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ABSTRACT
Non-steady behavior of a flame stabilized in a two-dimensional duct is
studied in this thesis. The problem is formulated by an integral tech-
nique in which the governing equations are integrated across the duct to
obtain integral relations for the mean flow variables. The flow fields
on either side of the flame sheet are matched by appropriate matching
conditions. Fluid flow through the flame surface causes the integral
relations to explicitly involve the fluid velocities at the flame. An
independent description of the flame shape and the irrotational flow
field upstream of the flame is provided by a source distribution on the

duct axis.

The integral relations are analyzed by a perturbation technique, in
which the dominant order solution represents the steady flame develop-
ment. The steady flame configuration is perturbed by an acoustic wave
incident on the compact flame region. The time dependent counterpart of
the integral relations describes the ensuing non-steady flow fields.
The flame perturbation exhibits a travelling wave pattern with consider-
able amplification along the flame zone. A simple model to describe the
growth of the flame perturbation is put forth, by considering the flame

surface as an unstable shear layer.

Acoustic reflection and transmission coefficients of the flame region
are obtained wutilizing the time-dependent flame calculations. The
response spectra exhibit active responses at certain well defined fre-
quencies. The non-steady flame model is incorporated in a rudimentary
afterburner configuration to investigate the low frequency behaviour of
the afterburner. The results suggest a possible mechanism of low

frequency instability in a combustion system.
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1. INTRODUCTION

Combustion systems of practical interest frequently exhibit oscillations
of objectionable levels, even leading to instability in some instances.
Response of the combustion processes to local pressure and velocity
fluctuations 1s an important factor that feeds considerable energy into
the system to sustain the oscillations. When the frequencies of
interest are, say, less than 100Hz, the chemical reaction times are less
important and the fluid mechanical adjustments in the flame region play

an important role on the detailed response of the system.

As a result of fast chemical kinetics, laminar flame fronts are wusually
very thin compared to length scales associated with combustion devices
of practical interest. Therefore, in problems where detailed calcula-
tions of flame structure are not important, one often considers the
flame front as a surface of discontinuity separating the cold fuel oxi-
dizer mixture and hot combustion products. Matching conditions analo-
gous to the shock conditions in compressible flows are used to match the

flow fields on either side of the flame sheet.

Instantaneous pictures of turbulent flames [see for example, Williams,
Hottel and Scurloc£0(1949), Wright and Zukosk%2(1960) and Lewis and von
Elbé0(1961)] suggest that flame sheet modelling of turbulent flames is
of restricted scope. Also, even with time averaged description of tur~
bulent flames, one is left to deal with the considerably thick wvisible
flame region, rendering it difficult to have an unique representation of
14 8 21

flame surface. Scurlock (1948), Karlovitz et al (195]1) and Wohl et al

(1953) wused widely different criterion in their descriptions of flame
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sheets. Any such representation will be strictly applicable only for
large-scale turbulent flows with the turbulent scales much larger than
the flame thickness [Williamslg(l974)]. Stability analyses utilizing
such a flame sheet description will have to be restricted to correspond-

ingly large disturbance wave lengths.

Steady behaviour of confined pre~mixed flames stabilized by bluff body
flame holders attracted the attention of several early research workers%

14 18 1 4 6
Scurlock (1948), Tsien (1951), Ball (1951) Fabri et al (1953) and Iida
(1956) studied the problem analytically, while Williams et a12%1949),
Thurston111958) and Wright and Zukosk122(1960) investigated experimen-
tally. Scurlock”s calculations were done primarily to obtain average
flame speed from measured values of flame spreading [Williams, Hottel
and Scurlock?%l949)]. Several other researchers emphasized on the meas-
urement and calculation of flame speed for turbulent flames. Spaldin%
(1958) postulated that the turbulent flame development is controlled by
the rate of entrainment of cold gas by hot gas and utilized a two-
dimensional turbulent jet mixing model to calculate the entrainment
rates. Wright and Zukoski?%1960) experimentally showed that turbulent
flame speed was proportional to the flow velocity and was independent of
laminar flame speed. Wohl et 312%1953) studied the effect of turbulence
on turbulent flame speed. With the recent developments in turbulent

flames, the concept of a turbulent flame speed in the conventional sense

does not seem to be very useful.

14
Scurlock (1948) was the first to investigate steady flow field and flame

spreading from idealized point flame holders in a two~dimensional duct.

He obtained a numerical solution for the flame shape and velocity
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profile in the region downstream of the flame. Incompressible flow with
uniform velocity profile in the unburned region and uniform static pres-
sure across any cross section were assumed. Tsie%8(1951) provided a
simpler treatment of the above problem with assumed uniform velocity in
the cold region and linear velocity distribution in the hot region, as
suggested by Scurlock’s results. He further extended his calculations
to include compressibility effects and found that for large approach
Mach number or heat release, the flame did not reach the channel wall
and the input fuel mixture was not completely burned. This is due to
the “choked” flow condition created by flow acceleration in the unburned
region. Tsien also calculated vorticity produced by the flame in terms
of fluid velocity and streamline curvature immediately upstream of the
flame. Zukoskf3(1978) showed that the flame shape is relatively insen-
sitive to the assumed velocity profile in the burned region. But, the
maximum velocity in the hot region will obviously depend on the assumed
profile. Fabri et a14(1953) and Iida6(1956) linearized the equations of
motion for small flame speeds and obtained an integral equation for
stream function, which was solved by successive integration. The
assumption of uniform velocity in the unburned region does not provide
accurate initial conditions for these calculations. 1Iida also investi-
gated the problem experimentally. The measured values of flame shape

and velocity profiles for free stream turbulence levels below 1.65% were

in good agreement with the calculated results.

In the above calculations momentum transfer in the direction normal to
the duct walls was ignored. Validity of such calculations are re-

stricted to very low flame speeds in comparison to the approach fluid



-4 -

velocity. Also, 1in the above quasi-one-dimensional approaches, flame
shape and flow field as a function of the downstream distance from the
flame holder are not readily available. Additional approximation on the
velocity component at the flame, in a direction perpendicular to the
channel axis, has to be made for an accurate description of the flame
shape. Balll(1951) [See also Gue'noche5(1964)] made a two-dimensional
calculation for the steady flame shape and flow field in a two-
dimensional duct by solving incompressible, inviscid, laminar flow equa-
tions of motion by a relaxation method. Such a calculation is not re-

stricted to very low flame speeds and shows the effect of pressure field

set up by the flame.

Another approach in recent years is to numerically solve the time aver-
aged equations of motion for turbulent flows, incorporating a suitable
closure hypothesis and description of chemical reaction rates in the
flame region [Spaldingl6(1976)]. These models, at present, relying

heavily on certain emperical correlations arrived from experiments, are

of limited scope.

Though the steady flame spreading and flow field of stabilized two-
dimensional flames were under investigation for a considerable period,
the non-steady behaviour of such flames did not receive the same atten-
tion. The analogous problem of stability of plane flames, known as Lan-
dau instability was extensively studied. Landau9(1944) showed that lam-
inar plane flames with constant flame speed were unstable to distur-
bances of all wave lengths and interpreted the result as the onset of
flame generated turbulence. Subsequent analyses by Marksteinl%IQSI) and

7 13
Istratov and Librovich (1969) and experiments by Petersen and Emmons
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(1961) were aimed at explaining the experimentally observed stable lam-
inar flames, by incorporating the effects of flame curvature, heat con-
duction and viscosity on the flame propagation. But the basic two-
dimensional nature of the stability of stabilized flames was not recog-
nized. Blackshear2 (1956) studied the temporal instability of the sta-
bilized flame subjected to transverse velocity disturbance. The flame
is modelled as an impermeable interface separating two parallel streams
(burned and unburned regions) with local velocity profiles as assumed by
Tsien. The results indicate that the interface is neutrally stable to
symmetric disturbance and unstable to antisymmetric disturbance, when
the velocity profile is uniform in the unburned region and triangular in

the burned region.

11
Marble and Candel (1978) were the first to identify the non-steady fluid

mechanical response of stabilized flames as a possible source of the low
frequency oscillations observed in large combustors 1like the utility
boilers and aircraft afterburners. They studied analytically the non-
steady behaviour of a flame stabilized by a flame holder of finite size
in a two-dimensional duct, subjected to external acoustic disturbances.
The present investigation is a continuation of the work initiated by

Marble and Candel.

Non-steady behaviour of a flame stabilized in a two-dimensional duct is
analyzed in this thesis. The problem is formulated in chapter 2 by an
integral technique in which the governing equations are integrated
across the duct to obtain certain integral relations for the averaged
flow variables. The flow fields on either side of the flame sheet are

matched by appropriate matching conditions. Fluid flow through the



-6 -

flame surface causes the integral relations to explicitly involve the
fluid wvelocities at the flame. This necessitates an independent
description of the irrotational flow field wupstream of the flame in
chapter 3. The integral relations developed in chapter 2 are analyzed
by a perturbation technique, in which the dominant order solution

represents the steady flame development.

