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Coherence and Spectral Properties of Composite-Cavity

Semiconductor Lasers
by

John M. Iannelli

In Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy

Abstract

This thesis addresses many current issues in the theoretical and experimental aspects
of coherence and spectral properties of semiconductor lasers. It begins with a brief
overview of the theory of fluctuations in semiconductor lasers. This includes a study
of relative intensity noise, frequency/phase noise, and frequency chirp. A method of
spectral linewidth reduction and stabilization is then proposed and analyzed. This
method utilizes an atomic resonance in cesium to which a semiconductor laser can be
frequency locked. A Van der Pol analysis as well as a rate equation analysis are carried
out and predict reductions in the spectral linewidth, frequency chirp, and enhanced
frequency stability. Experimental results confirm several aspects of the theory and
also introduce the effects of 1/f noise in semiconductor lasers. Spectral linewidth
reductions by a factor of 2000 below the solitary laser linewidth are presented.

Investigations are then made into the spectral characteristics of multielectrode dis-
tributed feedback (DFB) lasers. A novel measurement technique is introduced which
utilizes the phase angle between the FM and AM responses for the determination of
adiabatic chirp and linewidth enhancement factors. The mode switching properties
of these devices are then studied within the context of bistable operation. Bistabil-
ity in output power and output wavelength is shown and is applied to experiments
in stochastic resonance. Using bistable DFB and Fabry-Perot semiconductor lasers,
stochastic resonance is demonstrated experimentally in different laser systems as well
as in electronic circuits. The effect is analyzed from a rate equation approach as well
as a Kramer’s escape approach. Results predict a noise suppression at higher even
harmonic frequencies which are then experimentally verified.
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Chapter 1

Introduction

Although optical communication systems are a relatively recent technological devel-
opment, they have evolved through several design and application schemes. Early
systems suffered from low quality transmission media and sources. As single mode
fiber optics became better developed in terms of loss and dispersion characteristics,
the research in semiconductor lasers as viable components in these systems intensi-
fied. Some of the primary uses envisioned for semiconductor lasers were as optical
transmitters and functional photonic switching devices. As of today, research in both

of these applications remains active.

1.1 Optical Communication Systems

Current optical communication systems frequently employ an intensity modulation /
direct detection scheme. Laser output power is modulated through injection current

modulation and detection is typically accomplished through the use of an avalanche
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photodiode. This system is relatively simple in terms of detection schemes however,
it leaves room for much improvement. Analogous to communication systems which
employ microwaves as a carrier, the high carrier frequency of the optical field can
be exploited in a system of phase and/or frequency modulation. Such systems can
improve the reciever sensitivity by as much as 20 dB compared to intensity modulated
/ direct detection systems as well as increase transmission capacity since the large
bandwidth of the fiber can be utilized. These systems are frequently called coherent
communication systems since the phase or frequency must be coherently demodulated

by a local oscillator.

Phase Modulated
Optical Signal
Photodiode
Demodulator

Local Oscillator
(Optical Signal)

Figure 1-1: Schematic diagram of a coherent optical communications system.

A schematic diagram of a coherent communications system in shown in Figure
1-1. The local oscillator is also a semiconductor laser whose frequency can either
be equal to that of the incoming optical signal (homodyne detection) or can be a
slightly different frequency (heterodyne) in which case the summing action at the

beam splitter produces an intermediate frequency analogous to a superheterodyne



” Modulation Format | Photons / Bit ”

PSK Homodyne 9
PSK Heterodyne 18
FSK Heterodyne 36
ASK Homodyne 36
ASK Heterodyne 72

Table 1.1: Sensitivities of various modulation formats in a coherent receiver. (PSK:

Phase Shift Keying, FSK: Frequency Shift Keying, ASK: Amplitude Shift Keying)

receiver in radio technology.

Depending on the modulation format used, the receiver sensitivity can be drasti-
cally improved. In Table 1.1 the number of photons per bit required is tabulated in
order to achieve a bit error rate (BER) of 107°.

For comparison, a typical intensity modulated / direct detection receiver would
require appoximately 2000 photons per bit for the same BER [1]. In order to realize
these sensitivities in an actual communications system, the spectral linewidths of both
the input signal and the local oscillator laser are extremely critical. Although the ef-
fects of a finite spectral linewidth are manifested differently in different modulation
formats, phase fluctuations will be directly converted to photocurrent fluctuations
because of the coherent nature of the demodulation process. As an example, a syn-
chronous heterodyne PSK system with a BER of 107 requires a linewidth of 1 MHz
for approximately 20 photons per bit.

In addition to the requirement on the semiconductor laser for narrow spectral
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linewidths, the absolute frequency and its stability are often of importance in com-
munication systems. One method of utilizing the large fiber bandwidth without ex-
cessively large modulation bandwidths is to multiplex various frequencies as separate
channels (known as frequency division multiplexing; FDM). Since channel spacing
can be quite small in coherent systems (j10 GHz) there is a need for lasers which not

only demonstrate high coherence but also a high degree of frequency stability.

1.2 Photonic Functional Units

In addition to the vast uses of semiconductor lasers as transmitters and detector com-
ponents in today’s communication systems, these devices are also being considered for
performing many logical and decision making functions which until recently were com-
pletely within the realm of digital electronics. There are several reasons for pursuing
such applications with semiconductor lasers. First, the switching speed of many of the
optical processes in these lasers is much faster than that in conventional electronics.
More importantly, functional units based on semiconductor lasers would eliminate
the optical/electrical/optical conversion process typically encountered. Instead of de-
tecting an optical signal, performing signal processing and conditioning electrically,
and then regenerating a new optical signal, the process could be kept in the optical
regime thereby opening the possibility for improving the system’s efficiency.

Some of the system applications currently being researched include all-optical

repeaters, clock regenerators, and wavelength conversion devices. Many of these
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devices rely on an optically bistable semiconductor laser acting as a thresholding
device [2,3]. A variety of devices have been investigated including bistable Fabry-Perot

lasers [11], distributed feedback lasers [5], and distributed Bragg reflector structures

[6].

1.3 Outline of the Thesis

This thesis begins with a review and discussion of semiconductor laser coherence
theory, specifically amplitude and phase noise. Fundemental concepts such as the
relaxation resonance, spectral linewidth, and relative intensity noise are described in
detail. From there, a technique of phase noise reduction utilizing optical feedback is
analyzed both theoretically and experimentally. This particular technique employs a
frequency locking technique to an atomic resonance such that both linewidth reduc-
tion and frequency stability are achieved.

Frequency chirp and its measurement in complex devices is then analyzed for a
three section distributed feedback (DFB) laser with suporting experimental results.
A new measurement technique which uses the FM and AM responses of the semicon-
ductor laser allows not only measurements of chirp but also of gain compression.

Lastly, a phenomenon known as stochastic resonance is introduced and applied to
semiconductor lasers as a means of signal processing for both the electro-optical and
optical-optical conversion schemes. The effect shows an increase in the output signal

to noise ratio with an increase in input noise power. It is described theoretically and
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experimental results are presented for a variety of electro-optical systems.
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Chapter 2

Theory of Fluctuation Phenomena in

Semiconductor Lasers

2.1 Introduction

As discussed in the previous chapter, the coherence properties of semiconductor lasers
can impose limitations to their performance in modern optical communication sys-
tems. In this chapter the various mechanisms and magnitudes of noise in semicon-
ductor lasers will be described in detail. There are several aspects of semiconductor
lasers which distinguish them from other laser systems in as far as noise is concerned.
Without external modifications, semiconductor lasers possess a relatively low () cavity
as a consequence of their small size and low facet reflectivities. Therefore, noise and
its subsequent reduction in these devices has become an area of extensive theoretical
and experimental research [2,1,5,14,16,5].

If one assumes that a semiconductor laser is biased above threshold with an ideally
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constant injection current (i.e., neglecting fluctuations in injected carrier density), the
two dominant mechanisms of noise are spontaneous emission and electron-hole recom-
bination (i.e., shot noise) [2]. For our discussions we are primarily concerned with
spontaneous emission. For a treatment of shot noise and its effects in semiconductor
laser noise the reader is referred to other references [12,13]. Spontaneous emission
events can be shown to affect not only the amplitude of the field but also its phase
due to its lack of coherence with the existing lasing field. Obviously, its consequences

are extremely important in the proper design of optical communication systems [3].

2.2 Noise Properties of Semiconductor Laser Diodes

Before embarking on the techniques of noise reduction in semiconductor lasers, we
first consider the noise properties of these devices without any modifications such
as feedback. It will be shown in the following chapter that optical feedback can be

adequately treated as a simple extension of this theory.

2.2.1 Formulation of the Optical Field

In order to describe laser oscillation and the various noise properties of semiconductor
lasers we employ the standard semiconductor laser rate equations [2]. The important

quantities of interest are the electric field, the phase, and the carrier number. The
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electric field within the laser cavity is written as
E(x,t) = Re[A(t)e ™21 d(x) (2.1)

where wy, is the lasing (angular) frequency, x is the (vector) spatial coordinate, and
A(t) is referred to as the complex wave amplitude. The complex amplitude A(t), a

very useful quantity for describing noise and coherence, is given by

A(t) = /S(t)el7#0) (2.2)

where S(t) is the mean photon number in the cavity and ¢(¢) is the phase of the

optical field. The rate equation for A(t) is given by
— = §(G — —)(1 —ia)A(t) (2.3)

where G is the gain, 7, is the photon lifetime, and « is the linewidth enhancement
factor. This factor is proportional to the ratio of refractive index changes with carrier
density to gain changes with carrier density and can be shown to be non zero in
semiconductor lasers [18]. It is a dimensionless quantity with a typical value between
4 and 6 for semiconductor lasers [11]. It can be seen that gain saturation (G =
1

;;) causes A(t) to be constant in steady state thereby causing the photon number

S(t) (and E(t)) to oscillate precisely at frequency wy and the phase ¢(t) to also
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be constant. However, fluctuations in the field due to spontaneous emission cause
changes in the photon number and phase. The changes in the photon number are
damped by gain saturation and lead to relaxation oscillations of both the photon
and carrier number. The changes in phase, however, are not damped and in fact
are somewhat increased by gain saturation. The effects of these fluctuations on A(t)
can be simplistically illustrated as shown in Figure 2-1. This figure shows the phasor
diagram of the complex amplitude driven by a single spontaneous emission event.
Since spontaneous emission adds photons incoherently to the field, the phase angle v
is uniformly distributed as —7 < v < 7. In the top graph, the instantaneous addition
of a photon to the optical field is shown at time ¢ = e. An instantaneous phase change
¢' results as well as an increase in S(t). However, since the carrier number has been
reduced (by one) the gain is reduced accordingly. Since semiconductor lasers operate
as detuned oscillators (i.e., the frequency of the imaginary part of the suceptibility
maximum differs from the frequency of the real part of the sucepibility zero [18]), the
restoration of the gain to its threshold value results in an additional phase change
designated in the bottom graph as ¢ .

These fluctuations can be represented mathematically by “driving” Equation 2.3

with an appropriate Langevin force as
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Figure 2-1: Phasor diagram of complex amplitude driven by spontaneous emission
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In general, the force Fi(t) is a complex quantity possessing the following properties:

<F{t)> = 0 (2.5)

where D;; is a diffusion coeflicient and é is the Dirac delta function. The second
property, the fact that the force possesses no memory (i.e., the system is Markof-
fian), can be justified for semiconductor lasers since the laser emission process can
be considered to be dominated by the equilibration time of injected carriers which is
approximately 0.1 ps [11]. This is far shorter than any time scale of the dynamical

processes in question.

2.3 Laser Fluctuation Spectra

In order to quantify the various fluctuation processes in semiconductor lasers it is
appropriate to calculate correlation spectra between the dynamical variables. By
separating Equation 2.3 into its real and imaginary parts and adding a carrier number
rate equation we have the complete set of semiconductor laser rate equations. These

are given by



7 = 3G- ;_;) + Fy(t) (2.8)
C”Z(t) = c-csty- YU 4 e (2.9)
i ™

where RSF is the spontaneous emission rate, 3 is the fraction of spontaneous emission
coupled into the lasing mode, C' is the number of injected carriers per second (I/e),
and 7y is the carrier spontaneous recombination lifetime. The rate equations are now

expanded in the small signal regime using the following approximations:

Sty = <S> +s(t) (2.10)
N(t) = <N>+n(t) (2.11)
G = <G>+Gyn(t)+ Gss(t) (2.12)

where G, = %—Cj—, and < X > denotes a time averaged quantity. With these expan-

sions the small signal rate equations now become

§(t) = Gun(t) <S> —Tss(t) + Fs(t) (2.13)
é = -;iGNn(t) + Fy(t) (2.14)

n = —Iyn(t)— Gs(t) + Fn(t) (2.15)



7 = 3G- ;_;) + Fy(t) (2.8)
C”Z(t) = c-csty- YU 4 e (2.9)
i ™

where RSF is the spontaneous emission rate, 3 is the fraction of spontaneous emission
coupled into the lasing mode, C' is the number of injected carriers per second (I/e),
and 7y is the carrier spontaneous recombination lifetime. The rate equations are now

expanded in the small signal regime using the following approximations:

Sty = <S> +s(t) (2.10)
N(t) = <N>+n(t) (2.11)
G = <G>+Gyn(t)+ Gss(t) (2.12)

where G, = %—Cj—, and < X > denotes a time averaged quantity. With these expan-

sions the small signal rate equations now become

§(t) = Gun(t) <S> —Tss(t) + Fs(t) (2.13)
é = -;iGNn(t) + Fy(t) (2.14)

n = —Iyn(t)— Gs(t) + Fn(t) (2.15)
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where

ﬂRSP

I's = G 2.1

o <S>+ s (2.16)
1

'y = —4+Gn<S>. (2.17)
™

From Equations 2.13 and 2.15 one can see that I'y and I's are the self-damping
rates of the carrier and photon number fluctuations, respectively. (By self-damping
rates, we refer to the effective damping rate in the absence of fluctuations in variables
other than the one in question.) Physically, I'v consists of carrier recombination
(via 75) and a reduction in the stimulated emission rate (via Gy). Similarly, the
photon number is damped through spontaneous emission as well as nonlinear gain
represented through Gg.

At this point, the system of three coupled differential equations can be readily
solved via Fourier transformation methods. Designating a transformed variable with

a tilde, we have

N+ Tg 0 -Gy <S>

3(2) ¢(Q) Q) 0 i 0 = | Fs(Q) Fy(Q) Fn(©)

<G> =Gy Q1+ T,

(2.18)
where () is the frequency variable of the Fourier transformation. The transformed

variables can be solved for by application of Cramer’s rule and thereafter inverse
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transformed to obtain the time-dependent quantities. However, the algebraic solution

of the transformed variables alone enables the calculation of various laser field spectra.

2.3.1 Correlations of the Langevin Forces

In general, the laser field spectra will be of the form

Spectra ~< X;(2)X;(Q) > (2.19)

where X;(Q)X;(0) represents a particular combination of (), #(Q), and (). Since
these variables are functions of the Langevin forces F;(f), their correlations will be
necessary. Here we present only a brief and sufficient synopsis of these properties. A
more complete treatment can be found in the works of M.Lax [6,7,8,9,11].

