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ABSTRACT 

In Part I a new, comprehensive model for a chemically reacting plume, is presented, 

that accounts for the effects of incomplete turbulent macro- and micro- mixing on 

chemical reactions between plume and ambient constituents. This "Turbulent React-

ing Plume Model" (TRPM) is modular in nature, allowing for the use of different 

levels of approximation of the phenomena involved. The core of the model consists 

of the evolution equations for reaction progress variables appropriate for evolving, 

spatially varying systems ("local phenomenal extent of reaction"). These equations 

estimate the interaction of mixing and chemical reaction and require input parame-

ters characterizing internal plume behavior, such as relative dispersion and fine scale 

plume segregation. The model addresses deficiencies in previous reactive plume mod-

els. Calculations performed with the TRPM are compared with the experimental 

data of P.J.H. Builtjes ("') for the reaction between NO in a point source plume and 

ambient 0 3 , taking place in a wind tunnel simulating a neutral atmospheric bound-

ary layer. The comparison shows the TRPM capable of quantitatively predicting the 

retardation imposed on the evolution of nonlinear plume chemistry by incomplete 

mixing. Part IA (Chapters 1 to 3) contains a detailed description of the TRPM 

structure and comparisons of calculations with measurements, as well as a literature 

survey of reactive plume models. Part IB (Chapters 4 to 7) contains studies on the 

turbulent dispersion and reaction phenomena and plume dynamics, thus exposing in 

detail the underlying concepts and methods relevant to turbulent reactive plume mod-

"' Builtjes, P.J.H. (1981) "Chemically Reacting Plume Experiments for the Wind Tunnel," Nether
lands Organization for Applied Scientific Research, Division of Technology for Society, Ref. 

No. 81-013563, File No. 8710-20330. 
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eling. New formulations for describing in-plume phenomena, such as the "Localized 

Production of Fluctuations Model" for the calculation of the plume concentration 

variance are included here. 

Part (Chapter 8) presents a collection of distribution-based statistical methods that 

are appropriate for characterizing extreme events in air pollution studies. Applica

tions to the evaluation of air quality standards, formulation of rollback calculations, 

and to the use of plume models are included here. 
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CHAPTER 1 

PROBLEMS AND CONCEPTS 

OF REACTIVE PLUME MODELING 

1.1 INTRODUCTION 

All mathematical models of air quality offer an approximate description of ac

tual meteorological-chemical systems that unavoidably relies on sets of simplifying 

assumptions. These assumptions are often based on specific information relevant to 

the phenomena to which they apply and thus their validity is supported by expe

rience or theory (or both). However, in many cases simplifications are imposed on 

the mathematical formulation mainly by lack of adequate knowledge regarding the 

requirement for simplicity) is the treatment of the effects of turbulent atmospheric 

mixing on the evolution of reactive systerrw by practically all large scale (urban or 

regional) models currently in routine use. The standard assumption involved in these 

models is that emissions are immediately mixed with the background air, in a per

fectly uniform fashion, inside of some finite control volume (e.g. a computational cell 

of an Eulerian Grid model or an of "air parcel" following a Lagrangian trajectory). 

In this way the control volume is the analog of the ideal "stirred tank" of chemical 

reactor theory. 

In fact pollutants emitted from strongly localized sources (industrial stacks) do 

not mix immediately with the background air at the molecular level but do so only 
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after a certain time has elapsed and a corresponding distance from the source has 

been travelled. This fact :results in the existence of both mean concentration gradi

ents and incomplete fine scale mixing that may be controlling factors in the spatial 

and temporal evolution of multimolecular reactive systems. Thus, for example, the 

actual rate of a bimolecular reaction (with relatively fast intrinsic kinetics) between 

an emitted species and a constituent of the background air "vVill depend on: 

(a) The mean values of the concentration of both reactants which vary from point 

to point not only in the direction of the wind but also in every cross-section of the 

plume, especially in the vicinity of the source. (Here mean values will always refer to 

ensemble averages unless explicitly stated otherwise). This is a state of incomplete 

"macromixing" in the relevant fluid-mechanical terminology. For a reaction with 

nonlinear kinetics, rates and conversions evaluated with concentrations of the two 

species averaged over the plume cross-section (or over any finite volume) will differ 

from the actual average rates and conversions over the cross-section (or the finite 

volume). 

(b) The state of mixing at the molecular level ( "micromixing"). Even if the mean 

concentrations of the two species are steady and non-zero at a point, instantaneous 

fluctuations about these mean values, due to the fact that molecular diffusion has 

not yet mixed the reactants uniformly at the molecular level, will retard the reaction 

rate.(*) 

The above facts are often ignored and in most existing reactive plume models 

(as well as in practically all large scale air pollution models, as it was mentioned ear

lier) it is typically assumed that plume constituents and background air are assumed 

uniformly mixed - i.e. there are fl.at concentration profiles and no concentration 

fluctuations - over some finite area or volume. This assumption is equivaient to 

($) 
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Reactions between species that coexist in the source emissions will also be influenced by 

concentration gradients and local fluctuations, although in that case delayed dilution of 
the reactive material with the background air will lead to higher actual rates than those 

predicted for a situation of complete mixing (as long as the reaction is of order higher 

than unity). Only monomolecular systems will be completely insensitive to these effects. 
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spatial averaging. Another type of averaging is implicitly introduced through the 

use of dispersion schemes that are relevant to absolute diffusion, and therefore to 

time-averaged concentration fields. However, when nonlinear reactions occur, tem

poral averages of reactant concentrations at a point do not give, when introduced into 

the dynamic equations that contain the nonlinearities, the corresponding averages of 

rates, conversions and product concentrations. This simple fact, which is often ig

nored in atmospheric modeling, dictates the use of statistics of instantaneous and not 

time-averaged realizations of the plume in the treatment of nonlinear reaction rates. 

Thus it is necessary to adopt transport closure schemes that account for the non-local 

character of turbulent dispersion and are able to discriminate between processes that 

affect the time averaged but not the instantaneous properties of the plume. 

Various approaches, usually focusing on some particular aspect of the mixing

reaction problem, have appeared in the literature relevant to turbulent reactive plume 

(and in general turbulent reactive flow) modeling. However, these approaches have 

been either overly simplistic, thus corresponding to unrealistic descriptions of the pro

cesses involved, or, at the other extreme, overly complicated for routine use. In view of 

this situation the present work aims to develop a model that, while being fundamen

tally sound by accounting properly for the effects of macromixing, micromixing and 

implicit averaging on nonlinear plume chemistry, at the same time is computationally 

simple and easy to apply.(*) 

The analysis that follows examines mainly the interaction of mixing and chem

istry in the case of localized releases in ambient turbulence. Many of the concepts 

that are introduced and the equations that are formulated here are quite general, 

(*) 
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In the general perspective of photochemical air pollution modeling, this work studies 

the importance of phenomena that are of "subgrid scaie" from the viewpoint of urban 

scale airshed models, as well as the overall effect of atmospheric turbulence on chemical 

reactions (which, as will be shown, is especially important for localized sources) aiming 

to improve on the predictive methods that are currently applied. In particular, special 

attention will be given to a reactive system that is most sensitive to these phenomena 
because of its very fast reaction rate, while at the same time is among the most important 

that determine the evolution of complex photochemical air pollution proce!!!les, that is 
the ozone-nitrogen oxides photolytic cycle (see Section 1.3 and Chapter 3). 
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holding for arbitrary ambient flows and a wide range of source conditions. However, 

the applicability of the current operational version of the model (as summarized in 

Chapter 2) is necessarily limited to situations for which the flow dynamics are suf

ficiently simple so as to allow a reduction of the overall phenomenon to processes 

involving parameters that can be reliably estimated. More specifically, in the present 

work the focus is on a plume advected by a mean wind field that is either uniform 

over a significant period, or, in general, changes "smoothly enough" in space and 

time so that a mean plume centerline can be defined. Then atmospheric motions 

that do not contribute to the mean field (random fluctuations) are responsible for the 

spread of the instantaneous plume and for its meandering about the mean centerline 

(depending on the magnitude of the spatial scale of these motions relative to the local 

plune "diameter"). Bulk meandering motions are also assumed sufficiently "mild", 

following Gifford's (1959) classic "fluctuating plume model". 
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1.2 POINT SOURCES 

IN CONNECTION TO LARGE SCALE AIRSHED MODELING 

AND THE ATMOSPHERIC DIFFUSION EQUATION 

The structure, capabilities and limitations of large (urban) scale models as well as 

various problems related to their formulation and application are discussed extensively 

elsewhere (see, e.g., Turner, 1979; Benarie, 1980; McRae et al, 1982) and, being 

beyond the scope of this work, will not concern us here except to identify briefly the 

points for which the present work attempts an improved treatment. 

As it was stressed in the introduction of this chapter (Section 1.1), inherent 

in all urban .and regional air quality models are procedures of temporal and spatial 

averaging of both the velocity and the concentration fields at scales that vary with 

the particular model formulation. Thus, single-box models assume that the total 

mass of pollutants emitted from both localized and distributed sources in the area 

covered by the box is immediately mixed uniformly into the atmospheric air mass of 

the box. Lagrangian TraJ'ectory and Eulerian Grid models allow for more resolution 

of the atmospheric field under consideration; however again uniform mixing down 

to the :molecular level is assumed to hold at all times inside the computational cells 

independently of the localized character of some sources.("') Although the description 

can be improved in principle by reducing the size of cells near localized sources the 

assumption of immediate uniform mixing over a finite volume remains. The size of 

the cells employed in grid models depends not only on limitations set by the numerical 

procedure but also on the character of available inputs and the formulation of the 

basic model equations (Seinfeld, 1975). 

("') 
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In some cases (see, e.g., McRae et al., 1982; Stewart and Liu, 1981) improvements have 
been introduced in the grid models by combining them with simple "plume calculations" 

that at least account for reduced mixing volume near the source. In these formulations 
the plume is assumed to expand gradually to the size of a computational cell. The quali
tative principle of this coupling between airshed and plume models is shown schematically 
in Figure 1-1. 
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Figure 1-1 

A Point-Source Plume Expanding 

in the Grid of an Airshed Model. 

I 
I ------,------
! 
I 

T 
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For example, models based on the atmospheric diffusion equation (ADE) intro

duce implicitly minimum resolution space-time scales, through the first order closure 

scheme (K-theory) for turbulent transport which formulates the ADE (see Figure 1-2 

and Table 1-1) starting from an ensemble averaged form of the stochastic species 

transport equation (which is assumed to hold instantaneously and pointwise in the 

atmospheric continuum). Nevertheless, since higher order closure schemes are drasti

cally constrained from routine applicability because of their high computational bur

den and limited range of verified parameters, the K-theories employed in the common 

ADE still offer the most practical description of atmospheric processes currently in 

use in urban scale airshed models. Conforming to the requirement for a "reasonable" 

computational effort the present work will also rely on special first order transport 

closure schemes that extend the validity of the ADE to localized emissions and fast 

nonlinear chemistry, subject of course to different restrictions in applicability.("') 

These closure schemes are based on the alternative view of local phenomena that 

is offered by the well known Gaussian plume formulas, commonly available for non

reacting species. These can be interpreted as solutions of ADE-type equations but 

with eddy diffusivities that depend on the distance from the point source (Csanady, 

1973; Pasquill, 1974) and therefore do not represent properties of the turbulent flow 

field but of the particular plume (i.e. of the particular dispersion process). 

The picture of the dispersion given by the Gaussian plume equation depends 

on the nature of the parameters that are used; it is usually a time averaged picture 

(the "plume envelope") corresponding to parameters that describe absolute diffusion. 

Nevertheless the Gaussian equations formally also apply to the ensemble mean of the 

instantaneous realizations of the plume with the direct introduction of parameters 

that describe the process of relative diffusion. This fact extends the applicability of 

("') The conditions for the validity of the common ADE are discussed extensively in other 

works (e.g. Lamb, 1973; Corrsin, 1974; Seinfeld, 1975, 1983; Goodin et al., 1976; McRae 
et al., 1982 etc.); a brief summary of its limitations - that can also be seen as "sources 
of error" in applications where these limitations a.re typically ignored - is presented in 
Table 1-1. 

PART IA CHAPTER 1 



PART IA 

I STARTING POINT 

I ASSUMPTIONS 
.__ 

! ASSUMPTIONS I-

l ASStrM:PTlONS t-

I APPROXIMATIONS t 

-9-

Euleri.u Tn1uport Eqnt.iom 

Specie; tX'UJ!Port dynlmliee ~ ucoupled from the ori!!'!'!l!!h.1'1u!CW1})- @ce~ mo-

mentwn ud i!Dl!l'IY t.n.mport: 

8e· "if+ V · (ue;).,. V · (D;Vc;) +r; + 'i 

(11.) Reynolds type diee:ompom.iou .t.n Vlllid for both the a priori bown wlocity 

leld: @11< • ii1t + ~ ud the ubOWD conemtni.ticm lield: e; • (e1) + < 
(b) Molec:ul11r ~cri ill !11.eppble m c:ompwon to tmbulmt tnllllport: 

(•'.t-ei) > k · (V · (l',Ve;)) 

a~;)+ V. (II (c;)}""' -V · (u.'e!) + (r;) + 11; 

(ia) Fint order KhellDE for arbwent tr11.Upon clown (&Ws imp0tes :limitltiom ol!l 

111pat.iil u d wmp or~ 1"0brt.ion): 

(u.' ea"" -lit· V (e;) • I[• K(.111,J, 11) 

(b) Chemic:.t.l ClOllUN (i.e. the effect of tm\ulmu a the dmnk.t.l kinetics u 
llllllWmtd 11eg}igib le): 

(r;) i::::r r; ((ti), .. ., (e1) ;T;A.v) 

A.D.E. 

!.fu1 8t + V · (U (e;)) ""V · {K · V (e.;}) +r; ((e1) , ... , {e,);T;lw) + 11; 

t.h111.t Je.t.d to worlWl( mod.eh 
. -· (11.) It u 111. wuor I (b) u u Ht.im.!11.t.ed from appro~t, mterpoht.ion Kheme• 

{e) V.;;J;;u ;;I p-.-ameten iMid both dcp~lii.dtnt ud mdepe11dtnt wriables 11n 111nr

lll(ed over the volume of lllOmt eompt1tatio11&1 nll. 

Figure 1-2 

Derivation of the Atmospheric Diffusion Equation 
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Table 1-1 

Primary Sources of Error in the ADE 

and in Related Air Quality Models 

COMMENTS 

A. The true fo:rm of the turbulent fluxes ill Higher order closure schemes offer improved description 

unknown; a lint order 11cheme (K-theo:ry) over eddy diffusivities. However 111ucb do:1mre methods 

ill introduced to describe them. lead to large computational requirements. 

B. The closure approxima.tion for turbulent Higher order closure schemes may allow formulation of 

transport limits the temporal and spatial ~uations with mcreased resolution capabilities. For point 

resolution of the ADE. Inherent &veraging 1SOurces there is a simple &st order closure alternative in 

leads to errors: the use of Gaussian plume models, corresponding to solu-

B. l. in the cue of 11trongly localized 1Jources iions of ADE-type ~uations, with eddy diffusivities that 

which ea.use steep gradients of the mean are functions of the travel time from the 1SOurce. Proper 

concentration fields tidectfon of 11ucb diffu.sivities is needed for the description 

B.2. when combined with fut nonlinear chem- of instantaneous irealintions of point ISOW'Ce plumes. 

ica.l reaction rate terms. 

C. Fine 11cale turbuient fl.uduations of the Modeis of turbulent kinetic rates that account for the ef

concentration fields that induce higher or- fects of llu.ctuationa may be introduced when such effects 

der correlations in nonlinear chemical ki- are found to be importut. 

netic terms are neglected. 
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the Gaussian plume concept (and of the related governing equations) to problems 

involving nonlinear phenomena. Meandering, which determines the random instan

taneous position of the plume, will have to be considered a posteriori when temporal 

or spatial averages of dependent variables of the nonlinear phenomena are to be esti

mated from their (expected) instantaneous point values. 

Conventional K theories (with eddy diffusivities independent of the travel time) 

describe only time averaged pictures of the dispersion phenomena and thus cannot 

discriminate the two different effects comprising dispersion for the separate treat

ment that is needed when nonlinear phenomena occur. A solution to the problem 

of describing the transport dynamics of an expected instantaneous realization of a 

reactive plume is to use generalized "eddy diffusivities" defined in terms of the rela

tive dispersion parameters of a Gaussian plume. Thus the resulting "modified" ADE 

will describe a particular dispersion process determined by the initial and boundary 

conditions (or source terms) relevant to a specific localized source, and will not be a 

"concentration transport equation" in the traditional Eulerian sense. Essentially it 

will be an implicitly "non-local" equation, a fact that forbids superposition of forcing 

terms. The formal justification of this description (which is often a subject of discus

sion and - sometimes unsupported - criticism in the literature) and the underlying 

implications relevant to the nature of the processes involved are analyzed in more 

detail in Chapter 6. 

Before closing this brief discussion we must stress the fact that the special prob

lems associated with nonlinearities of plume phenomena are relevant only if the rates 

of time evolution of these phenomena are comparable to those of the processes of dis

persion. This point is elaborated in the next section (and in more detail in Chapter 

4) in connection with nonlinear rates of chemical reactions. 
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1.3 TURBULENT KINETICS 

AND THE ATMOSPHERIC DIFFUSION EQUATION 

In typical application of the ADE in air quality models two critical assumptions 

are made with respect to chemical reaction terms. The first is an implicit one, regard

ing the approximation of ensemble means by spatial and temporal averages and is 

imposed by the nature of the common first order transport closure scheme, and can be 

circumvented by using the modified ADE, as discussed in the previous section. The 

second assumption is an explicit one, stating that (ensemble) mean reaction rates are 

functions of (ensemble) mean concentrations only and thus the latter replace directly 

instantaneous concentrations in the functional forms of the phenomenological kinetic 

laws: 

Such an approach neglects altogether the effect of turbulence on nonlinear kinetic 

terms and the consequent need for chemical closure; it is actually the simplest and 

most drastic closure approximation. However the conditions for the validity of this 

approach are very restrictive (Lamb, 1973) requiring reaction time scales that are 

large compared to the time scales associated with the dispersion processes. 

To provide perspective on this point, let us consider the problem of the release 

of species A in a turbulent background containing the species B. A and B react 

according to 

A+B:;:=P (1.3 - 1) 

and the instantaneous-pointwiserate of (1.3-1) is expressed in terms of the instantaneous-

pointv1ise concentrations as 

(1.3 - 2) 

Under conditions for which transport can be assumed practically decoupled from the 

simultaneous momentum and energy transfer that govern the velocity and tempera-
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ture fields (Seinfeld, 1975 - Section 6.1), the instantaneous concentrations of A, B 

and P at any point will obey the species mass balance equations 

(1.3 - 3) 

(where S stands for A, B or P) with the appropriate boundary and initial conditions 

that also account for source terms. Here J:,M represents the overall Eulerian Mixing 

Operator (a linear stochastic operator) which has the form (with the summation 

convention employed) 

(1.3 - 4) 

where Ui are the components of the random instantaneous velocity field and Ds is the 

molecular diffusivity of species S. rs is the formation rate of species S. Obviously 

r A =YB = -R, rp = R (1.3 - 5) 

Boundary and initial conditions are assumed deterministic in this formulation; thus 

all randomness is due to the turbulent velocity field. 

In an Eulerian framework one starts typically by introducing Reynolds type 

decomposition of the random variables in mean and fluctuating components, that is 

u = (u)+u',c = (c)+c' in the equations, where(·) stands for ensemble averages. This 

leads to a moments closure problem, unavoidable in turbulence theory. (Eulerian for

mulations for evolution equations of the entire pdf have analogous closure problems). 

Nonlinear reaction rates produce self-interaction effects causing the appearance of 

new unknown correlations in the chemical part of (1.3-3) ("turbulent kinetic terms") 

in addition to the turbulent transfer correlations in the fluid-mechanical part. Thus 

(1.3 - 6) 

with 

(1.3 - 7) 
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where incompressibility of the flow is assumed. Similar relations hold for the concen

trations of B and P. 

Now, unless 

is valid, calculations have to account for the effects of OAB = (c~ c~) on the evolution 

of the system. An extensive literature has developed in relation to models that 

account for these effects either explicitly by deriving closure expressions for <7 AB, or, 

more commonly, by treating the phenomenon of incomplete mixing through various 

indirect approaches. Chapter 4 is devoted to the study of such modeling procedures, 

focusing on models appropriate to treat plume chemistry of either infinite or finite 

rate. 

For the purpose of this introductory section it is sufficient to delineate the con

ditions under which (c~ c~) is expected to be significant. If, for simplicity, it is 

assumed that DA. = DB and the linear reverse reaction is neglected one has the 

following equation for u AB: 

(I) 

(H) (III) 

(IV) (V) 
~ 

+Do
2

(cA_ck) _ 2n((BcA.) (ac'B)) 
axiOXi \ OXi OXi 

(VI) 

-k1 [(c~<s) ((cA) + (cB)) + (c~ck 2 ) + (c~ 2 c~) + (c~ 2 ) (cA) + (c~2 ) (cB)] 

(1.3 - 8) 

As expected, new unknowns (third order correlations) appear in this equation as a 

consequence of the closure problem. However one can obtain a qualitative understand-

PART IA CHAPTER 1 



-15-

ing of the processes that influence the evolution of u AB by examining the significance 

of the various terms in (1.3-8). These terms represent 

(I) : convection of u AB by the mean velocity field. 

(II) : generation of <JAB by mean gradients in CA and CB. 

(III) : transport of u AB by turbulent velocity fluctuations (that is turbulent diffusion 

of UAB)· 

(IV) : transport of u AB by molecular diffusion. 

(V) : dissipation of u AB by molecular diffusion. 

(VI) : production or decay of u AB due to chemical reaction. 

In the absence of mean gradients the behavior of u AB is governed by the processes 

of fine scale mixing (term V) and chemical :reaction (term VI); then the ratio of these 

terms can be used as an a priori measure of the intensity of interaction between mixing 

and reaction. We express the dissipation in terms of an an appropriate Corrsin length 

scale ld (Corrsin, 1952), which is a scale of magnitude intermediate to the micro- and 

macro- scales of the flow, analogous to the Taylor scale for velocity fluctuations, as 

2D / (ac~) (ociJ)) ~ mD (c~ c~) 
\ OXi OXi l~ 

where mis an integer commonly set equal to 2 (Donaldson and Hilst, 1972). In cases 

where the magnitudes of fluctuations can be assumed smaller than those of the mean 

values, term (VI) is approximated by k f ( c~ c~) ( ( c A) + ( c B)); then one can use 

(1.3 - 9) 

as a measure of chemistry-dispersion interaction. N R is the ratio of characteristic 

time scales for mixing and reaction (a Damkohler dimensionless group); it allows the 

classification of 2nd order chemical reactions in homogeneous turbulent concentra-

tion fields (and with relatively low fluctuation levels) into slow, moderate and fast. 

When N R ~ 1 ( "instantaneous" or "very fast chemistry"), the characteristic time for 

chemical reaction is short compared to that for mixing, and the phenomenon is gov

erned not by the kinetics but by the rate at which the reactants are brought together 
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at the molecular level by dispersive processes. When NR ~ 1 ("slow chemistry"), 

concentration fluctuations are dissipated before they can affect the kinetics; in this 

situation the mean reaction rate is satisfactorily predicted by kJ (cA) (cB) (see also 

Lamb, 1973). In other words, if the dissipative scale of turbulence is small and the 

reaction rate is very slow, then molecular diffusion can be expected to keep A and 

B well mixed (at the molecular level) and the correlation term (c~C:8 ) is negligible. 

For intermediate values of N R a complex coupling between transport and chemistry 

requires elaborate schemes of modeling. (In the literature this regime is often referred 

to as "moderately fast" or "intermediate rate chemistry"). 

Representative values of N R for some atmospheric reactions are given in Table 

1-2. Typical values of D = 0.17cm2 /sec and ld = 5 and 20 cm were used in (1.3-9) 

for these estimates. One notices the wide range of N R values relevant to atmospheric 

reactions as well as the sensitivity to the magnitude of the dissipation scale. It must 

be further stressed that in actual field situations, and in particular in plumes, even 

when segregation is small enough for (1.3-9) to provide a useful means for judging 

the coupling of transport and chemistry, ld as well as mean concentrations will vary 

significantly from point to point with subsequent large variations in the local value 

of N R· Thus, the same reaction could be characterized as slow, moderate, or fast 

in different stages of plume evolution. Conditions such that locally NR = 0(1) are 

possible for most of the reactions of Table 1-2; nevertheless it is obvious that certain 

reaction systems (such as the ozone - nitrogen oxides system) are most sensitive to 

fine scale concentration fluctuations. 
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REACTION 

A+B--+ 

NO+ Os-+ 

N02 + 0--+ 

N02 +Os-+ 

NO+ H02--+ 

OLE+ Oii--+ 

Os +HO:i--+ 

-17-

Table 1-2 

Typical Damkohler Numbers NR 

for a Smog Chamber Experiment(a) 

RATE CONSTANT CONCENTRATION (ppm) 

(ppm-1 mi.n-1) CA C,B 

23.9 0.045 0.069 

U~4x104 0.253 l.94x10- 11 

0.05 0.253 0.069 

l.20xl04 0.045 l.56x10- 11 

0.15 0.005 0.009 

1.5 0.009 l.56xl0-11 

(a) Smog Chamber Experiment SUR-119J at 180 min (Pitts et al.,1976) 

(b) Damkohler Number: 

NR = Dispenion time scale = k (cA + c:a) ~ 
Reaction time scale 2[) 
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NR (I>) 

lc1 = 5cm ld = 20cm 

!.SS 53.4 

4146 68474 

0.018 0.32 

ee2 10588 

0.014 0.22 

0.13 2.03 
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A final point that must be mentioned here is that in complex reaction networks 

(typicai in photochemical air pollution) the importance of turbulent rates must be 

assessed in connection to "global" kinetic mechanisms involving the reacting species 

and not in connection to a single reaction step. Indeed, when a dispersion limited 

reaction is a member of a complex coupled system it may be so much faster than 

the other reactions that lowering its actual rate to the effective mixing rate wiH not 

change significantly the results of the overall kinetics. 

PART IA CHAPTER 1 



- 19-

1.4 REQUIREMENTS AND LIMITATIONS 

IN REACTIVE PLUME MODELING 

As a conclusion of the discussion presented in the preceding sections it can be 

stated that the complexity of the various interacting phenomena taking place during 

the simultaneous mixing and reaction of point-source plumes in the atmosphere, and 

which must be taken into account in order that a model of the problem is realistic, 

will depend on: 

(I) The order of the chemical reactions under consideration. 

Monomolecular reactions (intrinsic linear kinetic rates) are insensitive to the state of 

mixing and are not affected by fine scale fluctuations. The existence of gradients of 

the mean concentration field in a plume cross-section results in locally varying rates 

and conversions but, since averaging procedures can be interchanged with other linear 

operators, the temporal and spatial averages of these quantities (rates, etc.) are the 

same independently of the way they were estimated. Of course prediction of local 

concentrations in the vicinity of the source requires a model other than the common 

ADE because of its inherent inability of the latter to handle highly localized sources. 

Bimoiecular (as weH as higher order reactions) are affected by the state of mixing. 

Thus, if the reaction occurs faster than the plume mixes uniformly with the back

ground air the actuai rate wiii be controiied by dispersion effects. A priori averaging 

of the governing equations does not give the same average concentrations of prod

ucts as a posteriori averaging of instantaneous pointwise concentrations of the same 

species. Hence instantaneous realizations of the plume must be considered in any 

computational scheme instead of time averaged plume envelopes. 

(II) The relative rates of reaction and dispersion processes. 

When the reaction is sufficiently slow the combined action of turbulent and molecular 

diffusion dissipates both mean concentration gradients and local fluctuations before 

appreciable conversion of reactants to products takes place. In such a case assump-
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tions of well mixed cells are sufficient and the standard treatments of air pollution 

models are valid. When, however, the reaction :rate is comparable or faster than that 

of the dispersion processes, a complex coupling of mixing and reaction phenomena 

occurs and schemes evaluating the results of this coupling must be introduced. 

(III) The initial state of the reactants. 

The interaction of mixing and chemistry is essentially different for the cases of initially 

premixed reactants (both constituents of the source effiuent stream) and of initially 

non-premixed reactants (reaction between a constituent of the plume and the back

ground air). Thus, for premixed reactants and reactions of order higher than one, 

turbulence creates positively correlated fluctuations and increases the overall rate as 

the reaction proceeds faster at the high concentration spots, whereas the action of 

molecular diffusion finally depresses the overall rate. For non-premixed reactants, 

and reactions of order higher than unity, turbulent fine scale fluctuations depress the 

reaction rate. Molecular diffusion is necessary to bring the reactants in contact and 

for fast reactions it may actually control the overall rate. 

Thus when the (nonlinear) kinetic rate of a plume reaction is fast or comparable 

to that of the dispersion processes a reactive plume model must: 

(i) be based on the instantaneous and not the time averaged realizations of the 

plume. These realizations must be modeled by uncoupling the effects of mean

dering (which does not interact with chemistry) from that of relative diffusion. 

(ii) not ignore the existence of mean concentration gradients in any instantaneous 

plume cross-section (which are in fact much steeper than those present in the 

time averaged plume envelope). 

(iii) estimate spatial and temporal averages of dependent variables in an a posteriori 

fashion from the instantaneous description of the reactive system (which means 

that after rates and conversions have been estimated for the instantaneous real

ization of the plume - which is in steady state - they must be "spread out" to 

the plume envelope volume in a proper probablistic manner). 

(iv) include a scheme that estimates the effect of fine scale fluctuations on the chemical 
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rate. 

(v) include a scheme that estimates plume rise because of buoyancy and the distance 

from the source at which a final rise is obtained. 

Further improvements on this formulation can be made by incorporating, if possible, 

schemes that evaluate buoyancy and wind shear effects on the dispersion of the plume, 

examining the effects of initial (thermal) source conditions on chemistry, etc. 

The above requirements constitute a set of guidelines for the construction (and 

validation) of a Reactive Plume Model arising from the complexity of the physical 

phenomena and the need for their proper description. 

A second set of requirements (or rather limitations) arises from the need that 

the model is sufficiently simple in order to be useful. Thus, a practically applicable 

Reactive Plume Model must: 

(i) be simple and versatile, 

(ii) require commonly available air quality, meteorological and source data as input 

parameters, 

(iii) be compatible, if possible, with existing components of airshed models. 

Therefore, a final working model, constructed on the lines specified by these two 

groups of requirements, must represent in some way a balance between 

(A) complexity that arises from an adequately realistic description of the physical 

processes, and 

(B) simplicity and versatility, so that the model is useful for practical applications. 

Now, before proceeding to show how the scheme developed in the present work 

attempts to conform to these requirements - which is done in Chapters 2 and 3, with 

a detailed analysis regarding the modeling schemes and the parameters used following 

in Chapters 4 to 7- we present a brief summary of the current status of research in 

Reactive Plume Modeling. 
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1.5. REACTIVE PLUME MODELS : 

A LITERATURE SURVEY 

Most atmospheric plume models in general fall in one of the following three major 

categories: 

(i) Formulations dealing with the fluid-mechanical aspects of the problem in the 

near source region where the source buoyancy and "internal" plume turbulence are 

significant. These are the "plume rise models" resulting in a variety of schemes, from 

semi-empirical algebraic equations to complex numerical formulations (see Chapter 7). 

(ii) Schemes, ranging from fitting of empirical data to large numerical experiments 

in either Eulerian or Lagrangian frameworks, that aim in the improvement of the 

parameterization of inert dispersion from point sources, for a variety of scales and 

averaging times (see Chapter 6), and, 

(iii) Schemes that focus on the evolution of, most often linear - but sometimes com

plex, single phase or even multi-phase - reaction networks involving species emitted 

from point sources as well as constituents of the ambient atmosphere (Reactive Plume 

Models). The time scales relevant to this evolution correspond, almost exclusively, to 

the final or "atmospheric diffusion" phase of plume dispersion (i.e. typically beyond 

downwind distances of the order of magnitude of 100 stack diameters). Other physical 

removal processes (surface deposition, washout) may be included in these schemes. 

At this point it must be mentioned that the resolution provided by some of the 

formulations commonly referred to as plume models is just that of urban (and even 

regional) models. Thus, certain of the currently available "plume" models, that con-

sider complex nonlinear chemistry, are straightforv;ard Lagrangian Trajectory mod--

els employing K-theory (despite the limitations discussed earlier) to describe turbu

lent transport inside the advected large Lagrangian volume; others employ Gaussian 

plume dispersion parameters but ignore the interaction of time averaging and nonlin

earities. Appendix Al.2 contains a representative list of plume models, intended for 
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routine use, that covers the typical range of available formulations; a brief description 

of each model is also presented there. More extended, comparative reviews of plume 

models and relevant references can be found in Liu et al. (1982) (see also Benarie, 

1980). 

Another point that cannot be overemphasized is the proper identification of the 

spatial/temporal range to which a particular model is relevant. To provide perspec

tive on the importance of the different physical and chemical processes over various 

scales of the downwind distance from the source we give in Figure 1-3 a schematic 

representation of a "typical" plume evolving through successive "phases" where its 

initial momentum, its buoyancy, and, finally, the ambient turbulence, determine inter

nal plume dynamics, rise, and expansion. (For further discussion of plume evolution 

and dominarit processes in a given spatial range see Chapter 1 and Csanady, 1973). 

Let us now focus attention on models that consider in-plume chemistry (in gen

eral more realistic than simple removal linearly related to the concentration level). 

Such models can be classified according to a variety of different criteria. A general 

review that examines different plume chemistry schemes and reactive plume models 

can be found in Burton et al. (1983); in the same volume (de Wispelaere, 1983) one 

can find summarized information on various aspects of particular in-plume processes. 

Typically, models incorporating large, complex, chemistry networks tend to simplify 

greatly the effects of the mixing processes. The most realistic and sophisticated repre

sentations of mixing are incorporated in formulations dealing with relatively limited 

reaction networks involving few reactions, most commonly with the NO-NO:rOs 

photochemical system for which experience has shown the effects of mixing to be 

most important. Indeed, the fast reaction rates associated with this system and 

the fact that emissions from large industrial sources are in generai rich in NO (and 

poor in hydrocarbons) make these reactions dominate plume chemistry in the earlier 

phases of dispersion where the volume of the plume gases is much smaller than that 

of typically sized cells of Eulerian grid (and most Lagrangian trajectory) models. 

A review and classification of representative reactive plume models according to 
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the way they treat mixing processes follows. (*) This classification is also summarized 

in Table 1-3 and, schematically, in Figure 1-4, where typical concentration patterns, 

as treated by the various models, are presented. (For some further discussion of the 

in-plume concentration patterns - resulting from the interaction of chemistry and 

mixing - see Chapter 3, and in particular Figure 3-2 and the comments relevant to 

it.) 

Class I 

Models that account only for reduced initial dispersion volume occupied by point 

source emissions {smaller than the resolution scale of the ADE or the computa

tional grid of an urban scale model). Mixing is assumed uniform in this reduced 

volume (flat mean profiles - no fine scale fluctuations). Examples are: Liu et 

al. {1915}, McRae et al. {1982}, Forney and Giz {1981}, Cocks and Fletcher 

{1979}, Varey et al. {1978), Isaksen et al. {1978). 

Some of these models have been used in combination with urban scale airshed 

models, with the point source plume expanding gradually until it reaches the size of 

a computational cell. The expanding plume cross-section has been assumed either 

circular (Forney and Giz, 1981), rectangular (Liu et al., 1975) or elliptical (McRae et 

al., 1982). McRae et al. (1982) noted that the dispersion parameters determining the 

size of the elliptical cross-section must describe the instantaneous plume profile from 

relative dispersion and not the time averaged plume envelope. From the perspective 

of the present work it is very interesting to see how these simple models treat plume 

chemistry during the expansion of the plume; for this reason the formulation of McRae 

et al. (1982) is summarized in Appendix Al.1. 

(*) This classification focuses on reactions with relatively fast nonlinear kinetics. As we 

have already noted slow reactions are adequateiy treated by conventional schemes that 

are currently in use (see McRae et al., 1982). Linear processes are naturally tractable 

(insensitive to the degree of micromixing) and analytical results are often available (e.g., 

Heines and Peters, 1973; Peterson and Seinfeld, 1977; Astarita et al., 1979; Alam and 

Seinfeld, 1981). However one should always keep in mind that the limitations on the 
validity of the ADE, regarding averaging and allowable temporal and spatial resolutions, 

are implicit in the results that are deduced from it, even when only linear proce!lf!es are 
involved. 
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Classification of Reactive Plume Models 

DESCRIPTION OF MIXING 

I. Reduced initial dispersion volume 

(uniform mixing at l'l.IlY aoss-11ection 

of this volume) 

ll. Divided perfectly mixed/unmixed 

dispersion volume 

ill. Reduced Initial dispersion volume 

and 

llA. Sectionally homogeneous field 

at l'l.IlY cross section 

nm. Gaussil'J.11 meM field 

IV. Turbulent fluctuations 

(no mel'l.Il gradients) 

V. MeM field gradients 

and line scale lfo.ctuations 

VI. Probability density evolution 

formulations 
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Class II 

The partially perfectly mixed expanding volume: Carmichael and Peters {1981). 

In the formulation of this model it is assumed that at every (circular) cross-section 

of the expanding plume only a fraction of the source effluent is perfectly mixed (fiat 

profile-no fluctuations) with the environment. The rest remains pure source efflu

ent forming a core surrounded by the perfectly mixed material. This core shrinks 

with distance from the source. The mixing process is viewed as a pseudo-kinetic step 

governed by empirical laws involving a mixing rate constant and the concentration of 

unmixed reactants. The advantage of such a model over those of Class I is only rela

tive; completely empirical constants describing mixed and unmixed volume fractions 

must be introduced, and thus any improvement of predictions compared with those 

of the previous models is essentially a success in data fitting for the estimation of the 

constants. 

Class III 

Models that account for both reduced initial dispersion volume and inhomogeneous 

mean concentration fields (but consider no fine scale fluctuations) by: 

Class IIIA: 

assuming sectionally homogeneous fields or by 

Class IIIB: 

assuming Gaussian concentration fields inside the plume boundaries. 

Thus, in models of Class IIIA the expanding plume volume is divided either in 

many expanding boxes of rectangular cross-section (Stewart and Liu, 1981; Seigneur 

et al., 1983; Hov et al., 1981), or in concentric elliptical rings (Lusis, 1976; Melo et 

al., 1978). In each of these sub-volumes the species are assumed perfectly mixed (flat 

profiles, no concentration fluctuations). The model of Stewart and Liu (1981) which 

is used in combination with an urban scale airshed model visualizes a cross-section 

of plume as an array of well mixed cells perpendicular to the plume centerline that 

expand in a prescribed fashion. The concentric elliptical rings model (Lusis, 1976; 

Melo et al., 1978) was developed for the NO-N02-03 system based on a similar model 
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Figure 1-4 

Schematic Representation 

Cl.ASS Ill A 

of the Basic Characteristics of Existing Reactive Plume Models 

(according to the dassifi.cation of Section 3) 

The expanding plume is identified as a special control volume inside the atmospheric boundary layer 
(with the exception of the models of Clal!l!l IV that conaider uniform values of mean concentrationii 
over the entire boundary layer), corresponding to either instantaneous plume realizations or (more 
often) to the time averaged envelope. (For model11 relevant to instantaneoue rea!izatione the mean 
concentrations must be ensemble averages and they can be in 111teady 111tate only with respect to a 
frame of reference that follows the meandering centerline.) The cro1111-wind section of the plume is 
usually assumed to have elliptical shape (or rectangular in 11ome of the model111 of Cla1111 I and IIIA); 
concentration profiles of the emitted and the ambient 111pecie11 (A and B respectively) that are typical 
in the various models are shown: ClaS11e11 I to IIIB ignore the 111tate of micromixing (local fluctuations) 
and assume profiles that are uniform (Clau I), sectionally uniform (Cla.1111 II, IHA) or Gau1111ian (ClaH 
IIIB). Class IV takes into account fine scale fluctuations but ignores variations in the mean profiles. 
Finally Class V (and VI) consider the effect1 of both macromixing and micromixing. 
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by Freiberg (1976, 1978) who studied the oxidation of S02 in plumes. The model for 

the NO-N02-03 allows for turbulent exchange of material between adjacent rings. 

As far as the chemistry is concerned, it is assumed to be sufficiently slow so as not to 

be influenced by fine scale turbulent fluctuations. 

Peters and Richards (1977) developed a model that belongs in Class IIIB. They 

assumed Gaussian profiles of concentration inside the plume and infinite rate chem

istry and neglected completely concentration fluctuations. In order to obtain con

centration profiles of the reactive species (reactants and products) they considered 

the transport of a conserved scalar (e.g., of a stoichiometric invariant of the reactive 

system). The transport equation of the conserved scalar is linear (no reaction term) 

and results in a Gaussian profile. Then the equilibrium relation (which is assumed to 

hold for mean concentration values since fluctuations are neglected) is used to obtain 

the reactive species concentrations. Although certain limitations of the atmospheric 

diffusion equation (see previous sections) were ignored, even so this model was a step 

beyond the perfectly mixed box models. White (1977) used the same principles to 

analyze the significance of experimental measurements. 

Another model in Class III is that applied by Hegg et al. (1977), also in the 

analysis of experimental measurements. They assumed the reaction localized in the 

zone of highest concentration gradients and developed approximate schemes to obtain 

estimates of the time evolution of the reaction. 

Class IV 

Atmospheric fluctuations models {No consideration of mean concentration gra

dients): Donaldson and Hilst {1972}, Bilger {1978), Kewley {1980}, and Shu et 

al. {1978). 

The studies of Donaldson and Hilst, Bilger, and Ke·wley refer to the effect of 

turbulent fluctuations on the nonlinear chemistry of a macroscopically mixed atmo

spheric volume where mean concentrations are uniform. Donaldson and Hilst (1972) 

were the first to show quantitatively the importance of fine scale fluctuations on non

linear atmospheric chemistry. Bilger (1978) and Kewley (1980) used a version of 
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the "probability density of conserved scalars approach" to study the nature of the 

N0-03-N02 photostationary state, providing insight on the actual behavior of the 

atmospheric reactive systems in a state of incomplete mixing. Lamb (1976), Shu 

(1976) and Shu et al. (1978) considered a source of NO in a background environment 

containing 0 3 , neglecting mean concentration gradients and averaging their governing 

equations over cross-sections of the control volume. 

Class V 

Models that account for both mean field gradients and fine fluctuations: Hilst et 

al. {1979}, Borghi {1974}, Donaldson and Varma {1916} and Kewley {1918} 

The works of Borghi ( 197 4) and Donaldson and Varma ( 1976) are rep res en tative 

of how models employed in combustion aerodynamics can be applied to atmospheric 

p:roblerns involving strongly localized sources. These modeis consider mean field gra

dients and treat the fluctuations terms by direct (higher order) closure schemes. Al

though these approaches are very informative, the modeis are complex, often invoiv

ing higher order closure schemes, and formulated for specific conditions. Thus they 

cannot be considered as appropriate for routine use in atmospheric applications. 

A simplified adaptation of the approaches used in combustion modeling to the 

atmospheric plume problem was presented by Kewley (1978) based mainly on the 

work of Bilger (1978). However the assumptions involved in certain steps of its for

mulation, although valid for the fluid mechanics of combustion devices, are definitely 

PART IA CHAPTER 1 



- 31-

inappropriate for atmospheric conditions.(*) 

Class VI 

Probability density evolution formulations: O'Brien et al. {1916}, Dopazo {1976}, 

and O'Brien {1981). 

This final class is included here for completeness; it consists of models that

at least in principle-attempt a complete characterization of the reacting system 

through estimation of the probability densities of the concentrations of all partici

pating species. Evolution equations (based on methods from statistical mechanics) 

are constructed for the probability densities. However the works in this class are not 

yet in a form that would have practical use in atmospheric applications. 

(*) The model of Kewley (1978) is a tractable formulation directly relating to atmospheric 
point source plumes (and in particular the ozone-nitrogen oxides system) that treats 

both mean concentration gradients and correlations of concentrations fluctuations. The 

method used to treat the fluctuations problem is a conserved scalar approach and is based 

PART IA 

on the assumption of infinite rate chemistry and pointwise equilibrium. of the ozone
nitrogen oxides system wherever the reactants are mixed at the molecular level. There are 
however various weak points (besides this assumption of equilibrium) in the formulation 

of the model and the estimation of the parameters that are used. For example the 

common atmospheric diffusion equation is used as a starting point without consideration 

of time averaging effects and thus the transport closure approximation employed is not 

an appropriate one. Furthermore the variance of the concentration of an inert scaiar, 
which accounts for local fluctuation effects by being used as a parameter in a clipped 

Gaussian probability distribution that is assumed to describe the conserved scaiar field, is 

estimated on the basis of assumptions borrowed from the combustion literature that a.re 

not valid in atmospheric situations (see Chapter 5 for details). Of course even a better 
estimate of this variance would not help the situation that much, since, according to 

the preceding formulation of the model, the fluctuations would not be fluctuations about 
the correct quantity. Nevertheless, despite its points of invalidity this model is a rather 

simple approach that provides a qualitative understanding of certain of the phenomena 

that take place in a reactive plume. 
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1.6 CONCLUSIONS 

The introductory analysis presented here showed that the evolution of systems 

of reactive pollutants in point source atmospheric plumes is determined in general by 

the combined action of both dispersive and reactive phenomena. These phenomena 

can lead to very complex physical situations as a consequence of the coupling of 

fast nonlinear kinetic rates with the turbulent nature of the flow field in which the 

reactions take place and the strongly localized character of the source. 

All currently available theoretical studies of reactive plumes simplify - to different 

levels - the description of the complex system by introducing drastic assumptions, 

often wrong or misleading, about the importance and the nature of the coupling of 

the various interacting phenomena. 

This first chapter considered both the nature of the reactive plume problem and 

the state of current research revealing the points that have not yet been treated prop

erly; in the following we present the structure of a model that attempts to consider 

all the important aspects of the complex physical situation on the basis of explicitly 

stated assumptions. 
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APPENDIX Al.1 

Simple Models 

for Plume Mixing and Chemistry 

The problem ofrelease of species A in a background containing B (equations (1.S-1) to (1.S-5)) is 

often treated in atmospheric modeling practice by very simple methods. The most important example 

of this problem concerns the NO - N02 - Os system 

N0 2 +hv ~NO+O 

0+02+M ~Os +M 

(see also Chapter 3) and most applications have focused on it. 

Thus, one approach is to treat the reaction between NO and Os, that produces N02, as a pseudo

linear step by assuming that the background 0 8 concentration remains uniform and constant every

where, which essentially means that dispersion processes are so much faster than chemical processes 

that are able to instantaneously "recover" all the ozone that is depleted by reaction inside the plume 

(see Builtjes, 1988). This method accounts for maeromixing only through the non-uniform distribution 

(Gaussian) of NO,. and ignores completely any micromixing effects. Thus the N02 produced by the 

third of the above reactions at any point will be given by 

CNo2 = CNOs [ 1 - exp (-kscts)] 

In another approach, that (instead of assuming infinite rate of "recovery" of chemically depleted 

ozone) considers completely uniform mixing inside every cross-section of the plume and equilibrium 

of the NO - N02 - Os system, McRae et al. (1982) formulated nitrogen and excess oxygen balance as 

follows: 

Nitrogen: 

PART IA 

CNo:(t) = CNOa(t) + CNo(t) 

= D(t)cNo.,(O) + [1- D(t)Jct-,,0 ,. (Al.1- 1) 
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Excess Oxygen (ignoring 0(3 P)): 

co,.(t) = CN02 (t) + co.(t) 

= D(t)[cNo2 (0) + co3 (0) + [1- D(t)](c~o3 +ct.) (Al.1 - 2) 

In those expressions D(t) refers to the plume dilution at time t, CNO,. (0) to the stack concentrations 

and the superscript "b" to the background values. The dilution is defined in terms of the change in 

the plume cross section area as a function of time. H the initial transverse area is Ao and becomes 

A(t) at some later time, t, then 
Ao 

D(t) = A(t) (Al.1- 3) 

Thus there is a simple relation between the dilution and the growth of a cross-sectional segment of 

unit thickness: 
1 dA(t) 1 dD(t) 

A(t) dt = D(t) dt (Al.1- 4) 

In addition to .the dilution D(t), the change in cross section area can be expressed in terms of the 

dispersion coeffi.cients,u 11 and u,., 

1 dA(t) 1 du 11du,. 
A(t) -;ft= U11Ua ~ (Al.1- 5) 

H the ozone concentration in the source gases is negligible the excess oxygen balance can be written 

in the form 

C03 (t) = CA - CN03 (t) (Al.1- 6) 

where 

{Al.1- 7) 

Then, writing the NO concentration as 

(Al.1- 8) 

where 

CB = D(t)cNo .. (0) + [1 - D(t)]c~0 .. (Al.1- 9) 

one can utilize the equilibrium relation 

(Al.1-10) 

to obtain a quadratic expression for cNo2 the only physically realistic solution of which is 

(Al.1- 11) 
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The variables cA,cB can be calculated from measurements of C:No/c:No,. in the stack exhaust, the 

dilution, and the background concentration of NO, N02, and Os. 

Thus we see how the assumptions of uniform mixing (in a reduced and expanding volume) and 

infinitely fa.st reaction are combined to obtain a very simple result (but actually highly unrealistic) of 

conversion in the NO - N02 - Os system. 
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APPENDIX Al.2 

Selected Plume Models 

This Appendix contains a. list of selected "Plume Models" (some of which take into account plume 

chemistry and other processes such as surface deposition, rain washout etc.) that are available in the public 

domain and have found wide application during the la.st decade. Most of them rely on the Gaussian plume 

concept; other formulations include applications of K-theory (either in a Lagrangian Trajectory or in an 

Eulerian Grid framework) or 2nd order closure methods. The majority of the models focuses on inert 

dispersion and linear removal mechanisms; among the models listed only IMPACT, PLMSTAR, RPM and 

TRACE take into account nonlinear chemistry. (However only RPM attempts to conform to the requirement 

of working with instantaneous plume statistics). Furthermore, only macromixing is included in these models; 

the interaction of turbulence and chemistry is ignored. 

Some basic features of each model are listed as a brief description of its structure and capabilities; 

however it must be emphasized that some of these features may have been altered in more recent versions of 

the models. Thus this list is basically intended only to be indicative of the variety of approaches commonly 

employed in plume modeling. For further information, references and comparative discussion of plume models 

see Turner (1979), Benarie (1980), Liu et al. (1982), Burton et al. (1983) and Weber and Garrett (1984). 
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ADP IC 

Lawrence Livermore Laboratory 

University of California 

Livermore, CA 94550 

(R. Lange) 
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Comments: ADPIC is a three-dimensional Lagrangian par

ticle model {104 cells, 2 x 104 particles, 1 km/50m horizon

tal/vertical resolution}; it calculates hourly averaged concen

trations. The wind field is determined by the MATTHEW 

model (inverse-square-weighting for surface wind data; verti

cal extrapolation via mass conservation principle and a sta

bility dependent power Jaw; algorithm for minimization of di

vergence of wind field that takes into account the underlying 

terrain}. 

• Fluid particles released from a source follow a Lagrangian 

trajectory under the influence of the prevailing wind and a 

pseudovelocity representing turbulent diffusion. Each particle 

is tracked on an Eulerian grid, and the concentrations are com

puted by counting the total number of particles in a 11.uid cell. 

The horizontal dispersion coefficient is calculated using hori

zontal wind statistics; the vertical dispersion coefficient is as

sumed to obey a linear, height-dependent, relationship through 

the constant flux layer; both are functions of the distance from 

the souree. Numerical solution is obtained by a modified par-

ticle in cell method. 

• ADPIC considers chemically inert species but can be readily 

adapted to handle a linear chemical reaction; it treats surface 

deposition {flux proportional to product of surface concentra

tion and deposition velocity) and washout and rainout {rate 

determined by product of concentration, rainfall rate, and a 

washout efficiency coefficient.) 
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AQSTM 

Illinois Environmental Protection Agency 

Air Resources Analysis Section 

2240 Churchill Road 

Springfield, 1L 62706 

ARAP 

Aeronautical Research Associates 

of Princeton, Inc. 

P.O. Box 2229 

50 Washington Road 

Princeton, NJ 085SO 

(W. S. Lewellen, C. duP. Donaldson) 
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Comments: AQSTM is a Gaussian model that estimates short 

term {1 to 24 hr avgs) inert species concentrations from mul

tiple {up to 200} point sources. It takes into account plume 

rise {Briggs, post-1970 formulas) and inversion breakup, ver

tical wind variation (power law approximation}, and provides 

an adjustment for non-fiat terrain. 

• The horizontal concentration profile is Gaussian; the vertical 

is initially Gaussian and finally uniformly mixed; power-law ap

proximations to Pasquill-Gifford dispersion parameters (with 

sampling time correction) are used. 

• The dispersing species are assumed completely inert {no 

chemical or physical removal processes}. 

Comments: ARAP is a complex second-order-closure model 

that basically addresses the buoyant plume problem. It simu

lates evolution (in the near field} of plumes {either momentum 

or buoyancy dominated} into either a quiescent or windy atmo

sphere with stable, neutral and unstable stratification. ARAP 

is essentially a straightforward numerical scheme for plume rise 

(see Chapter 1). 
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ATM 

Oakridge National Laboratory 

Oakridge, TN 37830 

(W. M. Culkowski, M. R. Patterson) 

ARGONNE 

Argonne National Laboratory 

9700 S. Cass Avenue 

Argonne, IL 60439 

(G. L. !'.faller, T. Yamada) 
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Comments: ATM is a discrete Gaussian model for point, line 

and area sources that estimates concentrations averaged over 

user-specified periods {larger than 1 hr). It is formulated for 

constant wind, flat terrain, and accepts user-specified plume 

rise. 

• Horizontal concentration distribution is assumed uniform in 

each wind sector {22.5° sector averaging). Pasquill-Gifford

Turner and Hasker-Briggs-Smith dispersion coefficients {for dis

tances up to 10 km and between 10 tllld 50 km respectively) 

are used for vertical dispersion. 

• No chemical processes are considered. Dry deposition is 

treated through an effective source approach ("'tilted plume 

approximation"). 

Comments: ARGONNE is a second-order-closure model in

tended to simulate the behavior of buoyant plumes from large 

cooling ponds, basically on a mesoscale range. 
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BPM 

Systems Applications, Inc. 

101 Lucas Valley Road 

San Rafael, CA 9490S 

(M. K. Liu, D. Durran, P. Mundkur M. 

A. Yocke, J. Ames) 

CDM/CDMQC 

U.S. Environmental Protection Agency 

Office of Research and Development 

Research Triangle Park, NC 27711 

(A. D. Busse, J. R. Zimmerman) 
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Comments: BPM is a two-dimensional model operating in two 

alternative modes {it either adopts an Eulerian approach with 

an Eulerian coordinate system spanning the downwind and ver

tical directions, or a trajectory approach with the cells span

ning the crosswind and vertical direction). It employs K the

ory and calculates steady state concentrations {6 X 102 cells, 

50m/SOm horizontal/vertical resolution). BPM contains con

servation equations for pollutant concentration and total mass 

as well as for momentum and energy; thus the wind fields a.re 

calculated internally. 

• Horizontal and vertical eddy diffusivities a.re assumed equal; 

they a.re functions of the height (and boundary layer parame

ters} only. 

• BPM considers inert species only {no removal mechanisms, 

either physical or chemical}. 

• Numerical solution is obtained through fractional steps with 

upstream-differencing scheme. 

Comments: CDM is a kinematic model that estimates either 

short term (1 to 24 hr} or long term {1 mo to 1 yr) concen

tration averages from point and area sources. It accounts for 

plume rise from point sources (Briggs, pro 1910 formulas} and 

vertical wind variation (power law profile). It is formulated 

only for flat terrain. 

• Concentration distribution is assumed uniform in each wind 

sector. Power law approximations for Pasquill-Gifford disper

sion coefficients ue used. Algorithms for estimating existence 

of stack down wash effects and vertical depth of the well mixed 

plume. 

• The model can estimate constant exponential decay with 

user-assigned half life. 
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CRSTER 

U.S. Environmental Protection Agency 

Office of Air Quality Planning 

and Standards 

Research Triangle Park, NC 27711 

(J. H. Novak, D. B. Turner, J. R. Zim

merman) 

GEM 

Science Applications, Inc. 

875 Westlake Boulevard 

Suite 212 

Westlake Village, CA 91361 

(A. Fabrick, R. Sklarew, J. Wilson) 
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Comments: CRSTER is a Gaussian model; it estimates con

centrations averaged over either short term (1 hr to 12 hr) 

periods or over a year. It estimates plume rise (Briggs, post 

1970 formulas) and takes into account vertical wind variation 

(power law extrapolation). The terrain is assumed flat. 

• Pasquill-Gifford-Turnerdispersion coefficients are used to es

timate horizontal and vertical dispersion. Vertical dispersion 

is constrained by ground surface and inversion base (multiple 

reflection); concentration is finally assumed uniform in the ver

tical. 

e No removal mechanisms are considered. 

Comments: GEM is a kinematic model for hourly averaged 

concentrations from a single point source. Plume rise is esti

mated by Briggs (pro 1970 formulas}, but the user must specify 

the appropriate formula. Wind speed may be provided by the 

numerical wind model WEST. Nonflat terrain can be consid

ered. 

e Concentration is assumed to be Gaussian in the near field 

(vertically uniform in the far field); the user specifies disper

sion coefficients of his own choice or from a variety of model 

provided options. 

111 Only linear chemical processes can be taken into account. 
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IMPACT 

Science Applications, Inc. 

875 Westlake Boulevard, 

Suite 212 

Westlake Village, CA 91361 

(A. Fabrick, R. Sklarew, J. Taft, 

J. Wilson) 

IN TERA 

Intera Environmental Consultants 

2000 West Loop South, Suite 2200 

Houston, TX 77027 

(R. B. Lanz, K. H. Coats, C. Kloepfer) 
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Comments: IMPACT is a (three-dimensional) Eulerian grid 

model (104 cells; 1 km/50 m horizontal/vertical resolution; 

hourly averaged concentrations} employing K theory. The wind I 

field is obtained by a divergence minimization algorithm (that 

takes into account the underlying terrain). 

• Vertical eddy diffusivities are calculated as functions of height 

and boundary layer parameters; horizontal eddy diffusivities 

are obtained from the vertical ones through multiplication by 

a stability-dependent coefficient. 

•IMPACT uses a version of the Hecht-Seinfeld-Dodge mecha

nism for the chemical kinetics. Surface deposition is calculated 

by assuming the removal IJ.ux proportional to the product of 

surface concentration and a deposition velocity. 

• Numerical solution is obtained through fractional steps (with 

second order flux correction} method. 

Comments: INTERA is a (three-dimensional} Eulerian grid 

model {104 cells; variable resolution, hourly-averaged concen

trations) employing K theory. The wind field is obtained by a 

divergence minimization algorithm (fJ.at terrain assumed). 

• Horizontal diffusivities are assumed to be simple exponential 

function of height only (involving stability dependent expo

nents}; vertical eddy diffusivities are then calculated through 

multiplication by a stability-dependent coefficient. 

e Only a linear reaction and surface deposition can be treated 

byINTERA. 

• Numerical solution is obtained through an upstream differ

encing scheme. 
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ISC/ISCST 

H. E. Cramer Company, Inc. 

University of Utah Research Park 

P. 0. Box 8049 

Salt Lake City, UT 84108 

(J. F. Bowers, J. R. Bjorklund, 

C. S. Cheney) 

MESOGRID 

Environmental Research and Technology, 

Inc. 

696 Virginia Road 

Concord, MA 017 42 

(C. S. Morris, C. W. Benkley, A. Bass) 
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Comments: ISC/ISCST is a kinematic model for point, line, 

area and volume sources; the averaging time is user-specified, 

up to 24 hours. The model estimates plume rise (Briggs, post 

1970 formulas) and takes into account vertical variation in hor

izontal wind speed (power law extrapolation). 

• Pasquill-Gifford-Turner dispersion coefficients are used for 

point sources without effects of building wakes; a modified set 

of coefficients is used for volume sources and point sources 

with effects of building wakes. (For z < 100 m no treatment is 

provided). Perfect reflection from inversion base and ground 

surface and finally uniform mixing in the vertical is assumed. 

G1 Only linear processes can be treated. 

Comments: MESOGRID is a three-dimensional Eulerian grid 

model (2 x 108 cells; variable resolution; hourly or longer av

eraged concentrations) employing K theory. The wind field is 

assumed two-dimensional; observed winds are iteratively ad

justed to remove the excessive divergence in the interpolated 

wind field, MESOGRID uses a speciru horizontru treatment 

that is more appropriate to mesoscale problems: vertical ad

vection is assumed much smaller than vertical diffusion whereas 

horizontal advection is assumed to be much smaller than hor

izontal advection. 

G1 MESOGRID does not use a horizontal eddy diffusivity; its 

vertical eddy diffusivity is calculated through an algorithm, 

similar to the ones employed in IMPACT, PDM and RADM, 

based on the similarity theory for the planetary boundary layer. 

• MESOGRID was specifically designed to estimate atmospheric 

conversion of 802 to sulfate; surface deposition is also included. 

• Numerical solution by the method of moments horizontally; 

forward-centered differencing vertically. 
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MESOPUFF

E n v i r o n m e n t a l  R e s e a r c h  a n d  T e c h n o l o g y ,  Comments: M E S O P U F F  i s  a  r e g i o n a l  s c a l e  k i n e m a t i c  m o d e l

I n c .

6 9 8  V i r g i n i a  R o a d  

C o n c o r d ,  M A  0 1 7 4 2  

(C. W. Benkley, A. Bass)

for p o i n t  s o u r c e s  t h a t  p r o v i d e s  c o n c e n t r a t i o n s  a v e r a g e d  o v e r  a  

user-specified p e r i o d  ( w i t h  m i n i m u m  o f  1  h o u r ) .  I t  t a k e s  i n t o  

a c c o u n t  p l u m e  r i s e  ( B r i g g s ,  p r o  1 9 7 0  f o r m u l a s )  a n d  f u m i g a t i o n .  

I t  u s e s  g r i d d e d  w i n d  s p e e d  v a l u e s i n p u t  at each u p d a t e  i n t e r v a l ;  

t h e  w h o l e  p u f f  i s  a d v e c t e d  d e p e n d i n g  o n  w i n d s  a t  p u f f  c e n t e r .  

T h e  terrain i s  a s s u m e d  B a t .

• P G T  c o e f f i c i e n t s  a r e  u s e d  f o r  v e r t i c a l  a n d  h o r i s o n t a l  d i s 

p e r s i o n  f o r  d i s t a n c e s  l e s s  t h a n  1 0 0  k m ;  f o r  l a r g e r  d i s t a n c e s  

H e f f t e r ’s  d i s p e r s i o n  c o e f f i c i e n t s  a r e  u s e d .  T h e  u s e r  s p e c i f f e s  

c o n d i t i o n  o f  e i t h e r  m u l t i p l e  r e f f e c t i o n  o r  u n i f o r m  m i x i n g  b e l o w  

t h e  i n v e r s i o n  b a s e .

•  T h e  m o d e l  t r e a t s  l i n e a r  d e c a y  o f  S O a  t o  S O ^ 3  a n d  d r y  d e 

p o s i t i o n  o f S O a  a n d  S O ^ 3 .

MPTER

U . S .  E n v i r o n m e n t a l  P r o t e c t i o n  A g e n c y  

M e t e o r o l o g y  a n d  Assessment D i v i s i o n  

R e s e a r c h  T r i a n g l e  P o r k ,  N C  2 7 7 1 1  

(T. E. Pierce, D. B. Turner)

Comments: M P T E R  i s  a k i n e m a t i c  p o i n t  s o u r c e  m o d e l  p r o v i d 

i n g  a v e r a g e s  o v e r  1  t o  2 4  h o u r s .  P l u m e  r i s e  i s  t r e a t e d  t h r o u g h  

B r i g g s  f o r m u l a s .  A n  a d j u s t m e n t  f o r  non-fiat terrain is p r o 

v i d e d .

• P G T  h o r i s o n t a l  a n d  v e r t i c a l  c o e f f i c i e n t s  a r e  u s e d ;  f f n a l l y  u n i 

f o r m  m i x i n g  i s  a s s u m e d  i n  the v e r t i c a l .

•  C o n s t a n t  e x p o n e n t i a l  d e c a y  w i t h  u s e r - a s s i g n e d  h a l f - l i f e .
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MSDM 

Lawrence Livermore Laboratory 

University of California 

Livermore, CA 94550 

(D. L. Ermak, R. A. Nyholm) 

MULTIMAX 

Shell Development Company 

Westhollow Research Center 

P.O. Box 1380 

Houston, TX 17001 

(J. H. Moser -

modified by Koss and Condrey 

at Tennessee Valley Authority) 
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Comments: MSDM is a kinematic model for point sources 

providing hourly, seasonal or annual concentration averages. 

Plume rise is treated by empirical formulas and vertical wind 

variation through a power law extrapolation. 

• Coefficients based on the Pasquill-Gifford scheme are used. 

Horizontal dispersion is corrected for initial dilution effects. 

Initially multiple reflection and finally uniform mixing is as

sumed in the vertical. In the long term mode sector averaging 

is used. 

•Linear chemistry (chains of up to three reactions) and dry de

position and gravitational settling (proportional to the ground 

level atmospheric concentration) are treated. 

Comments: MULTIMAX is a kinematic model for point sauces 

providing 1-, S-, 24- hour and annual concentration averages. 

It uses Briggs formulas for plume rise and power-law extrapo

lation for the vertical variation in wind speed. 

• Pasquill-Gifford-Turner horizontal and vertical coefficients 

are used with optional sampling time correction. Vertical dis

persion is assumed constrained by ground surface and inversion 

base (multiple reflection). 

e Only linear processes can be handled. 
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PAL 

U. S. Environmental Protection Agency 

Meteorology and Assessment Division 

Research Triangle Park, NC 27711 

(W. B. Peterson) 

PDM 

Systems Applications, Inc. 

101 Lucas Valley Road 

San Rafael, CA 94903 

(M. K. Liu, D. Durran, P. Mundkur, 

M. A. Yocke, J. Ames) 
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Comments: PAL is a kinematic model that calculates 1 to 24 

hour-averages of concentrations from point, area and four types 

of horizontal line sources {straight and curved). Plume rise 

is taken (optionally) into account through Briggs (post 1970) 

formulas. A power law extrapolation is used for the vertical 

wind speed. The terrain is assumed flat. 

• PGT dispersion coefficients are used; both horizontal and ver

tical coefficients are corrected for initial dilution effects. Mul

tiple reflection and finally uniform mixing is assumed in the 

vertical. 

• No removal processes are considered. 

Comments: PDM is a hybrid three-dimensional, Eulerian, grid 

and trajectory puff model (a Gaussian puff module is incorpo

rated in an Eulerian grid model to enhance the spatial resolu

tion near strong point sources). It calculates hourly averaged 

concentrations (104 cells, 1 km/50 m horizontal/vertical reso

lution). The wind field is determined either (a) by interpolat

ing observed surface winds-assumed constant with height-and 

then estimating vertical winds in terms of the horizontal diver

gence, or {b} by employing a wind model that is based on the 

mass-consistency principle. 

• The horizontal eddy diffusivity is a user-specified constant. 

The vertical diffusivity is assumed a function of height (and 

boundary layer parameters) and is calculated through an algo

rithm that utilizes atmospheric similarity theory. 

11> PDM calculates atmospheric conversion of S02 to sulfate; 

surface deposition is also included. 

11> Numerical solution through a fractional steps {flux corrected) 

method. 
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PLMSTAR 

Environmental Research and Technology, Comments: PLMSTAR is a Lagrangian trajectory model es-

Inc. 

696 Virginia Road 

Concord, MA 01142 

(F.W. Lurma.nn et al.) 

PTDIS 

U. S. Environmental Protection Agency 

Meteorology Assessment Division 

Research Triangle Park, NC 27711 

(D. B. Turner, A. D. Busse) 

PART IA 

timating short term averages of concentration (variable hori

zontal and vertical resolution provided by a two-dimensional 

wall of cells advected by the mean wind). Wind field is deter

mined by a divergence minimization algorithm; the validity of 

the trajectory approximation is also checked under the specific 

conditions relevant to the calculations. 

• Vertical eddy diffusivities are functions of height and {sta

bility dependent) boundary layer parameters; the horizontal 

diffusivities are then calculated by multiplying with a stabil

ity dependent coefficient. Alternatively, eddy diffusivities for 

dispersion from strong point sources are calculated in terms 

of (absolute) dispersion parameters that are functions of the 

travel time from the source. 

• A reduced form of the ERT photochemical mechanism de

scribes plume chemistry. 

•Numerical solution is obtained by a scheme that discriminates 

between stiff and non-stiff ordinary differential equations. 

Comments: PTDIS is a kinematic model for a single point 

source and 1 hr averaged concentration. Plume rise is either 

user specified or estimated by Briggs (post 1970) formulas. 

Wind speed is assumed constant with height and the terrain is 

assumed flat. 

• PGT horizontal and vertical dispersion coefficients are used; 

multiple reflection is assumed in the vertical. 

e No removal processes are considered. 
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PTMAX 

U. S. Environmental Protection Agency 

Meteorology Assessment Division 

Research Triangle Park, NC 27711 

(D. B. Turner, A. D. Busse) 

PTMTP 

U. S. Environmental Protection Agency 

Meteorology Assessment Division 

Research Triangle Park, NC 27711 

(D. B. Turner, A. D. Busse) 
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Comments: PTMAX is a kinematic model for a single point 

source and 1 hr averaged concentration. Plume rise is either 

user specified or estimated by Briggs (post 1970) formulas. 

Wind speed is assumed constant with height and the terrain is 

assumed flat. 

• PGT horizontal and vertical dispersion coefficients are used; 

vertical dispersion is constrained by ground reflection only. 

• No removal processes are considered. 

Comments: PTMTP is a kinematic model for multiple (up 

to 25} point source and 1 hr averaged concentration. Plume 

rise is either user specified or estimated by Briggs (post 1970) 

formulas. Wind speed is assumed constant with height and the 

terrain is assumed flat. 

• PGT horizontal and vertical dispersion coefficients are used; 

multiple reflection is assumed in the vertical. 

• No removal processes are considered. 
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RADM 

Dames and Moore 

Advanced Technology Group 

1100 Glendon Avenue, Suite 1000 

Los Angeles, CA 90024 

(A. K. Runchal, W.R. Goodin, 

K. J. Richmond) 

RAM 

U. S. Environmentai Protection Agency 

Meteorology Assessment Division 

Research Triangle Park, NC 27711 

(D. B. Turner, J. H. Novak) 
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Comments: RADM is a three-dimensional Lagrangian parti

cle model (2 x 104 particles; hourly averaged concentrations; 

variable resolution) utilizing K theory. First the probability 

of finding a particle at a given location is calculated and then 

the concentration at a given location is determined from the 

distribution of particles in an Eulerian framework. The wind 

field is obtained by a divergence minimization algorithm (that 

takes into account the influences of both the underlying terrain 

and the vertical temperature gradient.) 

• Vertical eddy diffusivities are a function of height and (stabil

ity dependent) boundary layer parameters; horizontal eddy dif

fusivities are assumed functions of stability dependent bound

ary layer parameters only. Calculations are based on a random 

walk approach. 

• RADM estimates conversion of S02 to sulfate. Surface de

position is included. 

Comments: RAM is a kinematic model for point and area 

sources. It calculates 1 to 24 hr averages. Plume rise is treated 

by Briggs (post 1970} formulas and wind speed variation in the 

vertical by power law extrapolation. The terrain is assumed 

flat. 

• PGT horizontal and vertical coefficients are used for disper

sion over :rural areas; Briggs coefficients are used for urban 

areas. Multiple reflection is assumed in the vertical. 

• Constant exponential decay with user assigned half-life. 
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RPM 

Systems Applications, Inc. 

101 Lucas Valley Road 

San Rafael, CA 9490S 

(M. K. Liu, D. A. Stewart, 

T.W. Tesche) 

SCIM 

GEOMET, Inc. 

15 Firstfield Road 

Gaithersburg, MD 20760 

(R. C. Koch) 
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Comments: RPM is a two-dimensional trajectory puff model 

based on the Gaussian plume concept. A wall of rectangular 

vertical cells {perpendicular to the plume centerline) expands 

downwind, its total dimensions being four times the values of 

the relative dispersion parameters. Mass is reapportioned in 

the cells through a.n artificial diffusion mechanism. 

o Horizontal and vertical dispersion para.meters that determine 

the cell wa.11 size a.re assumed to be functions of the disper

sion time. The McElroy-Pooler parameterization scheme is 

adopted to estimate absolute dispersion. Then relative dis

persion parameters a.re just assumed to be 1.5 times smaller 

than the corresponding absolute dispersion parameters {for all 

atmospheric stability classes). Artificial diffusion coefficients 

a.re used to account for mass transfer between cells. All cells 

a.re assumed uniformly mixed; thus the model provides only 

horizontal resolution. 

o Modified formulations of the Carbon-Bond Mechanism a.re 

adopted in the various versions of the RPM family of models. 

o Numerical solution is obtained by schemes appropriate for the 

solution of the stiff ordinary differential equations that describe 

concentration evolution in each expanding cell. 

Comments: SCIM is a kinematic model for point and area 

sources. It calculates 1 hr to 1 yr averages. The model takes 

into account plume rise (Briggs, post 1970 formulas) and wind 

speed Vlll'iation in the vertical (power-law extrapolation). 

o PGT dispersion coefficients a.re used for rural areas; McElroy 

coefficients a.re used for urban areas. Perfect ground reflection 

and finally uniform mixing is assumed in the vertical. 

o Constant exponential decay with user assigned half-time. 
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STRAM 

Battelle Pacific Northwest Laboratories 

P.O. Box 99 

Richland, WA 99352 

(J. M. Hales, D. C. Powell, T. D. Fox) 
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Comments: STRAM is a two-dimensional Lagrangian trajec

tory model (essentially a segmented Gaussian model, 5-20 cells; 

hourly or longer averaged concentrations, variable :resolution). 

Each segment of the STRAM is mass-integrated in the cross

wind and vertical direction. The rate of change of the inte

grated pollutant mass is controlled by the difference between 

the upstream inf1ow and downstream outf1ow area-integrated 

mass Bux. A combination of (volume-integrated) chemical :re

action, washout, and source and sink terms, is also included in 

the mass balance equations. The wind field is determined by 

direct interpolation (only horizontal wind speeds are :required). 

STRAM is intended for long :range transport problems (dis

tances larger than 10 km from the source). 

• Horizontal and vertical dispersion para.meters are assumed 

to be functions of the downwind distance a.long the trajectory, 

described by simple exponential laws and stability dependent 

coefficients (the horizontal dispersion para.meter exponent is 

ta.ken equal to 0.9; the corresponding exponent for the vertical 

dispersion is assumed stability dependent). 

• STRAM calculates atmospheric conversion of 802 to sulfate; 

surface deposition a.nd washout-:ra.inout are included. 

• Numerical calculations employ Ga.uss-La.gue:r:re quadrature; 

second-order Runge-Kutta. integration. 
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TCM 

Texas Air Control Boa.rd 

6330 Hwy 290 East 

Austin, TX 78723 

(R. A. Porter, J. H. Christiansen) 

TEM 

Texas Air Control Boa.rd 

6330 Hwy 290 East 

Austin, TX 78723 

(R. A. Porter, J. H. Christiansen) 
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Comments: TCM is a long term average {1 mo to 1 yr) model 

for point and area sources. Briggs plume rise equations under 

unstable or neutral conditions a.re used for all atmospheric con

ditions (only for the point sources). A power law is assumed 

for the vertical variation of the wind speed. The terrain is 

assumed Bat. 

e Uniform concentration distribution in the horizontal direc

tion a.re assumed within each wind sector {22.5° sector averag

ing). Power-law approximation to Pasquiil-Gifford curves are 

used for vertical dispersion; finally uniform mixing is assumed. 

e Constant exponential decay with user assigned half-time. 

Comments: TEM is a kinematic model providing short term 

{10-min, 30-min, 1-hr, 3-hr, 4-hr, 24-hr averages) concentration 

from multiple point (up to 300) and area (up to 200} sources. 

Briggs formulas are used to calculate plume rise and a power 

law extrapolation is used for wind variation in the vertical. 

The terrain is assumed Bat. 

• Power law approximations of Pasquill-Gifford coefficients are 

used; finally uniform mfring is assumed in the vertical. 

• Constant exponential decay with user-assigned half-life. 
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TRACE 

AMI 

Applied Modeling, Inc. 

Los Angeles 

(K.T. Tran) 

VALLEY 

U. S. Environmental Protection Agency 

Office of Air Quality Planning 

and Standards 

Research Triangle Park, NC 27711 

(E.W. Burt) 
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Comments: TRACE is 11. L11.gr11.ngi11.n trajectory model provid

ing short term 11.ver11.ges of concentration (variable horizontal 

11.nd vertical resolution of a two-dimensional wall of cells ad

vected by the mean wind). Wind field is determined by a 

divergence minimization 11.lgorithm. 

• Vertical eddy diffusivities are functions of height and (sta

bility dependent) boundary layer parameters; the horizontal 

diffusivities are then c11.lcul11.ted by multiplying with a stability 

dependent coefficient. 

• The McRae-Seinfeld photochemical mechanism is employed 

for the description of the chemical kinetics. 

•Numerical solution is obtained by a scheme that discriminates 

between stiff and non-stiff ordinary differential equations. 

Comments: VALLEY is a kinematic model that calculates 

24 hr, se11.Sonal, and annual averages of concentrations from 

multiple (up to 50) point sources. It estimates plume rise 

(Briggs, post 1970} formul11.S and assumes constant wind speed 

with height. An adjustment for non-fJ.11.t terrain is included. 

• Horizontally uniform concentration distribution is 11.Ssumed 

in ea.ch wind sector {22.5° sector averaging). PGT coefficients 

(with near-ground source correction for urban arell.S} are used 

for the vertical dispersion. Multiple refJ.ection and finally uni

form mixing are 11.Ssumed in the vertical. 

• Constant exponential decay with user-assigned half-life. 
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CHAPTER 2 

THE TURBULENT REACTING PLUME MODEL (TRPM): 

STRUCTURE AND PARAMETERS 

2.1 INTRODUCTION 

In order to overcome deficiencies of currently available plume models, as they 

were described in Chapter 1, a new scheme, to be called the Turbulent Reacting 

Plume Model (TRPM), has been developed and is schematically presented in Figure 

2-1 (page 67). The TRPM offers a comprehensive description of the evolution of 

atmospheric plumes, conforming to the requirement that models of nonlinear in-plume 

processes must: 

(i) be based on ensembles of instantaneous and not time averaged realizations of the 

plume (avoid temporal averaging), 

(ii) not ignore the existence of mean concentration gradients in the instantaneous 

plume cross sections (avoid spatial averaging), and 

(iii) include a scheme that estimates the effects of fine scale fluctuations on the chem

ical rates. 

In this treatment, and at the present level of development of the TRPM, the fo

cus is on the quantitative analysis of the interaction of mixing and chemical processes. 

The approach followed discriminates between fluid-mechanical phenomena that inter

act with nonlinear chemistry (relative or two-particle dispersion due to small scale 

turbulence of the background air, possibly aided by the initial plume buoyancy and 
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momentum) and phenomena that do not interact with chemistry (meandering, ex

pected plume rise) and takes them into account separately. 

The working model is a modular mathematical scheme that allows for alternative 

descriptions (at various levels of complexity) of the various processes involved in the 

reaction-dispersion phenomenon. 

The core of the model is a "master module" that contains the differential evolu

tion or algebraic local equations (depending on the assumptions appropriate for each 

specific system) for "progress variables" that describe the state of dispersion and 

reaction process. A new progress variable that utilizes spatially varying stoichiom

etry to reduce computational burden, and at the same time is a useful quantitative 

measure of the effect of mixing on reaction at each point, is introduced and used in 

this work; it· is called the "local phenomenal extent of reaction" and the governing 

equations are formulated in terms of it. These equations represent the fundamental 

transport-reaction balances. They utilize 

(a) a first order closure scheme for the turbulent dispersion (modified K theory: 

modified in the sense that the K's used are not properties of the fl.ow field but, at any 

"receptor point," of the specific source-receptor pair, and the solution is relevant to 

expected instantaneous values and not temporally and spatially averaged quantities), 

and 

(b) an indirect chemical closure scheme for the turbulent kinetic rates based on a 

"concentration field splitting" technique that accounts for the effect of fluctuations 

in the nonlinear terms. (For comparison calculations the model can ignore this effect 

and use conventional, non-turbulent kinetics.) 