The steady problem, discussed in chapter 3, provides the steady flow
field for the time-dependent flame calculations of chapter 4. The
steady flame configuration is perturbed by an acoustic wave incident on
the compact flame region. The time dependent counterpart of the
integral relations describes the ensuing non-steady flow fields. The
flame perturbation exhibits a travelling wave pattern with considerable
amplification along the flame zone. A simple model to describe the
growth of the flame perturbation is put forth, by considering the flame

surface as an unstable shear layer.

Acoustic reflection and transmission coefficients of the flame region
are obtained wutilizing the time-dependent flame calculations. The
response spectra exhibit active responses at certain well defined fre-
quencies. In the final chapter, the above non-steady flame model is
incorporated in a rudimentary afterburner configuration to investigate
the low frequency behaviour of the afterburner. The analysis utilizing
the basic non-steady flame model can be extended to more complex sys-—
tems. The results suggest a possible mechanism of low frequency insta-

bility in a combustion system.
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2. GENERAL FORMULATION OF A STABILIZED-FLAME

In this chapter, the governing equations to describe the non-steady
behaviour of a stabilized flamé in a two-dimensionl duct of constant
cross section are presented. The approach is similar to that of Marble
and Cande11(1978). Integral relations describing mass and momentum con-—
servations in the unburned and burned regions of the flame =zone and
matching conditions across the flame are developed. The steady and
time-dependent problems aré discussed in detail in the succeeding three

chapters.
2.1 ANALYTICAL DESCRIPTION OF A NON~-STEADY STABILIZED FLAME:

We consider a flame, stabilized by a flame holder of half—width'?o, in a
tﬁo—dimensional parallel duct of wiéth>a£,, as shown in figure 2.1. The
flame region is modelled as a surface of discontinuity separating the
cold fuel-~oxidizer mixture, region 1 and hot combustion products, region
2. Nl(z;t) is the distance of the flame sheet from the centerline of
the duct, the x-axis. A combustible mixture of fuel and oxidizer
approaches the flame region with an uniform velocity Ljo at the far
upstream; Let F(x’j,{)and f(x,jﬁ) be the pressure and density and U(i,f],f)
and V(;'HF) be the velocity components parallel and normal to. the duct
axis. The variables are indicated by subscript 1 in region 1, upstream

of the flame and by subscript 2 in region 2, downstream of the flame.

Neglecting gravitational and Viscous effects, the flow fields in

regions 1 and 2 are governed by the following equations:
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In region 1,

Continuity equation

o +____<?LL,) + (f \f) (2.1)
ot

Momentum equations

T(elu;)"'% (ﬂuT) + % (ﬁu‘\f‘) = ~%—E-'-

x (2.2)
P, ir) O(e iy - — 2p,
-,—a—t—(f'\ﬁ) * X (?. u'\/\‘)+33(€' : ) Y (2.3)

Neglecting heat conduction also, energy equation can be written in

the form,

L Db 2 DS __L D =0 (2.4)
} Cp Dt

P, Dt ¢ D¢t

where 7¥ is the ratio of specific heats, (:S/

5 is the specific entropy

and D

—r

2 L u e 92
: st s

Fax €39y

I

The above equation states that the entropy remains constant, following
the fluid. We assume the flow field far upstream to be irrotational
with uniform velocity (Jo and of uniform entropy. Consequently, flow in

region 1 can be considered as irrotational and hence isentropic.
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A similar set of equations in region 2 can be written as follows:

Continuity equation

T v 2 (W) +3 (%K) =0
ot

Momentum equations

2 (faU) + 22 (fuz)+ —sg(fz“z.\’l) == %% (2.6)
0 =) . EPZ,
%t (5,v;) + 5;("2“&";) + —;?g(?z"z) Y (2.7)

Energy equation

__’—— :DZ.. PZ ___l :Dz?g. = _l___ ':DZ-SZ' -0 (2.8)
P Dt % Dt Cp
where ?5
D& = __;a_. -+ L -:-a-— v—

However, the flow field in region 2 is, in general, rotational as a
result of the entropy produced by the flame. This aspect of vorticity

production by the flame will be considered later in detail.

The above flow fields in regions 1 and 2 are matched across the flame
sheet by mass and momentum conservation relations, analogous to the jump
conditions across shock discontinuities in compressible flows. To
arrive at the appropriate matching conditions at the flame surface, let

us adapt a coordinate system with axes M and m s tangential and normal
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to the flame respectively (Fig. 2.2). Let L@wand(lnbe the corresponding
velocity components. We write the mass and momentum conservation equa-—

tions for the control volume shown in figure 2.2,

Conservation of mass gives,

0
2 [ " 3 [
— | §dn + [?Un} + = ) fupdmn =0 (2-9)
5 oM g,
My Ny -
Normal momentum equation is
'le_ ﬂL : N, ‘f\l
2 [ d [ > L) o
9 wdn +|fu,| + & Ut e + =0
€ J S m M m? n [Hm (2-10)
7y
Tangential momentum equation can be written as
'nl 2 2
CE [fumd’n—l- [?umu‘”ﬂ] + — /fumdﬂ
atm Nng - my
’ 5 28 (2.11)
om &

~ - - + _
We consider the limiting case, Wu—~e>0 and ¢L-aa-0 s and obtain the

conservation relations valid at 5 :4](1ﬁ) as fbllows:

(2.9) gives +

[?Un]: - ©

—

ioe.
- (2.12)
§Dl w' ?2_ wz,
where 1J] and in are the flame speeds. MJV/L) and OJZ are assumed
o U
fe]

to be constant.
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(2.10) gives
z o
P58 = P R @

Finally, (2.11) can be written as

+

[fumu“r_ _ 0

(o
which gives (Fig. 2)
w,C3V + (\}l—-%_?> Anl? = uzwv
_2MN 49 (2.14)
b (- 20) o

The above equation shows that conservation of tagential momentum implies

that the tangential velocity is continuous across the flame.

Also, we must have the flame sheet and flow fields deform in a con-
sistent manner. To ensure this, we develop kinematic conditions which
are similar to the ones commonly used to describe waves at a fluid
interface. In the present context, we have fixed propagation speeds
normal to the flame and the kinematic conditions imply that the normal

velocity of the fluid, relative to the flame surface is equal to the

corresponding flame speed. These relations are (Fig. 2.2):

M o3 + W, 4n? - @ = W (2.15)
ot ’

BT o3 4+ W, Ain2d - Kot =W,

—at (2.16)
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| A%
Let H =<:PT:+251"2 % be the stagnation enthalpy, where 2>_ 1is the
energy of formation and % is the total fluid velocity with respect to

the flame. The energy equation can then be written as

m, m, My
_E?_fHdﬂ [uH] Pa_” ]d
?3t,nl? + ? m " + > J fllqnf4 M

My
:%/Fdﬂ

i
Assuming specific heat to be constant, we obtain 1in the quasi-steady

approximation,

2
2 in _2 AT
¢ Cﬂ,*‘—é['ﬂ +( U, Cos? + W, Din U é_g./swz?)]+zu

2
T2 . 27
= ng CPTZ +Z[ l"Tzﬁ'O‘aC(ﬁbQ + \7; Sin A 52 AN ?}> J

+ Zz (2.17)

where }E‘ and :E%aare the energies of formation per unit mass for the
gas 1in regions 1 and 2 respectively. For combustion processes of prac-
tical interest, increase in sensible enthalpy, (:E:l—§£2>, is much larger
than the changes in kinetic energy. Therefore, we can approximate equa-

tion (2.17) by

(:;D—T} + 2 | = C:'P —Eé + :Z:;g

(2.18)

From equation (2.13)

b = (Y (S )

e

P4
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and depends on the square of the Mach number based upon the flame speed,
which is considered to be small. Consequently, in equation (2.18) we

can approximate using equation (2.12),

AP =~ |+ (Z:“ZZ)

-———"_"-N—-_—
(2.19)

Ti €Z C p Ti

But, it is very important to consider the pressure change across the

flame in the momentum balance and in determining the flame shape.
2.2 DEVELOPMENT OF THE INTEGRAL RELATIONS:

We wish to investigate the non-steady behaviour of the stabilized flame
when subjected to external acoustic disturbances. We assume the imposed
disturbance to be of a wavelength large compared to the length of the
flame region. Consequently, we consider the flame zone to be compact
and ignore any phase variation of the acoustic wave in the flame region.
Also, consistent with the approximation in equation (2.19) and the
assumed compactness of the flame zone, we can consider the flow fields
in the regions 1 and 2 as incompressible. There is, of course, a large
density change across the flame as given by (2.19). The pressure
changes associated with the acoustic disturbance and the changes in the
gas velocities are so small that they do not influence the combustion

process significantly.

Ve now describe the flow fields in the regions 1 and 2 by an integral
technique. Continuity and momentum equations are integrated with
respect to 3 , between the flame and the channel wall. In region 1,

upstream of the flame, the integration is carried out from\j:’?(xut)to
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ﬂ""ﬁ s as shown below.