The system of equations 2.13-2.15 represents a form of the general Langevin system

of equations given by

dip;(t)
dt

= V,(t) + Fi(t) (2.20)
where the quantity ¥;(¢) is known as the drift vector and F;(t) is the Langevin force
with diffusion coefficient D;; as defined in Equation 2.6. The drift and diffusion terms

can be understood on somewhat physical grounds by considering the Fokker-Planck

equation for the time dependent probability P(3,t) given as

oP 0 o
3 = a5 (YP) + 5 DP) (2.21)
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The diffusion coefficient D (which in the general case can be time dependent) describes
the diffusion of the probability P(W¥(t),t) while W(¢) describes the counteraction of the
drift vector on this diffusion process. In order to determine the diffusion coefficients,
we consider a fluctuation process in which the dynamical variable ;(t) undergoes
fluctuations at an average rate p; with the magnitude of the fluctuation equal to ;.

In can be shown that in this case the diffusion coefficients are given as [6]

2Dy, = pi/gi(m)mzdm (2.22)

= p<n®> (2.23)

where g; is the distribution function of the fluctuation amplitude.

Beginning with the phase equation we have
2D¢¢ = pg < A¢2 > (224)

The phase fluctuation A¢ and its corresponding time averaged quantity can be found

from Figure 2-1 to be equal to

sin 6

Ap = 2.25
2

<Af> = < SH;, o, (2.26)
1

= =73 (2.27)
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We have only included the contribution of ¢  since we are interested only in the effects
of spontaneous emission. Gain saturation plays no role in the Langevin correlation
of the phase. Since phase fluctuations are driven by spontaneous emission, it follows
from Equation 2.23
RSP

In discussing the fluctuations in photon and carrier number we could apply a simi-
lar treatment as above for determining the diffusion coefficients, however a somewhat
different approach proves to be more insightful. When discussing fluctuations that
change a population in unit increments of plus or minus one, Equation 2.22 can be
modified. Considering the two processes of generation and dissipation of the variable

(t) the distribution function g(n) now becomes

g(n) = prob(generation)é(n — 1) + prob(dissipation)é(n + 1) (2.29)

Carrying through the integration in Equation 2.22 it can easily be shown that

2Dy, ) = (Gii + Dis) (2.30)

where G;; and D;; represent the rates of generation and dissipation, respectively, of
the populations for ;.

Beginning with the photon number rate equation (Equation 2.7) we see that gain
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saturation provides the drift vector counteraction (G = G,D = +) on photon popu-
Tp

lation fluctuations caused by spontaneous emission. From Equation 2.30 we obtain

2Dss = Gss+ Dss (2.31)
= 2G <S> (2.32)
= 2R <S> (2.33)

where Equation 2.33 is obtained by noting that the stimulated emission rate G < .S >
is essentially equal to RSF < § > above threshold.
In order to obtain the diffusion coefficient for fluctuations in the carrier number,

we write the generation and dissipation rates as

Gvv = A<S> (2.34)
Dyw = <7]_V>+G<S> (2.35)
N

where A is the rate of absorption.

Similar to the calcuation above, we obain

N
2DnN = Q(RSP <S> —G) + = >

(2.36)

™

The remaining diffusion coefficients can be found through the same procedure [11].

The results are listed in Table 2.1.
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2Dsg 2R < 8 >

2D s s

2DnN | 2 R? < §> -G +%
2Dgn —2RF < 8§ >
Ds, 0

Dne 0

Table 2.1: Langevin diffusions coeflicients for semiconductor lasers

Intensity Noise Spectrum

Having found the necessary correlations between the Langevin forces we can now
calculate the various laser correlation spectra. We define a quantity known as the

relative intensity noise (RIN) as

AP?
RIN = %}5—;- (2.37)

where P is the average power in the cavity. In order to obtain the fluctuation spectrum
of the intensity of the optical field, one can equivalently determine the fluctuation
spectrum of the photon number S. In terms of S this power is given as

P=hv="—In [—1-5] (2.38)

2nl 172

where ¢/2n L is the cavity free spectral range and r; and ry are the facet reflectivities.

In terms of the previously defined small quantities the expression for the RIN now
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becomes (in a given bandwidth Af)

< |s(V)? >

(RIN)aj = 20f =25

(2.39)

The factor of 2 arises from the integration over both positive and negative frequencies
in the Fourier transform.

Solving for the photon number fluctuation we have

[(iw+FN)ﬁ5+GN< S>FN]

(@)= (Q +Q—i0)(Q, — Q+i)

(2.40)

where we have defined the relaxation oscillation resonance frequency Q2 and an av-

erage damping rate T as

(I'v = T's)?

2 = (G+Gs<S>)(Gn<S>)— 1

(2.41)

T = %(FN-H“S) (2.42)

We can now apply Equation 2.39 and obtain an expression for the relative intensity

noise. It is instructive to separate this fluctuation spectrum into sections as
RIN = (RIN)%% + (RIN)™N 4 (RIN)SN (2.43)

where each part corresponds to its respective correlation process. Solving Equa-
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tion 2.39 yields

2RSP(RINSS 4 RINNN 4 RINSN)

RIN = = .
< §>[(92 - 02)2 4+ (20T)?] (244)
RIN®S = T% +Q? (2.45)
NN _ 2 2 <N >
RINYN = Gyt < §>2 (14 P <gS =) (2.46)
RINSYN = _2RFI'nGn < S > (2.47)

_100 1 i r vl I + 1oy vl

-120 N
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-200 Ty a
0.1 1 10 100

Frequency (GHz)

Figure 2-2: Separate contributions of the relative intensity noise spectrum
(RIN) as a function of frequency. The photon-carrier contribu-
tion shown actually contributes a reduction in RIN as shown in
Equation 2.47

It should be noted that the various correlations are all positive except for the

cross correlation of the carrier-photon term. This correlation actually reduces the

RIN which can be understood as a consequence of gain saturation above threshold.
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Figure 2-3: Dependence of RIN on the output power

It is instructive to plot the separate contributions of RIN as shown in Figure 2-2.
The dominant contribution is shown to be due to the photon-photon correlations
while the carrier-carrier and carrier-photon contributions can be safely neglected in
most cases. This figure shows the familiar resonance peak at €, and a decrease of
the RIN level by 20 dB/decade above this resonance.

As the photon number < S > increases the RIN should decrease accordingly as
shown in Equation 2.44. In Figure 2-3 it is shown that not only does RIN decrease with
output power but the relaxation resonance frequency also moves to higher frequencies.

In addition to decreasing RIN through an increase in the output power, it seems
intuitive that any negative damping on the photon fluctuations should also decrease
RIN. This should be provided by a nonlinear gain mechanism since this provides

a direct damping on the photon population (see Equation 2.13). In Figure 2-4 we
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Figure 2-4: Dependence of RIN on the magnitude of the nonlinear gain coeffi-
cient

show the RIN level in the vicinity of the relaxation resonance at various levels of the
nonlinear gain. The decrease in RIN with Gg can be understood as a decrease in the

Q-factor of the oscillation with the corresponding increase in the damping coefficient.

Frequency Noise Spectrum

In addition to the fluctuations in the amplitude of the laser field, fluctuations in

frequency are also of considerable interest. The frequency fluctuation spectrum is

defined as

S;(0) = (124(Q)*) (2.48)
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Figure 2-5: Frequency noise spectrum with various correlation contributions

From Equation 2.18 the phase fluctuation is found to be

- 1

3(Q) = (F¢ n %G;m) (2.49)

Substitution of Equation 2.49 into 2.48 yields

RSP n OzvaN2
2<85> 2D?

(G+Gs < 8>)+2Rsp < §>Ts(G+Gs < S >)] (2.50)

S4(2)

[(T% +Q*)Rsp < § > +Rsp < S > -

where D is defined as the denominator found in the bracketed expression for RIN in
Equation 2.44.

As with the treatment of the relative intensity noise, one can examine the indi-
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Figure 2-6: Dependence of frequency noise spectrum on the output power.

vidual contributions to the frequency fluctuation spectrum arising from the various

correlations. These can be written as

o
S5

SS
53

NN
oK

RSP
_ 2.51
2< 5> (251)
CON G+ Gy < § >RSP < § 2.52
5D (G+Gs < S>) <85> (2.52)
2,72
‘;g;" T% + QRSP < § > (2.53)

These three contributions are plotted as a function of frequency in Figure 2-5. The

phase contribution is simply the quantum noise arising from spontaneous emission

events. Its noise power is independent of frequency (white). The other two contribu-

tions are a result of the dependence of the phase on carrier density (through the «

parameter). The dominant mechanism is the correlation term of the photon number.
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Figure 2-7. Dependence of the frequency noise spectrum on the magnitude of
the nonlinear gain coefficient

This arises from the fact that carrier density fluctuations are induced by spontaneous
emission and through the amplitude/phase coupling, refractive index changes occur
which lead to further phase changes. The ratio of the magnitudes of these two noise
sources is equal to o?.

We can approximate this expression by noting that G is typically much larger
that I's or . With these approximations the expression for the frequency fluctuation
spectrum becomes

2004
Rsp Q)

_ | _ 2.54
5<5> | T E_m)t ear)y (2:54)

S4(€)

From this expression one can clearly see the two distinct contributions to the frequency

noise arising from spontaneous emission. As discussed previously (see Figure 2-1),
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the initial spontaneous emission event contributes Rsp/(2 < S >) to the frequency
noise while the delayed phase change due to the coupling of the carrier density and
the refractive index produces the second term in Equation 2.54. This second term,
whose “scaling factor” is the linewidth enhancement factor «, introduces as frequency
dependence to the noise spectrum. Random spontaneous emission events produce a
white noise distribution while the secondary amplitude/phase coupling events lead to
an enhancement of the noise in the vicinity of the relaxation resonance frequency 2,.

In addition to its frequency dependence, the frequency noise spectrum decreases
with increasing power. These results are shown in Figure 2-6. An increase in power
not only decreases the magnitude of the FM noise but also extends the resonance
frequency which follows directly from Equation 2.40. Furthermore as with the relative
intensity noise, increasing the damping of gain fluctuations will also decrease the
enhanced frequency noise at the relaxation resonance frequency. This behavior is
shown in Figure 2-7 for various values of the nonlinear gain coefficient.

At this point it is worth noting that other noise sources exist which contribute to
54(€2). The frequency noise spectrum calculated in Equation 2.54 is correct from the
point of view of the rate equations being used in this treatment. However, in practice
there are further frequency noise sources such as temperature fluctuations and 1/ f
noise of often unknown origins. These sources typically dominate the frequency noise
spectrum at lower frequencies and must be addressed for such applications.

From the frequency noise spectrum one can determine the spectral linewidth of
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the optical field. A frequently employed definition of the spectral linewidth is

Aw =q_0 54() (2.55)
From Equation 2.54 one obtains
RSP
Ay = ——|(1 2 2.
g 47r<S><+a) (2:56)

The first term of this expression is the familiar Schawlow-Townes linewidth formula
[21]. In a semiconductor laser the linewidth broadening arises from the secondary am-
plitude/phase changes discussed above and in Figure 2-1. This expression also gives
the familiar 1/ < S > dependence on the spectral linewidth. While this dependence
is observed at low output powers. at higher output powers the linewidth saturates or

even rebroadens with increasing power [22].

2.3.2 Frequency Chirp

In our treatment of frequency noise and the spectral linewidth above, fluctuations or
direct changes in the injection current were neglected and only spontaneous emission
driven effects were considered. However, for the purposes of modulation the changes
in frequency with changes in injection current need to be addressed. Changes in
frequency with injection current, an effect known as frequency chirp, can be broadly

classified into two categories; dynamic and adiabatic. Dynamic chirp refers to the



30

IHLJOT [ 5.4-10°K 1
On]T |54 10 °K

Table 2.2: Temperature coefficients of InGaAsP lasers

change in frequency caused by a change in carrier density under current modulation.
On the other hand, adiabatic chirp is a low frequency effect (including DC) which is
a consequence of factors other than amplitude/phase coupling.

One of the most common causes of adiabatic chirp is a change in the laser temper-
ature. As the injection current is varied, the temperature of the semiconductor laser
is also varied due to resistive heating. This temperature change has two effects; a
change in the cavity length and a change in the refractive index. For InGaAsP lasers
operating at 1.5 um, the corresponding coefficients are given in Table 2.2[5].

These coefficients lead to a frequency chirp of -11 GHz/K. This chirp is relatively
constant at low frequencies however decreases above approximately 10 MHz due to
the finite thermal conductivity of the semiconductor material. Another mechanism
for adiabatic chirp is inhomogeneous current injection. These effects are discussed in
Chapter 4.

Above the cutoff frequency adiabatic chirp, the effects of amplitude / phase cou-

pling dominate the chirp. In order to model the dynamic chirp one can use the
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expression for ¢(Q) (see Equation 2.18). Through the expression

56 = [ i0d@)etan (2.57)

:27r -—00

the dynamic chirp can be calculated (6w = §¢). Using the rate equations, modulation
of the injection current C' can be shown to lead to a variation in the carrier density

given by [2]

(T's +12)C(Q)

) = @ + Q—i0)(Q, — Q1 4D)

(2.58)

Through a substitution of this expression into the equation for the phase deviation
(Equation 2.18), the dynamic chirp can be obtained. For the case of sinusoidal mod-

ulation (i.e., C(t) = C,sin Q,,t), the (maximum) dynamic chirp is given as

(2.59)

dw =

ac,Gy Q% + 1%
2e \J [(T‘2 +02 - 02)2 +402T
It should be noted that the dynamic chirp is highly dependent upon the device
structure and material used. Typical values for dynamic chirp in InGaAsP lasers
operating at 1.3 pm are 1A for a 50 mA peak-peak modulation [4]. However, the
use of multisection laser cavities which enable inhomogeneous current injection offer
possibilities in achieving extremely low chirp lasers. It will be shown in Chapters 3
and 4 that composite cavity laser structures allow the laser to operate with reduced

chirp, spectral linewidth, and frequency jitter.
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Chapter 3

Optical Feedback and Noise Reduction in

Semiconductor Lasers

3.1 Introduction

Various methods have been proposed for reducing the spectral linewidths of semicon-
ductor lasers. A common theme throughout many of these methods is an alteration
of the loss function of the laser so as to provide negative feedback on the fluctuating
phase. In particular, incorporating a dispersive (i.e., frequency dependent) loss mech-
anism in the laser cavity can lead to a dramatic quenching of the spectral linewidth.
Ironically, the foundation upon which this technique relies is the o parameter which
was previously shown to provide an additional contribution to the phase noise. Since
amplitude changes are coupled with phase changes, a dispersive loss can be used to
reduce the linewidth by producing changes in the field’s amplitude and phase which

correct for the initial phase fluctuation. The key quantities in the technique are the
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slopes of the loss rate and the accompanying refractive index with frequency. The
proper slope produces negative feedback on phase fluctuations.