The calculations performed by the master module of the TRPM estimate ex

pected pointwise concentrations of reactants and products inside the instantaneous 

plumes (relative to the center of mass of each cross-section). The required inputs for 

these calculations (to be called "inner level" parameters) are supplied by independent 

"peripheral modules" as follows: 

(a) Dispersion coefficients that account for relative dispersion processes alone: A new 
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iterative scheme that allows their estimation from observed atmospheric turbulence 

spectra has been formulated and is presented in Chapter 6. Alternatively available 

semi-empirical relations can also be used. 

(b) The intensity of plume segregation (which measures completeness of fine scale 

mixing): This can be computed alternatively, from a first order closure numerical 

scheme for a~, or from the analytical expressions provided by the "Localized Produc

tion of Fluctuations Model" which has been developed for the needs of this work and 

is presented in Chapter 5. 

Another peripheral module provides the information needed for the a posteri

ori calculation of averaged, or instantaneous, fixed point concentrations (needed to 

connect the plume model with more extended air quality models) by determining 

its mean path and local time-averaged size through "outer level" parameters. These 

define a translating coordinate system attached to the instantaneous plume center

line (i.e.,following its bulk bodily movements). Plume rise and meandering determine 

the position of this system. Meandering is modeled as a random (typically Gaussian) 

process through the fluid particle transition function of the turbulent field, and plume 

rise is simulated either by a comprehensive three-dimensional integral approximation 

scheme or, alternatively, by simple semi-empirical formulas. 

The availability of alternative schemes for parameter estimation ensures flexibil

ity of the overall formulation and allows control on the complexity of the working 

model and of the associated computational burden, in accordance with the quality 

of available inputs and the objective of the particular calculations. Application of 

the TRPM to the NO - N02 - NOs system of reactions, which is of particular im

portance in point-source atmospheric plumes, is presented in Chapter 3; comparison 

with available experimental data offers a satisfactory first evaluation of the model. 
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The following analysis focuses on the model problem described by equations (1.3 -

1) and (1.3-2) of Chapter 1, i.e. the second order reaction between the unpremixed 

species A (from the source) and B (from the background air). The objective is to 

transform the reaction-dispersion equation (1.3-6) in a solvable form via appropriate 

transport and chemical closure schemes, i.e. via a realistic parameterization of the 

turbulent fluctuation correlations appearing in equations (1.3-6) and (1.3-7). 
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2.2 BASIC ASSUMPTIONS 

AND APPROXIMATIONS 

At the present stage of development of the TRPM it is assumed that the fine 

scale turbulence responsible for the phenomena of plume growth and entrainment is 

determined mainly by the fine scale dynamics of the ambient atmospheric flow field. 

Thus we neglect the effect that initial plume dynamics (buoyancy and momentum) 

may have on the evolution of the reactive system. The justification for this assumption 

is that in most practical cases the self-generated turbulence of the plume is a dominant 

factor in the mixing process only for travel times up to a few seconds for typical wind 

speeds (Csanady, 1973 - Section 6.12). Since the overall mixing of the plume with 

the background air will also be minimum during this stage of plume dispersion, it 

is therefore reasonable to conclude that no appreciable conversion of reactants to 

products has taken place in the initial phases that are dominated by the source 

dynamics. Naturally this assumption becomes more realistic in cases where initial 

buoyancy and momentum are actually small (as is the case in controlled wind tunnel 

experiments that can be utilized for initial model verification). If, however, the source 

effects are so intense that mixing at the initiai phases of piume growth shouid be taken 

into account in a more precise way, then a first practical solution to this problem is to 

consider a virtual source at a sufficient distance upwind of the real source, such that 

background turbulence alone would have caused the same overall mixing at points 

downwind as self-generated turbulence acting for the actually traveled distances. 

To meet the requirement that the governing equations must represent the expected 

instantaneous dynamics of the plume and not some time averaged envelope, we adopt 

a frame of reference with its origin always on the meandering centerline of the plume. 

A standard Galilean transformation is needed for the fixed frame equations to apply in 

the new coordinates. The mean concentration fields (not the corresponding stochastic 

fields) viewed from the moving frame are in a "true" steady state in the sense that 
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they remain invariant with respect to infinitesimal time shifts. A time averaged field 

viewed from a fixed position would be in steady state only for averaging times long 

enough to incorporate and "smooth out" meandering effects of various scales. Thus 

the steady state of the plume envelope as viewed from a ground observer is a different 

concept from the steady state that is considered here and that actually refers to 

isolated relative diffusion. 

For a continuous steady release one has a(·) jot = 0 in the meandering coor

dinates. For notational convenience it is subsequently assumed that all dependent 

and independent variables are defined in the moving frame. In this way random bod

ily movements of the plume are "extracted" from the mean mixing operator (f.M), 

(modeled through a Lagrangian scheme) which still describes advection and relative 

turbulent as· well as molecular diffusion phenomena. The assumption that this op

erator remains of the same form in the fixed and the randomly meandering frames 

is discussed in detail in Chapter 6 (by considering essentially the operator's Green's 

function), and is justified for the idealized case of point source and homogeneous

stationary turbulence; for more realistic (and therefore complicated) situations one 

expects this assumption to be valid for relatively mild meandering. 
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2.3 MODELING THE GOVERNING EQUATIONS: 

THE MIXING TERM 

(J:.M) must be modeled in such a way that after the introduction of the closure 

approximation it still describes mean instantaneous realizations of the plume. Ex

clusively "fluid particle dispersion" will be associated with (J:.M) on the assumption 

that molecular diffusion is negligible in comparison to turbulent transport. Special 

attention must be given to this step. Molecular diffusion is by no means a "negligible" 

or unimportant phenomenon in the structure of the overall process. On the contrary, 

it may control the overall rates of chemical conversions. However, its major effect 

consists of homogenizing the mixture of plume gases and background air at local 

scales and not in transporting material macroscopically. Thus molecular diffusion af

fects the steady state distribution of fluctuations rather than of mean concentrations, 

which are determined by turbulent diffusion. In this sense we "neglect" the molec

ular diffusion term in the l.h.s. of equation (1.3-6); actually the effects of molecular 

diffusion will be incorporated implicitly in the r.h.s. of this equation, in a phenomenal 

kinetic rate that accounts for the effects of fine scale fluctuations. 

The theoretical basis for the development of closure schemes that take into ac

count the scale-dependent properties of the mixing process, and therefore reflect the 

nonlocal character of turbulent dispersion, is reviewed in the monograph of Leslie 

(1973 - Chapters 8 and 12) and in Monin and Yaglom (1975 - Section 24); more 

recent developments are discussed in Jiang (1985). These schemes lead to the de

velopment of integrodifferential equations for (c) (more exactly for the transition 

probability density of fluid particles) that involve the mixed space-time correlations 

of either Eulerian or Lagrangian velocity fields. However, the current formulation of 

the TRPM adopts the simplest version of this approach by utilizing a dispersion equa

tion with "apparent" eddy diffusivities that depend on the travel time (see Csanady, 

1973 - Section 3.8; Berlyand, 1975- Section 2.6). A formal construction of this model 
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is possible, e.g. starting from Roberts' (1961) equation (equation 24.8 of Monin and 

Yaglom, 1975), and reducing it to a partial differential equation by assuming 

(i) velocity fields that are delta correlated in space (see also Runca et al., 1983), and 

(ii) that the fluid particles' positions constitute first order Markovian processes. 

A more detailed discussion of the assumptions and problems associated with the 

apparent eddy diffusivities concept is presented in Chapter 6. 

Introducing the eddy diffusivities in terms of the instantaneous plume descrip-

tion, i.e. as 

K ·() _ ! CJRt 't - --2 dt 
(2.3 - 1) 

where <!Ri is the dispersion parameter for relative diffusion, the ensemble mean form 

of the mixing operator will be 

(2.3 - 2) 

A further optional assumption in the TRPM is that of negligible turbulent diffusion 

in comparison to advection in the direction of mean wind speed (the commom "slen

der plume approximation"). This assumption of no back-mixing implies that plume 

species will interact chemically only with the background air and not with plume 

material of different "age" (which is at a different stage of dilution and chemical 

conversion). Since recirculation eddies inside the plume will necessarily mix "fresh" 

effluent with "older" material, the validity of this approximation will depend on the 

magnitude of the mean wind speed and the atmospheric stability conditions. 

Thus, for example, for steady and relatively strong mean wind speed u1 in the 

x 1-direction, the mean mixing operator will be approximated by 

(2.3 - 3) 
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2.4 MODELING THE GOVERNING EQUATIONS: 

THE REACTION TERM 

(a) The Chemical Closure Problem 

Modeling the r.h.s. of equation (1.3-6), i.e. introducing a closure scheme for 

the second order turbulent kinetics, has been the explicit or implicit objective of an 

extensive amount of research in several fields of science and engineering; the relatively 

few and recent applications in the field of air pollution modeling were mentioned in 

the review of Chapter 1. 

At this point one must realize that a knowledge of the fundamental concepts un

derlying the various approaches that have been proposed to provide closure to turbu

lent kinetics equations (and of the relative merits and limitations of these approaches) 

is a prerequisite in selecting the most appropriate method for a given application; for 

this reason a review and classification of existing modeling methods, with the focus 

on their potential applicability to the atmospheric plume problem, is presented in 

Chapter 4. 

To summarize some basic ideas of Chapter 4, approaches that deal explicitly with 

global Eulerian statistical transport-reaction equations of the form of (1.3 - 3) and 

(1.3 - 6) can be classified as "direct", when correlations (or joint pdf's) of reacting 

species concentrations such as CA, CB are modeled directly through algebraic or dif

ferential equations, and as "indirect" or "mixing-reaction-decoupling" approaches, in 

which the quality of mixing (at both macroscopic and microscopic scales) is studied 

separately, in terms of some auxiliary variables, commonly called "conserved scalars", 

that are not affected by the chemical reaction, and is subsequently related to the ob

served phenomenal chemical rate. 

The indirect closure method is presently at a better state of development and in 

general leads to more tractable schemes than direct methods; it was actually origi

nated as early as 1928 (Burke and Schumann, 1928) and has often been reintroduced 
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since then (Hawthorne et al., 1949; Toor, 1962). In the case of infinitely fast ("instan

taneous") reactions, closure is needed only for correlations or pdf's of the conserved 

scalars (e.g. Kewley's (1978) model). When the chemical rate is finite, parameteriza

tion of expressions involving both conserved scalars and reaction sensitive variables is 

also necessary. Such an approach was adopted by Shu (1976), Lamb (1976), and Lamb 

and Shu (1978); however, their analysis was restricted to macroscopically cross- sec

tionally uniform concentration fields and thus limited the applicability of their model 

to one-dimensional problems (i.e. considering variations of mean concentrations only 

in one, spatial or temporal, dimension). 

A general formulation of the method, in a way that holds for pointwise defined 

instantaneous consentrations in arbitrary, non-uniform, fields is briefly presented next; 

some further discussion can be found in Chapter 4 and in Appendix A4.1. 

(b) The "Concentration Field Splitting" Method 

Let ci(x,t), c~(x,t) be the hypothetical concentrations of A a.i~d B that would 

exist at the space-time point (x, t) if they did not react with each other but, still, were 

transported in the field by exactly the same molecular and convective mechanisms. 

We can define these new variables as concentrations of fictitious inert surrogates A 1 , 

B 1, of A and B. CA, CB as well as ci, c~ at any (x, t) are random variables. The 

approach proposed in this work accounts for the possible states of mixing of the two 

species by viewing each of the above concentration fields not only as random functions 

of (x, t) but also as functionals of the entire ensembles of realizations of the inert sur

rogate of their "mixing partners" at (x, t). Indeed, the possible micromixing states 

of, say, A or A 1 at any point depend on the probabilistic characteristics of the conen

tration of B 1 at this point. Thus cA(x, t) and ci (x, t) are functionals of the ensemble 

of all possible values of c~(x,t). This dependence is expressed formally through the 

following integral representation of each random realization of, say, cA(x,t): 

CA (x,t; [c~(x,t) = 1'1]) = f CA (x,t; [c~l) 6 (1'1- c~(x,t)) de~ (2.4 - 1) 
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Then, defining 

a= CA (x,t; [c~ = 0]), a= CA (x,t; [c~ = 11=/=0]) (2.4 - la) 

and similarly a1 and a 1 for ci, band /3 for CB, and b1 and /3 1 for c~, one has 

cA(x, t) = a(x, t) + a(x, t) 

c~ (x, t) = a1 (x, t) + a 1 (x, t) 

cB(x,t) = b(x,t) + f3(x,t) 

c~(x, t) = b1 (x, t) + /3 1 (x, t) 

The advantage of this representation ("concentration field splitting") lies in the fact 

that the evolution of a, a etc., and of their statistical moments and correlations, is 

more easily predictable than of the reactant concentrations themselves. 

One can use (2.4-1) and the ensemble averaged form of (1.3-3) to deduce relations 

between correlations of CA, CB and a, a, b, /3, a1 , a 1 , b1 and {3 1 (see Chapter 4). 

Thus, when the forward reaction in (1.3-1) dominates the backward (a situation 

which is expected to be valid in the near field of plume dispersion), and therefore 

(ci(x,t)) 2'.: (cA(x,t)), (c~(x,t)) 2'.: (cB(x,t)), it can be shown that 

(2.4 - 2) 

and 

(a(x,t)) = (a1 (x,t)), (b(x,t)) = (b1 (x,t)) (2.4 - 3) 

In this case, with the introduction of the mixing functions 

(2.4 - 4) 

one can obtain the expression: 
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where c.p is the reaction parameter and µA, µB are the mixing parameters defined by 

(2.4 - 6) 

and 

(2.4 - 7) 

In the special case of macroscopically uniformly mixed fields µA and µB represent 

the fractions of the total quantities of the fictitious inert surrogates of A and B that 

coexist in completely micromixed volumes. 

Equation (2.4-5) is an exact relation. It expresses the unknown correlation in 

terms of mean values of the unknowns and in terms of parameters all of which except 

one, namely c.p, depend only on inert scalar mixing. The problem of course has been 

transformed into the problem of estimation of these parameters. 

A substantial simplification of (2.4-5) can be obtained in the case where (cB (x, 0)) 

is nonzero for all x. This of course means that ( c~ (x, t)) is also nonzero for all x 

and t and therefore (a1 (x,t)) := 0, (a1 (x,t)) := (c~(x,t)), which give µA = l for 

all (x,t) (notice, however, that µB -f: l in general). This result can be utilized for 

a typicai atmospheric piume where the emissions of A (e.g. NO) have near source 

concentrations that are orders of magnitude higher than those of B (e.g. 0 3 ). The 

fact (cA) ~ (cB) near source implies that it will make no observable difference to 

the conversions of A if it were assumed that B is perfectly mixed with the emissions 

at the source, at a concentration equal to that of the ambient (in agreement with 

the idealization of the point source). Indeed, in such a case it does not make an 

appreciable difference to the overall evolution of reaction and the observed conversions 

of A if A and B are initially premixed or unpremixed. This further means that fine 

scale segregation of A and B inside the plume is induced mainly by the chemical 

reaction. This simplifies the analysis considerably, especially if it is assumed that the 

reaction is not infinitely fast and a local steady state with microscopic coexistence of 
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A and B prevails. It is then possible using intuitive arguments to suggest that 

are acceptable closure assumptions. It can further be shown, by examining the sig

nificance of the participating correlations under the aforementioned conditions, that 

cp should be of order one. This is corroborated by the analysis of Shu (1976),Lamb 

and Shu (1978), and Shu et al. (1978) for monodimensional systems. 

Hence, to recapitulate, in the case of a point release of A into an initially uniform 

field of B, and under the assumption that the concentrations of A, at least near 

the plume axis, are much greater than the background concentration of B, we can 

approximate the term (cAcB) = (cA) (cB) + (c~c~) by 

(2.4 - 8) 

where MiA is a function characteristic of the state of inert species mixing in the 

plume. 

Alternatively,ifwe consider the fluctuations c~' about ( c~), M_iA can be written 

as MiA = 1 + I_i where 

(2.4 - 9) 

is the relative intensity of concentration fluctuations of an inert emitted species in 

a plume, or "intensity of stream segregation" (see Chapter 4 for a more detailed 

discussion). 

Introducing Ii we can write (2.4-8) as 

(2.4 - 10) 

which of course is equivalent to 
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The overall mean rate of reaction (1.3-1) at a point will therefore be 

(2.4 - 11) 

Hence, all the effects of turbulence (or incomplete mixing) on the chemical ki

netics have been incorporated in the second term of (2.4-11) which involves 

(i) the mean concentrations of the reactive species (cA), (cB) which are the actual 

unknown variables we want to estimate, 

(ii) the mean concentrations of inert surrogate species ( c:!i_), ( c1), and 

(iii) the variance of fluctuations of an inert emitted species. 

The form of the second term of (2.4-11) suggests that it can be interpreted as 

representing a fictitious reverse reaction that retards the overall kinetic scheme in 

comparison to perfectly mixed conditions. The kinetic constant k1 I)._ of this "reac

tion" will depend on position in the plume because!)._ shows a strong dependence on 

axial and radial position. The "reactants" participating in this fictitious step are A 

and the portion of B at any point that has already undergone chemical reaction (and 

therefore it is not actually available at that point). Thus the term (c1) - (cB) can 

be viewed as representing "occupied" or "de-activated" B molecules that participate 

in a backward reaction with A, with a kinetic constant that is determined by the 

intensity of turbulent fluctuations. The behavior of this term is determined by the 

relative magnitude of I)._, (cA) and ( (c1) - (cB) ). 

Thus, the initial problem of solving the system of equations of type {1.3-6) with 

f,M given by (1.3-7) has been reduced to solving 

f!M - • h - - - R-J..,,K CAB p = r AB c wit r A= rB = -rp = -
' ' ' ' 

(2.4 - 12) 

where R is given by (2.4-11) and lt/ is given by (2.3-2). 
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2.5 THE WORKING COMPUTATIONAL SCHEME 

2.5.1 Reduction of the Number of Equations: 

The Local Phenomenal Extent of Reaction 

When the number of independent reactions is smaller than the number of react

ing species, stoichiometric relations can be combined with the concept of inert surro

gate concentrations to reduce the number of partial differential equations needed to 

describe the evolution of multimolecular systems in turbulent, incompletely mixed, 

fields. 

The conventional extent or degree of advancement of reaction is a useful tool 

in utilizing stoichiometric relations to simplify the kinetic description of chemical 

systems that evolve either in space or in time. For such systems the number of gov

erning equations for the evolution of concentration fields can always be reduced to the 

number of independent reactions between the species. Then, at steady state, simple 

algebraic expressions relate the concentrations of all species to the extents of indepen

dent reactions. (Such a formulation is obviously useful when the number of reacting 

species is larger than the number of independent reactions). When however chemical 

reaction and macroscopic, as well as microscopic, dispersion effects are coupled and 

evolve simultaneously in space and time, the conventional formulations are no longer 

useful. For this reason we introduce here the concept of a local phenomenal extent for 

a spatially distributed reaction, which incorporates both stoichiometry and diffusion 

effects to simplify the description of a simultaneously reacting and diffusing mixture 

of species. Suppose the p species Ai, A2, ... , Ap participate in the reaction 

p 

0 =I: ViAi 
i=l 

where i = 1,2, ... ,p and Vi is the stoichiometric coefficient of species Ai, that takes 

place in an arbitrary flow field. In general the reactants will not be uniformly mixed 
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at a microscopic or perhaps and at a macroscopic level. Therefore the concentration 

Ci of species Ai will be in general a function of position and time, Ci = Ci(x, t) = 
ci(x1 , x2 , x 3 , t). Furthermore, when the reaction occurs in a turbulent flow field the 

concentrations of species Ai, i = 1, 2, ... , p will also constitute stochastic fields. Thus 

in general we can write Ci(x,t) = (ci(x,t)) + ci(x,t). Introducing the concept of an 

inert surrogate Af for each of the species Ai, that is of a fictitious inert species emitted 

from the same sources and having the same dispersion properties as Ai, we can define 

the hypothetical instantaneous and mean inert surrogate concentration fields cf(x, t) 

and (cf(x,t)). Then a phenomenonal extent of reaction, which will be a stochastic 

function of position in the reaction field, can be defined by the relation 

1:( ) _ ci(x, t) - cf (x, t) '" x, t - -'-----'---'-
Vi 

(2.5 - 1) 

Notice that for species participating in a "forward" reaction ("reactants") the stoi

chiometric coefficient Vi will be by definition negative while for species participating 

in a "backward" reaction ("products") Vi will be positive. 

The "physical" meaning of€ can be interpreted as the extent or degree of ad

vancement that would characterize a reaction at a point x and time t if this reaction 

would take place in a hypothetical perfectly mixed volume in which the initial uniform 

concentrations of reactants would correspond to the concentrations that diffusion pro-

cesses acting alone would have created at (x, t). Hence e does not correspond directly 

to any actual state of conversion of reactive species, nor can it characterize by itself 

the state of evolution of a chemical process. It is rather an artifact depending on the 

whole structure of the system (dispersion phenomena, distribution of sources, etc.) 

and can simplify significantly - as we will show in the following - the complexity 

of its description when there are more reacting species than independent reactions. 

Once the dynamic equations for the evolution of (€(x, t)) as well as of the inert 

surrogate mean concentration fields (cf (x, t)) have been formulated and solved, then 

the mean concentration of any reacting species is calculated directly by 

(ci(x,t)) =(cf (x,t)) +Vi (e(x,t)) (2.5 - 2) 
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Thus, for the reaction A+ B ~ P we will have at any point :x (cA) = (c~) - (€), 

(cB) = (c~) - (e), and (cp) = (c~) + (e). Thus, instead of solving the system of 

equations (2.4-12) we need only solve one dynamic equation for (€): 

(2.5 - 3) 

with .CJlf given by (2.3-3). 

The approximate reaction rate given by equation (2.4-11) can be written as a 

quadratic expression in ( e)' the coefficients being functions of properties of the inert 

surrogate fields: 

where 

- I R1 = k1(l +IA) 

R2 = kJ (c~) (1 + I1) +kt (c~) +kb 

R3 = k1 (c~) (c1) - kb (c~) 

(2.5 - 4) 

(2.5 - 4a) 

In situations relevant to atmospheric plumes, inert concentration fields can often be 

assumed to be described adequately by appropriate Gaussian formulas; in this case 

it is obvious that the computational burden involved in the solution of (2.4-12) is 

reduced significantly. Further, in cases of infinite rate chemistry, where pointwise 

equilibrium is assumed for the instantaneous concentrations and the mean rate is 

equal to zero, (R) = 0 then only estimates for the inert surrogate concentration 

fields and the variance of inert species fluctuations are needed for the direct algebraic 

calculation of the reactive species concentration fields. 

2.5.2 Estimation of Fixed Frame Concentrations 

The mean location of the plume and the statistical properties of its meandering 

motion can be used to estimate reactive concentrations at any fixed point once the 

corresponding concentrations in the translating frame are calculated by the master 

module. 
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The problem is as follows: We seek the expected instantaneous concentration, 

(c) at the point (xi, x2, x3) of a fixed reference frame and let (xi, b2, b3) be the fixed 

frame random coordinates (at time t) of the center of mass of a vertical plume cross

section passing through x 1 = x1 • The instantaneous random concentration c at 

(x1 , x2, x3) is of course exactly the concentration c of the moving frame measured at 

(xi, x2 -b2, x3 -b3): c(x1, x2, x3) = c(xi, x2-b2, x3-b3), and hence (c(xi, x2, x3)) = 
(c(xi, x 2 - b2, X3 - b3)). Now if Pk(x1; b2, b3) db2 db3 represents the probability that 

the center of mass of the vertical plume cross-section at x 1 is in the area element 

(b2,b3) to (b2 + db2,b3 + db3), then 

(2.5 - 5) 

The probability density function Pk(x 1 ; b2 , b3 ) can be expressed in terms of the tran

sition probability density for fluid particles in a turbulent field which is a quantity 

extensively studied in analyses of turbulent flows (Monin and Yaglom 1971, 1975; 

Hinze 1975; Seinfeld 1975). Typically Pk(x 1 ; b2 , b3) is assumed Gaussian, 

(2.5 - 6) 

where the <JM,s are the standard deviations of meandering at x 1• Then, relation (2.5-

5) estimates (c) in a fixed frame through a convolution transform of the moving frame 

concentration (c), the transform having a Gaussian kernel (a Weierstrass transform 

- see Zemanian, 1968). 
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2.5.3 Summary of the Computational Scheme 

To summarize the overall TRP Model, its equations, as applied to the probiem 

A(plume species) +B(in ambient)~ P, are given in Table 2-1 together with the 

parameters involved. 

Numerical implementation of the scheme of Table 2-1 involves the following three-

step sequence: 

STEP 1: Preprocessor settings - Peripheral Models Activation 

This initial step consists of selecting the appropriate method ("peripheral model") 

for calculating the inner level parameters to be utilized by the mixing-reaction equa

tions (i.e. the relative dispersion parameters, the inert surrogate means and the plume 

intensity of stream segregation). The available options in the current version of the 

TRPM are discussed in Section 2.6. 

STEP 2: Master Module Calculations 

This step consists of the calculation of spatial reaction evolution in a meander

ing/rising frame of reference. In the model problem (three species - one independent 

reaction) the master module consists of the evolution equation for (e), a set of alge

braic equations relating reactive species concentrations to (e), plus the calculations 

for the inert mixing problem, i.e. for the mean and the variance of the inert surrogate 

of the plume species. 

The evolution of (e) is described by a reaction-diffusion equation, the chemical 

kinetics term being a second degree polynomial in e (equations (2.5-3), (2.5-4)). 

The coefficients of this polynomial are functions of position inside the plume and 

involve the aforementioned properties of the inert surrogate; these are calculated 

either from analytical expressions, when the inert dispersion problem allows for such 

solutions (e.g. Gaussian type formulas for the mean and the Localized Production 

of Fluctuations formulas) or from numerical solution of linear transport equations 

with apparent eddy diffusivities given by (2.3-1). An Alternating Direction Implicit 

finite difference scheme, that is appropriate for handling the nonlinearity of (2.5-3), is 

adopted for the grid solution of the equations for (e), (ci) and (ui) 2 (see Appendix 
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Table 2-1 

The TR.PM Applied to the Model Problem A + B QOli P 

(htrinaic Chemical Ruction lh.te R = k1eAeJB - £.,ep) 
A. GOVERNING EQUATIONS FOR TURBULENT MIXING AND REACTION: MASTER MODULE 

(i) .D,nami.e E'1olution Equation.a (for 1teotl11 reletue of A in 111mbient B) 

PART IA 

(ia) Aa&Zilliar11 CaleulatioM 

(e~) = (eJB)0 
, (e~) = (ep)0 

l.~ (~)lll = 2K, ( lJ ~:;)) 
3 

- <1r ; (~)2 =011.t x: = 0, (~)3 
- 011.t 1&3 - ±co, zs - co, (cr~f' = 0 at za = -h 

{ib) Loeal Phenomenal Eztevat of &action CalealatioM 

and 

(ii) Loeal Stoiehiometrr lilt x 

(e.t}==(e~)-W, (ea)=(e~)-W, (e,.)=(e.f.)+W 

B. ESTIMATION OF FIXED FRAME CONCENTRATIONS: COMPLEMENTARY MODULE 
(i) Plvmie Rue Eff eets 

Plume Rise Model 1iva {ba)"" (ba(r1)) 
(Altem4atiPes: (i) Brigg'11 fonnulu, (ii) Scll1.t1m1W1'111m&.egra.l111Cheme) 

(ii) Meantlering Eff eets 

Notation: A ill-plume 11pecie11; B ambient epeciea; (e!) meu men 111urrog11.te eoneent.rll.tion; (c,;)0 mea.n 

ambient conc:entn.tion; e~ imtut11.11eou bc:tution about the mean "a.Jue; 1:1 ud £., forwcird a.nd 

backwcird reaction rate eomtut11; (local phenomenll.l extent oheac:tion;(~)1 ud I~ vwiuce a.nd 

inte1Uity of segregation for the inert 11urrog11.te of A. it bed fr1m1e eoordina.ta; so meuduing fra.me 

eoordin1.tea; b, eoordin11.tes of imtutueou ee111te.rlme; er,, ff111., and ff141 : abllo!u&e dillpenion, rel&tive 

dillpenion ud meudering parameten; ii1 meu wind !held &long the plume eente.rlme; P1o Gaue1i&n 

luid putide position pdf; l:r efrect.ive 11c:>vee laei.ght. 
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A3.1). In the case analytical expressions are used for ( c~) and ( ui) 2 , one can avoid 

the grid solution and obtain an estimate of (e) at any arbitrary point of the field 

by direct transformation of (2.5-3) into integral form and application of an iterative 

method (see Chapter 3, Section 3.3.3). 

STEP 3: Post-Processing Calculations 

In this final step, expected (or time averaged) reactive species concentrations at 

points fixed relative to the ground are estimated. More specifically, this step consists 

of: 

3A. Selecting the outer level parameters, i.e., 

(i) specifying the plume rise model to be used for determining the mean plume path, 

and 

(ii) estimating the meandering parameters. 

(The available options are discussed in the next section). 

3B. Calculating fixed frame concentrations via the convolution relation (2.5-5). 

Further calculations such as estimation of spatial (e.g., crosswind plane) average 

concentrations can also be readily performed simultaneously with Step 3. 
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2.6 DETERMINATION OF PARAMETERS 

IN THE REACTIVE PLUME MODEL 

In this section we summarize basic information regarding the parameters that 

are needed in the TRPM for quick reference and in order to provide an overview 

of the entire computational procedure (and the possible alternative choices in this 

procedure) that must be followed for an application of the model. A more detailed 

exposition can be found in Chapters 5, 6 and 7. 

2.6.1 Inner Level Parameters 

(a} Relative Dispersion Parameters 

( See also Chapter 6) 

Methods providing estimates of relative or two-particle dispersion parameters 

can be classified as: 

(i) Similarity theory combined with empiricai information from field and laboratory 

measurements of puffs or instantaneous plume realizations (Plate, 1982; Hanna et al., 

1982; Hanna, 1984). 

(ii) Analytical and numerical Lagrangian studies of fluid particle motion based on 

Langevin equations (Gifford, 1982; Durbin, 1980; Sawford, 1982; Lee and Stone, 

1983ab). 

(iii) Fluid particle transition probability density methods (Leslie, 1973-Sections 8.6 

and 12.2; Lundgren, 1981; Jiang, 1985). 

(iv) Spectral methods - An analysis of the motion of fluid particle pairs shows that the 

relative dispersion parameters cannot be expressed directly in terms of velocity spec

tra because the correlation of relative fluid particle velocities is not stationary ("'). 

Indirect techniques, based on appropriate filtering of spectral functions were orig

inated by Smith and Hay (1961). More recent attempts to obtain information on 

("') The two-particle dispersion counterpart of Taylor's formula will involve weighted inte
grals of the temporal correlation of the relative two-particle acceleration (Lin and Reid, 
1963). 
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relative dispersion and meandering through a direct single-step filtering of measured 

one-dimensional Eulerian velocity spectra have produced contradictory results (Sheih, 

1980; Rowe, 1981; Mikkelsen and Troen, 1981). 

We will adopt the following two options for relative dispersion parameters: 

(1) Use of simple similarity or empirical relations (Csanady, 1973; Hanna, 1984) in 

power law form. 

(2) Use of an iterative filtering algorithm to deduce information from observed ve

locity spectra. This algorithm is briefly described in the next paragraph; for further 

discussion see Chapter 6 . 

.Atmospheric field measurements during the last two decades have resulted in re

liable universal forms of Eulerian velocity spectra (see, e.g., Caughey, 1982; Panofsky 

and Dutton; 1984-pp174-228). Given the Eulerian velocity spectral density in the 

i-th direction Si~(n) (normalized), and the corresponding velocity variance [u~2 ] 
oo,O 

where the subscripts oo, 0 denote sampling of instantaneous values over an infi-

nite sampling time, and utilizing the Hay-Pasquill (1959) hypothesis for the relation 

among Eulerian and Lagrangian quantities, one obtains the following relation for the 

absolute dispersion parameters, 

(2.6 - 1) 

[ ]

-1/2 
where (3 = au1 u~ 2 , with a ~ 0.4 to 0.6. Then, using a low frequency filter we 

oo,O 
obtain a first estimate of the relative dispersion parameter through 

(12 = [u~2] t2 {00 

S!?(n) sin
2

1rn(tj (3) [l _ sin
2 

'lrnT] dn 
R, ' oo,o Jo 0 (7rn (t/(3)) 2 (7rnr) 2 (2.6 - 2) 

where the averaging time r is taken equal to 

(2.6 - 3) 

Then we refine the estimate of <YR, by replacing <Yi in the expression for r with the 

estimate of <YR;, This procedure is repeated until convergence is achieved. 
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The spectral functions of Kaimal (1973) and Hojstrup (1982) for stable and 

neutral-unstable conditions, respectively, can be adopted for use with this approach. 

(b) Inert Surrogate Means 

and the Intensity of Segregation 

(See also Chapter 5) 

The chemical closure scheme for point source plume-unpremixed reactants in

volves mean concentrations of inert surrogates and the fine scale intensity of stream 

segregation for the instantaneous plume. In the present work the latter quantity 

was defined as the ratio of the variance to the square of the mean concentration of 

an inert surrogate of the emitted reactant, at every point inside the instantaneous 

plume boundaries. Thus estimates for the first two moments of the instantaneous 

concentration field are needed. 

Calculation of mean concentrations is, of course, a widely studied problem in 

atmospheric diffusion theory. At the present level of deveiopment of the TRPM the 

two alternatives of using Gaussian type analytical expressions or solving .C1]f ( c5i_) = 0 

numerically are available. 

The variance ( ui) 2 
of ci is also calculated either 

(i) from the analytical expressions provided by the Localized Production of Fluctu-

ations Model (which is presented in detail in Chapter 5), when a Gaussian formula 

offers an adequate description of the mean instantaneous field, or 

(ii) from numerical solution of the ( ui) 2-transport equation: 

(ui) 2 

kt 
(2.6 - 4) 

(summation convention implied), with k a constant in the range 1/3 to 3/2, sbject to 

boundary conditions requiring that ( ui) 2 
vanishes at the ground surface. 

Other alternative schemes either resulting from simplifications of (2.6-4) (e.g. 

Csanady, 1973), or, empirically, from measurements (e.g. Wilson et al, 1982ab), 
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that may be appropriate for use with the TRPM under special conditions, are also 

discussed in Chapter 5 and its appendices. 

2.6.2 Outer Level Parameters 

(a) Mean Plume Path {Plume Rise) 

(See also Chapter 7) 

Determining the path and expansion of an actual plume in the near-source region 

requires analyzing the problem of the merging of two turbulent flows, i.e., of the 

emissions flow, possibly associated with significant momentum and buoyancy fluxes, 

and of the ambient, density stratified turbulent atmospheric flow, up to that point in 

time where the properties of the ambient completely dominate the system (Briggs, 

1975, 1984; List, 1982; Gebhard et al., 1984). 

For use with the TRPM two alternatives are provided: 

(1) Use of Briggs' (1975) formulas that are the most widely accepted in applications 

(Hanna et al., 1982). These formulas result from a combination of field observations, 

dimensional analysis, and simple entrainment hypotheses. 

(2) Use of a two- or three-dimensional version of Schatzmann's (1978, 1979) integral 

model that is formulated for arbitrary temperature and density differences inside the 

(b) Meandering Parameters 

(See also Chapter 6) 

Meandering parameters uM, are determined through 

Other processes that may contribute to the total variance, such as shear and buoyancy 

are assumed negligible here; in a more detailed calculation, one can use estimates of 

the contribution to the variance of these processes as reported, e.g., in Csanady 

(1973)and Pasquill (1974, 1975). The <YR, 's are calculated as described in Subsection 

2.6.1; a variety of possible alternatives is available in the literature for the ui's (see, 
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e.g., Hanna et al., 1982; Seinfeld, 1983, for recent reviews). The "best" estimate for 

use must be chosen on the basis of the information that is relevant to the particular 

application. If velocity spectra are available, then the spectral forms of Taylor's 

formula (equation (2.6-1)) offer a procedure that relies on theory and utilizes a rich 

source of information on atmospheric turbulence, i.e., its spectral density. 

PART IA CHAPTER 2 



- 88 -

2. 7 CONCLUSIONS 

A modular scheme for describing reaction evolution in plumes has been devel

oped, focusing on the construction of a method that accounts for the effects of mixing 

on bimolecular reactions between constituents of the plume and the background air. 

A major advantage of the present approach is that all fine scale mixing effects 

are incorporated in the chemical kinetic terms and that the transport part of the 

governing equations has to account only for macromixing. Consequently, even if the 

bimolecular reaction under consideration is coupled with a network of other physical 

or chemical processes involving the participating species, only terms corresponding to 

the above reaction will have to be modified via the adopted chemical closure scheme. 

Another important point is that, because of the "decoupling of mixing and reaction" 

character of the closure scheme, even if more than one independent bimolecular re

actions between unpremixed reactants occurs in the system, the parameters of the 

chemical closure, involving inert surrogate properties, will have to be estimated only 

once. Further, the equations governing these parameters are not coupled with the 

equations for the reaction progress variables. In conclusion, the TRPM provides a 

flexible scheme appropriate for assessing the effects of incomplete mixing on nonlinear 

atmospheric reactions. The "core" of the model, contained in the master module, is 

relatively simple - considering the variety of phenomena it addresses. Indeed, the 

chemical closure approximation does not require further evolution equations for high 

order concentration correlations; instead, it requires parameters that can all, op

tionally, be expressed by closed analytical formulas and provides a direct substitute 

of the correlation of fluctuation in the mean kinetic term. Further, the concept of 

the local phenomenal extent of reaction improves the computational efficiency of the 

model, also providing a means for describing the local level of the interaction between 

dispersive and reactive phenomena. 
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CHAPTER 3 

THE TURBULENT REACTING PLUME MODEL (TRPM): 

APPLICATION TO THE NO - N02 - Os SYSTEM 

3.1 INTRODUCTION 

In this chapter we present a first evaluation of the Turbulent Reacting Plume 

Model (TRPM) that was described in Chapter 2. The reaction considered is that 

between NO, emitted from a point source, and ambient 03. This particular system 

of reactants was chosen because (see also Chapter 1): 

(i) it is typically the most important system in the near field dispersion phase of 

plumes from large combustion sources (McRae et al., 1982; Burton et al., 1983), 

(ii) its kinetics are characterized by time scales that are of comparabie magnitude 

to those of the atmospheric mixing processes and, consequently, its evolution is de

termined by a strong and complex coupling of reaction and dispersion phenomena, 

and 

(iii) there are available detailed data bases that show explicitly the effects of the 

aforementioned coupling as well as the inability of simple formulations to describe it. 

A set of laboratory data is chosen to compare with TRPM predictions for the ef

fects of incomplete macro- and micro- mixing on nonlinear chemistry. The controlled 

conditions to which these data are relevant, and the relatively ample amount of in

formation regarding the characteristics of the fl.ow and the dispersion process, allow 

for quantitative conclusions and avoid the uncertainties associated with complex field 
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flows and, necessarily, incomplete or limited measurements. The simple geometrical 

characteristics of the experimental fl.ow under study, combined with the modular for

mulation of the TRPM, lead to the construction of a rather simple computational 

scheme that provides a direct testing of the "master module" of the TRPM. 
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3.2 ATMOSPHERIC MIXING AND 

THE 0 3 - NO - N02 SYSTEM 

The three principal reaction steps involved in the 03-NO-N02 photolytic cycle 

are (*) 

N02 + hv ~ NO+ 0 

The value of k1 depends on light intensity and it varies between 0 and 0.6 min- 1 for 

typical sunlight intensities. The values of k2 and k3 are obtained from the following 

relations (Hampson and Garvin, 1978) at 1 atm pressure with Tin degrees K: 

0.246 (510) 2 • 1 k2 =~exp T ppm- mm-

k 9.2 x 10
5 

(-1450) -1 . -1 
3 = T exp T ppm mm 

Under most commonly encountered conditions the above reactions proceed at 

a rate nearly two orders of magnitude faster than any of the other steps in photo

chemical smog formation that involve ozone (Stedman and Jackson, 1975). Since the 

combustion products from large point sources are rich in nitrogen oxides and typi

cally have low concentrations of reactive hydrocarbons (McRae et al., 1982), the near 

source plume chemistry is dominated by the above 0 3-NOz cycle. Thus there arises 

the need for estimating the fraction of nitric oxide (NO) that is converted to nitro

gen dioxide (N02) during the initial phase of plume dispersion, before the plume has 

(*) An additional source of nitrogen dioxide in plumes is the thermal oxidation of nitric oxide 
by oxygen. This process is only significant for very high nitric oxide concentrations and is 
usually omitted in photochemical rection mechanisms or just used to correct the source 
concentration ratio of nitrogen oxides; an exposition of the latter approach, based on 
McRae et al., (1982), is given in Appendix A3.2. 
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grown to the size of a typical computational cell of an airshed model. After that point 

a complete reaction mechanism considering hydrocarbon and radical interactions will 

have to be employed. 

The main oxidizing reaction 03+NO --+ N02+02 for typical atmospheric con

centrations would have a half life of approximately 30 seconds for well mixed volumes. 

Under such conditions many investigators have made the assumption that the ozone 

production and decay rates are in equilibrium and derived the photostationary state 

approximation, PSSA, (Leighton, 1961) 

(3.2 - 1) 

This relation will hold locally for systems that are mixed at the molecular level (e.g., 

smog chambers). One however will not be able to substitute in this equation tempo

rally or spatially averaged concentrations CNO, CNo2 , co11 obtained from real atmo

spheric situations where the mixing of pollutants with air is not compiete (Seinfeld, 

1977; Bilger, 1978). This fact (which is also true for ensemble means of concentra

tions) is due to the macroscopic and microscopic inhomogeneities of real concentration 

fields. Thus, ensemble averaging of (3.2-1), where k1 , k3 are assumed non-random, 

(*) does not lead to a relation of the form ks (cNo} (co3 ) = k1 (c,"102 ) but to 

(3.2 - 2) 

The parameters usually employed to depict the invalidity of relation (3.2-1) for 

averaged concentrations are the so-called photostationary state parameter (PSSP) >., 

defined in terms of averaged concentrations (see e.g., Bilger, 1978): 

(.) 

,\ = k3 (co11 ) (cNo) 
k1 (cNo.J 

(3.2 - 3) 

Actually random fluctuations in light intensity and, to a lesser degree, in temperature 
cause inevitable variations of the rate constants. One can incorporate this variation in 
the kinetic equations by decomposing the rate coefficients into mean and fluctuating 
components: (see, e.g. Kewley, 1978, and Appendix A3.3 
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and the photostationary state number (see e.g., Stedman and Jackson, 1975) which 

is simply the inverse of>.. From (3.2-2) one obtains 

1- k3 (c6 c'No) ). = __ a_--:-_ 

k1 (cNo.J 
(3.2 - 4) 

Deviations of>.. from unity (which is the value it would assume if defined in terms 

of instantaneous random concentrations) depend on the sign and magnitude of the 

correlation (c6
11

c'N0 ). For the initial stages of plume dispersion (in general for the 

admixing of fresh emissions) we expect the correlation to be negative and hence >.. 

to be greater than unity. For smoggy air mixing with clean air one can expect a 

positive correlation and therefore ). less than unity. (If one also considers fluctuations 

in light intensity-which affect k1-one would expect a negative correlation of these 

fluctuations with CNo2 and therefore a reducing effect on the value of>..) 

Measurements in polluted atmospheres have produced values of>.. ranging from 

0.3 to 7.5. Eschenroeder and Martinez (1972), from measurements in Los Angeles, 

report values of). less than unity (down to 0.3) at low ambient ozone concentrations. 

These values increase drastically with increased mean ozone concentrations (e.g., 

they report values of). greater than 7 for ozone concentrations in the range of 24 

pphm). Stedman and Jackson (1975) report on values of 1/>. from measurements of 

ambient air quality in Detroit. Using 400 data sets they found that 1/ >.. was equal 

to 1.01 with a standard deviation of 0.2 and a standard error of the mean equal to 

0.01. Other experimental results obtained during the Sydney Oxidant Study (Kewley 

and Post, 1978) also show variations of>.. both above and below unity. Theoretical 

analyses of the problem in terms of simple descriptions of the state of incomplete 

mixing in the atmosphere have been presented by Calvert (1976), Seinfeld (1977), 

Bilger (1978), Kewley (1978, 1980), Kewley and Bilger (1979); formulations relevant 

to these analyses are also incorporated in some of the existing reactive plume models. 

During the night reaction N02 -+NO + 0 does not take place and the evolution 

of the system is determined by reaction 0 3 +NO-+ N0 2 + 0 2. No photostationary 

state approximation can be invoked in this case but of course the conversion of NO 
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to N02 is still retarded by the mixing processes. With respect to modeling, the 

absence of a "reference" equilibrium state, that provides a first approximation to 

the solution of the problem, in general makes the case of the irreversible system 

described by 0 3 +NO ----? N0 2+0 2 more difficult to handle (unless an "infinitely fast 

rate" assumption is invoked). 

Various sets of field data relevant to nitrogen oxides-ozone chemistry in point 

source plumes are available (see, e.g., Burton et al., 1983, for a list and discussion 

of various field studies), the most widely referenced probably being those of Davis 

et al. (1974) and Hegg et al. (1977). However, incomplete information regarding 

the complex fl.ow :field and various aspects of the dispersion process, variations in 

temperature and light intensity, the possibility of changing source conditions, and 

the presence· of hydrocarbons in the atmosphere, prohibit the quantitative associa

tion of observed effects with the fundamental underlying processes. Consequently, 

comparison of field data with theoretical calculations is presently meaningful only in 

a qualitative manner; proper initial testing and validation of a reacting plume model 

requires comparison with well controlled laboratory data where the uncertainty of 

"side effects" is kept to a minimum. 

Laboratory studies of the reaction between nonpremixed 03 and NO have been 

conducted by Shea (1977) for a turbulent 0 3 jet in a NO environment, by Builtjes 

(1981, 1983) for a nonbuoyant NO plume in an 03 environment, in a wind tunnel 

simulating a neutral atmospheric boundary layer, and by Komori and Ueda (1984) 

for a NO jet into a nonturbulent coflowing stream containing 0 3 and for a NO plume 

into a grid-generated turbulent stream. 

The set of data most appropriate for testing the capability of the TRPM to calcu

late the effect of mixing on plume chemistry, under conditions relevant to atmospheric 

flows, seems to be provided by the experiments of Builtjes and is briefly discussed in 

the next section, in relevance to the needs of the present work. 
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3.3 THE EXPERIMENTAL DATA BASIS 

AND THE TRPM EQUATIONS 

3.3.1 The Nature of the Experimental Data 

The experimental data basis provided by the work of Builtjes (1981, 1983) con

sists of averages over sets (to be seen as statistical samples from the perspective of 

this work) of short term point measurements of NO, NO:z: and 03 concentrations, for 

an elevated, non-buoyant, "point" source plume in a wind tunnel. The wind tunnel 

(with a test section 10 m long and a cross-section of 2.65 x 1.2 m 2) simulated a neutral 

atmospheric. boundary layer above grassland at a scale 1:500. The respective ratio 

of time scales of processes in the wind tunnel and in the atmosphere was estimated 

to be approximately 1:35. Details of the atmospheric boundary layer simulation can 

be found in Builtjes and Vermeulen (1980). The details of the reacting plume exper

iments are given in Builtjes (1981) and are further discussed in Builtjes (1983); the 

essential parameters of these experiments are given here in Table 3-1. 

The source NO:z: was entirely in the form of NO, a constant mean background co

nentration of 03 was maintained, and the experiments were performed "in the dark"; 

no measurable quantities of hydrocarbons were present in the wind tunnel. Thus 

reaction 03+NO-+ N02+02 was governing the system as the sole producer of N02. 

Transverse (horizontal) concentration profiles of NO, NO:z: and 03 were measured 

at the height of the source at various distances downwind. At each point of these 

transverse profiles, and for each experiment, the statistical sample of mesurements 

contains ten 30-second averaged Os values together (a) with five 1-minute averaged 

NO:z: values, and, (b) with five 1-minute averaged NO values, as well as five 30-second 

averaged 03 values without the NO plume present. These data were averaged, lead

ing to one 03, NO:z:, NO and N02 = NO:i:-NO concentration value at that point. 

The reproducibility of the measurements was approximately 15 % for 0 3 , 25 % for 
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Table 3-1 

Parameters for the Wind Tunnel Experiment 

(Builtjes, 1981, 1983) 

NO Source D11.t11. 

S (pure NO)= 0.0110 m11 111-1 

CNo 11.t z = 0 = S900 ppm 

source height h = 0.14 m 

source exit velocity e&e = 0.4 m 11-1 

IOW"Ce ma.meter = 0.003 m 

Ambient D11.t.11. 

ambient 01one concentration 'C(f
8
v = 0.350 ppm 

integral length ace.le (11.t 11 = A) = O.S m 

average turbulence intenaity (11.t 11 = h) = 0.1 

mee.n wind velocity (at 11 = A) = 0.4m11-1 

boundary layer thickneu = 0.1!1 m 

(Typical Temperature Range: 16 °0-20 °C) 
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NO:i: and 30 % for NO, with a subsequent very large scatter in the estimated N02 

values. (The reproducibility was in general better along and dose to the centerline). 

These facts suggest that the 0 3 sample averages should be better approximations of 

theoretical ensemble means of instantaneous values than the corresponding averages 

of NO and NOz. Subsequent comparisons with TRPM calculations will therefore 

focus mainly on 03 values. 

In addition to the measurements of concentrations and ambient flow properties 

the experimental data base contains some direct information regarding the disper

sion process. This information will be used as "validated input" in the calculations, 

reducing the uncertainty associated with dispersion related parameters and ailowing 

to focus on the testing of the master module of the TRPM. 

3.3.2 Parameters for the TRPM Calculations 

(a) Dispersion Parameters 

and Mean Surrogate Concentrations 

The wind-tunnel plume showed only insignificant meandering. Thus in the fol

lowing the plume envelope is assumed practically indistinguishable from the expected 

boundaries of the instantaneous plume. The dispersion parameter in they (transverse 

horizontal) direction for the inert plume was estimated from measurements (of SF6 , 

of NO in an 0 3-free environment and of total NO:i: in an environment containing 0 3 ) 

as ay = 0.072x0 ·907 where x is the downwind distance from the source (x and Uy in 

meters). Data related to the distribution of concentrations in the vertical (z) direction 

are not available; in the absence of other relevant information it was assumed that 

Uz = l/2uy, which is a classic choice in the case of neutral boundary layers (Csanady, 

1973 - Section 3.12). The values of concentrations along the centerline (for all the 

aforementioned releases) exhibit good agreement with Gaussian plume calculations 

for these values of the dispersion parameters ay and Gz. Figure 3-1 contains the cen

terline calculations together with the measured values of total NOz in the reactive 

plume experiments. 
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Direct comparison of predictions with observed transverse profiles is difficult 

because of the inherent randomness of the concentration data. Figure 3-2a shows 

crosswind values of total NOx (non-dimensionalized with the associated theoretical 

centerline concentration), measured horizontally at source height at various distances 

downwind, in comparison with the corresponding Gaussian estimates, versus the di

mensionless distance y /Uy from the centerline. Each depicted experimental value in 

this figure is the average of five short term measurements at a point, as mentioned 

earlier; different values at approximately the same y/ay correspond to measurements 

at different downwind positions. (It is obvious from the existing scatter in the data 

that averages over five values are very poor approximations to ensemble means.) 

When however one averages the different data corresponding to the same y/ay, thus 

improving the approximation of the relevant ensemble mean value, one discovers a 

satisfactory agreement between measurements and calculations, as shown in Figure 

3-2b. (Actually averages were taken over data in the intervals 0 to 0.2y/u11 , 0.2y/ay 

to 0.4y/uy, etc., since the dimensionless positions of the measurements at different 

downwind distances were not usually identical). It can therefore be claimed that the 

Gaussian plume equation 

l( rl (z - h)21J lr (z + h)2J1 s' exp - 2u2 + exp ·- 2a2 
z z 

(3.3 - 1) 

with the source located at (x,y,z) = (0,0,h), is a valid model for the expected 

concentrations of the inert surrogate of NO (which in the present case is identical to 

total NO.z). 

(b) The Intensity of Segregation 

The second auxilliary calculation, besides that of the mean (cNoJ, required 

by the master module of the TRPM, is that of the variance a; of instantaneous 

total NO.z concentrations. (The intensity of stream segregation, involving these two 

quantities, participates in the turbulent kinetics expression of the TRPM). Since a 
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Total NO:i: Concentrations along the Plume Centerline: 

Data of Builtjes (1981) and Gaussian Plume Calculations. 
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Figure 3-2a. 

Total NO:c Concentrations 

Horizontally at Source Height and at Various Downwind Distances (1 to 5 m): 

Data of Builtjes (1981) and Gaussian Plume Calculations 

(both normalized with respect to the theoretical centerline value) 

vs the Dimensionless Crosswind Distance y/u11 from the Plume Centerline. 
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Figure 3-2b 

1 

Total NO:i: Concentrations as in Figure 3-2a, 

2 

with the Experimental Values Replaced by the Averages of Measurements 

(corresponding approximately to the same y / u 11) 

(See text for details) 
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Gaussian formula is assumed to provide an adequate description of the mean of the 

"instantaneous" NOx field in the present case, we adopt the Localized Production of 

Fluctuations Model for a~ (Chapter 5): 

( 
ab ) [ ( (z _ h)2 ) (Ja2(z -h)

2 
+ b2y2) x exp - exp - Io 

2a11 (x - S") O'z(x - ~) 2a;(x - ~) a11 (x - S") O'z(x - d 

{ (z + h)2 ) ( J a2(z + h)
2 

+ b2y2 \] 
-aexp - Io 

\. 2a;(x - S") a11 (x - S") O'z(x - S") } 
(3.3 - 2) 

where Io is the modified Bessel function of order zero, w is the dimensionless local

ization parameter (between 0 and 1), ~ = wx, pis the exponent in the power law for 

a11 , O'z (i.e. p = 0.907 here), a= 3/4y'1ra11 (d, b = 3/4.J7raz(S"), and Ai is a constant 

factor (between 1.5 and 3.0) relating the fluctuations dissipation time scale to the 

dispersion time. The parameter a equals unity for a "perfectly absorbing boundary", 

i.e. for a~ = 0 at the ground surface, and would be zero in the absence of ground 

effects. 

Measurements in the reacting plume experiments show that the centerline inten

sity of segregation Ii = ls(x, O, 0), where ls = a;/ (cNoJ, remains approximately 

constant after the first 1.5 meters of dispersion ( v'Ji = 0.5 ± 0.15); this is the only 

direct information concerning a; and ls in the available data. The approximately 

constant value of the segregation suggests that, in the downwind range of available 

measurements, the floor of the wind tunnel does not affect the variance significantly, 

at least close to source height, and allows the estimation of a constant value of w (in 

terms of p and Ai). A value of Ai = 3p is assumed for the calculations according 

to the analysis for constant li and self-similarity of variance profiles (Chapter 5), 

and this choice determines directly the value of w. However, as will be discussed in 

the next section, extensive calculations for varying values of the parameters show the 
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overall effect of the exact choice (within their acceptable range) of A1 (as well as of 

a) on the final results of the TRPM to be only minor, at least under the conditions 

of the present study. The same was found to be true for the I; varying within its 

limits of uncertainty. 

Another problem related to modeling o~ is the description of its evolution to

wards the profile given by (3.3-2) (which for constant w and a:'.:::! 0 reduces to a self 

similar form). This is a major problem in the fluid mechanical analysis of plume 

segregation and no general answer is known. However, the assumptions leading to 

the construction of the TRPM in its current form are associated with an artificial de-

scription of the evolution of segregation to which we will conform here. Indeed, in the 

formulation of the TRPM it is assumed that initially 0 3 has a uniform concentration 

everywhere, ·i.e. it exists even in the source gases at its background concentration. 

This approximation is justified by the very large difference between the source con

centration of NO and the background concentration of 03 (3900 ppm versus 0.35 

ppm in the present case). Obviously, the overall conversion of NO downwind will 

only be negligibly affected by the fictitious amount of 0 3 that was assumed present 

in the emissions, and which will be practically consumed during a very short time 

interval after emission. Thus, in our approach the segregation is seen as induced by 

the chemistry very close to the source. So, as a first approximation, we assume that 

Oc = 11;2 ,..., (cN02) 
(cNoJ 8 (cNoJ 

and for constant background ozone concentration (co
8

)env 

which presents VJ; as evolving towards its final value with a characteristic e-folding 

time determined by chemistry. (One must notice here that this chemical time scale 

k3(co3 )env equals 2.5 times the Lagrangian integral time scale estimated for the wind 

tunnel experiments, an indication of the fact that chemical and macromixing pro

cesses proceed at rates of comparable magnitude). It should be kept in mind that the 
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preceding approach is introduced for consistency with the complete set of approxi

mations involved in the TRPM and it is not aimed at explaining the details of the 

actual processes of mixing of point source plumes; it is a useful scheme for the spe

cific purposes of the present reacting plume simulation and under the aforementioned 

restriction of very large concentration differences. From a practical viewpoint, calcu

lations show that only the assumption of a characteristic time scale ks (co3 ) env for the 

attainment of the values given by (3.3-2) plays a significant role in the overall TRPM 

results. Indeed, the difference obtained from assuming vfJi increasing according to 

the above "1-exp" law and from assuming e.g. vfJi - t or vfJi - Vt was negligible 

for practical purposes. 

At this point it is useful to discuss some aspects of the process of plume mixing 

and clarify the relevance of certain assumptions involved in our approach. Actual 

sources deviate from the idealization of the "point" concept in the initial phases of 

dispersion, even in the highly simplified case when emissions do not differ in momen

tum or buoyancy from the ambient turbulent fl.ow, because the finite dimensions of 

the source obviously dictate a separate initial fl.ow that merges gradually with the 

ambient. During this process of fl.ow merging the background ozone must diffuse 

through the plume boundaries and mix down to the molecular level with the NO 

rich regions in order that chemical reactions occur. As turbulent dispersion processes 

mix the plume with the background air a "macromixed zone" in which both NO and 

Os are present - in the sense that their mean concentration values are nonzero - is 

created near the plume boundaries. 0 3 is diffusing from the plume edges inwards 

but is largely consumed by NO before the centerline is reached and N02 peaks will 

be formed in the macromixed zone, which at any given plume cross-section will have 

the form of a ring whose outer circle defines the reacting plume boundaries (Hegg 

et al., 1977). The width of this ring increases downwind until it covers the entire 

cross-section of the plume and the N02 peaks eventually disappear (see Figure 3 - 3). 

In Builtjes' experiments such N02 peaks were observed very close to the source 

(although the scatter of the data does not allow quantitative estimates of the magni-

PART IA CHAPTER 3 



-110-

1 
I 

_yMACROMIXED 
¥ 1 ZONE 

/,... .. ,\NO 
I \ N02 1 

I 
I 
I 
I 
I , __ _ 

N02" .... \ I 03 

,·, I I \ , ,., 1 03 ---......,;._, ' , , __ ____ 
I,' ~I/ \ ' ', 1 

!/ ~ 

PART IA 

(a) (b) 

Figure 3-3 

Evolution of Macromixing in a NO Plume: 

Mean Profiles of NO, N02 and Oa 

at Two Downwind Distances. 
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tude and position of these peaks); nevertheless this ring-type structure dissapears in 

the first 2 meters of the plume dispersion. Builtjes (1983) notes that for practical ap

plications it is not necessary to use a model that is capable of calculating the observed 

N02 peaks, although it should be able to estimate the retardation in the reaction rate 

caused by incomplete macromixing and micromixing in the atmospheric dispersion 

phase of plume evolution. This suggestion was adopted in the present version of the 

TRPM and source size effects are neglected, based on the fact that the details of the 

initial merging process will have negligible effects on the overall conversion of NO to 

N02 that is observed further downwind. 

3.3.3 The TRPM Equations 

The equ.ation governing the NO-N02-0s system under the assumptions stated, 

and for the specific conditions relevant to the data base described, assumes the form 

_a (e) _ K ( ) a2 (e) _ K ( ) a2 (e) = 
u ax !I x 8y2 z x [)z2 

- 2 - -= R1(x,y,z)(e) + R2(x,y,z) (e) + Rs(x,y,z) 

(or, in compact form, .C1;! = R) where 

and 

R1 = ks{l +Is) 

R2 =ks (cNoJ (1 +Is)+ ks(co8 )env 

Rs= ks (cNoJ (co
8

)env 

with (cNoJ and a~ given by (3.3-1) and (3.3-2) respectively. 

(3.3 - 3) 

(3.3 - 5) 

Here (e) is the local phenomenal extent of reaction NO+ Os-+ N02+02 (Chap

ter 2), and for the specific experimental system under consideration 

(3.3 - 6) 
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The boundary conditions associated with {3.3-3) are 

(e) =oat (x,y,z) = (O,y,z) 

(e) -+ 0 at y-+ ±oo, z-+ oo, a~;) = 0 at z = 0 

Numerical solutions of (3.3-3) were obtained through 

(i) an Alternating Direction Implicit (ADI) finite difference scheme, and, 

(ii) through iterative solution of the associated integral equation. 

(3.3 - 7) 

(3.3 - 8) 

The ADI method is especially suitable for the problem described by (3.3-3) since 

the nonlinearity appears only in the kinetic term. This term is calculated directly 

in each step using the value of ( e) estimated in the immediately preceding itera

tion, performed in the alternative direction. The simple geometry of the simulated 

experimental system and the homogeneous boundary conditions also allow a reduc

tion of the computational burden because of the existing symmetry with respect to 

the (x, 0, z) plane. Thus, calculations for each x-step only have to be performed in, 

say, the positive (y,O,z) half-plane under the restriction a (e) /By = 0 at y = 0. 

(The basic finite-difference equations for the present calculations are summarized in 

Appendix A3.l). 

The alternative choice of a feasible iterative point solution is allowed by the fact 

that, in the case under consideration, analytical expressions are available for all the 

parameters involved in (3.3-3), and the analytical form GM(x,y,zlx',y',z') of the 

Green's function of the partial differential operator /boundary conditions of (3.3-3) is 

known: 

GM x y z x' y' z' - exp - -1 [ (y - y') 2 (z - z') 2 
] 

( ' ' I ' ' ) - 21l'uy(x - x')o"z(x - x')u 2a~(x - x') 2a;(x - x') 
(3.3 - 9) 

Using as an initial first approximation for ( e) the value corresponding to the pseudo

linear version of the problem, i.e. the solution obtained under the assumption that 

the mean ozone concentration remains everywhere constant at its background value, 

(3.3 - 10) 
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one obtains a first approximation for R: 

The next approximation for ( e) is obtained through 

(e)<1
> (x,y,z) =fox[/_: fo 00 

aM (x,y,zlx',y',z') R ((e)(O) ;x',y',z') dz'dy'] dx' 

(3.3 - 11) 

and so on, until convergence to a steady value of ( e) is obtained. 
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3.4 RESULTS AND DISCUSSION 

In this section we present results of the numerical calculations compared with the 

experimental data of Builtjes (1981). The most important comparisons are presented 

in Figures 3-4 and 3-5 that refer to calculations and measurements along the centerline 

of the plume. Both calculations and data are presented in dimensionless form, as 

ratios of concentrations, and therefore give directly the dependence of conversions on 

downwind distance or travel time. The farthest downstream available measurements 

in the wind tunnel were taken at 5 m, which at a wind speed of 0.4 m/s corresponds 

to a travel time of 12.5 s. The respective quantities for a field situation would be 

approximately a 2.5 km downwind distance (or 7.5 min of travel time) with an average 

wind speed of 5.7 m/s. 

Figure 3-4 contains the measured values of the ratio of NO to total NOz as well 

as three calculated curves: 

(a) turbulent kinetics calculations, of (cNo) / (cNoJ i.e. results from the TRPM con

sidering the effects of both macromixing and micromixing, with parameters estimated 

as described in the previous section, 

(b) conventional kinetics calculations, i.e. results from the common reaction-diffusion 

equation (to which the TRPM reduces for 18 = 0), that incorporate solely the effects 

of macromixing, and, 

(c) modified Gaussian plume calculations, i.e. results from the pseudo-linear reaction 

assumption (equation (3.3-10)) which views plume macromixing in a very simplistic 

manner, that is with ozone profiles unaffected by the plume, and, of course, ignores 

micromixing effects. The same dispersion parameters were used in all the three dif

ferent models. The 50% conversion time predicted by the TRPM is 9.0 s (of the order 

of 5.3 min for the comparable field situation), in very good agreement with the wind 

tunnel measurements. The respective calculations from the conventional reaction

diffusion equation gave a 50% conversion time equal to 6.5 s (3.8 min in the field 
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stuation), i.e. about 28% shorter than the observed time, and the modified Gaussian 

plume model predicted 4.75 s (2.8 min in the field), that is almost 47% less than the 

observed value. 

Figure 3-5 shows the measurements of the ratio of 03 concentration (under re

active conditions) to the corresponding background value along the centerline, again 

compared with calculations that assume turbulent and conventional kinetics. (The 

relevant assumption of the modified Gaussian plume model is that (coll) = (coll)env 

and the ratio shown in Figure 3-5 is always unity). The narrow peak of the calculated 

results at the origin arises from the assumption (coll) = ( co11 ) env for all (y, z) at x = 0 

that was discussed in the previous section; the fast descent of the calculated ratio to 

a near zero value serves as an a posteriori justification of this approximation. 

Compar'isons of the transverse profile measurements and calculations are pre

sented in Figures 3-6a to 3-6e for downwind distances 1, 2, 3, 4 and 5 m. The 03 

data were selected as being the more reproducible and less scattered. Again dimen

sionless ratios of concentrations are given, for easier comparison with other situations, 

plotted against the dimensionless distance y/uy from the plume centerline. The cor

responding numerical solutions of the reaction-diffusion equation with conventional 

kinetics are also given in these figures. Although the scatter of the transverse data 

is significant, Figures 3-6a to 3-6e corroborate the basic conclusion arising from the 

comparison presented in Figures 3-4 and 3-5, i.e. that the TRPM indeed can pro

vide a quantitative estimate of the effects of both macro- and micro- mixing on the 

evolution of plume reactions. 

The primary parameters implicit in the calculations presented in the above figures 

were either 

(a) measured, or estimated so as to fit dispersion measurements (uy, <Yz or the expo

nent p), 

(b) the "most typical" among possible alternatives, corresponding to first-choice con

ventions of the peripheral models employed (i.e. A1 = 3p), or 

(c) the average values of randomly fluctuating quantities that were measured in the 
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Ratio of NO to Total NOz Concentration along the Plume Centerline: 

Data of Builtjes (1981) and Calculations 

(i) for Turbulent Kinetics (the complete TRPM equations), 

(ii) for Conventional Kinetics (ignoring the effects of micromixing), and 

(iii) from a Modified Gaussian Plume Model. 
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Ratio of 0 3 Concentration (under reactive conditions) 

to the Corresponding Background Value ((co
11
)env) along the Plume Centerline: 
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Data of Builtjes (1981) and Calculations 

(i) for Turbulent Kinetics (the complete TRPM equations), and 

(ii) for Conventional Kinetics (ignoring the effects of micromixing). 
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Ratio of 03 Concentration (under reactive conditions) 

to the Corresponding Background Value ( (c01ymv) 

Horizontally at Source Height at x = 1 m Downwind: 

Data of Builtjes (1981) and Calculations 

(i) for Turbulent Kinetics (the complete TRPM equations), and 

(ii) for Conventional Kinetics (ignoring the effects of micromixing) 

vs the Dimensionless Distance y / u 11 from the Centerline. 
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As in Figure 3-6a, at x = 3 m 
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As in Figure 3-6a, at x = 4 m 
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wind tunnel (e.g. the average temperature in the wind tunnel was used to calculate 

the rate coefficient k3 and the average value of centerline intensity of segregation I; 

was used to fix parameters in the segregation profiles). 

Extensive sets of calculations were performed for varying values of the primary 

parameters, especially for those in categories (b) and ( c) above, in order to assess 

the sensitivity of the TRPM to their values. The results of these calculations show 

that the TRPM is quite robust with respect to the parameters involved and allows 

for a reasonable amount of uncertainty in their estimation; they futher show that the 

present agreement between measurements and theoretical predictions does not arise 

from any type of "fine tuning" of parameters. As an example, the effect of~ vari

ation between its extreme observed values in the steady state range (approximately 

0.35 to 0.65), is shown in Figure 3-7: the calculations are for the (co
8

) /(co8 )env 

ratio, as those in Figure 3-5, with measured values also shown, and the two curves 

correspond to the minimum and maximum measured value of 1;. The analogous 

calculation is shown in Figure 3-8 for the dissipation factor A1 varying within its 

entire range of values, as reported in the literature for various flows, i.e. between 

1.5 and 3.0. (The calculations of Figure 3-5 were performed with A1 = 3p = 2.72). 

Another point that is worthy of mentioning is that calculations with the complete 

TRPM are less sensitive to random variations of the chemical rate coefficients, due 

e.g. to random variations in temperature or in light intensity, than calculations em

ploying conventional kinetics. This of course is to be expected, since, in the case of 

turbulent kinetics, chemistry has to "share" the control of the system with the mixing 

processes. Figures 3-9a and 3-9b show the effect of varying k3 on both turbulent and 

conventional kinetics calculations. 

Finally, in order to provide a more general perspective, the theoretical predic

tions of the (co8 ) /(co8 )env ratio for the reaction 03 +NO---+ N02 + 02, again from 

numerical solution of the reaction-diffusion equation for both turbulent and conven

tional kinetics, are compared with results that incorporate the reverse reaction (with 

a constant average ki), with all other parameters identical, 
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Sensitivity of TRPM Calculations to the Intensity of Plume Segregation: 
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Calculations of the Ratio 

of 0 3 Concentration (under reactive conditions) 

to the Corresponding Background Value ((c011 )env) 

along the Plume Centerline 

for VT;== 0.65 (upper curve) and for VT;== 0.35 (lower curve) 

(Data of Builtjes (1981)) 
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Sensitivity of TRPM Calculations to the Dissipation of Fluctuations Scale Factor: 
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Calculations of the Ratio 

of Os Concentration (under reactive conditions) 

to the Corresponding Background Value ( ( co
11

) env) 

along the Plume Centerline 

for Ai = 1.5 (upper curve) and for A1 = 3.0 (lower curve) 

(Data of Builtjes (1981)) 
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Sensitivity of Turbulent and Conventional Kinetics Calculations 

to the Reaction Rate Constant: 

Calculations of the Ratio of 03 Concentration (under reactive conditions) 

to the Corresponding Background Value ( ( co
3

} env) 
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along the Plume Centerline 

for k3 = 0.36 ppm- 1 s- 1 (upper solid and dashed curves) 

and for k3 = 0.44 ppm- 1 s- 1 (lower solid and dashed curves) 
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Sensitivity of Turbulent and Conventional Kinetics Calculations to 

the Reaction Rate Constant: 

Calculations of the Ratio of 03 Concentration (under reactive conditions) 

to the Corresponding Background Value ( ( co
8 
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Horizontally at Source Height and at x == 2 m, 
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for k3 = 0.36 ppm-1 s-1 (upper solid and dashed curves) 

and for k3 = 0.44 ppm- 1 s- 1 (lower solid and dashed curves). 
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(a) from solution of the reaction-diffusion equations exactly as before but incorpo

rating the new kinetic term, and, 

(b) from assuming photostationary equilibrium and applying R = 0 (Figure 3-10). 

These calculations show that, under conditions such as those prevailing in the 

reactive plume experiments of Builtjes, photostationary equilibrium is an acceptable 

approximation only after travel times of about 15 sat the wind tunnel scale (at which 

time micromixing effects also become negligible). Close to the source, where the 

concentration of NO is 4 or 5 orders of magnitude higher than that of the background 

0 3 , a requirement for equilibrium induces a significant increase of the reaction rate. 

However, this increase cannot be observed in reality, because the rate of mixing 

would then constitute a much slower step and would control the overall process. 

The (hypothetical) variation of the photostationary state parameter along the plume 

centerline under the assumption of local equilibrium with turbulent kinetics is shown 

in Figure 3-11. 
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Effect of the Reverse Reaction N02 -+ NO+Os 

on the Calculations of Figure 3-5: 

6 

(I) Turbulent Kinetics Reaction-Dispersion calculations 

(II) Conventional Kinetics Reaction-Dispersion Calculations 

(III) Photostationary Equilibrium Approximation with Turbulent Kinetics 

(IV) Photostationary Equilibrium Approximation with Conventional Kinetics (.A= 1) 
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Figure 3-11 

Variation of the Photostationary State Parameter A along the Plume Centerline 

(under the assumption of photostationary equilibrium with turbulent kinetics) 

for Emission Conditions as in Builtjes (1981) Experiments 
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3.5 CONCLUSIONS 

Comparisons with experimental data indicate that the TRPM (described m 

Chapter 2) represents the processes of simultaneous plume dispersion and reaction in 

a satisfactory manner. In particular it is worthy to note that the calculations show a 

definite lack of sensitivity with respect to the exact values of the physical parameters 

involved in the description of the effects of incomplete micromixing. Hence it seems 

possible that the TRPM could provide adequate estimates of these effects even with 

approximate values of these parameters. 

Extension of the predictive capability of the model to much more complex situ

ations, for example involving profound irregularities of the fl.ow field (that cannot be 

treated as fluctuations of quantities with well behaved means), is in principle possible 

but will require use of more elaborate and computationally intensive versions of the 

TRPM than the one used for the calculations presented here, and, furthermore, will 

also demand inputs that are more complex and difficult to estimate. 
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APPENDIX A3.1 

Alternating Direction Implicit 

Finite Difference Form of (3.3-3) 

The results presented in Chapter 8 in comparison with the experimental data of Builtjes (1981) 

were obtained from numerical solution of (8.3-3) through an Alternating Direction Implicit (ADI) 

finite difference scheme which is the standard choice for solving the basic TRPM equations in its 

master module (the alternative is the iterative solution of the integral equation that is equivalent to 

the problem described by (S.3-3) and the associated side conditions). 

The finite-difference grid spans the vertical plume cross-section and calculations are performed 

in alternative (vertical and horizontal) directions at each time step The basic features of the ADI 

method are described in several standard referenes (see, e.g., Richtmyer and Morton, 1967; Ames, 

1977; Lapidus and Pinder, 1982). The choice of this method for the solution of (8.3~8) is natural 

because the nonlinearity appears only in the chemical kinetics term and therefore can be handled 

easily in the calculations by introducing in the r.h.s. the value of (e) estimated in the iteration that 

is performed in the alternative direction. Furthermore, the special nature of the r.h.s. term in {3.3-3), 

which "spreads" the forcing function ("disturbance") in the entire three dimensional space makes the 

solution procedure less sensitive with respect to the discretization (and thus allows use of rather large 

steps in both space and time). 

In the calculations the plume is assumed symmetric with respect to the vertical plane passing 

through the centerline; this allows reduction of the calculations to the half cross-section of the plume 

while imposing an artificial boundary condition on the vertical axis. (Moreover, in the very early 

stages of the atmospheric dispersion phase - see Chapter 7 - where the effects of the ground are 

negligible, the plume cross-section can also be assumed symmetric with respect to the horizontal plane 

passing through its center of mass. Then calculations can be performed in only a quadrant of the 

cross-section by imposing an artificial boundary condition on the horizontal axis u well.) The initial 

source concentration is assumed Gaussian (with maximum equal to the source concentration); this 

profile is used for the calculation of the starting R. 's. At each time step these "turbulent kinetics 

functions" are estimated using the analytical expressions for the mean and variance of NO"' provided 

by the Gaussian and the LPF formulas respectively. 

PART IA APPENDIX AS.1 



-136-

Let us for convenience set 

a:,1 = ({ (x = ukAt, y = iAy, z = iAz)) 

(and similarly use subscripts and superscripts to denote the values of Rt at each node of the plume 

cross-section and at each time step. 

Further let 
At Ky (x) 

r -----
'II - (Ay)2 ' 

and 
A (Ay)2 

ry =Ky (x)' 

AtK11 (x) 
r -----

'II - (Az)2 

A (Az)2 

r11 = K 11 (x) 

Then, the finite difference equations corresponding to the apecific problem described by (3.3-3) and 

(3.3-7), (3.3-8) are: 
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Plume Interior 

Odd Traverses 

k+l ( 1 2) k+l k+l a. . - + - a. ·+i - a. . 1 = ,,, r. ,,, ,,,-

( 
1 ry) 1c k k = - - 2- a . . + r11 a-+1 . + r .. a._1 ·+ 
r 11 r 11 .,, • '' " • '' 

Even Traverses 

_ ( 1 2 r11) 1c+1 k+l .1:+1 
- ry - ry ai,i + r11a•.i+l + r11a1,;-1 + 

[( - )lc+l ( k+1)2 (- )lc+l k+l (- )A:+l] +fy Ri . . a,,i + R2 .. a•.i + Rs .. .. ,, .,, ,,, 

Boundaries 

Free Boundary - Odd and Even Traverses 

a~~und =O .. , 

(A3.1-1) 

(A3.1- 2) 

(A3.1- 3) 
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Vertical Plane at y = 0 

Odd Traverses 

k+l ( 1 2) k+l k+l -ao,; r,, + - ao,;+1 - ao,;-1 -

+r" [ ( R1) k . ( a~.i) 2 
+ ( R2) k . a~.i + (Rs) k .] 

0,3 0,3 0,3 
(A3.1- 4) 

Even Traverses 

(A3.1- 5) 

Horizontal Axis - Odd Traverses 

a~+l (_!_ + 2) - 2a~+l = .,o r,. .,1 

(AlU-6) 

Horizontal Axis - Even Traverses 

k+2 ( 1 2) k+2 k+2 -a,,o ry + - a,;+1,0 - ai-1,0 -

( 
1 r.,) k+1 k+l = - - 2- a. 0 + 2r,.a. 0 + 
r11 r11 " " 

[( 

N )k+l ( k+1)2 ( N )k+l k+l ( N )k+l] +r 11 Ri . a,,0 + R2 . a.,0 + Rs . 
1,0 1,0 t,O 

(A3.1 7) 
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Initial Node - Odd Traverses 

a"+1 (_!:_ + 2) - 2a"+1 = o,o r,. 0,1 

+r,. [(R.1)" (a~.0) 2 + (R.2)" a~.0 + (ks)"] 
0,0 0,0 0,0 

(A3.l - 8) 

Initial Node - Even Traverses 

a"+2 (_!:_ + 2) - 2a"+2 = o,o r 1,0 
II 

( 
1 r,.) i.+1 i.+1 = - - 2- a0 0 + 2r.,a0 1 + 

r11 r11 ' ' 

(A3.l - 9) 

In the problem (3.3-3), (3.3-7), (3.3-8) the horizontal axis is on the ground; however the equations 

(A3.l-l) to (A3.l-9) remain the same in the frame attached to the plume centerline (with obvious 

transformations in the R-terms). 

When analytical solutions for the inert surrogate concentration and/ or the internal plume variance 

are not available these quantities must be calculated numerically in order to be introduced in the R
terms of the equations for (e); the relevant partial differential equations are solved by a finite difference 

system that is similar to equations (A3.l-l) to (A3.l-9) but with the term containing the ks equal 

to zero (for the mean concentration calculations) or replaced by the appropriate discrete form of the 

r.h.s. terms of equation (2.6-4) (for the variance calculations; the ground boundary condition changes 

also in this case). Reformulation of the numerical scheme for non-symmetric plumes is obvious. 