With the incompressible flow approximation discussed earlier, equation

(2.1) becomes,

[?.E‘_' d +/%!f' dy =0
xt)ax (x,¢) J
i 1

We use the boundary condition at the solid wall,

V;(x,l,t) =

and obtain

{ ‘
o uol.j+u (I’Qt) V:(i,”}.w =0 (2.20)

X

We define a mean axial velocity,

A
Rl n(w)Jf i

'/I(I t)

Using the kinematic condition (2.15), we get from (2.20)
a[[, {1] W Sec U =0
- + = + (2.21)
M*}) 'ax< DY '

Y-momentum equation (2.2) in region 1 gives,
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2 V3]0 1 3 fure

o

+ W (%,7,¢) 377 ,(‘Jc,’),t) V(= 4)

) §’: ’ax [( q?)P] ? P'(x,q,t) ?a—;‘c

which can be written, using (2.15) as Z

3 0]+ 2 () 3 fors)
+ W (ENY) W ke w4+ LN P,
£, Bx

3 [REY - R @O 5 -

Similarly, integrated equation of motion in the y-direction in region 1

(2.22)

takes the form,

2 | ) +—-’f‘* Wy V(2 e

ot

+—€'—— [P‘ (:c,l,t) -p (I,ﬂ,t)} =

! (2.23)

A similar integration from sz.o to fj:?ltli) of the continuity and

momentum equations (2.5~2.7) in region 2 gives the following equations

Continuity

@&z) — W, s U =0 (2.24)
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X-momentum equation

(qu)-r My, )-1- r'] 3Pz. - u‘z(xﬁl't)%&c?ﬁ

> flun ay s AR

(2.25)
Y-momentum equation 41
Et(vlv fu\mtj—-\f(xnt ) W, s
+ ‘é; [ Pa(x'n'w B P?-<1’O’ t)] =0 (2.26)

We assume in equations (2.21-2.26),

P, (1,72}:) = !—De (I't> (2.27)

{ Z
f(ul—af> df} = ©
1

(2.28)

and

b, (1,"1,@ - —‘;?, <1/t) (2.29)

o2
[(u,-3) ay =0
0

(2.30)

These approximations are similar to the ones usually made for shallow

water wave calculations, wherein the normal acceleration of the fluid is
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neglected. In the present context, these assumptions are strictly valid
(0}

only for the case of slender flames (i.e.r—zl<i< }), subjected to low

frequency disturbances. Stabilized flames observed in the 1laboratory

(Williams, Hottel and Scurlocﬁi 1949 and Wright and Zukoskii 1960) and

in typical technological applications like afterburners (Zukosk{i 1978)

usually meet this criterion.

To surmarize, the non-steady response of a stabilized flame in a two-

dimensional channel is governed by the integral relations

M + = [(l ”l) J*WMv:O (2.31)

ot

{(g )T J [(l U }+ (%-_"U 2P,

(5.8
+ Y, (1‘7,‘&) W, Aee U = 0 (2.32)

(2.33)

_9174% (Mu,) — W, e ¥ =0

ME) + 2 (74) +¢ 22

—_ aa(lr??:t) {A}‘Zéﬁc 7}:

(2.34)
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together with the matching conditions

f,wi - €; wz

(2.12)

2 (S
Fl t el wi = FZ + €z_ wl
(2.13)

equations (2.14 - 2.16) can be written as

U, (=8 + W (xv(t)_%g = “z(iﬂﬁ)“*a("ﬁ,t) %—; (2.35)

(2.36)

taﬁ:\}.—xl 4t +N,/5Qc79
o w609 2 - e 1)

LA
2Thu(E NS =% (M) + 0y e ¥ (237
2t
From equations 2.35-2.37, we obtain

ua('x,q't) = H,<7C,“’l,t)+ N.(/\-‘) sin U (2.38)

We notice that the above integral relations and matching conditions
explicitly involve the 1local fluid velocities at the flame surface in
both the regions. To complete the formulation, we have to independently
estimate at least one velocity component at :’:’7(1&t§. This is to be
expected since we have fluid propagation through the flame and the local
momentum transfer at the flame should play an important role in the

flame development. An exact solution for the upstream irrotational flow
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field of the flame region is presented in chapter 3. An approximation

for lk‘(ivn t) will be developed from this exact solution.

The above system of equations is studied in the subsequent chapters
using a perturbation technique. The zeroth order solution, representing
the steady flame development, is perturbed by an acoustic wave incident

on the flame region.



- 23 -

2.3 REFERENCES:

[1]

(2]

[3]

[4]

Marble, F.E. and Candel, S.M., "An Analytical Study of the Non-
Steady Behaviour of Large Combustors', Seventeenth Symposium

(International) on Combustion, August 1978, pp. 761-769 .

Williams, G.C., Hottel, H.C., and Scurlock, A.C., "Flame Stabili-
zation and Propagation in High Velocity Gas Streams'", Third Sympo-
sium on Combustion and Flame and Explosion Phenomena, Williams and

Wilkins Company, Baltimore, Maryland, 1949, p. 21-40.

Wright, F.H. and Zukoski, E.E., "Flame Spreading from Bluff Body
Flame Holders", Proceedings, Eighth Symposium (International) on

Combustion, 1960, pp. 933-943.

Zukoski, E., "AFTERBURNERS", The Aerothermodynamics of Aircraft
Gas Turbine Engines, Edited by Oates, G. C., AFAPL-TR-78-52,

Chapter 21, 1978.



- 24 -

IONd V NI HWVId QEZITIEVIS 1°Z 990914

L L L L L L LS L L L L LLLLLLLLLZL L LLZLLZ L L LY

74 .N\w

T

R ———
iqin on

TS T \\\\\\\\\\\\\\\ﬁ\\\\\\\\




- 25 -

(-Ww,Sine+V,Cose

_an .
ST Cos®) = W,

FIGURE 2.2 NOTATION FOR MATCHING CONDITIONS
ACROSS THE FLAME
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3. STEADY STATE FLAME CALCULATIONS

We develop, in the first section, an approximate analysis for the steady
state stabilized flame in a two-dimensional duct. In the second sec—
tion, an exact solution for the irrotational flow field upstream of the
flame is presented. The third section deals with the numerical solution
of steady-state equations arrived from the detailed formulation of

chapter 2.
3.1 APROXIMATE ANALYSIS FOR THE STEADY-STATE FLAME DEVELOPMENT:

An approximate analysis, valid for low flame speeds, for the description
{o)

of the steady stabilized flame, represented by j:=72(1)is presented

below. Let the mean axial velocity, pressure and density be denoted by

- @)
EL( )( x) , P. (1) and §  in region 1 and by LL (1) » Po (%) and fz.

region 2. Let 1@1 and b&a be the fixed burning velocities, as in

chapter 2.

Let
l ”I ,(4 (3.1)
dx

In region 1, mass conservation gives,

__C_L__ [((- (o)> 1(0)] _ wi (3.2)
Ax

With the assumed uniform approach velocity lJo far upstream, flow field
in region 1 is irrotational and we use Bernoulli equation upstream of

the flame and write,
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- ©)
- ©® P 2 Po
L (LL‘ ) + —— =constant = L U, +
2 ?s 2 i
or — (0), %
= (0)
b u Y, - L, + L (3.3)
Y G T A 1
5 - 2 Uo o
?uL%
where F% is the static pressure at far upstream,

and ¥ = CP/C%and Mo is the approach Mach number.

In region 2, mass conservation gives,

<ﬂ u?) = W

(3.4)

Next, we utilize the overall momentum conservation equation to get

o o _© 0
UL Rt TR ()
L e (——(O)) + Ez‘(o)"'](o) s,

Consistent with the approximation (3.1), we assume that the streamlines

are nearly parallel to the duct axis and treat the static pressure to be

uniform in regions 1 and 2. But, normal momentum balance across the

flame (equation 2.13) gives
) ,_@)

-5 = (A=) §w

Integrating equation (3.2), and defining
(F) ()
L Uy

we get
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— (0)
U,

_ A-X
Uo ("

”](Z) “ (3.8)

Similarly equation (3.4) gives

(o)

Uz B+ A X

Us —(";1537[) (3.9)
where A = ﬁ/ﬁﬁL

and A and B are constants of integration.

At the flame holder of half widﬂu'qo at X=0, we assume the mean axial

velocities in the two streams to be equal and write mass conservation

equation to get

_ @) ~ @)
u‘(O) - uz_(O) - !

Us Uo [~ ﬂo/g +_7‘,\_ ”Qo/g
_ ©)

Calculations were also done with different values (e.g. L(Z (0) =0)

for the mean axial wvelocity in region 2 at the flame holder. The
results indicate that the effect is very localized near the flame holder
and the overall flame development is not appreciably altered. The above

choice gives a flame shape with a positive slope at the flame holder.

Hence, in equations (3.8) and (3.9),

A= (-0

(3.10)

|
l—“?o/[-(— .?L\, 7"/[ )
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ﬂﬂ(r_ﬂ+/nﬂ) an

— (®) — () - (o

We substitute LL' , Lkz and P‘ into the overall momentum conserva-

tion equation (3.5) and obtain

) 3 ()
__(A.Q( “/uo> 7fz(o/f é (3.12)

()
which 1s cubic in 7{ and quadratic in i):

H
\

3.1.1 RESULTS AND DISCUSSION: For simplicity, equation 3.12 is solved
(o) ©)
for '>< ( ) to obtain the flame shape 72(1) implicitly. A typical
flame shape for A= S;é, =4.5 is shown in figure 3.1.
Mean axial velocities and pressure are obtained from equations (3.8),
_© )
(3.9) and (3.3). Distribution of Ll‘ and (Al for the above flame con-
figuration are shown in figure 3.2 and exhibit an approximately linear

increase with the axial distance from the flame holder. Fig. 3.3

represents the corresponding mean pressure profile.