The dispersive loss technique can be implemented using various schemes of optical
feedback, such as the reflection from an external cavity. The external feedback serves
as a modification to the loss (gain) of the laser cavity. In an external cavity laser,
one of the facets is used with an external mirror to compose a coupled-cavity sys-
tem thereby rendering the facet’s effective reflectivity (i.e., laser loss rate) frequency-
dependent [1]. It is important to distinguish between internal and external losses.
The external cavity can possess losses of its own but the loss that the active laser
perceives will in general be quite different. In fact, in a traditional external cavity
laser the external loss is comprised of solely dispersive phase changes where as the
internal loss is a combination on dispersive phase and amplitude changes owing to
the coupling of the fields at the laser facet. Both mechanisms have been shown to be
instrumental in reducing the spectral linewidth.

There is a tradeoff, however, in ordinary external cavity systems between linewidth
reduction and effective bandwidth. Relatively short cavities, having large effective
bandwidths, can produce damping of the relaxation oscillations but leave much to be
desired in terms of linewidth reduction [2]. In order to achieve substantial reduction
in the spectral linewidth one needs to employ long cavities and operate at relatively
high feedback levels. Such conditions often lead to either mode hopping or multimode

operation due to the closely spaced external cavity modes [3].
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A frequently used technique is the formation of an external cavity with a high-Q
confocal Fabry Perot (CFP) cavity acting as a reflector [14]. This method performs
quite well in terms of noise reduction and mode discrimination by “locking” the
laser’s frequency to the CFP reflection resonance. However, since the dispersive loss
is related to the resonant reflection from the CFP cavity, variations in the locking
frequency can occur from unavoidable thermal and mechanical instabilities.

In order to overcome the problem of instabilities and still maintain sufficient line-
width reduction and frequency discrimination, the diode laser can be frequency locked
to an atomic transition within the external cavity geometry. A simplified diagram
of this system is shown in Figure 3-1. An atomic cesium cell is placed between a
pair of cross polarizers within an external cavity formed by a plane mirror. Utilizing
the resonant Faraday rotation within the cell, reflected light is injected back into the
diode laser only when the laser frequency is in close proximity (see section 3.2.4) of
the atomic transition. Due to the small bandwidth of the reflection, small frequency
variations in the laser field cause the dispersive loss to produce, in response, large
changes in the field’s amplitude and/or phase. These changes are then fed back to

the diode laser via the external cavity.
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Figure 3-1: External cavity geometry employing faraday rotation in atomic ce-
sium. LD:laser diode, M:external mirror, P:linear polarizer.

3.2 Theory of Dispersive Optical Feedback

3.2.1 Van der Pol Analysis

To describe the effects of the dispersive loss we follow a Van der Pol analysis in which
the field intensity adiabatically follows the inversion density [16]. For calculations of
spectral linewidth and chirp this assumption is justified. This analysis assumes that
the loss is distributed internally within the laser cavity. Although the specific feedback
mechanisms we will consider are external to the (active) cavity, this calculation can
be shown to still provide the correct result through a rate equation analysis specific

to this this system (see Appendix A).
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We begin by writing the electric field as
E(t) = [As + 6(2)] exp t(wmt + ¢(1)) (3.1)

where A, is the steady-state field amplitude, § and ¢ are the small signal amplitude
and phase (< ¢ >;= 0, in which <>, indicates temporal averaging), respectively, and
Wy, is the lasing frequency. As shown in [16] the coupled rate equation for amplitude

and phase is given by

zz'wm(5+iAo<js)+2—4‘%@(inms—wm25)+(wn2-wm2+i‘-;’;i_(X<1>+AO2X<3>‘ilj-;)Ao =A

(3.2)
where the complex susceptibility vy is expressed as a non-linear function of the lasing
field by x(E) = X + x®|E|?. The cold cavity resonant frequency is given by w,, the
nonresonant refractive index by u, and the photon lifetime by 7,. A is taken to be a

Langevin noise source representing spontaneous emission see section 2.3.1. Following

[17] the dispersive loss is modeled by a frequency-dependent loss rate as

LI I 204 (3.3)

Tp Tpo

where C is a constant representing the slope of the loss curve, and the instantaneous
lasing frequency is given by (w,, + d)) Since corrections to the loss rate are taken

to occur instantaneously, the results of this analysis are valid only for frequencies
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smaller than the inverse of the longest response time of the system.

This ansatz describes changes in the field’s amplitude due to the dispersive loss
but not changes in the field’s phase. To further take into account the effects of phase
changes in the loss rate, C is defined as a complex quantity given by C = C, + :C;.
Using this form in Equation 3.3 we obtain a set of modified Van der Pol equations

for the amplitude and phase

A

b+wb+ACd = — (3.4)
2w1
A1+ C)é § o= L (3.5)
el + i Qi - me .
where the quantities w; and « are defined as
(3)4 2
W = —&-——é—o——wm (36)
K
®3)
Xr

a = (3.7)

In Equation 3.2 one can observe that the photon lifetime enters the rate equation
on the same footing as the complex susceptibility. Therefore, the dispersive loss can
be more naturally described through modifications in y as opposed to a complex
lifetime. Assuming the effects of the dispersive loss are well within the linear regime

(ie., ignoring the effects of saturation in the loss mechanism described through x®)
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we can substitute

2C;u?

v = Xr(l)_*__w.ﬁ_qg (3.8)
2C,p?

W = x#”--—;—-’f—¢ (3.9)

We see that frequency-dependent amplitude and phase changes are described by C,
in y;(Y) and C; in x,(V, respectively. Physically, C, represents a frequency-dependent
loss and C; a frequency-dependent refractive index change in the semiconductor laser
cavity.

To calculate the field spectrum linewidth we first calculate the autocorrelation
function of the phase. This is readily obtained through Laplace transformation of §

and ¢ in Equation 3.4 and 3.5 resulting in

W (1+a?) ,
< @(ty)o(te) >= man(ty,t 3.10
¢( 1)¢( 2) 4A02wm2 (1 + aCr + C’i)Z ( 1 2) ( )
The field autocorrelation function is now written as
2
< E*()E*(t + 1) >= A exp _<en) > exp Wy, T + c.c. (3.11)

where c.c. refers to the complex conjugate. After combining Equation 3.10 and

Equation 3.11 and applying the Wiener-Khintchine theorem, we obtain a Lorentzian
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field spectrum with a spectral linewidth given by

B (1+ a?)
Av = AI/S.T‘(1 n aC’T mn CZ')2 (312)
2
= AI/S.T.(l + a) (313)

Q?

where Avgr is the Schawlow-Townes linewidth (see Equation 2.56) and @ = (1 +
aC, + C;). It should be stressed that C, and C; describe the frequency-dependent
amplitude and refractive index changes within the diode cavity. These will be referred
to as the internal dispersive losses. The above treatment therefore applies to an
arbitrary laser configuration, one of which is the present scheme of external optical
feedback.

As shown in Equation 3.13, the field corrections made by the dispersive loss are
twofold. An initial phase fluctuation causes a frequency shift in the laser field. On
one hand, the dispersive will behave as a frequency discriminator and produce, in
response, an amplitude change in the field described by C,. Through the o param-
eter this amplitude change corrects for the initial phase fluctuation. On the other
hand, the frequency shift in the laser field will cause the dispersive loss to produce,
in response, a phase change in the field which will directly correct for the phase fluc-
tuation. This process is described by C;. Either separately or in unison, the two
mechanisms reduce the rate of phase diffusion thereby reducing the spectral line-
width. Although frequency-dependent amplitude and refractive index changes both

play a role in linewidth reduction, amplitude changes are weighted more heavily (for
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a > 1) since C, is multiplied by a.

3.2.2 Static Operating Conditions

In order to obtain expressions for C, and C; we need to investigate the operating
conditions for our particular system. We must account for the coherent addition
of an optical field from the external cavity to the complex amplitude A(t) defined
in Equation 2.2. This results in a modified version of Equation 2.3 (without the

Langevin driving force) given as [5]

where & is the feedback coupling rate defined by

k=nr/F1y (3.15)

with F' and 74 being the diode cavity finesse and roundtrip time, respectively, and r is
the external cavity reflectivity. The external cavity phase shift is given by ® = w,,7,
T = 2L/¢, being the external cavity roundtrip time, and ) is the lasing frequency
without feedback.

The dispersive loss element in the external cavity is now modeled through a mod-
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ification of £ and 7 as

K o= K(w)_n(wm)Jr-gg ¢ (3.16)
T = 7(w)= 0+%:§ (3.17)

where ¢’ is the phase shift due to the cesium (¢ = w7, + ¢') and now 7, = 2L/c.
Substituting Equation 3.17 into Equation 3.14 and separating real and imaginary

parts yields

Sit) = (G- —S( )+ [ ] S(t—71)S(t)cos[® + 6p]  (3.18)

$(t) = %(G—%)—(wm——ﬂ)—[nwm +5c_u_ }4 St_Tsm [® + 6p]3.19)

where 6 = p(t) — ¢(t — 7). In the steady-state these equations give the operating

conditions for the stimulated emission rate (gain) as

1

AG = G- — (3.20)
Tp
= —2k(wy)cos® (3.21)
and the lasing frequency as
Aw = w, =0 (3.22)

= —k(wm)V1 + a?sin (P + arctan a) (3.23)
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With the exception of the additional phase shift from the cesium, ¢’ (contained in ®),

these equations are identical to those derived for an external cavity with no added

losses.

Using the above results we can now obtain C, and C; for this system. Since the

gain (loss) can be written as G = wy, x;/u*, C, can be obtained from the slope of the

loss curve as

1 9(1/7,)

e I (3.24)
Ok .

— cos ® — k(wp)T(w)sin @ (3.25)
|,

To derive C;, the phase shift in the laser diode is written as Ay = wy,Toxr/2u%. This

phase shift can also be obtained intuitively from the vector model of the complex

amplitude as Ay = £7.sin ®. Therefore, we find from Equation 3.8 that

O[k(w) sin ]

Ok .

— sin ® + k(wp, )T(wWy) cos P (3.27)
0wl

As discussed above, C, represents the frequency-dependent loss (internal) of the laser

diode. It is seen in Equation 3.25 that not only does the external loss (cesium vapor)

contribute through (9x/0w)y=q,, cos ® but the effect of coupling between the two

cavities adds the term k(w,,)7(w)sin ®. Physically, this additional term represents

the amplitude dependence on ® obtained from summing the internal and external
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(feedback) electric fields at the laser facet. Similarly, the frequency-dependent refrac-
tive index in the laser cavity, represented by C;, contains the contribution from the
external cavity through x(w,,)7(w)cos ® and the additional term (9x/0w),=,,, sin ®
due to the coupling of the internal and external fields.

Combining these results, we obtain for the all important ) factor

Ow

W=Wm

Q=1+V1+a? {n(wm)r(w) cos (¢ + arctan o) + o sin (¢ + arctan a)}

(3.28)

3.2.3 Adiabatic Chirp Reduction

Amplitude to phase coupling in semiconductor laser manifests itself not only in en-
hancement of the spectral linewidth but also in FM generation under current mod-
ulation. Frequency changes due to changes in injection current (chirp) are a direct
consequence of the o parameter but can be reduced by the dispersive loss mechanism.
Using Equation 3.23 it is easily shown that the frequency chirp (Aw) due to changes

in injection current (AF) is reduced by

dw/OE _ Ow
oNJjOE — 09
_ 1
1++/1+a? {n(wm)f(w) cos (® + arctana) + 25| sin(® + arctan a)}

1 1

1+aC, +Ci Q (3:29)
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Similarly, we can determine the frequency chirp due to changes in cavity length

as

Ow 4 k(wm)7(w) cos (P + arctan )

oL — %)

(3.30)

Therefore, the frequency locking stability of this system relative to an ordinary
external cavity system is much better. As was verified experimentally, the reduction
in frequency ”jitter” can be more than an order of magnitude greater than that of a

resonably sized external cavity ( 0.5 m).

3.2.4 Numerical Simulations of Dispersive Feedback

In order to investigate the characteristics of a semiconductor laser locked to the
dispersive loss, one can numerically solve for various quantities as a function of the
lasing frequency using the above equations. The approach of our algorithm is shown
in Figure 3-2. Solutions to the frequency pulling equation 3.23 are shown graphically
as the intersection of (w — Q) and B(w), the right-hand side of Equation 3.23. The
gain at this frequency is compared to the gain without feedback (AG= 0) and if it is
less, lasing occurs at this frequency. In Figure 3-2 the gain condition is represented
by the function G(w). This function describes the difference between the required
stimulated emission rate into the lasing mode with and without optical feedback (see
Equation 3.21, where G(w) = AG) necessary to obtain lasing (i.e., zero net gain).
As would be expected, near the cesium resonance G(w) becomes negative indicating

that less stimulated emission is required to lase compared to the case of no optical
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Figure 3-2: Graphical interpretation of the algorithm used in modeling a semi-
conductor laser locked to a dispersive loss. B(w) equals the right-
hand side of Equation 3.23 and G(w) (dotted) equals the variation
in gain given by Equation 3.21. Offset frequency (w, — Q) = 300
MHz, where w, is the dispersive loss linecenter frequency, and &,,4,

= 1.0 GHz.

As a simplistic first-order model of the cesium dispersive loss we assume a four-
level system in the presence of a uniform magnetic field (applied along the propagation
axis). Although the actual ground state (F=4) and excited state (F=35) possess 9-
fold and 11-fold degeneracies, respectively, we approximate both levels as being 2-fold
degenerate. In addition to the dispersive loss, other factors in the external cavity
affect the loss rate. These cavity losses include losses from optical components as well

as losses due to the inefficiency of coupling the feedback field into the lasing mode.
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Absorption in the atomic vapor is neglected in calculating the rotation but is taken
into account in the cavity loss (including saturation effects). In Equation 3.14 the
external cavity was characterized by a feedback coupling rate defined as k = nr/Fry
where r is the external mirror reflectivity, and a phase shift ®. With the Faraday
rotation we assumed & to be frequency-dependent and added a phase shift ¢’ (due to

the cesium) to ®. We now take r and ¢/ as

rw) = L, —n) (3.31)

c

Fw) = “];Cs (m;—m) (3.32)

where Lg; is the length of the cesium cell, and ny and n_ are the refractive indices
of oy and o_ circularly polarized light, respectively. This simple model ignores the
basic phyical mechanisms which give rise to the doppler-free reflection. A full analysis
of the multi-level system is provided in the Appendix.