Finally, we note that the reader interested in the underlying theoretical fundamentals of the 

iterative computational scheme of equation (3.3-11) can find relevant information in the monographs 

of Kubicek and Hlavacek (1982) and Ortega and Rheinholdt (1970). 
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APPENDIX A3.2 

Contribution of Thermal NO Oxidation 

to the Formation of N02 

In emission inventories nitrogen oxides (NO,.) are often reported as equivalent emissions of nitro

gen dioxide (N02) even though the exhaust NO,. is composed primarily of nitric oxide (NO). Unless 

the initial N02/NO,. ratio is specified from stack measurements it is necessary to establish appropriate 

fractions for reconstructing the actual emission levels of NO and N02 (McRae et al., 1982). Depend

ing on the source, and the characteristics of the combustion process involved, the above fraction can 

vary from approximately 1 to 10%. In addition to the N02 formed during combustion, some small 

quantities can be formed in the exhaust gasses by the third order reaction 

NO + NO + 0 2 .J:.4 2N02 

This reaction step is normally ignored in photochemical reaction mechanisms because of the low 

ambient levels of nitric oxide. The dependence of k4 (T) on temperature is given by (Baulch et a.I., 

1978) 

k (T) = 1.0666 x 10-0 (530) 
4 T2 exp T 

with Tin degrees K. The units of k4 (T) are ppm-2 min-2 • 

McRae et al. (1982) presented a very simple model for the estimation of the fraction of NO which 

is converted to N02 in the vicinity of the source. (Their objective was to develop a simple approach for 

augmenting the emission inventory of nitrogen oxides). The approach adopted in this simple model is 

essentially the same with the one described in Appendix Al.1 for the photochemical reaction cycle of 

nitrogen oxides and ozon. However in the present case plume expansion is determined by the inherent 

plume dynamics and not by the ambient turbulence. 

When the plume is considered to be well mixed a.cross each transverse section in the near field 

the nitric oxide decay rate is 

(AS.2 -1) 

where D(t) is the plume dilution (see Appendix Al.1) and c~0 is the background concentration of 

nitric oxide. The nitrogen mass constraint enables the direct calculation of N02 from 

CN02 = D (t) CNO: (0) + [1- D (t)j C~o - CNO (t) (AS.2 - 2) 
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Some comments are useful at this point regarding the NO concentration dynamics downwind 

from the stack: Entrainment of cool ambient air into the plume causes an increase in the magnitude 

of k4 (T) (Figure AS.2-1), the plume dilution also results in a reduction of NO. The combined effect 

of cooling and dilution can be described by integrating the species rate equation. If the background 

contribution in (AS.2-1) is ignored then the NO concentration decay is given by 

() 
CNo(O)D(t) 

CNO t = t 
1 + 2cNo (0) f0 k4 (T) {D (t) co2 + [1- D (t)] ct

2
} D (t) dt 

Within the plume, the oxygen and temperature distributions are given by 

co2 (t) = ct2 + D (t) [ co2 (0) - ct2 ] 

T (t) =Tb+ D (t) (T (0) - Tb] 

To describe initial plume dilution McRae et al. used the expression 

D (t) =exp (-0.15t) (t < SOs) 

(A3.2 - 3) 

(A3.2 - 4) 

(A3.2 - 5) 

(AS.2 - 6) 

Given the initi~l and background conditions for NO,.,, T and 0 2 the system of equations (AS.2-1 to 

AS.2-6) can be solved to give the conversion fractions for short travel times. Figure A3.2-2 (from 

McRae et al., 1982) presents the results of one such calculation where the initial N02 (0)/NO,., ratio 

was 5.0%, co2 (0) = 30000 ppm V, and the instack NO varied from 200 to 2000 ppm V. (A comparison 

between the pure dilution cases and those in which the chemistry was included indicated that between 

2 and 12% of the increase in N02 concentration at any travel time can be explained by thermal 

oxidation.) 

This analysis led McRae et al. (1982) to the following conclusions: The first was that, close to the 

source, thermal oxidation can be significant, which in turn implies that more attention needs to be given 

to characterizing the stack exhaust gas concentration and temperature distributions when assembling 

emission inventory information. However since the effects of thermal oxidation are minimal when 

the dilution is high, there is no need to include this reaction in models dealing with the atmospheric 

dispersion phase (see Chapter 7) of plume evolution: the incremental conversion can be incorporated 

by simply increasing the initial N02 /NO,., emission ratio. 
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Figure AS.2-1 

Variation of the NO + NO + 02 --+ 2N02 Reaction Rate Constant 

with Temperature 

(Source: McRae et al., 1982} 
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Figure AS.2-2 

N02 Concentrations as a Function of Travel Time 

(Stack Conditions T = 250°C, 02=8%, N02(0)/N0z=0.05, NOt=0.02 

(Source: McRae et al., 1982) 
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APPENDIX A3.3 

The Effect of Temperature Fluctuations 

on the Formation of N02 

(based on Kewley, 1978) 

A simplified approach towards assessing the effect of temperature fluctuations on atmospheric 

reaction rates is to assume that the interaction between the random concentration and temperature 

fields (the latter being either homogeneous, that is uniform-in-the-mean or, not) takes place only 

through the dependence of the chemical kinetics on temperature, while all other temperature and fl.ow 

field interactions are negligible (see also Chapter 4). 

In this approach all effects of gradients and turbulent fluctuations of the temperature (or even the 

radiation) field are incorporated in fluctuating chemical kinetic coefficients. Kewley (1978) employed 

such a technique to study of the effect of temperature fluctuation on the value of the photostationa.ry 

state parameter (see Chapter 1) in the atmospheric ozone-nitrogen oxides photolytic cycle. Indeed, 

if the kinetic coefficients, ks, k1 fluctuate randomly because of their dependence on the temperature 

which varies randomly inside a plume, one can write 

and thus the relation 

ks= {ks)+ k~ 

k1 = (k1) + ki 

leads after substitution of Reynolds decomposed quantities, and further ensemble averaging to 

Then, the photostationa.ry state parameter defined through 

will be given by the relation 
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Actually Kewley in his calculations assumed ki constant because of its less strong dependence on tem

perature (see Chapter 3). Despite the inherent deficiencies of Kewley's modeling approach regarding 

the description of dispersion processes {discussed already in Chapter 1), and the further assumption 

that temperature fluctuations a.re distributed in exactly an identical manner a.s concentration fluc

tuations (a claim for which there is no sufficient experimental support in the case of atmospheric 

plumes), it is worthwhile to note that these approximate calculations show in general that the effect 

of the randomness of the temperature field on the overall evolution of the reactive system becomes 

negligible very soon after the release of the effluents. Typical distances at which .>. is estimated to be 

affected at an observable degree (and for typically strong initial temperature differences) were calcu

lated to be of the order of 100 m downwind the stack and for points close to the plume centerline. 

It is reasonable therefore to conclude that, under conditions at which temperature variations will not 

be extremely strong a.s to induce large density and pressure variations, (and their action is felt only 

through the dependence of the kinetic coefficients on them), their effect can be neglected, at lea.st at 

a first approximation, for the N0,.,-08 system. 

References 
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CHAPTER 4 

Chapter 4 contains 

• an introduction to the problem of modeling nonlinear chemical reactions in tur

bulent fl.ows, including a general literature survey and dassiB.cation of existing 

methods, 

• an exposition of the fundamentals of the Eulerian Statistical Approach for both 

direct and indirect chemical closure methods, 

• a detailed presentation of the "concentration Held splitting method," that is the 

particular indirect closure technique employed in the formulation of the TRPM 
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CHAPTER 4 

CHEMICAL REACTIONS 

IN TURBULENT FIELDS 

4.1 INTRODUCTION 

Many chemical reactions, either single-phase (on which we focus attention here) 

or multi-phase, of importance in both natural (environmental) and industrial systems, 

take place in turbulent flow fields. In general both the properties of the flow field 

in which the reaction occurs and the way the reactants are introduced in it will 

affect the spatial and temporal evolution of these systems. Further, the state of a 

particular system will be determined by the nature of the reaction kinetics involved 

(monomolecular or multimolecular) and by the relative rates of the simultaneously 

occurring chemical and dispersion processes. 

The state of environmental systems (e.g. atmospheres and oceans) is turbulent 

for almost all common circumstances; on the other hand industrial flow and reaction 

systems are also deliberately, in most cases, in a turbulent state, in order to utilize 

the enhanced rates of heat and mass transfer resulting from turbulent motions (com

monly called "turbulent mixing").("') As a consequence, the problem of simultaneous 

(•) 
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One should keep in mind that the term (turbulent) mixing is used in somewhat different 
context by different authors. Thus, for example, in some works turbulent mixing pro-
cesses are assumed to involve just turbulent diffusion due to small scale turbulent eddies 
and in others to involve both this turbulent diffusion and "bulk convection" due to eddies 
of larger scales. It is therefore necessary to always specifically define terms like "mixing" 
in the analysis of systems where multiscale dispersion processes occur simultaneously. 
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turbulent mixing and chemical reaction is commonly encountered in a vast variety of 

different situations. Table 4-1 gives a typical list of cases of engineering interest where 

this problem has been realized and research is active towards its analysis. Although 

the selection of subjects in this list is far from being exhaustive, it is at least indicative 

of the broad range of areas in which significant interaction between turbulence and 

chemistry appears. The relevant research studies problems arising in fields such as 

chemical and environmental engineering, combustion and propulsion aerodynamics, 

laser and plasma chemistry etc. The major interest today appears in the area of 

combustion :research (see, e.g., Libby and Williams, 1980; Chigier, 1981; Williams, 

1985, and the proceedings of the Symposia (International) on Turbulent Combustion 

- the proceedings of the 20th published in 1985) where the problem of interaction 

between reaction and turbulent mixing seems to assume its most complex levels.('") 

Increasing interest has also been arising recently in various other fields, especially in 

environmental applications. More specifically, Donaldson and Hilst (1972) and Lamb 

(1973) (see also Lamb and Seinfeld, 1974; Seinfeld, 1977) recognized the importance 

of incomplete turbulent mixing phenomena in the processes of photochemical smog 

formation and a number of related works have appeared since then (e.g. Bilger, 1978; 

Kewley and Post, 1978; Kewley and Bilger, 1979; Kewley, 1980; see also Chapter 1). 

Due to both the variety of the problems in which the problem of rective turbu

lence is encountered and the wide range of approaches through which this problem 

is attacked (not to mention the differences, in both method and terminology, that 

appear in the treatment of equivalent problems in different scientific disciplines), an 

attempt to get familiar with the essentials of the entire spectrum of modeling tech-

('") The complexity of the problem in the field of combustion is basically associated with the 
large heat releases accompanying combustion reactions and the resulting intense variation 
of temperatures, densities and pressures. This leads to a complicated multidirectional 
coupling among the processes of heat, momentum and mass transport and the chemistry. 

On the contrary, in many typical environmental applications the transport processes can 
be assumed decoupled. The complexity of the mixing-reaction problem in environmental 
systems is thus associated more with the complexity and the peculiarities of the turbulent 
environmental flow per se (temporal and spatial variation of turbulence characteristics, 
many scales, unknown parameters, etc.). 
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niques in the field would constitute a most difficult task. Basic aspects of such tec

niques are covered in standard textbooks in chemical engineering (see, e.g., Froment 

and Bischoff, 1979) and in combustion theory (see, e.g., Williams, 1985). However 

the interested reader will eventually have to confront a plethora of specialized articles 

and publications; some comprehensive reviews (usually focusing on a specific topic) 

and compilations of works dealing with particular applications are available to help in 

his quest. In particular the collections edited by Murthy (1975), Brodkey (1975) and 

Libby and Williams (1980), contain a wide range of applications from various fields 

and some excellent reviews of specific approaches. Among the review papers with 

a more general perspective, those of of Hill (1976), which covers mainly the "fluid 

mechanical" approach to the mixing-reaction problem (together with some discussion 

on spectral and "micro-structural" techniques - see the analysis that follows) and of 

Pratt (1979), which contains a brief summary of modern chemical reactor theory on 

the basis of population balance approaches, can serve as tutorial introductions to the 

subject of reactive turbulence. Some more recent developments not contained in the 

above works can be found in the reviews of Villermaux (1983) and Pope (1985). ("') 

It would be beyond the scope of the present work to attempt a detailed exposition 

of the various modeling methodologies and techniques which have appeared in the 

vast iiterature that deals with turbulence and chemistry interactions. However, the 

importance of these phenomena in atmospheric applications - and in particular in 

relevance to moderately fast reactions in point source plumes (see Chapter 1) - is a 

subject that merits further study and development of procedures for proper modeling 

(*) Three other comprehensive review articles, (published together), that give an overview 
of the reactive turbulence field from a "chemical engineering viewpoint" are those of 
Brod.key (1981), Nauman (1981) and Patterson (1981). One must also note that, even 
in order to deal exclusively with single-phase reactions (homogeneous at equilibrium 
systems), it is very useful to realize the analogy of the behavior of these systems with 
the behavior of reactive dispersions in turbulence (see, e.g., Rietema, 1964; Olson and 
Stout, 1967; Tavlarides and Stamatoudis, 1981). Structural methods now commonly 
used to model small scale turbulence effects on reaction originated in the analysis of 
dispersions (e.g., Curl's "coalescence-redispersion" approach); in fact one should keep 
in mind that before complete mixing is achieved the reactive mixture is essentially a 
multiphase system. 
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in order to improve current atmospheric dispersion and reaction models. This fact, 

together with the lack of an exposition of the fundamentals of the simultaneous mixing 

and reaction problems covering specifically the spectrum of methods that can be 

used in environmental applications, dictates the necessity for a concise and coherent 

presentation of the subject. So, in this chapter after discussing briefly some basic 

concepts and terms, we attempt to show the range and interrelationship of the various 

approaches to the mixing-reaction problem by classifying them according to a general 

organizational scheme. 

Thus we distinguish between 

o Eulerian Statistical (or global "fluid mechanical" or "mechanistic") approaches, 

and 

11 Structural approaches (not to be confused with the structural approaches em

ployed in the modeling of turbulence in recent years), that include 

(a) Lagrangian traJ·ectory methods, 

(b) distributed and lumped Population Balance methods, which encompass clas

sical chemical reactor theories (e.g., the residence time distribution ap

proach), and 

( c) "micro-structural" (or "micro-mechanisti'c" or "local fluid mechanical") mod

eHng techniques, that focus on the description of the local concentration 

structure in small control volumes ("reacting laminae") at scales below the 

microscale of turbulence, and then attempt to deduce global properties of 

the turbulent system by viewing it as a random collection of such control 

volumes. 

Naturally, a specific modeling application may contain elements from more than 

one of the above approaches. 

In this chapter Sections 4.2 and 4.3 are devoted to an exposition of the fun

damentals of the reactive turbulence problem. Basic terminology is reviewed and 

clarified, and important concepts are introduced. Then a comprehensive overview of 

the different modeling methods available, compactly organized in figures and tables 
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completes this exposition. The following sections deal with the systematic develop

ment of Eulerian models that are appropriate for spatially varying environmental 

systems. The focus is on methods that can be employed in the modeling of turbulent 

atmospheric plumes, the criteria being scientific validity and computational simplic

ity. In particular, pure and mixed conserved scalar closure approximations, including 

the "concentration field splitting method" that is adopted in this work, are developed 

to directly usable forms. 

Presentation of details not directly related to the framework of atmospheric 

plume modeling that was described in Chapter 1 will be avoided in this chapter. 

Instead, references to original works and, more often, to reviews of particular prob

lems or approaches will be given. 

In conclusion, the scope of this chapter is to provide both a comprehensive intro

duction to the relevant literature and at the same time present a concise but struc

tured exposition of the fundamental principles and methods underlying approaches 

for modeling reactions in turbulent fields. 
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Table 4-1 

Examples of Applications 

with Significant Interaction of Turbulence and Chemistry 

APPLICATION 

111 Continuous Flow 
Stirred Tank Reactors 

• Tubular Flow Reactors 

• Jet Stirred Rea.eton 

e Turbulent Jets 

111 Turbojet Plumes 

EXAMPLE 

Kattan and Adler (1972) 

Pratt (1979) 

Clegg and Coates (1967) 

Shea (1977) 

B?rghi (1974) 

111 Turbulent Shear Layers Broadwell and Breidenthal (1982) 

• Pollutant Dispersion 
from Stacks 

111 P.botoc.bemical Smog Formation 

• Biological Flow Reactors 
and Waste '.'Ireatment 

• Combuston and Combustion Processes 

e Turbulent Flames 

• Weakly lonued Plasmas 

e Hypersonic Ballistic Wakes 

111 Reacting Ga.s Coolants 
for Heat Exe.bangers 

e Chemical Lasers 
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Builtjes (1983) 

Kewley and Bilger (1979) 

F1m et !J. (1971) 

Willia.ms (1985) 

Chigier (1981) 

Shhrofsky (1974) 

P:roudia.n (1969} 

Richardson and Getz (1968) 

H11.yd11.y and Chung (1979) 
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4.2 SIMULTANEOUS TURBULENT MIXING AND REACTION: 

BASIC CONCEPTS AND TERMINOLOGY 

The evolution of a system of reacting species in a turbulent field is determined 

by the combined action of three processes: turbulent dispersion (or random local 

advection), molecular diffusion and chemical reaction. 

Turbulent dispersion transfers the species through the action of the fluctuating 

random velocity. It reduces gradients of the mean concentration field and at the 

same time creates local inhomogeneities at the molecular level which, in a continuum 

description manifest themselves as random concentration fluctuations. These inho

mogeneities are dissipated by the action of molecular diffusion. Chemical reactions 

take place at the same time and will in general be affected by the spatial distribution 

of species concentrations at both macroscopic and local (molecular) levels to a degree 

that depends upon the reaction order and rate as well as on the initial mixing state 

of the reactants. 

Consider, for example, the process of turbulent mixing of two "feeds" - or por

tions of fluid in general - which at equilibrium (that is after a long enough time 

period) (*) can be mixed down to the molecular level and constitute a single phase-

system; we call this a homogeneous-at-equilibrium system. Each feed is assumed to 

be perfectly mixed down to the molecular level at the inception of the mixing process; 

it may contain one or more species that may react with species of the same or of the 

other feed. Various situations are possible with two fluid feeds, e.g.: 

(a) mixing of finite amounts of two fluids in a process vessel, or in general in a 

confined space 

(b) mixing of a finite amount of one fluid with an "infinite" amount of another, as in 

the dispersion of an instant release of material - or "puff"- in the atmosphere, 

(*) Such an equilibrium can be reached either in time, e.g., for a batch mixing process ta.king 
place in a. vessel, or in space as for, e.g., a. steady atmospheric plume where complete 
mixing is obtained only far enough downwind the source. 
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( c) mixing of a continuous feed with an "infinite" fluid, as in the dispersion of a 

continuous plume in the atmosphere, 

(d) mixing of two continuous feeds, 

(e) mixing of a continuous feed with a mass of fluid which retains constant compo

sition via chemical reaction, as in the ideal continuous flow stirred tank reactor, 

etc. 

In cases (a) and (b) the mixing process evolves in time whereas in (c) and (d) 

it evolves in space. In case (e) the mixing process is in a steady state (possibly 

non-equilibrium) after an initial start-up phase has passed. 

4.2.1 Stream and Age Mixing 

The terms stream mixing (or cross-stream mixing or reactant mixing or simply 

mixing) and age mixing (or self mixing or backmixing) have been employed, respec

tively, to characterize the extreme cases of mixing between two "fresh" separate fluid 

feeds and of mixing of one or more feeds with fluid that achieved its current identity 

(different from its initial) through the action of processes (such as mixing and reac

tion) that take place in the fl.ow system under consideration. Some authors go as far as 

to stress that stream and self mixing are completely different physical processes (e.g. 

Brodkey, 1967); in general these processes usually coexist but in certain cases one is 

dominant. Thus, stream mixing is more important in flows that show a dominant 

upstream-to-downstream character and are described by parabolic transport equa

tions, whereas age mixing is more important in flows where convective recirculation 

is dominant; transport in such situations is described adequately by elliptic equations. 

As far as chemical reactions are concerned, stream mixing is more important in sit

uations of parabolic type transport for the cases of both premixed and unpremixed 

reactants. In situations of elliptic type transport age mixing is the important process 

when the reactants are premixed but both stream and age mixing affect critically the 

evolution of the reaction system when the reactants are unpremixed. These qualita

tive notions are summarized in Table 4-2. Pratt (1979) presents some simple models 
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for the quantification of the description of pure as well as combined stream and age 

mixing processes. Other, more specific or technical terms such as channeling, by

passing, dead-space flow etc. are also used to describe special patterns of mixing, 

usually in process vessels, but they will not concern us here. (See, e.g., Himmelblau 

and Bischoff, 1968; Wen and Fan, 1975; Oldshue, 1983, for relevant discussions and 

details.) 

4.2.2 Mkromechanks of Mixing: 

Relevant Scales 

Let us now return to the mechanics of the mixing process of two fluid portions. 

Whether stream or age mixing is dominant (or are combined}, portions of fluid of 

different chemical composition are first brought in contact - by the action of the 

turbulent velocity field and - then give origin to regions of fluid ("mixed zones") 

of new chemical identity through the processes of molecular diffusion and perhaps 

chemical reaction. Assume for simplicity that molecular diffusivities of all species as 

well as kinematic viscosities of the two, initially separate but individually uniformly 

mixed, feeds are of the same order of magnitude, D and v respectively. The turbulent 

energy of the flow field is dissipated at a rate e . Then at scales large compared to 

the Kolmogorov micro-length scale lK, where 

- (v3) 1/4 
lK= -

E 
(4.2 - 1) 

turbulent velocity fluctuation distort the initial portions of different feeds by breaking, 

carrying, pulling and squeezing them into convoluted sheets and ribbons of decreasing 

thickness. The stretching, squeezing and breaking would continue indefinitely in the 

absence of molecular diffusion effects, that is if the Schmidt number 

v 
Sc= --D 

was infinite (D-+ 0). In reality molecular diffusion acts from the start of the mixing 

process and slowly - in comparison to turbulent phenomena - creates regions of fluid 
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Table 4-2 

Dominant Type of Mixing Process 

in Relation to the Initial State of Reactants 

INITIAL CONDITION 

OF REACTANTS 

premixed 

or un-premixed 

premixed 

un-premixed 

PART IB 

and the Type of Flow 

GOVERNING PDE FOR THE 

CONCENTRATION FIELD 

parabolic 

for flows with 111. dominant 

upstream-to-downstream 

character 

elliptic 

elliptic 

DOMlNANT TYPE 

OF MIXING 

111tre11.m-mixing 

age-mixing 

combined 
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that are mixed down to the molecular scale at the interphases of portions of different 

feeds. In fact, if Sc is of order unity or larger, Batchelor (1959) showed that when 

the patches of fluid approach a thickness of order 0(£B), where 

(4.2 - 2) 

is the Batchelor micro-length scale, concentration gradients normal to the patch are 

sufficiently large that the molecular fluxes balance the compression of the patch by 

the straining motion, and the creation of fluid zones mixed at the molecular level is 

the dominant physical process. If Sc is much smaller than unity,i.e v ~ D, then the 

relevant microscale is the Corrsin-Obukhov microscale ec defined as 

(4.2 - 2a) 

(This is not to be confused with "Corrsin's dissipation scale" that is defined as the 

counterpart of Taylor's microscale for scalar diffusion and is discussed in Section 4.4 

and in Chapter 5). 

For diffusion of gases like CO, NO, N02 , S02 , etc., in the atmosphere, Sc is of 

order 1 and lK, lB assume approximately equal values; thus either scale is relevant. 

Other microscaies, of simiiar nature, have also been introduced in various models 

of local diffusion and reaction; among them the "striation thickness", first defined by 

Mohr (1957) as a measure of the thickness of "patches" of completely mixed material, 

has been very popular in the modeling of "lamellar microstructures" (see Section 

4.3.2) in turbulent reacting flows (see, e.g., Ranz, 1979; Ou and Ranz, 1983ab). 

Another quantity of interest in detailed descriptions of reaction-diffusion phe

nomena at the local level of laminar conditions is the rate at which the thickness 

of perfectly mixed "patches" diminishes with time. A simplified analysis assuming 

a uniform local (laminar) velocity gradient gives for the thickness l(t) of the mixed 

zone {Middleman, 1977) 

e(t) = e(o) (1+ 1
2 t 2)-

112 
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where"/ is the constant strain rate of the laminar shear, approximately given by (see, 

e.g., Bourne, 1982; Baldyga and Bourne, 1984) 

( 
E) 1/2 

"/ !:::='. 0.5 v 

4.2.3 Macro-fluids versus Micro-fluids 

Macro-mixing versus Micro-mixing 

So, before final equilibrium is achieved, any mixture will have some of the char

acteristics of a two-phase (or multi-phase) system, as for a certain period of time 

portions of the different feeds will be intermixed by turbulent motion down to a 

rather fine but still macroscopic level of very small "flu.id elements" or "flu.id parti

cles" which preserve their different identity defined by chemical composition. A fluid 

which can be viewed in this way, i.e. as consisting of elements of different identity, is 

often called a macro-flu.id in contrast to a micro-fluid("') in which all different species 

are mixed down to the molecular level (see, e.g., Levenspiel, 1972). The small "struc

tural elements" of a macro-fluid (which, when it corresponds to a homogeneous-at

equilibrium system is of course always in a transition state) are not always identified 

in the same way but we will not discuss this subject in detail here. Use of the term 

"fluid particle" dictates however a few comments. The concept of a fluid particle is 

widely used in Lagrangian descriptions of turbulent diffusion (see, e.g., Monin and 

Yaglom, 1971, 1975; Hinze, 1975; Seinfeld, 1975) as well as in population balance 

methods for modeling both single and multi-phase flow and reaction systems (see, 

e.g., Himmelblau and Bischoff, 1968). The identity of a fluid particle in such treat

ments is not necessarily determined by its composition; other properties such as, e.g., 

its temperature or its "age" (time it has spent in the flow field) are often used instead. 

Many other terms like "fluid element," "material point of fluid", "fluid lump", "fluid 

clump", "continuum element of fluid", "fluid molecule", have also been employed in 

( •) Sometimes the terms macro mixed and micro mixed fluid (or reactor) are used instead 
(see, e.g., Pratt 1979). 
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the literature; however the context in which these terms are used is not always the 

same. For some authors a fluid particle (or element) has completely uniform "internal 

properties" (concentrations, pressure) and is so small (smaller than the appropriate 

microscale of turbulence) that its structure cannot be affected (e.g. distorted) by the 

turbulent motions. In this way it corresponds to a "point" of the fluid continuum. 

For others it can have larger dimensions, non-uniform internal structure and can be 

distorted by the action of the turbulent motions. In this way it corresponds simply 

to a Lagrangian material volume of fluid. Hinze (1975) discriminates between a fluid 

particle (which can only be advected by turbulence) and larger fluid lumps (which can 

be distorted and separated into smaller lumps or fluid particles). According to such 

a definition the only interaction of a fluid particle with its environment can only be 

purely molecular in nature (but of course can be approximately modeled as a larger 

scale random process, i.e. a coalescence and redispersion model of fluid particles can 

be used to simulate a "spreading" of properties actually due to molecular diffusion). 

Hinze (1975, §5.1) further distinguishes between volume particles and property or 

substance particles. A volume-particle is defined as a small constant volume of fluid 

following the (random or not) flow, whereas a property-particle is defined in terms of 

some property of the material constituting it and thus can be viewed as a collection 

of marked (by their chemical identity or age, etc.) molecules. If molecular effects are 

negligible the volume and property particle remain identical during any dispersion 

processes; otherwise the motion of the centroid of the property particle deviates from 

that of the original volume particle. A point worthy of noting here is that in fact the 

dispersion of a property due to molecular diffusion is not statistically independent of 

that due to macroscopic random turbulent velocities; see, e.g., Hinze (1975, §5.5). 

The way in which fluid particles of different identities are distributed spatially 

in the flow field determines the state or degree of macromixing of the system (or "the 

system's macrostate" ) . Mean continuum properties, (that is first means of stochastic 

continuum quantities defined over "points" which are of the size of fluid particles), 

reveal and characterize this macrostate. Thus, if fluid particles from two feeds of 
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different chemical composition are uniformly distributed over a volume or area of the 

flow field, the mean concentration of any conserved species of the mixture will also 

appear to be uniform there.("') As time passes compositions of individual volume fluid 

particles may change through the process of molecular diffusion until all such particles 

are identical and molecular uniformity has been achieved, but mean concentrations of 

the of the conserved species will remain the same. Thus, the degree of macromixing 

is determined (locally for a spatially varying system) by the "gross" characteristics 

of the flow i.e. first moments of random variables and characterizes uniformity of 

mixing at the level of fluid particles. Further, it is insensitive to the degree or state of 

micromixing (or "system's microstate" ) which refers to the finer structure of the flow 

field, at scales smaller than those of the fluid particles, down to the molecular level. 

For a given macrostate the instantaneous degree of micromixing of a system may vary 

from complete segregation, in which no observable zones of microscopically mixed fluid 

have been created and the fluid particles retain unaltered their initial identities (the 

mixture is a macro-fluid), to maximum mixedness, in which molecular diffusion has 

brought intimate mixing of individual molecules in the entire system (the mixture is 

a micro-fluid). This however does not necessarily imply that concentrations are also 

uniform in the mixture. In terms of continuum variables of the fl.ow field, micromixing 

is revealed by their fluctuations and the variation of their higher order moments and 

correlations. 

The distinction between these two different kinds or levels of mixing in a given 

system is of crucial importance, as far as the evolution of chemical reactions is con

cerned, for both premixed and unpremixed reactants. This was recognized in the 

1950's by Danckwerts (1953, 1958) who introduced this distinction of mixing con-

(*) Some authors (e.g., Patterson, 1975) use the term macromixing in a different context, 
that is to describe a mixture is in a state of complete segregation (which in our terminol
ogy is one extreme state of micromixing) and the term micromixing to describe the state 
of maximum mixedness. This use of a term in very different contexts is unfortunately 
very common in the field and unavoidably causes confusion to anyone not familiar with 
the terminology of different authors. 
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cepts in chemical reactor theory (*)with ideas that were soon extended by Zwietering 

(1958) a..vid Van Krevelen (1958). Danckwerts also introduced quantitative measures 

for the description of macrostates and microstates which since then have been used 

in chemical engineering literature almost exclusively to describe premixed reactants 

systems where age mixing is the dominant process. 

Thus the residence time distribution (RTD), defined as the time response at the 

exit of a reactor for an instantaneous concentration pulse of inert tracer acting as input 

at time t = 0 at its entrance, where all properties are considered uniform over the exit 

and entrance, characterizes the state of macromixing of the reactor as a whole (see, 

e.g., Himm.elblau and Bischoff, 1968; Levenspiel, 1972). Another equivalent definition, 

more closely related to the concept of age mixing, views the RTD as the probability 

density that ·a fluid particle which enters the reactor at time t = 0 will leave at time t. 

RTD models defined in this way represent a method of modeling through macro

scopic averaging and treat the reaction-fl.ow field as a lumped system with a single 

entrance and a single exit (a "global concept"). Hence they are not appropriate to 

describe systems where stream mixing is dominant (since stream mixing is a process 

that basically evolves in space and not in time) and in general distributed systems 

that do not have a single entrance and exit and the complete distribution of proper

ties in their "interior" is of interest. Although such an approach is not common in 

the literature one can generalize the classical lumped-system RTD concept to such 

distributed systems by defining it as a function of both time and two sets of spatial 

coordinates - one for a "source" and one for a "receptor" - again as the response (con

centration) at the receptor for an instantaneous release of inert tracer at the source 

(i.e. a Green's function for the inert mixing - i.e. advection-diffusion - boundary 

value problem). In general the spatial distribution of mean concentrations (steady or 

not) in a flow system gives a complete characterization of its macrostate. 

(*) Actually Danckwerts wrote of "scales of mixing and segregation" and of "mixing at the 
molecular level"; the prefixes "micro" and "macro" were introduced by Van Krevelen 
(1958). 
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4.2.4 Scale and Intensity of Segregation 

According to Danckwerts the degree of micromixing of a system needs two pa

rameters for a local description. These parameters are usually called the scale Ls and 

the intensity, I, of segregation. A variety of other names is also used for the concept of 

I such as mixing effectiveness (Pratt 1979), simply segregation (Brodkey 1966, 1967) 

and t.mmixedness (Hawthorne et al.,1948). Also the term mixing parameter is used 

for -I and the term contact index for (1 - I) (see Hill, 1976; Donaldson and Hilst, 

1972). 

Often the intensity of stream segregation is distinguished from the intensity of 

age segregation and different symbols such as Is and Ia respectively are used (see, 

e.g., Brodkey 1967, 1975, 1981; Pratt, 1979). 

The scale of segregation describes the degree to which the dispersing material 

has been "spread out" by the action of turbulence. In the case of stream mixing it is 

a measure of some typical average size of unmixed lumps of different feeds. As these 

lumps are pulled, contorted and break into smaller ones the scale of segregation is 

reduced. Quantitative definitions of Ls can be constructed in terms of spatial correla

tions of concentration fluctuations. Thus, if c' is the fluctuation of the instantaneous 

concentration of an inert species about its ensemble mean value (c), Brodkey (1967, 

1981), for exam pie, defines for the case of uniform ( c;2
) the scale Ls by 

Ls = f 9c(r) dr (4.2 - 3) 

where 

( ) 
_ (c'(x) c'(x + r)) 

9c r - (c' 2 ) 

Ls is an average over relatively large distances and thus it is a measure of the "large 

scale breakup process", "but not of the small scale diffusional process" (Brodkey, 1981). 

Quantities like 9c and Ls are in general difficult to be calculated and various methods 

have been proposed for their estimation {see, e.g., Brodkey, 1967; Patterson, 1981, 

1983). 
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The intensity of segregation describes the effect of molecular diffusion on the 

mixing process. For the case of stream mixing it is basically a measure of the difference 

in concentration between neighboring lumps of fluid particles of the mixture; for age 

mixing it is defined as a measure of the difference in age of such lumps. Quantitative 

definitions of I appear in the literature in a variety of different forms (some of which 

are appropriate only for stream mixing and others only for age mixing). In the 

perspective of the present work particularly useful is the definition of I as the local 

intensity of fluctuations of an inert scalar 

( c'2) 
I= {c)2 (4.2 - 4) 

where ( c'2 )_ and (c) refer to the same space-time point. The intensity I as defined in 

(4.2-4) describes the quality of micromixing of an inert species with the background 

environment, the latter seen as a single component. Such a definition is useful mainly 

for cases of dominant stream mixing.(*) This quantity is a basic parameter of the 

Turbulent Reactive Plume Model described in Chapter 2 and we devote Chapter 5 

to its estimation in the case of steady atmospheric point source plumes. 

If stream mixing is complete on a molecular scale (maximum mixedness mi

cromixing), or if only inert tracer is present for all ensemble realizations, then ( c'2 ) = 
\ I 

I = 0. For steady state cases time averages are usually used as estimates of theoreti-

cal (ensemble) means. According to the definition (4.2-4) I will be equal to unity in 

the particular case of complete segregation with equal probabilities of tracer existing 

or not existing at the point and instant of measurement (in other words in cases with 

local concentration intermittency equal to 1/2; see Chapter 5). A major disadvantage 

of the definition (4.2-4) is the behavior of I for tracer concentrations tending to zero. 

Thus in the plume case both nominator and denominator of (4.2-4) go to zero as 

the plume boundaries are approached but the denominator decreases faster with I 

tending to infinite values. 

(*) Pratt (1979) defines the intensity of segregation through (4.2·4) exclusively for stream 
mixing. 
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Other definitions of I attempt to express the state of mixing of two particular 

species A and B and thus use two stochastic concentration fields instead of the one 

employed in definition (4.2-4), e.g., 

(4.2 - 5) 

In this case I varies from zero, for a uniformly micromixed solution, to one, when A 

and B do not coexist anywhere. If non reacting A and Bare mixed, and Bis defined 

as not - A then c~ = -ck, and (4.2-5) gives 

(4.2 - 6) 

which is very similar to (4.2-4). A possible advantage of (4.2-6) over (4.2-4) is that 

the denominator now does not go to zero as fast as in (4.2-4), since (cA) and (cB) 

cannot both be simultaneously zero, and thus its change is more easily compensated 

by changes in the nominator. For complete segregation I = 1 and 

Hence, for unpremixed reactants - where their initial variances of fluctuations 

correspond necessarily to complete segregation - we can write 

I= ls= 
(c~ ck) 

(cA)o(cB)o 

which is another definition of I, holding only for stream mixing. 

(4.2 - 7) 

For the definition of intensity of segregation in cases of dominant age mixing 

concentrations are viewed as functions of the species ages, that is the elapsed time 

a= t-to since the species molecule was introduced in the flow field. So let c( a) be the 
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instantaneous concentration at a point of tracer molecules that have age a. The mean 

of this variable at a point and instant can be expressed oniy as an ensemble average 

and any estimate would be the average over, say, N realizations of the dispersion 

phenomenon, in each of which the random variable c(a) takes the value ci(a), i = 
l, ... ,N: 

(Time averages are meaningless in this case.) The mean age of molecules at the point 

of measurement will be 

Then, the intensity of age segregation at a point is defined (see, e.g., Pratt, 1979) as 

the ensemble average of variances of the Ci( a) 's about (c( a)) at that point: 

(4.2 - 8) 

The limits of the integral in the summation of (4.2-8) are the lower and upper values 

of a for which (c(a)) is non-zero. 

Danckwerts (1958) defined a measure of age segregation fo:r the reactor as a 

whole, i.e. the ratio of the variance of point ages to the variance of molecule ages 

throughout the reaction field 

where 

J = varap 
var a 

vara =(a - (a)) 2 

(4.2 - 9) 

(4.2 - 10) 

is the variance of the ages of all the molecules in the system ((a) is the mean age of 

all molecules which are at some particular instant in the system), and 

(4.2 - 11) 
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is the variance of mean ages at a point. In (4.2-10) averaging is meant over all 

molecules of the system whereas in (4.2-11) is meant over all continuum points of the 

system. 

J is a global measure of the degree of molecular homogeneity in a system whereas 

I (for both stream and age mixing) is a local measure. J and Ia are measures only 

of atom ages and do not consider the chemical identify of atoms; thus they have no 

utility as measures of stream mixing effectiveness. 

Another point that needs to be stressed here is that I (or Ia) as well as L 8 are 

expected local properties of the field; obviously in an actual random realization of the 

field the mixing at a "point" will always correspond either to complete segregation 

or to maximum mixedness. 

4.2.5 Mixing in Atmospheric Plumes 

In the dispersion of an atmospheric plume it is typically assumed that axial 

diffusion is negligible and that recirculative convection phenomena do not take place. 

In such a case, where advection by the mean wind field and lateral dispersion are the 

only significant physical processes, the mixing of effluents with the background air 

down to the molecular scale is accompanied by a decrease of I (for stream segregation) 

from 1 to 0 in the downwind direction but Ia and J will always be equal to 1. They 

will be reduced from this value only if diffusion mixes effluent molecules of different 

ages; however as long as there are advection effects they will assume non-zero values. 

4.2.6 Interaction of Mixing and Chemical Reaction 

The effect of the mixing state on the evolution of reactions taking place in the flow 

field has already been stressed in the introduction of this chapter as well as in Chapter 

1. Monomolecular reactions (that is with intrinsic linear kinetics) are affected only by 

the macrostate and their temporal and spatial evolution depends only on the mean 

concentration field of the reacting species. Thus, for lumped systems, the RTD alone 

is adequate to describe the macroscopically averaged evolution of linearly reactive 
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networks. 

(a) The Effect of Rate Order 

Reactions of order different from unity are in general affected by both the macro

and micro- state of the system as well as by the initial state of the reactants (pre

mixed or unpremixed) and the nature of the dominant mixing process (stream or age 

mixing). It must also be clarified here that controlling macro- and micro- states of 

evolving flow and reaction systems must always be identified for a stage of their evo

lution that is relevant to the reactions of interest. Thus, if a reaction is very slow and 

occurs in a flow system that evolves quickly towards equilibrium with respect to the 

mixing processes, it will not be practically affected by the early mixing states - since 

they correspond to times for which conversions are very close to zero. Hence, when 

slow reactions take place in a homogeneous-at-equilibrium flow system it is usually 

assumed that the latter has achieved its maximum mixedness microstate before the 

chemical processes have advanced significantly. On the other hand instantaneous or 

fast reactions are affected to a varying degree by the early mixing states of the system 

since the intrinsic kinetics of the reactions, under conditions of equilibrium mixing, 

would have produced non-negligible conversions at short times corresponding to these 

states. The comparison of the different rates at which the chemical and mixing pro

cesses evolve in a particular system and the subsequent characterization of a reaction 

as slow or fast should be done on the basis of appropriate characteristic time scales 

for the various processes. Such scales as well as nondimensional characteristic groups 

were used in Chapter 1 and will be further discussed in section 4.4.1 of this chapter. 

(b) The Effects of Initial Conditions 

The different effects of molecular dispersion processes on reaction evolution and 

their dependence on the initial condition of the reactants should also be mentioned 

here. Thus, in the case of unpremixed reactants, molecular diffusion is necessary to 

bring the reactants together at the molecular level so that reaction occurs. In this 

way it enhances the effective kinetic rate, for reactions of order greater than unity, 
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by homogenizing the mixture. The action of the same phenomenon, i.e. molecular 

diffusion, has opposite effects on the case of premixed reactants. Its action homoge

nizes the reactive mixture with inert dilutant (in the case of stream mixing) or with 

older, converted, mixture (in the case of age mixing). As a result it lowers the levels 

of concentration that determine the local kinetic rates and consequently the effective 

rate of reactions of order greater than unity decreases too. 

Similarly, random flow field (turbulent dispersion) effects also depend on the 

initial state of the reactants. Although the action of both molecular and turbulent 

diffusion typically results in "spreading" of material this is done at different levels, 

that is at the molecular and the fluid particle level respectively. At the local fine 

scale level they are actually antagonizing processes. Indeed, turbulence creates local 

random conc·entration gradients and fluctuations which are dissipated by the action of 

the molecular diffusion. The correlations of fluctuating concentrations will be positive 

for premixed and negative for unpremixed species and therefore opposite effects on 

the observed ("phenomenal") rates are to be expected for these two cases. 

In Table 4-3 we have summarized the different effects of molecular and turbulent 

dispersion phenomena on single-phase reactions of order greater than unity for both 

premixed and unpremixed reactants. (For reactions of order less than unity the 

various effects mentioned are generally reversed). 
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Table 4-3 

Effect of Mixing on Reaction: 

Dependence on Initial State of Reactants 

(for Reaction Order Greater than Unity) 

SINGLE/PREMIXED 

SPECIES 

Depresses the overall rate; it homog

enizes the :reactive mixture with the 

diluent 

UN-PREMIXED 

SPECIES 

Enhances the overall rate by dissi

pating concentration fluctuations; its 

rates are mo:re c::ritic:al than for pre

mixed species since it ia necessary to 

bring the reactants together 

Creates positive correlations of con- Creates negative correlations of con-

centration fiuctua.tiona a.nd enha.n.ces centre.tion fluctuations and depresses 

the overall rate because at non-diluted the overall rate 

11pots reaction takes place at f a.ster 

rates 
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4.3 METHODOLOGIES 

FOR THE DESCRIPTION OF TURBULENT REACTIVE SYSTEMS 

As it was stated in Section 4.1, modeling methods for turbulent reacting systems 

can be classified as 

(a) Eulerian Statistical (or Global Fluid Mechanical or Mechanistic), and 

(b) Structural, including Lagrangian Trajectory Schemes, Population Balance Meth

ods and/or Models of Local Laminar Micro-structures. 

Elements of both approaches can be present in a particuiar model formulation 

at different organizational levels (Figure 4-1). 

The choice and application of a particular method depends mainly on the di

mensionality of the model that is assumed to describe satisfactorily the system under 

study. (e.g., lumped in space or in time etc.). 

4.3.1 Fundamental Concepts 

of the (Global) Eulerian Statistical Approach 

The Global Eulerian Approach is presented in relative detail in Sections 4.4 to 4.6, 

with emphasis on formulations and results that are simple and directly applicable to 

situations of interest in the present study. This systematic presentation also contains 

a survey of methods that have appeared in the literature. In the present sub-section 

we introduce this approach through a brief overview which, in combination with 

the brief survey of Structural Approaches of the next sub-section, reveal the range, 

complexity and diversity as well as the relationships of methods that have been used 

to attack the problem of reactions in turbulent fields. 

Global Eulerian Statistical Approaches are based on the Eulerian local and in

stantaneous species transport equations, which incorporate reaction terms, perhaps 

in combination with the respective equations for momentum and energy transport 

(Section 4.4.1). These equations are assumed to describe globally (everywhere) the 
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turbulent flow and reaction field, always at an instantaneous pointwise basis, and 

therefore, with the appropriate initial and boundary conditions constitute the starting 

point for model development. The stochastic nature of the flow field imposes the ne

cessity for a statistical formulation that will provide information for the probabilistic 

characteristics of the unknown concentration (and perhaps temperature etc.) fields. 

The common procedure for constructing such a formulation is to derive, through 

ensemble averaging of the stochastic transport equations, equations for the first (or 

subsequently the higher order) moments of the unknown random quantities. As is 

well known, such an equation for the n-th moment will necessarily contain as new 

unknowns the correlations of fluctuations of stochastic variables of total order greater 

than n. Nonlinear chemical kinetic rates are responsible for the appearance of more 

such unknowns. Formulation of evolution equations for these new terms leads pro

gressively to an infinite hierarchy which excludes the possibility of exact solutions 

(Closure Problem). An approximation scheme must be introduced at some level to 

account for the correlations of fluctuations. Such a scheme is called an n-th order 

closure if it is incorporated as a correlation approximation in the governing equa

tions for the n-th moments. We shall further call "chemical closure schemes" the 

approximations of the correlations that arise because of nonlinear chemical rates to 

distinguish from "transport closure schemes" which account for the interaction of the 

random velocity and transferred quantity fields. Once estimates of moments (either 

joint or of a single random variable) are available, they can also be used as parameters 

in probability density functions of appropriate (assumed) form, a practice that has 

been extensively applied. In addition to moments or correlations modeling, a rela

tively limited range of reactive turbulence studies employing spectral schemes (for 

the reactive concentrations) has appeared in the literature (Section 4.5.3). 

The alternative to deriving equations for the moments is to construct functional 

evolution equations for the entire joint probability density function of the unknown 

stochastic fields, starting again from the local instantaneous transport equations. The 

need of closure remains in these formulations too. Further, obtaining solutions for 
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such equations is a very difficult task. Other, heuristic schemes for the construc

tion of such pdf's assume a certain artificial random picture of the structure of the 

flow continuum and therefore actually belong in the Structural Approaches that are 

discussed later. 

The main modeling effort has been focused on 2nd order reactions of either pre

mixed or unpremixed species. Various schemes have been formulated starting from 

the basic Eulerian framework. Their complexity depends mainly on the relative rates 

of chemical and dispersion processes. Thus, if the reaction rate is very slow we have 

seen that complete micromixing is achieved before the reaction starts, and fluctua

tion effects are negligible. Also, if the rate is much faster than the diffusion (case 

of "infinite" reaction rate) the effect of turbulence is controlling but the analytical 

presentation of the problem can still be simplified greatly. Indeed, equilibrium (for 

reversible reactions), or a limiting stoichiometry (for irreversible reactions) are as

sumed to be achieved instantaneously and hold pointwise wherever the reactants are 

micromixed. So, an algebraic steady state relation between random concentrations 

is available to reduce the complexity of the mathematical description. If the reaction 

rate cannot be considered infinitely fast, but still is not slow enough for equilibrium 

to be assumed with respect to mixing processes, the local instantaneous kinetics are 

aiso in an evoiving state which depends on both macro and micro-mixing conditions. 

In this case further evolution equations for appropriate reaction progress variables 

must be derived in the place of the stoichiometric or equilibrium relations. 

For both the cases of finite and infinite rate chemistry the tasks of formulating 

chemical and transport closure schemes have been in general pursued on two different 

lines: 

(a) The most tractable (and presently successful) approaches attempt a decou

pling of mixing and reaction processes or indirect closure (Section 4.6). Thus some 

conserved quantitites ( "coserved scalars"), such as stoichiometric invariants of the 

reactions or inert surrogate concentrations, are introduced to account separately for 

the transport effects. The probabilistic characteristics of the spatial and temporal 
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distributions of the conserved quantities (which of course are also random variables) 

are determined with the use of appropriate Eulerian transport equations, incorporat

ing closure schemes of first or higher order. The respective characteristics of reactive 

species concentrations are related to them a posteriori. This step involves approxima

tions equivalent to chemical closure in an indirect way. The above technique is more 

natural and effective for infinite rate chemistry but certain extensions have appeared 

for finite rate cases. 

(b) The alternative is to invoke directly a chemical closure approximation either 

using the moments or the joint pdf evolution equations formulations (Section 4.5). 

The usual approach, employing moment transport equations is to relate correlations 

resulting from nonlinear chemistry to lower order moments or correlations of the re

active species concentrations. This can be done in principle either at the level of 

governing equations for the first moments or at a higher level after forming first dy

namic equations for the correlation and introducing estimates for the new unknowns. 

The general organization of Eulerian methodologies is given schematically in 

Figure 4-2 which is supplemented by Table 4-4. 

4.3.2 Fundamental Concepts 

of the Structural Approach 

Under the general title of Structural Approaches we classify all those method

ologies that instead of starting by developing governing equations for the entire dis

tributed flow and reaction field, considering it as a continuum, they focus on small 

scale entities which are assumed to be "structural units" of the field. The average be

havior of these entities then determines locally or globally the evolution of the overall 

system. 

Many different theoretical treatments are based on the concept of structural 

units. Their variation depends mainly 

(i) on how "complex" they assume this structural unit is, and 

(ii) on whether they attempt a detailed (spatially distributed) description of the fl.ow 
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Table 4-4 

Eulerian Statistical Approaches: 

Selected References 

TYPE OF MODEL 

I Direct Chemical Closure 

lA Moments Formulation 

1A1 Higher Order Closure 

IA2 Reaction Order Closure 

m PDF Formulation 

m1 A priori Assumption 

of PDF Form 
ma Structural Model 

for PDF Construction 
ms Evolution Equation for PDF 

(a) Probability Functionals 

(b) Fine Grained Densities 

IC Spectral Formulations 

Il Indirect Chemical Closure 

Ila Chemistry Free Closure 

Il~ Infinite Rate Chemistry 

Il~ Finite Rate Chemistry 

Il,e Mixed Closure 
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and reaction system or just develop estimates of macroscopic averages (a lumped 

picture of the system). 

In some cases the structural entity can be viewed as a Lagrangian material volume 

following the flow which is large enough for the material fluxes through its boundaries 

(that are in general distorted by fl.ow shear) to be caused not only by molecular 

diffusion but also by small eddies. In other cases this Lagrangian volume is considered 

smaller than the smallest eddies of the field and therefore it becomes equivalent to 

the (volume) fluid particle concept that was discussed in Section 4.2. Here we will 

use the term fluid particle (either volume or property particle) for the latter case 

and the term fluid lump or simply material volume for larger volumes. A fluid lump 

will in general have at any instant a non-uniform, random, internal structure. On 

the other hand a fluid particle is usually considered to possess completely uniform 

internal structure. 

(a) First Structural Level Models 

We shall call approaches that adopt the concept of fluid particles, as described 

above 1st structural level models. The widest class of models relevant to arbitrary 

reaction and flow fields, the Population Balance Models, follows this line (see, e.g., 

Himmelblau and Bischoff, 1968; Froment and Bischoff, 1979, for introductions to 

the method). A set of properties is used to identify the various fluid particles. In 

a distributed description the properties include the three spatial coordinates of the 

particle ("external coordinates") plus properties that characterize the physicochemi

cal state of the particle such as mass, volume, chemical composition, etc. ("internal 

coordinates"). If continuum properties, such as species concentration, density, pres

sure, temperature, etc., are to be used, they are taken to assume constant values over 

the internal continuum of the fluid particle. Distribution functions denoting how a 

population of fluid particles is distributed (or, more precisely, is expected to be dis

tributed - see, e.g., Ramkrishna and Borwanker, 1973) in an extended coordinate or 

phase space that incorporates both internal and external coordinates can be defined. 

PART IB CHAPTER 4 



-180-

Then evolution equations for these distribution functions in the extended space are 

constructed. The difficult part here is to devise appropriate models for terms in the 

equations that will account for mixing and reaction (that is molecular scale processes) 

among the constituent species of fluid particles. For premixed species each fluid par

ticle behaves initially (that is at states of complete segregation of the reactive mixture 

and diluent system) as a batch reactor. Thus for very fast reactions the description 

is very simple. For moderately fast reactions the effects of stream mixing can be in

corporated into dilution factors that will in general be proportional to the age of the 

particle. For unpremixed species however, some artificial mechanism of interaction 

between fluid particles must be invented. 

(al) Lumped {1 dimensional) Systems 

Usually the Population Balance Equations are spatially averaged over control 

volumes with a single entrance and exit, or at least over control surfaces. When 

the only internal coordinate considered is the age of the fluid particles then these 

macroscopically averaged population distribution functions reduce to the well known 

residence time distributions or other similar concepts of the conventional chemical 

reactor theory which is based on lumped models formulations and considers mainly 

conditions of age mixing. 

The original formulations of this method considered only extreme micromixing 

conditions, i.e. either complete segregation (Danckwerts, 1958; Zwietering, 1959), or 

maximum mixedness (Zwietering 1959), combined with arbitrary macromixing of the 

lumped system. 

Different microstates of a system can also be modeled within the fluid particle 

framework. Thus one can assume that the fluid particles spend successive intervals of 

their residence time in the field under conditions of different but definite degree of seg

regation (e.g. they are completely segregated for an initial period and then they spend 

the rest of their residence time under conditions of maximum mixedness); these are 

the Many-Environments models (abbreviated as ME models). Two-Environment (see, 
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e.g., Goto and Matsubara, 1975), Three-Environment, as well as Four-Environment 

Models have appeared in the literature (see Mechta and Tarbell, 1983, for references). 

Typically thse models are formulated for arbitrary macromixing (RTD) of the lumped 

system. 

Alternatively, the evolution of microstates, which takes place through the action 

of molecular scale effects, can be approximated by processes of coalescence of fluid 

particles with initial different composition which form fluid lumps that immediately 

redisperse into new fluid particles of common composition. These are the Coalescence 

and Redispersion models, often referred to as "c-r" or "c-d" models, that provide an 

artificial but often useful model of molecular mixing that was originated in the work of 

Curl (1963) (for examples see, e.g., Kattan and Adler, 1967; Evangelista et al., 1969; 

Flagan and Appleton, 1974). (The analyses contained in these works are formulated 

for macromixing corresponding to either cstr or pfr conditions; Kattan and Adler 

(1972) presented a study for arbitrary macromixing). 

Combinations of the ME and "c-r" approaches have also appeared in the litera

ture. (see, e.g., Richie, 1980). 

It must be stressed again that the main body of work that utilizes these ap

proaches refers to systems that are at least partially lumped. 

(a2) Multidimensional Models 

Another approach, still at the 1st structural level, in principle appropriate to 

describe spatially distributed systems, is to develop schemes for the prediction of 

random Lagrangian traJ'ectories of fluid particles. Such an approach would require 

the estimation of joint particle transition probability density functions. Reaction 

between unpremixed species will occur if two particles of the different feeds "collide". 

Of course in a formal Lagrangian description, individual particle trajectories cannot 

cross each other at a given time instant because of continuity constraints and thus 

a "collision" is interpreted as the approach of two trajectories at a micro-distance 

small enough to permit molecular interaction. This methodology is in principle an 
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extension of the Lagrangian theories for turbulent diffusion to nonlinearly reactive 

systems; however it seems too complicated to be of practical use in the near future 

(see also Shu, 1976; Lamb 1976) 

(b) Second Structural Level Models 

Models that consider as structural entities fluid lumps that have a non-uniform 

internal structure and can also be distorted or broken by the action of turbulence can 

be named 2nd structural level models. In such approaches the focus is on the progress 

of reaction and molecular diffusion phenomena in a control volume small enough so 

that all fluid motions inside it can be described in a deterministic manner. The major 

interest in such approaches concerns unpremixed species reactions. 

The simplest approaches in this area confine their control volume around the 

"interface" of two fluid particles or fluid "patches" (or "slabs" or "drops" etc. ) of 

different feeds and try to develop estimates and evolution patterns for the mixing 

and reaction zone that is created at this interface based solely on the relative rates 

of diffusion and reaction. In this category we can classify models such as Mao and 

Toor's (1970) "slab diffusion model," Nauman's (1975) "droplet diffusion model," 

David and Villermaux' (1975) "interaction by exchange with the mean model," Klein 

et al.'s (1980) "droplet diffusion and erosion model," etc. These approaches in generai 

assume that the macroscopic configuration of the system is simple enough so that 

conclusions concerning conversions etc. for the entire system can be deduced from 

the local results. 

More complicated models consider effects of turbulent shear on local fluid volume 

deformation on the evolution of the reaction zone. Some formulations try to model 

"lamellar structures" of many reaction zones separated by unmixed material (see, e.g. 

Ottino, 1980, 1982; Ou and Ranz 1983ab). A similar approach is examined in a series 

of papers of both theoretical and experimental content by Bourne and coworkers 

under the general title "Mixing and Fast Chemical Reaction" (see, e.g., Angst et al., 

1984 - see also Baldyga and Bourne, 1984). All these models use Eulerian molecular 
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diffusion- reaction equations at the local scale where flow is laminar. 

4.3.3 Comments 

on the Interrelationships of the Models 

An overall view of the range, diversity, and interrelationships of Eulerian and 

Structural Approaches is given schematically in Figures 4-1, 4-2 and 4-3. These Fig

ures are supplemented by Tables 4-4 and 4-5 which contain selective lists of references 

arranged according to the general organizational scheme presented in these figures. It 

should be clear that a particular model intended for practical application may contain 

aspects of both methodologies at different levels of its structure. The various levels 

of description of the mixing processes that are commom in chemical reactor theory 

and their cormection are shown schematically in Figure 4-4. 

The Eulerian Approach is more straightforward (although it provides less insight 

on the local evolution of mixing) than the Structural Approaches (which, nevertheless, 

make extensive use of ad hoc assumptions and have been limited mainly to turbulent 

fields of very simple average macroscopic configuration). Thus the Eulerian method

ology seems more appropriate for describing complex, spatially varying, systems that 

occur in environmental applications. For such studies the role of the structural ap-

p:roach can be supportive by providing estimation of certain parameters arising from 

closure approximations. 
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Table 4-5 

Lagrangian Statistical Approaches: 

Selected References 

TYPE OF MODEL 

1 Lumped Models 

IA Macromixing via RTD 's 

ID Micromixing Models 

ID 1 Coalescence-Redispersion 

ID2 Many Environments 

ID1,2 Combined M-E/C-R Models 

JAB Combined Macro- and Mic:ro

Mixing 

ll Distributed Systems 

ll' 1st Structu:ral Level 

ll~ Distributed Population Balances 

ll.B Lagrangian Trajectories 

ll" 2nd Structu:ral Level 

ll_A Single Reaction Zone 

ll~ Lamellar Structures 
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4.4 THE EULERIAN STATISTICAL APPROACH: 

MODEL DEVELOPMENT 

4.4.1 General Considerations 

The starting point of the Eulerian Statistical or Global Fluid Mechanical Ap

proach to turbulent reacting flows is the continuity equation for each of the species of 

the reacting and diffusing mixture. This equation is assumed to hold instantaneously 

and pointwise in the field. A general form for it is (see, e.g., Bird et al., 1960; Slattery, 

1972) in the case of a binary mixture 

(4.4 - 1) 

where u is the instantaneous mass average velocity of the mixture, PA is the mass 

density (or mass concentration) of the species A, jA is the rate of molecular diffusion 

of A (diffusive flux) with respect to u, and r A in the rate of production (or dissipation) 

of A by chemical reaction per unit volume expressed in terms of the mass densities 

of A and of the species that participate in reaction with it. Equation (4.4-1) can of 

course be written for the insta.nt~u1eous value of molar concentration CAi hmvever, 

in this case the molar average velocity must be used instead of the mass average 

velocity and such an approach is not very convenient for systems of variable density 

(Hill, 1976). The way it is stated in (4.4-1) species transport describes equally well 

both compressible and incompressible flows. With the use of the mass fraction YA 

and assuming that Fick's law for a binary mixture is valid 

where YA is the mass fraction of A, pis the mixture density and DA is the molecular 

diffusion coefficient of the species A with respect to the mixture (usually a strong 

function of concentration), and if 
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(a) either YA ~ 1, or 

(b) the mass density p is uniform and constant in time 

then we can write {4.4-1) as 

Be A Tt +u· \7cA-'\i'. (DA'\i'cA) =TA (4.4 - 2) 

where the reaction rate r A is expressed in terms of the molar concentration of the 

reacting species. When DA can be assumed constant (4.4-2) becomes 

Be A 2 
Bt+u·'\i'cA-DA'\i' CA=TA (4.4 - 2a) 

This form of species transport equation is strictly applicable to isothermal, constan.t

pressure, binary mixtures of uncharged substances. For multicomponent mixtures jA 

will depend upon the gradients of chemical potential of all species in the mixture as 

well as on the temperature gradients. 

For atmospheric applications one can usually assume that the overall mass den

sity of the air and pollutant mixture is uniform and constant and that this mixture 

is sufficiently dilute with respect to the relative species so that (4.4-2) is valid. Fur

ther the heat of reaction and reaction induced density changes in these situations 

are small enough so that the velocity u(x, t) and the temperature T(x, t) fields can 

be considered independent of the reaction, the latter field being practically uniform 

for not very large spatial scales. Under such conditions the species transport equa

tion is uncoupled from the simultaneous momentum and energy transport dynamics 

and is adequately approximated by ( 4.4-2), always on a stochastic instantaneous

pointwise basis (see, e.g., Seinfeld, 1975, Section 6.1.1). One can then proceed to 

develop equations for the moments of concentration by ensemble averaging this equa

tion (traditional approach) or follow statistical-mechanical approaches (see Sections 

4.5.2, 4.5.3) to formulate functional equations for the probability density functions of 

concentrations. 

In a rather simplifying approach- which is more directly related to the perspec

tive of environmental systems analysis and the present work - one can assume that 
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the interaction between the random concentration and temperature fields takes place 

only through the dependence of the chemical reaction rate term on the temperature 

and the system is insensitive to other temperature and fl.ow field interactions which 

can be considered negligible. Such an approach can also be extended to treat effects 

of fluctuations of solar radiation on the evolution of photochemical reactions. The 

key modeling assumption is that all effects of gradients and turbulent fluctuations 

of the temperature or the radiation field can be incorporated completely in spatially 

varying and fluctuating chemical kinetic coefficients. Kewley (1978) employed such a 

technique for a simplified study of the effect of temperature fluctuation on the value 

of the photostationary state parameter in the ozone-nitrogen oxides photolytic cycle 

in the atmosphere (see Chapter 3 and Appendix A3.3). His conclusion, specifically 

for the NOz ·- 0 3 system, was that, when the action of temperature variations is felt 

only through the dependence of the kinetic coefficients on them, their effect can be 

neglected, at least at a first approximation. 

Thus, here we focus attention mainly on equation (4.4-2) for stochastic trans

port and reaction with reaction terms depending practically only on concentrations 

of the species. A set of equations of this type, with one corresponding to each reac

tive species, together with the appropriate initial and boundary conditions, and given 

the appropriate statistical characteristics of the independently varying velocity field 

u(x, t), is assumed to describe completely the evolution of the system of concentra

tions. The reaction term appearing in (4.4-2), rA(x,t), will be a local function of the 

reactive species concentration where the latter are assumed instantaneous, random 

point variables. The kinetic rate forms that have been most extensively studied up 

to now are 

(4.4 - 3) 

for a single-species reaction with n = 1 (linear kinetics) or n = 2, and 

(4.4 - 4) 
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for 2nd order reactions between two species A and B: 

A+B--+P 

Extension to reversible reactions with the reverse reaction also obeying one of the 

above laws are straightforward and on the same lines as the irreversible reactions. (*) 

The stochastic nature of equation (3.4-2) and therefore of the dependent variable 

c is due to the stochastic nature of the turbulent velocity field. Another possible 

source for randomness in c may be due to the presence of statistical initial conditions; 

however, we will not be concerned with this possibility here (see, however, Section 

3.5.l for some relevant references). 

The stochastic nature of the governing Eulerian transport equations for disper

sion with reaction leads to the same fundamental problems of analytical description 

as inert dispersion. Thus a complete description of the random concentration fields 

is possible only through the knowledge of the probability density functions of con

centrations at each point in space and time. The standard alternative to seeking 

these pdf's is a description through equations for moments of the stochastic fields. 

Such a procedure starts typically by introducing Reynolds type decomposition of the 

random variables, that is u = (u) + u', c = (c) + c', in the equations and of course 

leads to a moments closure problem, typical and unavoidable in turbulence theory. 

(Eulerian formulations for evolution equations of the entire pdf have analogous clo

sure problems). A major difference between describing inert and reactive species 

(*) One must keep in mind that relations like (4.4-3) and (4.4-4) do not necessarily reveal 

the kinetic mechanism of the chemistry at the molecular level (see, e.g., Laidler, 1965; 
Emmanuel and Knorre, 1973). They are phenomenological approximations of molecular 

processes at the continuum level - exactly as the common transport equations of mass, 
momentum and energy - and must always be interpreted in this way. Certain approxima
tions may have been incorporated in such laws; thus, for example a bimolecular reaction 
is often approximated by a linear (or pseudo-linear) kinetic law by use of the assumption 
that the concentration of one of the reacting species is so large that is not practically 
affected by the evolution of the reaction. However, despite this assumption the effects 
of turbulent mixing on such a reaction will be similar to those for a higher order (non
linear reaction) since, e.g., from unpremixed reactants dispersion processes are necessary 
to bring the two species together in order to react although formally the rate seems to 
depend on one reactant only. 
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dispersion occurs however in the case of nonlinear chemical kinetic rates as it was dis

cussed earlier in this chapter as well as in Chapter 1. Such a reaction rate produces 

self-interaction, as in the Navier-Stokes equations, which leads to the appearance of 

higher order correlation terms between the fluctuating parts of concentrations. This 

makes the closure problem more complicated because of the presence of more and 

higher order unknowns than in the case of inert dispersion. 

Thus, for example, the rater A = -kc A CB will induce, after ensemble averaging, 

a second order correlation appearing in the dynamic equation for the first moment of 

The magnitude, and hence the importance, of these higher order correlations which 

describe the local homogeneity, or completeness of mixing, in the reaction field de

pends in general on the relative intensity of all three phenomena that take place 

simultaneously, that is the mixing processes (molecular and turbulent diffusion) and 

the chemical reaction . 

In order to estimate the relative importance of these phenomena one can proceed 

directly from (4.4-2a) by transforming it into dimensionless form (see Hill, 1976) 

Here 

ac I l\T TT 'M' ,,... l\T 'M'2c ,.,. -a THTU'V•v-J.YDV,. =lVR 
t. 

t c u 
t. = - , V"' =Lo V , C = - , U = -

T Co Uo 

where Lo, T, uo, co, are characteristic length, time, turbulent velocity, and concen

tration scales. A reaction rate scale ro is used to non-dimensionalize the chemistry. 

Here NT, ND, NR are dimensionless time ratios 
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{4.4 - 6a) 

(4.4 - 6b) 

(4.4 - 6c) 
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with tT, tv, tR characteristic times scales of the turbulent dispersion, molecular 

diffusion and chemical reaction processes. r must be set equal to one of them; then 

the above time ratios become either equal to unity or to typical dimensionless groups 

which are in use in reaction and dispersion analyses (Peclet and Damkohler numbers). 

From the non-dimensionalization procedure the time scales have to be 

(4.4 - 8a) 

{4.4 - 8b) 

(4.4 - 8c) 

However, special care is needed in interpreting the significance of this direct approach, 

mainly as far as the choice of an appropriate Lo is concerned. This is due to the fact 

that molecular and turbulent dispersion processes do not actually "compete" regard

ing how fast they wiil reduce gradients of concentration over the same macroscopic 

distance, say L 0. From that perspective one would expect that tv ~ tT in general, 

and of course, as is well known, molecular dispersion is usually neglected in inert 

scalar turbulent transport studies. The importance of molecular diffusion is in pro-

ducing micromLxed spots Vl!here reaction can occur; thus its rate seems to be relevant 

mainly with respect to distances corresponding to neighboring random concentra

tion differences maxima that occur in volumes locally macromixed but incompletely 

micromixed.(*) 

Considering these facts some researchers (see, e.g., Brodkey, 1975) assume that 

it is more reasonable to define tT in terms of some macroscopic turbulent length scale 

Lo which is characteristic of the spatial persistence of mean gradients, and t D in 

terms of another length scale lo typical of the spatial scales at which the effect of 

(*) 
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For the problems of interest in this study it is the comparison between this particular 
rate and the reaction rate that is most important. In the closure '"solution" adopted by 
the TRPM the effects of molecular diffusion a.re actually incorporated in the phenomena.I 
conversion ra.te term of the governing equation and not in the transport term. 
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molecular processes is felt directly (see, e.g., Bourne, 1982). Thus 

(4.4 - 7'a) 

(4.4 - 7'b) 

(4.4 - 7'c) 

Thus a global description, as provided by (4.4-5) is essentially abandoned and the 

analysis proceeds separately at two different scale levels, the local scale being viewed in 

the spirit of the second level structural models of Section 4.3.2. However, even in this 

approach, it is still in general difficult to decide which is the most appropriate choice 

for the characteristic scales. A first problem is the selection of a proper turbulent 

macro-length scale, especially in cases like the atmospheric plume where turbulence of 

different scales interacts in different ways with the other processes. (See also Builtjes, 

1983; Libby and Williams, 1980 - Section 1.16; Bilger, 1980, for relevant discussions). 

A second problem is what the most appropriate scale lo should be. Typically one of 

the microscales discussed in Section 4.2.2 (depending on the value of Sc) is assumed 

to be a good choice. If we set, e.g., lo = lK, the Kolmogorov length microscale given 

by (4.2-1), we obtain tD = tK where tK = (v/E)1/2 is the Kolmogoroff time scale. 

The three characteristic time scales introduced here are measures of the time 

needed for 

(i) achieving mean uniformity by turbulent mixing (tT), 

(ii) achieving detailed local uniformity (i.e. complete micromixing) by molecular 

diffusion, thus being a characteristic time for the decay of fluctuations of a scalar 

field (tD), and 

(iii) of reaching chemical equilibrium or some limiting stoichiometry (tR)· 

The magnitude of the ratios of these time scales, given by the dimensionless 

groups NT, ND, NR after a choice of r has been made, characterizes the relative 

rates of the processes corresponding to the nominator and denominator of the group. 

Traditionally, the ratios of turbulent and molecular dispersion to chemical rates are 
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named first and second type Damkohler groups respectively and denoted as Da1, Dau. 

When there are no gradients in the mean concentration field then the single di

mensionless ratio N R defined for r = tv - in which case it is a second type Damkohler 

group Dan, (*) also called mixing modulus by some authors (e.g., Bourne, 1982) -

is sufficient to determine the relative importance of the terms (cA) (cB) and (c~ c~) 

in the kinetic rate term (when we consider the reaction A+ B -t Products) and the 

degree at which the evolution of the reactive system is determined by the intrinsic 

kinetics or the rate of molecular diffusion. This was discussed in Chapter 1 where, 

for small to moderate intensities of segregation, and for species that have molecular 

diffusion coefficients of approximately the same magnitude D; it was shown how 

can be suggested as a local estimate of the second Damkohler group when appropriate 

values of the concentration scales (cA.) and (C:8) are used. 

Finally, if we want to characterize a chemical reaction as slow or fast in an 

arbitrary turbulent concentration field we must take into account the relative magni

tude of both the first and second Damkohler groups. If for example we assume that 

tT > tv, then Da1 > Dan and the various regimes of chemical rates can be identified 

as follows: 

(a) Dau <t:: 1 : (infinitely) fast chemistry, mixing limited conversions, 

(b) Dan < 1 < Da1 : moderately fast chemistry, interaction of turbulence and 

chemical reaction, 

(c) Da1 <t:: 1 : slow chemistry, no effects of turbulence on reaction rate. 

4.4.3 Chemical Closure 

As it has been already mentioned, Chemical Closure can be obtained by either 

"direct" or "indirect" (i.e. mixing-reaction decoupling) methods; the different routes 

(*) It is very interesting to note that the Damkohler group is analogous to the Thiele modulus 
in heterogeneous catalysis and to the Hatta number that appears in modeling absorption 
with simultaneous reaction. 
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followed by these approaches as well as their interrelationships were also briefly pre

sented there. In the following sections we consider a more detailed development of 

these methods, following basically the moments formulation and providing informa

tion and references for the pdf formulation. The focus is on the methods that seem 

more promising for applications from the viewpoint of justification, generality and 

computational simplicity. The presentation here is confined mainly to practically 

isothermal-constant density conditions, relevant to those of typical atmospheric sys

tems. For discussions of the problems related to non-isothermal cases see, e.g., Libby 

and Williams (1980), Williams (1985). 
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4.5 DIRECT CHEMICAL CLOSURE 

4.5.1 Moments Formulation 

Direct closure methods that employ moments approximations attempt to express 

correlations of the type appearing in the last term of the r.h.s. of (1.3-8) in terms of 

more tractable (i.e. more easily estimated) variables. 

As introductory attempts towards a better understanding of the problem there 

have been several studies of the most simple nonlinear rate case, i.e. that of a single 

species-2nd order reaction evolving in a monodimensional system (e.g. a macroscop

ically mixed volume or a pfr). The governing (stochastic) equation will be 

dcA =-kc~ 
dt 

The initial conditions may also be assumed stochastic. 

(4.5 - 1) 

O'Brien (1966) compared expressions for (cA(t)) and ( c~ 2) obtained by aver

aging the exact solutions of this equation for Gaussian initial conditions with the 

predictions for these quantities computed using the third moment discard, quasinor

mal, and direct interaction (DIA) approximations.(*) None of the approximations 

behaved satisfactorily when the relative amplitude of initial fluctuations was large. 

Later O'Brien (1968) recognized that since CA is a nonnegative random variable, its 

moments must satisfy Liapounov's inequality (Uspensky, 1937): 

(4.5 - 2) 

where a, b, c are constants. As an illustration, the third central moment of CA must 

satisfy 

("') See, e.g., Leslie (1973) for details on the quasinormality assumption and the DIA. 
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It is obvious that if one adopts, say, the third moment discard approximation, 

( <./) / (cA)2 must be ::; 1 at all times. To avoid unreaiistic restrictions on the initiai 

fluctuations, O'Brien (1968) proposed a so-called "inequality preserving closure ap

proximation" (IPCA) so that Liapunov's inequality is always satisfied. O'Brien again 

compared the predictions of his !CPA with the exact solutions of (4.5-1) and found 

satisfactory agreement. O'Brien and Eng (1970) generalized the closure for reaction 

order one to three, and O'Brien and Lin (1972) used a different !CPA for two-species 

reaction with spatial dependence. Lee (1973) presented a "generalized direct interac

tion approximation". All of these approximations appeared to behave satisfactorily 

when tested against (4.5-1). However, since each of these closure schemes was de-

veloped and tested mainly on a simple system, namely (4.5-1), there is no assurance 

that they will hold when appllied to the full continuity equations. 

There are :relatively few direct closure schemes that have been applied to either 

single- or multi-species reactions using the full continuity equations for reactive scalars 

(i.e.(4.4-2)). A "brute force" approach was that of McCarthy (1970). By discarding 

fifth order cumulan ts, he developed a hierarchy of (seventy eight) differential equations 

for single-point concentration moments and microscales. 

Later Lin and O'Brien (1972) presented a closure theory which incorporates Lin's 

(1971) third order !CPA for the reaction terms and Lee's (1966) modification of the 

quasinormal approximation for the convective terms. Computations of the decay of 

moments and spectra of A were carried out for various conditions. The decay of (cA) 

and ( c~2 ) was found to depend primarily on the second Damkohler number (see 

Section 4.4). 

Hilst et al. (1973) combined a third order !CPA (different from that of Lin, 1971) 

for the reaction term c~ c~ with an "invariant model" (Donaldson and Rosenbaum, 

1969) for the convection term. Hilst et al. then applied the model to the reaction 

of Os and NO emanating from four cross-wind freeway line sources and solved the 

resulting 12 coupled differential equations numerically. Borghi (1974, 1979) has also 

investigated the probability of higher order direct closure; he addresed non-isothermal 
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problems with all the consequent complications. 

Donaldson and Varma (1976) discussed second-order techniques for both trans

port and chemical closure and applied them to idealized dispersion-reaction problems 

(among which there was the case of point source dispersion-2nd order reactions with 

the background). They further discussed issues related to more realistic situations. 

Due to their mathematical complexity and the lack of experimental support, none 

of the closure schemes mentioned above appears to be useful at this time in applica

tions to chemical and enviromental engineering (in particular atmospheric pollution) 

problems. 

Some steps towards a more simple approach have been proposed by Patterson 

(1981, 1983) whose closure suggestion is based on a "quasi-equilibrium" hypothesis(*) 

that assumes irreversible chemistry so fast that segregation is complete everywhere, 

all the time (I= 1), but the mixing rate still affects chemical conversions (obviously 

through dilution of the reactants concentrations in their segregated volumes caused 

by the diffusion of product and/or inert material).Consider the reaction A+ B --t P 

of unpremixed A and B, which is so fast that A and B remain totally segregated from 

one another. Hence (from Section 4.2.4), 

The rate of decrease of (cA) (cB) due to reaction may be expressed as follows: 

(4.5 - 3) 

because 

(
a (cA)) _ 

at r 
(4.5 - 4) 

when they are due only to chemistry. 

(*) Unfortunately Patterson's assumptions are not always stated explicitly; he just proposes 
the formulation we discuss here for "infinite rate irreversible kinetics." However in such 
a case mixing and reaction are naturally uncoupled and the closure problem is trivial 
(see Section 4.6). 
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We also have 

(4.5 - 5) 

Patterson (1981, 1983) now sets 

(4.5 - 6) 

This means that the rate of dissipation of fluctuations of the reactive species due to 

chemical processes alone is exactly the rate of dissipation caused by molecular diffu-

sion effects. This assumption expresses the fact that all reactive material coming to a 

state of complete micromixing through molecular diffusion is immediately consumed 

by chemical ·reaction. Hence, now in the place of the chemical rates expressions one 

can put 

(4.5 - 7) 

The dissipation term can subsequently be modeled as in the case of inert scalars; 

this subject is examined in detail in Chapter 5. In particular, Patterson (1981) uses 

Corrsin's (1964a) relations (see Chapter 5) for isotropic turbulent mixers, adopting a 

scalar segregation length scale equal to that of the turbulence macroscale. This last 

assumption is not justified in the cases of localized sources since the concentration 

field cannot be assumed locally isotropic. This is a major limitation in Patterson's 

modeling schemes. Nevertheless, in spite of the various deficiencies of the complete 

approach, we believe that the approximation just described is useful in showing how 

one can introduce significant simplifications into a turbulent kinetic model, at least 

for rather extreme conditions like those of "quasi-equilibrium". Approximations at 

a similar level, usually for very simple (I-dimensional) systems like the multijet plug 

fl.ow reactor etc., have been proposed by various investigators; see, e.g., Brodkey 

PART IB CHAPTER 4 



- 200-

(1975) and Murthy (1975) for relevant references. One such approximation results 

from Patterson's (1973) simple "interdiffusion model" (essentially a simple micro

structural model; see also Section 4.5.2 and Figure 4-5) which gives 

(4.5 - 8) 

where 

and 

(A relation for ( </c~) can also be obtained but Patterson (1981) suggests setting 

these correlations equal to zero.) 

It must be emphasized that extensions of the above equations to more compli

cated, 3-dimensional situations, localized sources e.t.c., common in environmental 

problems, would be questionable. 

4.5.2 PDF Formulation 

Probability density schemes use the joint probability density function, or a re

lated quantity (like a moments generating functional) of reactive species concen

trations, and possibly of other random variables such as velocities, to describe the 

reacting system. One-point or multi-point densities (or related functions) may be 

the object of study depending on the complexity of the case modeled and on the de

sired level of approximation. All statistical characteristics like first and higher order 

moments and correlations of all kinds are then derived directly from the pdf. 

A "degenerate" type of pdf formulation is that in which the pdf form is cho

sen a priori on the basis of relevant experimental information (or just by guessing). 

Then the parameters of the pdf have to be estimated (this being an auxilliary "clo

sure step"). After that, any other statistic of the random field is evaluated from 
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the pdf. Hence, since the parameters of the pdf (usually two or more) are directly 

related to moments, this scheme actually reduces to moment closure (of appropriate 

order) plus the primary closure assumption involved in the selection of the pdf, which 

subsequently will determine higher order moments. Pdf's that are marginally (and 

jointly) Gaussian have been usually assumed in the past; see, e.g., Lockwood and 

Naguib (1975). However such an assumption might be highly unrealistic, especially 

for arbitrary types of mixing or localized injection of material (see, e.g., Hill, 1976). 