It can at once be observed from the equations (3.12), (3.3), (3.8) and

(3.9) that the flame shape and flow variables exhibit a similarity

representation for all flame speeds hfy/(é‘l, with ix ::EE ff' as the

L U

similarity variable.
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3.2 AN EXACT REPRESENTATION FOR THE STEADY STATE FLOW FIELD UPSTREAM OF

A STABILIZED FLAME:

As was discussed in chapter 2, flow field upstream of the flame is irro-

tational and can also be approximated as incompressible. Consequently,

there exists a unique scalar potential §Z7(1)7) such that

’67/@ + _@fﬁ

=Y i 2Y*
and
(0) ’a(ﬂ
pd = X
u' ( lﬂ) ax
@ 12 (3.13)
LGS M-

(©)

For the present calculation, let us consider the flame ¢z(1) to be sta-

bilized by an idealized flame holder of negligible thickness, located at

=0 + The kinematic condition (equation 2.15) at the flame surface

in
region 1, specialized to steady flow, can be written as
(O) (lﬂ (O) (o)
~ d ) (o)
u,( )Tl)_l: \/‘(I,’q )J,w/S@c?j‘ | (3.14)
Ax ' !
@, @ @, 0
Substituting for (1‘ (IVT))and \ﬁ <1772 ) from (3.13) and noting that

s 75 [H <ﬁ‘£ﬂm>?d]ya

d %
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equation (3.14) can be written as

oOF @) % (0)22 d
[%_g(x,r(l))J-w‘ &1)- 228 (1) 55 =) 4

@) [ 2
+ [%gp <17l )}‘ W =0 (3.15)

Once we know the potential gg(szj), we can calculate from equation

(3'15)s
(o) © . <°)) ?Z(I,ria)) (m}
__1}( = ..-—‘xl H&Jf( ’ Y (3.16)

The first order, ordinary differential equation (3.16) can be

integrated numerically as an initial value problem with the initial con-

©)
dition W]o =0 at X =X, where AL, is obtained from the equation
©) 1599 }
- _ (X . 0) = w
u‘<xa7o> - fax < o) d !

The flame shape obtained from the approximate calculation of the previ-
1
ous section and the results of Ball (1951), lead us to model the flow

field, upstream of the flame, by a source distribution located on the

axis of the duct in the flame region.

The complex potential LJ‘<?(+127> due to a source of strength Wﬂl s
located at AW = g in a two-dimensional channel of width 2,( can be
2

written (Lamb, 1932) as



m, [ LT (z - 3)}
) = 4+ L Ain
W,(#) o e oL (3.17)
where z=x+iy.
This gives the complex velocity,
(-5
Iy, Coth [“M(_w_,_)_} (3.18)

EY: u L

Now, for an uniform source distribution of strength ‘7ﬁ§/{‘ per unit
length extending from 4§' =0 UDlg =L, we can by superimposition write-

the complex velocity as

—

dw, _ Mz L cOth[ (Z g)]
Az L4k

i.e.
. Z
dWe _ Mz | [/f)'"hjil[ J (3-19)
Az L. 2T Ainh i(z-L)
zL
t ©)
We can superpose the potentials due to a source of strength K{Q(JDOC at
(o)
X = ?; uniform source distribution of total strength inLk,ﬁg and uni-

©Y (o)
form flow of velocity (L+ (4 -k/3 )(LD to get the complex velocity,



) ©
[odw u, (LY) % (x9)
L}o 4z LJO Uo
e (29 sy sinh T5
- X CGU\T + —T}‘('E)L‘ffe dinh T(Z-LC)
(o) ) :
+ ‘_‘__ X + ﬁ ] (3.20)

In the above equation, uniform flow is added such that the approach

velocity at the far upstram is Ljo‘ From the analysis of 3.1, we take

.é/ ~ ﬁh , Where L. is the length of the flame region. We also choose
L Uo (o

the total source strength such that LL'%L) is approximately equal to

the value obtained from the previous section.

3.2.1 RESULTS AND DISCUSSION: In the results discussed below, to gen-

erate acceptable flame envelopes, the source strengths selected are

X =0, /3 =1 for N =4.5

and
© ©)
o< =0, /@ =0.44 for )\ =2.25

This implies that we model the steady state flow field upstream of the
flame by an uniform source distribution at the channel axis, extending

over the entire flame region.

Typical flame envelopes for 1%?{) =0.1, 0.2 and 0.4 are shown in
o]
Fig. 3.4 for )\ =4.5. Flame shape and streamlines upstream of the flame
for >\ =4.5 are shown in Fig. 3.5 for “643 =0.2 and in Fig. 3.6 for
0

Ué// =0.4. This flow field is compared with the results of Ball (1951)
(o]
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and the agreement is very good. The above potential solution, of

course, does not describe the flow field downstream of the flame.

Velocity profiles for three axial locations, namely 3%2 =-0.032, 0.238

and 0.758, are shown in the Figs. 3.7-3.9 for the flame configuration of

Fig. 3.6. We notice that, in the early stages of flame spreading, the
)

axial velocity U, ﬁl,y) is strongly non-uniform over the cross section.

This can also be seen from the flow pattern of Fig. 3.6.

To complete the formulation in chapter 2, we intend to obtain an approx-
P
©) © - ()
imation for U“Cx;q ) Zl@kx)’ where (A, 1s the mean axial velocity.
1
(0 (©)
Distributions of u(o)—x N @ and % co)) = © are shown in Fig. 3.10
i\ U, (x) '7? (%)

for the above stabilized flame. In Figs. 3.11 and 3.12, the
(ok; (m) [©) profiles for W =0.4 and 0.2 are approximated by
U, ‘q u (%) 760 ’

- ) ] (4 85) = 1

©) (3.21)

THES

where & =1/0.014

The above approximation, together with the matching conditions (2.13-
2.16) provide all the velocity components at the flaﬁe surface for the
steady state flame development. A similar modelling for the non-steady

calculation is shown in section 4.2.
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3.3 NUMERICAL SOLUTION OF THE STEADY STATE INTEGRAL RELATIONS:

The integral relations (2.31-2.34) are analyzed by a perturbation tech-
nique. The perturbation scheme consists of the dominant order solution
representing the steady state flame development, together with the time
dependent perturbations caused by the imposed disturbances. Let ’7 (1)
- (@) - ©) _© Z
represent the steady state flame shape and F‘GL), Fl(i) and U,(x), THES)
denote the average static pressures and velocities in the two regions.
We assume the time dependent perturbation quantities to be small com-

pared to the corresponding steady state variables. Formally, we express

the dependent variables in the integral relations as

fvz(x,t) - q@&x) + qf}m(i,q
P (8 = F‘(o()ﬂ ‘éi’@ (3.22)
and Y ©)
(=8] << |7 (x)l

Substituting equations (3.22) into the integral relations (2.31-2.34),

we get for the steady state flame development,
@)

()& ]+ s v = 0

(3.23)

©) -© —€) ) (o ()
DETELE () -, Jwnsee v'= 0
Tl ey L
( '7 (3.24)
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©) - ©) )
_O_L_<°ua>—w/54c’0 =0 3.25,
dx ’
_© (o) © (©)
u dLL l -J) i{[a_uaiﬁ’z)]wé@cﬁ_o (3.26)
2 ax ? dx ”}
(°) ©)

In equations (3.24) and (3.26), Ll|(x,v )is obtained from the approxi-

mation (3.21) and from equation (2.38) we have,

(0 ) 0)

w,(x,M ) = u(o,’(x,*]@)Jr w, (A1) Sin o

Further, the pressure fields in the two regions are related through the

normal momentum balance (2.13),

—(© _®

P () — P(’Q = (7\ () § w (3.27)

We assume a small flame holder of half width qzo located at x=0 and
_®
also consider as in section 3.1, lA ©) = u () at X =0. This gives

the initial conditions for the steady problem as

at x=0,

/7(0)(0) - ,70
— )

— G Uo £
G = U = =
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and

_(©) ©) 2*]

b () = P+ -‘i S [UZ’-— (4,)

The above system of ordinary first order non-linear differential equa-

(©

0 — © — (o)
tions are integrated numerically to obtain.qz(x), (1‘@1), IAZ.CX) and

—

Fﬁ(x)'

3.3.1 RESULTS AND DISCUSSION: Steady flame envelopes for three flame
speeds, 1Ub/bo =0.1, 0.2 and 0.4 and for an approach Mach number, P1o
= U%,=O'2 are shown in Fig. 3.13 for A =4.5 and in Fig. 3.14 for
A =2.25. The flame shapes are not very sensitive to changes in the
approach Mach number for low Mach numbers. These flame envelopes may be
compared with Fig. 3.4 obtained from the source flow calculations. The
agreement is very good. The flame shape and velocities in the two
regions are compared in the figures 3.15 and 3.16 with the approximate
analysis of section 3.1 for a flame speed 1{76 of 0.1 and show excellent

0

agreement.
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4. TIME DEPENDENT FLAME CALCULATIONS