Figure 3-3 shows the calculated quantities x(w) and ¢'(w) as a function of fre-
quency. As previously stated, & is symmetric in frequency about the cesium linecen-
ter while ¢’ is anti-symmetric. In the neighborhood of the linecenter, (0¢'/0w)w=0,.
is positive and relatively constant while (0«/0w)y=.,, changes sign across the line.
As discussed in [17], the sign of the slope of the loss curve determines whether the
linewidth reduction or enhancement will occur. At first, one would expect reduction
to be greater on the positive frequency side of x(w) (noting that « actually behaves

as a frequency-dependent gain to the diode rather than a loss). However, Equa-
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Figure 3-8 Cesium dispersive loss quantities x(w) and ¢'(w) as calculated from
the approximate model described in the text. Applied magnetic
field = 1 G, temperature = 60°C, power broadened transition line-

width = 30 MHz, Output intensity = 50 mW /cm?, Length of Ce-
sium = 5 cm, Saturation Intensity = 1 mW/cm?.

tion 3.28 shows that not only is the sign of (0x/0w),=,, important but so is the sign
of sin (® + arctan «). Therefore, reduction can occur on either side of £(w) depending
on the sign of the frequency pulling as defined in Equation 3.23.

We have considered the situation in which the lasing frequency is varied via a
change in external cavity length. As shown in Equation 3.30, a variation in the on-
axis position of the external mirror will pull the lasing frequency away from w. This
behavior is used to scan the lasing frequency over the dispersive loss to observe the
noise reduction. In addition to frequency pulling, we now define an offset frequency as
the difference between the atomic cesium linecenter and the lasing frequency without

feedback, i.e., (w, = Q). This quantity is shown to be important in determining the
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Figure 3-4: Linewidth enhancement and feedback coupling rate x(w) versus las-
ing frequency. Offset Frequency = 0 MHz, £,,,,, = 2.1 GHz.

different roles of C, and C; in the noise reduction process.

In Figure 3-4 the linewidth enhancement and the amplitude of the feedback field
are plotted versus the lasing frequency. As shown in the figure, the linewidth reaches a
minimum when lasing is at the top of the dispersive line. At this point the refractive
index changes in the external loss are maximum while the amplitude changes are
minimum. As discussed in [2] for the case of locking to a high-QQ CFP cavity, the
phase corrections from the cesium can be viewed as increasing the effective time
constant of the feedback system. Since the dispersive loss can be very narrow in our
technique (~17 MHz bandwidth measured for the Doppler-free reflection [9]), under

our operating conditions (0¢'/0w),=.,, can be much larger and in fact dominate
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Figure 3-5: Position of minimum linewidth relative to the cesium linecenter as

a function of offset frequency. The position of zero detuning is
marked on the graph. £,,., = 2.1 GHz.

in the expression for 7(w). In contrast to the ordinary external cavity laser, this
system relies more on the frequency dependence of the optical feedback than on its
magnitude. It can therefore produce large reduction at low feedback levels alleviating
the problems of mode hopping.

Although the dominant effect in the reduction process is seen to be the frequency-
dependent refractive index changes in the external loss, the amplitude changes de-
scribed through (0k/0w)y=w,, can also play a role. In Figure 3-5 the position of
minimum linewidth relative to the cesium linecenter (detuning) is plotted as a func-
tion of offset frequency. At large offset frequencies minimum linewidth operation

occurs slightly to the side of the dispersive loss linecenter indicating that amplitude
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Figure 3-6: Reduction in adiabatic chirp. Chirp reduction is given by the slope

of the curve. Both frequencies are relative to the dispersive loss
linecenter frequency, w,.

changes are now contributing to the reduction.

In addition to linewidth reduction, frequency stability with respect to changes
in injection current (chirp) is also improved using the dispersive loss. In Figure 3-6
we show the actual lasing frequency w,, plotted as a function of the lasing frequency
without feedback, Q. From the figure we see that if the lasing frequency is far from the
cesium linecenter it follows the injection current as if there were no feedback present.
However, in the neighborhood of the dispersive loss (in this case, within approximately
10-20 spectral bandwidths of the cesium resonance) the frequency locks and the chirp
is reduced by 1/@Q). In addition, the chirp reduction is seen to be maximum near the

top of the cesium line as would be expected from Equation 3.29.
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3.3 Experimental Results on Linewidth Reduc-

tion Using Dispersive Optical Feedback

As discussed previously, the atomic transition in cesium at 852.1nm is used as a
frequency reference and discriminator in the optical feedback system. This particular
transition is useful for a variety of reasons. Its oscillator strength is one of the largest
of all the existing transitions in atomic cesium. Moreover, 852.1 nm is in relative
proximity to the lasing wavelengths of commercially available lasers. Precise tuning
of the laser’s frequency to the transition energy can be accomplished via injection
current and temperature means.

One potential drawback of utilizing an atomic vapor as a frequency reference is
the effect of doppler broadening on the feedback bandwidth. An effective method
of circumventing these limitations is to use an overlapping and counter-propagating
pump/probe beam arrangement. A sufficiently strong pump beam can selectively
bleach the absorption and refractive index which are then detected with the weak

probe beam (see Appendix B).

3.3.1 Experimental Apparatus

As shown in Figure 3-1, a cesium cell is placed between two crossed polarizers each
having an extinction ratio of 1 : 10*. The length of the cesium cell used was 5 cm and

its temperature was maintained at 50 °C. The applied axial magnetic field is applied
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through a pair of Helmholtz coils with a uniformity across the cell of 2 percent. The
external cavity is formed by the laser’s output facet and a mirror placed 40.5 cm away.
The laser used was a Hitachi HLP1400 CSP (channel substrate planar) Fabry-Perot
laser. It was operated at 120 mA (iipreshora = D8 mA) with an output power of 12.5
mW and a collimated spot size of 0.25¢cm?.

This arrangement produced a Doppler-free reflection with a FWHM of 17 MHz
utilizing the ' = 4 — F' = 5 transition at 852.1 nm. The phase of the feedback
field was controlled by means of a piezoelectric transducer upon which the back
mirror was mounted. The magnitude of the feedback was varied through the use of
a continuously variable neutral density filter. The highest level of feedback attained
for the Doppler-free signal was -35 dB utilizing a magnetic field of 1 Gauss. At
larger magnetic fields, the reflection became broader with a FWHM of approximately
200 MHz. A 30 percent beam splitter was inserted within the cavity for monitoring
the field spectrum and measuring the spectral linewidth. Spectral linewidths were
measured in one of two ways. For linewidths of approximately 1 MHz and larger, a
scanning Fabry-Perot interferometer was employed. The cavity finesse was ~ 10,000
and the free spectral range was 6 GHz yielding a resolution of approximately 600
kHz. For smaller linewidths, a self-delayed heterodyne measurement was used [§]
(see Figure 3-7. In this technique, the optical field is split into two components, one
component is delayed for a time longer than the laser’s coherence time, and the two

are then recombined. Since the two signals are phase incoherent with each other,
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heterodyne detection can be carried out. A 5 km length delay line was used in these

experiments which yielded a measurement resolution of 6.4 kHz.

3.3.2 Linewidth Reduction

With the application of optical feedback, the spectral linewidth is dramatically re-
duced below its solitary (i.e., without external feedback) value. A maximum reduction
of a factor of 2000 was measured from Av = 20 MHz to Av = 10 kHz (see Figure
3-8). While this is a substantial reduction, it is far below what would be predicted
from Equations 3.13 and 3.28. For the feedback conditions used, the theory pre-
dicts a reduction by a factor of 10°. Such a discrepency cannot be explained by
the limited resolution of the measurement apparatus. In Figure 3-8 the beat note
spectra are plotted for two different feedback configurations. Curve (a) represents
the minimum linewidth obtainable with this arrangement (Av = 10 kHz). Curve
(b) is the spectrum of simply utilizing the external cavity without the cesium; i.e.,
a simple external cavity laser with identical length as that in curve (a). From this
figure two points are evident. First, the cesium arrangement is clearly superior in
linewidth reduction compared to the external cavity. This can be shown using the
theory described above. However, more important is the functional dependence of
the spectra. Equation 3.11 gives the autocorrelation spectrum of the electric field of
the laser. From this expression in can be easily shown that the field spectrum is a

Lorentzian function. However, the dashed and solid fits of the data shown in Figure
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3-8 represent curve fits to a Lorentzian function and a Lorentzian function raised to
the 3/2 power, respectively. For narrow linewidths (a quantitative criterion is given
in [6]), the laser field spectrum is described by a Lorentzian®? function rather than a
Lorentzian. The explanation of this lies in the dominating source of frequency noise.
As alluded to briefly in Chapter 2, the source of frequency noise is usually taken as
spontaneous emission events which produces a white noise spectrum at frequencies
below the relaxation resonance frequency. However, at low frequencies (=~ 10MHz and
below) the dominant noise source is often one which produces a 1/f characteristic
[10,11,12]. There have been various postulates on the origin of this noise source in
semiconductor lasers, one of which is temperature fluctuations [13].

Regardless of the source of 1/ f noise, its effects on the laser field spectrum under
the influence of optical feedback can be determined (for a complete treatment of these
effects, the reader is referred to [6]). It can be shown that for a semiconductor laser
whose frequency noise spectrum is dominated by spontaneous emission, the frequency

noise is reduced by optical feedback as

(3.33)

where Q is the noise reduction factor defined in Equation 3.28 and S;(Q) is the
frequency noise spectrum without external feedback. This is simply a restatement of
the results presented above. It is irrespective of the type of noise source. However,

when the field spectrum is calculated for the case of white noise and 1/ f noise, it is
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found that [6]

Awypite = 54(92) (3.34)
S;(1
Awyjy = ¢7£) (3.35)

Therefore, in lasers dominated by 1/f noise, optical feedback is not as effective as it
is in lasers dominated by white noise. Furthermore, calculations show that the field
spectrum behaves as Lorentzian and Lorentzian®? for white noise and 1/f noise,
respectively [6].

Since the linewidth is reduced as the square root of S;, Av should be reduced
as 1/Q. In order to verify the 1/Q) dependence of the spectral linewidth for narrow
linewidth semiconductor lasers dominated by 1/f noise, one can measure the line-
width reduction with respect to feedback power. From Equation 3.28 the linewidth
reduction factor ) depends inversely on the quantity «. From Equation 3.15 in can
be further seen that () depends inversely on the square root of the feedback power
since the reflectivity r in the expression for « is an amplitude reflectivity. In Figure
3-9 is plotted the inverse of the spectral linewidth versus [feedback power]'/2. As
shown, linewidth reduction behaves as 1/@Q as predicted. It should be noted that for
larger linewidths, the reduction would return to a 1/Q* dependence.

The two curves in Figure 3-9 also show the effectiveness for linewidth reduction
of the cesium arrangement versus the external cavity. Curve (a) was taken for the

cesium arrangement with the lasing frequency at the cesium linecenter. The frequency
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dependent losses will therefore be purely phase losses since 0x/0w = 0 at linecenter.
From the slope of these two curves one can determine the factor (0¢'/0w + 7) for
both cases. In the external cavity this quantity is simply equal to 7. For the cesium
arrangement curve (a) yields a value of (0¢'/0w + 7)/7 = 16 £ 1. As discussed in
[2], the effects of the cesium can be thought of as an “effective” delay which in this
case is a factor of 16 more than the empty external cavity delay 7.

In order to independently confirm the value of (0¢'/0w + 7), one can perform
a measurement of the frequency pulling as a function of the external mirror posi-
tion (through a modulation of the piezoelectric voltage). From Equation 3.23 it is

straightforward to show that

Qf. B V1 + a?k(w)
0% 141+ a2(8¢'/0w + 7)k(w)

(3.36)

From this measurement we obtain a value of (0¢'/0w + 7)/7 = 13 £ 2 which is
within one standard deviation of the previous result.

To further show that the frequency-dependent dispersion of the cesium resonance
is the primary contributor to the ) factor, we measured the laser linewidth as a
function of the detuning of the lasing frequency from the cesium linecenter. In all
measurements zero frequency pulling was maintained (see Equation 3.23). In Figure
3-10, the linewidth is plotted as a function of the detuning from linecenter as is

1

the quantity Avk™'. Curve (a) shows that indeed the minimum linewidth occurs

at the linecenter of the cesium. However, this could be not only as result of the



59
(0¢' /0w + 7) factor in @ but also a result of the reduction of x(w) as one moves
off linecenter. Therefore, in curve (b) is plotted Avk™! which should eliminate the
effects of a varying x(w) in the measurement. If the effects of linewidth reduction
were solely due to the feedback amplitude curve (b) would be a constant. However,
curve (b) agrees with a derivative of a dispersive lineshape which has been derived
from a Lorentzian k(w). It is also worth noting that at nonzero frequency pulling
the frequency dependent amplitude effects also contribute to the phase effects. In
fact it has been found that a small frequency pulling such that lasing was slightly off

linecenter gave rise to a 30 percent improvement in linewidth reduction.

3.4 Conclusions

In summary, a Van der Pol analysis has been carried out for a semiconductor laser
with dispersive loss. To account for both amplitude and phase changes induced by the
external loss mechanism, the internal laser loss rate is modeled through modifications
to the complex susceptibility. It is shown that the linewidth reduction behaves as
1/Q?* where Q is a factor defined in terms of the geometry-specific operating condi-
tions of the semiconductor laser. In addition, adiabatic chirp is shown to decrease as
1/@Q. Although the analysis assumes the loss to be uniformly distributed throughout
the laser, the results for linewidth reduction are also correct if the loss is introduced
through a form of external feedback, as is the case in our method. This validity of the

Van der Pol analysis is shown by carrying out the calculation using the rate equations
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specific for our external loss (see Appendix A). Using an approximate model of the
cesium dispersive loss, we calculated linewidth reduction and chirp reduction as a
function of lasing frequency. The dominant mechanism of noise reduction was found
to be the frequency-dependent phase changes produced by the atomic vapor. How-
ever, under certain operating conditions, the vapors frequency-dependent amplitude
changes were also shown to play a role in the reduction process.

An experimental arrangement of external feedback utilizing faraday rotation in
an atomic cesium vapor was investigated. Frequency noise reduction well below the
Schawlow-Townes limit for a solitary laser is demonstrated. Our analysis indicates
that the quantum limit of the linewidth as a sole result of spontaneous emission is
reduced by a factor of 106. However, owing to the important contribution of 1/ f noise,
the reduction of the laser linewidth is only by a factor of 2000. It was demonstrated
that the operative mechanism in this dramatic effect is primarily the concerted action
of frequency-dependent internal loss and amplitude / phase coupling. An additional,

smaller contribution is due to internal frequency-dependent dispersion.
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Figure 3-7. Experimental set-up for measuring spectral linewidth using a self-
delayed heterodyne detection scheme.
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Chapter 4

Modulation Properties of Multisection

Distributed Feedback Lasers

4.1 Introduction

In recent years, distributed feedback (DFB) lasers have enjoyed widespread applica-
tion in the field of optical communications. Their applicability is due in large part to
their unique spectral characteristics such as wavelength tunability [1], narrow spectral
linewidth [2], and large side mode suppression [3]. Many of these attributes of DFB
lasers have been improved upon through the use of multi-electrode structures which
enable nonuniform current injection [5]. The introduction of a longitudinal varia-
tion in injection current is frequently used as a means of controlling the unavoidable
axial variation in carrier density attendant upon the optical intensity variation, a
phenomenon known as spatial hole burning [4]. Additionally, nonuniform current

injection is often employed in multielement lasers for purposes of frequency tuning.
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The ability to tune the lasing frequency in a multisection laser can be understood
from the fact that the gain in any individual section is no longer fixed at threshold
as in a single element device. Since the gain (and therefore the carrier density) is not
fixed, neither is the refractive index thus leading to frequency tuning. This interplay
between the gain and the refractive index is mediated by the a parameter. In a mul-
tisection laser, different injection current densities in different sections can lead to a
low frequency (including DC) tuning sometimes referred to as adiabatic chirp. This
phenomenon has been predicted on the basis of nonequal effective o parameters in

multisection lasers [6].

