ A XLe) Ekp(n) o + JO — fu 9(%) (6.3)

We will show that u(t) > 0 for sufficiently large t. Assume that
u(t) <G ¥ 0 <t. Then, the LHS of {G.3) is negative while the RHS is
positive for sufficiently large t, since
t tc t
{ o(A)ir = f g(A)dA + J g(n) dr
0 0 t

C
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and g(t) >0 ¥t> t.. Hence, the hypothesis is false. Let us, next,
assume that u(ta) = 0, at some time ta’ and remains negative thereafter:

u(t) <0 ¥t> t . Rearranging (G.3)

u(t) t
fo(x + X2(t),tsx(t))dx + q | wAldr
Iy 2 2 F ) Jtc P
t tC tC W )d
= g(n)dx + o()dn - ¢ [ waldr (6.4)
ItC j0 j0 AR

By hypothesis, the LHS of (G.4) is negative. The RHS is the sum of a
continuously increasing, a constant and a continuously decreasing to zero
terms. Therefore, for sufficiently large times, the RHS becomes positive
contradicting the hypothesis.

We conclude that there is some time tb’ such that

u(t) >0 ¥t>ty

and in terms of the original variables

XF(t) » Xé(t) Vt>t {G.5)

b

as postulated in Section 4.4.
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APPENDIX VIII

lihen R = 1, the steam mass balance, Eq. (4.2), reads:

t

- 4(2) Dr oty .
1-A D f _
28Xt ) - 2(. = ~l, (Ml ) 5, + JO (— EEN)D Xeplaghday = A (H.1)

Combining (4.57), (3.99), (4.55a,b), (4.56) we get for the temperature in

the hot liquid zone:

X
Toltysxy) = erfc {%(1J?A) : /EEj}/ erfch (H.2)
D

and the conductive heat flux at the origin given by Eg. (3.100) becomes

3
;_Q . exp(-b?) (H.3)
*p (1 - A)/fa erfchb

In the new notation, Eq. (3.13)}) is

(- ?-Tf_) = ] Ty R T Lo{tpsin) (H.4)
an /D 0 °Tp fﬁrqu 3'°D*D '
The integral I D) is evaluated in Apptnd1x IX
exp{: 2 5} erfcei b //l “be
Iyltyshy) = erfib (#.5)

Substituting in (H.1), we obtain the integral equation:
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. t
. (2) 2 D,
2(1 - A) t exp(- b%) . 1 I -
BXeplty) + == (Ml ) erfeb =" |, FrolAplaltpdpldiy = A
D
(H.6)
Since we have already assumed iFD(tD) v (H.6) becomes:
D t
) (2)\ 2 D I (tnshn)
/fa' 1 /EB' 0 Ay
Collecting terms of the same order:
2 b?
a exp(- b*) [ exp{w) erfcvu du A (H.8)
berfcb 0 Aﬁiﬁ?j;
From Appendix IX we obtain
b2
I, = f explulerfedo dw = /5 (1 - exp(b?) erfeb) (H.9)
0 (2 _

Substituting in (H.8) we find that a satisfies the algebraic equation

2
4 = bA exp(b )Srfcb 1 (H.10)
/m |1 - exp(b™)erfch |

i.e., exactly as in Subsection 4.5.2.1, where R » o,
Here, since R = 0(1), the convergence depends primarily on the heat
flux to the hot liquid zone. The asymptotic state is reached when
2 (M(Z)) 1
- =] — < ¢.

- For ¢ = 0.05, the above imply that the convergence is extremely slow,

attained for tD > 165.
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APPENDIX IX

Congider the function

-X H(t - x)

Flt,x) = erfc {:

2/ =%
and form the integral
A )
Jl(t,k) = [ -%t-—-gl—w 0<x<t
0°T AT 7
From {1.1), (1.2)
. -
A %X
ool 725
1 X 4(1t - x)
J (tg.}\) ;o f dT
1 2/ Yk (1 - x)3/2 (t - 1}1/2

2
Using the transformation y = ET;E:j;Y , (I.3) becomes:

Jy(tsn) = -L[ expl- VY
R
400 - x)
2
and by further setting z =y "ETTE:_ET we obtain:
il )
J.{t,a) = L AT - x J exp(- z }dz
1 i B X z

( xz 2 VZ
- x) T Al - x))

M

. /
By suitably substituting x by 571 T Ry w%z) Xpy2 t by g (“(gj
‘ M M

1 ] S
SRS =

(1.1)

(1.2}

(1.3)

{1.4)



335

J,(t.2)

setting Ilitus}kn) W

Consider, now, the integral

t
2 e
Jp(t) = I ~H(A) exp [— ) tx_ < }erfc [% t-A ]d)\
0/t -x ~ Yt - 2 (A - x)

where x = 2a/h + o® - 208

is a function of the dummy variable A and

we recover the desired expression (4.64).