Non-steady behaviour of the flame stabilized in a two-dimensional duct
is analyzed in the present chapter. Integral relations for the non-
steady flow variables are studied in the first section. In the second
section, the time dependent flame configuration is modelled by an
unsteady source flow. By considering the flame as an unstable shear
layer, a possible mechanism for the amplification of the disturbance in
the flame region is discussed in the third section. The final section
deals with the calculations of the transmission and reflection charac-

teristics of the flame zone.
4.1 NON-STEADY PERTURBATION CALCULATIONS OF THE INTEGRAL RELATIONS:

The time-dependent counterpart to the steady analysis (section 3.3) of
the integral relations is studied in this section. With the assumed
decomposition (equations 3.22) of the dependent variables in the
integral relations (2.31-2.34), we obtain the following governing equa-
tions for the non-steady variables. Only the terms linear in the per-
turbation quantities are retained. The axial velocity at the flame sur-

face, U‘(X,"’l,t)can be written as

()

) 0 ©) (0)
8, (18 = ) 2EET)NRE e

N UT X,7§t)



and A (1,"1 t)is obtained using equation 2.38 as
: )
u(x*zt> = u (x “ ) + w()\ t) Ain ?ﬁ(

x, *l( @> ¢)
( n>q(k\)gl’0 zﬂ

S

In region 1,
Continuity equation

() (o) s) dulo
27, (@ wmv) AT
ot

©) ¢)

+ ‘UI u - - 7((0)> 24, . o

Y-momentum equation

) _©) O —-© W —w
24, + W, 2% 4+ du gL _'cz_E.
2t RS dx %

w

r s Bl + 28 o

£ 7“”
- L) -]

i (©) @

@ )
| 3 Lo e T ]zo
et

(4.2)

(4.3)

(4.4)



In region 2,

Continuity equation

(I) '__(D) . (o) ’a..'/}
oy (@) 5

©)
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) _
+ AU,
dxX
— )

dM 59, n° R4
+ — W, + =0
dx ¢ 7

X-momentum equation

_ ) o) . — W)
DU, u
2t + = ox
@ @ w
bfa‘5&1?9 Lk —-LL
1
~___ o
+ W2 w, - L( <IY]

q@) I

f—

/SW\”ﬁ 311
DX

L.

22X

_ (@) u)
CLuzv ul _L,-
A x £

) - ) an s

©y ()
L see U

()
|

Q@)

-

— )
P

2K

(4.5)

) (0)
@>> au (x )Vl M(x_gwfqﬂ%’(]

(4.6)

The zeroth order solution, which describes the steady flame development,

is discussed in section 3.3.

the above system of differential equations for the perturbation

ties.

Tt provides the steady state variables in

quanti-

()
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The normal momentum balance across the flame (equation 2.13) states that

the pressure perturbation is continuous across the flame.

_w )

ie. Fl <I,t> - {52 (ggt)

(o)
The steady axial velocity at the upstream flame edge, ‘(X 72} is approx-

imated by equation 3.21.

)
In equations 4.4 and 4.6, 7§u, <1:”7 > is calculated as follows. For

the steady irrotational, 1ncompressib1e flow upstream of the flame, we

have the governing equations

continuity

(0) ()
ouw, L 2% 0o (4e7)
DX 24
vorticity
Q) )
U _ oW o (4.8)
rope oY

kinematic condition (2.36)

©

(o)<1 Lo)> 3(;/‘ _ \}}(1,"')@)> oW e (17(0) oy
p &

We differentiate 4.9 along the flame surface and utilize the equations

4.7 and 4.8 to obtain



- 59 .

) 2 (©)
©) © 7 © N d
U, _ s d = (U - W BT ) =
°Y ©) (®)
U, o("’] (4.10)
2 —' =
2 dA

© e
?Eb (jX'q ), in turn, is obtained from the equation 3.21.
2y '

In addition, we assume

e

UU‘) (1/("() — ail)(x)t> (4.11)

Validity of the above approximation is verified in the next section, by
generating the non-steady flame envelopes with a time-dependent source

flow.

We consider the flame region to be excited by an harmonic pressure wave

—

with wave number £<Z from the downstream direction. This generates a

transmitted wave of wave number KW upstream of the flame and a

+
reflected wave of wave number f(a downstream of the flame. Let the

transmitted wave upstream of the flame be represented by

.

Y po

Since there is no acoustic wave incident on the flame zone from the

Pl P e -4 (ot + K, 2]

upstream direction, we can write the associated velocity perturbation
upstream of the flame region as

L7‘/‘ _ ._.P,_ exp [,;; (@t i KTI)]

S

<y
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This gives the boundary conditions at x=0 for the pressure and velocity

perturbations as

'F f - _iot
l

2r (1:O’t> - P‘ € (4412)
o .
_(Z (1:o/t) :-P,.e#wt (4.13)

C,
With the assumed harmonic excitation, we consider

() ~iwt

Xt - f?{(x/[) e

4
— ) .
uiéi,t) _ TA,('X/[) e__/.wt

_a) i et

Uz :/(1 P e
L . (/)

and _o) ~ —iot

Substitution of the above equations into the governing equations (4.3-
4.6) results in a system of four first order ordinary differential equa-

~ ~
tions for the deperdent variables ’7 s Lk’ s UZ. and P . These are

integrated numerically with the following boundary conditions at x=0.

The flame is attached to the flame holder at x=0,

()

"’l <7‘,t> = O (4.14)
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Velocity perturbation downstream of the flame holder is zero,

— )
UL (O,t) = O (4.15)

It should, however, be noted that in the present integral formulation,

the flame development adjacent to the flame holder is not represented

accurately. Detailed calculations near the flame holder should take

into account the viscous and heat conduction effects. Present calcula-

tions indicated that the flame response is rather insensitive to the
-

choice of (1;)<O,t), suggesting that the behaviour of the non-steady

wake downstream of the flame holder may not be of dominant influence on

the non-steady flame development.

4.1.1 RESULTS AND DISCUSSION: As can be seen from section 3.1, the
principal parameters that affect the steady flame development are the

upstream translational speed LJO » duct width ZWK » flame speed

W,/Uo and the density ratio across the flame, A = f/f = Ta/T .
2

!
For the non-steady response of the flame region, in addition, the radian

frequency (J of the disturbance is an important parameter. We utilize

the reduced frequency Q = Cof;(> to evaluate the burner response.
o

- &
In equations 4.12 and 4.13, let Iﬂ = P10 , Where h1o = (J?/éé is the
{

approach Mach number. This gives at x=0,

F(O> = (4+16)

and

u (O) - _—MO (4.17)
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A flame speed of &JV{’Z 0.1, density ratio >\ = 4.5, approach Mach
o
number F‘o = 0.2 and reduced frequency 601341 = 4.85 are chosen to
o

describe the burner operation for the results presented here.

Figure 4.1 shows the non-steady flame envelope for the above operating
conditions of the burner. The flame envelopes are shown for three dif-
ferent time intervals given by &€ = O, ?;4% and ?;é; . The velocity
perturbations, ZZ,(?%Q)and 21Z<]%¢Z are shown in figures 4.2 and 4.3.
The flame perturbation exhibits a travelling wave pattern with consider~
able amplification in fhe downstream direction. This has to be dif-
ferentiated from the classical Landau instability of .plane flames,
vherein the flame perturbation is stationary, with no associated phase

speed.

For the present case of the confined stabilized flame, there is ~vorti-
city production by the steady flame due to the curvature of the flame.
A possible mechanism to explain the calculated growth of the disturbance
in the flame region is the amplification of the shed vorticity, behaving
as an unstable shear layer. This aspect is explored in some detail in
section 4.3. 1In the case of plane flames, there is no vorticity produc-

tion by the steady flame.

—~F
The development of the pressure perturbation F)(?%é)is shown in figure
4ot The wvelocity and pressure perturbations enable us to obtain the
acoustic transmission and reflection properties of the compact flame

region, as will be shown in section 4.4.
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4.2 SOURCE FLOW MODELLING FOR THE NON-STEADY FLAME:

We generate a non-steady flame shape similar to the one calculated 1in
the previous section, by a suitable time dependent source distribution
on the duct axis. The primary need for such a modelling is to verify
the approximation (4.11) on the axial velocity perturbation at the flame
edge. The method of simulation of the non-steady flame envelopes is
similar to the exact representation of the steady flow upstream of the

flame, discussed in section 3.2.