4.2 Wavelength Tunability

One of the unique characteristics of multi-section DFB lasers is the ability to tune the
lasing wavelength through current injection. As previously mentioned, the gain in an
individual isolated section of the laser cavity need not be clamped as opposed to a
single section laser. The only gain condition that must be met is the roundtrip gain
being equal to unity. Since the gain may vary with injection current, the refractive
index may vary accordingly since the two are coupled through the o parameter. These
effects can produce wavelength tuning as well as wavelength switching.

In order to study these effects more quantitatively, one can calculate the roundtrip
gain spectrum as a function of injection current distribufion. Here, we only briefly

outline the salient points of the calculation. For further details, the reader is referred
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to [20].

Figure 4-1: Model used for the calculation of DFB laser characteristics. The
position of the reference plane shown (dashed line) is arbitrary.

The starting point for the analysis of threshold conditions, gain, wavelength tun-

ability, etc., is the coupled mode equations. These equations can be written as

dg¢

g_é? = [7a(0) — iR (Q)] €¥0a(¢) = [3(0) = iAB(0)] b(C) (42)

99— [5(0) — iAB(Q)] al0) + [al€) — 70 ()] #OB(¢) (4.1)

where the complex amplitudes of the forward and backward propagating fields are

written as

Ep(z) = a(z)e™* (4.3)

Ep(z) = b(z)etiPe (4.4)

In this notation, { = z/L,% = ()L (where 7 is the net amplitude gain), AB(C) =
AB()L, and %,(¢) = k()L (£5(¢) = ks(()L) are the normalized index (loss) cou-

pling coefficients. These equations are now solved using a transfer matrix approach
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[20]. The lasing condition requires that the roundtrip gain G be equal to unity (as
well as a total phase shift be a multiple of 27) which can be obtained by calculating

the right and left reflection coefficients from a reference plane (see Figure 4-1) as

(D R (&) (4.5)

The threshold condition now becomes
G(w,J) =rp(w, J)rep(w,J) =1 (4.6)

If one solves for the lasing condition, one obtains the gain and phase data as shown
in Figure 4-2. In this figure the two lasing solutions are degenerate since the grating
is uniform (without any phase shifts) as are the facet reflectivities and phases. In
a typical DFB laser, this ideal “symmetry” would be broken by irregularities in the
facet reflectivities and phases leading to single mode oscillation.

With this model of a DFB laser, one can investigate the effects of non-uniform
current injection on the gain and lasing wavelength. For a test structure, we consider
a three section DFB laser with the properties shown in Table 4.1.

The test laser is composed of three sections with lengths of 200 pm, 100 gm, and
200 pm symmetric about the center of the cavity (see inset of Figure 4-3). The two
end sections are pumped equally while the center section is overpumped as well as

underpumped with respect to the uniform pumping condition. As shown in Figure
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Figure 4-2: Calculated roundtrip gain and phase for a three section DFB laser

with lengths of 200 pum, 100 pgm, and 200 gm. Facet reflectivities
= 0.0. Further model parameters are given in Table 4.1.

4-3, the variation in the injection current distribution causes a shift in the roundtrip
gain spectrum thereby leading to a shift in the lasing mode wavelength. From the
calculations shown one sees that overpumping the center section above the uniform
condition leads to a selection of the negative degenerate mode of the DFB structure
as well as a shift towards the stopband center. The exact opposite holds true for the
underpumped case. Figure 4-4 shows the shift in the lasing mode as a function of the
center section injection current. The amount of current in the center section is given
as the ratio of the current density in the center section to that in either one of the

two end sections (i.e., Jy / [J; or J3)).
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Figure 4-3: Roundtrip gain as a function of nonuniform injection current.
The overpumped and underpumped conditions refer to R=1.2 and
R=0.8 in Figure 4-6, respectively.

In addition to the changes in gain and lasing wavelength, altering the injection

current obviously changes the optical power distribution in the cavity. This power

distribution is given by [20]

P(¢) = Pr(¢) + Pp(C) + 2C* Re [Ep(¢) ER(C)] (4.7)

where Ppp(() represent the forward and backward propagating power, respec-
tively, and the last term represents the power in the standing wave. For the pa-

rameters used in the calculation above (see Table 4.1), one can calculate the power
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Figure 4-4: Shift in ABL of the lasing mode with nonuniform injection current.
Current ratio is defined as in the ratio of center section current
density to either end section current density.

distribution along the axis of the cavity. These distributions are shown in Figure 4-5.
As before, one can investigate the effects of overpumping and underpumping the cen-
ter section. In Figure 4-6 the power distribution is shown for uniform, underpumped,
and overpumped conditions as in Figure 4-3. It is shown that for the overpumped
condition, the optical power distribution is more (axially) uniform compared to ei-
ther of the other two conditions. It has been suggested that these effects could be
partly responsible for the linewidth saturation observed in the 1/ < S > functional
dependence. Such effects have been investigated in DFB lasers with inhomogeneous

current injection with preliminary results showing confirmation [4].
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Wayvelength | 1.3 ym |[ &L 1.0
L 500pm || Diff. Gain | 1.0E16
r1,T2 0.0 84 5.0
GL 16640 || Diff. index | 0.0048
Nirans 2.5E18 || ajossL 4.0

Table 4.1: Parameters used in the modeling of three-section DFB laser

4.3 Dynamic Properties: Modulation and Chirp

Analysis

In order to model the spectral dynamics of a multi-element semiconductor laser we
follow the treatment found in Ref. [6]. The laser rate equations are expanded in
the small signal regime about their steady-state operating conditions as in Chapter
2. However, unlike the treatment of laser noise in chapter 3, each individual section
of the multi-element laser is treated individually and independently. For comparison
with the present experiments, consider a laser employing two active sections with
one section under AC modulation at a frequency /27. In the following description,
section two is DC pumped while section one is AC modulated as well as DC pumped
(see Figure 4-9.) Carrying out a small signal analysis the FM/AM response ratio is

given as [7]
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Figure /-5 Optical power distribution for the three-section DFB laser de-
scribed in Figure 4-2 and Table 4.1.

AM

FM i(01eps = Qaesy) = Whess
_— 1| Qieff — Q/Tg

Qs s ( - %) (4.9)

where ay.f; and gy are the effective o parameters in sections one and two,
respectively, wy.;; is the effective relaxation oscillation frequency in section two, and

79 1s the effective carrier lifetime in section two defined as
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Figure /-6: Optical power distribution for varying degrees of nonuniform injec-

tion current. The quantity R is defined as the ratio of the current
density of the center section to that in either of the end sections.

1 1 drl’,

—_—=—14r — 4.1
T3 Ts + g2tap + g2p an ( O)

where 7, is the spontaneous lifetime, ¢ is the gain, § is the differential gain, p 1s
the photon density, and I is the fill factor defined in Ref. [6]. In obtaining Eq. 4.8
we have assumed that 1/7; >> Q, an approximation valid for our experiments. The
FM/AM response given in Eq. 4.8 is made up of two components.b The first term
represents the normal chirp associated with a semiconductor laser. The second term

is an additional contribution from the different nature of the two sections of the laser.
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This additional term introduces both a frequency and an output power dependence
(through w3 ;) to the FM/AM response.

The parameter y defined in Eq. 4.9 is a quantity representing adiabatic chirp. We
see that in the absence of adiabatic chirp (i.e., x=0) the FM response is #/2 out of
phase with the AM response and the ratio of the two is the effective o parameter
in section one. Measurement of the FM/AM response therefore provides a direct
measurement of ajess. Since the FM/AM response under these conditions is purely
imaginary only a measurement of the modulus of the response is necessary. However,
the incorporation of adiabatic chirp due to non-equal aparameters in the two sections
complicates matters. The phase between the FM and the AM responses is obviously
different from 7 /2 with the difference depending on x. Therefore, measurements of
both the modulus and the phase of the response function are necessary to determine
the a-parameter (in addition to y). Furthermore, the FM/AM response is now de-
pendent on the modulation frequency and the photon density (through the effective
lifetime).

In order to measure the modulus and phase of the FM/AM response a measure-
ment similar to previous work can be carried out [11]. The experiment involves biasing
the laser above threshold and superimposing a small RF current at frequency /2.

We write the electric field as

E(t)=E, <1 + —2—1— sin 0t + qS) cos (wt + Bsin Q) (4.11)



7
where F, is the time-averaged value of E(t), m is the intensity modulation index, (3 is
the phase modulation index, and (7/2 — ¢) is the phase angle between the frequency
and amplitude response. (Note that in general ¢=0 is not necessarily a solution as
was the case without adiabatic chirp.) From Equation 4.11 we can write the FM/AM

response as equal to (2:3/m)e™*. Together with Equation 4.8 this now yields

B L, Oegy ( iX)
— eXp —1¢ = 5 1 0 (4.12)

We have assumed the frequency response originates solely from carrier density
effects without contributions from current induced temperature changes which can
produce FM at low modulation frequencies (see section 2.3.2). This assumption
remains valid at the modulation frequencies used in these investigations.

For determining the FM/AM response one can directly measure the intensity
modulation index m and observe the FM spectrum directly on a Fabry-Perot inter-
ferometer in order to determine 8 and ¢ provided m is already known. In the absence
of adiabatic chirp the FM spectrum under modulation is symmetric. However, with
adiabatic chirp (or other phenomena which can alter the 7/2 relationship between
FM and AM) the field spectrum can be shown to have asymmetric peaks. Writing
the electric field as in Equation 4.11, it can be shown that the central mode intensity

is given as [7,11]

|E@)[ = =2 |J3(B) + - TE(B)cos ¢ (4.13)
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and the intensity of the side modes is given as

|E(w £ Q)

%éPﬂm+§§P&m+Jﬂm} (4.14)
%Jo(ﬂ)lfz(ﬁ) cos 2¢
Z1(8) o(B) + J2(8)sin 6] (15)

One sees that when the AM and FM responses are 7/2 out of phase with each

other, the sides bands are equal in size. However, if the phase difference is a value

other than 7 /2, there exists an asymmetry in the FM spectrum and the magnitude

of this asymmetry provides information on the underlying mechanism.

The coeflicient y in Equation 4.12 is shown to be proportional to the difference

in the effective a parameters in the two active sections. The reason a nonzero y

leads to adiabatic chirp is due to the fact that gain changes in one section must be

compensated for in the other section (i.e., Ag; = —Ags) to maintain oscillation. The

refractive index is given by

= An; + An,

= Ag(aiess — 0zess) (4.16)

thus demonstrating the importance of y is adiabatic chirping. The prospect for the «

parameter to vary as a function of pumping level has been discussed by several authors



79
and has been shown to be especially significant in DFB lasers [12,13,14]. It should be
mentioned that other mechanisms can lead to adiabatic chirp besides those mentioned
above. In particular, the presence of gain compression produces similar effects in the
FM/AM response [15]. However, two of the proposed dominant mechanisms of gain
compression, spectral and spatial hole burning, should not contribute significantly in

these experiments since the power levels investigated were sufficiently small.

4.4 Modulation and Chirp Measurements

The laser used in these experiments is a double channel planar buried heterostructure
(DCPBH) grown by a two-step liquid phase epitaxy process. A first-order uniform
grating is formed on a n-InP substrate via holography and wet chemical etching.
After InP regrowth a Au/Cr segmented electrode was formed by patterning with the

end and center electrodes approximately 700 and 50 m in length, respectively.

3. — p+InGaAsP
p-InP

n-InP
T p-InP

\ p-InP

n-InP Buffer Layer InGaAsP Active Layer

InP Substrate

Figure 4-7: Cross-sectional view of DCPBH laser structure
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The facets were cleaved and uncoated and the devices were mounted substrate
down. From measurements of the below threshold spontaneous emission spectrum,

! and the Bragg wavelength was

the coupling coefficient was estimated to be 88 em™
detuned approximately 20 nm on the blue side of the gain peak (see Figure 4-8). The
device lases in a single longitudinal mode at A = 1.32 ym with a threshold current

for each individual end section (i.e., other sections unpumped) of 32 mA. Side mode

suppression of 30 dB or greater was maintained throughout.

Optical Power (10dB/div.)

Wavelength (10 nm/div.)

Figure 4-8: Below threshold spontaneous emission spectrum of detuned DFB
laser. Lasing occurs on the blue side of the gain peak which pro-
duces a smaller effective value for a.

As shown in Figure 4-9, the two end sections are pumped with DC current while

section one is also AC modulated. In all measurements section one is pumped above
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el

Figure 4-9: Diagram of three section dfb laser and pumping scheme

its individual threshold while section two remains below its individual threshold. The
center section is left floating and acts as an absorber. Modulation measurements were
performed using a HP8673D synthesized function generator to capacitively couple
a RF current into the laser. An Ortel No.2610A broadband detector was used to
measure the intensity modulation index m and was calibrated to + 1/2 dB. The FM

spectrum was observed using a Coherent No. 240 Fabry-Perot interferometer with a
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SOE

Optical
Isolator

Fabry-Perot
Interferometer

Figure 4-10: Experimental arrangement for measuring FM/AM response in DFB
lasers.

free spectral range of 7.5 GHz (see Figure 4-10). In all measurements the laser was
optically isolated by a minimum of 60 dB.

As discussed above, one effect of inhomogeneous excitation of a semiconductor is
the introduction of a frequency and power dependence in the FM/AM response. Such
behavior is shown in Figures 4-11 and 4-12. In Figure 4-11, the laser 'M /AM response
ratio is measured as a function of the modulation frequency. In these measurements,
the laser is biased as in Figure 4-9 with section one above threshold and section two
below threshold. At low frequencies, 3/m increases as 1/ as predicted in Eq. 4.9.
At higher frequencies the response ratio approaches the constant value given by the
effective « parameter. In Figure 4-12, §/m is plotted as a function of the output
power. The modulation frequency in this measurement is 500 MHz. From Figure

4-11, the FM/AM response ratio will still show contributions of the inhomogeneous
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excitation. Indeed, 8/m increases linearly due to its implicit dependence on power

through the relaxation resonance frequency.

14

10 |-

2 | ] i !
0 0002 0.004 0006 0.008 0.01 0.012

1/Frequency(MHz B

Figure 4-11: FM/AM response as a function of modulation frequency.