Another type of pdf formulation is based on simple structural models that as

sume special, simple, random or pseudo-random structures of the concentration fields. 

This results in discrete ("spiked") pdf's for the reactive concentrations. For example 

Patterson's (1973) "interdiffusion model" assuming idealized concentration distribu

tions of unpremixed species (Figure 4-5), produces a probability distribution that is 

nonzero only for three values of the concentration (i.e. for zero, for the unpremixed 

stream value and for a value corresponding to completely mixed feeds). Donaldson's 

(1975) "most typical eddy" model similarly postulated a joint pdf consisting of delta 

functions at fixed locations in the composition space. The strengths of these delta 

functions are parameters that require appropriate estimation. Much more elaborate 

models have also been constructed on the basis of structural (Lagrangian) assump

tions. Kuznetsov and Frost (1973) assumed that both the turbulence and the scalar 

fields obey Langevin's equations and proceeded from there to model their statistics. 

Following a different line, Pope (1981) presented an approach that utilizes Monte 

Carlo schemes of dispersion. His method conceptually stands between older struc

tural approaches and the Eulerian models to be discussed next. 

Pdf models that are really Eulerian in nature proceed from the fundamental 

transport principles (e.g. equation (4.4-2)) to derive evolution equations not for the 

moments and correlations of the reactive species concentrations but for their (joint) 

probability density functions (possibly jointly with properties of the turbulence field). 

Typically enough, the problem of turbulence will lead again, as in the moments case, 

to an infinite hierarchy of equations and some kind of closure approximation will have 
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(a) ( b) 

Figure 4-5 

Local Concentration Profiles 

(and the associated concentration probabilities) 

assumed in Patterson's (1981, 1983) "Interdiffusion Model" 
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to be invoked. The schemes for deriving the pdf evolution equations are provided by 

modem Statistical Mechanics. In particular two different methods have been used in 

the study of reactive turbulence. 

The first is the method of probability functionals. Here, from an equation for the 

probability density functional (Hopf, 1952), which is linear and closed, one deduces an 

unclosed n-point pdf evolution equation. Lewis and Kraichnan (1962) first studied the 

probability functional of the turbulent velocity field; (see also Leslie, 1973; Monin and 

Yaglom 1975). Petty and Reed (1972), Ievlev (1973), Dopazo and O'Brien (1974) (see 

also Dopazo and O'Brien, 1975, 1976) studied the analogous equations for reacting 

species in turbulent flows. However, quoting O'Brien (1980), "there seems little 

prospect tha:t a broad range of applicable results can be obtained at present by such 

a direct approach". 

The second method was introduced by Lundgren (1967) in modeling turbulent 

velocity fields. It is sometimes called the "fine grained probability densities method" 

and is simpler and more efficient (although not as general and straightforward) than 

the previous one. It produces the pdf evolution equations directly from the partial 

differential equations which define the conservation laws of the system. The hierarchy 

of equations derived in this way is analogous to the BBGKY hierarchy in the kinetic 

theory of gases (see, e.g., Reichl, 1981). Hill (1970) used a similar scheme to study 

chemical reactions in turbulence and, after him, many researchers offered different 

versions of this approach. Dopazo and O'Brien have published a series of papers 

exploiting the method. Two of these publications are, at least formally, studies of 

the turbulent reacting plume problem (Dopazo, 1976; O'Brien et al., 1976 - see also 

Chapter 1). Relatively recently O'Brien (1980) reviewed the method and the closure 

approximations proposed by various authors; this review should be consulted for 

further information on the subject. For another recent comprehensive review (but 

with a more general perspective) on PDF methods for turbulent reactive flows see 

Pope (1985). 
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4.5.3 Spectral Formulations 

Some researchers have tried to describe simple cases of reactive transport in 

turbulence by means of spectral models for the concentration fields. Such models 

have been developed exclusively for single species reactions, usually 1st order ,and 

most computations have been limited to the use of spectral transfer theories for the 

universal equilibrium range. The second order irreversible reaction A + A --+ P 

has been studied by Corrsin (1964b) and Dash (1973). They used the "Further 

Generalized Onsager Model" (Corrsin, 1964b) and the Corrsin-Pao "Unified Spectral 

Cascade Concept" (Pao, 1964). 

Recently Lundgren (1985) constructed a model for the analytical estimation of 

the form of the concentration spectrum of the product of a fast bimolecular chemical 

reaction of the A+ B --+ P type for wavenumbers greater than the Kolmogorov 

wavenumber. This analysis considered unpremixed reactants in a stirred tank and 

assumed a vortical microscale structure for the turbulent fluid motion in the tank.("') 

The Schmidt number was large and the volume of one of the reactants was small. 

Under these conditions Lundgren found that the spectra first decrease like k- 1 (i.e. 

as for a passive scalar) and then increase linearly with wavenumber,peaking near the 

Batchelor wave number from which it drops off like k-4 for large wavenumbers, to 

finally decay exponentially. 

As far as relevant experimental information is concerned, Kewley et al. (1978) 

have measured co-spectra of 03-N02 in photochemical smog. 

Nevertheless, spectral methods do not seem at the moment very promising for 

describing reactions under conditions relevant to environmental flows (although some 

information from the spectral approaches can be useful in other modeling schemes). 

For more information and references one may consult the reviews by Hill (1976) and 

Bilger (1980) and Lundgren's (1985) paper. 

• The whole development of this model is based on an advanced mic:rostructural approach 
of the 2nd level (Section 4.3.2). However, since its major :results concern concentration 
spectra, we mention it here. 
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4.6 INDIRECT CHEMICAL CLOSURE 

4.6.1 Methods of Decoupling Mixing and Chemistry 

Among the methods that use Equations (4.4-1) or (4.4-2) as a starting point, 

the ones that have led up to now to more tractable final working schemes, at least 

for not very complex physical situations, are based on techniques which decouple 

and in some way "isolate" the analytical description of the phenomena of mixing 

and chemical reaction. The underlying concept is rather old and early applications 

appeared in theories of turbulent combustion (Burke and Schumann, 1928; Hawthorne 

et al., 1949). The recent interest in the method originated mainly from the work of 

Toor (1962) and his coworkers who considered infinitely fast reactions of nonpremixed 

species in tubular flow reactors. A rather recent review of the approach for the case 

of nonpremixed reactants, containing many details and references, is given by Bilger 

(1980b); however some of the existing techniques are not discussed and thus certain 

aspects and capabilities of the method are not revealed. 

Consider for simplicity the case of an isothermal reaction system where all the 

dependent (unknown) variables are members of the random concentration vector 

c = ( c1, c2 , ••• , en). (In case of non-isothermal systems more unknowns such as the 

temperature, density etc., must also be included in the treatment.) Then the general 

idea of the method, expressed in rather crude terms, consists of the two following 

steps: 

• First, introduce a set (vector) of quantities, 

such that 

(4.6 - 1) 

holds for all i with the appropriate boundary and initial conditions. Here £M 

is the overall mixing operator defined in in Chapter 1 [equation {1.3-4)]. The 
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quantities ca, are thus conserved scalars. They are random quantities and their 

evolution is governed by stochastic equations like (4.6-1). 

• Second, construct a general relation of the form 

W ((c), (c*) ,f(ca)) = 0 (4.6 - 2) 

which will connect the expected values of the members of the unknown reactive 

species concentration vector c to deterministic functions fi(ca) of the random 

vector of conserved scalars Ca. The vector function f will usually be a vector 

of moments or pdf's of the ca, 's. A vector of auxilliary variables with expected 

value (c*) may also have to be introduced in this step and appear in the general 

relation (4.6-2) depending on the complexity of the particular problem and the 

details of the formulation. Construction of (4.6-2) will unavoidably (except in 

the simplest case of irreversible infinite rate reaction) require closure hypotheses 

regarding either higher order moments or pdf's. If such hypotheses involve func

tions of the conserved scalar only they will be referred to as pure conserved scalar 

closure models. If the approximations involve functions of the conseved scalar 

and reacting species they will be referred to as mixed indirect closure models. 

In this way the /i's, which in general will be estimated by a procedure that starts 

from equations (4.6-1), describe analytically the mixing state of the system, with 

chemistry effects having been "removed" from it. Then relation (4.6-2) supplements 

the description with the a posteriori consideration of these effects. 

Both steps of the modeling procedure pose various questions. The obvious prob

lems in the first step is how may conserved scalars must be introduced and how are 

they chosen. The answers to these depend on basic characteristics of the system like 

number and uniformity of feeds etc. The second step raises more difficult questions 

directly connected to the complexity of the given problem and the level at which it 

is wished to be modeled. 
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4.6.2 Number and Forms of the Conserved Scalars 

There has been a great variation in the choice of conserved scalars in the literature 

(see, e.g., Bilger, 1980b, for a review and relevant references). There is also a certain 

confusion with respect to the merits of various choices. In many circumstances the 

conserved scalars are all linearly related so that solution for one yields all of the others. 

The choice is then arbitrary up to a point, depending perhaps on requirements arising 

from other points of the modeling procedure. Under other circumstances there may 

be factors that directly favor the choice of one or more relative to the others. Such 

factors include nonequal molecular diffusivity effects, the number and uniformity of 

the reactant feeds and the complexity of the chemical mechanism. 

A complete analysis of a general situation with an arbitrary number of feeds and 

reactions is not available, neither it seems to be very useful, so we limit the present 

discussion mainly to the case of two "feeds", under conditions of dominant stream 

mixing which is the situation relevant to the atmospheric plume problem. 

A condition particularly useful for practical purposes, is that of equal (in practice 

of the same order of magnitude) molecular diffusivities for all the species of the 

system. In fact these molecular diffusivities are usually and considered negligible in 

magnitude in comparison to turbulent dispersion and the above condition is satisfied 

for almost all cases.(*) Then, since the transport properties are characteristic of the 

fl.ow field and not of the species that are present there, the number of conserved 

scalars needed to describe the mixing state of the system is minimum. Thus, for two 

feeds or streams of distinct but constant initial chemical identity the state of mixing 

is uniquely determined by one conserved scalar variable. In general for n feeds n - 1 

conserved scalar variables will be adequate to determine this state (Bilger, 1980b). 

This results from the fact that all differentiation of different feeds arises from chemical 

(*) Significant differences in molecular diffusivities of importance in practical applications 
appear when light gases, as for example molecular hydrogen, are present. These species 
have very high diffusivities relative to other species as, e.g., oxygen, nitrogen, etc. and 
therefore rather strong differential diffusion source terms will appear in transport equa
tions for linear combinations of concentrations incorporating them. 

PART IB CHAPTER 4 



- 208-

identity only and not from difference in transport properties. Any more conserved 

scalars that could be defined will be necessarily linearly dependent with the initial 

ones under the condition that each feed is initially perfectly mixed. (If a feed is not 

perfectly mixed then it can further be seen as composed by other, perfectly mixed 

feeds). Bilger (1980b) states this condition as a requirement for uniformity, that is 

"spatial and temporal constancy" of each feed, with respect to elemental composition 

only, whereas, "each feed may be in several streams each of which may have any state 

of chemical aggregation, e.g. it may be partially reacted or pyrolyzed". 

In general, conserved scalars can be chosen either from the stoichiometric in

variants of the reaction under consideration or they can be "artificially conserved" 

quantities like fictitious inert surrogate concentrations of the actual reactive species. 

When they correspond to a stoichiometric invariant of the system they actually cor

respond to a conserved quantity; the term conserved scalar in the literature has been 

used almost exclusively for choices of this type. 

In principle any quantity that is conserved during the reaction process can be 

adopted as a conserved scalar. The "fundamental" conserved scalars are naturally 

the atomic mass fractions Zi or the gram-atomic concentrations Ca of the different 

elements in the reactive system. If the number of elements is M then, since the total 

mass in the system is constant, there are in general M - 1 independent variables. 

Solution of the M - 1 equations of the type (4.6-1) yields the instantaneous and 

mean (after ensemble averaging of the equations) elemental composition throughout 

the field and this may be looked upon as a description of the mixing of the system. 

Constancy of the composition of the feeds provides further relations between the 

fundamental conserved scalars when differences in the molecular diffusivities of the 

species are assumed negligible. Then the required number of equations of the type 

(4.6-1) is reduced significantly. 

In practice other conserved scalars have been used in both chemical engineering 

and combustion applications and have already appeared in the modeling of photo

chemical pollution and plume dispersion processes (Bilger, 1978; Kewley, 1978, 1980). 
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In the case of a one-step reaction such as 

A+mB~nP (4.6 - 3) 

where the (molar) formation rates of A,B and P are related through 

TB Tp 
TA=-=--

m n 
(4.6 - 4) 

one can define the so-called Shvab-Zeldovich coupling functions (see, e.g., Williams, 

1985). 

or 

CB 
~AB= CA- -

m 
Cp 

~AP= CA+ -
n 
mcp 

~BP= CB+--
n 

(4.6 - 5a) 

(4.6 - 5b) 

(4.6 - 5c) 

and so on, which are immediately seen to satisfy (4.6-1). Depending on the particular 

application Favre averaged (see, e.g., Hinze, 1975) concentrations or mass fractions 

can be used in the definitions (4.6-5) whereas other conserved scalars of the same 

type can be formed using the sensible specific enthalpies of the feeds in the case of 

highly exothermal reactions (see, e.g. Bilger, 1980b). Toor (1962, 1975) refers to the 

same technique, which he applies for conditions of equal molecular diffusivities, as the 

Burke-Schumann transformation of the reactive transport equation (see Burke and 

Schumann, 1928). 

With the assumption of equal molecular diffusivities the balance equation for 

a conserved scalar becomes free of artificial source terms resulting from differential 

diffusion effects and is exactly the same for all conserved scalars. In two-feed problems 

the conserved scalars can be normalized in such a way that boundary conditions also 

become identical (see, e.g., Bilger, 1979a). A normalized conserved scalar which can 
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alone describe the mixing state of the system is the mixture fraction X which is defined 

through (see, e.g., Toor, 1975; Bilger, 1979a). 

Zi - z?> ~ - ~< 2 > 
x = z~1> _ z~2> - ~<1> _ ~<2> 

a a 

(4.6 - 6) 

where superscripts (1) and (2) refer to the uniform composition of the two different 

feeds, Z8 is the mass fraction of any element and ~ is any Shvab-Zeldovich function 

of the type defined in ( 4.6-5). 

Then, in feed (1) we have 

x=t 

and in feed (2) 

x=O (4.6 - 7b) 

So, x can be physically interpreted as the mass (or mass per volume) fraction of the 

material in the mixture at a given point and time instant which originated in feed 

(1) with 1 - x the fraction originating in feed (2). Thus the result of turbulent and 

molecular diffusion on the composition of the whole mixture at a point is the same as 

if we took a quantity of mass x from feed (1) and mix it thoroughly with a quantity 

of mass 1 - x of feed (2) and then let reaction occur. Of course the instantaneous x 
is a random quantity like the quantities in terms of which it is defined. 

Any conserved scalar Ca is related to x and its initial values in the two separate 

feeds denoted ny superscripts (1) and (2) through 

Ca = Xdl) + (1 - x)ci2
) (4.6 - 8) 

(Necessary condition for the validity of this relation is the equality of molecular dif

fusivities of all the reacting species of the system.) 

Considering now the case where in feed (1) 

(4.6 - 9a) 
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and in feed (2) 

we obtain the following expression for X 

fAB + CBo 

mcA0 + CB0 

(4.6 - 9b) 

(4.6 - 10) 

in terms of the "pure stream" concentrations CA0 , CBo· There will be a special value 

of x, Xs at which the two feed materials coexist at a point in exact stoichiometric 

proportion. For the one step reaction (4.6-4), with conditions as in (4.6-9) we have 

CBo 
Xs = ---"'---

me Ao+ CBo 
(4.6-11) 

This value of x corresponds to ~AB = 0 and has a particular significance. For a 

one-step irreversible reaction with infinitely fast kinetics x = Xs corresponds to the 

random instantaneous location of the surface (of infinitesimal thickness) on which 

chemical reaction is confined. For reversible multi-step reactions as well as for slower 

chemistry this location will be an approximate center for the instantaneous reaction 

zone. It is important to realize that, although all quantities in the r.h.s. of (4.6-11) 

are deterministic, the position at which ~AB = 0 and (4.6-10) reduces to (4.6-11) is 

random at any time instant. 

Another point to be mentioned here is that, for the two feeds case, the most 

important of the quantities describing the degree of micromixing, that is the intensity 

of segregation, can be defined e.g. through (4.2-4), in terms of any conserved scalar, 

e.g. 

(~~B2) (x'2) 
I - - --'---'-

- (~AB) 2 - (X) 2 

The use of the concept of inert surrogates for conserved scalars is examined in more 

detail in section 4.6.3. 

Now we proceed in examining the various possible model formulations in terms 

of conserved scalars for the two cases of infinite and finite rate chemical kinetics, as 

outlined in Figure 4-2. 
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4.6.3 Pure Conserved Scalar Closure 

(a) The Case of Infinite Rate Chemical Kinetics 

As it has already been mentioned, when chemical processes can be assumed 

much faster than the dispersion processes the problem of reactive turbulence model

ing simplifies greatly. Indeed, if we focus on the problem of non premixed reactants(*) 

contained in two feeds of uniform composition and assume that all species have ap

proximately equal molecular diffusivities it is easy to see that in the limit of infinitely 

fast chemistry all concentrations are instantaneously related to the value of an ar

bitrarily chosen conserved scalar. Actually in this case the statistics not only of 

concentrations but of all thermodynamic variables of the system should be obtain

able from sufficient knowledge of the statistics of that scalar. This is the situation 

where pure conserved scalar closure is either not needed at all or is directly applicable 

and most useful. 

(al) Irreversible Reaction 

In the case of one-step irreversible reactions (e.g. reaction (4.6-3) in the forward 

direction only) we will have CB = 0 when x > Xs and CA = 0 when x < Xs whereas 

both CA and CB will be zero when x = Xs· Thus the following functional relationships 

will hold: 

~AB ::S 0, X ::S Xs : CA = 0 

CB = n~AB = nc(Xs - X) 

Cp = mcx(l - Xa) 

~AB 2': o, x 2': Xs : CA= ~AB = c (xa - x) 

CB= 0 

Cp = mCXs (1 - X) 

(4.6 - 12a) 

(4.6 - 12b) 

(4.6 - 13a) 

(4.6 - 13b) 

* Of course a case of premixed reactants which react with infinitely fast rate cannot exist. 
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_ CB 0 CA 0 
c=CAo+- = -

n Xa 
(4.6 - 14) 

So we see how, at a given point in the fl.ow, the value of x at any particular instant 

defines the complete composition of the reactive mixture. Hence the problem for the 

steady state actually reduces to solving 

with (known) appropriate boundary conditions.Since all the above relations for CA, 

en, cp are linear in x, there is no difficulty in relating the expected values (cA), (cB), 

(cp) to (x) which is obtained from the solution of 

(4.6 - 15) 

where ..C~ is an approximation of (..CM) resulting from a closure approximation. 

( a2) Reversible Reaction 

If the infinitely fast reaction is reversible (with both forward and backward rates 

being very fast compared to the mixing processes) CA and en will both have nonzero 

values not only for x = Xa but for a range of values from x- to x+ where 

The values x+, x- define the local boundaries of the reaction zone . The reaction 

zone, for infinitely fast chemistry is exactly that local portion of the space of the entire 

system which is micromixed (not necessarily uniformly). This will be called the mixed 

zone . The composition of the mixture at any given point of the reaction zone, at any 

particular instant, will be the same as that if the mixture were isolated and allowed 

to come to chemical equilibrium. The species concentrations will again be unique 

functions of the conserved scalar. However, now the existing relations for chemical 

equilibrium replace limiting stoichiometry equations for the attainment of mathemat

ical closure of the system of unknown concentrations. These equilibrium relations, 
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in contrast to limiting stoichiometry, will be in general nonlinear and this creates a 

chemical closure problem as higher order statistical characteristics of the concerved 

scalar Ca (x, ~AB, or whatever else) are needed for the estimation of the expected 

values of species concentrations. Even for many species and multiple reactions the 

fast chemistry assumption implies that these will be effectively equilibrated. There 

will be sufficient equilibrium constants available to enable calculations of species con

centrations in terms, e.g., of elemental composition which is directly related to any 

conserved scalar. Thus a set of relations of the form 

(4.6 - 16) 

where the superscript e denotes equilibrium and Ca is the random conserved scalar will 

be available. (In general not only for concentration but also for other thermodynamic 

variables such as temperature and density ) . These ci s are exactly the functions 

fi that appear in the general equation (4.6-2). So now the problem is actually how, 

starting from (4.4-16), to relate the (ci)'s to the field (ca), the latter being governed 

by £~(ca) = 0 with the appropriate boundary conditions. As an example let us 

consider again the reaction 

(4 R - 17) 
\ ·- .... J 

which obeys the kinetic law 

(4.6 - 18) 

When equilibrium is assumed we have R = 0 and 

(4.6 - 19) 

This equation can be combined with two relations of the type (4.6-5) and with (4.6-6) 

to give CA, CB, cp in terms of K and X· Indeed, in terms of the mixture fraction we 

have, for the conditions described in (4.4-23), and ifthere is no Pin the feed streams, 
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the following relations: 

(4.6 - 20a) 

(4.6 - 20b) 

which, together with (4.6-19), provide a closed system for CA, CB, cp. So, for this 

case we obtain 

with 

1 
A=-

K 

B = 1 + CB0 - (cAo + CB0 ) X 

D=B2_4cAoX 
K 

(4.6 - 21) 

(4.6-22a) 

(4.6 - 22b) 

(4.6 - 22c) 

The nonlinearity of these instantaneous relations between concentrations and the con

served scalar does not allow a direct connection of expected values of these quantities 

by ensemble averaging. Thus one has to invoke an appropriate closure scheme either 

(a) by introducing the probability density function of the conserved scalar c8 , p(c 8 ) 

in which case expected values of the Ci's will be obtained through 

(4.6 - 23) 

( "p df closure") 

or 

(b) by ensemble averaging (4.6-16) (i.e.(4.6-21)) so that after some algebraic manip

ulations one has 

(4.6 - 24) 

This is an equation involving only the first few moments of the conserved scalar. 

("moment closure"). 
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So, the chemical closure problem is reduced to the estimation of moments and/or 

pdf's of the conserved scalar; thus it has been "transferred" to the closure problem 

appearing in the governing equations for these quantities. 

For the particular system under study, i.e. reaction ( 4.6-17), the function cA. (cs) 

is given directly by (4.6-21) with x = Cs. The function f can also be obtained from 

(4.6-21) after ensemble averaging of both sides, but this is not a trivial task. For this 

reason practically all models that have followed the methodology described in this 

sub-section adopt equation (4.6-23) for their calculations. 

Now, when pdf closure is employed, the problem is very similar to that of pdf 

modeling for reactive species (Section 4.5.2). However there is a definite advantage 

in dealing with pdf's of conserved scalars because their form and properties are much 

more predictable for a great variety of flow geometries. Both experimental as well 

as theoretical information is much more extensive for pdf's of inert scalars than for 

reactive ones; the same is true for moments also, whose study, e.g., through Eulerian 

transport equations, is not complicated by chemical interaction terms. 

The pdf of the conserved scalar can be studied theoretically exactly on the lines 

described in Section 4.5.2, i.e., either by formulation of pdf evolution equations (meth

ods of probability functionally and of fine grained densities), or by employing some 

structural model that describes mixing in terms of processes that are experienced by 

the fluid particles (see, e.g., Bilger, 1979b; O'Brien, 1980; Pope, 1981; Kollmann and 

Janicka, 1982). However, the most common approach in applications is the a priori 

assumption of the probability density form. 

In combustion applications (where the method of this sub-section has been ap

plied most extensively in many variations) there has been a variety of choices for the 

conserved scalar pdf. Modelers have used more commonly "Clipped Gaussian" (or 

semi-Gaussian: see Chapter 5) pdf's (see, e.g., Bilger, 1980b) and Beta function dis

tributions; other choices that have also appeared in the literature are the sinusoidal 

and the triangular pdf's (see Murthy, 1975, and Effersberg and Peters, 1983, for 

relevant references). In air pollution problems, where the method has been applied 
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by Bilger (1978) and Kewley (1978, 1980), the semi-Gaussian pdf has been the only 

choice. In particular Kewley (1978) assumed a semi-Gaussian distribution for the 

plume concentration field; this also incorporates the effect of intermittency too (see 

Chapter 5). However, since only the "internal" concentration fluctuations, and not 

the ones caused by meandering, affect chemical reactions in plumes, it seems that such 

a distribution might not be the most appropriate choice. Actually, as it has been dis

cussed in the previous chapters, it is needed to disengage instantaneous dispersion and 

meandering effects and to attempt statistical description of each process separately. 

A lognormal (or some other positively skewed distribution) seems to be a reasonable 

choice for the instantaneous concentrations when viewed in a frame that foilows the 

random meandering of the centerline. This and related problems are discussed in 

more detail ill Chapter 5 where the moment estimation problem (specifically: second 

moment estimation for atmospheric plumes) is studied extensively; hence the present 

section is complemented by Chapter 5. 

(b) The Case of Finite Rate Chemical Kinetics 

For moderately fast reactions pure conserved scalar closure is not directly pos

sible, i.e. immediatelly from the equations (4.6-23), (4.6-24). Indeed now there are 

no algebraic equilibrium equations to relate in a simple fashion reactive species and 

conserved scalar concentrations. Hence mixed (or "multivariable") closure of the type 

to be described in the next subsection is more appropriate. However there have been 

attempts to extent pure conserved scalar closure to finite rate kinetics by viewing the 

actual solution of the problem as a "departure" (or perturbation) from the equilib

rium solution that is obtained for infinite rate kinetics. Thus, perturbations of the 

conserved scalar are introduced as extra variables (Bilger 1979b, 1980ab). Until now, 

however, the method has been applied in a very limited number of situations. 
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4.6.3 Mixed Indirect Closure 

and the Concentration Field Splitting Technique 

Application of the conserved scalar approach to finite rate chemistry requires the 

introduction of extra variables, besides the conserved scalars. These will be affected 

by the chemistry. One of the reactive species concentrations can be such a variable 

but it would be better if one could introduce other parameters easier to treat when 

closure complications appear. Indeed, closure assumptions now have to accommodate 

these "auxilliary" variables too. So, the underlying idea of the method is to define 

them in a way such that their correlations (or perhaps cross-correlations with the 

conserved scalar) are easily predictable for the given problem. 

Bilger (1980) discusses these "Two-Variables" approaches. Another model that 

has implicitly followed this line is that of Shu (1976), Lamb (1976), and Lamb and 

Shu (1978). The fundamental idea of this model was chosen in the present Reacting 

Plume study to assess the effects of turbulent fluctuations on the kinetics because of 

its generality, its relative simplicity (especially for the plume case), and its significant 

potential for future improvement. 

The formulation (and hence the subsequent application) of the model in the 

works of Shu and Lamb is limited (because of the restrictive use of spatial aver

aging over the mixed zone and other similarly defined volumes) to one-dimensional 

problems (where variation of mean concentrations takes place only in one, spatial or 

temporal, dimension). Furthermore, some results of their analysis, relevant to local 

microstructures, are not directly extendable to a global statistical picture of the flow. 

In Chapter 2 we presented a new, generalized, formulation of this model that holds 

for pointwise defined instantaneous concentrations in arbitrary, non uniform, fields, 

and formally deals with the global statistical equations. In the following we further 

discuss this formulation, presenting the proofs that were omitted in Chapter 2 and 

commenting on various points of the modeling procedure. The exposition of Chapter 

2 is essentially repeated here to facilitate reading of the next paragraphs by avoid

ing repeated references to definitions and equations in Chapter 2; furthermore, in 
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this way the present chapter provides a self-contained treatment of chemical closure 

modeling. 

The "Concentration Field Splitting" Method 

Let ci(x,t), c1i(x,t) be the hypothetical concentrations of A and B that would 

exist at the space-time point (x, t) if they did not react with each other but, still, were 

transported in the field by exactly the same molecular and convective mechanisms. 

(A point to note here is that the present analysis implicitly assumes that differences in 

the molecular diffusivities of the various species under consideration are negligible.) 

We can define these new variables as concentrations of fictitious inert surrogates 

Al B 1 o.r A "nrl B T'he qu~n .. :t'1es ~ - as ~"el1 ~~ ~ 1 ~1 at -ny ,..,, t) -re ..... , , ~~ ......... u a.1•• c.;A,c.;B, .. 1n::scA,cB a , ..... , a 

random variables. The approach proposed in this work accounts for the possible 

states of mi.Xing of the two species by viewing each of the above concentration fields 

not only as random functions of (x, t) but also as functionals of the entire ensembles 

of realizations of the inert surrogate of their "mixing partners" at (x, t). Indeed, the 

possible micromixing states of, say, A or A 1 at any point depend on the probabilistic 

characteristics of the conentration of B 1 at this point. Thus cA(x, t) and ci (x, t) 

are functionals of the ensemble of all possible values of c~ (x, t). This dependence 

is expressed formally through the following integral representation of each random 

realization of, say, cA(x, t): 

cA(x,t;[c~(x,t) =11]) = / cA(x,t;[c1l) 6(11-c1(x,t)) dc1 

CB (x, t; [ci (x, t) = 1il) =/CB (x, t; [cil) 6 (Ii - ci (x, t)) dci 

ci (x,t; [c1(x,t) = 11]) = / ci (x,t; [c1l) 6 (11 - c1(x,t)) dc1 

c1 (x,t; [ci(x,t) = 1il) = / c1 (x,t; [cil) 6 (ii - ci(x,t)) dci 

Then, defining 

a= CA (x,t; [c1=0]), a= CA (x,t; [c1=11=j:0]) 
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b =CB (x,t; [c~ = 0]), P =CB (:x,t; [ci ='Yi -:fa 0]) 

a1 = ci (x, t; [c~ =OJ), a 1 = c~ (x, t; [c~ = 'Y1 =f OJ) 

b1 = c~ (x, t; [c~ = ol) ' P1 = c~ (x, t; [c~ ='Yi f- ol) 

cA(x, t) = a(x, t) + a(x, t) 

ci (x, t) = a1 (x, t) + a1 (x, t) 

cn(x, t) = b(x, t) + P(x, t) 

CI (x +) - bl(.., ti ...L pl(.., +) B 'u J - \ ...... , J I ...... , ~ 

(4.6 - 26b) 

(4.6 - 26c) 

(4.6 - 26d) 

One advantage of this representation ("concentration field splitting") lies in the fact 

that the evolution of a, a1 , a, a 1 , etc., or, more precisely, of their statistical mo

ments and correlations, is more easily predictable than of the rectant concentrations 

themselves. Thus it should be is in general easier to make reasonable assumptions 

(based on physical insight and simplified pictures of the mixing process) involving 

these statistical quantities. Another advantage of the integral functional formulation, 

that will be used in the following, is that it allows a particularly useful interpretation 

of ensemble averages: 

• Means and correlations of of cA, c~, a, a1, a, a 1 are the result of integration 

over the domain of 'Y1 (after the definitions (4.6-25) and (4.6-26) have been 

introduced). 

• Means and correlations of of CB, c~, b, b1 , p, pr are the result of integration 

over the domain of -y_i (after the definitions (4.6-25) and (4.6-26) have been 

introduced). 

• Cross-correlations of CA and en, a and b, etc., are obtained by simultaneous 

integration over the domains of both -y_i and 'Y1· 
Definitions (4.6-25abcd) and the ensemble averaged form of (1.3-3) 

(1.3 - 3) 

PARTIB CHAPTER 4 



- 221-

(where S stands for A, B or P) can be used to deduce relations between correlations 

of cA, CB and a, a, b, /3, a1, a 1, b1 and {3 1. Thus, when the forward reaction in (1.3-1) 

A+B~P (4.6 - 1) 

dominates the backward (a situation which is expected to be valid in the near field 

of plume dispersion), and therefore 

(c~(x,t)) ~ (cA(x,t)), (c~(x,t)) ~ (cB(x,t)) 

it can be shown that 

and 

(c~(x,t)c~(x,t)) ~ (cA(x,t)cB(x,t)) 

(c~(x,t)cB(x,t)) ~ (cA(x,t)cB(x,t)) 

(cA(x,t)c~(x,t)) ~ (cA(x,t)cB(x,t)) 

(a(x,t)) = (a1(x,t)), {b(x,t)) = (b1 (x,t)) 

(4.6 - 27) 

(4.6 - 28) 

Indeed (4.6-27) is a direct consequence of the definitions (4.6-26abcd) and the 

inequalities listed above, from which one can deduce the independence relations 

(ab) = (aa) = (a/3) = (ba) = (b/3) (4.6 - 27a) 

(4.6 - 27b) 

Relations ( 4.6-28) are proved as follows: Consider the equations 
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Multiplying the first of these equations by a, the second by a1 and then using the 

definitions ( 4.4-25) and integrating both equations over the entire domain of 11, one 

finds that 

(a.CM a)= - (a.CM a) 

(al .CM al)=_ (al .CM c/) 

Now since a and a and a1 and a1 are statistically independent (see relations ( 4.6-

27ab ), the same will be true for arbitrary linear transformations of these quantities. 

Thus the r.h.s. of both the above equations is zero and therefore (realizing also that 

initial conditions, which can actually be incorporated in the mixing operator anyway; 

are identical for a and a1 and for a and a1 ) one has (a(x,t)) = (a1 (x,t)), and 

similarly(b(x, t)) = (b1 (x, t)) 

Now, we introduce the mixing functions 

(4.6 - 29) 

which allow formulation of the expression: 

(4.6 - 30) 

where cp is the reaction parameter and µA, µB are the mixing parameters defined by 

(4.6 - 31) 

and 

(4.6 - 32) 

In the special case of macroscopically uniformly mixed fields µA and µB represent 

the fractions of the total quantities of the fictitious inert surrogates of A and B 

that coexist in completely micromixed volumes. For arbitrarily macromixed feeds 

these fractions can be interpreted as the probabilities for a structural unit of A or B 

respectively to be in a micromixed state at a given space-time point. 
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Equation (4.6-30) is an exact relation. It expresses the unknown correlation in 

terms of mean values of the unknowns and in terms of parameters ali of which except 

one, namely r.p, depend only on inert scalar mixing. The problem of course has been 

transformed in the problem of estimation of these parameters. 

A substantial simplification of (4.6-30) can be obtained in the special case where 

(cB(x,O)) is nonzero for all x. This situation (which of course contains the case of 

an ideally point source of A in a background containing B) means that ( c1 (x, t)) 

is also nonzero for all x and t and therefore (a1 (x,t)) = O, (a:1(x,t)) = (c~(x,t)), 
which give µA = 1 for all (x, t) (notice, however, that µB #- 1 in general). As 

it was discussed in Chapter 2 this result can be utilized for a typical atmospheric 

plume where the emissions of A (e.g. NO) have near source concentrations that are 

orders of magnitude higher than those of B (e.g. 03). The fact (cA) ~ (cB) near 

source implies that it will make no observable difference to the conversions of A if 

it were assumed that B is perfectly mixed with the emissions at the source, at a 

concentration equal to that of the ambient (in agreement with the idealization of the 

point source). Indeed, in such a case it does not make an appreciable difference to 

the overall evolution of reaction and the observed conversions of A if A and B are 

initially premixed or unpremixed. This further means that fine scale segregation of 

A and B inside the plume is induced mainly by the chemical reaction. This simplifies 

the analysis considerably, especially if it is assumed that the reaction is not infinitely 

fast and a local steady state with microscopic coexistence of A and B prevails. It is 

then possible using intuitive arguments to suggest that 

1 
µB ~ Ml , and MiB ~ 1 

AA 

are acceptable closure assumptions. It can further be shown, by examining the sig

nificance of the participating correlations under the aforementioned conditions, that 

r.p should be of order one. This is corroborated by the analysis of Shu (1976) and 

Lamb and Shu (1978) the main results of which are summarized in Appendix A4.1. 

Hence, to recapitulate, in the case of a point release of A into an initially uniform 
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field of B, and under the assumption that the concentrations of A, at least near 

the plume axis, are much greater than the background concentration of B, we can 

(4.6 - 33) 

where M1A is a function characteristic of the state of inert species mixing in the 

plume. 

Alternatively,ifwe consider the fluctuations er about ( c5i_), MiA can be written 

as M1A = 1 +Ii where 

(u
1 

)
2 

2 ( 2) 11 = A where (u1 ) = (c 1 )' 
A (c5i_)2 A A 

(4.6 - 34) 

is the relative intensity of concentration fluctuations of an inert emitted species in a 

plume (i.e. the intensity of stream segregation). 

Introducing Ii we can write (4.6-33) as 

(4.6 - 35) 

which of course is equivalent to 

The overall mean rate of reaction (1.3-1) at a point will therefore be 

(4.6 - 36) 

Hence, all the effects of turbulence (or incomplete mixing) on the chemical ki

netics have been incorporated in the second term of (4.6-36) which involves 

(i) the mean concentrations of the reactive species (cA), (cB) which are the actual 

unknown variables we want to estimate, 

(ii) the mean concentrations of inert surrogate species ( c5i_), ( c1 ), and 
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(iii) the variance of fluctuations of an inert emitted species. 

The form of the second term of (4.6-36) suggests that it can be interpreted as 

representing a fictitious reverse reaction that retards the overall kinetic scheme in 

comparison to perfectly mixed conditions. The kinetic constant kt Ii of this "reac

tion" will depend on position in the plume because Ii shows a strong dependence on 

axial and radial position. The "reactants" participating in this fictitious step are A 

and the portion of B at any point that has already undergone chemical reaction (and 

therefore it is not actually available at that point). Thus the term (c~) - (cB) can 

be viewed as representing "occupied" or "de-activated" B molecules that participate 

in a backward reaction with A, with a kinetic constant that is determined by the 

intensity of turbulent fluctuations. The behavior of this term is determined by the 

relative magnitude of I)., (cA) and ( ( c~) - (cB)). 
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4.7 CONCLUSIONS 

The major conclusions arising from the preceding exposition of the nature of 

the reactive turbulence problem and of the methods used to study it, in connection 

to the interest of the present study in environmental systems, and, in particular, 

atmospheric plumes are: 

(I) While the problem is extremely complex, it is sufficiently important to warrant 

a quantitative description. 

(II) There is not currently a specific method available that is definitely superior to 

the others with respect to applicability in distributed parameters environmental 

systems. 

The spectrum of methods dealing with simultaneous mixing and reaction is very 

wide, ranging from very simple, empirical or heuristic, models that simulate highly 

idealized systems, to very complex mathematical formulations that either require 

excessive computational effort to produce results, or, simply, cannot give results in 

usable form. Somewhere in the middle lie the schemes on which we focused here: 

Eulerian Statistical Formulations with approximations for transport closure that are 

as simple as possible to keep the number of required partial differential equations to 

a minimum. 

As far as chemical closure is concerned we believe that indirect methods (Section 

4.6) are presently at a better state of development (ifthere is a demand for simplicity) 

and seem to be able to utilize more extensive and reliable theoretical and experimental 

information (regarding behavior of inert scalars in turbulence) than that available for 

direct methods (regarding the respective behavior of reactive species). So they should 

be preferred in practical modeling procedures. Mixed closure methods are needed to 

treat finite rate kinetics; however it is not always clear when the chemistry (especially 

for reversible reactions) must be characterized not slow but also not "infinite". Future 
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research should insist on identifying the importance of the differences in predictions 

between simple and well developed models for infinite rate chemistry and the more 

complex models formulated for finite rate chemistry. 

Specifically for atmospheric plumes, and if the reaction rate is assumed finite, 

the Concentration Splitting model described in subsection 4.6.3 shold be considered 

an appropriate choice at the present time, in terms of generality and computational 

simplicity (especially when integrated with the concept of the local phenomenal ex

tent of reaction defined in Chapter 2). Its disadvantage is the limited knowledge on 

the behavior of its parameters. From this perspective other models may be better 

supported for special conditions. For example, if the chemistry is infinitely fast, there 

might be more reliable information for a model utilizing equations (4.6-21), (4.6-23). 

In any case; current research promises substantial improvement of the prediction 

of scalar behavior in turbulence and in particular in atmospheric boundary layers. 

Closure schemes should be constructed in such a way as to utilize the most reliable 

information available regarding this behavior. 
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APPENDIX A4.1 

Discussion 

of the Chemical Closure Assumptions 

in the Concentration Field Splitting Method 

Chemical closure through the Concentration Field Splitting Method reduces to the estimation of 

the mixing and reaction para.meters P.A, P.B and <p which are defined as 

and 
Mor.13 

<p=--
M!/3 

respectively. In the following we discuss these para.meters. 

The Mixing ParameterB 

(A4.1-1) 

(A4.1- 2) 

Estimation of the mixing parameters in the case of a. point source of A in a. background containing 

B (or in the more realistic case of a finite-dimensions source of A emitting at concentrations much 

higher than those of the ambient concentrations of B) is particularly simple. The reason for this 

simplicity is that the point character of the source and the finite speed at which the dispersion process 

actually proceeds (despite the parabolic character of the approximate models that are used to describe 

the latter process) produce a situation in which A is always and everywhere perfectly mixed (locally) 

with B while Bis not perfectly mixed with A. Thus 

everywhere, and 

which implies that 

P.A = 1 (A4.1- S) 

everywhere. Furthermore, in typical environmental applications the ambient concentrations of the 

species (pollutants) under consideration have very small absolute magnitudes. Thus it is reasonable, 

for all practical situations, to assume that the local values of the concentration of the inert surrogate 
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Bl are not affected by the presence of A1 and, furthermore, that cJ, is almost deterministic. This 

leads directly to the relations 

(A4.1- 4a) 

and 

(A4.1- 4b) 

On the other hand, straightforv1ard calculations produce the following general expression for µB: 

(a1
) M!,,, 

Ml -( 1) Ml (1- µA)+ µA 
AB Q """ 

µB = AA" M 1 m i _!!1!.. 
(A4.1- 5) 

M!°' 

(A similar expression holds for µA)· 

Introduction of equations (A4.1-3) and (A4.1-4ab) into (A4.1-5) gives 

(A4.1- 6) 

In deriving the final operational turbulent kinetics equations for use with the TRPM (Chapters 

2 and 4) it was assumed that 

(A4.1- 7) 

that is, equivalently 

(A4.1- 8) 

which is essentially the cloaure approximation for the mixing parametera (all previous approxima

tions being derived directly from the idealized model of the system under consideration). Intuitively, 

(A4.1-7) can be justified by realizing that the probability of B1 "molecule" to be surrounded by A1 

"molecules" at a given point is inversely proportional to the intensity of segregation of A1 at that 

point. This approximation is also consistent with the general closure assumption of Lamb and Shu 

(1978) for unpremixed reactants in a monodimensional (i.e. macroscopically homogeneous) system, 

which essentially states that 

MlB MlB 
µA = Ml , µB = -1-

BB MAA 

(The above closure approximation is basically justified on the basis of the asymptotic behavior of an 

unpremixed system where µA,µB-+ 1 as t-+ oo and µA= µB = 0 at t = 0). 

A more formal evaluation of (A4.1-8) can in principle be performed on the basis of a micro

structural model that considers the local dynamics of a typical (laminar) mixing zone at a point 

(at a scale comparable to Batchelor's microscale lB-see Chapter 4), whose properties are assumed 
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representative of the average properties of the entire ensemble of such mixing zones at this point. 

In this approach the macroscopic variations of the mean concentration field (as well as of the higher 

concentration moments) should be incorporated in the local model in the form of appropriate initial 

and boundary conditions. However, although sophisticated microstructural models, that examine in 

detail the mechanics of fluid mixing at the level of the microscale, have been appearing in recent yea.rs 

(see, e.g., Ou et al., 1985), incorporation of the aforementioned side conditions in these models to 

produce results relevant to the point source problem does not seem to be an easy task. Nevertheless, 

some insight can be gained by the simple analysis of Shu (1976, p.33) who considered a simple B 

- A - B configuration of "three adjacent layers" of unpremixed species (initially uniform), of total 

thickness 2lB, and approximated M!a at a given time instant by the "spatial" average of cici over 

a single cross-section of thickness 2l8 . In this extremely idealized situation c~ is governed by the 

one-dimensional molecular diffusion equation 

with initial condition 

ac1 a2c1 
~=D·--A 
at ..... ax2 

c~ (x,0) = { (c~)o' o, 
if -!lB < X < !iB' 2 - - 2 I 

otherwise. 

Shu (1976) found M!a to increase from a value of 1.0 at t = 0 to a. maximum value of about 2.0 at 

t = O.ll'JJ/DA, and then to decay to a. final value of 1.0 within a period of about 104l'JJ/DA. These 

calculations, although sterning from 11. very simplified picture of the mixing process, corroborate the 

assumption that M!a is in general of order unity (and actually is very close to unity for most of the 

time). 

Finally, before closing the discussion of the mixing para.meters, it is interesting to examine their 

form in a. case of very simple mixing conditions, i.e. that corresponding to a tubular chemical reactor 

in which the reactants a.re injected through alternate jets clustered over the entire cross-sectional 

area of one end of the tube. For reactors of this type Toor (1969) predicted, and later confirmed by 

measurements, that reactants that a.re fed into the reactor in stoichiometric ratio and that subsequently 

undergo extremely fast reactions satisfy 

(where ensemble averages a.re approximated by spatial averages over a. cross-section of the reactor). 

This result provides a means of estimating µ = P.A = µB for this reactor: H one makes the pseudo

steady state assumption a (cA) /at!::: O, which is valid for very fast reactions, one finds that 
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(cB) = (1- µ) (c~) 

(where the analysis of Chapter 4 has been applied). Utilizing the fa.ct that for very fa.st reactions 

{o.fJ) ~ O, one finally obtains 

JLA=JLB=l-.Jt-M1B 

The Reaction Parameter 

The reaction parameter r.p (equation (A4.1-2)) was assumed approximately equal to 1.0 in the 

point-source plume ca.se. Although this again is essentially a closure approximation it seems sufficiently 

supported by the analysis of simplified cases. 

The complete governing equation for r.p can be formulated directly from the transport-rection 

balances for the various random fields, for a given reaction system such a.s A+ B --+ P, but it is too 

complicated to allow direct deduction of (even qualitative) conclusions for the behavior of r.p. However, 

some insight can be gained if one considers some idealized situations. Thus, if one assumes a situation 

where the mean concentration fields are spatially uniform (although this contradicts the point source 

concept), as it was done by Lamb and Shu (1978), and that (a) DA = DB = D, (b) the reaction 

between A and Bis irreversible (with rate constant k), then the <p-equation reduces to 

with 

/ ao. ap) 
A _ \ax, ax, 

.. - (o./3) 

If one further assumes that (o.f3) and (f3) are in a pseudo-steady state, which is a reasonable approxi

mation when a high-source/low-ambient concentrations (of A and B respectively) situation exists, one 

obtains 

Initially the reactants A and B are totally segregated with A uniformly distributed in the source 

emissions and B uniformly distributed in the ambient. However, suppose that B were present in the 
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source stream of A in the same concentration as in the ambient fluid. In this case we have (c~) = (a1 ) 

and (o/(31 ) = (a:1} (f31 ) and (during the time when (a1 ) :> (f31 )) the above equation simplifies to 

with initial consition 

<p (0) = 1.0 

Hence 

t.p (t) = 1.0 

Considering a typical industrial stack and taking into account the great disparity in the i..YJ.itial 

levels of (source) NO and (ambient) 0 3 , whether ozone is actually present in the source stream has 

virtually no aff~ct on the evolution of NO concentrations in the plume. One concludes, therefore, that 

<p = 1 is in general a reasonable approximation as long as ( a 1 ) :> (f31 ) initially, and the reaction is 

fast, i.e. 

Since the same result applies when the reaction is very slow (this can be seen easily by taking the limit 

k-+ 0), Lamb and Shu (1978) assumed that in point source problems in general, t.p = 1. 

We will now finish this discussion of the estimation of <p by summarizing the conclusions from a 

simple one-dimensional microstructural model of the mixing-reaction process, studied by Shu (1976), 

that is similar to the laminar layers model for the estimation of the mixing parameters that was 

discussed earlier. This model is directly relevant to the multijet plug flow reactor case, that was 

also mentioned earlier, where, due to the reactor design, the regions of mixed and unmixed reactants 

compose a mosaic of small, intermingling patches of fluid which, statistically speaking, have identical 

concentration probability distributions (at any fixed axial distance from the reactor head), and give 

rise to time mean reactant concentrations that are uniform over any plane normal to the reactor axis. 

Shu (1976) assumed that DA =DB = D, that the turbulent fluid has kinematic viscosity v, and 

that turbulent energy is being dissipated at a rate E • Since at scales large compared to lB, concen

tration gradients are too weak to cause significant mixing Shu futher assumed that the generation of 

the (laminar) mixed zone is confined primarily to those portions of the fluid where the reactant sheet 

thickness is comparable to lB . Thus he developed expressions for <p based on 11. one-dimensional model 

of slugs of reactant fluids of initial widths and separations of the order of lB immersed in an inert 

convecting fluid. 
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Since the expansion of reactant fluid sheets of widths smaller than or comparable to lB is domi

nated by molecular diffusion, the governing equations are assumed to be 

with initial and boundary conditions 

CB (x, 0) = c1(x,0) {Bo, o, 

-~lB < X < -!f.B· 2 - - 2 , 
otherwise; 

-~lB < X < -!f.B· 
2 - - 2 ' 

otherwise; 

CA (x,t) =CB (x,t) = 0 x-+ ±oo 

Shu (1976) soived these equations numerically for a variety of values of feed ratio e = Bo/ Ao, 

diffusivity ratio DB/DA, and local (molecular) Damkohler number 

and from the results estimated 'P using spatial (cross-section) averages. Although these estimates 

were based on reactant and surrogate concentrations averaged over only the two patches of material 

considered, rather than an entire reactor cross-section as is implicit in the mean values used in the 

definition of ip, the uniformity mentioned earlier of the concentration probability distributions within 

the multijet reactor renders the patch and the actual cross-sectional averages equal. 

The calculations showed that for the case of stoichiometric feed (e = 1) and given tt, 'P drops 

quickly from unity to some minimum value (the higher the /t the lower this value) until t" = tD A/ t~ ~ 
104 • However, when e =fa 1 the value of 'P returns to unity more quickly, but not, as it turns out, until 

the reactant in the smaller quantity has been almost completely consumed. Thus, during the period 

within which most of the chemical reaction occurs, 'P has its minimum value 'Pmin· Lamb and Shu 

(1978) found from the analysis of the above numerical results that the dependence of 'Pmin on the 

variables A0 , Bo, DA, DB is described by the simple expression 

1 
'Pmin = 1 + 0.16/t 
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where 
kf.1J min [Ao, Bo] 

It = ---:-::~-:::---.--

max [ D .. , DB] 

Shu (1976) also performed numerical calculations for the case of premixed reactants, in a com

pletely analogous manner, considering the case of a single fluid pulse containing uniform concentrations 

of both A and B. The temporal behavior of 'P in this case was found to show two distinct patterns: 

For the case of e = 1, 'P stays at unity for all times; but for the cases where e i= 1, ip decays to the 

same minimum value as its nonpremixed counterpart. 
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CHAPTER 5 

Chapter 5 contains 

• an introduction to the problem of modeling concentration fluctuations in point 

source plumes, including a brief literature survey, 

e an exposition of the fundamental concepts and problems of a meandering frame 

Eulerian Approach for modeling the instantaneous "internal" plume concentra

tion variance, with extensive discussion of the self similarity concept, 

• a detailed discussion of the new "Localized Production of Fluctuations Method," 

that is the fi.rst choice for use with the TRPM. 
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CHAPTER 5 

INSTANTANEOUS CONCENTRATION FLUCTUATIONS 

IN POINT SOURCE PLUMES 

5.1 INTRODUCTION 

Prediction of expected concentration fluctuation levels in point-source plumes is 

a key need that arises in many problems :related to turbulent dispersion. Typical 

examples are: 

(i) Estimation of quantitative measures for the inherent uncertainty in models of 

contaminant dispersion in the environment. 

This uncertainty is associated with the stochastic nature of the dispersion phe

nomenon per se, as opposed to the potentially reducible uncertainty associated with 

errors and approximations in the model structure and the input data (Fox, 1984; 

Weil, 1985). Inherent uncertainty has to be taken into account for the proper in

terpretation of model calculations for the mean field, e.g., in their comparison with 

available measured values and in connection with the definition and evaluation of air 

quality standards. 

Indeed, consider for example Figure 3-2a, where short-term averages of plume 

concentrations measured at source height at various distances downwind in a wind 

tunnel and reported by Builtjes (1981), are plotted versus the non-dimensionalized 

cross-wind distance y /a y. These are compared to calculations from a Gaussian plume 

model that utilizes parameters directly measured from the plume. At first sight, it 
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would seem that the model predictions are not very relevant to the actual physical 

phenomenon. However, this is not true: the model calculations correspond to ensem

ble averages and not individual realizations of the random concentration field. When 

averages of the measurements corresponding roughly at the same y / u 11 (actually lying 

between 0.9ys 11 and l.ly/u11 ) are taken as approximations of the respective ensemble 

values and compared against the model calculations (Figure 3-2b) the performance of 

the model should be considered satisfactory. Another, even more illustrating, exam

ple of the same nature is given in Figure 5-1 which is based on measurements reported 

in Csanady (1973). 

(ii) Modelina situations concerned with the exceedance of some critical value by a 
' , -

rapidly changing concentration, even for very short times. 

Examples of such situations are the accidental release of toxic or flammable gases 

(Chatwin, 1982), and the creation of smoke screens for defense purposes (Ohmstede 

et al., 1982). In these cases probabilistic properties of the concentration field are 

essential in assessing the environmental impact. 

(iii) Modeling nonlinear processes (usually chemical) within plumes. 

For processes such as reactions with nonlinear kinetics, the effective conversion 

rates may depend critically on the level and spatial distribution of turbulent con

centration fluctuations (i.e., on the quality or completeness of the fine scale mixing 

locally inside the instantaneous plume boundaries). The local intensity of segrega

tion 18 , involving the variance of fine scale "in plume" fluctuations, can be used to 

quantify the interaction of mixing and chemistry for second order chemical reactions. 

In dealing with such problems it is essential to discern the spatial scales associated 

with a given portion of the fluctuations spectrum as they may affect the phenomenon 

under study and its consequenses in qualitatively very different ways. Thus turbulent 

eddies that at a given location are of size comparable to and larger than the local 

plume dimensions result in its irregular meandering, i.e., a bulk motion (Figure 5-

2). Only eddies smaller than these are responsible for the mixing process inside 

the instantaneous plume boundaries, the state of which is described by the level 
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of instantaneous "internal" concentration fluctuations and thus associated with the 

processes of relative or two-particle dispersion. Thus, for example, rates of nonlinear 

chemical reactions between plume constituents and the ambient are affected solely by 

the internal fine scale fluctuations. On the other hand, assessing physiological effects 

from the varying concentration of a pollutant requires taking into account the total 

variability of the concentration field at the fixed receptor location. 

A complete description of the fluctuations problem would require knowledge of 

the entire probability density of random concentrations, and in the case of interact

ing concentration fields (e.g. of chemically reacting species) of their joint probability 

densities. Probability densities at every point in a fixed frame of reference, and the 

associated statistics, reflect the total randomness of the concentration field which re

sults from absolute diffusion; the respective densities and statistics for every point in 

a frame of reference whose origin follows the random meandering motion of the center 

of mass of an instantaneous release, or the instantaneous centerline of a continuous 

plume, reflect internal randomness due to relative dispersion. To deduce fixed frame 

probability densities and non-central moments of concentrations from the correspond

ing moving frame quantities one has to calculate the convolution of the latter with 

the spatial position probability density of the meandering origin of the moving frame 

(see Appendix A5.1 and Csanady, 1973, Chapters IV and VII). 

Although the problem of calculating probability densities of concentration fields 

(of both conserved and reactive scalars) has been pursued through a variety of ap

proaches (see, e.g., Hill, 1976; O'Brien, 1980; Pope, 1982, 1985) its complexity does 

not presently allow for simple, practical models. (see also Chapter 4). A more feasible 

goal is the prediction of the second moment ( c2 ), or of the variance u;, of the random 

instantaneous concentration field, which, combined with the knowledge of the mean 

(c), would provide a description adequate for most applications. Theoretical study 

of the u; dynamics originated in the works of Corrsin (1952, 1964) and Batchelor 

(1959). Major results concerning u; behavior in different turbulent flows are summa

rized in various sources (e.g. Brodkey, 1967; Monin and Yaglom, 1971, 1975; Hinze, 
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Instantaneous and average plume concentration profiles 

measured relative to the plume centerline 

(Source: Csanady, 1966, 1973) 
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Figure 5-2 

Cross-flow profiles of expected instantaneous concentrations in a fixed and in a 

meandering frame of reference ( (c) and (cR) respectively) at the same downwind 

distance x1 and at various times ti, t2, ... , tn, for a plume that is assumed to be 

transferred essentially intact by meandering. "Actual" instantaneous realizations of 

the concentration field c = CR are also presented. (Note that (c) is the long term time 

average of the ensemble average (cR) at a fixed position.) 
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1975; Townsend, 1976; Bradshaw, 1978; Fischer et al., 1979). As far as dispersion in 

ambient turbulence is concerned, the three major approaches commonly empioyed in 

modeling the mean field, i.e. Eulerian and Lagrangian statistical methods (including 

Langevin models) and dimensional (similarity) analysis have also been used, often 

combined, to study the variance of concentration fields resulting from passive releases 

(*)from strongly localized sources (Csanady, 1967, 1973; Thomas, 1979; Chatwin and 

Sullivan, 1979a, 1980; Robins and Fackrell, 1979; Durbin, 1980, 1982; Sawford, 1982, 

1983, 1985; Sykes et al., 1984; Hanna, 1984 - see also Weil, 1985). A separate class 

of models originated with Gifford's (1959) fluctuating plume concept which considers 

fluctuations produced exclusively by the bulk meandering of the plume ("external" 

fluctuations), neglecting all randomness inside the instantaneous plume boundaries, 

and therefore calculates what we will call here the "external" variance. Various appli

cations and extensions of this concept (Scriven, 1965; Diamante et al., 1976; Fackrell 

and Robins, 1982b) as well as related formulations (Venkatram, 1979; Hanna, 1984) 

have appeared in the literature. (A new generalization of the traditional fluctuating 

plume model so that it accounts explicitly for both the external and internal fluctu

ations is presented in Appendix A5.3 of the present chapter). Finally, the empirical 

models of Wilson et al. (1982ab) provide expressions for CJ~ constructed so as to 

fit wind tunnel data where meandering was recognized as the dominant source of 

observed fluctuations (Fackrell and Robins, 1982ab ). 

Available data of short term fluctuation statistics for pure plumes from point 

sources, that is for dispersion governed exclusively by the ambient turbulence, are 

basically relevant to the total variance observed at a fixed point, and include mainly 

wind tunnel (Fackrell, 1978, 1980; Fackrell and Robins, 1981, 1982ab; Robins, 1978, 

1979; Gad El Hak and Morton, 1979) and atmospheric field (Gosline, 1952; Barry, 

1971; Ramsdell and Hinds, 1971; Kimura et al., 1981; Jones, 1983; Sawford et al., 

{*) The term "passive" is used in the sense that this release does not affect the 

properties of the ambient flow. 
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1985) measurements. Data on in-plume fluctuations, definitely more scarce, are also 

available, both from laboratory flows with insignificant meandering (Becker et al., 

1966), and field measurements performed relevant to the meandering center of mass of 

continuous oceanic (Murthy and Csanady, 1971; Sullivan, 1971; Chatwin and Sullivan, 

1979b) and atmospheric (Eidsvik, 1980) plumes. Finally, some related information 

can be found in the substantial fluid-mechanical literature on momentum jets and 

buoyant plumes (List, 1982; Gebhard et al., 1984). 

The brief preceding analysis is complemented by Appendix A5.2 where one can 

find some further comments and explanations relevant to trhe works surveyed here. 

Some rather general results on plume fluctuations, based mainly on data from 

pipe flows and from wind tunnels simulating either homogeneous and isotropic tur

bulence or the neutral atmospheric boundary layer are: 

(i) Production of both internal and external fluctuations is in general significant 

only close to the source. 

(ii) Meandering is typically the most significant source of fluctuations in the near field 

whereas internal fluctuations prevail far downwind. Further analysis suggests 

that the external intensity of fluctuations at the centerline (i.e. the ratio of 

external variance to the square of the mean concentration) reaches a maximum at 

some distance downwind and decays towards zero thereafter; the corresponding 

internal intensity does not decay but seems to to tend towards some constant 

nonzero value. 

(iii) Intermittency effects are very significant in the near field and are typically asso

ciated with meandering; relative concentration measurements are very often free 

of intermittency effects in the "core" of the instantaneous plume. 

(iv) The variance of atmospheric concentrations from ground level sources exhibits 

profiles that are approximately self-similar in both the horizontal and vertical 

directions; further, it does not show significant dependence on source size. 

(v) The same variance for elevated sources initially shows dependence on source size 

that is eventually "forgotten." Horizontal profiles of u~ are again approximately 

PART IB CHAPTER 5 



- 258 -

self-similar, but vertical profiles show a more complicated behavior: In the im

mediate vicinity of the source they are self-similar until the effect of the ground is 

felt. In the far field, however, these profiles become again self-similar, resembling 

those of a ground level source. 

(vi) A power law concentration probability density resulting from Gifford's fluctu

ating plume model seems to provide the best fit to experimentally measured 

densities of fixed frame data in most cases. Log-normal densities offer the best 

fit to sets of non-intermittent data. 

However, in spite of the recent advances in analyzing and understanding the 

problem of turbulent concentration fluctuations, a simple, rational scheme for rou

tine calculation of the instantaneous internal plume concentration variance, for use 

in conjunction with the Gaussian relative dispersion formulas for the instantaneous 

mean field does not exist. Such a model can, in fact, be viewed as a counterpart of 

Gifford's (1959) model for the external variance. The development of such a practi

cal scheme is the object of this work. We start from the Eulerian transport equation 

for u;, modeling the processes described by its components in terms of known or 

measurable quantities, and continuing with an analysis of potential simplifications of 

the mathematical description through self-similarity assumptions for u;. The infor

mation that is systematized in this way is subsequently utilized in the formulation of 

a new model that provides simple, closed form, analytical expressions for u~ for the 

case of a continuous passive "point" release of material in a turbulent field of uniform 

mean velocity. 

Before proceeding to the development of models for the concentration variance 

it is useful to recall the effects of averaging time on this property (compare also with 

the discussion of Appendix A6.1). When the ensemble under study contains time 

averages and not instantaneous values, the variance for this ensemble u 2 T is directly c, 

related to the variance of instantaneous concentrations u; through (see, e.g., Tennekes 
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and Lumley, 1972, p. 212) 

2a
2 {T ( T) a;,T = Tc Jo 1 - T p(r) dr (5.1 - la) 

where Tis the averaging time and p(r) is the temporal auto-correlation coefficient of 

concentration fluctuations, commonly assumed of exponential form. For large times, 

i.e. for T ~ T*, where T* is the integral time scale of the correlation, (5.1-la) reduces 

to the approximate relation 
T" 

0'2 = 2a2-
c,T c T (5.1 - lb) 

(Note that in the special case of exponential correlation of concentration fluctuations 

(5.1-lb) is valid under the milder restriction (T /T*) 2 ~ 1.) 
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5.2 THE TRANSPORT EQUATION 

FOR THE CONCENTRATION VARIANCE 

5.2.1 General Considerations 

Eulerian models for the estimation of a; are based on the fundamental transport 

equation for c for a fixed frame of reference 

(5.2 - 1) 

(summation convention implied) where Ui, c are stochastic variables that can be 

viewed as consisting of a mean and a fluctuating part (Reynolds decomposition), i.e. 

Ui = (ui) +u~ , c = (c) +c'. In the following the operation ( ·) denotes always ensemble 

averaging; for (locally) homogeneous and stationary turbulence this can be replaced 

by spatial or temporal averaging,under an ergodic hypothesis (see, e.g., Hinze 1975) 

as far as the velocities are concerned. For strongly localized sources the concentration 

field cannot be homogeneous and thus only time averages can approximate ensemble 

means (when,of course,the specific phenomenon under study is in steady state). 

The equation for the variance of c as obtained from (5.2-1) is 

(5.2 - 2) 

This equation expresses the fact that the level of a; = ( c'2 ) changes through an 

imbalance of 

(i) advection, 

(ii) the generation rate of scalar fluctuations by gradients in the mean concentration, 
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(iii) the diffusive transfer produced by molecular dispersion and turbulent velocity 

fluctuations (the former being usually negligible), and 

(iv) the dissipation of fluctuations due to molecular diffusion in the fine scale struc

ture. 

The relative importance of the different proceses in the o; budget depends on 

the particular type of fl.ow (see e.g. Launder, 1978); bulk meandering and internal 

fine scale motions will contribute in a qualitatively different manner not only to the 

observed overall level of fluctuations at a given point but to the relative balance of 

terms in the governing equation for o; as well. Here we confine attention to relative 

dispersion in turbulence with a uniform mean velocity u, and to internal fluctuations 

in plumes that generate an ensemble of instantaneous realizations which is in a steady 

state with respect to a frame of reference that follows the randomly meandering 

centerline translating parallel to itself. (The steady state concept here is, of course, 

relevant to the mean of the ensemble and not to the actual concentration field.) 

Equations (5.2-1) and (5.2-2) with B(·)/Bt = 0, (u1} = u, (u2} = (u3) = 0 are assumed 

to hold for this moving frame of reference. In other words, if the moving frame 

coordinates in the crosswind plane at x1 are y2, y3 where Y2 = x2 - b2, y3 = X3 - b3, 

b2, b3 being the random coordinates of the instantaneous plume centerline in this 

plane, then (5.2-1) and (5.2-2) are assumed to adequately describe mass transport 

in the meandering frame (see Chapter 6, for further discussion of this point). In the 

case where flow conditions are such that the mean plume centerline is not a straight 

line parallel to the horizontal plane (i.e. (bk), k = 2, 3, are not constant for all xi), 

then the above equations are still sufficient approximations (for a translating frame 

meandering about this centerline) for very small values of the derivatives (B (bk) /Bxl), 

k = 2, 3, l = 1, 2, 3. The situation considered here is schematically represented in 

Figure 5-2: The mean concentration in (5.2-1) is (cR) and the fluctuations in (5.2-2) 

represent deviations of actual realizations CR from this value. In the present work 

we limit attention to CR and (cR}i fixed frame properties (such as (c} of Figure 5-2) 

will not be examined. Thus in the following the subscript R for the concentration 

PART IB CHAPTER 5 



- 262-

will be dropped without any loss of clarity. Another point to note is that in this 

approach intermittency effects are attributed to bulk motions, in compiiance with 

available experimental evidence; the probability of exactly zero concentrations in the 

vicinity of the origin of the meandering frame is assumed negligible. 

5.2.2 Modeling Individual Terms 

of The Variance Transport Equation 

(a) The Production Term 

In the perspective of this study we will consider as adequate a description of ( u~c') 

in terms of eddy diffusivities KR, that will be assumed to be in general functions of 

the distance from the source, and to correspond to the effects of small scale dispersion 

processes (the subscript R used to denote the relevance to relative dispersion - or 

absolute dispersion without significant meandering). In this way (5.2-2) continues to 

hold locally inside the instantaneous plume. In a sense this is a "Lagrangian" mod

eling step, since KR; 's thus defined are not properties of the flow field but functions 

of the dispersion time for specific emissions. Thus, locally 

(5.2 - 3) 

where the point species source is located at x1 = 0. The variation of KR• with 

downwind distance from the source will be calculated from 

(5.2 - 4) 

where <7R• is the standard deviation of relative dispersion in the i direction. Methods 

for estimating <7R's can be found in Hinze (1975, p.406), Monin and Yaglom (1975), 

and Seinfeld (1983). Thus 

(5.2 - 5) 
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(b) The Diffusive Flux Term 

Most approaches for modeling the diffusive flux of a~ have also adopted a gradient 

type representation of ( u~c'2 ), usually neglecting all molecular diffusion effects (see 

Launder, 1978). Various forms of gradient type formulas have been used (Bradshaw 

and Ferris, 1968; Spalding, 1971; Wyngaard, 1975; Thomas, 1979; Sykes et al., 1984). 

A simple approach, especially when eddy diffusivities are used in representing (u~c'), 

is to assume a gradient transport relationship of the form 

(5.2 - 6) 

Assuming that the same dispersive mechanisu1s account for the spread of both (c) and 

a~ we set Ki = KR,. Data from geophysical flows provide supportive but certainly not 

conclusive indication for the validity and the limitations of such a gradient transport 

scheme (Csanady, 1973; Netterville and Wilson, 1980). In any case, since higher 

order closure schemes are beyond the scope of the present analysis, we will adopt the 

closure assumption of (5.2-6) with Ki = KRi given by (5.2-4). 

(c) The Dissipation Term 

Many studies have attempted to model this term by analogy to the dissipation 

of velocity fluctuations (kinetic energy dissipation) for which there is more extensive 

experimental information available. The most common procedure is to adopt an 

expression of the general form 

_ (Be' Be') 
~ = 2Ec = 2D [) [) 

Yi Yi 
(5.2 - 7) 

where ld is a "dissipative length scale" (a "hybrid" Corrsin scale) analogous to the 

Taylor scale for the dissipation of velocity fluctuations, and nD / l~ = 1/td is the re

ciprocal of a characteristic decay time scale td. The choice of the numerical factor n in 

this relation is a matter of convention (e.g. n =4, 6 and 12 are used in the literature). 

The time scale td is the single most important quantity in the characterization of the 

mixing process; actually in most approaches all the effects of molecular diffusion on 

mixing are lumped into this parameter. 
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For the case of homogeneous, quasi-isotropic, turbulent velocity and concentra

tion fields both theoreticai considerations and experimental evidence suggest that 

(Gibson and Schwarz, 1963; Hinze, 1975; Launder, 1978; Warhaft and Lumley, 1978; 

Sreenivasan et al., 1980; Durbin, 1982). 

td =kt+ ko (5.2 - 8) 

where k lies in the range 1/3 to 2/3, t = x1/ (u1), and ko is a constant that can be 

assumed equal to zero when the production of fluctuations is localized at t = 0. 

In the case of a continuous plume generated by a concentrated point (or line) 

source in a field of homogeneous turbulence we may also expect the rate of dissipation 

of concentration fluctuations to be proportional to fluctuation intensity u~, because 

essentially the same physical factors must govern across-the-spectrum transfer of con

tributions to er~, regardless of the manner in which the fluctuation were generated 

(Csanady, 1973). However, now the "ages" of the concentrations fluctuations cover 

a broad range and the decay time-scale may vary in an unknown manner. Thus one 

should set locally{[) = u~/td with td = td(x1,Y2,y3), i.e. assume that td is some 

function of position that has to be determined. 

The approach described by (5.2-7) has appeared in some works relevant to air 

pollution. Thus Donaldson and Hilst (1972) estimated a typical (constant) value 

of td ~ 5min for a (hypothetical) average turbulent mass of atmospheric air. This 

(constant) value of the decay time scale was used by Kewley (1978) in a reactive 

plume model. However, in plumes, the factors affecting the intensity of dissipation 

(and therefore td) will change significantly with travel time and the assumption of 

constant td is not an appropriate one. In a more justifiable approach Csanady(l967, 

1973) and Thomas (1979) adopted (5.2-8) with the theoretical value k = 2/3 (Hinze, 

1975, p.301) and ko = 0. Modified forms of (5.2-8) were also suggested by Fackrell 

and Robins (1979) and Netterville (1979) and utilized by Wilson et al. (1982ab) in 

an empirical model for the total level of atmospheric plume fluctuations. However in 

the latter case the dominant component in the overall observed variance values was 
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bulk variance (Fackrell and Robins, 1982ab), the dissipation of which mainly reflects 

the expansion of the instantaneous plume to the size of the time average envelope; 

the approach of Sykes et al. (1984) is more appropriate for this situation. 

For the dissipation of fine scale fluctuations by molecular diffusion in the moving 

frame of reference we adopt (5.2-8) in the form 

X1 + Xo l 
td = A1 (u1) = A1 (t +to) (5.2 - 9) 

where A1 = l/k and xo is a "virtual origin correction" which accounts for the initial 

production dominated region near the source. This equation should be viewed as a 

reasonable first estimate for td(x1, Y2, y3) for a relatively "slender" plume. The success 

of this approximation for a given range of downwind distances will rely heavily on the 

proper choice of A 1 ; unfortunately, the uncertainty involved in this choice is large, 

even for relatively ideal flow situations. Some further insight on this problem can 

be obtained by examining the transport equation for ~ (Launder, 1978). Indeed, for 

point sources the generation terms involving mean concentration field gradients wili 

play a significant role in the overall ~ balance, especially in the vicinity of the source, 

thus resulting in higher dissipation rates and lower characteristic dissipation times in 

comparison with the quasi-isotropic cases to which most of the available information 

is relevant. 

5.2.3 The Effects of Boundaries 

The presence of a boundary parallel to the mean flow u (e.g. the ground in the 

case of atmospheric dispersion) affects the balance of u~ in two ways: 

First, if this boundary does not interact chemically or otherwise with the plume 

species, it imposes a condition of zero transfer of plume material, which, in addi

tion to increasing the mean concentration near the surface, affects the intensity of 

concentration fluctuations by controlling the production of u~. Since a (c) / 8x1 is 

normally small compared to the lateral gradients, a decrease in a (c) /8y3 will reduce 

the production of fluctuations significantly, especially near the horizontal centerline 

of the plume where a (c) /By2 will also be small. 
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Second, the boundary affects the flow field in such a way that advection and 

turbulent transfer terms are expected to be smaU near the surface. In this analysis it 

will be assumed that the mean velocity is uniform except for a very thin layer near the 

boundary. However the no-slip boundary condition near the surface results in high 

local mean shear and intensity of turbulence which rapidly distort and stretch plume 

filaments, thus increasing the surface area available for molecular diffusion which 

dissipates concentration fluctuations. Thus, in general the presence of production and 

dissipation processes accounts for different behavior of (c) and u~ near the surface. 

Wind tunnel studies suggest that very close to the ground there might be a well mixed 

layer, where dissipation practically reduces u~ to zero; however, available data do not 

extend close enough to the surface to show explicitly this effect (Wilson et al., 1982a). 

Hence, au~/ By3 is not expected to approach zero gradually at the surface. It is 

more appropriate to view the latter as an absorbing (possibly not perfectly) boundary 

with respect to u; and thus 

a~ -+ 0 at X3 = y3 + b3 = 0 (5.2 - 10) 

5.2.4 The Effects of Source Size 

The assumption of a point source is an extreme idealization that is actually in

compatible with the process of relative diffusion, since the latter requires a nonzero 

initial separation of the diffusing fluid particles (see, e.g., Durbin, 1980). The de

gree to which concentration fluctuations are influenced by source conditions, such 

as source size (or initial separation) has been a subject of both theoretical analysis 

( Chatwin and Sullivan, 1979a; Durbin, 1980, 1982; Sawford, 1983), and experimental 

study (Fackrell and Robins, 1982a). The available experimental evidence for contin

uous plumes relates important source effects to meandering processes and shows that 

they persist for distances where bulk fluctuations are dominant; far downstream the 

variance tends to "forget" these effects. Theoretical considerations (Durbin, 1980; 

Sawford, 1983) show that the intensity of internal fine scale fluctuations tends to a 
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constant value that in general must depend on the initial size of an instantaneous 

release. However, the avaiiable data on reiative dispersion of continuous plumes are 

not adequate to provide reliable quantitative estimates of source size effects. In fact, 

far enough from the source, data on both the total and the fine scale variance, and 

for both elevated and ground level sources, show that under constant flow conditions 

the centerline intensity of fluctuations approaches a constant value that is (almost) 

independent of source size. In the present work, in order to retain simplicity, source 

effects will not be accounted for explicitly; the species source is assumed localized at 

a point and necessary corrections to this idealization are invoked a posteriori when 

the mathematical manipulations cannot accommodate the point source concept. The 

effects of the finite size of the actual source will have to be incorporated (either 

explicitly or ·implicitly) in a parameter of the model. 

5.2.5 The Assumption of Self Similarity 

Introducing the approximation of (5.2-9) and the transport closure schemes of 

(5.2-3), (5.2-6), equation (5.2-2) reduces to the following form for the steady state 

(in the (xi,Y2,1/3) frame) point source plume in a mean fl.ow field u = (u1) along the 

x1 = Y1 direction: 

(iii) (iv) 
~ 

a202 a202 o2 
+ K R2 (xi) a 2c + K Ra (xi) a 2c - t ( c ) 

Y2 Y3 d X1 
(5.2 - 11) 

where terms (i) to (iv) represent the respective terms of (5.2-2). 

A rational approach towards the simplification of (5.2-11) is based on the hy-

pothesis of self-similarity for both the instantaneous (c) and o; fields. As already 

mentioned, this hypothesis has considerable experimental support (Csanady, 1973; 

Fackrell and Robins, 1982a); it was first introduced as an approximation in the Eule-
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rian modeling of u; by Csanady (1967) who studied the construction of self-similarity 

models for isotropic turbulence and for an unbounded flow. 

If (5.2-11) is satisfied by (c) and u; that obey the self similar relations 

(c) = (co(x1)) f(f) , u: = (co(xi)) 2g(f) (5.2 - 12) 

where 

(co(xi)) = 
2 

_ S , f(f) =exp (- f
2

2
) 

1fUO' R2 O' Ra 

( S is the source strength) and 

f = f /s 

with 

(notice that f ,s have units of (length) 2), then it can be shown that two necessary 

conditions for (5.2-11) to have self-similar solutions are 

(5.2 - 13) 

and 

(5.2 - 14) 

where K and & are constants. 

Here we will in general assume that the increase of O'R2 and O'R8 with distance 

from the source obeys locally the same exponential law within a multiplicative factor. 

(This exponential law will be different in the various phases of relative dispersion.) 

Regarding atmospheric dispersion, experience shows the above assumption to be usu

ally a reasonable approximation. 

Now, for u R 2 = KO Rs one has 

&= 
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If O'R2 obeys the power law 

u02 being a constant of appropriate dimensions, then 

A X1 1 
a=--

p utd 

and, employing (5.2-9), 
A A1 X1 
a=----

p X1 + Xo 

Thus, if A 1 and p are constants over a finite range of x1, the necessary condition 

for self-similar solutions of (5.2-11) becomes Xo = 0, in which case a= Ai/p. Hence, 

the theoretical and empirical information that is available for p and A1 can be used 

to provide first estimates for &. 

When equations (5.2-13) and (5.2-14) hold then (5.2-11) becomes 

d
2 
g ( 1 A) dg ( A) ( df ) 

2 

- + - + r - + 4 - a Cl= -2 -
df2 f df , - df 

(5.2 - 15) 

The boundary conditions for (5.2-11) arise from requirements of axial symmetry 

and a decay of a~ to zero at large radial distances: 

dg A A - = 0 at r = 0 , g --t 0 at r --t oo 
df 

(5.2 - 16) 

We must remark here that boundary effects, which would complicate not only the 

formulation of boundary conditions but also the appropriate choice for f, are not con

sidered in the above analysis. Therefore this approach is formally valid for unbounded 

domains. Furthermore, for an elevated source, the existence of ground effects imposes 

an "external" length scale on the dispersion process. This "destroys" the conditions 

necessary for self similar characteristics of the physical problem, at least until far 

downwind where the source height becomes negligible compared to the distance trav

eled and a second range of self similarity is expected. Hence, the present self-similar 

model formulation will be a reasonable approximation only as long as boundary effects 

are not very significant, i.e. relatively close to the source. 

PART IB CHAPTER 5 



- 270-

The general solution of (5.2-15) can be shown to be 

(") = ( ) - ( ) I J.(TJ)g2(TJ) d - ( ) I J.(TJ)g1(TJ) d 
g r - g., T/ - g1 T/ W(?J) 17 g2 11 W(?J) 11 

where TJ = -(f2 /2), f., (11) = f(f), and 

and 

A -

00 r(a + k) 1Jk 
gi(11) = iF1(a,1;11) = L r(a)r(1 + k) TI 

k=O 

·'·( ) = r'(x) 
'// x - r(x) 

. W(17) = W [iF1(a,1; 17), 1F2(a, 1; 11)] = - e;;f ~i 

A (4 - &) 
a=-'----'-

2 

(5.2 - 17) 

(5.2 - 18a) 

(5.2 - 18c) 

1F1 (a,1; 17), 1F2(a, 1; 11) are confluent hypergeometric functions of the first and 

second kind respectively (Abramowitz and Stegun, 1964; Lebedev, 1965) and are lin

early independent. W(17) is their Wronskian determinant and t/;(x) is the logarithmic 

derivative of the Gamma function. The constants of the integrations in (5.2-17) have 

to be calculated so as to satisfy the conditions of (5.2-16). 