(1.6)

w(r) = q//k + uz. Introducing the new dummy variable, o = —~—5—f:. we
) 2/t = x
find that A is implicitly defined by the equation
2 4 22 2
A+ a2 . OA+t2a -20 g -tg (1.7)
2 2
2a(a” - o)
and then (I.6) becomes
o 2 "
dz(t) = [ Q . exp(- o7) erfc [5 : ~ i:]gé-do (1.8)
0 J<F:_—§ T =X o
8]
Using (I.7) to eva]uate-%% , we further obtain
a 2
i 22 exp(~ %) T3] (k205 4l - )32
Jplt) = 7y erfef /Ty 2 (2t = x)
“ 0 (x +2¢) /A -X ’ 20,
which simplifies to:
W
2 . - ’
Jz(t) = 4 fo exp(- o7) erfc Lié~ - %ét "xx do (I1.9)
Let us define
R (1.10)
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Employing (1.7) and substituting for x in terms of ) we get after

lengthy calculations

a

2V02 +t

(where the selection of the proper sign is not important in our case) and

$ = 3t (1.11)

further

a

Jz(t) = § IO exp(- O'Z)EY‘fC [42 - 02] {%

t —I— |dg (1.12)
2V 2 + }
o] t
We have, thus, reduced the original expression (1.6) to a single function
of t. To evaluate the asymptotic behavior of Jz(t), we nate that at
sufficiently large t, say t > 10@?, the main contribution to the integral

comes from the first term of ¢. Therefore,

o

Jz(t) N2 J exp(- oz)erfc [;az - 02] do t > loa2 (1.13)
0

The integral on the RHS is easily evaluated, since

2

O "
Jy o= J exp(- cz)erfc[jaz - 02] do
0
(12 =
- %~exp(- o) [ exp(z)erfc(y/z)dz (1.14)
1§} 2
Jao -z
and from (I.23), we get
u2
- . " .
[ EXP(Z)EZfC(y/Z)dZ = v’ﬁ’- \—1 - exp(u‘.)ef'fC(J&)J (1'15)
‘0

a - Z
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Thus, if we substitute (I.15) in (I1.14) and {I1.13), we conclude that

2

Jz(t} Vi exp(- az)[l - exp(az)erfcoa t > 10d (I.16)

The desired expression (4.68) follows directly if we replace x by
. My M2 Jp(t)
ZTI - A) M(z) D s L by 4 (;1‘(—’;) tD) a by a and set [ (tD) erbe .

To evaluate 13(t,k), we let

f{t,A) = erfc (ﬁ/‘%) a>0 A<t (1.17)

and consider the integral

A
of dt
Jo(t,A) = f g (1.18)
3 a ot e
Fram (1.17), (I1.18)
A
- 2
VA exp[— o X/T] :
J(t,2) = 9-—[ dt (1.19)
3 T™ ‘0 13/2(t - 1)1/2
. ine. 2 _ 2,01 1
Using the transformation: o° = o A~; - §) o we get

[v0]

Jg(t}x) = 2exp(— uz-%)j _exp(- Tz)dT = :%;exp(- u?~%) erfc(qu —-%)
A
t

If we, now, Sz?it1§Ute X by za/kD » by ty, o by (1 AT and set
13(tD,AD) = g Ye obtain the desired expression {H.5). Finally, let
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X
3,lx) = { expw)erfe(Vu) (1.21)
0 VX - w

Taking the Laplace Transform of J4(x) with respect to x, we have:

T,(s) = _ (1.22)
s(1 + v5)

which after inversion leads to:

Ja(x) = /F[i - exp(x)erfc(ffﬂ (1.23)

exactly as in (H.9)
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Using the defining Equation (5.12) and the dimensionless form of
inequality (5.9) one obtains, for j = 1, 2
2 gi.AfD(tD) e -LF (R e) :>2 gi-AD(tD) + - Fplagley) 0.2)
1 Y iy Y 1 %

¥O0<t
Thus

B, .. :
2 §i‘ [A;D‘tn) - Ag(tp)] + 'J;"D: [FD(Agn(tn)) - Fplagtt)] > 0 (2.2)

Vo<t

B

Introducing the variables t =

oo

; /fa, u(t) = ;D(tD) - AD(tD), we get

ute) + Fylule) + aptty)) - Fplag(ey) » 0 vo<t (3.3)

By definition, A;D(O) = AD(O)’ thus from (J.3) one deduces G(O) >0 and
therefore u{t) > 0 in the neighborhood of v = 0. We will show that
u(t) >0 ¥ 0 <.

Assume for a woment that u(Tc) = 0 for some 7. > 0, with Q(rc) < 0.

Then, for every ' > 1, in some neighborhood of _, we have ui¢') < 0,

c
u(t') < 0. But F(x) is an increasing function of x, therefore

Folule'd + Ag(ty)) - Folap(ty) < o (3.4)

and also &(r'} < 0. Hence, the LHS of (J.3) is negative in contradiction
with (J.3). This proves that the hypothesis is not true and
+ .
AjD(tD) > AD(tD) VO < tD J=1,2 (J.5)

as postulated in Subsection 5.3.2.