The adiabatic chirp will be evident in the FM spectrum as an asymmetry between
the FM sidebands. In Figures 4-13 through 4-16, the FM spectra taken with the
Fabry-Perot are shown at four different pumping schemes, each with the same output
power of 0.4 mW. The modulation frequency used was 400 MHz. As the current
in section two is increased a clear asymmetry develops indicating an increase in the
adiabatic chirp y as the photon density distribution within the cavity is varied. From
these spectra one can numerically solve Equations 4.14 and 4.15 for § and ¢. The

procedure for obtaining ay.s; and y is then relatively straightforward. Once ¢ is
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Figure J-12: FM/AM response as a function of optical power.
known one can calculate y from the relation

tan ¢ = —;% (4.17)

In Figure 4-17 the quantities a;.s5 and x are plotted as a function of the injection

current distribution. A dimensionless parameter A is defined as

A= —2 (4.18)
1+ 2

where A=0.5 would indicate uniform pumping (neglecting the center absorber).

The uniform pumping condition was not measureable in these lasers due to the strong
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Output Intensity (au.)

Timebase (200 psec/ div.)

Figure 4-13: Fabry-Perot scan of DFB laser with A=0.07. Modulation frequency
= 400 MHz.

detuning of the Bragg wavelength from the gain maximum (see Figure 4-8). At
uniform pumping the entire laser was sufficiently transparent such that oscillation was
initiated by feedback from the cleaved (uncoated) facets and not from the grating.
This caused the laser to laser in the Fabry-Perot modes of the cavity.

From Figure 4-17, the effective o parameter in section one is decreased by nearly
a factor of two from approximately 4 to 2. From this result one can conclude that
the effective a-parameter in section two must be greater than or equal than 4 since
the chirp increases with a decrease in oy.5s. These results are also shown in Figure
4-17. Enhancements in y by as much as a factor of 3 were observed as the current
distribution was varied. The exact mechanism for the increase in y with pumping

in section two is somewhat elusive since both parameters 7p.7; and wy.sy can be
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Output Intensity (a.u.)

Timebase (200 psec/ div.)

Figure 4-1/: Parameters as in Figure 4-13 with A=0.24.

functions of the specific operating point. However, recent measurements have shown
Toess to decrease with the pumping level [18], which would produce a decrease in .
A possible explanation could be that as sy is actually negative causing a decrease in

aiesf to lead to an increase in . Such behavior has been predicted in two-section

lasers [19].
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Figure 4-15: Parameters as in Figure 4-13 with A=0.32.

Qutput Intensity (au.)

Timebase (200 psec/div.)

Figure 4-16: Parameters as in Figure 4-13 with A=0.36.
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Figure {-17 Linewidth enhancement factor and chirp as a function of injection
current distribution. Modulation frequency = 400MHz.
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Chapter 5

Noise Induced Transitions in Optically Bistable

Lasers

5.1 Introduction

The area of noise induced transitions in dynamical systems has received considerable
attention in recent years. In particular, the proposal by Benzi et.al. [1] of stochastic
resonance has stimulated a great deal of research. Initially put forth as an explanation
of the existence of the earth’s ice ages, stochastic resonance describes the phenomenon
of an exchange of power between a coherent input signal and an incoherent input noise
signal in a nonlinear system. The signature of this effect is an increasing signal to
noise ratio (SNR) (measured at the frequency of the coherent input signal within a
given bandwidth) at the system output with an increase in the input noise power
(see Figure 5-1). The first experimental observation of this effect was performed by

Fauve et.al. [2] by observing the switching of a saturated operational amplifier in a
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Schmitt trigger circuit driven by both modulation and noise. Following this work,
stochastic resonance was observed in a bidirectional ring laser [3] and later modeled
and somewhat quantified [4]. Although there has been extensive theoretical work
on the subject, the experimental work on stochastic resonance remains somewhat
limited.

The fundamental nature of stochastic resonance lies in the inherent nonlinearity
of the dynamical system in question. Although systems which display the effect
can in principle by multistable, most efforts have focused on the study of bistable
systems. Moreover, a distinction is often made between continuous and discrete
bistable systems. As discussed in previous treatments, the output power of a discrete
two-state system displaying stochastic resonance is constant, regardless of the input
signal power or noise power [4]. Increasing power at the system input changes the rate
of output switching between the two states; however, the additional power is merely
dissipated internally by the system through relaxation mechanisms. Although the
integrated output power is fixed, the frequency characteristics of the output power
are not necessarily constant. In fact, in dynamical systems displaying stochastic
resonance, power can be “redistributed” between the noise and signal components.
It is precisely this redistribution of power among various frequencies that can lead to
an increase in the SNR with an increase in input noise power.

A common way to visualize stochastic resonance is the double well potential model.

In this model, one assumes that a particle’s state is completely described by two
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Weak Signal f(®)

> System [__ Output Signal g(w)
Noise

Figure 5-1: Schematic diagram of the relevant signals in a system displaying
stochastic resonance.

independent states (see Figure 5-2). We assume that in making a transition from
one well to another, the relaxation time within a given well is much smaller than any
other time scale in question. Such an adiabatic treatment of the system will be valid
for all of the investigations to be described. The particle can make transitions from
one state to another either by (random) excitations over the potential barrier or by
externally induced modulation of the “effective” barrier height.

If there only exists a sufficiently small modulation of the potential barrier height,
transitions will not occur and therefore there is no measureable output of the system.
However, as noise is added to the system the noise can actually assist in lifting the
particle over the barrier thereby producing transitions and hence an output signal.
One can qualitatively see that the small modulation input signal will enhance the
output of the random noise induced transitions at a frequency equal to the modulation
frequency. This behavior is shown in Figure 5-3.

As the input noise power is increased the transition rates between the two wells

increases, particularly at the modulation frequency. However, when the input noise
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Wiy

Figure 5-2: Double potential well model with the input signal modulating the
barrier height. No noise is present in this picture.

Figure 5-3: Double potential well model with signal and noise present.
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becomes sufficiently large (a quantitative measure will be given shortly), the output
is dominated by the random switching and looses any of the coherent nature of the

input signal.

5.2 Theory of Stochastic Resonance

5.2.1 Rate Equation Analysis

In order to quantify the ideas of stochastic resonance, we follow a treatment similar
to that found in [4]. We assume that the system occupies one of two stable states:
z=c, z=-c. The system can be modeled by a rate equation analysis by writing the

time dependent transition rates (X4 (t)) out of the potential wells as

Do o o5 1) - Balthoal) (5.1)
= S(1) — [B_ () + B4 (D) pet) (5.2)

The solution for p,(t) can be found through the use of an integrating factor as

pe(0) =7 (0 [p4(t)gtte) + [ S(@)g(e)at] (53

to

where

o(t) = exp [ [S4(¢) + S_(¢)] dt (5.4)
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The critical point in the analysis is now obtaining a form for the transition rates
Y4 (t) such that the solution for pi(¢) can be obtained. If one assumes that the
input modulation signal is sufficiently small compared to the RMS noise power, an

approximate form for the transition rates can be written as

Y1(t) = f(p £ n, coswst) (5.5)

where we have taken the same notation as in Ref.[4] such that p is a parameter
representing the noise power, 1, represents the modulation amplitude, and w; is the
modulation frequency. With this approximation the transition rate can be written as

Ei(t) = (ao F a7, c0s Wit 4+ agnicos w it F ... ) (5.6)

o =

where

oo = f(w) (5.7)

1 o (=nrdrf
-l dyr

(1) (5.8)

After substantial algebra, the integrating factor g(t) can be written as

g(t) = " [Iy(B) + 2L, (B) sin 2w,i] (5.9)

where I, is the n'* order modified Bessel function, and the additional notation is
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defined as

2
Q2T

v o= o+ 5 (5.10)
2
Q37],
= — a1
5= 2L (5.11)

At this point, one can obtain the conditional time dependent solution for p(t|zo, to)
and from this the autocorrelation function < z(t)z(t + 7) >. If one carries the above
expansion only to the first order in w; (i.e., if only the fundamental response of the
system is investigated), then one obtains the following [4]:

alng coswgty — ¢

cr BT

1
p+(t120, to) = -2- [eao(t—to) [2620& -1

1Mo COS Wyt —
1+ 17o ¢]

ER

(5.13)

2.2 2
<z)z(t+71)> = aeool! {1 _ajng cos”® (wyt — ¢5)]

(o +w?)
a*aing {cosw,T + cos (ws(2t + 7) + 2¢)}

i 2(al + o2

From the autocorrelation function one can easily compute the power spectrum

S(2) through the Wiener-Khintchine theorem thereby obtaining [4]

) = {1 Ty e } [ e ]+ (mzagng 5(8 = w,) (5.14)

af +wi)] [ag+9%]  (af +w3)

The power spectrum consists of a Lorentzian distribution resulting from the ran-

dom noise switching (this will be shown shortly) as well as a delta function at the
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modulation frequency. In the absence of signal, the output remains Lorentzian, how-
ever with a slightly larger amplitude. The effect of the signal is to “clock” the random
switching at the signal frequency. Furthermore, Equation 5.14 shows that there is a
transfer of power from the noise to the signal. It is precisely this mechanism which
leads to the increased SNR.

One can continue the expansion to the second order in w, in order to study the
behavior of the higher harmonics of the system response function. The autocorrelation
function can be found in the same manner as in Ref. [4]. After a substantial amount

of algebra, one finds

22 2Liwsaan? wlyain?
£)(t = M- 1 i D
sty = 1 gl T P
1 2 411(-‘-’3'7
+'§d 171 — m COS wS(T[
1 ofn?l . -
+§W [Qws’y cos 2w, || 4+ (7* — w?) sin 2wS]T|] e (5.15)

In addition to the slight modifications to the exponential noise distribution and
the first-order response, there are clearly contributions to the correlation at the second

harmonic. The last two terms in the expression for < z(t)z(t +7) > can be rewritten

as

R cos (2w;|T| — 9) (5.16)
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where we have defined

R = J4wiy? + (2 +w?)? (5.17)

2 2
L LA 5.18
¢ " ( 2wy ) (5.18)

The quantity v is of the utmost importance in these expressions. Physically, v
behaves as the inverse of the input noise. It has been described as the ratio of the
(fixed) barrier height to the noise power [4]. In finding the contribution to the power
spectrum from the second harmonic terms (through a Fourier transformation) of the
terms represented in Equation 5.16 one obtains

1 {2ycos¢+2(2ws —N)sing  2ycos ¢+ 22w, + ) sin ¢
2 72 4+ (2w, — Q)2 72 4+ (2w, + N)?

(5.19)

If the input noise is very small with respect to the barrier height, v becomes very
large and the phase angle ¢ approaches —7 /2. In this situation it could be possible
for the contribution of the power spectrum from the second harmonic as given in
Equation 5.19 to become negative thereby producing a dip in the spectrum at 2w,.
Such behavior has been seen in analog simulations of bistable systems [16] and will

be discussed below in bistable electronic circuits and semiconductor lasers.
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5.2.2 Kramer’s Analysis

An additional approach to the problem of stochastic resonance is to analyze the double

potential well model within the framework of a Kramer’s escape problem [4],[15]. The

double well potential without modulation can be written as

and the potential with modulation as

V(z,t) = Vo(2,t) — Azsin (wst + ¢)

The Langevin equation of motion now becomes

%; = az — bz° 4+ Asin (w,t + ¢) + ((¢)

where ((t) represents Gaussian noise such that

(C(t1)¢(t2)) = 2Dé(t —t2)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)
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In the absence of modulation, the Kramer’s escape rate can be determined by [15]
1
Sescape = 5[V, (0)IV,'(20)]'*exp—AV,/ D (5.25)

The escape time is found simple by Tescape = 1/Xescape- The input noise induces
random transitions between the two wells similar to the telegraph process in com-
munication theory. If one defines F, as the event of obtaining exactly n transitions
between times ¢, and t;, one can show that this process obeys a Poisson distribution

as [14]

(Mt — ta]]"

PE,) = n!

exp [—Alty — ta] (5.26)

It 1s straightforward to show that the autocorrelation function is also an exponential
function and through the Wiener-Khintchine theorem, the power spectrum is then
found to be a Lorentzian.

With modulation present, the rate of escape is modified and can be well approxi-

mated as

1
Y escape = 5—;[]%"(0)]Vo”(zo)]lﬂemp(—A% + usinwgt) /D (5.27)

Now with expressions for the transition rates the power spectrum can be calculated

and the SNR determined. This has been carried out in Ref. [4] with the result

1
SNR~ 73¢7(2V,/ D) (5.28)
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At very small values of the input noise D, the SNR drops since the exponential
drops more rapidly the 1/D?. At large values of D, the exponential approached unity
and the SNR drops as 1/D?. Intermediate to these two regimes is a point of maximum

SNR which from Equation 5.28 can be found to occur when D = V,,.

5.3 Experiments on Bistable Electronic Circuits

In order to investigate stochastic resonance in bistable systems, it is convenient to
study the bistable electronic circuit, the Schmitt trigger, since it allows one to vary
several parameters of the system easily. These parameters include the hysteresis char-
acteristic, switching points, and switching speed. It will be shown that some of these
parameters are either difficult or impossible to control in the bistable semiconductor
laser.

The circuit used for these experiments is shown in Figure 5-4. It consists of input
isolation stages followed by summation, additional isolation, and finally the Schmitt
trigger. The output is symmetrical with respect to zero and the switching time
from negative saturation to positive saturation was measured to be approximately
0.2 usec. The inputs to the system are a 180 mV sine wave at 15 kHz and broadband
white noise. The noise is obtained from a pseudorandom bit generator as describe in
Appendix C. The power spectrum of the white noise was measured to be flat to within
+ 0.1 dB from 400 pHz to 400 kHz. In Figure 5-5 is plbtted the signal and noise

amplitudes at the output of the Schmitt trigger. The measured output spectrum was
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Figure 5-4: Circuit diagram of Schmitt trigger.

normalized to a 1 Hz bandwidth and averaged for 1000 scans. As the input noise
power is increased both the signal and noise increase, however the signal component
increases at a faster rate than the noise component. This produces an increase in the
SNR as displayed in Figure 5-6. After reaching a maximum, the SNR decreases as
the system is dominated by the input noise.

It is also instructive to study the phase relationship between the input and output
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Figure 5-5: Signal output and noise output of the Schmitt trigger circuit shown
in Figure 5-4. Switching occurs at V;, = £0.590V. Modulation
frequency is 15 kHz.

signals in the Schmitt trigger. If a sine wave is used as the input signal, the output
will be a square wave whose phase is shifted from the input. It is straightforward to

show that the phase shift can be written as

—hyst:) (5.29)

where Vj,, 5. is the switching voltage required at the input (set by the system) and A
is the amplitude of the input signal.

One can take this reasoning one step further and show that input amplitude noise
is converted to output phase noise in a bistable device such as this while input phase

noise remains as output phase noise. This AM-PM conversion is extremely non-linear
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Figure 5-6: Output SNR as a function of input noise level in Schmitt trigger
circuit.

as can be seen in the relation

(5.30)

Vhyst.
A,(1 4 mcos )

B(t) = sin™? [
where m is the AM modulation index. As a test of Equation 5.29 a measurement of
the input to output phase shift as a function of the input amplitude A was carried
out. The results of this measurement are shown in Figure 5-7. The dashed line
represents a fit of the data to Equation 5.29. From the fit a value of 180 &+ 2.5 mV
was obtained for the switching voltage Vj,,;. which agrees with the value calculated
from the experimental parameters of 188 & 4 mV.