Alternatively, the boundary value problem defined by (5.2-15,16) can be solved 

numerically for specific values of&. Csanady (1967, 1973) pursued this approach for 

the isotropic case assuming Gaussian f(f), and presented typical g(f) profiles together 

with the relative intensity of stream segregation 18 = u~/(c) 2 = g(c0 )
2 /(c) 2

• These 

calculations show that while the variance <J~ (which is proportional to g(f)) decreases 

from the center of the plume to the fringes, by analogy to the mean concentration, the 

relative intensity of segregation - describing the degree of micromixing of the plume 

with the ambient- increases at the fringes. Near the plume centerline both quantities 

have very small gradients and thus can be considered approximately constant in a 
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"core region". For different values of & different profiles of g(f) are obtained. The 

center value g(O) is a rapidly varying function of&. For & > 4 the origin becomes a 

saddle point (because d2 g/df2 turns positive) and a full section across the plume will 

show a double-peaked profile for u~, a situation which is experimentally observed in 

free jets (Fischer et al., 1979; List, 1982). The physical reason is that the maximum 

rate of production occurs in the region of steepest gradients (around f = 1) from 

where u~ diffuses both inwards and outwards. High diffusion and low dissipation 

(i.e., a low value of&) quickly smoothes the two peaks out resulting in a single peak 

at f = 0. The problem in the development of self-similar solutions relies to a very 

large extent on the proper estimation of&. Csanady (1973) compared his approach to 

the experimental observations of Becker et al. (1966) by fitting g(O) to the data. With 

the value of g(O) obtained in this way, calculated profiles simulated measurements to 

a satisfactory degree with corresponding values of & in the range 2.5 to 3.0. These 

values clearly are in very good agreement with the estimate & = Ai/ p; indeed, for 

the theoretical values p = 0.5 and A1 = 1.5, one obtains & = 3.0. 

In conclusion, direct application of the self-similarity concept to the u~ trans

port problem, although it offers an integral representation of the solution of (5.2-11), 

does not lead to results appropriate for routine calculations (e.g. in conjuction with 

the common Gaussian solutions for (c)). Indeed, the uncertainty in the parameters 

involved in (5.2-17) and the restricted range of conditions to which it applies would 

not justify the computational burden involved in its use. However, the conditions 

associated with the existence of self-similarity that are derived here are useful for 

reducing the complexity of the mathematical description of the fluctuations problem. 

These conditions will be further used in the next section combined with a scheme 

that is more appropriate for routine use than equation (5.2-15). 
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5.3 THE LOCALIZED PRODUCTION OF FLUCTUATIONS MODEL 

In the following we present a new model that fulfills the need for simplicity by 

providing closed form analytical expressions for a; ( x1, Y2, y3), using a limited number 

of parameters. This "Localized Production of Fluctuations (LPF) Model" is based 

on the knowledge on the nature of the terms of (5.2-11) and of its solutions, already 

discussed in the previous sections. Self-similarity of a; profiles is not an a priori 

assumption in the development of this model; however, when assumed to hold, it 

simplifies further the structure of the final equations. 

To avoid excessive notational complexity in this section we adopt a (x, y, z) co

ordinate system and drop the subscript R from the dispersion parameters; however 

it must be kept in mind that throughout the following discussion (x, y, z) are coordi

nates relative to the meandering plume centerline and K's, a's, as well as (c) and a;, 

describe relative dispersion. 

5.3.1 Model Formulation 

The solutions of (5.2-11) can in general be expressed in terms of the Green's 

function G of the corresponding non-dissipative equation (containing only terms (i) 

and (iii)), through 

a~(x,y,z) = 100 100 

r~- G(x,y,zlx',y',z')Ile(x',y',z')x 
-oo -oo lo 

[ 
1 lz dx" ] x exp -= ( ) dx'dy'dz' 
u x' td x" 

(5.3 - 1) 

where Ile ( x', y', z') is the spatial distribution of variance production, given by (5.2-5). 

Since production of a; is of important magnitude, relevant to the other processes 

contributing to the balance of a;, mainly in the immediate vicinity of the source 

(where boundary effects can be neglected), an estimate of Ile formulated in terms 

of a mean concentration field (c) for an unbounded flow should be a satisfactory 
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approximation. Considering for simplicity the isotropic case (*) with 

one has 

[ ( a ( c) ) 
2 (a ( c) ) 

2
] IIc(x, r) = 2 K(x) ax + Br = IIx + IIr (5.3 - 2) 

where 

r = .Jy2 + z2 

/'l.J ,, 2 
( 0 \C)) IIx = 2K(x) \ ax , rr, = 2xcx1("~n' 

In general, studies of (5.2-11) have implicitly neglected production of u~ due to 

gradients of (c) in the x-direction. In fact, locally (at a given point (x, r)) this term 

can be important; however, the total generation of fluctuations due to these gradients 

is small compared to the generation of gradients of (c) in the r-direction. Indeed, for 

Gaussian mean instantaneous concentration distributions in the meandering frame of 

reference: 

( 
r2 ) S ( ,2 ) (c(x,r)) = (co(x)) exp --2 = _ 2( ) exp \--2 2u 27ruu x 2u 

the ratio 
IIr 2x2r 2 

IIx = p2(r2 - 2u2) 2 

is not necessarily much larger than unity for arbitrary (x, r). 

Consider, however, the overall cross-wind fluctuations production at a given x 

from gradients of (c) in the r and x directions: 

1

001271" p 52 
8,.(x) = rIIr(x,r) d</>dr = - _ 2 ( ) 

O O X 21rUU X 
(5.3 - 3) 

(*) These results are directly extendable to the anisotropic case by an appropriate 

transformation of coordinates. 
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100 {271" 2 52 
2 3 2p-3 Ex(x) = rIIx(x,r) d<f>dr = --

2
aop x _ 2 ( ) 

' o Jo ' ' exp 1fua x 
(5.3 - 4) 

Statistical diffusion theory for small travel times demands that p = 0(1.0) for 

both the processes of absolute and relative diffusion. Thus, in the vicinity of the source 

Br(x)/Bx(x) = O(l/a5), which typically is much larger than unity and therefore the 

production of fluctuations due to gradients of (c) in the x direction can be neglected. 

Thus, finally, for the overall cross-fl.ow production of fluctuations 

S(x) = /_: /_: II(x,y,z) dydz 

one can write E(x) ~ Er(x) with Er(x) given by (5.3-3). 

The formulation of the LPF model consists of two steps. The first step utilizes the 

fact that at every cross-fl.ow plane the production of fluctuations is strongly localized 

around its maximum value which is attained at r =a. Figure 5-3 shows the dimen

sionless distribution of radial production of fluctuations, 1/4 xllr(x, r) (u)- 1p-1 (c0 (x))-2 
i 

with respect to r/a, for arbitrary x. It is reasonable therefore to approximate the 

distribution of production along a given radius by a delta function with strength es

timated from (5.3-3). The optimal location of this delta function on each radius will 

be slightly off the vaiue r = u since the production extends asymptotically to infinity; 

thus, for given</>, we fix this location at 

r* = f0:rIIr(x, r) rdr = r (~)a= ~J?ru 
f0 IIr(x, r) rdr 2 4 

(5.3 - 5) 

i.e. at the "center of mass" of the actual production distribution. The complete locus 

of these delta functions at any x will be a ring of radius r*. 

Thus (for the isotropic case) 

IIc(x, r) = Br(x) 6(r - r", </> - </> 8 ) with r* = ~J?ra 
4 

where </> 8 arbitrary in the interval 0 to 211". 
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Dimensionless Radial Distribution of Fluctuation Production 
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This Ile can be introduced in (5.3-1). However, (because of the nature of the 

Gaussian solution of (c)) production of fluctuations is infinite at x = 0 and the inte

gral would diverge. Of course, this is just an artifact created from the assumed ideal 

"point" character of the source producing the theoretical Gaussian solution that cre

ates a singularity at the origin. Since in reality the maximum field concentration is 

not infinite, it is justifiable to start the integration not at x = 0 but at some point 

x0 • To apply (5.3-1), one should actually have to estimate .Xo from available data 

so that it simulates measurements in a satisfactory manner. However, no general 

a priori estimate of it should be expected since it encompasses a variety of source 

and initial fl.mv characteristics, specific to each particular application. Another major 

problem that inhibits direct integration of (5.3-1) is the changing character of the 

relative dispersion process with downwind distance. Thus, fundamental two-particle 

dispersion theory predicts three asymptotic values for the exponent p and even if one 

hypothesizes step changes and constant values in between there is significant uncer

tainty regarding the location of these changes; similar uncertainties are associated 

with the uo's. We circumvent these problems by introducing the second step in the 

formulation of the LPF model. Applying the mean value theorem of Lagrange to the 

isotropic form of (5.3-1) for the integration with respect to x, one has 

1
001211" 1 

o~(x,y,z) = E(€,x) -,c(r' - r*)c(<f>' - <l>a)G(x,r,</>1€,r',4>') r'dq/dr' 
o o r 

[ 
1 ix dx1 ] x exp --
u e ta(xi) 

(5.3 - 7) 

with 

(5.3 - Sa) 

where e is some point between xo and x (fixed for given x0 ,x). Setting e = wx, with 

0 < w :s; 1, and assuming that x ~ x0 one can further write 

..:. pS2 x wpS 2 

.=(x) = 27rua5e2p "€ = 27rua2(wx) (5.3 - Sb) 

PART IB CHAPTER 5 



- 277-

So, the problem of estimating .Xo, or, more generally, integrating (5.3-1), is essentially 

transferred to the problem of choosing the appropriate value (between 0 and 1) of 

the dimensionless localization parameter w (that can possibly vary, within these lim

its, with distance x). Now, (5.3-7) associates o; at x to the dispersion parameters 

corresponding only to x and to another single wx. In this way all the different kinds 

of uncertainty implicit in (5.3-1) are now collectively lumped in one parameter, i.e. 

in the unknown value of w. 

5.3.2 Analytical Solutions 

Equation (5.3-1) can now be used, through its reduced form (5.3-7), to obtain 

approximate closed solutions to the variance transport (5.2-11). 

For an unbounded fl.ow (and a; -+ 0 as y, z -+ oo) the corresponding Green's 

function of (5.2-11) (without terms (iv) and (ii)), is 

G(x,y, zlx', y', z') = G(x - x', y - y', z - z') = 

1 [ (y - y')
2 

(z - z')
2 l exp - -

211"cr11 (x-x')uz(x-x')u 2a~(x-x') 2a;(x-x') 
(5.3 - 9) 

when dispersion is assumed negligible compared to advection in the x direction and 

the cr's are related to the K's through (5.2-4). 

and 

Using (5.2-9) one obtains 

! z dx" 
-- = Aiu[ln(x + x0 ) - ln(x' + xo)] 

z' td(x") 

exp [-! 1 z dx" ] = ( x' + xo) Ai 

u z' td(x") x + Xo 
(5.3 - 10) 

Consider the general anisotropic ( orthotropic) case, where the source of fl.uctua-

tions takes the form of an elliptical ring (of infinitesimal thickness) located at x = e 
with semiaxes a, b such that 
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where K = O'z(E)/ay(e). We define 

and introduce the new variables 

The transformation (y,z) 1-t (y1 ,zi) has a Jacobian equal to unity and therefore 

preserves areas. The phenomenal variance source coordinates will transform to 

YlB = w cos </> 8 , ZlB = w sin</> 8 

where </> 8 is x"i.ow the polar angle of point (Y1 8 , zlB) in the new coodinate system. The 

Cartesian form of (5.3-7) in this system will be 

2 S e e +XO " ( ) ( ) Ai 

O"c = 27rua2 (x - €) x + xo 

Y1 - Y1 + z1 - z1 1 , , , 

J
oo Joo [ ( ')2 ( ')2] 

X -oo _
00 

exp - 2q 2 (x _ €) 8(y1 - y18 ) 8(z1 - zlB) dy 1 dz1 

where 

Introducing polar coordinates 

r1 = V Yf + zf, YI = r1 cos</>, z1 = r1 sin</> 

the integral in the above relation becomes 

f 00 f 21r -;-s(ri - w) 5( <P' - <Ps) exp (-
2 
~2 €)) rid</>' dri Jo Jo r 1 20" x -

where 
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Thus, 

S ( e) ( e + Xo \ Ai I r~ + w 2 \ 
u2 = } exp f - } x 

c 2nuo2 (x-e) x+xo \ 2o2 (x-€) 

[
2

'1r exp [r1wcos(¢>' - <Ps)] d¢>' 
lo 2u2 (x - e) 

which finally gives 

2 S "' "' + xo r 1 + w I r1 w " ( 1:) (I: ) A1 ( 2 2 ) ( ) u = exp - o 
c 2nua2 (x - e) X + Xo 2o2 (x - e) o 2 (X - e) 

(5.3 - 11) 

where Io(·) is the modified Bessel function of order zero. 

For x, e ~ Xo (5.3-11) becomes 

Now, a sufficient condition for self similarity of the u~ profiles for a given x-range 

(where p, A1 are assumed constant) is that w is a constant in this range. In this case 

u(e) =WP u(x), u(x - e) = (1 - w)P u(x), W = 3/4.;;iwP u(x) 

and O'~ becomes 

2 2 ( r1 ) 2 ( -1 r~ ) ( 3..(iwP r1 ) uc = (c0 (x)) g u(x) = (co(x)) g(O) exp 
2
w2P 02 Io 4w2P u (5.3 - 13) 

where w = 1 - w and g(·) = I 8 (c) 2 /(co) 2 is the dimensionless absolute intensity of 

internal fluctuations. On the plume centerline g(O) will be 

pwAi-2p-l ( 9nw2P) 
g(O) = (w)2p exp - 32w2P (5.3 - 14) 

When experimental information for this quantity is available it can be used in con

junction with information on parameters p and A1 to estimate w values (see next 

section). 
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Returning to the y,z coodinates, (5.3-12) takes the form 

( 
ab ) ( ya2z2 + b2y2 ) x exp - Io 

2ay(x - €) O"z(x - e) ay(x - e) O"z(x - €) 
(5.3 - 15) 

Equations (5.3-13) and (5.3-15) constitute basic, usable, forms of the LPF model 

when boundary effects can be assumed negligible, as in the immediate vicinity of the 

source. 

When the dispersion field cannot be assumed unbounded, one must take into 

account the boundary condition of (5.2-10), i.e. 

a~ -t 0 at z(= y3) = -b3 

where, because of meandering effects b3 is a random variable. Far downstream, where 

meandering is negligible and boundary effects most significant, one can obtain the 

following result, assuming that the plume centerline is at a constant height h from 

the boundary (notice that now the coordinates origin is fixed on the boundary): 

( 
ab ) [ ( (z _ h)2 ) (Ja2(z - h)

2 
+ b2y2) x exp - exp - Io 

2a11 (x - €) O"z(x - €) 2a;(x - €) u 11 (x - €) O'z(x - €) 

( 
(z + h)2 ) ( J a2(z + h)

2 
+ b2y2)] -a:exp - Io 

2a;(x - €) a 11 (x - €) O"z(x - €) 
(5.3 -16) 

The parameter a appearing in the above equation equals unity for a "perfectly 

absorbing" boundary i.e., a~ actually equal to 0 at the surface. However, the effects of 

dissipation might not be so strong, and a lower value for a may be more appropriate. 
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5.4 MODEL TESTING AND DISCUSSION 

The LPF model is a simple formulation for the internal concentration variance 

that is directly derived from the physics of the point release problem, starting from 

"rigorous" equations and utilizing empirical information and approximations to sim

plify the analysis. The required inputs reduce to a set of "physical" parameters and 

a "model specific" one. The "physical" parameters are the relative dispersion a's 

(which are assumed to obey simple power laws, at least locally) and a factor re

lating dispersion time to the local dissipation time scale td. The "model specific" 

or "localization" parameter w actually defines the location of an effective source of 

fluctuations .. As already mentioned, uncertainties associated with a variety of fac

tors such as source size, flow conditions, and the relative dispersion process itself, 

are "lumped" into w. Introduction of w reduces the uncertainty associated with the 

physical parameters since, instead of their complete - and unknown - variation with 

downstream distance, only estimates of their local values are needed. 

The problem of estimating w is facilitated by two facts: (1), the often observed 

validity of self similarity, which is expressed by (5.2-12); (2), the observation that 

g(O) is "at most a weak function of the distance from the source" - even for the 

total fiuctations variance (Sawford et al., 1985). This g(O) for given flow conditions 

tends to a constant value after a certain distance (Becker et al., 1966; Fackrell and 

Robins, 1982ab; Wilson et al., 1982ab, etc). These facts, although deduced from 

observations that do not cover the entire range of possible conditions encountered in 

laboratory and environmental flows, suggest that adequately reliable estimates of w 

are possible, at least for specified ranges of the dispersion, even without a complete 

understanding and analysis of all the mechanisms that affect the level of g(O). It is 

therefore often justified to treat g(O) as an empirical constant typical of given flow 

conditions. In this simplified approach w is completely determined from the physical 

parameters (including g(O)) of the problem. Of course in order to be able to construct 
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empirical estimates of, say, typical values of g(O) (and therefore w) for ambient tur

bulence of various Reynolds numbers, many more experimental data bases than they 

are currently available are needed. In a more fundamental approach g(O) or closely 

related functions have been modeled theoretically, in terms of statistical correlations 

of the turbulent flow field, for source configurations that create mean concentration 

fields approximately equivalent to that of the continuous "point" source. Numerical 

simulations and analytical expressions that in general involve a measure of effective 

source size are available (Durbin, 1980, 1982; Sawford, 1983). However, because of 

the existing uncertainties and limitations in the formulation of the theoretical models, 

it presently seems reasonable to confine this discussion to the previousiy mentioned 

simplified approach. 

As far as atmospheric dispersion is concerned, present knowledge suggests that 

for neutral stability the far field value of g(O) is of order unity (for elevated sources), 

and use of the typical ("theoretical") values p = 0.5 (for the "far field"), A1 = 1.5 

to 2.5 seems to offer a qualitatively acceptable simulation of many available relevant 

field and wind tunnel data sets. (For example, see Figure 5-6). However the scatter, 

the resolution and the uncertainty of these data often make quantitative comparisons 

meaningless or impossible. The problems are even more severe in cases of more 

complicated atmospheric conditions. 

The measurements most appropriate for comparing with and testing LPF model 

calculations are those of Becker et al. (1966) for point source dispersion in homoge

nous, quasi-isotropic, pipe fl.ow turbulence. Indeed, in the conditions of these exper

iments meandering was insignificant and the structure of the turbulent flow, being 

relevant to the conditions for which (5.2-8) was suggested, reduces the uncertainty 

regarding the proper choice of Ai; further, p = 0.5 fits accurately the entire range 

of the data. Thus, the uncertainty regarding the physical parameters is minimum. 

Self similarity of a~ profiles and a constant value of g(O) are observed in all these 

experiments. Comparisons of LPF calculations with reported absolute and relative 

intensities of internal fluctuations are shown in Figures 5-4a, 5-4b, 5-4c and 5-5. The 
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parameter w is estimated directly (for Ai = 1.5) from the centerline value g(O), whose 

square root value, for all the flows studied, lies in the range 1.0 ± 0.2. The agreement 

obtained by using solely the centerline value to "adjust" w, while p and A 1 are pre-set 

equal to their theoretical values, must be considered very satisfactory (Somewhat dif

ferent values of A 1 , can improve slightly the success of the simulation, especially near 

r/a = 0.75 where the difference between predictions and observations seems higher). 

A comparison with atmospheric field data is also shown in Figure 5-6. The data 

are of Ramsdell and Hinds (1971) and the typical values p = 0.5, Ai = 1.5 were used 

while w is determined directly by the centerline intensity. Although the uncertainty 

of the data is very significant the agreement can be considered satisfactory in this 

case too. 
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Figure 5-4a 

Dimensionless Absolute Square Root Intensity of Segregation, Jg(r/u) 

as Predicted by the LPF Model, Compared with Data from Becker et al., (1966) 

Data (at five downstream distances) for Centerline Velocity 41 m/s 

LPFM Calculations for p = 0.5, A1 = 1.50 (g(O) = 1.15) 
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Figure 5-4b 

Dimensionless Absolute Square Root Intensity of Segregation, yf g(r/u) 

as Predicted by the LPF Model, Compared with Data from Becker et al., (1966) 

Data (at two downstream distances) for Centerline Velocity 49 m/s 

LPFM Calculations for p = 0.5, A1 = 1.50 (g(O) = 1.05) 
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Figure 5-4c 
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Dimensionless Absolute Square Root Intensity of Segregation, Jg(r/u) 

as Predicted by the LPF Model, Compared with Data from Becker et al., (1966) 

Data (at four downstream distances) for Centerline Velocity 61 m/s 

LPFM Calculations for p = 0.5, A1 = 1.50 (g(O) = 0.95) 
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Figure 5-5 

(u = 61 m/s) 

Dimensionless Square Root Relative Intensity of Segregation, ..fl; 

as Predicted by the LPF Model, Compared with Data from Becker et al., (1966) 

(The data were obtained at five downstream distances for centerline velocity 61 m/s 

and the points shown correspond to the experimental curve in Figure 7 of Becker et 

al. (1966) (note that in that figure ..fl; is plotted versus r/r1; 2 ); LPFM calculations 

for p = 0.5, A1 = 1.50.) 
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Figure 5-6 

Dimensionless absolute intensity of segregation, Jg(r/u) 

as Predicted by the LPF Model 

Compared with Atmospheric Field data from Ramsdell and Hinds (1971) 

(LPFM calculations for p = 0.5, Ai = 1.5) 

PART IB CHAPTER 5 



- 289-

5.5 CONCLUSIONS 

Knowledge of statistical properties of point-source plume concentrations, such 

as the variance a; or the intensity of segregation, is essential in many situations 

calling for plume modeling (e.g. in assessing the impact of releases of pollutants in 

the environment), and in particular in estimating the effects of local turbulent mixing 

on relatively fast nonlinear chemistry. Although recent experimental and theoretical 

work has enhanced significantly the available information on the behavior of a;, this 

had not resulted in the development of practical predictive methods, especially with 

regard to fine scale in-plume fluctuations - as opposed to total observed fluctuations 

that encompass bulk motion effects (meandering) which do not interact with the 

chemical processes. 

A new model for the "internal" a;, at a level of sophistication analogous to that 

of the Gaussian formulas for the mean concentration field, has been developed here, 

starting from the Eulerian transport equation for a;. A series of approximations 

utilizing existing experimental and theoretical information for the processes involved, 

combined with the Localized Production of Fluctuations (LPF) scheme allowed the 

construction of closed analytic expressions for u;, directly from its governing equation. 

The capability of this "LPF model" to simulate the variance profile was succesfully 

tested against available data on point source plume concentrations. 

In conclusion, the model developed in this work provides a rational, yet computa

tionally simple, means for describing concentration fluctuations and the corresponding 

intensity of segregation inside instantaneous plume boundaries. Although its appli

cability is restricted by assumptions such as the uniform mean flow (or "mild" mean 

plume motion), and slender plumes, this model can serve as a first approximation to 

a wide range of point source dispersion problems. Further experimental information 

will be useful to provide accurate estimates of its parameters for specific flows. 
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APPENDIX A5.1 

Concentration Probabilities: 

Summary of Basic Concepts 

and Definitions 

The main volume of work relevant to air pollutant concentration statistical characteristics is con

cerned with defining concentration distributions and estimating extreme value statistics for use with 

air quality standards; in this perspective the air pollution system is typically viewed as a "black box" 

although in some approaches physical reasoning have been invoked to explain qualitatively the sta

tistical results _(see Chapter 8). The aforementioned work is directed primarily towards statistically 

describing long-time averages (usually 1 hr and upwards) of concentration. Thus it must be remem

bered that (empirical) results relevant to this work cannot be applied directly in the study of very short 

term ("instantaneous" up to a few minutes averages) fluctuations in a rapidly changing concentration 

fieid that results from an isolated source. In the following we summarize certain basic concepts related 

to the probabilistic properties of instantaneous concentration fields. 

The (cumulative) probability distribution associated with the random concentration cat the fixed 

space-time point (x, t) of the flow field is defined as 

F(C,x,t) = Prob{c(x,t) :5 C} (A5.l - l) 

The moments of c are defined formally by the relations 

{A5.l - 2) 

,.1 

En{c'} =: (c'n (x, t)) = JF=O (C - (c)t dF(C,x, t) (A5.l - 3) 

In particular we set E 1{c} =: (c), .E2{c'} =: u~. 

In steady state cases, i.e. in continuous plumes (which are of interest in this work) the distribution 

(and of course moments of all orders) become independent of time. 

The probability density function (pdf) p(C, x, t) of c(x, t) is defined as 

(c ) _ dF (C,x, t) 
P ,x,t - dC (A5.l - 4) 
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for all C for which Fis continuous. For certain C, F may not be continuous. In fact c(x, t) = 0 usually 

occurs with finite probability, at least for certain (x,t), and thus arises a discontinuity of F(C,x,t) at 

C = 0. (This is the only case of discontinuity of F that will concern us here.) 

Various functional forms can be assigned to the distribution of the non-zero fraction of the en

semble of concentration values. In practice, such a. distribution must be determined by appropriate 

statistical treatment of data. at a. fixed point. Experience has shown that skewed distributions such as 

the lognorma.l are usually a. satisfactory choice for the non-zero fraction ( "subensemble") of concentra

tion values in atmospheric plumes. Semi-Gaussian or "clipped-Gaussian" (i.e. linear combinations of 

Gaussian functions, defined over bounded ranges of values, and Dirac deltas), exponential, and other 

types of distributions have been used to fit the entire range of concentration values, especially at points 

close to the average boundaries of the plume. 

A variety of theoretical methods for determining p a priori, from physical principles, is available in 

the literature dor both conserved and reactive sea.la.rs (see, e.g., Hill, 1976; Pope, 1982, 1985). However 

most of these methods a.re either limited to highly idealized turbulent scalar fields and a.re formulated 

for very specific flows, or represent formulations so genera.I that a.re of little practical use (see, e.g., 

O'Brien, 1980). Analogous formulations for the moments of c a.re in genera.I much more tractable and 

these a.re pursued in Chapter 5. 

An intermittency factor or function l'c (x, t) can be introduced, specifying the fraction of the 

ensemble in which the concentration is not zero (i.e the subensemble conditioned by c =/= 0): 

1 - ')'c (x, t) = F(O, x, t) (A5.1- 5) 

The complementary intermittency factor ,defined through 

.:Ye = 1 - l'c (x, t) = F(O, x, t) (A5.1- 5a) 

is also used by some authors. 

We will not elaborate here on the subtle and important concept of intermitency in turbulent 

fields; for an illuminating discussion of both physical and mathematical aspects of this property one 

may consult the monograph of Mandelbrot (1983). 

With the introduction of l'c one can express the probability density function for all the members 

of the concentration ensemble as 

p(C, x, t) = l'c(x, t) p. (C, x, t) + !1 -1c(x, t)] c(C) (A5.1- 6) 

where p,.(C,x, t) is the "conditioned" pdf that describes the subensemble {c .. } of nonzero concentra

tions and c ( C) is the Dirac delta.. 
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F( C, x, t) is a result of absolute diffusion; so is le (x, t). However, a "decomposition" of the results 

of relative diffusion and meandering is sometimes necessary in the study of the plume dispersion 

phenomenon, as it has already been discussed. To study relative diffusion effects one can consider a 

reference frame attached to the center of mass of a diffusing cloud (for an instantaneous release of 

material) or "following" through parallel translation the line defined by the infinite sequence of the 

centers of mass of "thin cross-wind slices" of a continuous plume (the centerline of the plume). An 

extensive discussion of the description of turbulent dispersion in this frame can be found in Chapter 

6 of the present work. 

Thus let y be the distance of a fluid particle from the origin of this meandering frame (for uniform 

windy= (y1, J.12, y8) reduces to a two dimensional vector y = (x1 1 J,12, Ys), with the origin taken at z1, 

since it is always perpendicular to the wind vector). Let also b(t) be the position of the center of mass 

of the cross-section relative to which y is measured: y = x - b. Then if 

F,.(C, y, b, t) =Prob {c(x, t) = c,.(y, b, t) :5 C} (AS.1- 7) 

moments of c,., 11. pdf Pri 11.n intermittency function Ir. and 11. conditioned pdf Pr., can be defined exactly 

as for the c-field. 

The general functional form of p,.,. is expected to display the same typical characteristics as p,. 

(a skewed distribution) and experience shows that lognormal type distributions again offer successful 

fit (Csa.nady, 1978). However, Ire is expected now to behave in a more predictable manner than 

le because the effect of meandering has been removed and F,. ( C, y, b, t) characterizes the process of 

relative diffusion alone. Of course the spatial distribution of both le and Ire is in general unknown 

for most cases; however in a. frame moving with the centerline of a continuous plume, "Yre(Y} is known 

to be near unity in the center portion of the plume and to be zero outside the plume, its distribution 

across the plume being probably like that of the intermittency of turbulent velocities across a jet (see 

Townsend, 1976; compare also with Eidsvik, 1980). In a fixed frame of reference "Yc(x) can be as low 

as 0.65 even at the axis of the plume (Csanady, 1978) and much lower 11.t the fringes, showing the 

pronounced effect of meandering (see also Fackrell and Robins, 1982; Jones, 1988). The fact that in 

a moving frame formulation the inte:rmittency factor is likely to be near unity for much of the field 

is a certain advantage of this description. Indeed, when using a frame of reference attached to the 

centerline of the plume, "Yr e ~ 1 everywhere is an acceptable first approximation. In this way we assign 

all intermittency effects to meandering: they assumed "bulk intermittency" effects. Seeing this from 

an alternative viewpoint, we define the instanta.nous plume through the condition "Yre = 1. 

Plume meandering is described by the spatial probability density function of the position of the 

center of mass: 

Pi.(x, t) =Prob {at time t, b(t) has its endpoint in the volume element dx surrounding x} 
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Pk (x, t) and Fr ( C, b, x-b, t) a.re statistically independent in general and thus the following convolution 

relation connects F, Fr, and Pk: 

F(C,x,t)= { F,.(C,x,x-b,t)Pk(b,t)db 
Jallb 

(A5.1- 8) 

As a consequence of this general relationship, we have a similar connection between pdf's {for contin

uous Fr's) and non-central moments of the ensembles { c} and {Cr}: 

(c"(x, t)) = [ (c~(x, x - b, t)) Pk(b, t) db 
Jallb 

(A5.1- 9) 

As far as Pi.(x, t) is concerned, this pdf is typically approximated by the probability density 

function for a fluid particle's location at time t, in a turbulent field, ~(x, t). (See Chapter 6). Thus 

Pk (x, t) can be expressed as the product of: 

e the pdf that the center of mass was at x' at t', Pk(x',t'), integrated over all possible starting 

points x'. · 

e the transition probability density for a fluid particle in the turbulent field under consideration 

Q(x, tjx', t') = Prob{if the particle is at x' at t' it will undergo a displacement to x at t}. (This 

probability will be introduced formally and discussed in more detail in Chapter 6 where it is 

denoted by G.) 

Invoking initial conditions (at t' = t 0 = 0) for a point source located at Xo we have 

Pk(x, t) = l: l: l: 1t Q(x, tjx', t')5(x' - Xo) <be.' dt' 

and therefore 

The analytical form of the transition probability density Q(x, t Ix', t') has been one of the main con

cerns of the Lagrangian methodology for describing turbulent diffusion and extensive discussions are 

presented elsewhere (see Chapter 6 and Monin and Yaglom, 1975). Gaussian type distributions are the 

typical choice for Q; such a choice is theoretically founded for stationary and homogeneous turbulence 

where, after a certain time has passed, can be deduced formally if the turbulent velocity fluctuations 

a.re assumed normally distributed (Seinfeld, 1983). In this case Pi.(x, t) = Pi.(x) for a steady plume will 

also be a Gaussian distribution in x. Then, relations (A5.1-8), (A5.1-9) define convolution transforms 

with Gaussian kernel; these are known as WeierstraB.!I transforms (see, e.g., Zemanian, 1968). 
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Finally, we must note that equations (A5.1-8) and (A5.l-9) relating the statistics of the c and Cr 

fields should not be misinterpreted as providing relations connecting analogous statistical characteris

tics of the c and c,. fields. Although it is possible to identify the sets of c,. and c,. values by limiting 

appropriately the range of the spatial variable y for c,., the information "carried" by each set is not 

equivalent. (See also Fackrell and Robins, 1982, their Section 5.2.) To obtain statistics of c from c,. 

(and vice versa), the spatial (and perhaps the temporal) dependence of "'fe is needed. Then it can be 

shown that from equation (A5.1-6) follows 

(c) = "'fe (c,.) (A5.1-10) 

and 

(A5.1- 11) 
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APPENDIX A5.2 

Discussion of 

Earlier Work on Plume Concentation Fluctuations 

and the Empirical Model of Wilson et al. (1982ab) 

Experimental measurements of short term fluctuation statistics in plumes under conditions met in 

cases of interest to air pollution (either in situ or in wind tunnels simulating the atmospheric boundary 

layer) are :relatively limited. Most of these works have been :reviewed by Csanady (1973) and Hanna 

(1984). Useful information of closely related nature can be found in the substantial fluid-mechanical 

literature abou~ momentum jets and buoyant plumes (see e.g., the :reviews of List, 1982, and Gebhard 

et al., 1984). 

A brief chronological survey of results that are of direct interest to the present analysis follows: 

An early investigation of concentration probability distributions was carried out by Gosline (1952) 

who measured "instantaneous" ( 10 s averages) ground level NO and N02 concentrations downwind of a 

24 m tall chimney at distances of 5 to 10 chimney heights. His measurements showed the importance of 

intermittency effects (he noted that only 14 to 34% of the time there was a measurable concentration 

at the site chosen). Also the duration of each NO bearing eddy at a given site was between 30 

and 90 s. The non-zero measurements were found to obey a log-normal distribution to a very good 

approximation. 

Becker et al. (1966) studied plume dispersion and fluctuations in pipe flow. Their experiments 

show self-similarity of u~ profiles up to significant dispersion times. The specific characteristics of these 

profiles varied significantly with changing properties of the ambient turbulent flow. Self-similarity of 

fluctuation intensities was also clearly observed in experiments involving diffusing dye plumes in the 

Great Lakes, reported by Csanady (1966) and Murthy and Csanady (1971). 

Lognormal curves were found to fit successfully the non-zero data from the Fort Wayne experi

ments reported in Csanady (1973). An instantaneous line source was considered in this case. 

Barry (1971) reported on the continuous monitoring of argon-41 emitted from a reactor stack, his 

basic data being in the form of 6-minute averages. From his data Barry deduced a probability density 

for these concentration time averages that is of exponential form. The same density was suggested by 

Csanady for instantaneous fluctuations from the experiments of Becker et al. (1966). 

Ramsdell and Hinds (1971) made limited measurements of short term (38.4 s averages) field 
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concentration values in the wake of a continuous near ground level (at lm} point source of krypton 

gas. Near zero readings occupied from 35 to 80% of the time at the iocations investigated (200 and 800 

m from the source). A replot of the non-zero readings again approximated a lognormal distribution. 

Eidsvik (1980) presented data from transverse line sampling of continuous plumes 500 m from the 

source. He indicated that concentration distributions at fixed transverse location relative to the center 

of gravity of the plume are well described by a log-normal curve for the non-zero measurements. The 

parameters of the log-normal distribution are given as functions of the distance r from the centerline 

in a cross wind plane. Thus the concentration pdf is of the form 

p(C) = y'2; 
1 

exp{-+( ) [lnC(r) - lnCo(r}J
2

} 
2mr,.(r)C(r) 2u,. r 

where C0 (r) is the measured time averege concentration that was found to have a nearly Gaussian 

profile and u,.(r) is estimated to increase from approximately u,.(O) ~ 1 at the center to u,.(r) ~ 1.5 

at the boundaries of the mean cloud). Eidsvik stressed the fa.ct that the transverse concentration 

fluctuation profile was dominated by large sea.le variations. He also estimated the probability of zero 

concentrations F(O, r); he found it to be of the order of only 1% in the interior of the mean cloud and 

increase rapidly near the edges. 

The most extensive experimental work directly related to atmospheric plume situations - yet still 

confined mainly to studies of non-buoyant plumes in neutrally stable environments - is carried by the 

research team under Fackrell and Robins for CEGB, UK (see Fackrell, 1978, 1980; Fackrell and Robins, 

1981, 1982a.b; Robins, 1978, 1979; Robins and Fackrell, 1979). Their research reveals a large amount 

of useful information which we use extensively in the following sections, in our critical examination of 

the transport equation for u~ to suggest or justify approximation schemes and simplifications of the 

mathematical analysis. Some of this work has been incorporated in an emiempirical model developed 

by Wilson et al. (1982a.,b, 1985) which is briefly discussed in the following. 

To summarize briefly the experimental results of Fackrell and Robins ,their major conclusions 

were: 

(i) Meandering is the most significant source of fluctuation in the near field. 

(ii) Production of fluctuations is in general significant only very close to the source. 

(iii) The variance of concentrations from ground level sources exhibits profiles that a.re approximately 

self-similar in both the horizontal and vertical directions; further, it does not show significant 

dependence on source size. 

(iv) The same variance for elevated sources initially shows dependence on source size which is eventu

ally "forgotten." Horizontal profiles of u~ a.re a.gain approximately self-similar, but vertical profiles 

show a more complicated behavior: In the immediate vicinity of the source they a.re self-similar; 
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then, as the effect of the ground is felt by the dispersing material, they differentiate. In the far 

field, however, these profiles become again self-similar, resembling those of a ground level source. 

(v) The power law distribution resulting from Gifford's fluctuating plume model (see Section 5.7) 

seemed to provide the best fit to experimentally measured pdf's in most cases. Log-normal pdf's 

offered the best fit to sets of non-intermittent data. 

Other sets of instantaneous plume concentrations measurements are presented by Kimura. et e.l. 

(1981) and Jones (1983); in general, the nature of these data is consistent with the observations men

tioned above. In particular, Jones' (1983) data reveal an exceptionally strong effect of the meandering 

processes, even for downwind, as the total intensities of fluctuations reported are consistently almost 

an order of magnitude larger than the respective in-plume intensities. 

The theoretical study of the u~ dynamics was originated in the works of Corrsin (1952, 1964) and 

Batchelor (1959). Since then, various approaches have been followed in dealing with the statistics, 

especially (c} and u~, of scalar fields in turbulent flows (see, e.g. Monin and Yaglom, 1971, 1975; 

Hinze, 1975; Bradshaw, 1978; Libby and Williams, 1980). 

As far as the specific atmospheric plume situation is concerned, the three major approches com

monly employed in modeling the mean field, i.e. Eulerian and Lagrangian statistical methods and 

dimensionai {similarity) analysis (see, e.g., Pasquill, 197 4; Seinfeld, 1975) can also be used to model 

second moments. In addition, heuristic models focusing on particular characteristics of the fluctuation 

problem and empirical schemes, utilizing the information embodied in experimental data, have been 

developed and applied in various cases. 

Eulerian modeling for the atmospheric plume fluctuations has been pursued mainly by Csanady 

(1967, 1973); some relevant work can also be found in Harris (1979) (see, e.g., Thomas, 1979). Csanady 

(1967) formulated a model for the mean-square fluctuation of concentration (variance of the concen

tration field) as a solution of the transport equation for this quantity, in the case of a continuous 

point source in a uniform wind, for a.xisymmetric conditions of spreading. He a.voided the problem of 

accounting for meandering effects (large sea.le turbulence effects) by formula.ting his description in a 

reference frame attached to the centerline of the plume, assuming intermittency effects to be negligible 

in this reference frame. The crucial assumptions in Csa.nady's model a.re the validity of a (modified) 

gradient transfer-type theory for the transport of both the mean and the mean-square concentration 

field and self-similarity for both these fields. As already mentioned the latter assumption has been 

evaluated to some extent against experiments; for the first see also the works of Netterville and Wil

son (1980) and Wilson et a.l. (1982a.,b). Csanady's approach has been extended to less restrictive 

conditions in Chapter 5. 

Lagrangian modeling has been given more attention in recent years (Cha.twin and Sullivan, 1979; 
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Durbin, 1980; Lamb, 1981; Sawford, 1982, 1983, 1984,1985; see also Weil, 1985). A particularly clear 

exposition of the concepts and methods related to this approach, together with a critical review of the 

work on the subject, can be found in Sawford (1983). To summarize briefly, in the works mentioned 

u: is typically related to the joint probability density for particle-pair displacements. Lamb (1980) 

and Durbin (1980) used systems of coupled Langevin equations to model the particle pair velocities. 

Sawford (1983) showed that the predicted behavior of u: in dispersing puffs depended critically on 

the form of the probability density for particle separations; he further showed that Gaussian densities 

for these separations are not realistic because they smooth out the internal structure of the cloud 

and the relative fluctuations, thus leaving meandering as the only source for randomness. For further 

information, the interested reader should consult Sawford (1983, 1984). 

Variances of scalars in the surface atmospheric layer can also be studied through dimensional 

analysis following the Monin-Obukhov theory (see, e.g., Panofsky and Dutton, 1984). In a study more 

closely related _to the point source case Cha.twin and Sullivan (1979) used dimensional analysis and 

simplifying assumptions to deduce, from the fundamental transport equations, results concerning the 

relative dispersion of a puff from instantaneous emissions that had an initial linear dimension. Their 

analysis concludes that, in the bulk of the cloud u: ,...., Q2 /u8 ug, where O' and O'o respectively are the 

current and the initiai linear dimensions of the puff and Q is the source strength, whereas in a central 

core region, which decreases with time, fluctuations are of greater magnitude, that is, of order Q2 /u~ 

i.e., conditioned by the initial puff size. Extensions of this model were proposed and applied by Hanna 

(1984). 

Among the heuristic formulations, Gifford's (1959) fluctuating plume model still remains the single 

most influential work in the field. Gifford (1959) formulated a model of a meandering Gaussian plume 

such that fluctuations in concentration are produced only by the random displacements (meandering) 

of sections of the plume, ignoring fluctuations within each section. One cannot deduce predictions for 

the detailed structure of the fluctuating concentration field from a model such as Gifford's, however, 

some of its more general conclusions may be sufficient approximations under certain conditions and 

have been tested against experiments (see, e.g. Fackrell, 1978). Thus in the immediate vicinity of the 

source, where meandering is the more dominant source of fluctuations, it is a valid approximation and 

can offer reasonable estimates of the total u:. Two major conclusions of the model are that on the 

plume axis the pdf of the concentration should obey a simple power law (see also Appendix A5.8), and 

that the "peak to mean" ratio, which is often used to represent observational studies of atmospheric 

diffusion along with the mean concentration (the "peak" value of a random variable can be specified 

precisely 11.S a high quantile of the probability distribution of concentration), tends to unity for large 

distances (see Gifford 1960, Csanady 1973). 
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Extensions of the original model have also been presented in the literature (see, e.g., Scriven, 

1965; Diamante et al., 1976). Other formulations that are related to the spirit of Gifford's model have 

been developed by Vencatram (1979, 1983) and Hanna (1984); however, in general the latter schemes 

deal with averaged and not instantaneous-pointwise concentrations. 

Finally, empirical models utilizing the experimental results of Fackrell and Robins (1979, 1982ab) 

have been developed by Wilson et al. (1982ab, 1985) in the form of closed algebraic expressions for 

ground level and elevated sources. The general model equations are 

where 

for an elevated source, and 

(c'2) = ( q(x) )2 G (l!_) F (.!...) 
Bucr11 (x)cr..,(x) cr11 u.., 

B=211" 

B = 4lnyl27rr(l/m) 
m(ln 2) 1 /m+l/2 

for a ground level source. The dimensionless functions F, G are 

and 

F ( .!...) = exp [- ln 2 ( Jirr/i" ) m] - a: exp [- ln 2 ( Jirr/i" ) m] 
u 11 2 ln 2u.., 2 ln 2u 11 

where m = 2.0 for an elevated source and m = 1.7 for a ground level source. h., is defined through 

[ 

2 l 1/2 

h., = u.., (:.) + 2ln2,B2 

h being the source height. The "source" function q(x) and the constants a:, ,B are estimated so as to 

fit the observations. This model, although its structure is partially defended by physical reasoning, is 

definitely an empirical formulation constructed so as to describe specific sets of available data.. This 

reliance on the aforementioned sets of data can be seen as a relative advantage (an "'a priori validation") 

of the model; nevertheless, it limits significantly arguments for its applicability in situations not closely 

resembling the conditions corresponding to these measurements. Further, even for these conditions 

(i.e., neutrs.l atmospheric stability), its para.meters are estimated under the condition u11 ,..., u,, ,..., 

x0 ·5 which limits the validity of the model to dispersion times (i.e., downwind distances from the 

source) large enough for this assumption to hold to a sufficient approximation. However, the major 

disadvantage of this model is that from the nature of its source data it estimates values of u~ that 
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contain contributions from both internal fluctuations and partially "filtered" random meandering (a 

portion of meandering processes related to very large time scales is "cut off" as the measurements are 

typically lhr averages). Actually, Fackrell and Robins (1982ab), commenting on the data on which 

the model is based, say that their analysis "shows meandering to be the main source of fluctuations." 

This fact about the model does not allow its application to situations where only internal fluctuations 

effects must be considered, as, for example, in modeling nonlinear chemical processes in plumes. 

Far downwind however, where internal fluctuations dominate the value of u; the model could be an 

acceptable scheme for such applications. 
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APPENDIX A5.S 

A New, Simple, Model 

fo:r the Probability Density 

of Instantaneous Plume Concentrations 

The (experimentally supported) lognormality of instantaneous plume concentrations in the me

andering frame of reference can be directly combined with the closed form solutions that we now have 

available for both (c,.) (the Gaussian type formulas) and u;,. (from the LPF model), to produce pdf 

curves fo:r the concentration, at each point inside the instantaneous plume. Indeed, the parameters of 

the log normal pdf 

(A5.3 -1) 

are directly :related to (c,.), u~,., at each point, through 

1 

( 2 ') µL = 2ln(c,.)- iln (c,.) +u;,. (A5.3 - 2) 

u£ = ln ((c,.) 2 +u;,.)- 2ln(c,.) (A5.S - S) 

Thus, substituting (A5.3-2), (A5.3-3) in (A5.3-1), one has pf(C) as a function of position (relative to 

the moving frame) inside the instantaneous plume: 

For :ranges of the downwind distance x where the profiles of (c,.) and u;,. are self-similar pf 

becomes independent of x with the introduction of the transformation 

c x .. =--
(co),. 

(A5.3 - 4) 

where (co),. is the expected concentration at the instantaneous centerline. Then 

pf (x,.; y,., z,.) = (co),.pf C::),.; x, y,., z,.) (A5.3 - 5) 

Introducing the relations (5.2-12) (Chapter 5) one obtains 

pf(x,.;P) = 1 2 exp - 12 2 

{ 

[In (x,....j/2+g)] 2

} 

V21Tx,. ln ( Lp) 2 (in ( i;µ)] 
(A5.S - 6) 
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where f (r), g(r) a.re estimated through the Gaussian and the LPF Models respectively (Chapter 5, 

Section 5.S). For this choice of f and g the form of the resulting pdf is shown in Figure A5.S-

1 at dimensionless distances r = 0, 0.5, 1.0 and 2.5 from the instantaneous plume centerline. The 

parameters used to calculate g are the "most typical ones" (i.e., p = 0.5, Ai = 1.5) and a centerline 

value of g of order unity is assumed. The figure shows the increasing probability of near-zero Xri and 

the corresponding movement of the mode of the distribution, equal to exp(µL - oJ,), towards zero, as 

one moves from the centerline to the edges of the instantaneous plume. 

The rate of the relative dispersion process (i.e., the value of the exponent p) is the most important 

factor in determining the shape of the pdf at a given dimensionless distance from the centerline. This 

results from the fact that the overall production of fluctuations up to a given downwind distance is an 

increasing function of p. So, intuitively, one expects the resulting pdf to show "increasing randomness" 

for the values Xr for increasing p. This indeed appears in Figure A5.S-2 where the pdf at r = 0.0 is 

shown for the three different values that, according to the theory of two-particle dispersion, are assumed 

by the exponent pat the different stages of dispersion, i.e., p = 1.0, 1.5, and 0.5. For increasing p the 

tails of the pdf cover more extensive area in the p~ - Xr graph and values of Xr very close to zero (as 

well as values Xr ::> 1) become more probable than for lower p. If p could approach zero the most 

probable values of x .. would occur in the vicinity of its deterministic expected value. 

The LPF model parameters w has an effect that is roughly the opposite of p. Figure A5.S-S shows 

the effect of changing the value of w on the pdf at the centerline. Low values of w result in increased 

randomness and the probability of near zero values of Xr rises. For larger values of w the pdf mode 

moves towards the expected centerline value (Xr = 1) and for w-+ 1 the pdfreduces to a delta function 

at x.- = 1 (since for this value of w the LPF model "places" the production of fluctuations exactly 

at the point where the calculation is performed, thus no fluctuations have diffused to the centerline). 

These results are easily extended to the behavior of the pdf at points not on the centerline. It must be 

made clear at this point that, whereas the dependence of the pdf on the value of p reflects the physical 

mechanism by which fluctuations are produced and transported, the respective dependence on the 

values of w results simply from the structure of the LPF model and the artificial description of the 

physical processes embodied in it. Knowledge of this dependence, however, allows the proper choice 

and adjustment of this parameter for a given physical situation when some experimental information 

regarding the pdf is available. 

The general convolution relation (A5.1-8) can now be used for the estimation of probability 

densities for the instantaneous concentration C observed with respect to a fixed frame of reference. 

For convenience we define the dimensionless fixed frame concentration at (x, y, z) by 
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Figure A5.3-1 

Probability Pr of the instantaneous dimensionless concentration Xr 

in the meandering frame of reference 

at dimensionless crosswind distances r/u = 0.0, 0.5, 1.0, 2.5 from the instant. centerline 
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(Notice that the concentration scale addopted above is again the expected concentration at the in

stantaneous centerline and not at the mean centerline.) 

To apply (A5.1-8) we consider for simplicity the isotropic case with relative dispersion parameters 

By = a., =a and meandering parameters my = m,, = m. Then, for Gaussian P1;(bu 1 b.,) it can be 

shown that (A5.1-8} becomes 

1 f 00 [2" ( fJ2) pL(x;R)=
2

1l"lo lo Bexp - 2 p~(x;R,B,ef>)def>dB (A5.3 - 8) 

where 

Jb~+b~ yy2+z2 
B= ,R=--m m 

and the argument f of f, g is 

Thus, (A5.3-8) gives the pdf of instantaneous concentrations in plumes relative to a fixed frame, 

at the dimensionless distance R, accounting for both the effects of meandering and internal plume 

fluctuations. 

The estimates provided by (A5.3-8) can be compared directly to the results of Gifford's (1959) 

fluctuating plume model where all the randomness in the concentration field is attributed exclusively 

to the process of meandering. In the case of Gifford's model the pdf of instantaneous concentrations 

in the moving frame corresponds to a delta function located at the expected value of C (since in this 

frame the concentration is assumed equal to its expected value in all realizations): 

(A5.3 - 9) 

For this (most ideal) choice of Pr equation (A5.3-8) can be integrated analytically to give, for 

isotropic dispersion and unbounded atmosphere, 

(A5.3 -10) 

This relation on the mean centerline reduces to 

( 
8 )2 2 P6(x; .R = o) = m x<•fml -1 (A5.3 -11) 

The above equations, directly derived through the present formalism, are exactly the classical 

results of Gifford (1959). 
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Figures A5.3-4 and A5.3-5 show the estimates of the cl11.Ssic fluctuating plume model and of the 

combined lognormal internai pdf-fiuctuating plume model, with parameters provided by the LPF 

formulation, for m/ a = 2.0 and m/ a = 1, respectively, on the mean plume centerline. As expected, 

the integrated model "adds randomness" to the concentration characteristics predicted by the simple 

fluctuating plume model for m/ a = 2.0, thus giving higher probabilities for near-zero values of x 
and reducing the probabilities for near-expected (x = 1) values. The effect is more pronounced as 

m/ a --+ 1.0; for m = a Gifford's model gives equal probability to all values of X· Clearly in this limit 

the internal fluctuations are dominant in determining the probabilistic characteristics of the plume 

concentration field, and Gifford's model is insufficient. For a ~ m the LPF model can be used to 

predict total randomness on a "stand alone" b11.Sis. 

References 

for Appendix A5.3 

Gifford, F.A. (1959) "Statistical Properties of a Fluctuating Plume Dispersion Model," in Adv. m 

Geophys., 6, 117-137 
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in the fixed frame of reference on the mean centerline for m/ a = 2 
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CHAPTER 6 

Chapter 6 contains 

• an introduction to the formal description of fluid particle dispersion (in both 

inertial and non-inertial frames) via stochastic and deterministic Green's func

tions, 

• a discussion of the modified A.D.E. in relation to other dispersion models, 

• a review of time-domain methods for determining relative dispersion parame

ters (including similarity analysis, Langevin equation methods and conditioned 

motion methods), 

• a discussion of spectral methods for determining relative dispersion parameters 

and presentation of an iterative fi.ltering algorithm that utilizes observed atmospheric 

spectra for this objective. 
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CHAPTER 6 

PARAMETERIZATION 

OF RELATIVE DISPERSION 

6.1 INTRODUCTION 

This chapter discusses some aspects, both formal and practical, of the multi-scale 

turbulent dispersion problem, as it appears in the overall reactive plume phenomenon. 

The treatment of dispersion adopted in the TRPM formulation is explained here in 

more detail than this was done in Chapter 2. 

The present chapter is intended as a tutorial introduction to the subjects of 

absolute and relative diffusion (in particular atmospheric), and a brief review of the 

various modeling approaches in the area, which cover an enormous range, from simple 

dimensional and similarity analyses, to sophisticated formulations involving complex 

numerical schemes and methods of functional analysis.("') What we intend to do here 

is, in parallel to presenting and discussing the formulations of the particular schemes 

proposed for use with the TRPM, to bring together and summarize various concepts 

• Among many excellent general introductions to the subject of turbulent transport we 
mention Tennekes and Lumley (1972 1 Chapters 7 and 8), Csanady (1973), Monin and 
Yaglom (1971, Section 10) and Hinze (1975, Chapter 5). Some of the more advanced 
methods of analysis are discussed in Leslie (1973, Chapters 8 and 12) and Monin and 
Yaglom (1975, Section 24). The work of Monin and Yaglom focuses in particular on 
atmospheric dispersion; for other specialized analyses of this topic see Seinfeld (1975, 
Chapter 6; 1983), Hanna et al. (1982), Pasquill and Smith (1983) and Tchen (1984ab). 
Further information directly related to the atmospheric dispersion problem can be found 
in Panchev (1971), Haugen (1973, 1975), Berlyand (1975), Vinnichenko et al. (1980), 
Nieuwstadt and von Dop (1982), Plate (1982), Randerson (1984) and Panofsky and Dut
ton (1984). 
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that are useful for a better understanding of these formulations, the conditions for 

their validity, and their relation to other approaches. Thus this chapter should be 

seen not only as an elaboration on a particular component of the TRPM but also as 

a guide to the relative dispersion literature, linking ideas and methods that can be 

found scattered in a variety of sources. 

Formally, description of dispersion in the TRPM was based on the linear stochas

tic Eulerian Mixing Operator f,M, as given by equation (1.3-4), whose "ensemble 

mean action" (equation (1.3-7)) was approximated by the action of the "modified 

K-theory operator" ..C'W(·) (also linear), given by equation (2.3-2), on the mean con

centration field (c). 

These operators were assumed capable of describing dispersion in a frame of 

reference following the meandering motion of the plume centerline. Some further 

discussion is needed on this point, which may be a source of confusion. Our ap

proach is Lagrangian, in the sense this term has been used to describe a certain class 

of air pollution models (trajectory models) but at a scale smaller than relevant to 

those models. To make this more clear we must emphasize the fact that the term 

"Lagrangian description" is in general used in a very loose manner in air pollution 

modeling. In fact, in the trajectory models mentioned above the "Lagrangian descrip

tion" concept applies only to the process of advection by the mean wind and not to 

random movements caused by the smaller scales of atmospheric motion. Turbulent 

transport processes inside the large scale (macroscopic) control volume (between the 

different computational cells) that follows the trajectory are most often described in 

Eulerian terms in these models, typically through conventional K theory (see, e.g., 

Appendix Al.2) with all the subsequent limitations (see, e.g., Corrsin, 1974). Thus 

these models are essentially hybrid formulations. (The governing equations in the 

moving frame are Eulerian equations with transformed coordinates.) A "fully" La

grangian description of an advection-dispersion field would be formulated in terms 

of fluid particles (see also Chapter 4) and would necessarily be statistical in nature. 

{This kind of approach would perhaps conform better to the essense of Lagrangian 
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methodology of continuum mechanics, which focuses on the kinematics and dynamics 

of material points rather than on finite control volumes and their infinitesimal limit

ing approximations to describe processes in continua). However, the whole problem is 

essentially one of terminology and semantics and as long as the concepts and assump

tions involved are clearly identified there should not be confusion in using the term 

"Lagrangian methodology" either to refer to the description in terms of fluid particles, 

which are subject to the entire spectrum of motions existing in the field under obser

vation, or to the formulation of transport-balance equations in a frame of reference 

that moves along some, appropriately defined "mean fl.ow." We could call these two 

descriptions "micro-Lagrangian" and "macr<rLagrangian" respectively, understand

ing that the latter might be a hybrid approach; then the dispersion scheme of the 

TRPM could be called a "meso-Lagrangian" hybrid description (not to be confused, 

of course, with meso-scale air pollution models) in the following sense: the moving 

frame of reference follows not only the "mean" flow but is also affected by an addi

tional portion of the velocity spectrum (of higher frequency than what is included in 

the estimation of mean velocities), i.e., the portion that "causes plume meandering." 

The effects of this portion of the spectrum can only be estimated in a probabilistic 

fashion. In this frame one can form Eulerian type equations accounting for trans

port due to the rest ("unused") portion of the motion spectrum. Nevertheless, we 

will not adopt any further use of the macro-, meso- and micro- prefixes neologism to 

discriminate between different Lagrangian methodologies, hoping that the concept of 

the advected-meanderingframe (with the axes always parallel to fixed directions) has 

been sufficiently clarified. 

A final question (that has already been addressed in earlier chapters) in under 

what conditions does the fixed frame form of the mixing operator (in either its stochas

tic original version or in any approximate form that results from closure) remain a 

valid representation in the advected-meandering frame. A similar question appears 

in Lagrangian Trajectory model formulation (see Liu and Seinfeld, 1975) where the 

ADE is assumed valid, in its fixed frame form, in the transformed coordinates. There 
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the answer is obtained by examining the equations resulting from a straightforward 

Galilean transformation of coordinates. The requirement is that the local curvature 

of the plume centerline is locally small. This limitation exists also in our approach as 

far as the mean centerline trajectory, determined mainly by buoyancy effects, is con

cerned; however one should expect the above requirement not to be violated except 

in extreme cases. 

Hence the main question here is: what is the effect of the random meandering 

motions of the moving reference frame? This question is discussed in Section 6.3 where 

we justify the assumption that, at least for homogeneous and stationary turbulene, 

these motions should not affect the form of the mixing operator (although of course 

they alter its parameters). 

In the following we proceed in a more detailed analysis of the relative dispersion 

and meandering concepts and of the modified ADE model. 
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6.2 BASIC LAGRANGIAN CONCEPTS 

AND FLUID PARTICLE DISPERSION 

6.2.1 Lagrangian Methods 

Proceeding from the stochastic representation of the mixing operator (1.3-5) to 

the 1st order (non-local) closure scheme given by equation (2.3-2), involving coef

ficients that depend on dispersion time, cannot be justified on a strictly Eulerian 

basis (via, e.g., a conventional mixing length-gradient transport hypothesis). This 

would result to a local, dispersion-time independent, scheme, i.e. a differential equa

tion model with eddy diffusivities that are properties of the flow field and not of 

the particular dispersion process. Furthermore, the associated practical problem of 

estimating the appropriate values of the plume dispersion parameters and the re

lated diffusivities in terms of statistical characteristics of the velocity field represents 

another essential aspect of the modeling scheme for dispersion. 

Having set the a priori requirement that the operational form of the dispersion 

model adopted by the TRPM should be at the level of the complexity of the ADE, in 

combination with the necessity to account for the non-local character of dispersion, 

leads us to consideration of Lagrangian schemes. Indeed, the Lagrangian descrip

tion of dispersion (the term to be exclusively associated in the following with the 

representation of flow in terms of fluid particles) inherently offers a more general 

perspective in a first order description of the phenomenon than a straightforward 

Eulerian formulation. 

The statistical fluid particle description of turbulent dispersion, originated by 

Taylor (1921), has been pursued via three major approaches. 

(a) In the direct kinematic approach, that follows the original analysis by Taylor, the 

moments of the displacement of a fluid particle are related kinematically to the La

grangian velocity correlation functions. Since typically Eulerian and not Lagrangian 
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correlations are more conveniently measured and are available, the basic fundamen

tal problem encountered in this approach is the derivation of the Lagrangian velocity 

correlation from the respective Eulerian function. Although the original exact anal

ysis was limited to the case of homogeneous stationary turbulence, the kinematic 

approach has been extended over the years to approximate various more realistic 

situations (see, e.g., Pasquill and Smith, 1983; Hunt, 1985). A point that needs to 

be mentioned here (and on which we will further elaborate in Section 6.5) is that 

applying the direct approach in the frequency (or wavenumber) rather than in the 

time domain, and the consequent use of spectra instead of correlations, offers some 

advantages, both conceptual and computational, that ca...'l. facilitate relative dispersion 

parameters estimation. 

(b) In the second approach, originated by Batchelor (1949, 1952), one tries to deter

mine the transition probability densities of the fluid particles positions, to be briefly 

referred to as transition functions in the following. Originally this was done on the 

basis of dimensional and similarity analysis, and it was thus limited to idealized flow 

fields. From the perspective of current research the essence of this approach is to 

construct a "master" equation that gives the evolution of the transition function 

in space and time. From a practical standpoint what is necessary is to reduce the 

master equation into a tractable form on the basis of reasonable assumptions and, 

finally, express it in terms of Eulerian velocity correlation functions. A derivation 

of the form of the master equation that most closely resembles the A.D.E., namely 

the Fokker-Planck equation, can be found in Seinfeld (1975, Section 6.2.4), the anal

ysis there being in terms of an appropriate ensemble mean concentration (instead 

of the equivalent transition function). One should mention here that according to 

the independence approximation (Corrsin, 1959), to be discussed in the following, 

the Lagrangian-Eulerian transformation requires the determination of a weighting 

function, which is equivalent to the transition function. 

(c) The third approach conceptually lies between the two others mentioned above. 

It is based on the use of Langevin equations for the fluid particles velocities and 
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although it is more narrow in perspective than the general transition function methods 

("') it seems able to provide more directly simple results relevant to both absolute 

and relative dispersion providing at the same time conceptually simple models for 

these processes. This approach was originated by Obukhov (1949) and currently 

receives revived interest, in particular in connection with relative dispersion models 

(see Sections 6.42, 6.4.3). 

In the presentation that follows we will first briefly review some fundamental 

concepts related to the approaches outlined in the preceding paragraphs and also 

introduce the problem of relative dispersion. In the following sections we will use 

this information, first to examine the transition function approach in order to explain 

where the modified ADE adopted in the TRPM formulation (essentially of course a 

Fokker-Planck equation) stands conceptually in this general Lagrangian framework, 

and what assumptions are involved in its construction, and then to treat the practical 

aspect of relative dispersion parameters estimation. 

6.2.2 Fundamental Concepts and Definitions 

Let x = (xi,x2,x3), u = (u1,u2,u3) be the Eulerian coordinates and velocities 

in the flow field under consideration and y = (yi,y2,y3), v = (v1,v2,v3) the corre

sponding Lagrangian (fluid particle) quantities. An elegant method of defining u and 

v fields is to consider them as special cases of a generalized or Kraichnanian velocity 

field w (see Leslie, 1973). The Kraichnanian velocity w (tlx,t*) is defined as the 

velocity at time t of fluid particle that was at x at time t* (t is called the measuring 

time and t'" the labelling time). Then the Eulerian velocity is identified with w for 

t = t•: 

u (x, t) = w (tlx, t) (6.2 - 1) 

* In fact this approach, in its most common form, is equivalent to a Fokker-Planck equation 
governing the transition function of the derivatives of the fluid particles positions (i.e. 
the Lagrangian velocities). For a brief but very informative discussion of the relationship 
between the Fokker-Planck and Langevin equations methods of description of random 
processes see van Kampen (1981, Chapter VIII) 
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and the Lagrangian velocity is identified with w fort> t* with t"' =to (and x = x 0 ): 

v (xo, t) = w (tlxo, to) (6.2 - 2) 

The assumptions regarding the nature and properties of the fluid particles in a 

general Lagrangian analysis may vary widely. In the present study we consider for 

simplicity "ideal volume fluid particles" (see also Chapter 4) and ignore any transfor

mations on the identity of these particles that may be due to molecular level processes. 

If we assume that the differential volume element dx3 "surrounding" the position co

ordinates x can be "occupied" by one particle only at a time, we can view these 

particles "marked" (or uniquely identified) by their position in Eulerian coordinates 

at some fixed labelling time instant to. However this would be inconsistent with the 

concept of the ideal instantaneous point source. To avoid further elaboration of this 

point here (and of the associated need to properly define continuity requirements) we 

proceed as follows: 

Suppose that during the total period of observation (say from time 0 tot) a total 

number of N marked particles each carrying mass m of some given species, has been 

introduced (and remains) into the continuum field under consideration and each one 

is assigned an abstract "identity number" k = 1, 2, ... , N (which remains unchanged 

through the entire "life" of the fluid particle). If the particle with "identity number 

k" was at Xo at time t0 ("'), then its Lagrangian position vector will be denoted by 

the equivalent notation 

Y (:xo, t) = Y (tJ:xo, to) = y(k) (t) 

Two points are worthy of mentioning here: 

(a) Different initial sets of assumptions regarding the fluid particle concept may be 

more useful in specific situations. Thus for example one may want to apply the 

"' A more precise expression of this statement would be: "in the differential volume element 
surrounding the coordinate vector," but in the following we will avoid these rather tedious 
clarifications assuming that the meaning of statements like this a.re obvious. 
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Lagrangian analysis to the case where an arbitrary number of fluid particles can 

simultaneously occupy the same position coordinates, a condition that may be con

venient when one wants to model interactions between the fluid particles, or one 

may consider volume particles (see Chapter 4) that after any finite time interval since 

their introduction in the fl.ow field they obey conventional volume and mass continuity 

constraints. 

(b) The principles of the analysis to be presented here are valid if other properties of 

the fluid particle - such as e.g. chemical composition, temperature etc. - besides its 

spatial-temporal coordinates are taken into account. These properties can be viewed 

as additional coordinates in which case the Lagrangian position vector y wiil follow 

the evolution path of the particle in an extended configuration space that incorporates 

these properties as extra dimensions. The only such property that we are going to 

use in the present analysis is the age of the fluid particle, i.e. the time elapsed since 

its introduction in the flow field. Identifying the subset of all particles with the same 

age is useful not only in dealing with instantaneous releases but also with respect to 

continuous releases where advection dominates turbulent diffusion in the downstream 

direction. 

Now, having the possibility of the aforementioned generalization of the present 

analysis in mind, we return to the more standard version of the problem. 

The stepping stone for 

(i) a formal development of the transition function approach and, 

(ii) establishing and understanding the relationship between Eulerian and Lagrangian 

methodologies, 

is the introduction of the quantity 

'lfi (x, tJxo, to) = tfi(k) (x, t) = 8 [x - y (xo, t)] (6.2 - 3) 

subject to the initial condition 

'lfi (x, tJxo, to) = 8 (x - xo) (6.2 - 3a) 
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which can be identified with 

e the fundamental "conservative characteristic" of Monin and Yaglom (1971, p. 

534), 

e the "Lagrangian position function" of Leslie (1973) (see also Batchelor, 1952), 

• the "microdistribution" or "instantaneous transition function" of Jiang (1985), 

• the "stochastic Green's function" of Adomian (1963, 1983) employed by Seinfeld 

(1983) in the description of turbulent dispersion, 

and is also conceptually identical to 

• the "fine grained density function" of quantum statistical mechanics that has also 

been employed in studies of turbulent fluid mechanical phenomena (Lundgren, 

1967; O'Brien, 1980) 

(There are other terms that are also appropriate for t/J- e.g., stochastic Euclidean 

propagator, stochastic resolvent kernel, etc.). 

Some comments are necessary at this point regarding the nature of 'ljJ (:x:, t J:x:o, to). 

This quantity is a function of the position variable :x: and a functional of the random 

field y (:x:0 , t), depending on the structure of the entire ensemble of values y can 

assume. Consider a fixed value of :x:, say XF and fix (:x:o, t). Then 'ljJ (:x:F, tJ:x:o, to) 

is zero if y (:x:0 , t) =j=. XF in any one realization of the random field y and infinite if 

y ( :x:0 , t) = XF. For a given realization 'ljJ has all the properties of a pdf, including 

normalization since 

f t/J (:x:,tlxo,to) dx = l 

by the definition of the delta function. 

Also then-th moment of:x: is by direct calculation equal to t/J"' (:x:0 ,t) for all n. In 

other words, the fine grained density or microdistribution is a device through which 

each and every realization of the random field can be expressed in a pdf-like manner. 

However it must be realized that it is a generalized and not an ordinary function. 

Now, appropriate averaging of 'ljJ (:x:, tJ:x:0 , t 0 ) leads to the rational construction of 

various quantities employed in the analysis of turbulent dispersion: 
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(I) Averaging 'ljJ (x, tlxo, t0 ) over all possible starting positions (xo, to) (i.e. averaging 

over all partides k) for arbitrary but fixed (x, t) produces a random function of (x, t), 

'ljJ (x,t) 

-( ) _ J J 'If! (x, tlxo, to) dxodto 
'ljJ x,t - J J dxodto (6.2 - 4a) 

or 
1 N 

'If! (x,t) =NL 'lf!(k) (x,t) 
k=l 

(6.2 - 4b) 

that can be identified with the random fluid particle concentration (and within an 

appropriate factor that accounts for the dimensions involved in the definition of con

centration used) with mass or molar concentration. Thus, in the idealized case under 

consideration, the random instantaneous mass concentration at (x, t) will be 

c (x,t) = Nm'lf! (x,t) 

When the particular random realization corresponding to a random value of (x, t) 

(i.e. for a given random choice of (x, t)) is to be specified, say through an index o:, 

we will use the left subscript notation 

'ljJ (x, t) = o:'lf! (x, t) 

Nevertheless, it must be clear that (even when this notation is not employed) 'If! (x, t) 

is different for every realization of the turbulent field. 

(II) Ensemble averaging 'If! (x, t) over all possible realizations of the dispersion field 

(essentially over the ensembles of y-trajectories corresponding to all initial (xo, to)) 

produces the probability density function that a fluid particle (i.e. any fluid particle) 

will be at x at time t, which is equivalent to the ensemble mean (number) concen

tration of fluid particles at (x, t). The corresponding mean mass concentration will 

be 

(c(x,t)) = Nm\'lf!(x,t)) 
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(III) Ensemble averaging t/J (x, tJxo, to) for fixed (xo, to) produces the deterministic 

transition probability function G, giving the probability that a fluid particle, starting 

from x 0 at time to will be at x at time t: 

G (x, tJxo, to) = (t/; (x, tJxo, to)) (6.2 - 5) 

G is of course the (conventional) Green's function for the forward diffusion of the 

mean concentration field. Similarly, ensemble averaging t/J (x, tlxo, to) for fixed (x, t) 

(i.e. over all trajectories passing from x at time t) produces the Green's function for 

backward or reversed diffusion, G ( Xo, to Jx, t). 

Thus, when we have adequate information about t/J we can (in principle) solve 

the one particle dispersion problem completely. The dynamics of of t/J (x, tJx0 , t0 ) are 

governed by .the generalized conservation (Liouville) equation (*) 

{ f)~• + wi (tJx, t") f)~i} t/J (x, tJxo, t*) = 0 

which has the following Eulerian (t = t") form 

{ :t + u,- (x, t) f)~i} t/J (x, tJx, t) = O 

and the following Lagrangian form (t* =to= const) f) 
v,- (xo,t) ax. t/J (x,tJxo,to) = 0 

1 

(6.2 - 6) 

(6.2 - 6a) 

(6.2 - 6b) 

Thus the essence of "approach (b )" of Section 6.2.1 is to introduce appropriate closure 

approximations in (6.2-6a) in order to finally derive a solvable master equation for G 

(see Section 6.3.2). 

Knowledge of G allows direct calculation of the mean concentration field (c) at 

(x, t), given its spatial distribution at t', as long as this is affected solely by linear 

processes, through the "fundamental Lagrangian theorem" 

(c (x, t)) = f G (x, t[x', t') (c (x', t')) exp [-1,t k (t") dt"] dx' + 

• We note here that in more complicated Lagrangian models, that incorporate interactions 
between the fluid particles, the dynamics of the instantaneous transition function will be 
governed by appropriate extensions of the Liouville equation, analogous to the Janossy 
equations described in Srinivasan (1969). 
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+/ t G(x,tJx',t") S(x',t")exp [-ft k(t"')dt"'] dt"dx' J t' J t" 
(6.2 - 7) 

where S represents the spatial-temporal distribution of sources and k the rate of 

linear removal of the species with mean concentration (c). 

At this point a digression is needed in order to clarify that, formally, the above 

equation must be written in terms of the Green's function for backward diffusion, i.e. 

with the point (x, t) determing the constraint of the conditional density, as realized 

by Corrsin (1952) - see also Tennekes and Lumley, (1972, p.236). Nevertheless, for 

homogeneous-stationary turbulence, i.e. for the case to which most of the theoretical 

knowledge on turbulent dispersion is typically confined (and the starting approxima

tion for more realistic descriptions), 

G(x,tJxo,to) = G(x0 ,toJx,t) 

as it was formally proved by Corrsin (1972) twenty years later. Thus the above 

requirement becomes a matter of notation rather than of substance; the same however 

is not true with regard to many-particle transition functions and the estimation of 

higher concentration moments (see relevant discussion later in the present subsection). 

Another important point is that G also provides the connection between the 

Lagrangian methodology and the approaches (typically Eulerian) that result directly 

in some governing equation for (c). Indeed if G and (c) are related through (6.2-7), 

and G is governed by 

(6.2 - 7a) 

where .C is an arbitrary linear operator, then (c) must obey the equation 

a~;)+ .c (c) + k (t) (c) = s (x,t) (6.2 -1b) 

At this point it is useful to introduce the Eulerian space-time and the Lagrangian 

temporal velocity correlation functions (tensors), whose elements for stationary and 

homogeneous turbulence are 

R~ (x - xo, t - to) = (ui (x, t) Uj (x0 , t)) 
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Rf; (t - toJxo) =Rf; (t - to) =Rt· (r) = (vi (xo, t) v; (xo, to)) 

(Typically the turbulent velocity fluctuations about the corresponding ensemble mean 

values are used in these definitions.) Now, the formal relation between RZ and R{;
can be obtained by writing Rf;- as 

Rf; (t - to)= (ui(x = y (xo,t) ,t) u; (xo,to)) = 

= f (ui (x, t) u; (xo, t) 6 [x -y (x0, t)]) = dx 

= f (ui(x,t) u; (xo,t) .,P (x,tJx0 ,t0 )) dx (6.2 - 8) 

The above equation reduces to an "applicable" form through a hypothesis intro

duced by Corrsin (1959, p.162), and known as "Corrsin's coniecture" or "independence 

hypothesis," which, in the present framework of analysis, can essentially be stated as 

(ui(x, t) u; (xo, t) ¢ (x, tJxo, to)) = (ui(x, t) u; (xo, t)) (¢ (x, tJxo, to)) (6.2 - 9) 

The conditions under which this hypothesis should be valid, as well as corrections for 

other conditions, have been studied and discussed by Weinstock (1976). 

Introducing (6.2-9) in (6.2-8} one has 

Rf; (t - to) = J RZ (x - xo, t - to) G (x - xo, t - to) dx (6.2 - 10) 

From a practical viewpoint the applicability of (6.2-10) is limited by our lack of knowl

edge about G; in fact the most straightforward methods available for theoretically 

predicting Gare based on an a priori knowledge of Rf;-. 
Finally, to complete this summary of basic concepts, we mention that two-particle 

(and many-particle) stochastic (and deterministic) Green's functions are similarly 

defined: 

¢ (x< 1 >,t1;x<2>,t2Jx~1 >,to1;x~2>,to2) = 

= 6 [x<1
> -y (tJx~1 >,to1) ;x<2

> -y (tlx~2>,to2)] 
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G ( (1) t . <2> I <1> . c2> t ) - (·'· ( <1> t . c2> t I <1> t . <2> t ) ) x , i,x ,t2 x 0 ,to1,x0 , 02 - ¥' x , 1,x , 2 x 0 , oi,x0 , 02 

However the use of many-particle Green's functions (e.g., for the calculation of two

point covariances of concentration through equations similar to (6.2-7)) is associated 

with some subtle problems, relevant to the concept of backward diffusion, that have 

often been neglected in atmospheric dispersion modeling (see Sawford, 1983b, for 

a relevant discussion). Indeed, contrary to what holds for single-particle transition 

functions, for the corresponding two-particle functions one has 

G ( (1) t . (2) I (1) t . (2) t ) _/.. G ( (1) t . (2) t I (1) t . (2) t ) x , i,x ,t2 x 0 , 01,x0 , 02 / x 0 , oi,x0 , 02 x , i,x , 2 

even for homogeneous-stationary turbulence. However, in connection to relative dis

persion, that can be directly seen as a two-particle problem, these subtleties are 

more relevant to modeling higher order moments, whereas mean concentrations re

quire only appropriate "distance-neighbour" functions - to be discussed later - that 

are obtained through integration of the two-particle transition functions. Thus, by 

examining dispersion relative to the meandering center of mass, we essentially use 

always single-particle Green's functions. 

6.2.3 Fixed and Meandering Frame Representations: 

Position Moments and Relative Dispersion 

We now proceed to define and discuss some quantities that are essential in the 

description of relative or two-particle turbulent dispersion (equivalently dispersion 

with respect to the center of mass of dispersion or with respect to a meandering 

frame). Use of the stochastic and deterministic functions defined in the previous 

section allows a formal construction of these definitions. For simplicity we confine 

attention to instantaneous releases("'), or, equivalently, to subsets of particles that 

* A continuous release will be viewed as a sequence of instantaneous releases. For a (slen
der) atmospheric plume in particular, where dispersion is negligible compared to advec
tion in the direction of the mean wind, every cross-section of the plume perpendicular to 
its centerline (of differential thickness) can be seen as the result of such an instantaneous 
release. 
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have the same age. Without any loss of generality we set Xo = O, to= 0 (and assume 

this impiidtly included in the definitions that follow). 

(I) The position of the center of mass of the marked fluid particles in any instanta

neous (say the a-th) realization of the dispersion field will be 

aY (t) = f a'l/J (x, t) xdx (6.2 - 11) 

Clearly this quantity is a random function of time. An alternative interpretation of 

aY (t) is that of the random spatial average position of any single fluid particle in the 

a-th realization. 

(II) The ensemble average position of the center of mass of all fluid particles at time 

t (i.e. averaged over all possible positions of all fluid particles) will be 

(y(t)) = J x('l/J(x,t))dx (6.2 - 12a) 

i.e. 

(y (t)) = J xG (x, t) dx (6.2 -12b) 

When there is no mean fl.ow (or if we consider an inertial coordinate system that 

follows the mean flow) {y ( t)) = 0. 

At this point we introduce the following definitions: 

• Absolute Diffusion is diffusion with respect to {y (t)), i.e. with respect to a 

frame of reference with axes that remain parallel to fixed directions and origin 

that follows (y (t)). Since, for steady mean flow, motion in this frame is given 

by a straightforward Galilean transformation of the corresponding motion with 

respect to a frame fixed to the ground, we may use the term "fixed frame rep

resentation" for the description of turbulent dispersion in this frame. A more 

exact term is "'determin£stic :'nertial frame representatfon." Here the term "de

terministic" has been used to discriminate from the representation with respect to 

ensembles of inertial frames, each frame moving with constant velocity randomly 
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selected from an appropriate set. This description constitutes a conceptually 

subtle but very important approach that will be discussed later, in Section 6.4.2. 

o Relative Diffusion is diffusion with respect to the (random) aY (t), i.e. with 

respect to a frame of reference with axes that remain parallel to fixed directions 

and origin that follows the random motion of aY (t). This is a "meandering" 

or "non-inertial" frame (undergoing random accelerations). (In the following 

we will further discuss the terms "two-particle dispersion", "puff" or "cluster" 

dispersion and "conditioned dispersion".) 