We have the kinematic condition (2.36) for the compatible deformation of

the upstream flow and the flame surface,
M L w(xMmt) e - v (xnt
5}; + I( xq ! > X l < 117: > )
o 12
X

The dependent wvariables are decomposed as in equations (3.22),

72 (4.18)

U,(id,t) = U\@(“,‘j) + lk?)@(,‘j,t) (4.19)
etC.
where )
U << 1
o)

t
Substituting equations (4.19) into (4.18) and retaining only the first

order terms in the perturbation quantities, we obtain the following

differential equation for the non-steady flame shape.
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w ()

© O o
21 4+ (xn)"m +%—L—;’("~7 )__1'\ "

ot

b A= Vot + 2 <x A
DX (4.20)

The steady field is represented by an uniform source distribution on the
duct axis, extending over the flame region (section 3.2). To generate
the non-steady flame envelopes, we utilize a source distribution on the

duct axis with the perturbation velocities upstream of the flame in the

U (x5 f°< S oF <"“‘){ o<A§A&§/L>D '
R GOU\ [ﬁz% ?DH (% /¢)

_iot Sinh ﬂi’/[
</3 + L/3>€ “ -——«Z'-[- ﬁ(’-@e{émk ﬁ(;_L)J>+l

z L

form,

Uo

-1 wt

_M,€

(4.21)
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)

Wixad) | 5
- —O‘;@ISQ < ’5’//_ exp =4 ¢ [t' U0<A,+A2%>J X

o)

ﬂm coth [_’7_(2?} 0((5/[)

/ ‘ ' _Lwt BSinh ﬂZ/ZZ
+ (/3 +/v/8>e 2 _f. jm Lﬁe[mﬂ (4.22)

7T /
2 L

In the above perturbation velocities, the first term is due to a distri-
bution of fluctuating sources with the source strength and phase varying
with the distance from the flame holder. The second term is due to an
uniform distribution of sources fluctuating in phase. In equation
..j,wt

(4.21), an axial velocity ~-M,€ is also added to have the same velo~-
city perturbation at the flame holder as in the numerical calculations
discussed earlier.

o) (o) ©)
The steady flow variables, ’7(7(), W, ('x,y)and u& (Iﬂ) are given by

the results of section 3.2. As in the previous section, let

) N 4 t
f?(x,t) = ”?(7() € “ (4.23)

U, (1,ylt>: U,(x,j) e (4-24)

o
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ON o s wt

,_\\_J;_\L (1'3.,‘() = V;(“H) < (4.25)

4.2.1 RESULTS AND DISCUSSION: Equation 4.20 is integrated nunerically
)
with the initial condition '7 CX t) = 0 at x=X, to obtain the non-steady

flame envelope. Calculations for the burner operating conditions as
glven in the previous section are presented here. The reduced frequency

f
of the disturbance is again chosen as &Lé/éb = 4.85. A = 0.5,

/3’ = 0.2, /\l = 1.0 and /x2f= 1.0 in the expressions for the source

distributions (equations 4.21 and 4.é2) yield the non;steady flame

envelope (Fig. 4.5). The associéted veloclity perturbations at the flame
o

edge, U (x ,Yz())and V (9( 'TI )are shown in figures 4.6 and 4.7.

Using the above flow field upstream of the flame, we calculate the

avearage axial velocity,
— G ~ - it
Ut = LE T Ee”
Uo Uo /

i L11(7K Y, t) 6*27

I
e
[Lq(i,tﬂ 76 O 26

~
Figures 4.8 and 4.9 compare L( (I) with the axial velocity perturba-
(o)

tion at the steady flame surface, [} (1 q]) The comparison suggests

that equation 4.1]1 is a valid approximation.
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4.3 MODELLING OF THE NON-STEADY FLAME AS AN UNSTABLE SHEAR LAYER:

In this section, we explore a possible mechanism to explain the non-
steady behaviour ~f the stabilized flame, by studying the stability of a
fluid interface. The technique is classical and is similar to that of
Blackshear1 (1956), but explicitly considers the spatial development of
the disturbance in the flame region. 1In the steady state, the interface
coincides with the x-axis, separating region 1 with density S;‘ and uni-
form velocity U‘ and region 2 with density e and a linear wvelocity
profile, as shown in figure 4.10. Let ZI and '(’Z. be the distances of
the interface from the top wall and centerline of the channel respec~
tively. The steady velocity profile in region 2 is written as

U2<‘j) - a — Q‘?;ﬁ’)'j

Lz

(4.27)
where Q and b are constants to be chosen.

This gives the average velocity in region 2, U& = <&+b> /Z/ . Let

)
’Y( <11t> be the perturbed interface with the associated velocity per-

v u) 4
turbations as U, (1,3,‘6) and V,(jc,‘j,t> in region 1 and Uzgi,ﬂ)t>
)
and VZ. (7(,9/'('-) in region 2.

For an inviscid, incompressible flow with comservative body forces,

Helmholtz equation takes the form

V)

I\
—~
ZJ“

28 4 (4-V)Y

ot
(4.28)

where .{, = \JAWA is the vorticity.
~ ~
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For plane flows, (TV)U =0

Region 1 1s irrotational and in region 2, 3; = z;.fzuz » Where
©) ¢)
7; = 7; + 7;
2 2 z
) )
= <b’a> + <EYE _.:3_,‘{;@> (4.29)
y
ﬁz_ DX 2Y
)
Since the steady vorticity 'jgl is constant, we get from equation
4.28,
() )
= 0O
’BTL + (Qj ’ V) .gz (4.30)
2t

The above equation guarantees that there is no transfer of vorticity
from the mean flow to the disturbance flow field. Hence, we can

represent the perturbation field in region 2 by a scalar potential

¢ (x,ﬂ}t). Let 50{ (ily/f> be the velocity potential in region 1.
-3

Then, the formulation to study the stability of the interface can be

written as follows.

Region 1,

EA(I:Hlt) = U, €x +V<Fl (4.31)

v% = O (4432)
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Normal velocity is zero at the solid wall, j :21’

2Y ’
Kinematic condition at the interface, valid at 3: 7<I,f> » can be
written as
) )
21", v, 20)20 - 29,
' o/ X 2Y
ot (4+34)
which on linearization becomes (on y =0 )
u) )
9_7 + U,?J - 09, (4.35)
ot X Y
Similarly in region 2,
(© )L a @
2
uz <3()j/'t> = Q- ‘S:Z .j + 5% (4.36)
9
ULZ (7‘:5,‘t> = BS:Z“ (4+37)
%
V§g =0 (4.38)
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Linearized kinematic condition at y=(Q

o)

'5’7 _ 2%
31 29

Next we match the pressure gradient along the interface,

2Py 42y 27

Blﬁ:.? 2Y j,vz X

on either side of the interface. With the present linearization,

becomes (on y=0)

o 2p,

oxX X

From the axial momentum equations,

_BR e oW, W w2 >
Sx M\ ot ETX 29

X
A = he

(4.40)

this

(4e41)

(4.42)

Using the above representation for the flow field in regions 1 and 2, we

can write equation 4.41 as

e<3ﬁ~+wﬁiw
\otox CEs
)

0P | 02P: ¥ 20
g Y NPT 239>

(4.43)
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In the above equation, only the first order terms in the perturbation

quantities are retained.

4.3.1 RESULTS AND DISCUSSION: We assume the perturbation of the inter-

face to be in the forn,

("

7(596} =D xp [/; <‘at ”kj()J (4e44)

where (J is the radian frequency and ﬁ<- is the wave number. We con-

sider (O as real and /K is, in general, complex quantity. We con-

sider solutions for ¢I (I,j;t) and ?z(x'j/t) in the form,

e ]

i (Wt k)| Cooh K (g-L1)

= |
(P/@‘y’f) = A eXP'L Sinh KL, (4.45)

' ash K(ytl,
¢Z<I'y’t) = A, exp [L (wt -kx)] C — (.IZZ&> (4. 46)

Clearly, q7 and ?L as given above, satisfy the Laplace equation and
/
the boundary conditions 4.33 and 4.39. Substituting the above equations
o
for 37 , 90 and sel into the remaining boundary conditions, we
!

obtain

from equation 4.35

LD (0-UK) = —AK (4.47)
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from equation 4.40

AD (@—OJQ = A K (4.48)

equation 4.43 gives

¢ A, Coth (KL;) (w/< -U,/<7'“>
= § A, coth(kl,) <a)/< - akz“)

(CH)

—A,5,T K

(4+49)

For the non-trivial solution of the above system of linear, homogeneous,
simultaneous equations, the determinant of the coefficient matrix has to

identically vanish. This gives

l @) (a)~ U,KJ
@) ol (w ) aK) =0
—§ (0-ak) coth(k(,) ' (4.50)
§ (@-y, K) Coth (KE' ) L( © ( Z ©
£.3.

If we assume compactness of regions 1 and 2 with respect to the wave
length of the disturbance, and thus approximate equation 4.50, for

lKﬂ,l << | and KQZ, << |, we obtain
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o 2
S (‘Q’U/ K) g& + 5, <C‘)" ak) L,

_ §z<‘/"a> (&)_ak> LK =0 (4.51)

The solution of the above equation is used as an initial guess to solve
equation 4.50 by successive approximation and obtain
k- % 4. s

6—_ -

where 0  is the phase speed and (/) 1is the growth rate of the dis-

turbance.

At this stage, we postulate that the above analysis provides a local
representation of the non-steady flame development. We consider two
separate cases for comparing the above results with those of section

bele In the first case, the vorticity in region 2 is considered as

—_ ()
localized near the flame, and accordingly we take Lh = U and
[
- @ —(©) —©) ©)
0:=b: (LL . The steady flow wvariables, LL‘ , , Z,, and

Z
©
[I=(£;775are obtained from the results of section 3.3 for a flame

speed, 10}43 =0.1. Figure 4.11 compares the local phase speed obtained
(o]
from equation 4.50 with that calculated from the 1integral relations.

The agreement is very good away from the flame holder.