In addition to the phase shift as a function of input amplitude, there also exists

the obvious phase shift due to the limited response time of the system. In Figure 5-8



106

70 T I T T T

60 (? -
_ .1
§ 50 - \ FIT: ¢ =sin (Vhyst /A) .
B ¢
) 40 | \ N
A 1
Q \
£ 20 |- "o i

10 - — %

0 | | i i {

0 0.5 1 1.5 2 2.5 3

Input Signal Amplitude (V)
Figure 5-7: Phase relationship between input sine wave and output square wave

as a function of input signal amplitude. From the fit one obtains a

switching voltage of 0.18 V.

is shown the phase shift as a function of the input signal modulation frequency with
the input amplitude remaining fixed. Due to the limited response time (in particular,
the Schmitt trigger), this particular circuit configuration is limited to approximately
a 1IMHz bandwidth.

As discussed in the previous section, the response of a bistable system at the second
harmonic frequency can exhibit anomolous behavior under certain input conditions.
In particular, attention was given to the noise suppression or “dip” in the power
spectrum at 2w,. In Figures 5-9 and 5-10 the amplitude spectrum is plotted for
three different input noise levels. The modulation amplitude and frequency remain
constant in all measurements as does the threshold switching voltage. The threshold

voltage was set to 590 mV and the input modulation amplitude was 180 mV. One
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Figure 5-8: Phase relationship between the input sine wave and output square
wave as a function of the modulation frequency.

sees that at low input noise levels a clear dip develops at 2w, and the depth of the
dip increases as the noise levels decreases. Also evident in both figures is a response
at 3ws. Such behavior has been reported in a similar circuit however with 1/f noise
instead of white noise at the input [5]. From the present results, it appears that
there exists no requirement for noise characteristics other than white noise in order
for noise “suppression” to occur at even harmonic frequencies (similar effects have

been observed at the fourth and sixth harmonic).



108

O H H T T
-10 ¢ .
Input Noise Power = -62.36 dBV /VHz
) =-62.67 dBV/VHz
-20 = 6323 dBV/VHz

Output Amplitude (dBV/VHz)

0 20 40 60 80 100
Frequency (kHz)

Figure 5-9: Output amplitude spectrum of the Schmitt showing response at
the fundamental and second harmonic frequencies for various input
noise levels.

5.4 Experiments on Bistable Semiconductor DFB

Lasers

Having provided a theoretical and experimental foundation for stochastic resonance
with the electronic Schmitt trigger, we now turn our attention to semiconductor lasers.
In these experiments, a two-section DFB laser was used with parameters similar to
those found in Chapter 4. The continuous wave (CW) threshold current in section one
was 58 mA, while section two could only be pumped to 22 mA to prevent lasing off
the Bragg wavelength (Ajg5in, = 1.32pum). For the purposes of this investigation, the
property of primary importance for this device is bistability. As shown in Figure 5-11,

the laser exhibits bistability in its output power and output wavelength as a function
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Figure 5-10: Enlarged scale of the measurements in Figure 5-9.
of injection current. (The laser exhibits this bistability with current injection into
either section one or section two but for the sake of brevity we show only section one
current in this figure.) It should be noted that the observed bistability is markedly
different form that of the more familiar structure of a semiconductor laser with an
incorporated saturable absorber. The bistability here takes place between switching
of the two degenerate modes of the DFB laser. The hysteresis arises from section
two acting as a (active) frequency dependent reflector. The mode spacing between
A+ and A_ is 14 A and side mode suppression of 25 dB or greater was maintained
throughout.

For the purposes of understanding the two states of the device we plot the various
operating points of this laser in the ¢; — ¢; plane as shown in Figure 5-12. The figure

shows the regions of consistent operation in either mode one or mode two and also
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Figure 5-11: Bistable operation two section DFB laser.

the region of hysteresis. The operating mode in the hysteresis region depends on the
recent history of arriving at the operating point. With the information in Figure
5-12 an optical experiment analogous to the electronic Schmitt trigger experiment
can be constructed. An operating point is selected within the hysteresis region as
designated by the asterisk. A small modulation current is then superimposed on
iP% and a noise current (white) is superimposed on 2. In the context of previous
treatments of stochastic resonance, these currents have the effect of modulating the
“potential barrier height” and varying the particle’s energy, respectively. However, the
dynamics here are somewhat different from the double potential well picture since the
random variable is discrete and switching between states is taken to be instantaneous.
As previously discussed, one must exercise care when considering white noise (zero

correlation time) in such discrete state systems. Frequently, the noise is modeled as
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an exponentially correlated process (i.e., Ornstein-Uhlenbeck noise) [8].

16 T
A
) 15 . ]
<
!
)
=
O
o - —
b 13
2 A
8 ~
[9p] 12 F .
—11 i { 1 |

76.5 77 77.5 78 785 79 79.5

Section-1 Current (mA)

Figure 5-12: Operating point graph for two section DFB laser. The asterisk
represents the operating point for the stochastic resonance experi-
ments.

The observation of stochastic resonance in this device can be accomplished by
employing the output power or the oscillation wavelength as the output variable. We
choose to measure the oscillation wavelength since this greatly facilitates distinguish-
ing the two separate states. A modulation current at 30 kHz is capacitively coupled
into section one and a white noise current is directly injected into section two. The
output optical field of the laser is passed through a 0.28m spectrometer (resolution
of 2A) which is tuned (arbitrarily) to transmit A_. The output signal is detected
with a 10 MHz bandwidth germanium photodiode and provides the output signal for
spectral analysis. In this way, the detector output is high when the laser was lasing

in mode one (A_) and low when the laser was lasing in mode two (A;). The power
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spectrum of the detector current was then amplified and observed on a Stanford Re-
search Systems SR760 FFT audio spectrum analyzer with a resolution bandwidth of

250 Hz over a 100 kHz span.
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Figure 5-13: Output amplitude spectrum of electrically switched DFB laser.

The modulated signal applied to the system was sufficiently weak such that in
the absence on input noise no switching occurred. The introduction of noise (which
alone is able to induce random transitions) then provides an effective lowering (in
phase) of the potential barrier height such that transitions driven by the modulated
signal may occur. A typical power spectrum of the output current of the photodiode
is shown in Figure 5-13. The power spectrum consists of the characteristic peak at
the modulation frequency superimposed on the Lorentzian noise distribution. As the

input noise power was increased the width of the Lorentzian increased accordingly

(see Figure 5-14).
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Figure 5-14: Output amplitude spectra for various noise levels in an electrically

switched DFB laser.

In order to observe stochastic resonance, the SNR at the modulation frequency
was measured at various input noise powers while keeping the modulation amplitude
and frequency constant. The signal is defined as the height of the modulation induced
peak in the output amplitude spectrum and the noise as the interpolated level at the
modulation frequency (or the noise power at the modulation frequency with only noise
at the input). The results of this measurement are shown in Figure 5-15. (The SNR
has been normalized to a 1 Hz bandwidth for convenience.) As the input noise power is
increased, the output SNR increases by approximately 22 dB before decreasing at high
input noise power. This behavior is similar to that reported in [2] and represents the
first observation of stochastic resonance in a semiconductor laser. It should be noted

that switching times in this laser are on the order of 1 ns and therefore could serve
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Figure 5-15: Output SNR as a function of input noise power in a two section
DFB laser.

as a useful tool for experimentally studying ultra-high frequency effects in stochastic
resonance.

It is instructive to study the signal and noise components in the output spectrum
separately. In Figure 5-16 we see that at low input noise levels the output signal
component increases with input noise at a faster rate than the corresponding output
noise component. Similarly, at high input noise levels the output signal decreases
at a faster rate than the output noise component. It is straightforward to conclude
that intermediate to these two regimes lies a maximum in the output SNR. This
behavior is quite similar to the previous experiments with the Schmitt trigger further

supporting the notion of stochastic resonance as a universal phenomenon.
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Figure 5-16: Signal and noise components in two section DFB laser.

5.5 All Optical Stochastic Resonance in a Bistable

Semiconductor Fabry Perot Laser

In addition to observing stochastic resonance in an electronic input/electronic output
system or an electronic input/optical output system, one can also investigate an all-
optical system utilizing both optical input and output signals. Such a scheme could
prove to be useful in an all-optical repeater technology [9]. The most straightforward
method of observing all-optical stochastic resonance in semiconductor lasers is to
employ a Fabry-Perot laser structure which incorporates a saturable absorber. This

device has been investigated extensively by Harder and Yariv [11]. A schematic
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diagram of the device is shown in Figure 5-17.
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Figure 5-17 Two-section Fabry-Perot laser incorporating a saturable absorber.
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Figure 5-18: Hysteresis characteristic of a two-section Fabry-Perot semiconduc-
tor laser

Typically, bistability in this device is exhibited by sweeping the injection current in
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one of the sections thereby causing the output to switch from above to below threshold
with a hysteresis characteristic. Measurements of such behavior is shown in Figure
5-18. The laser used was a two-section InGaAsP Fabry-Perot laser with uncoated
facets. Each section length was 350 ym with an electrical isolation of appoximately
800 2. As the current in section two is increased, the hysteresis loop moved to lower
currents since the absorber section (in this case, section two) is more readily bleached
by the internal optical field. Section one turn-on currents were decreased to 50 mA
(section two current = 25 mA) and 43 mA (section two current = 30 mA). The fact
that the hysteresis loop can be varied in its position is a very useful characteristic for

the stochastic resonance experiments.

Output Optical Intensity (a.u.)

»

Input Optical Intensity (a.u.)

Figure 5-19: Hysteresis characteristic in an optical input/output bistable Fabry-
Perot laser diode.

In these experiments, we use an optical signal which is coupled into the active
layer as the input modulation signal. Such an arrangement is similar to an injection

locking geometry. The hysteresis characteristic for this configuration is shown in
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Figure 5-20: Experimental set-up for measuring all optical stochastic resonance
in a two-section Fabry-Perot laser.

Figure 5-19. An experiment analogous to the Schmitt trigger can now be constructed.

The experimental arrangement for this experiment is shown in Figure 5-20. An optical

signal with a given SNR is “constructed” by using suitable AC and noise currents to

drive a single-mode DIFB laser lasing at 1.32 pm. After optical isolation, this optical

signal is injected into the back facet of the two section Fabry-Perot laser described

above. The two DC currents of the Fabry-Perot laser enable the hysteresis loop to be

positioned such that the average DC optical power lies in the center of the loop. This

is analogous to the selection of the operating point in Figure 5-12. The output of the

Fabry-Perot (A = 1.35um) is separated from any trace of the input signal which may

diffract around the laser with a diffraction grating. The signal is then detected with

a photodiode whose photocurrent is measured as before.
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Figure 5-21: Output SNR as a function of input noise power for bistable two
section Fabry-Perot laser.

The results of this measurement are shown in Figure 5-21. As with the other
stochastic resonance experiments, there is a dramatic increase in the output SNR
with an increase in the input noise power and then a subsequent decay at large noise
values. As alluded to previously, this device could hold promise for applications
in optical regeneration and wavelength conversion. Its ability to tune not only the
hysteresis position but also the hysteresis width through the DC current selection

enables this device to tailor its response to a variety of input signal characteristics.
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5.6 Conclusions

The phenomenon of stochastic resonance has been shown to be a somewhat uni-
versal effect in connection with bistable dynamical systems. It was demonstrated
in electronic systems, opto-electronic systems, and lastly all optical systems. From
the point of view of applications, the bistable Fabry-Perot laser offers much promise
since all signals remain in the optical domain. However, there are many areas which
still need to be investigated. Some of these include the influence of “critical slowing
down” on the system response, the effects of input noise other than white noise, and
the possibility of exploiting the anomolous behavior of these systems at the second
harmonic frequency. Given the importance of SNR and its possible enhancement in
modern communications systems, stochastic resonance should remain a viable area

of research.
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Appendix A

Rate Equation Analysis of an Externally Coupled

Dispersive Loss

The result for linewidth reduction by a dispersive loss as predicted from the Van
der Pol analysis is applicable to any semiconductor laser system with optical feed-
back (under the constraints mention in section 3.2.1 ). As previously stated in the
preceding analysis, it was assumed that the loss mechanism was situated within the
semiconductor laser cavity. The difference between an analysis of a loss mechanism
within the semiconductor laser or external to it appears as a correction in the am-
plitude fluctuation terms in the rate equations. This arises from the effects of the
finite delay time of the field in passing through the external loss mechanism. For
calculating the spectral linewidth this does not affect the results, as will be shown.
This shows the validity of the Van der Pol method. It is independent of the particular
configuration or geometry of the optical feedback. The key advantage of this analysis

is that one only needs to calculate () from the system specific operating conditions.
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As a verification of this model we now calculate the linewidth reduction for our sys-
tem by carrying out detailed dynamic calculations for the complex field amplitude
and carrier density.

To calculate the laser linewidth the rate equations are written as

St) = (G- —;—S(t) +2 [n(wm) + —g—g ] /St —7)S(t)cos (¢ + 6¢)  (A.1)
QS(t) = g—(G — %) — (W, = Q) — [/{(wm) + % ] . S(St(;) T sin (P + 6¢1A.2)
N o= —gs-Nipyz (A.3)

Ts

where 7, is the spontaneous carrier lifetime, E is the pumping rate, and = is the carrier
Langevin noise source. The rate equations are linearized about small variations as in

Section 2.3. Additionally, the time delayed quantities are Taylor expanded as

Sit—71) TP
s~ 1T (A4)
¢ = ¢(t) -4l —7) (A.5)
~ T (A.6)

Equation A.6 relies on the assumption that the delay time 7 is much smaller than
the coherence time, which is valid for the cavity lengths and observed linewidths in

this experiment. This linearization leads to a system of coupled linear differential
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SP
= GnS,n — TP + As
= %GNU + Ay

1
- - <—T— + GNSO> U/ G(no)so + =

(A7)
(A.8)

(A.9)

where ag and by are the in-phase and quadrature components, respectively, of the

frequency dependent phase variations of the field field defined as

agp =

by =

K(wm )7 (w) cos @

k(W )T (W) sin @

(A.10)

(A.11)

and a, and b, are the in-phase and quadrature components of the frequency dependent

amplitude variations of the feedback field defined as

a, —

(A.12)

(A.13)

This linear system of coupled differential equations can be readily solved by taking

the Fourier transform of the equations and then algebraically solving for the trans-

formed functions 5, ¢, and 7. Instead of then carrying out the inverse transformations
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one can calculate the variance of the phase diffusion as
a1 °° T ON2 it
< Ag(t)* >= ;I_—Real dQ < |¢(Q)" > (1 —e (A.14)

where the Fourier transform of the phase is given by

AsAs(w) + AgAg(w) + AnZ(w)
Det

¢ = (A.15)

where the determinant Det is given by
1
Det = iw {G(no)GNSO la(bo — @) — (1 + ag + by)] — (iw Fo GNSO>

SP

[(iw(l +ag) + S ) (1+ ag + b)) — twbg (b — an)}} (A.16)

Since we are only interested in the linear time dependence of (Aé(t)?) (i.e., phase
diffusion behaving as Brownian motion) in calculating the linewidth, Equation A.14
is evalulated by contour integration only considering the secord-order pole at w = 0.