(III) The "extent of dispersion" of the systems of fluid particles, in the non-inertial 

and inertial frames of reference, will be described by: 

(IIIa) a dy°:dic (2nd order tensor) of instantaneous weighted deviations from the 

(instantaneous) center of mass (of course these deviations will be stochastic variables) 

(6.2 - 13a) 

(Note the use of the indefinite or dyadic product of the deviation vectors in the above 

definition). 

Now, let 

r = X - aY (t) 

and let y(R) be defined exactly as y but in the system of r-coordinates (i.e. y(R) is 

the position vector of the fluid particle in the meandering frame of reference). Then 

( [ E~f)]) = J rr ( 1/J (x, t)) dx = 

= j rr ( 1/J (r + J 1/J (x, t) xdx, t)) dr 

We define 

(6.2 -13b) 

(compare Monin and Yaglom, 1975, eq.24.56), to be discussed in the following sec

tions, and 

(6.2 - 13c) 
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(IIIb) a dyadic of standard deviations from the ensemble average center of mass (a 

deterministic tensor) 

[Eij] = / (x - (Y(t))) (x - (y(t))) (t/J (x,t)) dx = 

[Ei;] = / (x - (Y (t)) )(x - (Y (t))) G (x, t) dx (6.2 - 14a) 

Thus, when the reference frame is chosen so that (y(t)) = O, as is typically done for 

the definition of Eij, 

[E,;;] = (yy) (6.2 - 14b) 

From definition (6.2-13a) now follows that 

[ - (R)] I -°' Eij = atP (x, t) X 

X [(x- (y(t))) (x - (y(t))) - (aY(t) - (Y(t))) (aY(t) - (y(t)))] dx 

and, after ensemble averaging, 

or 

where 

[ E~r>J = ((aY (t) - (Y (t))) (aY (t) - (Y (t)) )) 

or, for (Y ( t)) = 0 

(6.2 -15) 

(6.2 - 16a) 

(6.2 - 16b) 

In other words expression (6.2-15) states that each element of the variance tensor 

of the ensemble of positions of all the fluid particles is equal to the ensemble average 

of the corresponding element of the tensor of instantaneous spatial variances from 

the instantaneous center of mass plus an ensemble mean square deviation of the 

individual centers of mass of possible realizations from the ensemble average center of 
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mass. More simply, the above states that total (i.e. absolute) dispersion is the "sum" 

of relative dispersion and meandering.(*) The situation discussed in the preceding 

paragraphs is also depicted schematically in Figure 6-1. 

Typically, in atmospheric modeling, the off-diagonal elements of the above ten

sors, :Eij etc., are assumed negligible (see also Seinfeld, 1975, for the relevant discus

sion concerning K-theory applications). In the present work we have also adopted 

this assumption (nevertheless, it should be noted that the analysis of the following 

sections is not in general restricted by this approximation). Discussion of its validity 

is beyond the scope of this presentation; however, the interested reader is referred to 

Tavoularis and Corrsin (1985) for a relevant study. 

The diagonal elements of :Eij etc. will be denoted as 

(6.2 - 17a) 

(6.2 -17b) 

(6.2 - 17c) 

and are recognized as the absolute dispersion relative dispersion, and meandering 

parameters respectively. 

Two-Particle Dispersion Concepts 

and Distance-Neighbour Functions 

(or Special Transit£on Functions) 

In the preceding paragraphs relative dispersion was identified as dispersion with 

respect to the instantaneous center of mass of the system of fluid particles. Another 

description of the same process is formulated in terms of the separation of two ar

bitrary fluid particles in the instantaneous release (or two particles of the same age 

• This is true for homogeneous-stationary turbulence. In general one can also identify 
components of the total observed dispersion due to other effects, such a.11 buoyancy and 
shear (see, e.g., Pasquill, 1975; McRae et a.I., 1982). For a.n introduction to the dispersive 
action of these effects one may consult Csanady (1973) or Fischer et al. (1979) - see also 
the discussion of the kinematic analysis of dispersion in Section 6.3 for further relevant 
references. 
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Figure 6-1 
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in a continuous release). Indeed, it was first perceived by Richardson (1926), and 

exploited theoretically by Batchelor (1952), that relative diffusion is closely linked to 

the rate at which two individual fluid particles separate. The first analyses of instan

taneous dispersion were actually in terms of the probability densities of two-particle 

separations. 

The equivalence between two-particle dispersion and dispersion with respect to 

the center of mass in an instantaneous release is implicitly or explicitly assumed in 

almost all standard references of the subject of turbulence and turbulent dispersion. 

However, there are various subtle points in formally relating the statistics of the 

motion of a single pair of particles to the "observable" statistics of puffs and plumes 

that are typically attributed to relative dispersion. Many authors simply do not 

address this problem; however one can find an informative discussion of relevant 

concepts in Monin and Yaglom (1975, pp.536-584 - see in particular pp.551-555, 

577). What needs to be stressed here is that the equivalence between single pair 

motion and relative dispersion is strictly valid only for homogeneous turbulence and 

after the fluid particles have "forgotten" their initial separation (see also Fischer et 

al. 1979, p.75). 

Studying the separation of a pair of fluid particles is of course, always equiv

alent to studying the random motion of a single particle (labelled, say, #1), with 

"fixed" frame position vector y(l), in a (noninertial) reference frame Os that follows 

the random motion of another arbitrary particle ( #2) with "fixed" frame position 

vector y(2), (in the same way the meandering frame that was introduced earlier fol

lows the motion of the instantaneous center of mass). The first step towards defining 

the equivalent of the inertial frame transition function G in the Os frame (which 

of course gives the expected concentration in the random non-inertial frame Os), to 

be called Q(S), is to integrate the joint (two-particle) deterministic Green's func

tion G ( :x(l), t 1 ; :x<2>, t 2 Jx~1 ), t 01 ; x~2), t 02 ) with respect to x<2> (see also Leslie, 1973, 
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p.179). In fact, setting Xb2
) = x 0 , Xb1

) = Xo +so, x<2> = x, x(l) = x + s, we define 

(6.2 - 18) 

Thus G(2P) is the transition probability density of the two-particle separation vector, 

conditioned on the initial separation. In the special case of homogeneous-stationary 

turbulence and fluid particles of the same age (to1 = to2 = 0, t1 = t2 = t) we have 

G(2P) = G(2P) (s, tiso) 

If q (so) is the probability density of the initial separation vector, then G(S) is defined 

G(s) (s, t) = J a<2P) (s, tlso) q (so) dso (6.2 - 19) 

After sufficient time from the reiease (when initiai separations are forgotten) 

G(2P) (s, t) = G(S) (s, t) 

The dispersion process described by G(S) is typically what is called "puff" or "cluster" 

diffusion in the literature; for Monin and Yaglom (1975) this is is defined to be the 

"relative dispersion process". 

Another common approximation is that the information carried by G(s) (s, t) is 

equivalent to the information carried by G(R) (r, t), as this was defined through (6.2-

13b ). Of course G(s) is the transition probability of the position of any fluid particle 

as seen in the frame of another (arbitrary but fixed) fluid particle; this transition 

function is essentially equivalent to the distance-neighbour function introduced (in 

a less formal manner) by Richardson (1926), although this term is often attributed 

to G(2P) rather than to G(S) (e.g. Leslie, 1973). G(R) is the transition probability 

of fluid particle positions in the meandering center of mass frame. We will refer to 

G(2P), G(S) and G(R) as "special" (non-inertial frame) transition functions and focus 
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on G(R) which has been the basis for the description of instantaneous dispersion in 

the TRPM model. 

The single most important direct relationship between the Or and Os descriptions 

concerns the second order dispersion tensors in these frames. Letting y(S) be the 

position vector of any fluid particle in the Os frame one can define the second moments 

of G(S) with respect to the separation vector. The corresponding dyadic is 

(6.2 - 20a) 

or 

(6.2 - 20b) 

Straightforward calculations (Brier, 1950; Batchelor, 1952 - see also Monin and 

Yaglom, 1975, p.555) then show that 

(6.2 - 21) 

Thus, the ensemble mean-square separation in all the pairs of diffusing particles, in 

an instantaneous release, is just twice their mean square distance from the center of 

mass of this release. 

A final point to note is that in (6.2-20) E~J> is defined in terms of G(8 ) (s, t), 

which incorporates a full statistical description of the initial distribution of fluid 

particles. An alternative approach is to define a dispersion tensor EUP) that is 

conditioned on the value of the initial separation by using G(2P) (see Monin and 

Yaglom, 1975, where this approach is employed). Then 

(6.2 - 22) 
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6.3 THE MODIFIED ADE: 

DISCUSSION AND JUSTIFICATION 

The objectives of the present section are 

(i) to discuss the character of the special transition function G(R) in relation to that 

of the inertial frame G, (equivalently: the nature of the expected concentration profile 

in the random meandering frame), and 

(ii) to explain the nature of the assumptions leading to a representation of G and 

G(R), (or of the corresponding expected concentration fields) and of the differential 

evolution equations that govern these quantities, in terms of diffusivities that depend 

on diffusion time, showing also the connection of these representations to various 

common dispersion models. 

6.3.1 Fixed and Meandering Frame Representations: 

Point Releases and Green's Functions 

As it has often been repeated in this work, a fundamental assumption in the 

formulation of both the master and peripheral components of the TRPM is that the 

expected concentration fields in both a fixed and a meandering frame of reference are 

governed by (parabolic partial differential) equations of identical structure (differing 

only in the values of the diffusivities employed). In other (but equivalent) words it is 

assumed that G and G(R) are identical in form, with different parameters. We will 

discuss this assumption here, focusing first on our knowledge regarding the aforemen

tioned Green's functions for ideal situations; the general structure of the governing 

equations is discussed in the next subsections. 

Let us consider in particular a "point" release of inert material in homogeneous 

stationary turbulence. Confining attention to the common case of slender plumes, 

where downwind advection dominates turbulent dispersion in the same direction, we 

can equivalently consider the instantaneous puff problem: a cross section of the plume 
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(of differential thickness) will essentially contain all the fluid particles released from 

the source in a given differential time interval. Thus the terms Green's function and 

expected concentration (for both the fixed frame and the puff or meandering frame 

cases) can be used interchangeably. 

In the special case of homogeneous and stationary turbulence with random ve

locity components that obey Gaussian densities the inertial frame Green's functions 

G are of course Gaussian (the boundary conditions imposing appropriate finite or 

infinite combinations of Gaussian functions). This exact theoretical fact is indeed 

the first step towards the Gaussian plume approximation of actual field dispersion. 

However, even in the idealized case where G is exactly Gaussian for all times t, the 

correspondind Q(R) is not always unambiguously known. Without delving into fine 

details (for which the reader is referred to Monin and Yaglom, 1975, secs.24.2, 24.3) 

we note that the relative motion of fluid particles undergoes a sequence of stages. 

Very schematically these stages are: (i) first, a "source conditioned motion," depen

dent on the initial distribution of separations among the fluid particles, (ii) second, 

a so called "quasi-asymptotic motion" (Batchelor, 1952), where the effect of the ini

tial conditions has become negligible, but the motions of any two particles are still 

correlated, (iii) third, an "asymptotic motion," where the motions of different fluid 

particles are practically independent, and, finally, (iv) a "large scale motion," where 

the average separation between two particles becomes very large compared with the 

integral scale of turbulence and relative diffusion becomes identical to absolute diffu

sion (and of course G = Q(R)). The common A.D.E. is relevant to this final stage. 

Here our interest is mainly in stages (ii) and (iii), since, on one hand, we consider 

"point" sources and thus in general wish to avoid introducing source parameters other 

than the emissions rate in our models ("'), and, on the other hand, available obser

vations show that this stage in the atmosphere lasts for only a few seconds (see, e.g., 

Hanna et al. 1982, p.42). 

"' One must also take into account that identifying an effective initial distribution of sep
arations for an actual source is far from being a trivial matter. 
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Let us consider first the stage of asymptotic motion where the trajectories of 

different fluid particles in the puff (i.e. of same age in the plume) are statisticaly 

independent. Then, if the number N of these fluid particles is large enough (N -+ oo), 

the random trajectory of the center of mass of any N - 1 particles is practically 

identical to that of the center of mass of all N particles, and, further, this trajectory 

and that of the N-th particle are statistically independent. In other words r and y ( t) 

are independent random variables whose sum x = r+y (t) has a Gaussian probability 

density G. This however directly implies that, according to an important theorem 

due to Cramer (see Papoulis, 1965, p.222), the probability densities of y (t) and r 

(the latter being exactly Q(R)) are also Gaussian. The Gaussian character of G(R) 

for the asymptotic stage, which plays a key role in the formulation of the TRPM, was 

demonstrated here in a very straightforward manner (that-to our knowledge-has not 

appeared formally in the literature before) strictly for point releases in homogeneous 

stationary turbulence, but it can be considered a plausible approximation in more 

general cases where homogeneity and stationarity of the turbulent velocity field are 

not strongly violated (the mean concentration field is of course inhomogeneous). 

In the stage of quasi-asymptotic motion the shape of Q(R) (more commonly re

ferred to as the expected concentration distribution relative to the center of gravity 

of a cloud) has been a subject of continuing controversy. Typically it is assumed that 

for a substantial fraction of the duration of the stage of quasi-asymptotic motion the 

instantaneous dimensions of the dispersing cloud "most probably" do not exceed the 

maximum scales of the inertial subrange. Inertial subrange scaling and similarity 

analysis for locally isotropic turbulence allow for various modeling schemes that lead 

to different forms of G(R). {see also Monin and Yaglom, 1975, p.577, and Pasquill and 

Smith, 1983, p.153). Among the possible admissible models (on similarity grounds) 

the three most widely considered and discussed are essentially equivalent to semiem

pirical parabolic partial differential equations for G(R) (r, t), with eddy diffusivities 

that depend on either the dispersion time t or the distance from the center of mass 

r = lrl, or both. These are 
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• the Batchelor-Obukhov equation (see, e.g., Monin and Yaglom, 1975, secs. 24.2, 

24.3), with 

producing a Gaussian solution (that decreases at infinity as exp (-br 2 ), b being an 

appropriate constant), 

• the Richardson (1926) equation with 

producing a solution that is more steeply peaked than the Gaussian (and decreases 

at infinity as exp (-br213 ) ), and 

• the Okubo. (1962) equation with 

producing a solution that decreases at infinity as exp (-br213 ). 

(Note that the average value e of the actually fluctuating energy dissipation rate 

is used in the above equations). 

Thus, in the Batchelor-Obukhov formulation - the one leading to a linear equa

tion for Q(R) (r,t) - only statistics of the fluid particle positions in the meandering 

frame (or the two-particles separation), i.e. their variances, affect the parameters of 

the governing equations for relative dispersion, whereas in the nonlinear models these 

parameters are functions of the actual position in this frame. 

Available observations have not allowed for a definite conclusion on the superior

ity of the above schemes. Although some sets of data show excellent agreement with 

the Gaussian model (e.g. Csanady, 1966; Sullivan, 1971 - see also Figure 5-1 of the 

previous chapter) in certain cases some researchers have found a slightly better agree

ment with nonlinear models (e.g. Okubo, 1962). In view of the analytical advantages 

of the linear model, its proven validity for times beyond those of the quasi-asymptotic 

stage, and supportive observational evidence, it seems very reasonable to accept it 
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as the universal model for all dispersion times. This is in agreement with the recom

mendations of Monin and Yaglom (1975, pp. 562 and 578), and with practically all 

applied studies of instantaneous plume properties, such as Gifford's (1959) fluctuating 

plume model and Csanady's (1973) relative dispersion and fluctuations models. 

What comes as an overall conclusion of the above discussion is that (at least in the 

ideal case of homogeneous stationary turbulence examined here) assuming G (x, t) and 

G(R) (r, t) to have similar forms, and be governed by equations of similar structure, is 

a reasonable assumption. We will adopt this assumption as a first approximation for 

studying dispersion processes in more complicated turbulent fields. In the following 

we overview the most common equations that have been used to model G (most of 

which are also assumed appropriate for modeling G(R)). 

6.3.2 Master Equations 

and Practical Models 

Obtaining the analytical form of the transition function G (x, tlxo, to) or, more 

generally, deriving a governing equation (a "master equation") for this probability, 

that, under certain simplifying assumptions, can be reduced to solvable form (analyt

ically or numerically), constitutes the fundamental problem of the transition function 

Lagrangian approach.("') 

In the special case where the turbulent Lagrangian velocity field is unbounded 

and, beyond being homogeneous and stationary, is also Markovian and Gaussian 

with independent components (i.e. every component of the velocity vector is Gaus

sian and has an exponential autocorrelation: an Ornstein-Uhlenbeck process), and, 

furthermore, the fluid particle trajectories are independent, it can be directly shown, 

through kinematic considerations and the definition G =(¢),that G (x - x 0 ,t - t0 ) 

is Gaussian. The details of the proof can be found in Seinfeld (1983, pp. 218-222). 

Under the conditions where the common ADE is valid (briefly when the fluid 

"' The alternative to this theoretical determination of the transition function is of course 
to use laboratory (e.g. Willis and Deardorff, 1978, 1981) or numerical (e.g. Deardorff, 
1974; Lamb, 1978) simulations of turbulent flow fields. 
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particles motion can be seen as a discrete random walk that is a 1st order Markovian 

process with effective step lengths in space and time that are comparable to the 

Lagrangian space-time scales) G will correspond to the fundamental solution (i.e. the 

response to an impulse forcing term) of any linear form of the ADE (which is local 

in space and time). 

On smaller scales, however, the equation governing G must reflect the persistence 

of correlation over finite space and time. Batchelor and Townsend (1956, p. 360) first 

suggested that this non-localness may be best expressed by an integrodifferential 

equation. Such an equation was first derived by Bourret (1960) who generalized a 

property of a simple model of turbulent diffusion due to Taylor that assumed a finite 

Lagrangian time, i.e., a persistence of velocity correlation over the fluid particles 

trajectory. Bourret's equation uses the Lagrangian velocity autocorrelation 

Rh (t - to)= (v~ (t) vj (to)) 

and holds for homogeneous-stationary turbulence: 

BG (x,t) = 
82 t R!-. (t - t') G (x t') dt' 

Bt BxiBXj } o '3 ' 

Other general integrodifferential master equations, for both one- and two-particle 

transition functions, utilizing Eulerian velocity autocorrelations, were subsequently 

derived by Roberts (1961) who employed Kraichnan's Direct Interaction Approxima

tion to obtain closure for equation (6.2-6a).(*) Since then many interesting results 

of similar nature have been obtained, e.g., by Deissler (1961), Bourret (1962, 1965) 

Kraichnan (1966), Saffmann (1969), Knobloch (1977), Lundgren {1981), and Jiang 

(1984, 1985). In general the evolution of G is found to be described by nonlinear 

integrodifferential equations, closely resembling that of Roberts, which are closed by 

a truncation of a series of correlations. Recently developed methods are reviewed by 

Jiang (1985) who, for the dispersion of a single particle, derived an equation for G 

* The monograph of Leslie (1973) provides a comprehensive review of Kraichnan's methods 
and discusses extensively the equation of Roberts. 
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that, at the zeroth order, reduces to that of Roberts (while there are some differences 

regarding the behavior of the two-particle transition function dynamics). 

From the perspective of the present discussion Roberts' equation (1961) provides 

a general framework of analysis that is more than adequate for practical purposes. In

deed, practically all first order operational models of (absolute and relative) turbulent 

dispersion, including the common ADE as well as the modified ADE adopted by the 

TRPM, can be derived as special cases of this equation when appropriate approxima

tions are introduced. This procedure provides a most useful insight into the relative 

capabilities, limitations and relationships among the various "usable" models. So, 

in the following we will examine briefly the reduction of a general integrodifferential 

master equation into practical expressions. 

The most general form of Roberts' (1961) equation (for the fixed frame G) is 

t' 

a
a G (x, tlxo, to) = f dt' I dxR~ (x, t; x'' t') aa. G (x, tlx'' t') aa. G (x'' t'lxo, to) 
t }to X 3 x1 

For homogeneous-stationary turbulence this equation becomes 

a 8
2 1t J -G (x t) = dt' dx' R~ (x' t') G (x' t') G (x - x' t - t') 

at 1 8Xi8Xj 0 IJ ' ' ' 
(6.3 - 3a) 

Roberts (1961, p.266) replaced the product R~ (x, t) G (x, t) with a general correla

tion Qii (x, t). Hence, if Corrsin's conjecture holds, Qij is formally related to to R~., 

and Roberts' equation is now written as 

a ( ) _ a2 t , J , ( , ') ( , , atG x,t - OXiBXj lo dt dxQij x,t G x-x,t-t) 

or, equivalently (for x' ranging from -oo to oo), 

a a2 t J at G (x, t) = axi8Xj J 0 dt' dx' Qij (x - x'' t - t') G (x'' t') (6.3 - 3b) 

a result that is found to resemble strongly the equation of Bourret (see also following 

paragraphs). 
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Evolution equations for the special non-inertial transition functions have also 

been formally derived (in particular for G(2P)). The reader is referred to Leslie (1973) 

and Jiang (1985) for detailed analyses. As a representative example we mention that 

on the basis of the analysis of Roberts (and the equivalence of G(5 ) and G(R) after 

very small times) the analog of (6.3-3a) for G(R) (r,t) becomes approximately 

a 8
2 lt J -G(R) (r t) = dt' dr' [R~ (r' t') - R~ (r - r' t')] x at ' a ·B . '' ' '' ' r, r3 0 

xG(x',t') G(R) (r-r',t-t') 

One should notice the dependence of the term replacing the Eulerian velocity cor

relation of (6.3-3a) on both r - r' and r'. For the purposes of the present work it 

seems reasonable to assume that the last equation can be represented in general by 

an equation identical to (6.3-3b) but with Qi; depending on t as well as on t - t' 

to reflect the nonstationarity present in the Lagrangian velocity correlations in the 

non-inertial frame (to be also discussed in the next section). 

Dispersion Parameters 

(through the G-formalism} 

Equations (6.3-3ab) - or the corresponding equations for G(R) (r, t) - can be 

combined directly with the definitions of the dispersion parameters Ei; etc. in order 

to express the latter directly in terms of the general correlation Qi.i· Defining the 

turbulent diffusivities 

K·. = !!!..r: .. 
i3 2 dt a3 

and using definition (6.2-14a) one has 

Kij = ! I Xi,XjdX a a~ t dt' I dx'Qmn (x - x', t - t') G (x', t') = 
2 Xm Xn Jo 

=lot dt' f dxdx'Qi; (x -x',t - t') G (x',t') 

and, since JG (x, t) dx = 1, 

Ki; = lot dt' J dx.Qi; (x - x', t - t') 
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A similar general expression will hold for the relative turbulent diffusivities Ki~R). 

Applicable Models of Dispersion 

Let us now examine the applicable models that are obtained for various choices of 

Qii in (6.3-3b). Without loss of generality we consider an one-dimensional situation 

with Qii = Q. 

• A.D.E.: The Classic K-Model 

If 

Q = K 5 ( x - x') 5 ( t - t') (6.3 - 5a) 

(with possibly K = K (x, t)) (6.3-3) reduces to the conventional K-model 

BG(x,t) = K82G(x,t) 
at 8x2 

(6.3 - 5b) 

Notice that condition (6.5-4a) implies that the velocity of a fluid particle is delta

correlated (i.e. "immediately forgets" its earlier values) in both space and time. 

This of course can be true only when the "time instants" are actually longer than 

the Lagrangian time scale of the fl.ow (and the adverb "immediately" is interpreted 

analogously). Thus the severe limitations in the description of turbulent dispersion 

through the ADE, already discussed in Chapter 1, are obvious. 

• The Equation of Bourret 

If correlation is assumed only in time, i.e. 

Q = 5 (x - x') RL (t - t') 

one obtains the (one-dimensional) form of Bourret's (1960) equation 

ac (x, t) = a2 1t RL ( - ') G ( ') d ' 
a a 2 t t x, t t 

t x 0 
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@ The Hyperbolic Telegrapher's Equation 

Assuming correlation only in time (as before) that is specifically of exponential 

form 

( t t') Q = 6 (x - x') RL (t - t') = 6 (x - x') a; exp - ;L (6.3 - 7a) 

where TL is the Lagrangian time scale, one obtains the well known telegrapher's 

equation (see, e.g., Goldstein, 1951). 

(6.3 - 7b) 

G The Modified {Non-Local} A.D.E. 

The modified ADE is obtained through the same choice of Q as for the equation 

of Bourret (i.e. autocorrelation of fluid particle velocities only in time) 

Q (x - x', t - t') = 6 (x - x') RL (t - t') (6.3 - Sa) 

or 

Q (r - r',t - t',t) = 6 (r - r') RL (t,t - t') (6.3 - 7b) 

under the additional assumption that the positions of the fluid particles constitute 

Markovian processes (with arbitrary step). Then, the Chapman-Kolmogorov equa

tion for G gives (for arbitrary (x"', t*)) 

G (x - xo,t - to)= ff G (x - x*,t - t"') G (x"' - x0 ,t"' - t 0 ) dx"' dt"' 

Introducing this property to the master equation one obtains 

aG(x- xo,t - to) = t dt' RL (t- t') a2G(x- xo,t - to) 
at lto ax2 

which corresponds directly to a linear (non-local) differential dispersion equation with 

eddy diffusivities that depend on the travel time: 

aG(x-xo,t - to)_ K ( _ ) a2G(x- xo,t - to) 
at - t to ax2 (6.3 - Sc) 
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where (for to = o) 

K (t) =it dt' RL (t - t') 

and similarly for G(R) (r, t) with 

K(R) (t) = it dt' RL (t, t - t') 

G The "Spectral Diffusivity" Model 

If one assumes correlation only in space, i.e. 

Q = R# (x - x') 8 (t - t') 

(6.3 - 8d) 

(6.3 - 9a) 

where R# is· an appropriate space correlation function, equation (6.3-3) reduces to 

BG (x, t) = 82 I dx' R# (x - x') G (x' t) 
Bt ax2 ' 

The r.h.s. of this equation can be writen as 

-:x f dx' R# (x' - x) G (x',t) 

Integrating by parts this expression allows us to write 

BG(x,t)=!_JR#( _ ')BG(x',t)d, 
at Bx x x Bx' x (6.3 - 9b) 

This equation is essentially equivalent to the pseudo-spectral model of Berkowicz and 

Prahm (1979ab, 1980). 

Thus now, after clarifying how the modified ADE is related to other turbulent 

dispersion models, we proceed to examine methods for the estimation of the (relative) 

dispersion parameters appearing in this equation. 
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6.4 RELATIVE DISPERSION ANALYSIS: 

I. TIME DOMAIN METHODS 

6.4.1 The Direct Kinematic Approach: 

General Relations and Asymptotic Results 

In this section we briefly review the fundamentals of the direct kinematic ap

proach for estimating dispersion parameters. The general kinematic relations that 

describe the statistics of the fluid particle motions provide some direct information 

regarding these parameters in the form of asymptotic expressions; however in the case 

of relative dispersion this information is more limited than in the case of absolute dis

persion. Further results can be obtained through dimensional/similarity analysis and 

on the basis of assumptions regarding the turbulent velocities correiation tensors; 

these results are also reviewed in the next sub-sections. 

In the following exposition the turbulence is assumed (locally) homogeneous and 

stationary (unless it is specified otherwise). Furthermore, for simplicity (and without 

any loss of generality) the analysis of the present section assumes that there is no 

mean fl.ow (or equivalently the equations are formulated in an inertial frame following 

the mean fl.ow), i.e. 

(u) = O, (v) = 0 

and 

I I 
U =U, V =V 

and therefore 

(y(t)) = 0, y' (t) = y (t) = y (O,t) 

We further set xo = 0, y (0, 0) = 0. 
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e Review of Absolute Dispersion I 

General Relations and Definitions 

Under the assumptions stated above 

t t-t' =lo lo Rt (r) drdt' (6.4 - la) 

Equation (6.4-la) and its differential counterpart 

d 1t - (yi(t) Yi (t)) = 2 Rt (t - t') dt' 
dt 0 

(6.4 - lb) 

are the well known Taylor's relations and constitute the basis of the direct kinematic 

approach (Taylor, 1921). Now, by definition Rt (r) =Rt (-r). Hence 

(6.4 - 2) 

This relation was first obtained (in a slightly different form) by Kampe de Feriet 

(1939).(*) 

* At this point it seems worthy of mentioning that relations analogous to (6.4-lab) and 
(6.4-2) can also be directly formulated for the case of dispersion in uniform shear flow 
("second order homogeneous" turbulence); the corresponding exact expressions were 
first obtained by Corrsin (1953). Various (approximate) extensions of the fundamen
tal (homogeneous-stationary turbulence) kinematic Lagrangian analysis to more realistic 
situations, involving wind-shear and convective motions, are also possible, but discussing 
them is beyond the scope of this presentation. An excellent introduction to the problems 
of dispersion in flows with shear and density differences can be found in Csanady (1973, 
Chapters V and VI); for more recent relevant reviews of kinematic methods for decribing 
fluid particle dispersion in complex (nonhomogeneous-nonstationary) flows one should 
consult Pasquill and Smith (1983) and Hunt (1985). 
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The (modified) eddy diffusivities Kb are defined again as 

Kb (t) = ~ :t (Yi (t) Yi (t)) (6.4 - 3a) 

where the superscript L is used to note that they are derived from a Lagrangian 

analysis. Hence, in general 

The elements of the Lagrangian time scale tensor are defined as 

• Review of Absolute Dispersion II 

Asymptotic Results 

(6.4 - 3b) 

(6.4 - 4) 

The general relations (6.4-lab) allow us to conclude directly that at very small 

and very large dispersion times the elements of [L:i3] are independent of the particular 

form of the Lagrangian velocity correlation. Thus, for t ---+ 0 

L:ij (t) =(vi (0,0) Vj (0,0)) t 2 (6.4 - 5a) 

or 

Kb (t) = (vi(o, o) v3 (o, o)) t (6.4 - 5b) 

whereas for t ---+ oo 

(6.4 - 6a) 

or 

(6.4 - 6b) 

In particular for i = j one has 

( fort---+ 0) a~ = a 2 t 2 K~ = a 2 t a v; ' ' v; (6.4 - Sc) 
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Of course for homogeneous-stationary turbulence 

2 2 uv, = uu, 

• Review of Absolute Dispersion III 

Extensions 

(6.4 - 6c) 

As it was stated earlier, the above results were obtained for arbitrary Lagrangian 

velocity correlations; however, in order to calculate dispersion parameters for any 

(intermediate) dispersion time the shape of the above correlations has to be specified. 

The functional forms and properties of various permissible correlations are presented 

and discussed, e.g., in Manin and Yaglom (1975) and Pasquill and Smith (1983). For 

historical reasons the correlation of Sutton (1953), that was most extensively used 

for atmospheric applications, especially in the 1950's and early 1960's until it was 

replaced by the introduction of the Pasquill-Gifford curves, should be mentioned. 

Among the other possible correlations the simple exponential 

Rh = u~, exp ( - ~L ) 
has often proved to be a very useful approximation, and, as it has been pointed out 

by Tennekes (1977, 1979) provides also a connection between single and two-particle 

dispersion, that is of particular interest from the perspective of the present work (and 

for this it is worth mentioning). Integrating (6.4-2) (for i = j) for an exponential 

autocorrelation gives 

u~ (t) = 2u2 Tl-
2 

[-t - 1 +exp (--t )] 
i Vi a T!- T!-

a a 

which reduces to the asymptotic forms (6.4-5c) and (6.4-6c) for small and large times 

respectively. (It is interesting to note that the lines corresponding to these asymptotic 

limits meet roughly at t = 2T,P). Tennekes (1979) noted that by expanding the above 

relation in a Taylor series near t = 0 

2 ( ) 2 2 1 2 t
3 

ui t = uv.t - -uv.-L + ... 
• 3 'T. a 
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(valid for t/Tl ~ 1, i.e. for the inertial subrange of turbulence), one can associate 

the first, linear, term, that actually decribes random advection with persistent veloc

ities, with the process of turbulent diffusion very close to the source, and the second 

term with the gradual loss of correlation of Lagrangian velocities as dispersion time 

increases. This process of "decorrelation" allows the separation of neighbouring par

ticles to increase and is therefore directly related to relative dispersion in the inertial 

subrange. 

We next proceed to discuss the kinematic analysis of relative dispersion without 

considering the various approximate and semiempirical or empirical methods that 

aim at extending and applying the preceding analusis of absolute dispersion to actual 

atmospheric situations, and, finally, in providing "optimal" estimates for the parame

ters of Gaussian plume models (as well as for other atmospheric dispersion schemes). 

Among the many available references that review and summarize such practical meth

ods we specifically mention Hanna et al. (1982), Seinfeld (1983), and Pasquill and 

Smith (1983) (see also Irwin, 1983); a collection of relevant review papers that cover 

some more recent information can be found in the November 1985 issue of the Journal 

of Climate and Applied Meteorology, whereas, at a more fundamental level, current 

reviews on methods for treating non-ideal turbulent environmental dispersion can be 

found in the 1985 issue of Annual Reviews of Fluid Mechanics. A final note that is 

appropriate at this point of our discussion should concern the effect of sampling time 

that is implicit in the values of the (semiempirical) dispersion parameters reviewed 

in the above references. As it will be further discussed in Section 6.5, the distinction 

between relative and absolute dispersion, for given dispersion time, can be essen

tially associated with the choice of the proper sampling period (or equivalently the 

turbulent frequency band relevant to each process). On the other hand empirical 

expressions relating dispersion parameters for different sampling times are sometimes 

available. For example Gifford (1975) suggests the following formula for the horizintal 
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crosswind dispersion parameter Uy corresponding to sampling times T}l) and TP>: 

ui1) _ (TJ1>) q 

(2) - T(2) 
Uy s 

where q is in the range 0.25 to 0.3 for 1 hr < TJ1> < 100 hr and equals approximately 

0.2 for 3 min< TJ1> < 1 hr. Thus, if one can identify approximately the value of the 

sampling time that will produce an estimate of relative dispersion parameters (and 

this value is in the range of validity of the above or a similar expression), one would 

have a crude model for these parameters. An approach following roughly the same 

lines, but based on general theoretical rather than empirical relations, is pursued in 

detail in Section 6.5. 

• Relative Dispersion I 

General Relations 

The kinematic analysis of single particle motions was extended to relative disper

sion in the early 1950's by Batchelor, Brier, Obukhov, and others (see, e.g., Monin 

and Yaglom, 1975, for detailed references), who initially considered the statistical 

properties of two-particle separations and relative velocities. Here we adhere to the 

(almost) equivalent but more practical concept of dispersion relative to the instanta

neous center of mass and examine elements of the tensor [ r:W> J rather than [ r:UP) J 

or [ E~J)], where always 

Now, the fluid particle velocity in the meandering frame is 

where 

V(R) = V -'V 

v(t) = dy(t) 
dt 

For an inertial frame that follows the mean flow (v) = 0, (v) = 0 and therefore 

(v<R>) = O, (v<R>)' =v(R) 
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The relative displacement and velocity vectors of a diffusing particle are related 

by 

and hence 

(6.4 - 7a) 

(6.4 - 7b) 

However, even in homogeneous-stationary turbulence, the relative velocity com

ponents v!R) (t) do not constitute stationary processes. As the cloud of diffusing fluid 

particles grows increasingly larger eddies contribute to y(R) (t) and the relative ve

locity correlation ( v~R) (t) vjR) (t')) is a function of the dispersion time t as well as 

of the lag time r = t' - t 

(6.4 - 8) 

(Notice that we omit the superscript L when we refer to relative diffusion properties 

since it is obvious that we use a Lagrangian approach for their description). 

Relating the general Rl;R) (t, r) to absolute velocities statistics is a rather com

plicated task since this will involve the Lagrangian correlation for a single particle, 

the Eulerian correlation referring to two particles at a given instant, and a mixed cor

relation referring to two particles at different instants (see, e.g., Pasquill and Smith, 

1983, pp.154-155). Expressing the latter correlation in terms of more manageable 

quantities is a major problem that has been pursued on the basis of different assump

tions; Sawford (1982a) provides a rather detailed discussion and comparison of such 

assumptions and the reader is referred to this work for further details. Here we limit 

ourselves to the examination of the relative velocity variance in the i-th direction, 

defined as 

2 _ R(R) ( ) 
UR,v, - ii t,O 
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which is a function of the dispersion time. For a "point" -source release, one finds 

that since 

(6.4 - 9a) 

then, in the limit of very small times, where Vi ~Vi, it will be 

(fort-+ 0) CJ~ v· ~ 0 
I • 

(6.4 - 9b) 

whereas for large times, where Vi and Vi are independent 

(fort-+ oo) (6.4 - 9c) 

Thus we see that a~,v; grows from zero to a value twice that of a~, (or a~,) as the 

dispersion process evolves. 

A most important point point has to be stressed in relation to equation (6.4-

9b): the fact that the relative velocity variance is zero at the beginning of the time 

coordinate for a point release allows one to identify the process of relative or two

particle diffusion with the conditioned diffusion of a single particle, i.e. that at t = 0 

has a deterministic velocity (zero variance); we will elaborate further on this point in 

the next sub-section. 

The non-stationarity of R!f> implies that Taylor's theorem does not hold for 

relative dispersion; one thus has 

(6.4 -10a) 

and for i = j 
t t' 

B~!t) = aR2 = 211 R~!?-) (t' r) drdt' 
u • ti ' 

0 0 
(6.4 - 10b) 

Lagrangian time scales for relative diffusion are also functions of t: 

T~!l) = 1 t [R(R) ( ) R(R) ( )] d i;; -----1-1-2 Jo ij t,r + ji t,r r 
(

(72 (72 ) 0 
R,v; R,v; 

(6.4 - 11) 
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Ti~R) (t) is characteristic of those eddies that contribute to relative dispersion at 

time t after a (point) release; these are expected to be mainly the ones comparable 

to the typical fluid particle separation in the dispersing cloud, i.e. approximately 

comparable to the cloud size (Csanady, 1973). 

• Relative Dispersion II 

General Asymptotic Results 

The general relations (6.4-lOab) allow derivation of a direct asymptotic result 

only in the case of very large times. Using (6.4-9c) one can write for the final phase 

of dispersion 

(6.4 - 12) 

where 
t' 00 

-(R) 1 . 1 11 (R) T·· = - hm - R .. (t,r) drdt 
u ,...2 ,, t' n vv, • -+OO 0 0 

(6.4 - 13) 

is an averaged integral time scale of relative velocities in the i-th direction. One must 

note that an implicit assumption appearing in most works relevant to two-particle 

dispersion is that 

• Relative Dispersion III 

Dimensional Analysis for the Inertial Subrange 

For small and intermediate diffusion times Batchelor (1949, 1952) applied Kol

mogorov's hypothesis and dimensional analysis to determine I:~;P) for dispersion 

taking place at scales that belong in the inertial subrange of turbulence. He argued 

that in this subrange d:E~;P) / dt depends only on the initial separation of the fluid 

particles, the rate of turbulent energy dissipation E and the time t for "small" diffusion 

times (t < t*), but it depends only on E and t for "intermediate" times. Batchelor's 

analysis is summarized, for example, in Seinfeld (1975, pp.313-316) and will not be 

repeated here. We only state briefly its main results (formulated in the meandering 

frame we consider here) for ready reference: 
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After a "molecular phase", that will take place when the initial dimensions of the 

dispersing cloud are smaller than the Kolmogorov microscale lK = (v3 / e) l/S, and 

in which the species under consideration will spread only due to molecular diffusion, 

one has (recall also the discussion in Section 6.3.1) 

(I) the Short Time Inertial Subrange Dispersion or simply Initial Stage, where 

u2 =u2 +13P)(euo.)2/st2 
R; O; i • 

{6.4 - 14a) 

(6.4 - 14b) 

and 

(II) the Intermediate Time Inertial Subrange Dispersion or Accelerated Dispersion 

Phase, or simply Inertial Stage, where the quasi-asymptotic motion of fluid particles 

(Section 6.3.1) takes place in the inertial subrange and 

(6.4 - i5a) 

(6.4 - 15b) 

t* being a (small) correction for an effective "inception of dispersion" that is often 

set equal to zero. Relation (6.4-15b) can also be writen as 

(6.4 - 15c) 

which is of course typically referred as Richardson's 4/9 power law, and is mentioned 

that it was first proposed by Richardson (1926) on purely empirical grounds. However, 

if we want to be precise, we must mention that Richardson proposed his 4/3-law 

with respect to some actual, observable (and therefore stochastic), dimension of an 

expanding puff, and not with respect to the deterministic statistical property <YR;; in 

fact the latter formulation is due to the (independent) work of Batchelor and Obukhov 

(see, e.g., Monin and Yaglom, 1975). The major differences of these formulations have 

already been discussed in sub-section 6.3.1. 
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e Relative Dispersion IV 

Quasi-Asymptotic Results 

Lin (1960ab) (see also Lin and Reid, 1963, p.513; Monin and Yaglom, 1975, 

pp.547-551) extended the 4/3 power diffusion law beyond the inertial subrange on 

the assumption that the mean-square relative particle acceleration is statistically 

homogeneous and stationary and has a short-ranged autocorrelation. Stating the 

homogeneity and stationarity assumptions in terms of the velocity relative to the 

center of mass and setting 

and 

one finds that 

a(R) = dv(R) 

dt 

r:(~) = ! (\t 3 1t A(~) (r) dr - ~t 2 1t rA(~) (t) dr+ 
&J 3 u 2 u 

0 0 

subject to the conditions of zero initial separation and 

(6.4 -16a) 

(6.4 - 16b) 

(6.4 - 17) 

From equation (6.4-17) one immediately has that, if AW) is effectively zero for 

t > ta, i.e. if the acceleration covariance is sufficiently short-ranged, then for t ~ ta 

it follows that uk_, ,..., t 3 • The coefficient of proportionality in this relation is easily 

found to be equal to the integral time scale of a~R). 

One also has for sufficiently long dispersion times 

where Ah is the covariance of the single particle (fixed frame) acceleration. 
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The general behavior of both absolute and relative dispersion parameters, based 

on the asymptotic results of the preceding paragraphs, is summarized schematically 

in Figure 6-2. 

• Relative Dispersion V 

Empirical Information 

Empirical information for relative dispersion parameters is very limited compared 

to that for absolute dispersion (see, e.g., Hanna et al. 1982, pp.41-45, and Pasquill 

and Smith, 1983, pp.220-232; note that these works focus on puff rather than on 

instantaneous plume dispersion). Thus, nothing equivalent to the Pasquill-Gifford 

curves (or any of the other general semiempirical, stability dependent, schemes for 

absolute Oi's) is available for the estimation of <JR, 's. Nevertheless, available observa

tions support the dimensional analysis results (6.4-14a), (6.4-15a), the latter actually 

for ranges ex.tending significantly beyond the inertial subrange. Indeed, these obser

vations suggest that (6.4-14a) is valid for dispersion times typically less than 102 sec 

(approximately 1 min) whereas (6.4-15a) is valid for times up to 103 to 104 sec, i.e. 

approximately of the order of 1 hr (see Hanna et al., 1982, pp.43-44, for relevant 

references). 

The currently available information regarding the constants f3(I), f3(II), for atmo

spheric conditions, can be roughly summarized as follows (typically for neutral and 

unstable conditions): 

{3~II) ~ 0.4 to 2.0, {3~II) ~ (0.5 to 1.0) {3~II) 

with t"' = 0 (see also Hanna, 1984, p.1099). The effect of atmospheric stability is 

introduced through the value of the local (average) energy dissipation rate in (6.4-

14a), (6.4-15a). A typical estimate of the time after which the influence of the source 

size is no longer important is t ~ a~(3 /t113 . However it must be mentioned here that 

ao, does not necessarilly correspond to an actual dimension of the source (and also 

reflects effects of initially enhanced dispersion due to momentum and buoyancy fluxes) 
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and thus is typically treated as a parameter that is fitted to the data for applying (6.4-

14a); hence, a priori estimates involving this quantity are more or less meaningless. 

Another interesting time point is that when the relative dispersion parameter in the 

i-th direction equals that of meandering; according to Hanna (1984) available data 

show this time to vary in general from 0.5 to 1.5Tp. 
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6.4.2 Conditioned Single Particle Motion 

and Its Relationship to Relative Dispersion 

In this sub-section we discuss briefly the close relationship between (inertial sub

range) fluid particle dispersion observed in a non-inertial frame fixed to another fluid 

particle (or to the center of mass of a cloud of particles) and in an inertial frame 

moving with a constant velocity that results from a Galilean transformation of the 

instantaneous initial velocity of the particle.(*) Although this relationship was de

rived in the early 1960's (Novikov, 1963; Lin and Reid, 1963 - see also Monin and 

Yaglom, 1975, p.546) and was touched upon by Smith (1968) in his analysis of the 

statistics of conditioned particle motion, it has only recently come in the focus of rel

ative dispersion modeling as a means for addressing atmospheric diffusion problems, 

basically in the context of the Langevin equation and related Monte Carlo methods 

(see sub-section 6.4.3). Schemes based on this relationship, commonly referred to 

as "one-particle models for relative dispersion," were applied by Gifford (1982) to 

horizontal dispersion from a continuous point-source, and by Lee and Stone (1983ab) 

to diffusion from a finite-size, finite-duration source. The approach adopted in these 

schemes was criticized by Smith (1983), defended by Gifford (1983), discussed by 

Sawford (1984), and further discussed and compared with two-particle models by Lee 

et al. (1985). 

To summarize the theoretical basis of the method let us consider the ensemble of 

random realizations of the initial (fixed frame) velocity of an arbitrary fluid paricle 

v (0, 0). Then we consider an inertial reference frame moving with fixed in time (for a 

given realization) velocity v 0 relative to v (0, 0) in the fixed frame. Thus the velocity 

of the new reference frame, v (0, 0) -v0 , is constant for each realization, but different 

from realization to realization. However, in this frame the "tagged" arbitrary fluid 

particle has the same initial velocity vo in all realizations; thus a conditioned ensemble 

* This can equivalently be considered as the relationship between relative dispersion and 
conditioned absolute dispersion, i.e. dispersion of single fluid particles that are con
strained to have the same initial velicity. 
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of fluid particle motions is defined. Let the random position vector and velocity of 

the particle in this frame be y(C) (t) and v(C) (t) respectively, where 

V ( C) ( t) = V ( t) - V ( 0) + Vo 

the superscript ( C) indicating conditioned motion. Now, one can write for the ele

ments of the tensor of fluid particle displacements in this frame (Monin and Yaglom, 

1975, p.533) 

(6.4 - 19) 

where Dfj is the Lagrangian structure function for homogeneous-stationary turbu

lence, defined in general as (see, e.g., Morrin and Yaglom, 1975) 

= ( ( V} C) ( t + T) - V} C) ( t)) (VJ C) ( t + T) - VJ C) ( t)) ) 
However, in every inertial frame of reference 

(6.4 - 20) 

for dispersion in the inertial subrange (Manin and Yaglom, 1975, p.359), where Go is 

a universal constant. Thus (6.4-19) gives 

(C) ( ) 1 3 
'I:ij t = 3C0Et (6.4 - 21) 

which is equivalent to (6.4-lSa) with p(II) = 3C0 • Thus single-particle dispersion 

with fixed initial velocity is equivalent to dispersion relative to the center of mass. 

Further discussion of conditioned dispersion models is presented in the next

subsection, after summarizing the fundamentals of Langevin equation methods. 
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6.4.2 Langevin Equation Methods 

Langevin equation methods (well known through their application to Brownian 

motion problems) constitute "dynamic extensions" of the direct kinematic approach, 

described in the previous sub-sections, by introducing explicitly random force effects 

in the study of (fluid or other) particle motions. Langevin equations essentially are 

convenient models (approximations) of Newton's second law where the force (per 

unit mass) acting on the particle is assumed to consist of a "restoring" component, 

dependent on the random instantaneous velocity, and an uncorrelated part (the so 

called Langevin force). 

Although generalized Langevin eqations with nonlinear restoring forces or with 

memory kernels (i.e. of integrodifferential form) have been used to describe the dy

namics of random motions (see, e.g., van Kampen, 1981, Chapter VIII) the term 

"Langevin equation" is most commonly assigned to a linear stochastic differential 

equation whose nonhomogeneity or Langevin force (forcing term) n (t) constitutes 

white noise. Its typical one-dimensional (without any loss of generality) form is 

dv (t) dJ + ')'V (t) = n (t) (6.4 - 22a) 

where by definition 

(n (t)) = O, (n (t) n (t')) = a6 (t - t') 

Because a stochastic process with the above properties of n (t) does not formally 

exist (in the sense of an ordinary function) many researchers prefer to use instead 

the integral of n (t), which is the Wiener process (or Wiener-Levy process or simply 

"Brownian motion") b ( t), 

1 it b(t) = - n(t')dt' 
Ub 0 

with 
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where division with O'b produces the standard or normalized Wiener process('°'), and, 

since the latter is nowhere (mean-square) differentiable, they write 

dv (t) + /V (t) dt = O'bdb (t) (6.4 - 22b) 

where 

(b (t)) = t, (b (t) b (t')) =min (t, t') 

(Note that O'b has units of acceleration). 

The solution of ( 6.4-22ab) is given by 

v (t) = voe--rt +it e--r(t-r)O'bdb (r) (6.4 - 23) 

y (t} = Yo + ~ (1 - e--rt) + ~it ( 1 - e--r(t-r)) O'bdb ( r) (6.4 - 24) 

Avoiding all discussion of the deep mathematical subtleties involved in the for-

mal interpretation of the above equations and of their solutions we limit ourselves 

here to some brief comments concerning the physical meaning of the processes and 

parameters appearing in them. At first we must note that when the white noise n (t) 

is Gaussian (which is implicitly assumed in practically all applications), then the 

Langevin equation is equivalent to a Fokker-Planck equation for the random velocity 

process (see, e.g., Van Kampen, 1981, for details). The latter process is Markovian, 

and is characterized by a Gaussian transition density, whereas the fluid particles' po

sitions y = J~ v (t') dt' are not Markovian processes (although the joint vector process 

* The Wiener process is a nonstationary Markovian process - and also a martingale -
with Gaussian independent increments and Gaussian transition probability density. It 

constitutes a model of the positions of particles undergoing Brownian motion (recall 

however that the Langevin equation produces non-Markovian positions) and has been 
studied extensively, essentially giving rise to many of the fundamental concepts of the 
modern theory of stochastic processes such as the Wiener measure, stochastic integra
tion, etc. For an elementary introduction to the Wiener proceH one may consult, e.g., 
Papoulis (1965). A somewhat more advanced - but very readable - treatment can be 
found in Arnold (1974). From the extensive advanced mathematical literature relevant 
to the subject of Brownian motion, we mention the monograph of Chung (1982) and the 
three-volume treatise of Gihman and Skorohod (1974, 1975, 1979) - in particular volume 
III. Finally, the reader interested in the fractal aspects of' Brownian motion can find a 
fascinating relevant discussion in the monograph of' Mandelbrot (1983). 
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( v, y) is Markovian in phase space). This fact constitutes the relative advantage of this 

approach compared to the eddy diffusion models (with either constant or dispersion 

time dependent diffusivities), that result from either gradient transport hypotheses 

or as Fokker-Planck equations for the mean concentration (or, equivalently, the tran

sition function). Indeed, these models (essentially all parabolic transport equations) 

are based on the Markovian property for the fluid particles' positions (see also our 

discussion in Section 6.3.2 of the present chapter, in the derivation of the modified 

ADE, and Seinfeld, 1975 , Chapter 6). The improvement of dispersion modeling ob

tained through the Langevin description lies in the fact that now velocity is allowed to 

change over a finite time scale, possibly comparable to the time scale over which the 

concentration changes (whereas, as is well known, this is not the case with equations 

like the ADE). This is achieved by assigning the Markov property to the derivative 

of the process y instead to y itself (see also Durbin, 1983). 

The parameter I is a characteristic reciprocal time scale for the v-process. Fur

thermore the temporal velocity correlation is found to be (for t > t') 

(v (t) v (t')) = ;~ ( 1 - e-2'Yt') e-(t-t') 

and letting 

one obtains (setting t 1 = 0) 

ul = a = 2/u~,v 

This is a significant result that relates what is essentially an initial condition to the 

statistical properties of the external forcing field. (Actually this last equation is the 

simplest form of the general fluctuations-dissipation theorem of statistical mechanics; 

see van Kampen, 1981, p.238, for a relevant discussion). 

We further see that for t ~ l/1 the random function v (t) tends to a process 

that besides being Gaussian-Markovian is also stationary (i.e. it is an Ornstein

Uhlenbeck process), independent of initial conditions, with zero mean, variance uV21, 
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and covariance R ( r) = ut /21 exp (-1lrl). Here we must note that one can formally 

define the Langevin model in such a way that it directly produces a stationary v (t). 

This can be done either by setting the initial conditions at t = -oo instead oft= 0, 

or by a suitable transformation of the time coordinate and the time scale (see, e.g., 

Syski, 1967). Alternatively this can be controlled by the initial conditions: if one 

assumes that the statistical distribution of v (0) =Vo is equal to the above large-time 

limiting distribution, then the distribution of v (t) itself is independent oft and equals 

the limiting distribution (a direct consequence of the Markov property). 

Now, in the case of turbulent fluid particle dispersion"/ is typically taken to be 

the inverse of the Lagrangian time scale (see, e.g., Durbin, 1983; Sawford, 1984, 1985) 

and thus, in a given direction, the corresponding Langevin equation can be writen as 

vi(t) dt Pi dvi (t) = - T? + uo,v; T? db (t) 
a a 

(6.4 - 26) 

Pasquill and Smith (1983, p.138) note that when the velocity autocorrelation is 

not of exponential form then the appropriate time scale (characteristic of the rate 

of exchange of momentum between fluid particle and environment) will not be equal 

to the Lagrangian time scale. (Recall however that in the theoretical case of an 

Ornstein-Uhlenbeck proces the autocorrelation is necessarilly exponential). 

Although the analogy between Brownian motion and turbulent dispersion was 

implicit in Taylor's (1921) concept of the "diffusion by continuous movements," and 

has been theoretically discussed by Obukhov (1959) and Lin and Reid (1963), it 

has only relatively recently (after 1975) become popular as a means for studying 

dispersion phenomena (and in particular atmospheric), mainly as the basis of Monte 

Carlo computer simulations (see also Pasquill and Smith, 1983; pp.133-141 •). 

• It must be noted here that Pasquill and Smith (1983, p. 133) refer to these approaches as 
"Markovian random walk methods." However it is clear from the above discussion that 
the Markov property is used in various other occasions in models of turbulent dispersion, 
typically in relevance to the trajectories of the particles; thus it must be stressed that 
this explicit use of the term Markovian property refers to the random velocities. 

PART IB CHAPTER 6 



- 380-

The majority of these simulations have used the Langevin equation concept (of

ten only implicitly) to model single-particle, i.e. absolute, dispersion statistics in 

fixed coordinate frames and for time averaged mean concentration fields. (e.g. Reid, 

1979; Durbin, 1980; Durbin and Hunt, 1980; Wilson et al., 1981; Lamb, 1982; Legg, 

1983, etc. - see also Seinfeld, 1983; Sawford, 1985). Although such numerical mod

els do not always offer significant fundamental improvements over techniques using 

Taylor's theorem (see, for example, Panofsky and Dutton, 1984, p.247, for relevant 

comments), since in both cases Lagrangian velocity correlations (or some equivalent 

restrictions concering the nature of the velocity field) have typically to be assumed a 

priori, they are much more versatile, allowing for complicated boundary conditions. 

Furthermore they are not restricted to homogeneous-stationary turbulence and can 

be used with dispersion time dependent velocity correlations (although most numer

ical experiments adopt stationary velocity correlations of the exponential type). For 

a study of applications of the Langevin equation to "non-ideal" turbulence we refer 

the reader to the works of Durbin (1983) and Sawford (1985). 

In the numerical Monte Carlo simulations one estimates the "actual" random 

positions of many particles; thus not only the variance but many other statistical 

characteristics of the trajectories can be derived. Starting point of the numerical 

models is typically a linear recursive relation for v (t), which in the case of one

dimensional homogeneous-stationary turbulence (av = uo,v) has the form (Smith, 

1968) 

with 

v(t+r) =p(r)v(t)+v(t) 

RL (r) 
p(r) = --'-'-

u2 
v 

(6.4 - 27) 

typically assumed of exponential form. The variance of v (the latter typically assumed 

Gaussian) is taken to be 

so that the variance of successive v 's remains the same. Thus in practice trajectories 
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are calculated numerically by selecting wind velocities randomly (but so that their 

statistics obey some restrictions imposed either by theory or by results of numerical 

turbulence models), choosing v from a Gaussian distribution of prescribed variance, 

and finally calculating successive positions y from (6.4-27). A point worthy of noting 

here is that (6.4-27), with the variance of v as above, constitutes a so called First 

Order Autoregressive ( AR1}, Stochastic Time Series Model. It is in fact in the context 

of such a time series that many of the Monte Carlo models have been formulated, 

without explicit reference to the relation with the underlying Langevin equation (for 

the limit of continuous time). This relation can be shown to hold in the limit of small 

time lags. Indeed, for small T (say T = rs) (6.4-27) (after expanding in a series of 

powers of T and discarding higher order terms) reduces to 

dv (t) + [1 - p (rs)] v (t) = v (t) 
dt Ts Ts 

which is an approximate Langevin equation with 

[1 - p (rs)] 
I=-----'-

and 

One can see that for p (rs) = exp (-1rs) ~ 1 - /Ts the equality a = 2')'<1~ that 

relates the parameters of the Langevin equation holds (approximately) for the first 

order autoregressive series model. Thus, for Gaussian Markovian stationary processes 

there is a strong connection between ARl models and Langevin equations. 

Let us now focus on the problem of relative dispersion in the perspective of the 

Langevin approach. As already mentioned this problem has been pursued along two 

different lines. One group of models considers the motion and separation of two fluid 

particles and is based on a set of two coupled Langevin equations governing the dy

namics of each particle, that is essentially solved numerically (Durbin, 1980; Lamb, 

1981; Sawford, 1982ab). The basic aspects of these models have been discussed by 
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Sawford (1983, 1985). As he points out, apart from points of detail, the fundamental 

difference between individual models lies in assumptions regarding the rate of two

particle separation: In both Sawford's and Lamb's models the instantaneous rate 

of separation of the pair of particles is a function of the ensemble-mean-square pair 

separation, with the result that the distribution of separations is Gaussian (for a 

Gaussian velocity distribution) and the two-particle displacement probability density 

is bivariate Gaussian. On the other hand in Durbin's model the instantaneous rate of 

separation is a function of the instantaneous separation, an assumption that leads to 

a non-Gaussian distribution of separations. These differences correspond respectively 

to the already discussed differences between Batchelor's (1952) notion that it is only 

the statistical tendency for particles to separate which is related to the size of the ed

dies, and Richardson's (1926) concept in which the probability density of separations 

depends on an eddy diffusivity that is a function of separation. For further details 

the reader is referred to the aforementioned publications and in particular to Sawford 

{1983, 1985). Finally we mention the more recent works of Faller and Choi (1985) 

and Faller (1985) who also use a two-equations Monte Carlo formalism to model rel

ative dispersion in both the inertial subrange of three-dimensional turbulence and in 

the enstrophy(*) cascade of large-scale two-dimensional turbulence; however it must 

be noted that according to Sawford (1984, p.2408) "the Langevin equation is specif

ically applicable to three-dimensional turbulence" and "it is likely that ... it does 

not model the two-dimensional enstrophy cascade inertial range." In fact there are 

various unresolved problems in this area. 

Another group of models for relative dispersion that use the Langevin equation is 

based on the equivalence between conditioned single particle dispersion and relative 

dispersion, that was discussed in the previous sub-section. As mentioned in that 

sub-section, recent interest in this conditioned dispersion method started with the 

* Enstrophy is defined as the mean square vorticity of turbulence (se, e.g., Lin, 1972) 
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proposal of Gifford (1982) of using a simple formula for both o} and uk,.: 

u[ = _t _ [1- exp (--t )] _ ! (i -u5,v,) [1- exp (--t )] 2 

2Ki (oo) Tl Tl Tl 2 u~, Tl 
(6.4 - 28) 

where u5,v, is the fluid particle velocity variance at the source, and, of course, 

Thus as u5,v, approaches u~, (6.4-28) u[ is found to describe absolute diffusion, (as 

predicted for an exponential velocity autocorrelation), 

O'~ t [ ( t ) ] 
2Ki (~)Tl =Tl - 1- exp -Tl 

whereas as erg v· approaches zero, i.e. as the dispersion becomes conditioned by the 
' . 

fixed random initial value, one obtains the 4/3 diffusion power law, appropriate for 

relative dispersion (without initial size effects). 

Equation (6.4-28) is obtained directly from the general solution (6.4-23) of the 

Langevin equation after squaring and ensemble averaging. Smith (1983) has pointed 

out that his (1968) statistical relations may also be used to give exactly the same 

equation and further discussed the problem of its proper interpretation in relation to 

observational data, a matter that is not simple (see also Pasquill and Smith, 1983, 

pp.122-123, for relevant comments). Lee and Stone (1983ab) extended Gifford's model 

to clusters of particles from finite-size, finite-duration sources. Lee et al. (1985) fur

ther discussed this approach, also comparing their earlier calculations with results 

from a two-particles, two-equations scheme they developed. The validity of the con

ditioned dispersion approach in relevance to atmospheric relative dispersion modeling 

was also reviewed and discussed by Sawford (1984) who stressed the generality of the 

equivalence (in the sense that it does not rely a priori on a Langevin model) between 

conditioned single particle motion and particle pair motion in the inertial subrange 

of atmospheric turbulence. 
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Sawford (1984, 1985) also discussed in general the applicability of Langevin type 

equations to atmospheric relative dispersion modeling and in particular the agreement 

of equation (6.4-28) with atmospheric observations. Although open to some questions, 

his major conclusions seem to summarize the most important points of our current 

knowledge in this area and for this reason are briefly reproduced here: 

• Langevin type equations are good models for Lagrangian velocities only in high 

Reynolds number three-dimensional turbulence where the particle acceleration au

tocorrelation is short-ranged (a typical case being the inertial subrange where the 

equivalence between conditioned and relative dispersion holds), 

• Langevin equations seem not applicable to relative dispersion on the very large 

(global) scales of atmospheric turbulence, at least partly because of the quasi-two

dimensionality of motion on these scales, 

• For horizontal dispersion at smaller scales the application of equations like (6.4-28) 

is complicated by the lack of a well defined upper limit to the scale of the turbulent 

kinetic energy, 

• Conditioned single particle models cannot appropriately model higher moments (or 

the pdf) of the separation; a pair of Langevin equations is needed for this task. 

In conclusion, modeling of relative dispersion through Langevin equations (either 

a single one or a pair) is currently an active - and relatively controversial - field of 

research. Although several questions remain unresolved and the interpretation of 

various assumptions is not always universally accepted, many useful concepts have 

been recently clarified (and the present sub-section attempted to further organize 

and relate them), and some powerful mathematical tools have been brought to the 

attention of those interested in environmental dispersion. From a more practical (and 

perhaps narrower) perspective we point out the potential of (6.4-28) as a simple model 

for relative dispersion for the stages of quasi-asymptotic and asymptotic fluid particle 

motion. 
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6.5 RELATIVE DISPERSION ANALYSIS: 

II. SPECTRAL METHODS 

In this section we present a new method for estimating relative dispersion param

eters from (observed) atmospheric turbulence spectra. This method is based on the 

association of the relative dispersion and meandering processes with appropriately 

defined space-time scales. This allows the computation of specified dispersion param

eters from the spectral form of Taylor's theorem after :filtering out the frequencies 

at scales that do not contribute to the process under consideration. The parameters 

for the appr0priate high-pass filter functions, required for the calculation of in-plume 

phenomena, are not assumed a priori but are determined through an iterative integral 

technique. The basic steps of this method were outlined briefly in Chapter 2. In the 

present section we explain the rationale behind these steps, discuss various relevant 

questions, and present some typical results obtained with this method. It must be 

mentioned at this point that since typically Eulerian and not Lagrangian atmospheric 

spectra are available with sufficient accuracy (and for a variety of atmospheric con

ditions), there arises the need to use a transformation tecnique in order to use the 

former spectra in conjuction with Taylor's theorem. 

6.5.1 General Considerations 

Scale of Atmospheric Motions and Plume Spread 

Let us now briefly recall some aspects of the concepts of averaging and sampling 

times and of the associated scales, in relevance to plume dispersion (see also Ap

pendix A6.l). A continuous plume from a point source in the atmosphere encounters 

a wide range of atmospheric motions associated with different scales, which we asso

ciate with the concept of eddies. Now, the very large eddies contribute to changes 

in the instantaneous wind vector while the smallest eddies cause slight dispersive 

spreading of the plume. The eddies of about the same size as the local plume width 
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are the most effective in producing turbulent plume dispersion. Eddies larger than 

the instantaneous plume width but smaller than the characteristic horizontal scale 

of the region of interest (typically the downwind distance from the source) produce 

the meandering characteristic of the instantaneous plume. Thus if LE is a character

istic eddy dimension, x is the characteristic horizontal scale of the region (typically 

the downwind distance) and D p is an (ensemble) average instantaneous plume width, 

then the role of eddies in plume dispersion is given by (see, e.g., Seinfeld, 1983, p.262) 

(1) LE~ Dp, slight plume dispersion; internal plume mixing 

(2) LE,..., Dp, most effective in plume dispersion 

(3) Dp <LE:::::; x, produces plume meandering 

(4) LE> x, produces changes in the wind vector 

Since Dp = Dp (x), it is obvious that as the plume is advected downwind the 

effect (on its spread) of atmospheric motions associated with a given spatial scale be

comes qualitatively different. Furthermore, although in general eddies of a very wide 

range of scales are expected to be present in the atmosphere, they are not expected to 

be found with the same probability (i.e. the spectrum of eddies will be more "dense" 

in certain scales - more precisely in frequency or wavenumber bands - and less in 

others) this variation also holding for different directions. It is therefore imperative, 

in relating relative dispersion parameters to atmospheric turbulence properties, such 

as turbulent energy (i.e. fluctuating velocity variance), to discern between the contri

butions to these properties from different scales, of motion and, furthermore, to take 

into account the change of this contribution with advection time. 

Turbulence Spectra (versus Correlations} 

Comments and Definitions 

In principle correlation functions and spectral densities contain the same infor

mation regarding the distribution of the variance of a given quantity over different 

spatial scales and frequencies (or eddy sizes). However, in practice, spectra are more 

useful than correlations or other statistics because (besides possible computational 

advantages) they give directly the distribution of the variance of interest (in our case 
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of turbulent energy, either total or in a given direction) with respect to frequency 

(or wavenumber), in a way such that the effects of particular frequency bands are 

independent from the effects of other frequency bands. This important advantage 

is shown schematically in Figure 6-3 (from Panofsky and Dutton, 1984) that shows 

a time series of data with an approximately linear macroscopic (i.e. low frequency) 

trend. The respective correlation functions and spectral densities are also given, cal

culated both without and with removal of this trend. One sees that whereas the values 

of the two correlation functions, for a given time lag, differ significantly, even for small 

time lags, the behavior of the spectral densities at large frequencies is independent of 

the slow variations (see Panofsky and Dutton, 1984, pp.174-176, for further relevant 

discussion). 

In this work we adopt the following definitions for the frequency spectrum ("') 

F0t. (w) of the fluctuations of the random quantity a (that is either Eulerian or La

grangian with temporal autocorrelation R0t. (r)), following Monin and Yaglom (1975): 

1100 

F0t. (w) = - R0t. (r) coswrdr 
rr o 

(6.5 - 1) 

(We will not consider specta corresponding to cross-correlations in the present work). 

Regarding the notation, it must be mentioned that, in the present work, when an 

i = 1, 2, 3 index notation is used for the velocities, then the index alone is used to 

specify the correlation (i.e. we write R;, { T) instead of Ru, ( T) - see previous sections). 

For symmetric R0t. (r) (i.e. stationary a') one can alternatively use the spectrum 

E0t. (w) = 2F0t. (w), defined for 0 ~ w < oo instead of -oo < w < oo, and thus the 

correlation R0t. ( T) will be given by 

Ra (r) = f 00 Fa. (w) exp (iwr) dw = f 00 E°' (w) cos wrdw 
-oo lo (6.5 - 2) 

We also use the absolute spectral density in terms of "arithmetic frequency" 

n = w/2rr 

(6.5 - 3) 

• The reader is reminded that there are some differences in the definitions of turbulent 
spectra adopted by various authors; the major of these differences are summarized in 
Appendix A6.l. 
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Figure 6-3 

Effect of Trend Removal 

on Correlation Functions and Spectral densities 

(from Panofsky and Dutton, 1984) 
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which gives 

(6.5 - 4) 

and note the identity 

fo
00 

Sa (n) dn = fo
00 

nSa (n) dln n (6.5 - 5) 

according to which the area under the curve defined by the function nSa (n), which 

is often called the "logarithmic frequency spectrum," plotted against ln n represents 

variance and nSa (n) represents the variance per unit logarithm frequency interval. 

This identity is useful in the computations through the iterative algorithm proposed 

later in this section. 

We further denote with Sa ( n) , Ra ( T), the normalized spectral density and the 

temporal autocorrelation coefficient respectively 

S"' ( ) _ Sa (n} 
a n - ' u2 

a 
(6.5 - 6) 

(Note also that we will use the superscripts E and L to discriminate between 

Eulerian and Lagrangian spectra, as we have done with the correlations). 

In the following a will be identified exclusively with the fixed-point wind velocity 

component in the i-th direction, Ui, or with the lagrangian fluid particle component 

Vi· Thus the direction i will suffice in characterizing the turbulent frequency spectra 

Si~ ( n) and Si~ ( n). As far as (one-dimensional) spatial spectra are concerned, we 

assume that they are directly related to the frequency spectra through Taylor's "frozen 

turbulence" hypothesis, if, e.g., they are available and are to be used as a substitute 

of frequency spectra. 

Another quantity, extensively used in atmospheric applications, also useful in 

our work, is the so called meteorological frequency, f, which is dimensionless and is 

defined as 

(6.5 - 7) 
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where z is the height above the ground and u is the mean wind velocity (sometimes 

substituted by the mean square-root-sum (.Ju~ + u~ + u~) that is larger than the 

mean wind but is the quantity that is often measured in practice - see Panofsky and 

Dutton, 1984, p.98). The reason for using f is that, as we will briefly discuss later, 

on the basis of simple dimensional considerations for the surface layer, the spectra of 

any particular wind component are expected to scale with f (i.e. to be invariant, for 

given atmospheric stability conditions, when expressed in terms of!). 

Spectral Form of Taylor's Theorem 

Direct application of the Fourier transform to Taylor's theorem for single particle 

dispersion in homogeneous-stationary turbulence - equation (6.4-la) - and for i = j 
gives 

1
00 • 2 t 

2 2 2 "L sm 7rn 
(Ji (t) = uv,t sii (n) 2 dn 

o ( 7rnt) 
(6.5 - 8) 

It is easy to see that in the above expression, where - as always in this chapter -

u~, is assumed to correspond to the theoretical value, obtained for infinite sampling 

time and zero averaging time, the term containing the dispersion time t essentially 

plays the role of a low-pass filter that cuts out the high frequencies. Indeed, t is acting 

as the equivalent of an averaging time Ta that "smooths out" effects of the random 

Vi corresponding to time scales shorter than t and thus produces the statistic ul. In 

the notation of Appendix A6.1, where u~ [T8 , Ta] denotes the value of u~ evaluated 

for sampling time T8 and averaging time Ta, equation (6.5-8) can be writen as 

(6.5 - 9) 

The implicit sampling time is infinite, thus allowing (in principle) even the slowest 

variations in the turbulent field to affect the value of ul. In practice the concept of an 

infinite sampling time in the evaluation of turbulence statistics must correspond to 

intervals "long enough to accomodate all turbulent variations" but "short compared 

to the time scales of variations in the mean motions." 
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The Relation of Eulerian and Lagrangian Properties 

Before proceeding to discuss the application of (6.5-8) in describing turbulent 

dispersion properties we must stress the (already mentioned) need to transform ob

served Eulerian spectra to the corresponding Lagrangian densities appearing in this 

equation. However, relating Eulerian and Lagrangian spectra or, equivalently, cor

relations, is a most complicated (and in general unresolved) problem, the detailed 

discussion of which is beyond the scope of this work. A brief introduction to the 

methods used for tackling this problem (and in general for measuring Lagrangian 

properties), can be found in Pasquill and Smith (1983, pp.81-87; see also pp.127-128) 

while for a more comprehensive analysis of such methods one may consult the report 

of Koper and Sadeh (1975). Some more recent dicussions of the subject can be found 

in Lee and Stone (1983b), Li and Meroney (1985ab) and Sadeh and Koper {1985). 

In the present work we have already given equation (6.2-10), which is perhaps 

the most fundamental relationship among Eulerian and Lagrangian correlations, de

rived directly on the basis of Corrsin's (1959) independence hypothesis. The limits 

of the validity of this equation are discussed in Weinstock (1976). As we mentioned, 

the applicability of (6.2-10) to real situations is limited since it requires the a priori 

assumption of the transition density G. The most widely used alternative to the for

mal approaches based on this equation is the application of the so called Hay-Pasquill 

hypothesis (Hay and Pasquill, 1959) which states that Lagrangian and Eulerian cor

relations and spectra are similar in shape but are displaced by a scale factor f3 equal 

to the ratio of (typically the maximum) Lagrangian and Eulerian integral time scales 

f3 =TL /TE (see Figure 6-4). 

Thus 

nSL (n) = f3nSE (f3n) 

RL ({fr) =RE (r) 

(6.5 - lOa) 

(6.5 - !Ob) 

Although this approach is strictly not valid in the high frequency range (inertial sub

range), where the spectra have different limiting slopes, it appears to be a satisfactory 
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Figure 6-4 

Relation of Lagrangian and Eulerian Spectra and Correlations 

According to the Hay-Pasquill Hypothesis 
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approximation for the largest part of the spectrum according to available observa

tions (see, e.g., Hanna, 1982). Thus it is adopted in the present work as the standard 

means for transforming observed Eulerian statistics to Lagrangian ones (especially 

when the calculations are relevant to the energy range). 

Given the correlations or spectra, the only parameter required for applying the 

Hay-Pasquill hypothesis is {3. Various methods have been proposed for its estimation. 

One approach has used equation (6.2-10) to infer some qualitative results concerning 

the Eulerian-Lagrangian time-scale relationship: Assuming isotropic turbulence, a 

Gaussian G with variance related to RL through Taylor's theorem, and convenient 

forms of RE, Saffman (1963) and Philip (1967) estimated the ratio of Lagrangian and 

Eulerian integral time scales {3 =TL /TE as a function of the intensity of turbulence 

cu, = uu, /u, and found that, for small cu,, 

(6.5 - 11) 

The estimated values of the constant f3 were 0.8 (Saffman) and 0.35 (Philip). 

Relation (6.5-11) was also proposed by Corrsin (1963), who, in a simplified anal

ysis, assumed that the Eulerian and Lagrangian spectra are represented by their well 

known inertial subrange forms (obtained through dimensional/similarity analysis) 

(6.5 - 12a) 

(6.5 -12b) 

for n ~ nE = 1/TE and n ~ nL = l/TL respectively, and are equal to zero for 

n < nE; n < nL. Indeed, integrating the above equations from 0 to oo and taking 

into account that for homogeneous turbulence u~, = u~,, one obtains (6.5-11) again, 

with " - (3) 3/2 A7/2 
{3 - 2 Bi 

More realistic forms of the spectra, with finite values at small frequencies, have pro

duced similar results with f3 in general in the range 0.35-0.8 (see Pasquill and Smith, 
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1983, p.84). Current information regarding the value of p (for time scales along the 

mean wind direction), based on available observations, narrows the above range to 

0.4-0.6, with the value 0.44 (= y-:ir/4 - see Panofsky and Dutton, 1984) being the 

most common suggestion. Thus, typical values of /3 (calculated for typical values of 

au,) wll be f3 ~ 4 in neutral conditions, f3 ~ 2 in the typical unstable daytime plane

tary boundary layer, and /3 ~ 10 in stable conditions (Hanna, 1982). The value /3 = 4 

has often been adopted as a representative average of /3, independent of stability 

conditions. 

6.5.2 An Iterative Spectral Algorithm 

for Estimating Relative Dispersion Parameters 

General Discussion 

The spectral form of Taylor's theorem for absolute dispersion, that shows ex

plicitly the filtering role of travel time - and in particular expression (6.5-8a) which 

exemplifies the fact that absolute dispersion is (in principle) related to infinite sam

pling times - are the starting steps for developing a practical scheme for the estimation 

of relative dispersion parameters. The essense of our proposal is the following: at a 

given downwind distance (i.e. at a given dispersion time) apply the spectral for

mula ( 6.5-8) modified so that it corresponds not to "infinite" sampling time but to a 

time period that is just long enough to take into account the effects of eddies of sizes 

smaller or comparable to a representative instantaneous "diameter" of the plume. In 

this way, according to our discussion in the beginning of sub-section 6.5.1, meandering 

processes are excluded and the resulting ul will be relevant only to relative dispersion 

processes. 

In fact, the concept of finite sampling time, its effect on observed spectra, and the 

nature of dispersion parameters corresponding to such sampling times, have been the 

subject of study and discussion since the 1950's with the work of Ogura {1957, 1959) 

- see also Smith (1962), Hino (1968), Rowe (1979). In direct relation to relative dis

persion parameter estimation, the most important work, formulated on conceptually 
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similar grounds, has been that of Smith and Hay (1961), specifically in the context 

of the growth of a finite cluster of particles. (See also the discussion in Pasquill 

and Smith, 1983, pp.154-158). Their analysis, valid exclusively for isotropic condi

tions and for clusters with a priori assumed Gaussian mean concentration distribution 

about their center of mass, essentially starts from the differential form of equation 

(6.4-lOb), makes use of the Hay-Pasquill hypothesis for the relation among Eulerian 

and Lagrangian correlations and spectra, and results in the following expression for 

the rate of growth of the isotropic cluster (with standard deviation u R from the center 

of mass) 

duR _ 2{31
00

1Ut//3 E ( ) sin KS 1 - exp (-u1x:2
) d d -- - - = (3D) K -- S K 

dt _ 3 U 0 o KS UR 
(6.5 -13a) 

which for ut/{3 >UR simplifies to 

(6.5 -13b) 

where E(aD) is the integrated three dimensional Eulerian spectrum in terms of the 

magnitude of the wavenumber vector K and {3 is the Hay-Pasquill parameter. Based 

on the above expressions and making various simplifying assumptions Smith and 

Hay (1961) proposed a simple working approximation for the range of the expansion 

where the size of the cluster is of the same order of magnitude as the Eulerian integral 

length scale of turbulence (or - Pasquill and Smith, 1983, p.157 -where the downwind 

distance from the source of an initially small cloud is 10 to 80 times the Eulerian ssale): 

(6.5 - 14a) 

or, approximately (and for {3 = 4) ("') 

(6.5 -14b) 

"' Note that Pasquill and Smith, 1983, p.230, suggest a factor of about 0.22 instead of 0.3 
in this expression. 
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(which - after squaring - suggests that in this range only about a ninth of the total 

variance of turbulence contributes in the dispersion of the cluster). This expression 

corresponds to the maximum of the daR/dt slope predicted by the Smith-Hay model 

and requires that 01, ,..., t 2 • It should be observed at a "central stage" of dispersion 

(Panofsky and Dutton, 1984, p.252), as the exponent oft in 01_, (t) drops from the 

value of 3.0 in the inertial stage to the value of 1.0 in the final stage of dispersion. 

The model of Smith and Hay (in its simplified form) was reviewed and compared 

with atmospheric data by Sawford (1982a) who indeed identified a certain range of 

agreement between predictions and observations; for further information the reader 

is referred to this paper and also a to a relevant discussion in Pasquill and Smith 

(1983, pp.230-232). 