Analysis of section 4.1 for bﬁ// =0.1, )\ =4.5, P1o = 0.2 and 035;/ =

UO Uo
4.85 gives the amplitude of the non-steady flame envelope as shown in
figure 4.12. This has to be compared with figure 4.13, calculated from

the growth rate /N obtained from equation 4.50.
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In the second case, we consider the case of constant vorticity at any

cross section in region 2. From equation 2.38, for the steady flow

©)

™y = Wxn e e (A1) 2 Y

(4+53)

©) @) ®
Accordingly we consider, Q= UZ(I,'Y] )and b - Zaz— a . This flow
configuration yields a neutrally stable interface and does not explain
the growth rates calculated in section 4.1. This case can be dinter-
preted as the case of symmetric disturbance in the analysis of

Blackshear.

4.3.2 VORTICITY PRODUCTION BY THE FLAME: To further examine the
assumption of concentrated vorticity near the flame surface, we calcu-
late the vorticity produced by the flame using the exact solution of

section 3.2 for the upstream flow.

For the steady flame development, we can write the matching conditions

©)
at the flame surface, :/:‘V(X), as

(o ) ) ) (O) )

o «©
u(o)<1,nw> d,,] _ \),' (1‘.,1 >+ W, A gy (4.54)

!

o o @)
\7*:(7(,71( )) + W, A v (4.55)

™
ke
~
\9—
i3
[t
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PL(x) - Bl = (A1)

S We) L = S+ War) 47

Differentiating equation 4.56 along the flame surface, we get

2P 2t A _ 2o L op dof

—_— (4.58)
2L Y dx DX 35 dx
)
Y=mx)
From the momentum equations in region 2, we can write defining
* (o)
d_ (2 4412
= T\Bx T I ¥ Q
d.x x y= 70
* © /@ (2 @
dp, =_—S’z_‘§z< A _ )
dx dx (4.59)

where

\S(O) co(> )) @) 5 u(‘”) 7
X X — 2 ()
a,( 'n ( K 29 g:Y]((x)

is the vorticity produced by the steady flame.
Similarly, utilizing the momentum equations in region 1 and noting that

the flow field wupstream of the flame is irrotational, we obtain from

equation 4.58
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W) e
( 2 o(vc Z>

( O)L-;-(V‘ )

'c(x

(4.60)

From equations 4.54, 4.55 and 4.57, we get

©) ©) o),  © a9
U, (x.7 ) = Ut(])j‘f'] )+ Wso\") sin U (4.61)

(o) o
(o) () (o)
e & A s
de
— W Cos U

Substituting these values into equation 4.60, we can express the vorti-

(o (o
city produced by the flame, .§2<1’7] >as

)

o) x[7 @ o % ()
(1) zw&cv jx (u, VM)C";U

N

The above equation relates the vorticity generated by the flame with the
flow field upstream of the flame alone. The upstream flow field is

known exactly from the representation of section 3.2. For plane flames,

©) ©) ©) @)
O{ﬂ = constant, \f' =0 and u| = W, CoSe« U | and from equation
d X

4.63 we notice that there is no voriticity produced by the steady plane
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flame.

Figure 4.14 shows the distribution of the vorticity produced by the sta-
©)

(>
bilized flame, 75- ‘7 )for a flame speed of hﬁ// 0.1 and density

ratio of 4.5. The total voritcity, 7;1. in region 2 is obtained as

)

L e
‘g dJ dx (4.64)

and gives a value of 12.8 L%Q.fbr the 0.1 flame speed and 2.9 (JOQ, for

the 0.4 flame speed. We compare these values with the circulations

)’;_ — [a?@) - &T&x}} dx (4.65)

(9.2 UDK for w%} =0.1 and 2.3 Uﬂ for w/ =0.4) around the flame
o
_.(o

and (19 on either side.

_.@)
®) U,

surface, with the velocities (X'

This implies that the bulk of the vorticity produced by the flame is

concentrated near the flame surface in region 2.
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4.4 TRANSMISSION AND REFLECTION CHARACTERISTICS OF THE STABILIZED FLAME

The velocity and pressure perturbations in the flame region, as calcu-
lated in section 4.1, enable us to determine the acoustic transmission
and reflection coefficients of the burner. These, 1in a practical
combustion system 1like the aircraft afterburner or the utility boiler,
couple the non-steady flame response with the acoustics of the combus-
tion chamber. A typical application to an afterbufner is discussed in

the next chapter.

We consider two different cases for the calculation of the reflection
and transmission coefficients of the flame region. In the first case,

an acoustic input r
P, exp |- & <a)t +/<Z(I"l-)>

is incident on the flame region from downstream, giving rise to a

o~

reflected wave +
+ p — -
P, exp 74 <wt Ko (x L))

downstream of the flame and a transmitted wave

P exp [- i (@t +K, x)]
-, + -, t
upstream of the flame region. K17l<land Kgn’kaare the wave numbers
upstream and downstream of the flame zone respectively. Thus, with

acoustic input from downstream, we have at the downstream edge of the

flame (i.e. x=L),

—_ () _ 'aJt
Fz _ <]>++ PZ > e g (466)

7, *
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z (’) _P )@ (4e67)
— = \!z 2
Cz

Equations 4.66 and 4.67 give

— — )
+ _ ot @ “
R T
2 T2 - ¢ (4.68)
7/F; Z x=L
- _Lwt — ) — )
P, e _ PR, (4:69)
S TS
Similarly at the upstream edge of the flame,
— )
@) G _ .,j_a)t
! = — ! = P e
- 'E;‘ | (4.70)
|

YFG X0 xX=0

The transmission and reflection coefficients, 72( and _r' can then be
— — + -

written as |, = P P and R, = P + The method of calculation
! L/, ! 2 /P,

is to prescribe 7>| and integrate the perturbation equations with the

prescribed conditions at x=0, as shown in section 4.1.

For the second case, let the flame region be excited by

?rexp [—-x’ (wt ~/<f+1>]

from upstream. This gives rise to a reflected wave

B esp [+ @t + 172)
upstream and a transmitted wave downstream of the flame region. Similar

to case 1 above, we can write
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+ it ) — )
_ | U
Pl < =7 | L F — (4.71)

7{fz Czl xX=z0

- _ ot —u) W
b e :JZ‘ _EL. - W (4.72)
7P < -
> X =0
and
. — ) |
+ _iowt 0 (4.73)
e 2
2 = —=
C,

x =L N
.‘-
The transmission and reflection coefficients are T;»Z Tz_//;% and
R.= 'P;743+ + But, in this case the pressure and velocity perturbations
& {

cannot be specified a priori at x=0. Instead, we calculate a special

case wherein, 1ﬂ =] and Fn =0 and obtain

+ Lt B¢ Ef)
PL* QL = L 'E%‘ L (4e74)
2 L7Pp, Cpdx-t )

- it FR T
| 2
Pz X < = Tz —E = (4+75)

7Fo C2 =L

This solution is combined with the results of case 1 to obtain the

transmission and reflection coefficients for case 2 as
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T =R,

R P

and
RL = -—T, ’Pz* (4.77)

where Ti‘ and |' are the reflection and transmission coefficients as

obtained in the first case.

4.4.1 RESULTS AND DISCUSSION: Calculations for a flame speed
MJ?(J =0.1, density ratio >\ =4.5 and approach Mach number P1°=0,2 are
o

presented here. Figure 4.15 shows the magnitude \T, t and phase é‘

of the transmision coefficient of the flame region, when excited by an
acoustic input from downstream. Considerable amplification in the
transmitted wave 1s observed at certain discrete frequencies. The
corresponding reflection coefficient, 121 = YRW‘ 62:%2 is shown in fig-
ure 4.16. It should be noted that considerable acoustic energy can be
added to the system by the active flame and the transmission and reflec-
tion of the flame region should not be interpreted in the conventional
ways Since in the present case, there is no wave incident on the flame
region from upstream, the transmission coefficient is a measure of the
upstream velocity fluctuation at x=0, and suggests that the non~steady
response of the flame region peaks with the fluid injection by the flame
region. The transmission and reflection coefficients, —EZ and TQL ,
when the flame region is excited by acoustic disturbance from upstrean

(case 2) are shown in figures 4.17 and 4.18.
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The calculations are done for a range of flame speeds and density
ratios. The amplification by the flame region decreases with the reduc-—
tion in the density ratio, )\ + Calculations for lower flame speeds
give rise to peaks at correspondingly reduced frequencies, with no
appreciable change in the amplification. From the analysis of section
3.1, we recognize that the steady flame shapes exhibit a similarity
representation with the independent wvariable i)( :<%7Q>(h}7{k> . It 1is
then appropriate to consider a reduced frequency based on the flame
length. Let 5; be the average phase speed of the flame perturbation in
the flame region, as can be calculated from the previous section. The

frequencies at which the flame response exhibits local maxima are found

. ol _
to be approximately at .._g__——« 372 s —’,’TVZ ,» 1 TIYZ’ etc.
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5. ANALYSIS OF LOW FREQUENCY DISTURBANCES IN AFTERBURNERS

Combustion oscillations in afterburners often arise due to the effects
of local pressure and velocity fluctuations on the combustion processes

1,2,3

and on the acoustic characteristics of the system The high fre-

quency oscillations, known as screech, involve the chemical reaction
4,5
times in an essential way . The low frequency oscillations, on the
other hand, primarily depend on the fluid mechanical adjustments in the
flame region6’z Chemical reaction times are not very important for the
low frequency spectrum (less than, say, 100Hz). Non-steady response of
stabilized flames exhibits certain well-defined energetic modes as cal-
culated in the previous chapter. This active response to acoustic
input, by the stabilized flame, can feed considerable acoustic energy
into the system. When such a flame is situated in a practical combus-
tion system like an aircraft afterburner or an utility boiler, it plays
a major role in amplifying the low frequency disturbances to objection-
able levels, even leading to instability in some instances. The tran-
sient response of an elementary afterburner configuration of an aircraft
gas turbine is analyzed in the present chapter. The simple example con-

sidered here constitutes the first step towards a rational model for the

study of low frequency disturbances in the afterburners.