After a substantial amount of algebra this integration leads to

25, (1 4+ aC, + C;)?

(Ag(2)?) = t=2w(Av)t (A.I7)

where the quantities relating to the self-damping rates have been neglected and C,

and C; are as defined in Equations 3.25 and 3.27. Using the definition of the mod-
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ified Schawlow-Townes linewidth, Av, = R5F(1 + a?)/47S,, the expression for the

linewidth reduction becomes

Av 1 1
= = A.18
Av, [l+aC,+C]* @ (A.18)

Therefore, the linewidth reduction behaves as 1/Q? identically as predicted by the

Van der Pol analysis.
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Appendix B

Resonant Doppler-Free Faraday Rotation in

Atomic Cesium as a Dispersive Loss

In order to describe quantitatively the feedback signal from the external cavity con-
taining the cesium vapor, we calculate the susceptibility of the cesium / magnetic
field system as a function of wavelength. The susceptibility for calculating the pump
transmission is simply a straightforward calculation involving an inhomogeneously
broadened medium. For the returning probe beam, one must take into account the
redistribution of level populations induced by the pump beam. Various authors have
treated either the cesium system or similar systems through a variety of theoretical
techniques [1,2,6].

The resonant levels in the cesium which are employed for the frequency locking
technique are shown in Figure B-1. The particular transition in this manifold at 852.1
nm employed in the present experiments involves the F=5 and F=4 hyperfine levels

(each with a degeneracy of 2F+1). The splitting between the F=3 and F=4 ground
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states is 9.193 GHz and is commonly used as a frequency standard in atomic clocks

[5].

F=
5 "'“‘
6p /
3/2 4
\ 3
\ 852.1 nm
2
F= Y
6s’l/z / 4 "0
N\ 3

Figure B-1: Cesium level diagram at 852.1 nm

In order to calculate the energy shift with an applied magnetic field one needs the

Lande g-factors which are given by [4]

FF+1)+JJ+1)-I(I1+1)

o(F) = g(7) T (B.1)

The energy shift produced by the magnetic field can then be calculated by

AE = gmphwy, (B.3)



130

F =3 -351 kHz/Gauss
F =4 | 4350 kHz/Gauss

F' =21 -934 kHz/Gauss
F''=3|-0.55 kHz/Gauss
F''=4| 4373 kHz/Gauss
F' =5 | +560 kHz/Gauss

Table B.1: Frequency shifts due to magnetic field splitting.

where wy, is the Larmor frequency. The frequency shifts for each of the levels are
listed in Table B.1.

Assuming the selection rule of Amp = 0,£1, there are 27 possible transitions
each with a specific transition strength as shown in Figure B-2. If one groups these
transitions into groups of constants Am the following expressions for the transition
energy are obtained

AE = ho,+ [%lg— - %} hwr for Amp =1

AE = hw,+ %—’gth for Amp =20

AE = hw,+ [—3—"1 - 3} hwr for Amp = -1

20 5
The susceptibility can now be expressed in the basis [6]

& = —-}ﬁwwm (B.4)
. ij_f

- \/i( 9) (B.5)
& = 2 (B.6)

as
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16 21 24 25 24 16 9

. 2
2 |Bomr+ 1] (3 +ig) | 4,mp)
Xt T 9k 2 3mp | 2 (B.7)
o mp=—4 <w0+ [ 20 + -5- w —W‘Z‘é‘)
2
g [ me = LI G5 =) |4 5s)
X-—- = .
62 +4 5,mp z 4,mp
Xoo = % h l< _S.Cn_E’. | >|F (Bg)
(T AL —— (wo + 26 WL —w—z;)

In order to take into account the Doppler broadening of the spectral lines one can

define a Voigt parameter as

Avy
a= AVD\/lHQ (B.10)

where Avy is the natural linewidth and the Doppler linewidth is obtained from the



Maxwellian velocity distribution as
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Avp = 2\/ln2£°— M
cyV M

(B.11)

where M is the cesium atomic mass. An additional quantity Av,, relating the fre-

quency difference of the transition to the Doppler linewidth is defined as

14

2AyED
ro _ 20T o

m

AI/D

where Av,, 1s the transition frequency deviation from the zero field case.

With these definitions the expressions for the susceptibility now become

Ne?iv/In2

4
Z Wy — vyt +ia) £

Xbt = 2mw,€,\/TAvp iz
Ne?i/In 2 4 11
X - Smusen/EAvD m§_4 W —vn " +1ta)f,,
Ne?i/In 2 4
Yew = e Z W(v — vy’ +ia)f2

2mw,e,/TAvp m—

where the plasma dispersion fucnction W is defined by

W (z + 1y)

[t
T Jeo T4y —t

WRe + ZWIm

(B.12)

(B.13)
(B.14)

(B.15)

(B.16)

(B.17)
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This function may be expanded as
W) = e 4 e 2 /$dt # (B.18)
z) = e — € .
NZaL

One can see that the real part of the plasma dispersion function is simply a

Gaussian while the imaginary part is given by
Wi = —=D(() (B.19)

where D(() is defined as Dawson’s integral [7].
It is now a straightforward matter of calculating the transmission through the
magnetically active cesium medium sandwiched between crossed polarizers. Taking

the incident electric field parallel to that of the first polarizer one obtains

1
T = 5 eXP —@L [cosh AaL — cos 2pL] (B.20)

where @, Aq, and p are defined as the absorption, circular dichroism, and rotary
power, respectively. These quantities may be expressed in terms of the previous

definitions as

mp=-—4

4
T = a { > Wre(v — vt +ia)fi' + Wee(v — ;' + ia)ngl} (B.21)



134

T T I ] T 1
01 R -
B=10G
"e 0.001 - -
S
= - .
8
& 107 | -
2
<
107 | -
10-9 ! ! L
-1.5 -1 0.5 0 0.5 1 15

v - vo) (GHz)

Figure B-8: Single pass absorption coefficient. I/I,; = 10, Cell temperature =
25 °C.

4
Ao = a, { S Wee(v — v +ia) f1 — Wre(v — vt ia)f,;l} (B.22)

mp=-—4

4
p = % { So Wimlv — vyt +ia)frt = Wra(v — vt + ia)f;{l} (B.23)

mp=—4

These quantities are plotted as a function of frequency in Figures B-3, B-4, and
B-5.

The transmission is plotted in Figure B-6 as a function of frequency for various
magnetic fields. At small magnetic fields such as those in Figure B-6, the transmission
at linecenter is very small due to large absorption and a small rotation in the cesium.
However, in the wings of the transition, the absorption can be neglected and the
transmission is chiefly governed by the rotation explainingywhy transmission increases

with magnetic field.
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Figure B-4: Single pass circular dichrosim. I/I;,: = 10, Cell temperature = 25
°C.

It is also instructive to investigate the temperature dependence of this arrange-
ment. Although the temperature causes an increase in the Doppler linewidth, it also
effects the density of the cesium since cesium is a solid at room temperature. One

can use the empirical relation [8]

log P = 4.165 — %33 (B.24)

in order to calculate the vapor pressure of cesium as a function of temperature and
then calculate the corresponding density. In Figure B-7 the peak transmission is
plotted as a function of temperature. The transmission increases shown are a direct
result of Equation B.24.

In order to calculate the transmission of the return probe beam, we can again
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Figure B-5: Single pass rotary power. I/I;,; = 10, Cell temperature = 25 °C.
solve for the suscepibilities and use the formalism presented above. However, since
the population is no longer in thermal equilibrium one must utilize a slightly different
approach in solving for x than that used in Equations B.7-B.9. A common technique
for solving such a problem is to employ density matrices. The suscepibility for a
two-level system can be written as

) = ) (B.23
where N is the atomic density, p;; is the dipole matrix element, and E is the electric
field magnitude. The diagonal density matrix element p;5 can be written as

(1/R)prz E(w')Ap

w —w, 411

pi12(w') = — (B.26)
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Figure B-6: Single pass transmission coefficient. Cell temperature = 25 °C.

The crucial element of this expression is the population function Ap This quantity

can be expressed as [3]

. T 00 R
Bp =891 w/)2 jr - (B.27)
where
Ap” o
Ap°(vs, B) = e (B.28)

VT
where Ap®° is the population difference between the two states given by the Boltzmann
distribution and 3 describes the Doppler broadening width.
The only atoms which both the pump and probe encounter are those which possess
only transversal velocity components (i.e., v, = 0). All other velocities are unaffected

since the pump and probe are counterpropagating. This can be described by replacing
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Figure B-7. Temperature dependence of single pass transmission

w in the expression for Ap with w — kv and w’ in the expression for pjo with w’ +
kv. Furthermore, the expression for Ap® in Equation B.28 must be substituted into
Equation B.27. With these substitutions one integrates over all positive and negative

velocities yielding

I ——Nlp12|2APOO / ~u2/ﬁ2
_ ] B.29
X(W ) h\/__ﬂ dv 1 + o IPlfLay } [wl —w, — kv, + ’LF] ( )

(w—wotkvz)2 4172

By taking the real and imaginary parts of this integral the expressions for x’ and y”
can be obtained. After a contour integration and application of the Kramers-Kronig

relations one obtains [10]

| 2
Ax"(w') = {1 — L } . sat 5 (B.30)

\/1+I/Isat 4(whw0)2+rsat



139

1 Ioi(w—w,)
Ax'(wW) = 247 |1 - . (B.31)
) [ Ny 1} Mo — w1 Lt

where x/ is the imaginary part of the susceptibility in the case of thermal equilibrium
of the level populations (see Equations B.13-B.15), I, is the saturation intensity

(Isat = 1 mW/cm? in cesium), and the saturated linewidth is defined as

1
rmzr{u 1+ } (B.32)
Isat
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Figure B-8 Probe beam absorption coefficient. Temperature = 25°C.

At this point it is worth noting that this calculation of the modifications to
the probe susceptibility has neglected several effects. With the counterpropagating
pump/probe arrangement, the strong pump wave can alter the radiation and ab-

sorption lineshape function of the atoms. These effects have been investigated both
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Figure B-9: Probe beam circular dichroism. Temperature = 25°C.

theoreticaly and experimentally and have been shown to be significant at large values
of I/Is [9]. Other effects include spatial inhomogeneity of the beam profiles, transit
time effects, and polarization crossover resonances. Discussions of several of these
phenomena can be found in [10,9,3].

With the expressions for the susceptibility of the probe, one can calculate the
transmission in the same manner as above for the pump beam. In Figures B-8,
B-9, and B-10 are plotted the absorption, circular dichroism, and rotary power for a
magnetic field of 1 Gauss at room temperature. As one might expect, the absorption
profile is essentially the same as for the pump at all frequencies except at linecenter
where the pump and probes interact with the same class of atoms. The width of the
absorption dip is approximately equal to I',,; as defined above.

In Figure B-11, the total transmission function (i.e., the product of pump and
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Figure B-10: Probe beam rotary power. Temperature = 25°C.

probe transmissions) is plotted for a magnetic field of 1 Gauss at room temperature.
An extremely narrow Doppler-free feature is obtained at linecenter with a width also
equal to ['y,;. It is instructive to examine the dependence of transmission on the
degree of saturation by the pump beam. In Figure B-12 one can see that pump
intensities above 30-40 times saturation intensity increase the transmission only very

slightly.
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Figure B-11: Two-pass transmission function. Temperature = 25°C.
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Figure B-12: Calculated maximum two-pass transmission as a function of input
pump intensity.
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Appendix C

Generation of Broadband Analog Noise

Broadband white noise is commonly found in physical systems such as the thermal
noise across a resistor or reverse biased diode. While in principle these could be
used as voltage sources for white noise, they suffer from the limitation of a small and
fixed output noise power. Further amplification would lead to the complication of the
spectral response of the amplifier stage. Because of these and other complications,
such devices are not well suited for serving as variable amplitude noise sources.
Several methods have been proposed and demonstrated for the generation of white
noise signals. Among these are signal transformations [2] and chaotic maps [3]. A
more direct and practical approach to the generation of broadband white noise is
by filtering random digital signals. A common technique of generating “random”
digital signals is the pseudo-random bit sequence (PRBS) generator [1]. This method
produces a digital bit stream that is truly non-periodic over some maximum length.
The assurance of this achieving this maximum length is governed by the specifics of

the circuit design. The bit stream (which can be up to several million bits long) is
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then repeated producing a periodicity of very low frequency. Through analog low-pass
filtering of this output, white Gaussian distributed noise is produced.

The circuitry used to generate the maximal length sequence is shown in Figure C-1.
Shift registers (No.74F675A) generate a bit stream at a rate determined by the clock
frequency. Certain bits in this stream are selected, passed through an exclusive-
OR gate (No.74F04) and fed back into the shift registers. The selection of these
particular bit positions (referred to as tap points) is vital to producing a maximal
length sequence.

The output at this point is TTL (0-5V). After passing through a CMOS analog
switch (No.CD4053) a symmetrical signal with respect to ground is produced. A
typical signal at this point is shown in Figure C-2. This signal possesses interesting
spectral characteristics such as periodicity at a frequency equal to the inverse of the
maximal length generation time, and nodes in the spectrum at the clock frequency
and all its multiples (see Figure C-3). It can be shown that the power spectrum of

this digital signal consists of a series of delta functions under an envelope described

by [1]

(sinx)2 (C.1)

where

r=T7

f
fclock' (CZ)
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The noise voltage can be written as

9 1/2
‘/'rms - 5V<deCk> (C?))

This expression remains valid for frequencies less that approximately 10

In Figure C-4 we show a typical noise signal produced from this technique with
low-pass filtering at 2.5 kHz. As shown in Figure C-5, the spectrum of the noise
amplitude is white to within 1 dB from approximately DC to 1 kHz. Wider band

noise is easily obtained by utilizing a larger clock frequency in the generator.



148

TTL Clock
__.l ]
|
e T4F6T5A T4F675A
Shift Register Shift Register
18 31
T4F04 74F86
+5.0V 1
CD4053

Level Shifter
J LM6361
S50V 1K v
out

Figure C-1: Circuit schematic for the PRBS generator. All circuit components
are supplied with power from individual regulators to eliminate
cross contamination. Additionally, all supply leads are bypassed
with 0.1 pF ceramic disc capacitors.



149

—

Voltage (V)
o N
<o =]

1 1

>
o
T

Time (100 psec / div.

Figure C-2: Digital output of the PRBS generator with clock frequency of 40
kHz

Amplitude (dBV/VHz)

_ 45 | { i |
0 20 40 60 80 100

Frequency (kHz)
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