An important thing to observe at this point is that the general equation of 

Smith and Hay (6.5-13a) resembles the general spectral form of Taylor's single par

ticle theorem with the additional presence of a low-pass filter function, of the form 

[l-exp(-a1,1e2)] /oR. This particular form of this weighting function is due to 

assumptions concerning the two-particle velocity correlations in isotropic turbulence. 

In fact both the concept of isotropy and these assumptions constitute important re

strictions on the generality of the Smith-Hay scheme; these restrictions are also, of 

course, extended to the permissible form of the spectrum that can be used in this 

scheme. As far as the simple approximate equation (6.5-14a) - which is actually the 

form of the model that has been used the most in applications - is concerned, it has 

been derived on the assumption of a specific, very simple (exponential type) Eule

rian correlation. It is therefore obvious that the (even approximate) applicability of 

the Smith-Hay model to dispersion in the highly anisotropic energy range of atmo

spheric turbulence, with spectra that are sensitive functions of stability and height, 

is questionable. 

So there arises naturally the problem of extending the Smith-Hay approach to 

more realistic situations. However, although the above approach is now twenty five 

years old there have not been - to our knowledge - any significant steps towards a 
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practical generalization. An attempt to combine the theoretical scheme with informa

tion from actual atmospheric measurements was presented by Sheih (1980) who ap

plied the approach of Smith and Hay directly to observed, Eulerian, one-dimensional, 

atmospheric frequency spectra. This attempt, which used isotropic theory results to 

model anisotropic conditions and directly substituted the one-dimensional frequency 

spectrum for the integrated three-dimensional wavenumber spectrum, contained some 

obviously serious errors and produced predictions that disagree with observations. 

However, it is still worth mentioning, at least because of the discussion it caused 

in the literature; indeed, Gifford (1981), who strongly criticized the model of Sheih, 

and also Mikkelsen and Troen (1981) and Rowe (1981), not only pointed out various 

problems and errors of Sheih's scheme but also provided some interesting comments 

regarding the spectral description of the relative dispersion prroblem. 

Model Formulation 

In the present work we avoid use of the Smith-Hay formula and propose a scheme 

based directly on the spectral form of Taylor's dispersion theorem, as stated in the 

beginning of the present subsection. The use of a theoretical result relevant to single

particle dispersion as a starting point might at first seem as an inappropriate step but 

in fact it is consistent with the relative dispersion concept (through the equivalence 

between relative-to-the-center-of-mass and two-particle dispersion). Indeed, filtering 

out the relatively low frequencies, that correspond to meandering, by using a small 

sampling time, is essentially equivalent to adopting a meandering frame (that follows 

the motion of the center of mass), since "an observer" moving with this frame does 

not "feel" exactly these frequencies. 

The general relation for o}, for finite sampling time T8 (see also Appendix A6.l), 

is 

? (t· T ) = 21 00 

s" ~ ( ) sin
2 

7rnt ( _ sin
2 

7rnT8 ) d o, , 8 uv· u n 2 1 2 n 
• o (7rnt) (7rnT,) 

(6.5 - 15) 

a result that was discussed by Smith (1962). 

In terms of the Eulerian spectrum (and assuming the Hay-Pasquill hypothesis is 

PART IB CHAPTER 6 



- 398-

valid) equation (6.5-15) becomes 

?(t·T)=a2 {
00 S~(n)sin2 7rnt//3 (1-sin

2
7rnTa)dn 

a, ' a v; Jo n (7rnt/ /3)2 (7rnTa)2 
(6.5 - 16) 

In order to calculate af (t; Ta) = a1, (t) one must set Ta set equal to the maximum 

sampling time that still corresponds to the instantaneous or fluctuating plume, a 

typical estimate of which is 

(6.5 - 17) 

(clearly Ta will be different in the horizontal and vertical directions). An important 

point to note here is that the proper characteristic velocity appearing in the definition 

(6.5-17) does not have always to be exactly equal to the mean wind speed; in fact 

we define it· here as being always identical to the characteristic velocity scale that 

appears in the definition of the meteorological frequency, and that results in invariant 

representations of the Eulerian spectra. 

Of course Ta defined in through (6.5-17) is a function of the unknown <JR,, that 

is to be estimated, and hence (6.5-16) becomes a nonlinear integral equation for OR;. 

The solution to this equation is obtained through an iterative algorithm as follows: 

Step 1: Given the spectrum function Si~ (n) calculate the absolute diffusivity <Ji 

(corresponding to Ta = oo) for given t: 

? ( ) = 2 2100 

SA~ ( ) sin
2 

7rnt/ (3d u, t O"v.t u n 2 n 
• o (7rnt//3) 

Step 2: Use Ui as a first estimate of OR; for given t 

and set 

to calculate 

u}i} (t) = Ui (t) 

. /;; (1) 
T(l) (t) = 2y "'uR, 

a,a U 

[(72. (t)] (2) = 0"2.t2 s~ (n) sm 7rnt 1 - sm 7rn a,i dn 100 • 2 //3 ( · 2 T(1)) 
R. v. o u ( 7rnt //3) 2 (7rnT(l)) 2 

a,i 
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Step 3: Use the value u< 2 ) (t) obtained from the previous step to calculate T;,~> 

that improves the filter function, and introduce in the last equation above to obtain 

a refined estimate of O"R; = u~>. Repeat until convergence is obtained (e.g., until 

two successively calculated values of UR; do not differ by more than, say, 5%). We 

note here that an obvious requirement for this iterative process to converge is the 

absolute diffusivity to be a "sufficient" approximation for u R;, a condition that might 

be violated very close to the source (in which case a fraction of u;, might be used as 

a first estimate for uRJ· 

Actually, numerical integration of the spectral formulas above is better performed 

with respect to ln n since the logarithmic frequency spectrum has a much smoother 

graph. Universal results (for given stability conditions) are obtained through the 

use of the meteorological frequency. An example of such calculations is given in the 

following paragraphs. 

Model Application: An Example 

The most important step in the implementation of the computational algorithm 

just described is the selection of the appropriate Eulerian spectral density. A variety 

of empirical and semiempirical models of st/, (n) that fit extensive sets of observa

tions have been proposed and tested during recent years. Excellent comprehensive 

reviews of the information and references relevant to these models can be found in 

Caughey (1982), Pasquill and Smith (1983, Chapter 2), Panofsky and Dutton (1984, 

Chapter 8), and - in a somewhat more concise form - in Jensen and Busch (1982). In 

particular, worthy of reference are the spectral function models proposed by Kaimal 

(1973) and Hojstrup (1982), for stable and neutral-unstable conditions respectively, 

that seem to be based on the currently most comprehensive data bases. 

An extensive discussion of the spectral properties of atmospheric turbulence 

(which are covered satisfactorily in the works mentioned above) is beyond our present 

objectives. However, it is useful to recall briefly some important points: First, it must 

be dear that the interest here is in the spectra corresponding to the energy range of 
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atmospheric turbulence. Observed inertial subrange spectra are in general found to 

follow the similarity analysis predictions, as given by equation (6.5-12a), in a satis

factory manner, the constants of this equation being approximately equal to 

Of course a sound general model for the energy range must produce the inertial 

subrange charactersistics at high frequencies, i.e. 

nS/f (n) ,...., n-2!3 (large n) 

On the other hand, for very low frequencies Si~ (n) must tend to unity, i.e. 

"'E nSii (n) ,...., n (small n) 

A plot of nSl/, (n) is expected to have these two asymptotes with a maximum (or 

"spectral peak") in between. This maximum is attained at a frequency nm corre

sponding to the scale at which the predominant production of turbulent energy takes 

place. For an observer at height z above the ground this scale is expected to be pro

portional to u/ z in the surface layer (see, e.g., Jensen and Busch, 1982, p.204). Thus 

the spectra Sli (n) of any particular velocity component are expected to scale with 

respect to the dimensionless meteorological frequency f = nz/u, and, futhermore, 

nSi~ (n) at any height are expected to fall on a universal curve when plotted against 

f. (An interesting point to note is that the inertial subrange is typically always well 

confirmed for f > 10 and often for f > 1). 

Perhaps the most simple spectral function that obeys the asymptotic rules stated 

above is given by 

nS!l! (n) = nSi~ (n) = af 
n u~; (1 + b/)5/3 

(6.5 - 20) 

Although the above expression contains two parameters, a and b, integration from 

0 to oo on one hand and differentiation for determining the position of the spectral 

extremum on the other, show immediately that 

1 
a= f m, b = 1.5/ m (6.5 - 20a) 
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where f m is the meteorological frequency corresponding to the maximum of the log

arithmic spectrum, a parameter that is directly obtained from observations. 

Introducing the spectral function (6.5-20) one calculates the ratio 

as follows: 

2 
CIR; 

a2 
u; 

Step 1: Calculate the absolute diffusivity a[ over a~, for given dimensionless t" = 
tu/z: 

(~) 2 at = t''2 roo af sin2 7i ft" //3 dln f 
z au, lo (1 + b/) 513 (rrft" //3) 2 (6.5 - 18") 

Step 2: Use at/ a~, as a first estimate of ah,/ a~, for given t" and set 

to calculate 

Step 3: Use the value of a1, /a~, obtained from the previous step to refine the 

estimate of T; ii and introduce again in the last equation above to obtain a new value 
' 

of al/ a;,. Repeat until convergence is obtained. 

Comments: (i) In practice a general infimum and a general supremum for the lower 

and upper limits of integration respectively are f = 10-3 and f = 103 ; in most cases 

however minimum and maximum values of f equal to 10-2 and 102 are sufficient. 

(ii) To obtain absolute values of CIR, the relevant values of a~, are needed. Current 

knowledge regarding these values is reviewed in various sources, such as Nieuwstadt 

and van Dop (1982), Panofsky and Dutton (1984), and Weil (1985). 

Given the frequency of the spectral maximum, f m, the above procedure gives 

us ah)a;, as a function of the dispersion time t. As an example we present here 
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calculations for both uJ ju~, and u1_./u~, for dispersion in the vertical (i = 3), with 

f m given by the following equations, based on atmospheric measurements (Panofsky 

and Dutton, 1984, p.189): 

Im= o.183 (~ < -0.1) 

fm = 0.482 + 0.437 ~ (-o.7::; ~ < 0) 

fm=0.482+0.87~ (~>o) 

where L is the Monin-Obukhov length. Figures 6-5a, 6-5b, and 6-5c contain the 

results for z/ L = 0.0 (neutral atmosphere), z/ L = -1.0 (unstable atmosphere), 

and z/ L = ~.O (stable atmosphere). Typical values of f3 = 4, 2, and 10 were used 

respectively for these three cases. 

It is easy to see that these figures show quite good agreement - at least on a 

qualitative basis - with the known asymptotic results from similarity theory: al ,...., t 2 

for small times and al ,...., t for large times; also u1,, ,...., t 3 in the beginning of the 

calculations for the UR, and u1,, ,...., uJ at large dispersion times. {Recall that the 

early, source-dependent, phase of the relative dispersion process is not modeled by the 

present algorithm). As expected, the effect of meandering is much more profound in 

unstable atmospheric conditions and reduces significantly with increasing atmospheric 

stability. For intensely unstable atmospheres Ui. seems to be a bad first approximation 

for uR, for a significant downwind distance; thus, if for an application uR, cannot 

simply be neglected with respect to meandering (which dominates dispersion there), 

it seems that one should calculate relative dispersion from some semiempirical formula 

that involves an effective source size. 
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NEUTRAL ATMOSPHERE: 2/L=0.0 CLOGF CALCS) 
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TRAUEL TINE 

Figure 6-5a 

15 

Absolute and Relative Dispersion Parameters over u~. (z/u) 2 

(Solid and Dashed line respectively) 

in the Vertical Direction, versus tu/ z, 

for Neutral Atmospheric Conditions (z/ L = 0.0), 

Calculated through Iterative Filtering of the Turbulent Spectrum 
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UNSTABLE ATMOSPHERE C LOGF CALC:S > 
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TRAUEL TIME 

Figure 6-5b 

Absolute and Relative Dispersion Parameters over c~. (z/u) 2 

(Solid and Dashed line respectively) 

in the Vertical Direction, versus tu/ z, 

for Unstable Atmospheric Conditions (z/ L = -1.0), 

Calculated through Iterative Filtering of the Turbulent Spectrum 
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STABLE ATNOSPHERE: 2/L=l.9 CLOSF tALCS) 

,,-'' 
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TRAUEL TINE 

Figure 6-5c 

___ ......... 

Absolute and Relative Dispersion Parameters over u~. (z/u) 2 

(Solid and Dashed line respectively) 

in the Vertical Direction, versus tu/ z, 

for Stable Atmospheric Conditions (z/ L = 1.0), 

Calculated through Iterative Filtering of the Turbulent Spectrum 
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6.6 CONCLUSIONS 

The discussion in this chapter attempted an overview of different concepts and 

methods employed in the description of relative dispersion, focusing in particular on 

their interrelationships. A point that was stressed here is that various important 

questions, regarding sometimes widely applied hypotheses, remain unresolved and 

waiting for definitive answers. However, the attention that is given to the subject of 

relative dispersion has been steadily increasing in recent years (partly due to realizing 

its importance in modeling short term incidental releases of hazardous gases and to 

the problems related to concentration fluctuations), and a better understanding of 

the problems involved is a certain fact. It is hoped in particular that comparison 

of both the underlying fundamental assumptions and of the results from different 

methods employed to study relative dispersion will significantly improve the insight 

on the ambiguous points. 

Among the methods presented here, those based on stochastic ordinary differ

ential equations (Langevin equations) and their discrete counterparts (autoregressive 

time series models) seem to have the potential for improving our fundamental un

derstanding of phenomena related to relative dispersion process in a more tractable 

manner than formulations dealing directly with the dynamics of transition functions. 

Nevertheless, the generality of the formalism that is developed in connection with the 

dynamics of the (stochastic and deterministic) transition functions allows us to see 

the various practical models of dispersion from a more broad perspective, derive and 

classify them in an elegant and general manner, and identify the connection of the 

assumptions involved in their formulations. In particular the discussion in this chap

ter tried to show that the use of time-dependent diffusion coefficients in an ADE-type 

equation is not an "illogical concept," as it is often claimed, but constitutes an - ad

mittedly artificial - compromise that turns the parabolic partial differential equation 

of transport into a non-local scheme, avoiding the introduction of integrodifferential 
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models that formally account for the non-localness of the turbulent dispersion process. 

From a more practical point of view, application of appropriate filtering tec

niques on observed turbulent spectra seems to offer a promising method for estimat

ing dispersion parameters, with the effects of sampling and averaging time explicitly 

incorporated in their estimation. In this way these parameters reflect the action of 

the random fuid motions associated with a particular range of temporal and spatial 

scales. Thus not only the nature of the different "components" of dispersion is made 

clear, but also a means for exactly identifying the scales relevant to "mixing" and 

"advection" on a quantitative basis is possible. Of course various problems associ

ated with this method expect some future improvement in their treatment; perhaps 

the most important are related to the Lagrangian-Eulerian spectra relationship and 

to the incorporation of an effective source size in the overall scheme of calculations. 
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APPENDIX A6.1 

Frequency Spectra 

and the Statistical Effects of 

Finite Sampling and Averaging Times 

The apparent statistical properties of random fluctuating aerometric quantities such as wind 

velocity components, temperature, concentrations etc., are implicit functions of the averaging time T,. 

and the sampling duration T. involved in their measurement or estimation. In the modeling schemes 

of the present work we employ mainly the variances, temporal autocorrelations, and frequency spectra 

of such quantities. Here we focus on the effects of finite sampling and averaging time on the variance, 

considering its spectral representations. 

Let u! [T.; T,.] represent the apparent variance of the (Eulerian or Lagrangian) quantity a obtained 

by averaging measurements over the time interval T,. and sampling for time T,. The fluctuation of a 

about its mean value is assumed to be a stationary stochastic function of time; thus the "theoretical" 

ensemble variance of a will be 

where a'= a - (a). 

Let Ra ( r) be the temporal autocorrelation coefficient of a' 

Ra (r) = E{a' (t) a' (t + r)} 

and Fa (w) be its (cyclic) frequency spectrum. At this point it is necessary to summarize a few 

remarks regarding the definition of spectral functions in studies of turbulence. (It must be noted 

of course that although the present discussion considers temporal single-point autocorrelations and 

related frequency spectra these remarks also apply to cross-correlations in both space and time and 

to all relevant frequency or wave-number spectral functions and tensors). 

The majority of works in turbulence (see,e.g.,Monin and Yaglom, 1975; Tennekes and Lumley, 

1972; Townsend, 1976; Batchelor, 1953 defines Fa (w) as the non-symmetric Fourier transform of 

Ra (r) with the 1/27r factor in the transform partner of the pair 

1 Joo Fa (w) = - Ra (r) exp (-iwr) dr 
211" -oo 

(A6.1-1) 

which for symmetric Ra (r), i.e. stationary a' (as it was assumed) becomes 

1100 

Fa (w) = - Ra (r) coswrdr 
1r 0 

(A6.1- la) 
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This allows use of the spectrum E"' (w) = 2Fa (w), defined for 0 ~ w < oo instead of -oo < w < oo, 

and thus 

R"' (r) = J
00 

F"' (w) exp (iwr) dw = f
00 

E"' (w) coswrdw 
-oo lo (A6.1- 2) 

This notation comes in contra.st with the common convention of (electrical ma.inly) engineering litera

ture where the 1/27r factor is included in the inverse transform partner of the pair. However notational 

confusion does not stop at this point. Some works which a.re standard references in atmospheric tur

bulence and atmospheric diffusion theory do not follow the majority of turbulence literature but adopt 

different definitions: 

Pa.squill and Smith (1983: third edition of the classic monograph of Pa.squill) adopt the definition 

(also used by Hinze, 1975) 

F£P 8 >(w)=2J
00 

Ra(r)exp(-iwr)dr=4 f
00 

R"'(r)coswrdr 
-oo lo 

and therefore 

Ra (r) = - F£PS) (w) exp (iwr) dw = - F£PS) (w) coswrdw 1 Joo 1 100 

4'K -oo 2'K 0 

whereas Panofsky and Dutton (1984) set 

F£PD) (w) = - R"' (r) exp (iwr) dr = - Ra (r) coswrdr 1 Joo 2100 

'K -oo 'K 0 

and 

1 Joo R"' (r) = 2" -oo F£PD) (w) exp (-iwr) dw 

In other words 

It is therefore imperative that great ca.re is taken when, e.g., an empirical spectral function is used 

in calculations, to be sure to what definition it corresponds. 

Here we adopt the "mainstream" definition as in Monin and Yaglom (1975), using both Fa (w) and 

E"' (w ). We also introduce the absolute spectral density in terms of "arithmetic frequency" n = w /27r 

(A6.1- 3) 

which gives 

(A6.1- 4) 
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With this definition our spectral density Sc (n) is identical to both the function S(n) defined in Pasquill 

and Smith (1983, p. 23) and to the function S(f) defined in Panofsky and Dutton (1984, p. 85). A 

useful thing to note here is the identity 

Thus the area under the curve nSa (n) plotted against ln n represents variance. Thus nSc (n) represents 

the variance per unit logarithm frequency interval. 

Let further Sc (n), Re (r), be the normalized spectral density and the temporal autocorrelation 

coefficient respectively 

Then it is easy to show that 

S ( )-Sc(n) 
c n - u2 ' 

()!. 

(see, e.g., Tennekes and Lumley, 1972, p. 212; see also Chapter 5). 

(A6.1- 6) 

In terms of the spectral density one has (see, e.g., Pasquill and Smith, 1983, p. 26) 

2 [ T. J = 2 SA ( ) sin ?rn.La d 1
00 • 2 ,.,.. 

uc oo, .. uc c n 2 n 
o ( 1rnT,.) 

(A6.1- 7) 

Thus, as T,. is increased, more of the spectrum is cut off and u! [oo, T .. ] is reduced. 

The complementary effect of sampling over finite time T. can also be derived (Pasquill and Smith, 

1985, p. 26): 

u! [oo, OJ= u! [T., OJ+ u! [T,, 0]00 
(A6.1- 8) 

where the subscript oo implies averaging of the variances estimated from consecutive periods T. over 

infinite time. Substituting from (A6.1-7) one has 

(A6.1- 9) 

For very large T,. the weighting function cuts off all but the very low frequencies, for which 

Sc (n)-+ 4T• with T .. =Jo"" Re (r) dr, effectively independent of n. Then, in (A6.1-7) Sc (n) can be 

taken outside the integral sign and therefore 

(A6.1-10) 

(A6.1-10) is also the limiting form of Taylor's relations 

d {T" 
dTa { u! [oo, Ta] Ta}= 2u! Jo Re (r) dr (A6.1- Ua) 
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u! [oo,t]t2 = 2u! lat foT,. Rec (r) drdTa 

which are applicable to any stationary random function of time. 

(A6.1- 11b) 

When available data correspond to both finite sampling and averaging time the effect of the two 

in combination depends on the order in which the averaging and sampling operation are carried out. 

The two alternative procedures are described by Pasquill and Smith (1983, p. 28): 

(I) for samples of length T, averages are taken over subintervals Ta which do not overlap (T. /Ta must 

be an integer), 

(II) averages are taken over intervals of length Ta and from the smoothed time series constructed in 

this way samples of length T. are formed. In this case averages may be taken in an overlapping 

manner. 

The combined effects of finite sampling and averaging times are given by the following relations 

(Pasquill and Smith, 1983) for procedures (I) and (II) respectively: 

u2 [T T] = u2 l 00 

S (n) (sin2
1rnTa _ sin

2
1rnT.) 

cc • 1 a (I) cc a ( T )2 ( T \2 o ?rn a ?rn • / I 
(A6.1-12a) 

100 • 2 T ( · 2 T \ 2 _ 2 ~ sin ?rn a • sin 11"n • 
ua[T.,Ta](II)-ua Sa(n) 2 .i- 2 } 

o ( 11"nTa) ( 1rnT,) 
(A6.1- 12b) 

Thus, in case (I) the resultant effect is equivalent to substracting the separate weighting functions for 

averaging over Ta and T., while in case (II) it is equivalent to applying the product of the separate 

weighting functions. 
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CHAPTER 1 

Chapter 7 contains 

e a discussion of the initial phases of plume dispersion, and the scales and proper

ties that are relevant to each phase, 

• a brief overview of methods employed to model plume rise, 

• a presentation of the models of Briggs and Schatzmann that are suggested as the 

"simple" and "comprehensive" alternatives, respectively, for use with the TRPM. 
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CHAPTER 7 

NEAR FIELD 

PLUME DYNAMICS 

7.1 INTRODUCTION 

In the development of the Turbulent Reacting Plume Model (TRPM) it was 

assumed that the processes of plume mixing that interact with chemistry are solely 

due to the action of the ambient, atmospheric, turbulence. Thus, as was mentioned 

in Chapters 2 and 3, the details of the early stages of plume dispersion, where the exit 

flow of gases from a stack (or any other "point" source) "merges" with the ambient 

cross-flow, are neglected ("'). This was done on the basis of the argument that this 

process of flow merging is very fast compared to the time scales of both molecular 

diffusion processes and of nonlinear chemical interactions between plume and ambient 

species, of the type this work mainly focused on. 

Nevertheless, source conditions play a significant role, not only by determining 

the rate and quality of early plume mixing but, more importantly, by affecting the 

dispersion and mixing parameters far beyond the stage where the plume exists as a 

separate fluid mechanical entity, distinct from the ambient flow. More specifically, 

initial conditions, in combination with the state of ambient stability, determine the 

("') 

PART IB 

It must be noted that the description of mixing and dispersion in the present basic 
operational version of the TRPM does not involve any geometric, kinematic or thermal 
parameters of the source, such as stack diameter, effluent exit temperature or velocity, 
etc.; actually the species emission rate is the only input associated with the source that 
is required directly by the master module of the TRPM. 
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evolution of the ascending path of the mean plume centerline and its final total 

:rise, i.e. the height where atmospheric dispersion of the emissions essentially starts. 

Knowledge of the position of the mean centerline is essential not only for "placing" the 

results of local reaction-dispersion calculations at the actual mean spatial coordinates 

to which they are relevant (and therefore for integrating the results of the TRPM 

with calculations from larger scale models), but also because the dispersion rate of 

the plume may depend on its actual rise. A most extreme example of this dependence 

is associated with the existence of elevated temperature inversions. In such a case 

the buoyancy of the emissions may be able to cause (at least partial) penetration 

of this inversion layer. This will result in a significant reduction of near ground

level concentrations as well as of plume dispersion rates just above the inversion. A 

more general quantitative measure of the effects of near-field plume rise on plume 

dispersion can be obtained by examining the maximum ground level concentration 

which is roughly proportional to the inverse square of the effective source height. 

Experience suggests that this effective height is typically 2 to 10 times the actual 

stack height (Hanna et al., 1982); plume rise can therefore reduce (even without 

causing penetration of an inversion) ground level concentration by a factor of as 

much as 100. One must therefore conclude that a reliable scheme for the estimation 

of plume rise is a required component of any "realistic" reacting plume model. 

It is nevertheless clear that the problem of near field plume (or jet) dynamics 

can often be of overwhelming complexity as it involves the simultaneous transfer of 

mass, momentum and heat, coupled with boundary conditions that can be highly 

complicated. Thus, intricate fl.ow patterns and mixing mechanics are to be expected, 

except in the most trivial of cases (see also Figure 7-1). Analytical (exact or ap

proximate) results are available for point sources of momentum and/or heat in a 

calm environment, resulting in laminar jets and plumes (see, e.g., Seinfeld, 1975; Yih, 

1977). Extensive information is also available regarding the internal flow structure of 

turbulentjets and plumes in calm backgrounds (see, e.g., Hinze, 1975). In the case of 

discharges in turbulent cross flows the physics of the problem become very difficult to 
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handle and available experimental data and numerical computations reveal complex 

schemes of mixing and ft.ow development (see, e.g., Moussa et al., 1977; Crabb et al., 

1981). It is beyond the scope of the present work to discuss the vast range of research, 

both theoretical and experimental, that is relevant to turbulent jets and plumes; a 

relatively recent review of the current state of the field can be found in List (1982) -

see also Fischer et al. (1979), Chen and Rodi (1980), Rodi (1982). 

In the case of atmospheric plumes in particular, buoyancy is typically much 

more important than initial momentum (see next section) and hence it is mainly 

the former that determines plume evolution in the near field. This leads to the 

"line thermal analogy" for plume rise, according to which the internal motion of a 

point source· plume resembles the convective motion induced by an instantaneous 

line source of heat corresponding to the projection of the mean plume centerline on 

the horizontal plane at source height. Csanady (1973; Chapter 6) and Scorer (1978; 

Chapter 10) contain informative introductions to the fundamental theory of buoyancy 

dominated plumes; for further analysis of the fundamentals of buoyancy effects in 

fluids one should consult the relevant monograph of Turner (1973); finally, useful 

introductions to the techniques of plume modeling can be found in Seinfeld (1975), 

Eskinazi (1975), Fischer et al. (1979) and Gebhard et al. (1984). Proceeding from 

the fundamental concepts, that are exposed in the above references, to computational 

models that realistically predict plume rise under atmospheric conditions (for given 

ambient stability) is far from being a trivial or even straightforward step. Indeed, 

although many models start from a common fundamental (and simplified) "picture" of 

the plume (see Section 7.3) they produce different working formulas (and results that 

vary significantly for the same inputs) as they adopt different assumptions regarding 

the action of atmospheric and plume turbulence. 

The field of atmospheric plume rise modeling has been reviewed extensively and 

periodically by Briggs (see, e.g. Briggs 1969, 1975, 1984) who compared and classified 
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1 = 

Figure 7-1 

Rising Plume in a Cross-Flow 

( Source: Moussa et al., 1977) 
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a variety of modeling approaches(*) as well as available data to finally reach a set of 

formulas (also periodically updated) that today are the most widely used means of 

calculating the rise of atmospheric plumes (see Section 7.4). Another extensive review, 

focusing on models for the prediction of cooling tower plume rise from natural-draft 

cooling towers, was presented by Carhart et al. (1982) who evaluated the theory 

and performance of 16 such models. Finally, a concise but general overview and 

discussion of the subject of plume rise modeling can be found in Schatzmann and 

Policastro (1984) who classify and analyze a wide range of assumptions commonly 

involved in this modeling. 

In the present chapter, after a discussion of the main qualitative features of 

near field plume dynamics, and a general classification of the approaches that have 

employed to ·model these dynamics (a classification that contains some information 

more recent than what can be found in the latest works of Briggs), we present the 

two alternative options suggested for use with the TRPM. These are the widely 

used semiempirical algebraic equations of Briggs, and a more general scheme (a self 

similarity model of plume rise) resulting in a set of ordinary differential equations 

that require numerical solution, based on the work of Schatzmann and his coworkers; 

the latter is presented in relative detail in Appendix A7.2. 

("') In his 1975 review Briggs lists and discusses the basic features of about 50 models of 
atmospheric plume rise. 
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7.2 QUALITATIVE CONSIDERATIONS 

7.2.1 Phases of Plume Dispersion 

In order to provide perspective on the qualitative dynamics of atmospheric 

plumes we consider the following typical case of a plume "bent over" by the wind 

(Slawson and Csanady, 1967, 1971; Csanady, 1973): Effi.uent gases leave an indus

trial stack with temperature differences from the ambient environment of the order of 

100-300 °c and vertical velocities w0 of the order of 10 m s-1 , entering a cross wind 

of speed u.00 that is of similar order of magnitude. Thus, the effi.uent gases from the 

stack "carry" both momentum and buoyancy "of their own" and therefore constitute 

a buoyant jet (or a forced plume) entering a turbulent atmosperic crossflow. Rapid 

mixing with the ambient air takes place and the plume axis bends over into the wind 

as the effi.uent gases acquire the horizontal momentum of the ambient air. Observa

tions show that the transfer of horizontal momentum is usually essentially complete 

within a few stack diameters from the exit (Csanady, 1973). Thus very quickly por

tions of the plume start to travel horizontally at the mean speed of the ambient wind. 

Nevertheless, their vertical velocity relative the the ambient fluid however does not 

disappear so quickly, because of the continued action of the buoyancy forces. 

Csanady (1973) reports that from several observations of the near-source size 

of chimney plumes chimney it may be inferred that the effective mass of effi.uent 

gases increases through vigorous mixing with ambient air by something like a factor 

of 30 within a distance of 3 to 5 source diameters. By this time the deficiency of 

horizontal momentum compared to ambient air is therefore a negligible 3%. The 

vertical velocity WM due to initial velocity is also about 3% of the original w0 , that 

is for w 0 ~ 10 m s-1 w M is of the order of 30 cm s- 1 . However, if the chimney 

diameter is not much less than say 3 m, the buoyancy force has had several seconds 

to act in the time the gases have moved 3 to 5 diameters (that is 9 to 15 m). A 
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typical order of magnitude for the initial buoyant acceleration of industrial stacks is 

10 m s-2 , and although this also reduces through mixing in the same proportion as 

initial momentum, it generates an appreciable vertical velocity within the first few 

seconds. Indeed if the average acceleration between leaving the chimney top and a 

30-fold increase in mass is only 1 m s-2 , and if this initial adjustment phase lasts at 

least 1 s, the buoyant contribution to vertical velocity becomes 1 m s- 1 , or 3 about 

times larger than that due to the initial momentum. Csanady (1973) notes that such 

a conclusion holds only for chimneys discharging substantial quantities of heat. An 

initial buoyancy caused acceleration of the order of 10 m s-2 implies an initial excess 

temperature of the effluent gases of the order of 300 °c. For a 3 m diameter chimney 

and an exit velocity w0 = 10 m s-1 this corresponds to a considerable rate of heat 

release (order of 6000 kcal s). 

These conclusions will not apply to much smaller chimneys (of order 1 m m 

diameter or less) nor to those which discharge their gases with a small buoyant accel

eration. In such non-buoyant cases plume rise is due basically to initial momentum 

and is usually essentially complete within 10 chimney diameters or so. However, the 

vast majority of large industrial point sources produce buoyancy rather than momen

tum dominated plumes, as in the situation described here, and most effort in the field 

of atmospheric modeling has focused on these cases. 

From the above example it becomes obvious that in buoyancy dominated plumes 

neither the radius of the stack, nor the initial vertical exit velocity are dominant in 

determining the path of the plume beyond the earliest mixing phase (often referred 

to as the "jet" or "momentum phase") that lasts for a distance of the order of a 

few stack diameters. The factor that quickly becomes of dominant importance is the 

total excess heat. However, beyond the jet phase of the plume this excess heat is 

small enough, even in plumes generated by large heat sources, and the Boussinesq 

approximation seems to be a valid assumption in most of the cases. These facts 

suggest that it is useful to identify succesive stages in the evolution of a typical plume, 

where different sets of parameters are important and appropriate simplifications can 

PARTIB CHAPTER 7 



- 435-

be made in the analytical description of the plume. The brief discussion that follows is 

based on the analysis of Slawson and Csanady (1967, 1971) who identified four phases 

(and classified them as the zeroth, first, second and third phase of plume evolution). 

An actual atmospheric plume is expected to conform better to this rather idealized 

qualitative model of behavior in near neutral atmospheres. 

The Momentum (or Jet) Phase 

This initial phase of plume evolution extends a few (say 3 to 5) stack diameters 

downwind and its dynamics are determined by source properties (stack radius, exit 

speed, density of effluent) and the ambient density and mean wind speed at source 

height. The inherent turbulence of the exit fl.ow is much stronger than the ambient 

turbulence and dominates transport processes and the internal plume flow structure. 

The Thermal Phase 

In this phase the effect of source diameter and exit velocity become unimpor

tant. Mean plume dynamics are determined by the flux of buoyancy of the plume 

and the ambient mean wind speed and stratification (i.e. the atmospheric potential 

temperature gradient). Inherent plume turbulence (generated by buoyant convective 

motion) still dominates the ambient and determines local turbulent properties and 

mixing. The total downwind extent of this phase is expected to be of the order of 

about a hundred stack diameters. 

In a neutral atmosphere, or for suitably small vertical plume displacements, the 

flux of buoyancy may be regarded as approximately constant in this phase. However, 

in a stable atmosphere the potential temperature of the environment increases as the 

plume rises so that the plume's excess temperature (and hence its total buoyancy 

decreases). The converse is the case in an unstable atmosphere. (In highly unstable 

atmospheric conditions the vigorous convective motions of the ambient will most 

probably dominate very early the inherent motions of the plume and will play a more 

important role in determining its rise). 

The term thermal phase is usually attributed to a rather smooth phase of buoyant 

plume dispersion, and is commonly associated with near-neutral conditions. In these 
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conditions most buoyancy dominated plumes retain smooth outlines and a moderate 

slope (about 0.2 or even less) against the horizontal for some distance during this 

phase, unless special ambient flow properties and source configuration cause charac

teristic irregularity phenomena known under the names of thermalling, downwashing 

(or flagging), downdraught, puffing and bifurcation (see Scorer, 1978; see also Ap

pendix: A7.1 for a brief glossary of terms describing plume behavior). It turns out to 

be reasonable in this phase to regard segments of the plume as if they were segments 

of a line thermal moving upward through quiescent surroundings (see, e.g., Turner, 

1973). 

The total plume rise in atmospheric crossflows during this phase is in principle 

predictable and the great majority of models used for this objective are relevant to 

the dynamks of this stage. 

The Breakup Phase 

Observation of buoyant plumes reveals that the relatively regular thermal phase 

of plume rise comes to a rather distinct end at some approximately predictable dis

tance from the source as more vigorous mixing with the ambient air sets in and the 

plume often breaks up into several distinct parcels. In general, a stage, lasting for dis

tances of the order of 100 m, where there is a distinct increase in mean plume width 

and mixing with the surrounding occurs mainly at large scales, is observed. This 

"breakup" phase of the plume is more pronounced in strong atmospheric turbulence 

and also occurs closer to the source when the ambient turbulence is more intense. 

Obviously the large eddies which lead to the breakup are those naturally present 

in the wind (they are too large to be produced by the plume's own internal motion). 

Also their mixing action is dominant over the effects of the self-generated turbulence. 

When "breakup" is pronounced, it leads to an almost stepwise increase in plume 

diameter. 

The dynamics of these phase are influenced by the scales and intensity of atmo

spheric turbulene (in addition to the mean wind speed and plume buoyancy flux). 
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The Atmospheric Diffusion Phase 

A little further downwind the distinct parcels merge again into a larger, more 

diffuse plume, the subsequent growth of which is relatively slow. At this stage the 

various atmospheric diffusion theories become valid and this final phase of plume 

dispersion (which extends indefinitely downwind) is typically called the "atmospheric 

diffusion phase." Now the plume exists only in terms of the species emitted from 

the source; their fluctuating concentrations define the plume. Thus there is no sep

arate flow structure associated with the plume phenomenon and we deal only with 

atmospheric fluid mechanics. 

The actual height of plume rise above the actual source is affected by the ran

domness of the physical factors involved. The expected rise, is in general a function 

of the downwind distance from the source and a number of other physical param

eters, different for each phase, as they were identified in the previous paragraphs. 

Recall that in the preceding discussion it was assumed that during the initial phases 

of plume dispersion no special aerodynamic phenomena such as downwash take place. 

It is further assumed that the source is sufficiently far above the ground so that the 

flow pattern within the plume is not disturbed by surface effects. Otherwise the effec

tive height (that is the sum of plume rise plus the real source height) may influence 

further plume rise (see, e.g., Csanady, 1973, 6.15). 

Figure 1-3 in Chapter l depicts schematically the downwind range relevant to the 

various phases that were discussed here together with the most important physical

chemical in-plume processes occurring at a given range. 
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Results regarding the expected plume dynamics during the "distinct" initial 

phases of dispersion can be obtained by simple dimensional analysis if the physi

cal parameters recognized as important during each phase are taken into account. 

These simple results are summarized, together with some empirical information in 

List (1982). (In relation with the formulas listed there we must note that the effect of 

a solid boundary on the buoyant movements in a large plume has been ignored; also 

the atmospheric potential temperature distribution is represented through its gradi

ents, but this in turn may be a function of height.) Finally it must be noted that the 

line-thermal analogy applies only to the second of the four phases of initial plume 

dispersion. This is the only phase for which we have a relatively adequate theory for 

the internal motion and concentration patterns of a buoyant plume. Appendix A7.3 

summarizes the suggestions of Briggs (1975) for these internal patterns. 
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7.3 MODELING PLUME RISE: 

THE BASIC APPROACHES 

Research in the field of plume rise over the past 30 years has led to a confusing 

proliferation of prediction schemes, that offer a variety of different answers for a spe

cific problem, ranging from simple empirical or semiempirical formulas to complex 

numerical formulations. It is obvious from the discussion of Section 7.1 that compi

lation and discussion of a list of specific models representative of the entire spectrum 

of existing approaches would be a most ambitious task that certainly is beyond the 

scope of the present work. The reader who is seeking information of this kind is 

urged to consult List (1982), Briggs {1975, 1984) and Carhart et al. (1982). What 

is attempted here is a general classification of the various approaches on the basis of 

the first principles involved. 

The two extreme forms of plume rise models, and in general of models of plume 

(or jet) dynamics, are: 

(I) Simple algebraic relations giving the expansion, the trajectory (or final rise) etc., 

of plumes in either calm or turbulent environments, that are derived from dimensional 

analysis and empirical information. Typically, the construction of such relations starts 

with the identification of the important physical parameters involved in the problem 

(which may be different in the various phases of plume evolution, as discussed in 

Section 7 .2), and, possibly, with assumptions regarding the behavior of some of these 

parameters. Self similarity is most commonly assumed for velocity, concentration and 

temperature profiles and simple self similarity laws are invoked. General correlations 

are then derived on dimensional grounds; qualitative consideration of the governing 

transport equations with an order of magnitude analysis of their terms, as well as 

of constraints imposed by conservation requirements, may facilitate or "enhance" 

this step. The correlations thus derived contain numerical parameters which must 

be determined on the basis of empirical information. Tutorial expositions of this 
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approach can be found for example in Seinfeld (1975; Appendix B), Csanady (1973; 

sections 6.12 and 6.13) and Fisher et al. (1979; Chapter 9). 

(II) Numerical schemes that solve the sets of the coupled (partial differential) equa

tions governing the fields of mean velocity, concentration, temperature and, possibly, 

fields of higher order moments or correlations of these variables. The most impor

tant step in the formulation of models following this approach is the construction 

of appropriate closure approximations for the turbulent correlation terms; both first 

and higher order closure assumptions have appeared in the relevant literature. Some 

formulations in this area limit attention to uniform environments; others attempt to 

take into account the effects of ambient turbulence, crossflow and stratification which 

complicate the problem significantly. For examples of this approach see, e.g., Mellor 

and Yamada (1977), Teske et al. (1978), Yamada (1979), Chen and Nikitopoulos 

(1979); see also List (1982) and Liu et al. (1982; Section 4) for discussions of relevant 

models. 

The "gap" between the approaches described above is occupied by the class of 

the so-called "integral type" models, widely ranging in variety and complexity, that in 

general attempt a description of the problem based on more "physical" grounds than 

models of class (I) but lead to the formulation of schemes that are more tractable 

than the ones contained in class (II). The key element in the various integral type 

models is the reduction of the set of governing partial differential equations into a set 

or ordinary differential equations (essentially through self similarity assumptions and 

appropriate closure schemes). One can discern two major lines in the development of 

integral approximations: 

(IIIa) The governing ordinary differential equations are formulated directly by con

sidering an appropriate control volume of the evolving plume and constructing bal

ances of momentum, mass, energy and species concentration. This "shell balance" 

approach (see, e.g., Bird et al., 1960) has been adopted by the majority of inves

tigators starting from the works of Taylor (1945), Priestley (1953), Priestley and 

Ball (1955) and Morton et al. (1956). Typically "top-hat" profiles of concentration, 
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temperature, etc., are assumed inside the control volume (but more complicated self 

similarity is also possible). Quoting Csanady (1973), "the main idealization involved 

[in this approach] is that although in reality the fl.ow and temperature patterns are 

continuous, an artificial distinction is introduced between an "identifiable plume" and 

the ambient fluid. The identifiable plume is assumed to grow by "entrainment" of the 

ambient fluid, the rate of entrainment being governed by an entrainment velocity at 

the perimeter of the plume." This constitutes the essence of what is generally referred 

to as the "Morton-Taylor approach" or "Taylor's entrainment hypothesis." This hy

pothesis replaces the "straightforward" turbulent transfer closure assumptions that 

are required to provide a closed set of governing equations. 

The most simple models in this approach just reproduce the results of dimen

sional reasoning discussed earlier; more complicated models attempt detailed descrip

tions of plume evolution basically using more elaborate entrainment hypotheses. (For 

a critical discussion of the physical situation behind simple entrainment hypotheses 

see Netterville, 1985). A review and comparison of several models of this type can 

be found in Briggs (1975); Briggs' own suggestions (1969, 1975, 1984), which are 

summarized in Section 7.4 of this chapter, are typical simple applications of this in

tegral approach. For an introduction to the essentials of this type of modeling one 

may consult the same basic references mentioned in (I). Typically, the Boussinesq 

approximation is invoked in application (see, e.g., Fan {1967); Abraham (1971) etc.). 

(IIIb) Alternatively, the original coupled partial differential equations that govern 

the transport processes in the plume-ambient system are reduced into ordinary dif

ferential equations via Prandtl 's integral approximation method and appropriate self 

similarity assumptions. Examples of this approach are presented by Hirst (1972) and 

Schatzmann (1976) and in general provide a more powerful method for describing 

plume dynamics, starting from a more detailed consideration of the problem and 

introducing simplifications not a priori but gradually, based on an explicit analysis 

that requires rational justification of the assumptions involved. This approach (in 

particular Schatzmann's schemes) is discussed in detail in the following (Section 7.5 
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and Appendix A7.2). Again turbulent transport closure is conveniently provided by 

"entrainment hypotheses." For a recent analysis and review of relevant entrainment 

assumptions see Chiang and Sill (1985). 

Finally we close this section by pointing attention to the main subjects that 

seem to receive currently the major interest in the area of near-field plume dynamics 

modeling: these are, besides the evaluation and refinement of entrainment hypotheses 

(also related to their justification on physical grounds), (a) modeling of cooling tower 

plumes, (b) modeling of the effects related to elevated inversion penetration (see, e.g., 

Mannins, 1979) and (c) modeling of plume rise in the convective planetary boundary 

layer (see, e.g., Lamb (1982) and Willis and Deardorff (1984)). 
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7.4 THE MODELS OF BRIGGS 

(Briggs, 1969, 1975, 1984) 

The following equations for the various phenomena of plume rise (associated with 

the momentum and thermal phases of plume dispersion) appear in the most recent 

reviews of Briggs (see, e.g., Briggs, 1984) and currently they seem to be the most 

widely accepted working formulas relevant to these phenomena. The brief exposition 

presented here follows mainly the conventions and the pattern of classification adopted 

in the Handbook of Atmospheric Diffusion of the Department of Energy (Hanna et al., 

1982), with some changes in the notation; it should be viewed only as a collection of 

common definitions and practical formulas for direct application and is included in this 

work for ready reference. For detailed derivations of Briggs' formulas, extensions to 

other cases, discussion of the assumptions involved and of the associated uncertainties, 

as well as for information relevant to their relation to other approaches and their 

evolution to the currently accepted forms one should consult Briggs (1969, 1975, 

1984). 

Definitions 

The basic geometric (shape) parameters involved in Briggs' formulas are shown 

schematically in Figure 7-3; a typical "vertical" and a "bent over" plume are shown. 

In practice a plume will be assumed vertical or bent over when the angle of its 

centerline with the horizontal is respectively larger or smaller than 45°; according to 

Hanna et al. (1982) a plume is "more or less vertical" if wind speed is less than about 

lm/s. A "plume volume flux" is defined by Briggs as 

V = wR2 (vertical) 

V = u00 R2 (bent over) 

(7.4 - 1) 

(7.4 - 2) 

where w is the vertical speed of the plume (assumed uniform in a cross-section and 

therefore representing an average value), u 00 is the mean ambient wind speed and R 
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is an effective plume radius in a horizontal or vertical plane for vertical and bent over 

plumes respectively. (Note that in the formulation presented here the factor 71" does 

not appear explicitly anywhere; thus it is incorporated implicitly in the definition of 

the effective radius R). Initial fluxes of volume, V0 , buoyancy Bo and momentum Mo 

are defined as 
o A 2 

Vo= woR0 

• g . 
Bo= To (To - Tooo) Vo 

(7.4 - 3) 

(7.4 - 4) 

Mo = .!!!!_wo Vo (7.4 - 5) 
Pooo 

where subscript 0 indicates stack exit values and oo indicates ambient properties. 

Thus To and Po are the plume temperature and density at the stack and T 000 , Pooo 

are the corresponding ambient properties at stack height. (Implicit in (7.4-4) is that 

the mean molecular weight of the plume gases does not differ appreciably from that 

of ambient air; otherwise all temperatures in (this equation must be divided by the 

mean plume molecular weight). At an arbitrary height buoyancy and momentum flux 

are defined as 
• g . 

B=T(T-Too)V 

M=wv 

(7.4 - 6) 

(7.4 - 7) 

The environmental stability (or stratification) parameter ~ is expressed in terms of 

the ambient potential temperature (T~)) gradient as 

g BT~) g (BToo 0 ) 
~=---~- --+0.001 C/m 

T00 Bz T00 Bz 
(7.4 - 8) 

(the last factor is approximately the adiabatic lapse rate; one should note that~ is also 

the square of the Brunt-Vaisala frequency). In many cases the appropriate field data 

for direct determination of ~ are not available; for these situations the approximate 

values of temperature gradients given in Table 7-1 can be used in (7.4-8). 

Another concept that appears in Brigg's formulas is the ratio of the effective 

area influenced by the plume momentum to the cross-sectional area of the so-called 

PART IB CHAPTER 1 



- 446-

Table 7-1 

Typical Temperature Stratification 

Corresponding to the Pasquill-Gifford Stability Classes 

STABILITY 

CLASS 

A {extremely unstable} 

B (moderately unstable} 

C {slightly unstable) 

D (neutral} 

E (slightly stable} 

F (moderately stable} 

AMBIENT 

TEMPERATURE 

GRADIENT 

IJT/oz (°C/100m) 

<-1.9 

-1.9 to -1.7 

-1.7 to -1.5 

-1.5 to -0.5 

-0.5 to 1.5 

>1.5 

POTENTIAL 

TEMPERATURE" 

GRADIENT 

88/lJz (°C/100m) 

<-0.9 

-0.9 to -0.7 

-0.7 to -0.5 

-0.5 to 0.5 

0.5 to 2.5 

>2.5 

"Calculated by usuming d8/dz ~ dT/dz + r, where r is the adiabatic lapse rate (0.986 °C/100m). 
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thermal plume (Briggs, 1975), S, which is approximately equal to 2.3 for bent-over 

plumes. 

Finally, the entrainment velocity Ve that appears in the closure scheme (Taylor's 

entrainment hypothesis) 

dV A 

dz = 2Rve 

is related to plume vertical speed through 

Ve =aw (vertical plumes) 

Ve = {3w (bent-over plumes) 

where /3 is larger than o:. 

(i) Conservation of buoyancy 

Governing Equations: 

Vertical Plumes 

dB . 
-=-~V 
dz 

(ii) Conservation of momentum 

(iii) Entrainment hypothesis 

where a = 0.08 

(i) Conservation of buoyancy 

with S = 2.3 
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dM B 
-=-
dz w 

dV A l 

- = 2aRw = 2aM2 
dz 

Governing Equations: 

Bent-Over Plumes 

dB ~. 
-=--V 
dz S 

(7.4 - 9) 

(7.4 - 10) 

(7.4 - 11) 

(7.4 - 12) 
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(ii) Conservation of momentum 

dM B 
dz w 

(7.4 - 13) 

(iii) Entrainment hypothesis 

(7.4 - 14) 

or, if u 00 is constant 

fl= /3z (7.4 - 15) 

where /3 = 0.6 for a buoyant plume and /3 = 0.4 + 1.2(u00 /wo) for a jet. 

7.4.1 Near Source Rise 

(Not Affected by Ambient Stability) 

Typically ambient stability has little effect for dispersion times less than ~- 1/ 2 

(between 10 and lOOs) and ambient turbulence is not important for distances less 

than about ten stack heights (Hanna et al., 1982). For these short times the following 

results hold: 

Vertical Plumes 

M1/2 
fl= o.ez, w = e.25-

z 

R = o.15z, w = 2.3( ~0 r 
M /Bo is typically less than 10 s. 

Bent-Over Plumes 

The plume trajectory is given by 

( . . )t 3 M 3 Bo 2 
ll.z = -132 --2 x + 132 --3 x .1 U 00 2 2 U 00 

where /32 = 0.6 and /31 = 0.4 + 1.2(u00 /wo) and 

• l 

M 
(t < -. ) 

Bo 

M 
(t > -. ) 

Bo 

(t < t*) 

B 3 
2 

ll.z = 1.6-0 xi (t > t*) 
Uoo 
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with t• = M /Bo which is typically of the order of 5s. The coefficient 1.6 is expected 

to be accurate within ±40% (Hanna et al., 1982). 

7 .4.2 Rise Limited by Ambient Stability 

(Stably Stratified Atmosphere) 

Vertical Plumes 

In a stably stratified atmosphere vertical plumes achieve an "equilibrium rise" 

Azeq that is equal to 

if it is dominated by buoyancy, and 

. 1/4 
Bo 

Azeq = 5.3 ~-3/8 - 6Ro 

Bent-Over Plumes 

The final rise of a buoyant plume is 

1 

Ah = 2.6 ( Bo ) 
3 

Uoo~ 

(7.4 - 20) 

(7.4 - 21) 

(7.4 - 22) 

The wind speed u 00 in this formula is an average value between the heights ha 

and ha+ Ah. 

7 .4.3 Penetration of an Elevated Inversion 

An elevated inversion, approximated a jump AT(P) in a constant potential tem

perature at a height Aze1 above the stack will be penetrated if the following conditions 

are met: 

Vertical Buoyant Plume 

(7.4 - 23) 
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Vertical Momentum Plume 

Bo/M1/2 
Azel < 6.2 (g jT(P)) AT(P) 

Buoyant Bent-Over Plume 

l 

.6.z,1 < 2.5 [ Uoo (g j:C:)) .6.T(P)] ' 

(Bent-over jets have little ability to penetrate inversions.) 

(7.4 - 24) 

(7.4 - 25) 

If the final plume rise (Ah is within a factor of 2 of the inversion height above the 

stack (Azel), only a fraction (P) of the plume will penetrate the inversion whereas 

a fraction 1 - P is reflected off the inversion and diffuses downward. Briggs (1975) 

suggested the formula P = 1.5 - Azel/ Ah. 

1.4.4 Rise Determined by Ambient Turbulence 

(Neutral and Unstable Atmospheres) 

In this case plume rise comes to an end when the thermal phase of dispersion 

terminates in the breakup phase where ambient turbulence overcomes the internal 

turbulence of the plume. In Brigg's "breakup model" this occurs when the internal 

plume eddy dissipation, approximated by l.5w3 / z equals the ambient eddy dissipation 

rate e. The following simplified formulas for final plume rise are proposed: 

Nearly Neutral Conditions 

Buoyancy dominated plume 

where u._ is the friction velocity. 

Momentum dominated plume 
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where D is the stack diameter 

Convective Conditions 

A tentative formula is 

(7.4 - 28) 

where N is the surface buoyancy flux defined as 

,1 - g -'T' If. - -w 00 

Too 

(see, e.g., Hanna et al., 1982 - Section 1-4.4 ). 

The formulas of Briggs are very similar to available results from dimensional anal

ysis; as mentioned earlier, a summary of such results, together with of the empirical 

constants involved (according to various investigators) is given in List (1982). 
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7.5 THE PLUME RISE MODEL OF SCHATZMANN 

(Schatzmann 1976, 1978, 1979ab; Schatzmann and Flick, 1977) 

The approach of Schatzmann offers a formulation that is more comprehensive 

than those described in the previous section, as it takes into account the physics of 

the thermal phase of plume rise in much more detail. The resulting model, consists 

of a set of ordinary differential equations for mean centerline plume properties and 

other plume parameters, and has to be solved numericaly. In its most general form it 

holds for arbitrary ambient stratifications of temperature as well as for large density 

differences between the emissions and the environment (*). 

Thus, temperature inversions of any slope are taken naturally into account in the 

model calculations. A restriction is that the ambient wind velocity field is "locally" 

shear free; step changes are however allowed. 

A rather general situation, involving an elevated temperature inversion layer, 

typical of the conditions that can be directly addressed by Schatzmann's basic model 

is depicted schematically in Figure 7-3. 

Starting point of Schatzmann's models are the fundamental Eulerian transport 

equations for mass, momentum and conserved scalars (inert species concentrations 

and temperature) formulated in an orthogonal curvilinear coordinate system that is 

always tangential to the mean plume centerline, as it was first introduced by Hirst 

(1972). Reduction of this coupled set of partial differential equations (initially corre

sponding to random instantaneous quantities), and of the associated boundary condi

tions, to an initial value problem involving a set of ordinary differential equations for 

mean properties and parameters, proceeds through an elaborate sequence of mathe-

("') The governing equations developed in this approach are reduced to a closed, solvable form 
without the introduction of the Boussinesq approximation. However, the currently avail
able values of the empirical parameters appearing in the entrainment function have been 
determined, in both the cases of "dry" plumes (Schatzmann, 1979a) and "wet"plumes 
(Schatzmann and Policastro, 1984) only for conditions that are relevant to the Boussinesq 
approximation. 
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Figure 7-3 
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Schematic Representation of Plume Rise 

in a Stratified Atmosphere, 
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Typical of the Conditions Addressed by Schatzmann's Model 

(adapted from Schatzmann, 1977) 
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matical manipulations as well as of simplifying assumptions. Among these assump

tions a most important one is that of self-similarity of the profiles of certain "mean 

excess" plume properties that finally allows integration of the governing equations 

into a simpler system. A complete exposition of the fundamental theory and the 

various assumptions involved in the aforementioned sequence can only be found scat

tered in a series of publications; the same holds for the determination of the empirical 

entrainment functions that provide closure to the turbulent transport equations and 

for applications and comparisons of the operational models with other approaches. 

For this reason, and to facilitate use of the existing models resulting from this ap

proach (as well as in order to provide a basis for further work based on it) we present 

in Appendix A7.2 a concise but systematic derivation of the self-similarity ordinary 

differential equation system of Schatzmann (for both the two- and three-dimensional 

flow cases), listing in detail all the approximations involved. In the same appendix, as 

an additional step for providing a readily usable means for calculations, the "Schatz

mann set" of equations is further reduced (from the coupled form in which it appears 

in the literature) into a scheme that is directly amenable to numerical treatment. All 

the necessary conditions and parameters for numerical application of a basic form of 

the model as well as a discussion relating this approach to other integral techniques 

can also be found there. 
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7.6 CONCLUSIONS 

The subject of near-field plume dynamics (where plume momentum and buoyancy 

are significant) is a major area of atmospheric and in general fluid mechanical research 

and is covered by specialized monographs and an extensive literature (see, e.g., List, 

1982; Briggs, 1984 for reviews). The present chapter (complemented by Appendices 

A7.1 to A7.4) attempted 

(i) a concise overview of the physical problems and the modeling approaches in this 

area, and 

(ii) an exposition of two alternatives (at different levels of complexity) that are ap

propriate for use with the TRPM model. 
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APPENDIX A'T.1 

A Brief Glossary of Terms 

Describing Plume Behavior 

(For further information see Scorer, 1968, 1978) 

Aerodynamic Downwash or Flagging: A situation in which stack effluents a.re brought to ground 

level very close to the source and in undesirably high concentrations by being entrained into the eddies 

in the lee of the chimney. 

It occurs in the cases of strong winds or low source exit velocities as well as for very irregular 

airflows where eddies in the wake of the stack entrain some of the effluent. Rapid vertical move

ment occurs in the separated fl.ow region behind the source and this usually communicates with 

larger similar regions behind industrial buildings which are dose to the source. This results to 

downwash. Its avoidance is achieved through proper aerodynamic design and is usually carried 

out the with a.id of wind tunnel model studies of actual plants. 

Bifurcation: The phenomenon of a plume dividing into two distinct "branches" showing an overall 

cross section tha.r resembles a strong cylindrical thermal. 

Bifurcation occurs in cases of strongly buoyant bent-over plumes due to the pattern of intense 

entrainment of clear air up the middle of their boundary. Coning plumes a.re the ones more likely 

to be bifurcated. 

Coning: The situation in which the plume has a steadily widening boundary in its atmospheric 

diffusion phase and does not exhibit significant sinuosities. It is characteristic of neutral atmospheric 

conditions. 

In the case of coning plumes dispersion is due ma.inly to eddies of size smaller than the local 

instantaneous plume width. Thus relative diffusion dominates meandering. 

Downdraught: A situation similar to Aerodynamic Downwash: Effluent is entrained from time to 

time in the lee of the building associated with the chimney;common in dwelling houses. 

Downwash: see Aerodynamic Downwash. 

Fanning: A situation of limited dispersion taking place mainly in the horizontal direction. It is typical 
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of stable atmospheres. 

A fanning plume achieves final rise (equilibrium level) very soon after emission. Significant con

centration values are confined at this height. 

Flagging: see Aerodynamic Downwash. 

Fumigation: A situation where the plume is dispersing downwards but not upwards. It occurs when 

the emission takes place below an inversion that is not penetrated. 

Lofting: The inverse of Fumigation: The plume disperses only upwards. It occurs when the atmo

sphere is stable below the plume and neutral a.loft. 

Lofting occurs when either the actual height of the stack is sufficient to place the effluent above the 

inversion (or the plume buoyancy strong enough to allow penetration of the inversion). Dominant 

mixing mechanism in the case of lofting plumes is the relative dispersion. 

Looping: The case where the plume exhibits large sinuosities compared to its instantaneous witdh. 

It occurs in unstable atmospheres. 

In the case of looping plumes the effec of meandering is most important. The averaged observed 

dispersion is predominantly ca.used by eddies with size large compared to that of the instantaneous 

plume. 

Thermalling: A phenomenon that takes place when thermal convection of the ambient is very strong 

{highly unstable atmospheres). The plume breaks up into distinct masses by the action of individual 

thermals of the atmosphere whose buoyancy dominates that of the plume. Another possibility is that 

masses from the chimney are directly entrained into natural thermals of the environment. 

References 

for Appendix A7.1 

Scorer, R.S. (1968) Air Pollution, Pergamon Press, London, 151 pp. 

Scorer, R.S. (1978) Environmental Aerodynamics, Ellis Horwood Ltd./Halsted Press, Chichester, 

488 pp. 

PART ID APPENDIX A7.1 



- 463 -

APPENDIX A7.2 

Self Similarity Modeling 

for the Thermal Phase of Plume Dispersion 

The evolution of a buoyant plume is governed by: 

(i) the continuity equation of (total) mass 

(ii) the continQity equation of momentum 

8p -+ V · (pu) =O at 

(iii) the continuity equation for a passive scalar 

a (pc) --+ u · V (pc) + pc V • u = 0 at 

and (iv) the continuity equation of heat 

a (pT) + u · V (pT) + pTV · u = 0 at 

(A7.2 -1) 

(A7.2 - 2) 

(A7.2 - S) 

{A7.2 - S) 

To describe plume rise the (a, r, <P) system of orthogonal curvilinear coordinates is employed (Fig

ure A7.2-1). The base vectors (i.,,i.,,iq,) of this system are expressed in terms of the base vectors 

(i,j, k) of the locally fixed Cartesian (x, y, z) system, with x in the direction of the mean ambient 

flow(*) and z opposite to the direction of the gravity force, as follows: 

is = i cos 81 cos 82 + j sin 81 cos 82 + k sin 82 

i., =i (-sin 81 cos <Ji - cos 81sin82 sin <Ji) 

+ j (cos81 cos</>- sin81 sin82 sin</>) 

+ k cos 82 sin <P 

(*) Note that in Schatzmann's (1978, 1979ab) notation y is set parallel to the ambient flow; however 

here we follow the common convention that sets x parallel to the mean ambient fl.ow. 
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iq, =i (sin (Ji sin</> - cos 81sin82 cos</>) 

+ j (-cos 91 sin</> - sin 91sin92 cos</>) 

+ k cos 92 cos</> 

The following analysis is restricted to the two-dimensional case (91,92 ) = (0,9). Letting 

• ,/, d(J tt = rs1n'l'
ds 

the Lame coefficients (scale factors) become 

h. = 1 - "'• h,. = 1, hq, = r 

and the vector operations involved in the continuity equations a.re 

and 

In the above a is any scalar and a = a.,i., + a .. i .. + aq,iq, is any vector. 

Substituting in the continuity equations for steady state conditions one has: 

(i) total mass continuity equation 

[ 
1 au 1 a ' 1 a ti It w 1 OIC] 

p 1 - IC as + ; ar (rt1) + ; a<f> - 1 - IC p - 1 - IC; a¢> 

u ap ap w ap +---+ti-+ -- = 0 
1 - IC as ar r a<f> 

(iia) momentum equation in the a-direction 

PARTIB 

{ 
au au 1 [ au a,. ] } p U- +ti- (1 - tt) + - W- (1- 11:) - UW- - UtllC = as ar r a¢> a¢> 

= (1- 11:) (p00 - p) gsin9 - apa. 
08 

(A1.2 - 4) 

(A1.2 - 5) 
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Cooordina.te System Employed in the Plume Rise Model 
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(iib) momentum equation in the y~direction 

{ 
au au 1 [ au alC ] } p u- + v- (1- IC)+ - w- (1- IC) - uw- - UVIC cosfJ aa a,. ,. aq, aq, 

-p u-smi/> + v- (1- IC) sm<f> + u-cos<f> + v- (1- it) cost/> { 
au . av . aw aw 
as ar as ar 

+~ [ w :; (1- IC) sin q, - w2 (1- IC) sin q, + u2itsin q, + w ~~ (1- it) cos</> 

+ u w ( 1 - IC) cos q, + u2 
: ~ cos q,] } sin £J 

apa. apa. . . 1 apa. 
= - - cos £J + -a ( 1 - it) sm q, sm £J + - -a ( 1 - 1C) cos q, cos £J 

as ,. ,. "' 
(iic) momentum equation in the z-direction 

{ 
au au 1 [ au alC J} . p u- +ti- (1- it)+ - w- (1- it) - uw- - UVIC smB as a,. ,. aq, aq, 

p u- sm q, + v- (1- it) sm </> + u- cos</>+ v- (1- IC) cos</> { 
av . av . aw aw 
as ar as ar 

+ ~ [ w : ; ( 1 - IC) sin q, - w2 
( 1 - IC) sin q, + u 2 

ic sin q, 

+w~; (1- IC) cost/>+ vw (l -1C) cost/>+ u2:; cost/>] }cos() 

= (Poo - p) g (1- IC) - 8:ad sin (J - a:,.d (1 - IC) sin</> cos() 

1 apd 
--- (1- IC) cos q, cosfJ ,. aq, 

(iii) continuity equation for concentration 

ac ac w ac 
U- +ti- (1- 1t) + -- (1- IC)= 0 aa a,. ,. aq, 

(iv) continuity equation for temperature 

aT aT waT 
U- +ti- (1- IC)+ -- (1- 1t) = 0 aa a,. ,. aq, 

(A7.2 - 5) 

(A7.2 - 6) 

(A7.2 - 7) 

(A7.2 - 8) 

Implicit in the derivation of the above steady state equations was the assumption of a divergence 

free flow (i.e. V · u = 0). 
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Equations for Averages 

It is assumed that 

(1) Reynolds averaging (i.e. decomposition in an ensemble mean and a fluctuating pa.rt) is applicable 

for u, p, pd, c and T, and that time averages approximate ensemble means: 

u = (u} + u1 = u + u', etc. 

and, 

(2) the structure of turbulence is not influenced by the effects of compressibility (valid for flows with 

small Mach numbers) and therefore the terms containing density fluctuations p1 are omitted. 

Then, the mean quantities are decomposed into their background and excess components(*) (Fig

ure. A7.2-2): 

P = Poo +Pd 

where 

Ug = U 00 COS (J 

v9 = -u00 sin (J sin ef> 

u11 = u 00 sin () cos </> 

and the subscript oo denotes properties of the ambient flow field. 

Introducing these assumptions in the governing equations one has: 

(*) The excess components can be either positive or negative. 

PARTIB APPENDIX A7.2 



-468-

Figure A7.2-2 

Definition of Background and Excess Quantities 
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(i) continuity of total mass 

(A7.2 - 9) 

(iia) momentum equation in the a-direction 

+~ [(w" + wa) ~~d (1- 1e) - (u" + ua)(w" + wa) :; - (u" + ua)(v" + va)1e] 

ou12 
lo (ru'v') l [ou'w1 

- -OIC]} +-+ (1- 1e) + - -- (l -1e) - 21eu'v' - 2u'w'-aa r Br r o<f> B</> 

+--;2B(Poo +Pa) +-1- 1 Bpa (l ) + 1-,-, Opa (l ) _ 
U UV - - IC -U W - - IC -

08 or r o<f; 

= -pdg (1- 1e) sin8 - Bpa 
08 

(A7.2 -10) 
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(iib) momentum equation in the y-direction 

+~ [(w9 + wd) ~~d (1- x:) - (u9 + ud)(w9 + wd) :; - (u9 + ud)(v9 + vd)x:] 

8u12 1 a (ru'v') 1 [8u'w' - -81t] +--- + - --(l-1t)- 2u1v11t-2u1w1 -
8s r a (1 - 1t) r 8</> 8<f> 

1 [u'2 8(poo +Pd) + u'v' 8pd (1- x:) + u'w' ! 8pd (1 - x:)]} cos (J 
(Poo +Pd) Ba Br r 8</> 

{ 
8(v11 +vd) Bvd 

-(Poo +Pa.) (ug + ud) as + (vg + va.) Br (1- ic) 

8pd ll 8pd ( ) . ,/. . f) 1 8pd ,/. . ll = --
8 

cosu + -
8 

1-x: sm'l'sm + --
8 

cos'l'smu 
s r r </> 

(A7.2 -11) 
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(iic) momentum equation in the z-direction 

+~ [(wg + wa) ~~a (1- 11:) - (ug + ua)(wg + wa) :; - (uu + ua)(vg + va)11:] 

au12 1 a (ru'v') 1 [au'w' - -all:] +--- +- --(l-11:)-2u1v111:-2u1w1
-

as ,. a (1 - 11:) ,. a<P a<P 

1 [u'2 a(Poo +Pa) + u'v' apa (1- 11:) + u'w' ~ apa (1 - 11:)]} sin 8 
(Poo +Pa) as ar r a<P 

{ 
a(vg+va) ava 

-(p00 +Pd) (u9 + uc1) as +(vu+ vd) ar (1- 11:) 

+~ [(wg + Wa) a(v~; vc1) (1- 11:) - (wg + Wa) 2 (l -11:) + (ug + t1a) 2 11:] 

( ) apa . apa ( ) . 1 aPa 
= -pdg 1 - II: - -a sm e + -a 1 - II: sm <P cos e + - - cos <P cos e 

s r ,. aq, (A1.2 -12) 

(iv) continuity equation for a scalar (c: or T) 

au'c:' 1 a (rv'c') 1 [aw'c:' - -all:] +-- + - (l-11:) + - --(l-11:)-v'c:'11:-w'c:'-as ,. a,. ,. a<P a<P 

1 [-a(Poo +Pa) -aPa ) -1 apa ] ----- u'c:' + v'c:'- (1- 11: + w'c:'-- (l -11:) = 0 (Poo +Pa) as ar r a<P 
(A7.2 -13) 
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Simplifications 

(a) The Preaaure Gradients 

The difficulty of estimating the complex gradients of Pa is circumvented through the following 

method (Fan, 1967; Schatzmann, 1978): One arbitrarily sets 

and assigns the effects of these gradients to an empirical "drag function" for the pressure forces per 

plume segment da after integration over the angular and radial directions 

(A7.2 -14) 

where CD is an empirical coefficient. 

{b} Shear Free Assumption 

The ambient mean velocity is assumed uniform in the region of interest: 

(A7.2 -15) 

Note however that the derivatives of the background velocity components ug, 'Vg and Wg with respect 

to a and 4> do not vanish. 

(c} Axisymetry Assumption 

The plume flow is assumed to be axisymetric during the phase under consideration with respect 

to the mean excess quantities and the turbulent correlations: 

PARTIB 

Wa = 0 

8u'2 8v12 8w' 2 8u'v' Bu/w' 8v'w' 
-=-=--=--=--=--=0 aq, 8</> 8</> 8<f> 8</> 84> 

8u1c1 8v1c1 8w'c1 8u1T 1 8v1T 1 8w1T 1 

ifT= ifT=---ar= ~= ~= --ar=O 
Bpci _ Bea. _ 8Tci _ O 
8</> - af- 8</> -

(A7.2 -16) 
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The assumption of axisymmetry is expected to be valid for verticai plumes in calm environ

ments. Deviations a.re expected for bent-over plumes in cross-flows, ma.inly due to the suppression of 

the counter rotating vortex pair; appropriate formulations for the entrainment function a.re used to 

compensate for this effect. 

{d} Similarity Auumption 

This is the most essential pa.rt of the general method described here. It allows separation of 

variables and subsequent integration in the radial direction that simplify the partial differential equa

tions to ordinary differential equations. Self similarity of the profiles of mean quantities is in general 

expected to be valid after short distances (s/ D ~ 6) from the source (zone of flow establishment). 

Turbulent quantities in general assume fully developed profiles at larger distances, e.g. for s / D > 50 

(Schatzmann, 1978). The following Gaussian forms a.re assigned to the mean excess quantities: 

ud(s, r) = u
0

(s) exp [-(b{s)) 

2

] 

Td(s, r) = T"(s) exp [-C,~s)) 
2

] 

cd(s, r) = c"(s) exp [-C,b(s)) 

2

] 

Pd(s,r) = p"(s)exp [-(>.b(s)rJ 

(A7.2 -17a) 

(A7.2 - 17b) 

(A1.2 -17c) 

(A1.2- 17d) 

where the superscript * is used to denote centerline values and the "spreading ratio" ,\ (proportional 

to the turbulent Schmidt number) is introduced to account for the different rates of dispersion of 

momentum and of scalar quantities. 
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Radial Integration of the Continuity Equations 

To integrate the continuity equations use is ma.de of 

(i) Pra.ndtl's boundary layer approximation, according to which the gradients in the direction of the 

flow a.re negligible compared to gradients perpendicular to this direction, and of 

(ii) The boundary conditions 

ua = Pa = ca = Ta = 0 

(A7.2 -18) 

where the boundary is ta.ken a.t R = .../2b, or to R --+ oo if the value of the quantity under consideration 

becomes zero a.t the nominal edge of the plume. 

Applying the Leibniz rule 

General Integral Forms 

of the Continuity Equations 

1P(•) 8 [f(s r)] d 1P(•) d d 
a' dr=-d f(s,r)dr=-d [,B(s)]f(a,.8)+-d [a:(s)]/(a,a:) 

a(•) 8 8 a(•) 8 8 

and combining the y and z momentum equations to describe the variability of () with 8 one obtains: 

(i) continuity equation for total mass 

d 1
00 

( ) d [ 100 

] 1 2 dpoo 
ds lo Poo +Pa uardr + ds u9 lo Pardr + 2R u9 --;J;" = p00 E (A7.2 -19) 

(ii) momentum equation in the s direction 

d loo loo 
ds lo (Poo + Pa)ua(u9 + ua)rdr = - lo PaurdrsinO (A1.2 - 20) 

(iii) 8-equa.tion 

d() _ - f0
00 

Pagr cos() - ~UooPooE sin() - ( .../2/211") cnp00 bu~ sin2 
() 

ds - f0
00 (Poo + Pa)ua(u9 + ua)rdr - Poob2 v1;, 

(A1.2 - 21) 

PARTIB APPENDIX A7.2 



- 475 -

(iv) continuity equation for a scalar (c or T) 

(A7.2 - 22) 

In the above equations E represents the volume of ambient air entrained into the plume due to 

turbulence and is defined by 

E(B) = - 2
1
7r l va (R) dC = -va (R) R (A7.2 - 23) 

Integral FormB for Gaussian Profiles 

Introducing the Gaussian self similarity profiles (A 7 .2 - 17 a, b, c, d) the integration with respect 

to r can be performed, resulting in a set of five ordinary differential equations for seven unknowns 

b(B), 8(B), u'"(B), p'"(s), T'"(s), c'"(s) and E(s): 

(i) continuity e·quation of total mass 

(ii) momentum equation in the a-direction 

(iii) 8-equation 

(iv) continuity equation for an inert scalar (concentration) 

= - (dcoo) b2 (2u cos8p + >.2 u cos8p'" + u'"p + ~u'"p•) ds oo oo oo oo ).2 + 1 

(v) heat transport equation 

PART IB 

(A7.2 - 26) 

(A7.2 - 27) 

(A1.2 - 28) 
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To obtain closure one must further provide: 

e an equation of state p = Ii ( c, T), 

• an entrainment hypothesis E = h (b, 8, u'", p'", c•, T'"), and 

u information concerning the variability of ambient properties T 00 , c00 and v'~ with the stream wise 

coordinate a. 

Finally the initial conditions (corresponding to the end of the zone of flow establishment s = s0 ) 

b(s0 ), 8(s0 ), u'"(so), T'"(so) and c'"(a0 ) must be specified for the numerical solution of the system 

(A7.2 - 23) to (A7.2 - 27). These subjects will be discussed in following sections. An extension of the 

base system of equations to three dimensions is presented next. 

Generalization to Three Dimensions 

The general integral form of the continuity equations for total mass, conserved scalars (c and T), 

and momentum in the a-direction remain unchanged in the three-dimensional case, with u.11 now given 

by 

The dependence of 82 and 81 on a is given by (Schatzmann, 1979b): 

d82 _ - f0
00 

Paurcos82 - !uooP00Esin81sin82 - (v'2/21r) CDp00bu~ sin281 sin282 
(A7.2 - 21') 

da - f0
00 

(Poo + Pa)ua(u.11 + ua)rdr - Poob2v'~ 

and 
!PooEuoo cos 81 + ( v'2/21r) CDPoof3u~ cos2 81 

f0
00 

(Poo + Pa)ua(u11 + ua)rdr - Poob2v'~ 
(A1.2- 21") 

Introducing the Gaussian self similarity profiles (A7.2 - 17a, b, c, d) the integration with respect 

to r gives a set of six ordinary differential equations for eight unknowns b( B), 81 ( B), 82 ( s), u'" ( s), p• ( s), 

T'"(s), c'"(a) and E(a): 

(i) continuity equation of total mass 

,x2 d ( .. .. b2) E + ,\2 + 1 ds p u = 2poo (A2.7 - 24') 
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(ii) momentum equation in the B-direction 

!:_ {u'"b2 [u• (~p + )..
2 p•) 

dB 2 
00 

2)..2 +1 

+u00 sin 81cos82 (Poo + )..2)..: 1 
p'")]} = -.>..2b2 p'" g sin 82 

(iii') 82-equation 

(A7.2 - 25') 

d82 .>..2b2 p"' gcos 82 + UooPooE sin 81cos82 + ( ../2/7r) CDPoobu~ sin2 81 sin2 82 

ds = - b2u'"2 (~Poo + 
2
)..;: 

1
p•) + b2 u• 2 u00 sin81 cos82 (Poo + )..2)..: 1

p•) - 2b2p00-v12-
00 

(A7.2 - 26') 

(iv) continuity equation for an inert scalar (concentration) 

d [\2b2 ( • 8 LI $ 1 • LI 8 $ " 1 $ $ 1 .. '* ·)] ds ,.. U00 sm 1 cos <72PooC + 2U00 sm '71 cos 2P c + )..2 + l u p00 c + )..2 + 
2 

u p c = 

( 
dcoo) b2 (2 . 8 8 '2 • () () ,. ,. ).. 2 ,. •) = - ds U 00 sm 1 cos 2Poo +,.. U 00 sm 1 cos 2P + u Poo + )..2 + l u p (A1.2 - 27') 

(v) heat transport equation 

d [' 2b2 ( • 8 8 T'" 
1 

. 8 8 "T* 
1 

.. T• 
1 

" "'T'")] dB ,.. Uoo sm 1 cos 2Poo + 2"oo sm 1 cos 2P + )..2 + l u Poo + )..2 + 2 u p = 

(
dToo) b2 (2 . 8 8 ,2 . 8 8 .. .. .>..2 .. ·) = - ds U00 sm l cos 2Poo + ,.. U 00 sm 1 cos 2P + u Poo + )..2 + l u p (A7.2 - 28') 
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Closure Assumptions 

Ambient Properties 

A typical case of an atmosphere with three distinct layers (the middle one corresponding to an 

elevated inversion) is depicted schematically in Figure 7-3. Left subscripts (01), (02), and (03) refer 

to properties at the bases of these three layers; thus (oi)Tpoo and (oi)Ppoo a.re respectively the ground 

values of potential ambient temperature and density (all potential properties being denoted with the 

use of subscript p). Mean ambient velocities and turbulent intensities a.re typically assumed uniform 

inside ea.ch layer; the distributions of ambient temperature and concentration a.re assumed known. In 

the following discussion focuses on the two dimensional case (lit, 92 ) = (0, 9). 

Equations of State 

The (potential) local density defect at the plume a.xis is given by 

and its a.long a.xis variation will be 

d ,. _ [ Ppoo + P; ] [ d T'" dTpoo . 9 -d Pp - - T. T. -d P + -d- sin 
8 poo + p 8 Z 

+ 
Ppoo dTpoo . 