Let us consider a rudimentary afterburner configuration of constant
cross sectional area, as shown in figure 5.1. The flame holder, located
at X -0 , has two rings, resulting in four flame holder points across
the cross section. The half duct width LZ) in the flame calculations

can then be approximated by ])/8 » where D is the diameter of the

burner. Let [_ be the length of the flame zone. The turbine discharge
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is located at 3(:.~La,and the nozzle throat is located at X = <L.+ljg,
Consistent with the non-steady flame calculations of chapter 4, we con-
sider the flame region, the turbine and the nozzle to be compact to the
acoustic disturbance. Consequently, the turbine and the nozzle can be
characterized by appropriate admittance functions at x=—[,  and
X = <L,+L2>. Upstream of the flame holder, let (Jo and <:o be the
local fluid velocity and sound speed and 1’?'and 77;- be the complex
amplitudes of the downstream and the upstream running waves. LE,’ C:Zf

.,.
72, and sz represent the corresponding quantities downstream of the

flame zone.

Pressure and velocity fluctuations of a plane wave acoustic field may be

written as
upstream of the flame holder,

— @)
.._._—-/Fl - P( e CD+U° + ? e

Co"uo (5.2)

downstream of the flame zone,

—ﬁm ot ia(t- cj:u> ~ _io(ty cxu>

2 _ 2 e 2 Lf_P 2’63 (5.3)
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— . X ) . X
+ —i0(t- - —iw(t+
Y _pe ( Q%' _pe ( C2~Uz)

We define an acoustic admittance function,

.
) = & (%,t) 7KPO>
f'x = FQ)<xrt> C (5.5)
Substituting from equations 5.1-5.4, we obtain
Upstream of the flame holder (——-L,’ < XL O)
+ .7 2WX !
P, _ 1+ 5&) e“( C, )< i~"‘:>
P 1-E(®) o
and downstream of the flame region [L(I( <L+L'2)]
- . 2WX |
ANER TEY MR el A=)
P+ 5(x) -7

Let o< 1 and °<N be the acoustic reflection coefficients of the tur-

bine and the nozzle, defined as

I + g(""—l)

- 5(-L)
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and

. = Pz.— _ I—S(L-H_z_)
N P2_+ - [ +§<L+ LL) (5.9)

X =L+ L‘Z.
We then match the one-dimensional wave fields upstream of the flame
holder with the turbine admittance at xX = --L,‘and the flame reflection
coefficient at X =0. Similarly, the wave fields downstream of the
flame region are matched at the end of the flame zone and with the noz-

zle admittance at X = (L+L2_> .

Let the transmission and reflection coefficients of the flame region be
denoted by T, and R| for a wave incident from the downstream and by
TZ. and RZ. for a wave incident from the upstream of the flame region.
These coefficients are obtained from section 4.4 for a flame speed,

w,/uo = 0.1, >\= ?,/€Z-= 4.5 and M°= UO/CO= 0.2. The matching

conditions can then be written as follows.

At the turbine discharge (I = __l_‘) 5

_ L L
| oler B (e~ L)
U - — A
P, € Cotlo — °<T ?, e ( Com Uo (5.10)
At the nozzle throat (I = L+La,> 5
. L+L .
- _,,Lco<t+ _UZ') F —AD ('t-_L__tl_'})
P, e “e _x,Pe C+U, (5-11)
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Across the flame region,

L

- _iowt + —iwt - _io(t+ - )

Ppe =RFe +TFeE ( Y
(5.12)

and 5 )
_id (€t~ — .t
P: c A < caq-ua _ _TZ.Pl-f LW )
T)_. - W <t‘+ TE'_QL)

+ ’Rl 2 e z (5.13)

Th

I A
where P/L(t): P.ée is the input excitation of radian frequency (D
at X =0 - In a practical device this can arise, for example, due to

combustion roughness.
5.1 RESULTS AND DISCUSSION:

Equations 5.10-5.13 give a system of four inhomogeneous simultaneous
equations for the unknowns T)T s 77;- , T}ji and sz-. Calculations were
made for the operating conditionms, Vx,=0.2, ‘bh//ijo = 0.1 and >\ =4.5.
The reduced frequency, CJ/%/QAO is varied from 0 to 6. The pressure
responses at four stations along the afterburner are shown in figures
5¢2=-5.5. These are made dimensionless by the imposed excitation, Fk .
For the burner geometry, L‘/[ = 5.2, L’Z,/,é = 26 are selected.
The flame length for a flame speed of ﬁh//(Jo = 0.1 is approximately
given by Lv/ﬂg = 10 from the calculations of chapter 3. The values of
the acoustic admittance at the turbine and the nozzle are chosen as
?f(—l_o = ~0.25 and ~§ (L.+l.2) = 0.11. Comparing with the responses

of the flame zone (figures 4.15-4.18), we notice that the energetic
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modes of the flame region are clearly noticed in the pressure responses
at the turbine (figure 5.2), the flame holder (figure 5.3), end of the
flame zone (figure 5.4) and the plane of the nozzle (figure 5.5). The
dominant response of the system is at about a reduced frequency of

CU%;/QJO = 2.2, while the flame zone itself is most active at about

CJXf = 4.8. At QL@// = 2.2, the normalized pressure
Uo Uo

response is about 15 at the end of the flame zone and at the nozzle.

The frequency spectrum of the pressure response is very sensitive to the
afterburner geometry and to the acoustic admittance of the turbine and
the nozzle. In the present illustrative example, we study only the
effects of burner to turbine distance, L,, and the admittance of the
turbine discharge. Figures 5.6-5.9 show the pressure responses at the
previous four stations for L—llf = 5.55. The response in this config-
uration is maximum at a higher frequency and approximately corresponds
to the next higher burner mode. The maximum pressure response now
occurs at CJJ?/ZJ = 3.37 and has increased from 5 at the turbine when
o
L“/(K =5.,2 to about 38 (figure 5.6) for L‘/l=5.55. The response is

correspondingly higher at the other stations.

To systematically study this effect, the pressure reponse at the turbine
for Cd%;ﬂgo = 3.37 is shown in figure 5.10 as a function of the tur-
bine to the flame holder distance. It can be seen from the figure that
the response at the turbine increases by a factor of 8 within a 10%
change in the distance L‘Q/QZ . This points out the importance of the
flame holder location on the low frequency oscillations of the after-
burner. Also, the figure 5.10 clearly demonstrates the need to consider

the geometry of the system more accurately.
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Next, we study the effect of the turbine acoustic admittance on the
response of the afterburner. The flame holder to turbine distance is
fixed at L.}/Qz = 5.55 and corresponds to the geometry for the figures
5.6-5.9. The nozzle admittance is unaltered at ‘g (L_+-L_Z> = 0.11.
Figures 5.11-5.14 show the pressure responses for a turbine admittance
of § (—-L‘) = ~0.43. The maximum response (about 22 at the nozzle)
occurs at about a frequency of 0)12// = 2.2. Change in the turbine
admittance to 4§ (—L_,) = =0.27 caus;2 a significant change in the
response spectrum. For this configuration, the afterburner becomes

unstable (figures 5.15-5.18) at a frequency of 3.37. This is accom-

panied by a reduction in the response at the lower mode.

The sensitivity of the afterburner response to the turbine admittance is
shown in figure 5.19. The pressure response at the turbine for the mode
Cdl%/ﬂjo = 3.37 is shown as a function of the turbine acoustic reflec-
tion coefficient,O(T-- The flame holder is located at L_‘ JZ = 5.55
and corresponds to the location for the maximum response (from figure
5.10) for a turbine reflection coefficient of 0.6. We notice that a
slight reduction in the reflection coefficient causes a sharp increase
in the pressure fluctuation at the turbine discharge. The burner
becomes unstable at a reflection coefficient of 0.57. It is clear, from
the figures 5.10 and 5.19, that one has to consider the details of the
geometry and the flow conditions at the turbine and the nozzle more

accurately.

To summarize, the above analysis proposes a possible mechanism of low-
frequency instability and demonstrates the factors to which it should be

sensitive. This gives a basis for scaling experiments on small burners
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and making configurational changes that will suppress the instability.
The non-steady flame model is an important tool to analyze this type of
low~frequency instability. It is clear that the model can be easily
adapted to configurations that are more complex than the example con-

sidered here.
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FIGURE 5.1 NOTATION FOR THE AFTERBURNER GEOMETRY
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