9 -----sm 
Tpoo dz 

The ambient potential density at height z from the ground is given by 

( ) 
(01)Tpoo 

Ppoo Z = (Ol)Ppoo Tpoo (z) 

and will vary a.long the plume centerline according to 

d Ppoo dTpoo . 
9 -Ppoo = ------sm 

da Tpoo dz 

(A7.2 - 29) 

(A7.2 - 30) 

(A7.2 - 31) 

(A7.2 - 82) 

The potential temperature gradient is related to the actual atmospheric temperature gradient 

through 

dTpoo = Tpoo (z) (dT00 + _J__) 
dz T00 (z) dz Cp 

and the quotient of the potential and actual temperature is 
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~ 
Tpoo (z) = ( Ppoo ) P 

Too (z) Poo (z) 
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Entrainment Hypothesis 

(Turbulent Transport Closure) 

Schatzmann (1979a) developed an entrainment function approximation starting from the integral 

equation for the mean kinetic energy of the plume 

:
8 

[ u• 2
b

2 
( u• + ~ug)] = 

6 5 .>.
2

sin0 1100
-- ( r) 2 

2 = ----u'" b--- - 24u'" - u1v1 exp -- r dr 
).2 + 1 l2 b2 0 b 

where 1 is the local densimetric Froude number, defined by 

u'"2 
P=-p• 

-gb 
Poo 

The cross correlation u/v' was expressed in terms of empirical function of q = r/b and the Boussi

nesq approximation was invoked to obtain t = E/(u*b) as 

di.+(A2 -2 l"J.) A2 ain9+((1 1"1) · nt:id(J, Sdb)~ t= dau X2+i- "2 -p- 4- .04 SlilViJda '2da u• 

1+1211 + (1+2415 ) ~ cosO 
(A7.2 - 33) 

where the /;.'s are dimensionless integration constants. Schatzmann (1979a) considered limiting cases 

of the above expression, introduced an additional entrainment term to compensate for the suppression 

of the action of the vortex pair by the assumption of axisymmetry, and used available experimental 

data bases and numerical experiments to fit parameters and to simplify equations. Thus he finally 

obtained the semi-empirical expression 

sin () . ;:=;;;:= 
Ai+ A2-2- ( u L yv1

;, 

t = u! 1 + A4 :' sin()) + Ar; boo --?-
1+0.5As-cos(J u u 

u• 

(A7.2 - S4) 

The factor containing the A4 parameter is the term accounting for the additional entrainment men

tioned above; the last term represents the interaction of the energy-containing eddies of atmospheric 

turbulence with the large scale structure of the plume turbulence (L00 stands for the value of an ap

propriate macroscale of these energy containing eddies) and will be significant only in some relatively 

far-field phase of dispersion. For the near field a reasonable approximation is Ar; = 0. The empirical 

constants Ai to A 4 suggested by Schatzmann (1979a) are 

Al= 0.057 

A2 = 0.67 

AS= 10.0 

A4 = 2.0 
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Preparation of the Continuity Equations 

for Numerical Solution 

Equations (A7.2-23) to (A7.2-29), (A7.2-31) and (A7.2-34) provide a closed system for the evalua

tion of the eight unknowns b(s), 9(s), u'"(s), T"(s), c"'(s), p"(s), Poe(s) and E(s). To solve this system 

numerically it is transformed in the final form 

dq 
ds =J.(s;q1,q2, ... ,q,..); i=l,2, ... ,n 

which (after non-dimensionalization) is ready for numerical solution. 

First the a.hove equa.tions are transformed into explicit equations with respect to the unknown 

variables and their gradients. It can be shown that the variation of u'", b a.nd p* with s does not depend 

on the gra.dients of T'" a.nd neither on c'" or its gra.dients. Thus, finally, one ha.s to solve simultaneously 

the system 

a.nd the equation 

where 

and 

with 
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Adq =f 
ds 

q =(du" db dp•)T 
ds ds ds 

a12 ais) 
a22 a2s 
as2 ass 

an= - 1 + .>.2 -b ( p"') 
u• Poe 

ai2 = 2 1 + ----- + >. - - cos (;I ( 
A2 p• 2 p'" '-'oe ) 

A2 + 1 Poe Poo ti'" 

ais = ).
2

b ("'00 cos (;I+ --
1
-) 

Poe u'" .>.2 + 1 

a21 = - 1+ -cos9+ +----cosO 
b ( '-'oo 2).2 p" ).2 p'" '-'oo ) 

u• u• 2A2 + 1 Poo .>.2 + 1 Poe u• 

'-'oe 2A2 p* 2).2 p"' 
a22 = 1 + 2- cos 8 + 2 + ~ - cos 8 

u'" 1.>. + 1 Poo .11 + 1 Poe 
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b ( ).2 ).2 'I.too ) 
a2s = Poo 2).2 + 1 ).2 + 1-;;:- cos() 

T'" ( 1 1 p"') 
au=-~ ).2+1 + ).2+2Poo 

T"' [ ( 1 'U00 ) ( 2 'I.too ) p"' ] as2 =-- 2 --+-cosO + --+-cos() -
u• >.2 + 1 u" >.2 + 2 u'" Poo 

ass= --- --- +~cos() T• ( 2 u ) 
2p00 >.2 + 2 u" 

1 'I.too 1 ( 2 'I.too ) p• --+-cosO+- --+-cosO -
>.2 + 1 u" 2 >.2 + 2 u• p + 00 

Poo ( Too ) (i + L) 
T00 Tin+ T• Poo 

2t ( 'I.too ) b dpoo 2 p" 'I.too . d() fi = - - 1+2-cosO --- + >. --smOb-
u•b u" Poo ds Poo u• ds 

2 P" 1 . 1 ( 'I.too ) b d Poo ( A2 
p"' ) 'I.too . n d () h=->. -gb-smO-- 1+2-cosO ---+ 1+--- -bsmu-

Poo u• 2 2 u• Poo ds >.2 + 1 Poo u• ds 

Too ( 1 'U00 ) d Poo ,. 'I.too . ( 1 p* ) d () Is= - --+-cos() ---T -smO 1+-- -
Poo ,\2 + 1 u" ds u"' 2 p00 ds 

1 U.00 1 ( 2 U.00 ) p"' --+ - cos()+ - -- + - cos() -
_ >.2 + 1 u• 2 >.2 + 2 u"' Poo [ b 

Poo ( Too ) (i + £..) Too + T• 
Too Too + T• Poo 

( 
p") dT00 • b dpoo] 1+- --sm8+---

Poo dz Poo ds 

[ 
b ( p" ) dT 00 • b d Poo ] a·2- - 1+- --smO+---

.,. - T.oo + T• d d Poo Z Poo 8 

Finally, c• is calculated from 

de" 1 ( dc 00 du" db d() dp0 dp00 ) 
- = - as2-- +ass-+ as4- +ass-+ ase- + as1--
ds as1 ds ds ds ds ds ds 

where 

as1 = --+-cosO+- --+-cos() -1 Uoo 1 ( 2 'U00 ) p'" 
>.2 + 1 u" 2 >.2 + 2 u" Poo 

as2 = - - 1+2-cosO + --+-cos() -[ 
1 ( 'I.too ) ( 1 'I.too ) p" ] 

).2 u'" >.2 + 1 u" Poo 

c'" ( 1 1 p*) 
ass = - u'" ).2 + 1 + ).2 + 2 Poo 

a54 =-- 2 --+-cosO + --+-cos() -c• [ ( 1 U.00 
) ( 2 U. 00 ) p"' ] 

b >.2 + 1 u'" >.2 + 2 u" Poo 
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,. Uoo • O ( 1 p• ) ass = c - sm 1 + - -
u• 2 Poo 

as6 = --- --- +-cosO c'" ( 2 u00 ) 

lp00 >.2 + 2 u• 

as1 = -- ---+ -cosO c• ( 1 u00 ) 

Poo >.2 + 1 u• 

(Note: in the above equations temperatures and densities represent potential quantities; the 

subscript p has been neglected for simplicity.) 

Position 

of the Mean Plume Centerline 

Finally, the position (x, z) of the plume centerline in fixed Cartesian coordinates, for a givens, is 

determined through the para.metric equations 

x(s) = 1• cosO(s) ds 
•o 

z (s) = 1• sinO (s) ds 
•o 

which must be integrated numerically. 
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Initial Conditions 

Schatzmann (1976) and Schatzmann and Flick (1977) suggested the following relationships (initial 

conditions) between centerline quantities at the end of the zone of flow establishment (subscript 0) 

and their corresponding values at the source (subscript j): 

80 = 8; (i- t.22:;) f .a 90° Uoo < 0.7 or v; = , u; 
0 Uoo 80 = 0.1678; for 8; = 90 , -,. 2::: 0.7 

Uj 

bo = D. 
1 ( uj + U 00 cos 80) 

2 ( uj + 2u00 cos8o) 

where D. is the source diameter, 

and 

PARTIB 

),2 + 1 u,'! + 2u00 cos 80 
T.'" = T'! 0 3 2..\2 uj+(..\2+1)u00 cos80 

_ c'" . ..\2 + 1 u; + 2u00 cos 80 
c~ - 3 2..\2 uj + (..\2 + 1) u 00 cos8o 

so= 0 if Uoo > 0.3 
u~ , 

(A7.2 - 35) 

(A7.2 - 36a) 

(A7.2 - 36b) 

(A7.2- 37) 

(A7.2 - 38) 

(A7.2 - 39) 

(A7.2 - 40a) 

(A7.2 - 40b) 
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Simplifications 

through the Boussinesq Approximation 

Introduction of the Boussinesq approximation in the continuity equations (A7.2-24) to (A7.2-28) 

gives the following reduced forms 

(i) continuity equation of total mass 

(A2.7 - 24a) 

(ii) momentum equation in the s-direction 

(A7.2 - 25a) 

(iii) 0-equation 

dO = -2 [>.2b2 fo-g cos e + UooE sine+ ( ./21/7r) cvbu~ sin
2 

el 

ds b2 u'"'u'"+2u cosO) 4b2 v' 2 
\ 00 00 

(A7.2 - 26a) 

(iv) continuity equation for an inert scalar (concentration) 

(A7.2 - 27a) 

(v) heat transport equation 

(A7.2 - 28a) 
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Comments 

Using the Boussinesq approximation, and assuming the ambient fluid to be free of turbulence and 

of density stratification, the equations of Schatzmann can be compared directly with those published 

by Abra.ham (1971), Chan and Kennedy (1972), Fan (1967), Hoult, Fa.y a.nd Forney (1969), Keffer and 

Baines (1963), Hirst (1972) and others, who also applied the integral method. Comparison, however, 

shows that the equations of these authors are not in general identical with the formulas presented 

here. According to Schatzmann (1978, 1979a) the differences are due to the following: 

(i) Hirst, in deriving his mathematical model, applied the Leibniz rule (for the differentiation of an 

integral with variable limits) in a.n erroneous way. 

(ii) All other above-mentioned investigators, who basically followed the classical vertical plume analysis 

of Morton, Taylor and Turner (1956) for plumes in a cross-fl.ow, balanced the fluxes through the control 

surface incompletely. 

Both errors lead to the same results. For example, the integral form of the continuity equation of 

mass becomes 
d 1R 1 d - (ug + ud)r dr = -- [b2 (u• + 2u00 cosll)] = E 

dB O 2 dB 
(A7.2 - 41) 

instead of the correct relation 

d 1R 1 d ( 2 '") - udr dr = - - b u = E 
dB o 2 dB 

(A7.2 - 4la) 

Figure A7.2-3 shows the difference between (A7.2-41) and (A7.41a.) for a plume in a co-fl.owing 

stream. The flux of ambient fluid E = -vd (R) R = -vd (R,.) R,., which flows into the control volume 

due to turbulent fluctuations inside the plume, only increases the excess velocity section, marked by A. 

What equation (A7.2-41) suggests is that Section B of the velocity profile would also be enlarged by 

the entrainment process, which is obviously not correct. The same error occurs by using a cone-shaped 

control volume, if the coaxial mass flux through the circumferential area is not taken into account. 

Uniquely in the special case u00 = 0 both equations are identical. 

The momentum equations developed by Schatzmann also differ from those developed previously 

for similar reasons: When Hirst's or Fan's momentum equations are applied to a momentum plume 

in a co-flowing stream they fail to conserve the excess momentum flux. Nevertheless, Hirst, Fan 

etc. obtained reasonable agreement between theory and development. This is explained according 

to Schatzmann (1978, 1979a) by the empirical nature of the entrainment hypothesis. This empirical 

input to the mathematical model, together with skillful data fitting in order to fix the constants, may 

explain why models with internal inconsistencies managed to achieve the aforementioned agreement. 
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r 
__ l, 

Figure A 7 .2-3 

The Concept of Entrainment 

for a Plume in a Co-Flowing Stream 

(Source: Schatzmann, 1979a) 
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The scheme that was summarized in this appendix was tested by Schatzmann and his co-workers 

against approximately eighty different sets of data, from both laboratory and field measurements, with 

very satisfactory results; some representative comparisons are reproduced here, in Figures A7.2-4 and 

A7.2-5 (see Schatzmann, 1979a, for details). An extension of this scheme to "moist" plumes has also 

been developed (Schatzmann and Policastro, 1984). 
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Figure A 7 .2-4 

Buoyant Plumes Discharged at Various Angles into a Stably Stratified Ambient. 

Calculations from the Model of Schatzmann 

Compared with Laboratory Data of Fan (1967) 

(D: plume diameter; z: height from source; y: downstream distance) 

(Source: Scha.tzmann, 197911.) 
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Figure A 7 .2-5 

Trajectories of Buoyant Plumes Discharged into Stratified Ambient Cross-Winds 

with and without Temperature Inversion. 

Calculations from the Model of Schatzmann 

Compared with Field Data of Slawson and Csanady(1971) 

(D: plume diameter; z: height from source; y: downstream distance) 

(Source: Schatzmann, 197911.) 
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APPENDIX A 7 .s 

The Internal Structure 

of Buoyant Plumes in the Near Field 

(Briggs, 1975) 

The properties of the internal structure of a rising plume can be of great interest since they 

determine mixing in the early stages of plume evolution. Some of the details of structure within a 

rising plume have been studied through laboratory experiments on horizontal thermals, which closely 

resemble bent-over plumes in cross-section. Based on available data from the streamline measurements 

of Richards (1963), the vorticity measurements of Tsang (1971), and the concentration measurements 

in a bent-over laboratory plume of Fan (1967) Briggs (1975) summarized the following conclusions 

about bent over plume structure (see Figure A7.3-1): 

First, the measurements show that almost all of the entrainment occurs across the top part of the 

plume. Part of the rise is due to mean vertical motion, but basically it is due to turbulent entrainment 

(almost by a factor of 75%). A secondary zone of entrainment exists under the middle of the plume, 

where induced velocities are very much higher than anywhere else around the boundary. This may be 

due to the low hydrostatic pressure underneath the buoyant fluid, and might not be so pronounced in a 

bent-over jet. Turbulence is generated here due to a strong shear of the vertical motion, evidenced by 

closeness of the streamlines near the center and by the flanking areas of high vorticity. This turbulence 

is advected upward through the middle of the plume, where it bisects the concentration maximum. The 

intensity it develops as it spreads across the top of the plume is partly due to horizontal divergence, 

which stretches vortex filaments in a direction almost tangent to the upper surface, thereby intensifying 

turbulent velocities perpendicular to the surface. In a buoyant plume, turbulence is also generated due 

to unstable internal density stratification above the concentration maxima, which are density minima. 

The marked decrease in turbulent entrainment around the lower flanks of the plume is probably due to 

the small amount of shear with the ambient at these points (it appears that the plume almost "rolls" 

up an imaginary inclined plane tangent to these points), and also is due to the proximity of the larger 

regions of high mean vorticity. 

For a plume entering a a fluid having ambient turbulence, Briggs (1975) suggests that it is likely 

that the ambient turbulence must first mix its way into the plume by means of a "frontside attack." 

Also, there is a strong convergence of ambient streamlines under the plume, which tends to relax 
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Figure A'f.3-1 

Structure of a Bent Over Buoyant Plume 

(adapted from Briggs, 1975) 

Dashed and solid lines show the shape of a plume cross section at two successive times. Arrows 

show streamlines of mean motion. Horizontal hatching shows high vorticity :regions. Dotted areas 

correspond to concentration maxima. 
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turbulence velocities that are perpendicular to the surface. 

If this analysis is true, and ambient turbulence must first break into the plume in the frontal 

region, then its effectiveness will be delayed due to the relatively high plume turbulence in this same 

region. In effect, the plume will at first advance into the ambient faster than the ambient can advance 

into the plume. Once the balance is reversed, as the plume motions weaken, it is quite easy to conceive 

that the ambient turbulence may move downward and destroy the stable double vortex structure from 

within, making the plume vulnerable from all sides. In other words, plume "breakup" may occur 

relatively quickly, as has been suggested by Csanady (1973) and others and this must be taken into 

account for the correct formulation of entrainment hypotheses. 
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CHAPTER 8 

STATISTICAL DISTRIBUTIONS 

OF AIR POLLUTANT CONCENTRATIONS 

8.1 INTRODUCTION 

Statistical analysis of monitored aerometric data aims to extract and organize 

information useful for the better treatment of problems related to establishing and 

evaluating air quality standards. Air pollutant concentrations are inherently random 

variables because of their dependence on the random fluctuations of a variety of mete

orological and emission variables. When sets of air quality data are available certain 

distributional characteristics can be determined, under some simplifying assumptions, 

and assigned to the air pollutant concentrations. Sections 8.2 and 8.3 are devoted to 

the investigation of the nature, the limitations and the methodology of the description 

of air quality through statistical distributions of air pollutant concentrations. The 

most popular functional forms of such distributions are presented and studied there. 

In the field of air pollution modeling and control of extreme events are usu

ally of most interest; this is evidenced by the content of air quality standards which 

establish acceptable upper limits of air pollution concentrations and acceptable fre

quencies with which these limits can be exceeded. The proper description of these 

events requires consideration of characteristic random variables such as maximum 

concentrations, frequencies of exceedances of critical levels, etc. The tools appro

priate for a relevant analysis are provided by the Order (or Extreme) Statistics and 
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Level Crossing theories; the key results of these theories, in relation to air pollution 

modeling, are summarized in Sections 8.4 and 8.5. Applications of the fundamental 

theoretical results in the evaluation of alternative forms of air quality standards are 

given in Section 8.6. Finally, it is shown how statistical distribution theory complies 

with simple rollback calculations for emission control and with the use of classical 

Gaussian plume models. 
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8.2 THE STATISTICAL TREATMENT 

OF AIR QUALITY DATA 

Air quality data are usually available as sets of successive observations that 

represent concentrations measured sequentially in time at some specific location, and 

(usually) averaged over successive equal non-overlapping time periods. These data 

constitute statistical (nondeterministic) time series of the discrete form 

where T = t2 - t1 = t3 - t2 = ... = tn - tn-1 is the averaging time, and ti is the 

index for the time period over which the averaging is done, arbitrarily set equal to 

the beginning of the period. 

The above time series is in fact a sample realization from an infinite population 

of random concentrations generated by a continuous state-discrete time stochastic 

process (see, for example, Seinfeld and Lapidus, 1973). ('°') 

The time series of measurements under consideration {xr (ti)}, and the under

lying stochastic process {Cr (ti)}, may have been constructed by averaging over ini

tial samples that are either discrete or continuous time series, corresponding to the 

discrete or continuous measurement of concentration which is a continuous state

continuous time stochastic process c(t) at may fixed point in space. 

The parameters that appear in the construction of {xr (ti)} are the averaging 

time T , and, possibly, (in the case of non-continuous initial measurements) the sam

pling interval flt between successive initial measurements. The significance of flt 

has been discussed extensively elsewhere (Saltzman, 1970; Hunt, 1972); the selection 

of the appropriate flt is a standard problem in data processing (e.g. Seinfeld and 

Lapidus, 1973, p. 93). The selection of the averaging time T is closely related to the 
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* Random variables are ordinarily denoted by capital letters and the values they may 
assume by lower case letters. This convention will not be followed here; rather lower 
case c will be used to denote the random concentration. 
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formulation of air quality standards (Section 8.6) and is often governed by regulatory 

considerations. As far as the statistical properties of aerometric data {xr (ti)} are 

concerned, the length of r affects the degree of correlation of successive data points 

Xr (ti) (concentrations averaged over long periods of time tend to be less correlated 

than concentrations averaged over shorter successive intervals), as well as the val

ues of the parameters of probability distribution functions that may be attributed to 

these data. 

The information, relevant to air quality, that is carried by the time series { Xr (ti)} 

can be organized in forms useful to the study of questions related to pollution fore

casting, evaluation of air quality standards, validation of numerical dispersion models 

etc., by vario.us methods of statistical analysis. These include regression analysis, time 

series modeling approaches, spectral methods, etc. (see, for example, the Proceedings 

of the Symposium of Statistical Aspects of Air Quality Data, EPA, 197 4, and Merz 

et al., 1974; Myrabo et al., 1975). The monograph of Essenwager (1976) provides 

useful introductory information relevant to many of these topics; for comprehensive 

overviews of current developments in the area one may consult the proceedings of the 

regular series of Conferences in Probability and Statistics in Atmospheric Sciences, 

sponsored by the A.M.S., that are held every two years (the 8th in 1983). 

The objective of the present work is to study the cases where the statistical in

formation relevant to aerometric data, available in the form discussed above,(*) can 

be embodied in a probability density function (pdf) - equivalently: in the respec

tive cumulative distribution function - or, in general, in a set of probability density 

functions. 

Naturally, in order that a time invariant probability density, common for all the 

members of the process {Cr (ti)}, exist, {Cr (ti)} must be a strictly stationary process. 
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• Sometimes only appropriate characteristic subsequences of the complete time series are 

considered in a statistical analysis. For example, the daily maxima. of hourly average 
concentrations of a. pollutant are often considered instead of the whole set of data. when 
the behavior of high concentrations is under question. However the results from the 
reduced set of data. a.re not always equivalent to the ones from the complete set, as is 
discussed later, in Section 8.6. 
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Further, in order that the parameters of this pdf can be estimated from just one 

sample realization of the process (the available time series), it has also to be ergodic. 

The ergodicity property implies that the ensemble mean of Cr (ti) - independent of i -

will be approximated by the time average (mean value) of the observations Xr (ti) as 

their number tends to infinity. In practice what one has to confirm is the "sufficiently 

stationary" character of the data (or of an appropriate transformation of the data 

with respect to time). Although various criteria can be set to define the meaning 

of the adverb "sufficiently" above, it must be realized that this step is essentially a 

matter of engineering judgment and will not be elaborated any further here. Then 

ergodicity is always implicitly assumed. 

The case most suitable for analysis would be that of a set of independent, iden

tically distributed variates, Cr (ti) ("i.i.d. variates"), which of course is strictly sta

tionary. Then the data form what is called in statistics a "random sample" from 

which statistical inference is especially convenient. This case is amenable to exten

sive theoretical treatment (Sections 8.4 and 8.5); this treatment can be extended, in 

special cases, to autocorrelated and even nonidentically distributed data (Appendix 

A8.2). Nevertheless, it is a fortunate fact that application of theoretical results con

cerning i.i.d. concentrations to real situations often leads to satisfactory agreement 

with experimental observations (Section 8.6). Thus, although the assumption of in

dependence for air pollutant data is not strictly a valid one, it can be often applied 

in simplified statistical analysis. 

Nonstationary time series (with independent or dependent non-identically dis

tributed members) can often be treated in this perspective in cases of "well-behaved" 

nonstationarity where definite deterministic trends or periodic variation of air quality 

data can be incorporated in the statistical analysis, reducing the problem finally into 

one of stationary data (e.g. Horowitz and Barakat, 1979). 

Another fact that has to be pointed out is the possibility that different distri

butions (or, usually, the "same" distribution with different parameters) fit different 

ranges of the concentration better; in such a case one may wish to have an optimal fit 
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for a particular range of concentrations that are of the most interest) and thus decide 

to disregard the rest of the data (or fit another distribution to them). Here the focus 

will be mainly on the case where the statistical properties of the available data are 

described adequately by a single distribution; however the entire analysis that follows 

applies directly to cases where a distribution is itended to describe only a particular 

range of concentrations. 

With the assumed distribution one will be able to make statistical inferences 

about, for example, the expected number of occurrences of certain concentration 

levels. However but one will not be able to predict when these occurrences will take 

place; all information concerning the time evolution of the process is disregarded. 

Before examining the specific forms of pds's that fit actual aerometric data it is 

interesting to "visualize" the "genesis" of such a distribution from the data. Thus, 

in Figure 8-l(a) a histogram is presented in which the frequency of occurrence of 

time-averaged concentrations is plotted as a function of the time-averaged concen

tration for some hypothetical situation. Such a histogram would generally exhibit 

irregular behavior for small numbers of observations (in general for finite samples). 

The irregularities disappear as this number increases and finally, for infinite samples, 

the histogram tends to a smooth curve of the form shown in Figure 8-l(b). The 

distribution of this figure, under the conditions of stationarity and ergodicity is in

variably valid for all the observations {but will be different for different averaging 

times). One should note that, typically, very low and very high concentrations occur 

only rarely and that the concentration occurring most frequently (the mode) need not 

be the average or mean concentration. From a practical point of view the width or 

variance of a distribution such as that of Figure 8-l(b) is a measure of how variable 

the concentration is from one averaging period to another. 
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Hypothetical distributions of air pollutant concentrations 

Increasing concentration 

Increasing concentration 

Figure 8-1 

Typical Probability Densities 

of Air Pollutant Concentrations: 

(a) Histogram, 

(b) Continuous Distribution 
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8.3 STATISTICAL DISTRIBUTIONS 

OF AEROMETRIC DATA 

While there is no a priori reason to expect that air pollutant concentration dis

tributions would adhere to a specific statistical distribution, a number of pdf's have 

been proven particularly useful in representing air quality data. All these pdf's have 

the general features of the curve shown in Figure 8-l{b); they correspond to a non

negative random variable Cr that has probabilities of occurrence approaching zero as 

Cr--+ 0 and as Cr--+ oo. Table 8-1 summarizes the functional form of several of these 

pdf's. Naturally, the larger the number of parameters in the functional form of the 

distribution, the greater is their flexibility of fitting sets of observed data. 

The two-parameter distributions in Table 8-1 (lognormal, Weibull and gamma) 

assume that the random variable admits all nonnegative values. The three-parameter 

lognormal, Weibull and gamma distributions assume that the random variable is 

restricted to values greater than the parameter/. The beta distribution is extremely 

flexible: it is symmetrical when a = (3, skewed to the right if a < (3, and skewed 

to the left if a > (3. The beta distribution also assumes an upper bound 0 on 

the random variable and may or may not include a lower bound /. The beta and 

gamma distributions in fact are members of the general Pearson system of probability 

density curves that includes twelve types of functions, most of them applicable to the 

description of air quality data (see, for example, Lynn, 1974). 

There exists a substantial literature in which various distributions have been fit 

to air quality data (see, for example, the Proceedings of the Symposium of Statistical 

Aspects of Air Quality Data, EPA, 1974, as well as Hillyer, 1978, and Tsukatani and 

Shigemitsu, 1980). In addition, Holland and Fitz-Simmons (1982) have developed a 

computer program for fitting statistical distributions to air pollutant data. 

The answer to the question of which distribution should fit best air quality data 

has been shown to depend in general on the pollutant, the time period of interest, 
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Table 8-1 

Probability Density Functions 

Useful in Representing Atmospheric Concentrations 

~ ...,_, '-<:tlon p(11) 

log-normal 1 [ (In x - µ )2] 
:ca(27r)112 exp - 2112 

x > 0; q > o. -oo < µ < "' 

Weibull ~ (~y-1 exp[- (~tl 
)( 2: 0; IT, A > 0 

Gamma 1 ("')>.-1 ( )() 
oT(A) 0: exp - u 
x 2: O; a, ). > 0 

Three-parameter log-normal 1 l (ln(x--y)-µ]2] 
(x - ')')f1(27r) 112 exp - 2cr2 

x > -y; u > O; -co < µ <"' 

Three-parameter gamma _1 (x - -y)>.-1 ex (- x- 'Y] 
er f(AJ u P u 
x > -y; er, >. > 0 

Three-parameter Weibull ~ (J( ~ -yt-1 expf-("' ~ 'Yn 
)( > -y; l'J, "> 0 

Three-parameter beta f(a +fl) 01-n-!3 Jt"_, (fl_ >8-1 
f(a)f(,8) x 

OSxSfl 

Four-parameter beta 
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the averaging time r of the data, the location, and other factors. Thus, because 

there appears to exist no "universal" distribution, that most appropriate for the 

particular data set must be selected by employing standard statistical methods of 

analysis. In general, a computer program, such as that of Holland and Fitz-Simmons 

(1982), should be used. Of course data with "anomalous" behavior (e.g., data that 

are described by a mixture of distributions for different ranges of concentration, etc.) 

must be treated with special appropriate techniques. We must also note here that, 

as pointed out by many investigators (see, for example, Gifford, 1974), there are 

differences between the frequency distribution of urban air pollution, resulting from 

the combined effects of many sources, and that of concentrations from a single isolated 

source. Exp~rimental studies (Barry, 1971) suggest that usually a semi-logarithmic 

distribution provides the best fit to data for isolated point sources (see Chapter 5 for 

a more detailed discussion of this problem). 

Among the distributions of Table 8-i, the two-parameter lognormai has been the 

most popular in representing urban air pollutant concentration data. The confor

mity of this representation with field measurements, as well as various other aspects 

concerning lognormally distributed aerometric data, has been discussed extensively 

elsewhere (see, for example, Larsen, 1971; Proceedings of the Symposium of Statis

tical Aspects of Air Quality Data, EPA, 1974; Bencala and Seinfeld, 1976). As far 

as analytical manipulations are concerned, the lognormal distribution, being a mono

tone transformation of the Gaussian distribution, offers a direct utilization of various 

results concerning normally distributed variables. Further, it has the advantage that 

variates with the simple time series model 

where the members of the sequence Yr (ti) are independent and arbitrarily distributed 

(i.e. Yr(t) is an white noise process) are lognormally distributed. Indeed, if 

PART II CHAPTER 8 



- 507-

then 
~ ( ·) _~Cr (ti) - Cr (tiJ 
L- Yr t, - L- ( ) 
i=l i=l Cr ti-1 

and by the central limit theorem 2.:?=l Yr (ti) will be normally distributed for large 

n (strictly for n-+ oo). Further, for ti - ti-1 -+ 0 the right-hand-side of the above 

equality tends to 
[cr(t,.) dcr (t) = ln Cr (tn) 

lcr(ti) Cr(t) cr(ti) 

Thus Cr (tn) is in fact lognormally distributed. (This is a particularization of the 

general Kapteyn scheme for generation of skew distributions; see, e.g., Hald, 1952). 

For most practical applications the two most popular of the distributions of Ta

ble 8-1, that. is, the two-parameter (or ordinary) lognormal and the two-parameter 

Weibull, are adequate and the following analysis will focus on them. (Nevertheless, 

virtually all of what will be presented here is directly extendable to the other distri

butions of Table 8-1.) 

Some basic properties of these two distributions are discussed briefly next. (For 

further details and for relevant material concerning other distributions, one may con

sult standard references on statistical distributions, as, for example, the extensive 

treatises of Johnson and Kotz, 1970, and Elderton and Johnson, 1969.) 

8.3.1 The Two-Parameter Lognormal Distribution 

If a concentration c is lognormally distributed, its pdf is("') 

1 [ (ln c - µ) 
2 l PL (c) = J21r exp - 2 

C(J 21r 2a 
(8.3 - 1) 

where µ and a are parameters that depend on the particular situation. The logarithm 

of the concentration, when described by (8.3-1), has expected value and variance 

E{ln c} = µ,, and Var {ln c} = a 2 • The corresponding mean and variance of c are 
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E{c} =exp(µ+ ~
2

) (8.3 - 2a) 

• The subscript for the averaging time is omitted here for convenience; however, it should 
a.lwa.ys be kept in mind that all data. and parameters are related to a. fixed averaging 
time. 
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Var{c}= {exp(2µ+u 2
)} [exp(u2)-1] (8.3 - 2b) 

The lognormal distribution is also commonly expressed in the form 

() 1 [ (lnc - lnµg)
2

] 
PL c = exp - 2 

cln ugV2"1r 2(In ug) 
(8.3 - 3) 

where µg =expµ and Ug =exp u. µg and ug are termed the geometric mean and the 

standard geometric deviation, respectively. One should note that 

1 
lnE{c} = lnµg + "2 (lnug) (8.3 - 4) 

The probability that a lognormally distributed variable c exceeds the value x is given 

by the complementary distribution function 

- (~x-µ) FL(x)=Pr{c>x}=l-~ u (8.3 - 5) 

where 

~ (tJ) = . ~ f '1 exp (- t
2

) dt 
v 271" -oo 2 

(8.3 - 6) 

is the cumulative distribution function for the unit normal distribution, i.e. with 

mean zero and unit standard deviation. (Recall that the cumulative distribution 

function is defined as F (x) = Pr { c :s; x}, whereas the complementary distribution 

function is FL (x) = 1 - F (x).) Tables of ~ ( 1J) are readily available so that the 

probability of c exceeding a given value x can be easily calculated from (8.3-5). One 

must note that if In x = µ, or x = µ 9 , the argument of ~ equals zero so that 

Pr{ c > expµ} = Pr{ln c > µ} = 0.5. Thus, µg = expµ is the median value of a 

lognormally distributed variable. 

The lognormal distribution has the useful property that when the complemen

tary distribution function FL (x) is plotted versus the logarithm of the concentration 

on "normal curve graph paper" a straight line results. The point where 17 = 0.0 

(FL (x) = 0.5) occurs where lnx = lnµg. The point where YJ = 1.0 (FL (x) = 0.16) 

lies where lnx = lnu9 + lnµg or x = ugµ 9 • 
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Figure 8-2 shows the distribution of one-hour average S02 concentrations equal 

to or in excess of the stated values for Washington, D.C., for the seven-year period 

from December 1, 1961, to December 1, 1968 (Larsen, 1971). A lognormal distribution 

has been fitted to the high-concentration range of these data. 

The lognormal distribution is completely characterized by two parameters, the 

geometric mean µ 9 and the standard geometric deviation u9 • The geometric mean or 

median is the concentration where the straight line plot crosses the 50th percentile. 

The slope of the line is related to the standard geometric deviation, which can be 

calculated from the plot by dividing the 16th percentile concentration, i.e. the geo

metric mean. (This is the 16th percentile of the complementary distribution function 

FL (x); equivalently it is the 84th percentile of FL (x).) For the distribution of Figure 

8-2, µ 9 = 0.042 ppm and u9 = 1.96 ppm2 • Plots such as Figure 8-2 are widely used in 

air quality analysis to assess the frequency with which concentrations equal or exceed 

certain values. 

8.3.2 The Two-Parameter Weibull Distribution 

The Weibull pdf is given in Table 8-1. If a set of data conforms to a Weibull 

distribution, then the data, when plotted on "extreme-value probability paper", i.e. 

with coordinates log x and log [ln ( 1 /FL (x)) J, should lie on a straight line. The 

complementary distribution function for the Weibull distribution is 

(8.3 - 7) 

Taking logarithms and changing sign one has 

(8.3 - 8) 

Taking the logarithm (base 10) of both sides of (8.3-8), 

(8.3 - 9) 
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Frequency of 1-hour average SOa concentrations equai to, or in excess of stated values11 

Number of standard geometric deviations from lhe median 

3 2 0 -1 
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Frequency (0 o) 

8 AI Washmgton DC Dec 1. 1961-Dec 1. 1968 lafter Larsen 19711 

Note: Quantile walues of c refer 10 the complementary d1stnbut1on funcllon 

Figure 8-2 

Frequency of 1-hour Average S02 Concentrations 

Equal to, or in Excess of, Stated Values for Washington, D.C., 

December 1, 1961 - December 1, 1968 

(source: Larsen, 1971) 

(Note: quantile values of c refer to the complementary distribution function.) 
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Therefore one can plot log [ ( 1 / Fw (x))] vs. iog x and expect a straight line if the 

data fit a Weibull distribution. The values log [ ( 1/ Fw (x))) are the values on the 

ordinate scale of Figure 8-3. 

a is obtained by letting the left-hand side of (8.3-9) equal zero. This corresponds 

to Fw (x) = e-1 = 0.368. At this Fw (x), the corresponding value of x will equal a. 

The parameter >.,which is the slope of the straight line, can be found by using any 

other point on the line and solving (8.3-9) for >.: 

>. = log [In ( ~)] 
log x - logu 

(8.3 - 10) 

Using for a second point that point on the line that crosses Fw (x) = 0.01 one obtains 

>. = 0.663 
log Xo.01 - log a 

8.3.3 Estimation of Parameters in the Distributions 

Each of the two distributions discussed in subsections 8.3.1 and 8.3.2 is char

acterized by two parameters. The fitting of a distribution to a set of data involves 

determining the values of the parameters of the distribution so that the fit is "op

timal" in some manner. Ideally, this fitting is best carried out using a systematic 

optimization routine (such as that developed by Holland and Fitz-Simmons (1982)) 

that estimates the parameters for several distributions from the given set of data and 

then compares how these distributions comply to these data using various criteria of 

"goodness of fit". If however such a routine is not available, or one desires a quick 

means of parameter estimation, the following three alternative methods are appropri

ate: The first is the method of moments, which in general requires the computation 

of the first n (where n equals the number of the parameters of the distribution) sam

ple moments of the data. Next is the method of maximum likelihood, which gives 

estimates that are optimal in a certain statistical sense, but may require more calcu

lations than the method of moments. Finally, for quick calculations one can employ 
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Weibull distribution fits of the 1971 h~rly-average, . 
and daily maximum hourly-average oxidant concentratlorf 
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'Points represent the 1Jalues hsted 1n Table 2 

Figure 8-3 

Weibull distribution fittings of the 1971 hourly-average and daily maximum hourly

average oxidant concentrations at Pasadena, CA. Distribution (1) is that for the 

hourly average concentrations, whereas (2) is for the daily maximum hourly-average 

concentrations. The points shown here represent only selected data from the 8303 

and 365 data values that were respectively used to determine the distributions. 
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the method of quantiles which is very versatile and can (usually) be formulated in a 

manner especially convenient for a specific problem. These three methods are briefly 

discussed next. A practical procedure suggested for the estimation, if sample distri

butions such as the lognormal and the Weibull are to be tried, should start with the 

construction of a plot of the available data on the appropriate paper (that gives a 

straight line for the theoretical distribution), in order to get a preliminary notion of 

the goodness of fit. If the fit is acceptable for a given distribution one proceeds to 

estimate its parameters. 

(a) The Method of Moments 

Estimates for the values for the moments are obtained from the data, and the 

equations relating the moments to the parameters of the distribution are solved for the 

parameters. (For a two-parameter distribution, estimators for the first two moments 

are needed.) 

The r-th non-central moment of a random variable X with pdf p(x) is defined by 

and the r-th central moment is 

(The mean value of the random variable x is µj_, and the variance is µ2 .) 

The estimation of µ and u for the lognormal distribution by the method of 

moments is considered first. The first and second non-central moments of this distri

bution are 

µ'i = exp (µ + ~
2

) (8.3 - 11) 

µ~ =exp (2µ + 2u2
) (8.3 - 12) 

Solving (8.3-11) and (8.3-12) for µ and a 2 , one has 

(8.3 - 13) 
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(8.3 - 14) 

µi, µ~ and µ2 are related through µ2 = µ~ - µi and are estimated from the data by 

1 n 

Mf = - l:xi 
n. 

a=l 

1 n 1 n 
M' - ~ x 2 • M2 = -- ~(xi - M 1')

2 
2-;L..- ii n-lL...,. 

i=l i=l 

(8.3 - 15) 

(8.3 - 16) 

where n is the number of data points. Thus, the moment estimates of the parameters 

of the lognormal distribution are given by 

,U = 2lnMf - ~ lnM~ (8.3 - 17) 

(8.3 - 18) 

For the Weibull distribution, the mean and variance are given by 

(8.3 - 19) 

and 

µ 2 = u 2 
[ r ( 1 + ~) - r 2 

( 1 + ~) J (8.3 - 20) 

In solving these equations for u and >., onee can conveniently use the coefficient of 

variation given by Vfi2/ µi. Then the moment estimators of the sample correspond 

to .\ = A such that 

(8.3 - 21) 

(8.3 - 22) 
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(b) The Method of Maximum Likelihood. 

Optimal estimates of parameters for a distribution (of given functional form) can 

be obtained by employing the method of maximum likelihood, which usually involves 

more complicated computations than the method of movements. The method consists 

in evaluating the parameters f}i, fJ2, •.. , ek of a k-parameter distribution so as to 

maximize the likelihood function, defined as the joint pdf of the observations in a 

random sample of size n 

n 

L(Oi, ... ,ek) = ITp(xi;01, ... ,ek) 
i=I 

The maximum likelihood is obtained by taking the partial derivatives of L with 

respect to each parameter, setting them equal to zero and solving the resulting k 

equations simultaneously. It is convenient to take the derivative of the logarithm of 

L; thus the maximum likelihood equations are 

(8.3 - 23) 

For the two-parameter lognormal distribution one finds that the maximum like

lihood estimates P, and a of the parameters µ and u are given by 

and 

1 n 

P, = - Llnxi 
n. •=1 

. n 

0-2 = i; L (Inxi: - P,)2 
i=l 

(8.3 - 24) 

(8.3 - 25) 

For the Weibull distribution it can be shown that the maximum likelihood esti

mates ~ and fJ of .A and u satisfy the set of equations 

(8.3 - 26) 

(8.3 - 27) 
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(For details see Johnson and Kotz (1970), Vol. 1). It should be noted here that the 

maximum likelihood method can also be used as a criterion for evaluating goodness of 

fit of different distributions; among various distributions that fit a given set of data, 

the one with maximum L is considered optimal. 

(c) The Method of Quantiles 

Through this method the parameters of a distribution can be estimated so that 

the theoretical distribution fits optimally (for example in the least square sense) 

a set of points (xq., qi) where the xq,'s are quantiles of the sample (or empirical) 

distribution function. For a given probability distribution the quantile Xq is defined 

by the equation r:cq 
Jo p(x)dx=q (0 < q < 1) (8.3 - 28) 

For a sample of size n the empirical cumulative distribution function is 

" 1 F = - x (number of Xi less than or equal to xq) 
n 

and the quantile Xq is chosen so as to satisfy F(xq) = q. For the two-parameter 

lognormal and Weibull distributions one can employ the transformations of coordi

nates used in the graphs of the Figures 8-2 and 8-3 respectively, so that a straight 

line should fit the data. In the case that inspection of a plot of the data in such 

coordinates shows that a good linear fit exists (at least for a region of concentrations 

that is of interest), and a very quick (and approximate) estimation of the parameters 

is wanted, it is sufficient to use only two quantiles of the empirical distribution to 

obtain two relations that can be solved simultaneously to determine the parameters 

of the theoretical distribution. Usually quantiles corresponding to high values of q 

will be used since the region of high concentrations is of the most interest. 

For the lognormal distribution, for example, it was earlier shown how µg and <Jg 

are estimated from the concentrations at the 50% and 84 % quantiles, i.e., 

ln.Xo.95 - lnP,g = 0 
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In .Xo.84 - ln ,Ug = ln 8-g 

Choosing, as a further illustration, the 95% and 99% quantiles, one obtains 

ln.Xo.9s - lnJ1g = 1.645lnag 

ln .Xo.99 - ln µg = 2.326 ln 0-g 

For the Weibull distribution, the quantile concentration is given by 

Using the 0.80 and 0.98 quantiles, for example, one obtains the estimates for the 

parameters >. and u as 
~ = 0.88817 

ln xo.98 - ln xo.80 

U =exp (1.53580 ln XQ.80 - 0.53580 ln XQ.98) 

8.3.4 Example: 

Fitting of 1971 Pasadena, CA, Oxidant Data 

to a Weibull Distribution 

As an example, consider the fitting of a Weibull distribution to 1971 hourly

average oxidant data from Pasadena, CA (State of California Air Resources Board, 

1974). The data consist of 8303 hourly values (there are 8760 hours in a year). The 

maximum hourly value reported was 53 pphm. The arithmetic mean and standard 

deviation of the data are Mf = 4.0 pphm and Mi/2 = 5.0 pphm, and the geometric 

mean and standard geometric deviation are 2.4 and 2.6 pphm, respectively. 

Assuming that the hourly-average oxidant concentrations fit a Weibull distribu

tion, the parameters of the distribution can be estimated from (8.3-21) and (8.3-22) 

to give ~ = 0.808 and a = 3.555 pphm. For the determination of >. in fitting a set of 

data to the Weibull distribution, one can use Figure 8-4, where the left-hand side of 

(8.3-21) is shown as a function of>. for 0 < ). < 9. 
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Calculation of parameter >. 111 
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•tn f1T11ng a set of data to a Weibull drstnbutt0n by 
lhe me111od of moments 

Figure 8-4 

Curve for the Calculation of the Parameter .\ 

in Fitting a Set of Data to a Weibull Distribution 

by the Method of Moments. 
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It is interesting also to fit only the daily maximum hourly-average oxidant val

ues to a Weibull distribution. For these measurements there exist 365 data points, 

the maximum value of which is, as already noted, 53 pphm. The arithmetic mean 

and standard deviation of the data are Mf = 12.0 pphm and Mil2 = 8.6 pphm, 

and the geometric mean and standard geometric deviation are 9.1 and 2.2 pphm, 

respectively. Table 8-2 gives a comparison of the data and the Weibull distribution 

concentration frequencies in the two cases. Both fits are very good, the fit to the 

daily maximum values being slightly better. Figure 8-3 shows the two distributions 

plotted on extreme-value probability paper. 
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Table 8-2 

1971 Hourly-Average Pasadena, CA Oxidant Data 

Fitted to a Weibull Distribution 

eo..r:-11•tlon (pphm) .....,,led or azceoded by ll>e Ill.alee! povcem of CIOeervatloM 

1% :1!% $% 4% 5% 111% 25% 111% 75% 

Data (hourly-average) 24 20 18 16 15 11 5 2 

Weibull distribution 23.5 19.2 16.8 15.1 13.8 10 5.3 2.3 0.76 

Data (daily max.) 34 33 32 30 28 25 17 10 5 
Weibull distribution 38.8 34.6 32 30.1 28.6 24.8 16.6 10.2 5.5 
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8.4 ORDER STATISTICS OF AIR QUALITY DATA: 

DISTRIBUTION THEORY 

One of the major uses of statistical distributions of pollutant concentrations is to 

assess the degree of compliance of a region with ambient air quality standards. These 

standards define acceptable upper limits of pollutant concentrations and acceptable 

frequencies with which such concentrations can be exceeded. The probability that a 

particular concentration level, x, will be exceeded in a single observation is given by 

the complementary distribution function 

F (x) = Prob { c > x} = l - F (x) 

where 

F (x) =Prob {c:::; x} 

The larger the concentration level x, the smaller is F (x). 

When treating sets of air quality data, available as successive observations that 

form time series, we may be interested in certain random variables, as, for example: 

• the highest (or, in general, the r-th highest) concentration in a finite sample of 

size m, 

• the number of exceedances of a given concentration level in a number of mea

surements or in a given time period, 

• the number of observations (waiting time or "return period") between exceedances 

of a given concentration level, 

all of which are useful in describing and evaluating ambient air quality. 

The distributions and pdf's, as well as certain statistical properties of these 

random variables, can be determined by applying the methods and results of order 

statistics (or statistics of extremes). The classic reference on order statistics is Gumbel 

(1958). Relevant useful material can also be found in Sarhan and Greenberg (1962), 
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whereas a recent comprehensive treatment of the subject is David (1981) which in

cludes extensive bibliographic information. (See also Singpurwalla, 1972; Barlow and 

Singpurwalla, 1974; Roberts, 1979ab; Horowitz and Barakat, 1979, for applications 

in the field of air pollution data processing.) 

This section contains a brief exposition of fundamental results from the distribu

tion theory for order statistics that can be applied directly to air quality data. Related 

facts are included in the next section where the problem of critical concentration level 

exceedances and connected waiting times is studied. 

8.4.1 Basic Notions and Terminology 

Conside_r the m random unordered variates, Cr (tti), Cr (tt2 ), ••• , Cr (tm), that 

are members of the stochastic process Cr ( tt;) that generates the time series Xr ( tt 1 ), 

Xr (tt 2 ), •• • , Xr (tm), of available air quality data. If we arrange the time series Xr (tta) 

by order of magnitude, X1;m 2'.: X2;m • • • 2'.: Xm;mi then a "new" random sequence 

of ordered variates c1;m 2'.: c2;m • • • 2'.: Cm;m' is formed corresponding to sequence 

{xi;m}i i = 1,2, ... m. We call Ci;m the i-th highest order statistic (i = 1,2, ... ,m) 

or i-th extreme statistic (or (m -1+1)-th order statistic) of this random sequence of 

size m. 

In the exposition that follows it is in general assumed that: 

(a) the concentration levels Xr (ti) measured in successive non-overlapping periods

and hence the unordered random variates Cr (ti)-are independent of one another, 

and 

(b) the random variables Cr (ti) are identically distributed (that is, the distribution 

of pollutant concentrations is independent of time-or can be reduced to a form 

independent of time by some transformation). 

It is also assumed that the theoretical distribution function F (x) as well as the 

pdf p (x), corresponding to the total number of available measurements are known. 

They are called the parent (or initial) distribution and pdf, respectively. Some re

sults of more general character (that is, without the above restrictions) will also be 
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presented whenever they are available in usable form. These will be results con

cerning dependent and/or non-identically distributed variates as well as results of 

distribution-free form, that is, facts which hold regardless of the form (known or not) 

of the parent distribution. An important thing to note here is that even when the 

unordered variates Cr (ti) are independent, dependence is induced by the ordering 

process, and thus the ordered variates are always dependent (David, 1981). 

8.4.2 Distribution and Parameters of Order Statistics. 

The Case of Extreme Values. 

The probability density function Pr;m (x) and the distribution function Fr;m (x) 

of the r-th highest concentration out of samples of size m are evaluated directly from 

the parent pdf p (x) and the parent distribution function F (x) as follows. 

The probability that Cr;m = x equals the probability of m - r trials producing 

concentration levels above x, times the probability density of attaining a concentra

tion equal to x, multiplied by the total number of combinations of arranging these 

events (assuming complete independence of the data). In other words, the pdf of the 

r-th highest concentration has the trinomial form 

B (r, m ~ r + 1) [F (x)Jm-r [F (x)] r-lp (x) (8.4 - 1) 

where B is the beta function. In particular, for the highest and second highest 

concentration values (r = 1, 2) one has 

P1;m (x) = m[F (x)]m-lp (x) (8.4 - 2) 

P2;m (x) = m (m - 1) [F (x)]m-2 [F (x)]P (x) (8.4 - 3) 

The probability Fr;m (x) that Cr;m < X is identical to the probability that no 

more than r - 1 measurements out of m result in Cr;m > X· Every observation is 
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considered as a Bernoulii triai with probabilities of "success" and "failure" F (x) and 

l - F (x), respectively. Thus, 

(8.4 - 4) 

It can further be shown (Feller, 1968, p. 173) that 

( ) 

{F(x) 
Fr;m (x) = r ~ Jo tm-r[l - t]'"- 1 

dt (8.4 - 5) 

(The integral in this expression is the incomplete beta function and is tabulated for 

various values of m, r and F (x). See for example Pearson, 1934.) For the particular 

cases of the highest and the second highest values (r = 1, 2) (8.4-4) becomes 

F1;m (x) = [F (x)]m (8.4 - 6) 

F2;m (x) = m[F (x)]m-i - (m - 1) [F (x)r (8.4 - 7) 

Relations (8.4-1) - (8.4-7) are not practically useful from a computational point 

of view, especially for very large values of m. In this case the asymptotic theory of 

extremes can be used (see Section 8.4.4). It is worthwhile to note the dependence of 

the probability of the largest value on the sample size. From (8.4-6) one obtains 

F1;n (x) = [F1;m (x)],;- (8.4 - 8) 

Thus, if the distribution of the extreme value is known for one sample size, it is known 

for all sample sizes. 

The joint density function of Cr;m and Ca;m (1 < s < r < m) is 

Prs;m = (m - r)! (r _ :'_ l)! (s - l)! [F (x)Jm-r P (x) [F (y) - F (x)J'"-s-1P (y) [l - F (y)]s-1 

(8.4 - 9) 

The joint distribution function of Cr·m and Ca·m is 
' ' 

Frs;m (x, y) =Prob {(at least (m - r + 1) Ci::; x, at least (m - s + 1) Ci ::; y) } = 
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m i 

L L Prob {exactly i Ci:::; x, exactly i Ci:::; y} = 
j=m-s+l i=m-r+l 

m i 

L L ., (. _ 1)7~ _ .)' [F (x)]i[F (y) - F (x)];-i:[l - F (y)]m-i 
i. J • m J • 

j=m-s+l i=m-r+l 

(8.4 - 10) 

From the joint pdf of k-th order statistics one can (by standard transformation 

methods) derive the pdf of any well behaved function of the order statistics. (For 

example, to find the pdf of w,. 8 = Cr;m - C8 ;m one should set w,.8 = y - X and 

note that the transformation from x, y to x, w,.8 has unity Jacobian.) Finally, the 

conditional pdf of Cm-s+l;m given Cm-r+l;m = X is represented, for X < y, by 

lcond (cm-s+l;m = YICm-r+I;m = x) = 

(m - s) [F (y) - F (x)r-s-ip (y) [1 - F (x) (y)]s-i 
(r-s-l)!(m-r)! [l-F(x)r-1 {8.4 - 11) 

Now, once the pdf of the r-th highest concentration is known, all statistical 

properties of this random variable are determined in principle. For example, the 

k-th non-central moment of the r-th highest concentration out of a sample of m 

measurements is 

(8.4 - 12) 

Thus, the expected value of Cr;m is 

µ,.;m = E{cr;m} = m (: = ~) /_: x[F (x)]m-r [F {x)] r-l dF (x) (8.4 - 13) 

Since 0 :::; F (x) :::; l it follows that 

showing that µ,.;m exists provided E{ c} exists (the converse not being necessarily 

true; see David, 1981). 
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The variance of Cr;m is 

(8.4 - 14) 

and the covariance of Cr;mi Ca;m 

is, for r < s 

In evaluating moments of order statistics recurrence relations can be used to 

reduce the number of independent calculations required. Thus, for an arbitrary dis

tribution 

(k) (k) - (k) 
(m - 1) µm-r+l;m + (m - r + 1) µm-r;m - mµm-r+l;m-1 (8.4 - 15) 

and 

m ( ) ( ) 
(k) _ m - 1 m _ i-r . 

µm-r+l;m - ~ m - r m - i + 1 ( 1) µ1;a 
a=r 

(8.4 - 16) 

The same recurrence relations also link the pdf's, distribution functions and in fact 

the expected values of any function of Cr;m (see David, 1981, for detailed derivations 

and other relevant results). 

It is also interesting to note that 

m 

Lµr;m=mµ 
r=l 

m m 

.L:: .L:u,.a;m = mu2 
r=l a=l 

whereµ, u 2 are the mean and the variance of the parent distribution. 

(8.4 -17a) 

(8.4-17b) 

The results presented until now exhaust in principle the subject of evaluating 

the parameters of the distributions of order statistics when the parent distribution 
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is known. However the integrals involved in the expressions for the expectation and 

higher order moments are not always easily evaluated and thus arises the need for 

techniques of approximation. The most important result concerns the evaluation of 

the expected value of Cr;m· In fact, for sufficiently large m, an approximation for 

E{ Cr;m} is provided by the value of X satisfying (David, 1981) 

F( )=m-r+l 
X m+l (8.4 - 18) 

In terms of the inverse function of F (x), p-l (x) (that is p-l [F (x)] = x) one has 

the asymptotic relation 

_ 1 (m-r+l) 
E{cr·m} ~ F , ' m+l 

as m-+oo (8.4 - 18a) 

For small sample size there are several inequalities providing bounds for the 

expected values of order statistics. These are given in Appendix A8.1. 

8.4.3 Distribution Free Confidence Intervals for Quantiles 

When one deals with order statistics it is possible to estimate the probability 

with which a given quantile of the parent distribution lies in the interval defined by 

any two order statistics of the stochastic process under consideration. 

Consider the unique solution of the equation for the quantile of order q (0 < q < 

1) of the parent distribution. 

Xq = F- 1 (q) =inf {x: F (x) > q} (8.4 - 19) 

(This expression guarantees uniqueness of the solution of F(xq) = q.) As it was 

shown by Thomson in 1936 (see David, 1981), for continuous state random variates, 

the random interval (cr;m' Cs;m) covers (includes) Xq with a probability which depends 

on r, s, m and q but not on F (x), allowing in this way the construction of distribution

free confidence intervals for Xq: 

m-s ( ) 
11" (r,s,m,q) = . L 7 qi(l - q)m-i 

a=m-r+l 

(8.4 - 20) 

PART II CHAPTER 8 



- 528-

8.4.4 Asymptotic Theory of Extremes 

for Distributions of Air Quality Data 

For large sample sizes ( m -+ oo) the theory of extreme value statistics provides 

us with asymptotic estimates for the distributions of the highest order statistics of 

the stochastic process that generates these samples. (See Gumbel, 1958; Galambos, 

1978; David, 1981). 

Consider i.i.d. variates Cr (ti), i = 1, 2, ... , m. As far as distributions that are of 

the most interest in the description of aerometric data (the lognormal, the normal, 

the Weibull and the gamma distributions) are concerned as parent distributions of 

these variates, the following result holds for the distribution of their highest order 

statistic as m -+ oo : 

F1;m (x) =Prob {c1;m::; x} =exp {-exp [- (x ::m)]} (8.4 - 21) 

(where F (x) is lognormal, normal, Weibull or gamma) or, equivalently, 

A (x) = lim Prob {c1·m::; amx + bm} = F1·m (c~·m) = 
m-+oo ' ' ' 

= lim Prob{c~·m::; x} = exp[-exp(-x)] 
m-+oo ' 

(8.4 - 22) 

where 

Similarly, for the analogous standardized form of the r-th extreme Cr;m, one has 

the following limiting distribution as m -+ oo : 

l loo m-r )J ( ) 
A,. = ( ) 

1 
exp ( -t) tm-r dt = A (x) L ~ 

m - r . ->.(x) i=O J 
(8.4 - 23) 

where .X (x) = - In A (x) =exp (-x). 

In Gumbel's (1958) terminology, the double exponential distribution A (x) is 

the "first asymptotic distribution of largest values"; it is one of the three possible 
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forms that limm-+oo Fi;m (x) may have (if it exists) and corresponds to the so-called 

exponential type of parent distributions. 

The normalizing constants am, bm in (8.4-22) depend on the sample size m and 

on the form of the parent distribution; they are estimated from quantiles of the parent 

distribution as follows: 

(8.4 - 24) 

and 

-1 ( 1 ) -1 ( 1) am = F 1 - em - F 1 - m (8.4 - 25) 

Gumbel (1958) thoroughly discusses various techniques of analysis utilizing the 

asymptotic form A (x) and stresses particularly on applications. Roberts (1979ab) 

presents a brief discussion as well as applications, of the asymptotic theory in pro

cessing air quality data; part (b) of his work is devoted in the determination of the 

asymptotic distribution from the appropriate treatment of the data. 

Analytic expressions for the coefficients am and bm corresponding to the nor

mal, lognormal and gamma distributions are given respectively by Gumbel (1958), 

Singpurwalla (1972) and Gurland (1975). 

Once the parameters am, bm are determined the expected value of the extreme 

statistic is given directly by 

(8.4 - 26) 

where / = 0.577 ... is Euler's number. For lognormally distributed initial samples 

am, bm are estimated analytically from (Singpurwala, 1972) 

(8.4 - 27) 

whereµ, u are the parameters of the parent lognormal distribution F (x) and 

(8.4 - 28) 
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am = ~ _ In (In m) + ln 411'" 
2y2lnm 

(8.4 - 29) 

Extensions of this analysis for non i.i.d. (possibly autocorrelated) variates are dis-

cussed in Appendix A8.2. 
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8.5 EXCEEDANCES OF CRITICAL LEVELS 

AND RELATED WAITING TIMES 

The number of exceedances (episodes), Nx(m) of a given, time-averaged, con

centration level Xr in a set of m successive observations (time averages) Xr (ti), or 

equivalently, the number Ni:(t) of crossings - "from below" - of a given level x by the 

continuous state-continuous time random function x(t) in the interval {O,t], is itself 

a random function.(*) 

Similarly, the number of averaging periods (or observations) between exceedences 

of the concentration level x r , or, equivalently the time periods between successive 

crossings of the level x in the continuous case, is another random function called 

waiting time, or passage time, or return period, of crucial interest in the study of 

pollution episodes. 

Clearly, the probabilistic treatment of such random function (stochastic pro

cesses) must be based on the analysis of the general problems on passages or level 

crossing, which may be very complicated. (See Cramer and Leadbetter, 1967, for an 

extensive exposition of the level crossing problem; also Feller, 1968, in the study of 

random walks and related passage times). However, in the discrete time-series case, 

and for independent, identically distributed observations, the analysis of this prob

lem becomes much easier. This case is examined in this section; in Appendix A8.3 

a general formulation of the problem covering continuous or discrete, stationary or 

nonstationary time series is presented. 

8.5.1 Distribution of Exceedances 

In the case of i.i.d. variates each one of the observations is a Bernoulli trial 

and therefore the probability density function of Nx(m) is (in terms of the parent 
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distribution F (x)) 

(8.5 - 1) 

From this relation we conclude that the expected number of exceedances E{Nx(m)} 

of the level x in a sample of m measurements is the following function of m 

N x (m) = E{Nx (m)} = F (x) (8.5 - 2) 

Alternatively, the expected percentage of exceedances of a given concentration level 

x, observed in any set of the data under consideration is 

II (x) = lOOF (x) (8.5 - 3) 

Notice that we can interpret Nx, which is a function of the sample size, as a 

renewal function (see for example Karlin-Taylor 1975). This fact means that the 

well developed theory of renewal processes may be utilized in the modeling of related 

problems. 

Parent Distribution-Free Results 

The theory of order statistics provides us with another quite general and distribution

free result concerning the distributions of exceedances. As was first shown by Thomas 

(1948), the probability that n observations of a random variable X will result in Nr 

values of X that exceed the r-th highest value of m initial observations (regardless of 

the magnitude of the r-th highest value and the form of the distribution of X) is 

<f>(N;;r,m,n) = ( ) 
(n+m) n+m-1 

N;+r-1 

(8.5 -4) 

where 
n 

I: <P (N;; r, m, n) = 1 
N;=O 
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Thus, for example, the probability of at least one exceedance of Cr;m is 

• m! (n+m-r) 
Prob{N,. 2::1}=1-q'>(O;r,m,n)=l- ( _ )'( )' 

For r = 1 we obtain 

m r. n+m. 

n 
Prob {N; 2::1} = -

m + n 

(8.5 - 5) 

(8.5 - 6) 

Hence, if n = m we have Prob{N1 > 1} = 0.5. From {8.5-6) we see that the 

larger the difference between m and n, the smaller the probability of exceedance of 

the maximum value. Various other conclusions can be obtained from (8.5-6) when 

appropriate values of N,., r, m, n are introduced. 

For large m, n, (8.5-6) is approximated by 

for r = 1. 

'8 .. l"Y\ l ,<) - 4 J 

The expected value and the variance of the number of exceedances over the r-th 

highest value of them initial observations are calculated from (8.5-4). Thus 

E{N*} = rn , Var{N*} = rn(n+m+l) 
,. m + 1 ,. (m + 2) (m + 1) 2 (8.5 - 8) 

A final interesting result is that for large equal m and n the average and variance of the 

number of concentrations that exceed the r-th highest values of m initial observations 

in a set of n subsequent ones are approximately 

E{N;} = r, Var{N;} = 2r 

(independent of the sample size). 

8.5.2 Expected Return Period or Waiting Time 

The expected return period is defined as the average number of averaging periods 

(or observations) between exceedances of a given level x (*) 

"' This level must of course be an average over the fixed averaging time. 
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The probability that the concentration will exceed x for the first time at obser-

vation n is 

fn = Prob{C:::; x}n-l Prob{c > x} = F(x) [F(x)]n-l 

By definition 
00 

E{n} = Lnfn 
n=l 

Using (8.5-9) in (8.5-10) one obtains 

00 

E{n} = L n[F (x)]"- 1 [1- F (x)] 
n=l 

Since F (x) < 1 it follows that 

00 1 L n[F (x)]"-1 = 1 + 2F + 3F2 + ... = 2 
n=l [lF (X)] 

Combining (8.5-11) and (8.5-12) we obtain 

1 
E{n}=l-F(x) 

1 

F(x) 

(8.5 - 9) 

(8.5 - 10) 

(8.5 - 11) 

(8.5 - 12) 

(8.5 - 13) 

This result can also be derived using renewal process theory: The expected value of 

the waiting time (expected return period), t, is related to the renewal function Nx(m) 

through the equation (see, e.g., Karlin and Taylor, 1975) 

. 1- 1 
hm -Nx= = 

m--+oo m t 

Hence, from (8.5-2) it follows that 

t = E{n} = [F (x)]-
1 

The variance of the number of observations between exceedances of a given level 

X lS 

00 00 [ 1 ]2 -
Var{n} = ~ (n - E{n})

2 
fn = ~ 1 -

1 
_ F (x) [F (x)]'1-

1 
F (x) 
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00 00 1 00 

= (1 - F) I: n2 pn-1 - 2 I: nFn-1 + 1 - F L pn-1 
n=l n=l n=l 

Introducing the relations 

(8.6-14) gives 

PART II 

00 

~ Fn= _1_ 
~ 1-F 
n=O 

00 1 L nFn-1 = ----..,... 
n=l (1 - F)2 

00 2 
Ln(n-l)Fn-2 = -
n=l (1 - F)s 

F 
Var{n}= 2 (1- F) 

(8.5 - 14) 

(8.5 - 15) 
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8.6. EVALUTION OF ALTERNATIVE FORMS 

OF AIR QUALITY STANDARDS 

In this section it is shown how a distribution can be used in evaluating air quality 

standards. As an example, the focus will be on the photochemical oxidant air quality 

standard, although the procedures that will be followed are obviously applicable to 

any pollutant. 

Four possible forms of an oxidant air quality standard are listed in Table 8-3. 

In the application of these standards, aerometric data are to be used to estimate 

expected concentrations and their frequency of occurrence. If it is assumed that the 

data conform to a specific probability distribution then the distribution is fit to actual 

data and the parameters of the distribution are estimated. As it was already pointed 

out in Section 8.2, the distribution determined from the set of available data is time 

invariant and it is assumed that holds for future data also, since the distribution 

will be used to predict expected future concentration frequencies. That is, one will 

be able to make statistical inferences about the expected number of occurrences (or 

frequency) of certain concentration levels. One will not, of course, be able to predict 

when the events will occur but only how often. 

The choice of one form of the standard over another (from a regulator's point of 

view) can be based on the impact (health effects for example) that each form implies 

for the concentration distribution as a whole.(*) For example, one form could be 

stated in such a way that it requires a lower ma..ximum concentration to be attained 

than a second standard, however the average concentration under the first standard 

may be higher than for the second standard. Standards may also be expressed in 

terms of different averaging times. It has also been pointed out (Roberts, 1979ab) 

that a more logical structure for air quality standards would be in terms of a largest 

("') See, for example, the discussion of the total suspended particulate matter (TSP) standard 
by Mage (1980) and the general discussion of Curran and Hunt (1975). 
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concentration with an acceptable return period. That is, the standard would be 

specified in terms of accepted return periods within which, for example, the highest 

and the second highest concentrations would exceed given values. The evaluation of 

this kind of air quality standard, as well as of the previous ones, is done by using 

elementary results of the methods which were presented in the previous sections. 

The first step in the evaluation of an air quality standard is to select the statistical 

distribution that supposedly best fits the data. We will assume that the frequency 

distribution that best fits hourly-averaged oxidant concentration data is the Weibull 

distribution (EPA, 1978). Since the standards are expressed in terms of expected 

events during a one year period of one-hour average concentrations we will always 

use the number of trials m equal to the number of hours in a year, 8760. We would 

assumed distribution) since some of the 8760 hours are usually missing from the data 

set. 

8.6.1 First Alternative 

Expected Number of Exceedances of 0.12 ppm Hourly Average 

Less Than or Equal to One Per Year 

The expected number of exceedances Nx(m) of a given concentration level in m 

measurements is given by (8.5-2) 

Nx(m) = mF(x) 

(8.6 - 1) 

If we desire the expected exceedance to be once out of m hours, that is, Nxl = 1, the 

concentration corresponding to that choice is 

X1 = u(ln m) 1/>. (8.6 - 2) 
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Table 8-3 

Alternative Statistical Forms 

of the Photochemical Oxidant Standard 

1 0.12 ppm hourly average with expected number of exceedences 
per year less 1han or eQual to one 

2 0.12 ppm hourly average not to be exceeded on tile average by 
more 1han 0.01 % of tile hours in one year 

3 0.12 ppm annual expected maximum hourly average 
4 0.12 ppm annual expected second highest hourly average 

" FOf most practical purposes forms 1 and 3 can be considered equivalent. 
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For m = 8760, (8.6-2) becomes 

X1 = o-(9.08) 1/.>. 

8.6.2 Second Alternative 

0.12 ppm Hourly Average Not to be Exceeded on the Average 

by More than 0.01 Percent of the Hours in One Year 

The expected percentage of exceedance of given concentration, x, is given by 

(8.5-3), 

II (x) = lOOF (x) 

For the Weibull distribution, 

(8.6 - 3) 

Eqn. (8.6-3) can be arranged to determine the concentration level that is expected 

to be exceeded II(x) percent of the time, 

[ ( 
100 ) ] l/ >. 

x = a In II (x) (8.6 - 4) 

Therefore, we can calculate the concentraton that is expected to be exceeded 0.01 

percent of the hours in one year, 

Xo.01 = o-(9.21) 1/.>. (8.6 - 5) 

8.6.3 Third Alternative 

0.12 ppm Annual Expected Maximum Hourly Average 

and 0.12 ppm Annual Expected Second Highest Hourly Average 

The "exact" expected value of the rth highest concentration is given by (8.4-13), 

µr;m = E{cr;m} = m(m = 1
) /

00 

x[F (x)]m-r [F (x)] r-l dF (x) 
m r _

00 
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where dF(x) = p(x)dx. For the Weibull distribution 

We would like to evaluate this equation for r = 1 and r = 2 corresponding to standards 

3 and 4, respectively, in Table 8-3. The results, E{ c1;m} and E{ c2;m}, are the expected 

highest and second highest hourly concentrations, respectively, in the year, when 

m = 8760. Unfortunately, the integral in (8.6-6) cannot be evaluated easily. Even 

numerical techniques fail to give consistent results due the singularity at x = 0. Thus 

the asymptotic relation for large m, (8.4-18a) must be used in this case 

E{cr·m} ~ p-1 (m - r + 1) 
' m+l 

For the Weibull distribution we have 

m-r+l 
m+l 

Form= 8760 and r =1, 2 we have to solve respectively the equations 

1 _exp [-(E{c;;m} )'] 

1-exp [-(E{c;;m} rJ 
8760 

=--
8761 

8759 

8761 

(8.6 - 7) 

(8.6 - 8) 

(8.6 - 9) 

As an alternative we can also use an empirical result from Larsen (1971), who ap

proximated the probability of occurrence of a concentration greater or equal to the 

r-th highest concentration as 

- r -0.4 
F(cr·m) = --

' m 
(8.6 - 10) 

Therefore, the probabilities of a concentration exceeding the maximum and second 

highest concentrations (c1;m and c2;m) are 
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-( ) 0.6 -( 1.6 F C1;m = ~ and F C2;m) = ~ 
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We can now determine the expected concentrations using the estimated distribution 

parameters, A and u, and applying (8.2-8), 

[ (
8760)]l/A E{ C1;m} = u ln 0.

6 
= u(9.59) l/ A 

[ (
8760)]l/A E{c2;m} = u ln Le = u(9.59) 1

/A 

form= 8760. Notice that this approach is independent of the assumption for Weibull 

distributed data. 

8.6.4 Example 

Evaluation of Alternative Forms 

of the Oxidant Air Quality Standard 

Using 1911 Pasadena, CA Data 

In Section 8.3.4, 1971 hourly-average and maximum daily hourly-average oxidant 

concentrations at Pasadena, CA were fit to Weibull distributions. We now wish to 

evaluate each of the forms of the oxidant air quality standard that we have been 

discussing.(*) 

Expected Number of Exceedances 

of 12 pphm Hourly-Average Concentration 

Less Than or Equal to One per Year 

The expected number of exceedances of 12 pphm, based on the Weibull fit of the 

1971 Pasadena, CA hourly-average data, is from (8.6-1), 

[ ( 
12 ) 0.808] 

N 12 = 8760exp -
3

.
555 

= 605.2 

The hourly-average that is exceeded at most once per year is from (8.6-2), 

PART II 

x1 = 3.555(ln 8.760) 11°·808 = 54.51 pphm 

* For convenience all concentration values in this section are given as pphm rather than 
as ppm. 
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which agrees well with the actual measured value of 53 pphm. 

If, instead of the complete hourly-average Weibull distribution, we use the distri

bution of daily maximum hourly-average values, the expected number of exceedances 

of a daily maximum of 12 pphm is 

[ ( 
12 ) 1.416] 

N 12 = 365 exp -
13

.
189 

= 152.2 

and the daily maximum 1-hour concentration that is exceeded at most once per year 

lS 

X1 = 13.189(ln 365) l/1.
416 = 46.2 pphm 

It is interesting to note that this value is underpredicted if we use the distribution of 

daily maxima instead of the distribution based on the complete set of data. 

12 pphm Hourly Average Not to be Exceeded on the Average 

by More Than 0.01 Percent of the Hours in One Year 

The expected percentage of exceedances of 12 pphm is 

[ ( 
12 ) 0.808] 

II (12) = lOOexp - -- = 6.91% 
3.555 

The concentration that is expected to be exceeded 0.01 percent of the hours in the 

year is 

( 
100 ) 1/0.808 

Xo.01 = 3.555 ln O.Ol = 55.5 pphm 

This form of the standard cannot be evaluated from the distribution of daily maxima. 

12 pphm Annual Expected Maximum Hourly Average 

and 12 pphm Annual Expected Second Highest Average 

The annual expected maximum hourly average is obtained from the solution of 

(8.4-18) for X = E{c1} and for r = 1, m = 8760, u = 3.555, A= 0.808. 

We have 

1 - exp [-(-X-) o.808] - 8760 
3.55 x=E{ci} 8761 
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E{ c1} = 54.51 pphm 

(whereas the actual maximum hourly average value was 53 pphm). Similarly, for the 

annual expected second highest hourly average concentration we have 

[ ( 
x ) 0.808] 8759 

1 - exp - 3.555 x=E{c2 } = 8761 

E{ c2 } = 49.40 pphm 

The comparable calculations from the distribution of daily maxima are 

[ ( x ) 1.416] 365 
1 - exp - 13.189 x=E{ci} = 366 

giving 

E{ c1} = 46.21 pphm 

and 

[ ( 
x ) i.

415
] 364 1 - exp - 13/189 x=E{c2 } = 366 

giving 

E{c2} = 42.31 pphm 

(The agreement with the measured concentrations is not very good now, but this is 

to be expected since we use an asymptotic relation for infinite m which now is m = 

365.) Using the empirical relation (8.6-10) we obtain 

r ( 8760\11/0.808 
l<'f A_ l - 'J l':l':I': 1~ - 50 4) --Lm 
·"''1. "lf - "'·"'"'"' l•u \ 0.6 } J = · o . .:> ppuu 

Note that this value differs by 10 53 pphm. The estimation is, however, based on the 

empirical formula (8.6-10), the accuracy of which cannot be assessed in this case. 

Similarly, for the annual expected second highest hourly average concentration 

we obtain 

[ ( 
8760)] 1/0.808 

E{ c2} = 3.555 ln ~ = 51.04 pphm 
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The comparable values calculated from the distribution of daily maxima are 

[ (
365)] 1/1.416 

E{ c1} = 13.189 ln 0.
6 

= 49.0 pphm 

and 

[ (
365)]1/l.416 

E{ c1} = 13.189 ln 1.
6 

= 43.6 pphm 

Again these two quantities are both underpredicted when based on the distribution 

of daily maxima relative to the distribution of hourly average values. 

PART II CHAPTER 8 



- 545 -

8. 7 ROLLBACK CALCULATIONS 

AND STATISTICAL DISTRIBUTIONS 

The reduction in emission source strength, R., required to meet an air quality 

goal Ca is often calculated by the so-called simple rollback equation (de Nevers and 

Morris, 1975) 
R_ = KC - Ca 

K,C - Cb 
(8.7-1) 

where K is a growth factor for future emission sources (the ratio of future source 

strength to present strength in the absence of controls), Cb is a typical value for the 

background concentration, and Ca is the air quality standard. Some of the assumptions 

implicit in the statement of (8.7-1) (such as unchanged spatial distribution of emission 

sources, a common growth factor for all sources, unchanged average meteorological 

conditions, etc.) are discussed in de Nevers and Morris (1975). Many modifications 

of this formula have also appeared in the literature as a result of efforts to relax some 

of the above assumptions (Larsen, 1969; Horie and Overton, 1974; de Nevers and 

Morris, 1975; Chang and Weinstock, 1975; Peterson and Moyers, 1980, etc.). 

In the usual manner in which (8.7-1) seems to have been applied, Ca is the air 

quality standard and c is the present concentration corresponding to Ca. For example, 

if Ca is a value of the hourly-average concentration not be be exceeded more than once 

per year, then c would be the highest hourly-average concentration of the present 

year. Used in the manner just described, (8.7-1) implies that the yearly maximum 

concentration is linearly proportional to source emissions. That is, it is presumed that 

a 50% reduction in source strength leads to a 50% reduction in the yearly maximum 

concentration (neglecting the effect of background concentration). 

But is this presumption true? What we would expect, upon some thought, for, 

say, yearly data that conform to a common distribution with mean E{c}, is that 

the expected concentration E{ c} would be proportional to source strength (at least 

for inert pollutants). In fact, if c in (8.7-1) is interpreted as the yearly maximum 
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concentration, then this equation contains a mixture of deterministic (11:, cs, cb) and 

stochastic and stochastic ( Cmax) variables.(*) To apply (8. 7-1) to the expected concen

tration, E{ c }, satisfies the basic notion of conservation of mass for long-term average 

concentrations of non-reactive species, that is, the long-term average concentration is 

directly proportional to the total emissions of the species. 

It appears, therefore, that the correct statement of the rollback formula is 

R. = x:E{c}- E{c}s 
x:E{c} - Cb 

(8.7 - 2) 

where E{ c} s denotes a yearly expected concentration of a distribution the extreme 

statistic of which that corrsponds to Cs is exactly equal to Cs. However, there are many 

indeterminate factors involved in the estimation of E{ c} s from such a distribution; 

further, from an air quality regulation point of vie\•J, '\Ve are really interested in how 

the extreme statistics of the future distribution (e.g Cmax) and Cs compare. In order 

to state this formally we must first replace the observed maximum value of c with 

the extrene statistic of the distribution of c that corresponds to Cs. For the analysis 

that follows we replace Cmax with c, which is defined as the concentration level that 

has probability of exceedance equal to that stated in the definition of the air quality 

standard Cs, under present conditions. That is, if future emissions were to double, 

we want to know whether c would also double or increase by more or less than that 

amount. In other words we want to know if the quantiles (and in particular those 

corresponding to extreme values) of the concentration distribution scale linearly with 

emission levels as it was assumed for E{ c}. In general such a linear relation does 

not exist. However, in the special case of lognormaliy distributed concentrations 

empirical results (Larsen, 1969) can be used to show the approximate validity of a 

linear relationship. 

(*) Actually the background concentration is also a stochastic variable, characterized by a 

statistical distribution of its own that may even change with time (Larsen, 1969; Horie 

and Overton, 1974). However, for the purposes of the present analysis it will be assumed 
that both the value and the variation of the typical background concentration appearing 

in (8.7-1) are small and that in practice a constant value representing the correct order 
of magnitude of background concentrations is sufficient for calculations. 
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Thus, let us know consider a concentration that can be represented by a lognor

mal distribution (under present as well as future conditions). If a current emission 

rate changes by a factor "' ("' > 0) while the source distribution remains the same, if 

meteorological conditions are unchanged, and if background concentrations are neg

ligible, the expected total quantity of inert pollutants having an impact on a given 

site over the same time period should also change by the factor "'· The expected con

centration level for the future period is therefore given, for a lognormally distributed 

variable, by 

( u'2) ( u2) E{ c'} = exp µ
1 + T = "'exp µ + 2 {8.7 - 3) 

where the primed quantitites c', µ', u' apply to the future period and the unprimed 

quantitites apply to the present. It has been argued by Larsen (1969) and others that 

if meteorological conditions remain unchanged, the standard geometric deviation of 

the lognormal pollutant distributions remains unchanged, that is exp u' = exp u. 

Thus, exp µ 1 = "'expµ , or 

µ 1 = µ + lnK (8.7 - 4} 

The probability that future concentration level c' will exceed a level x is 

- (lnx -µ') Fc1(x)=l-~ u' = 

(8.7 - 5) 

Similarly, 

(8.7 - 6) 

Thus, the probability that the future level "'X will be exceeded just equals the prob

ability that with current emissions sources the level x will be exceeded. 
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FIGURE 5 
Two log-normal distributions with the same standard 
geometric deviation 
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Therefore, with equal u, all frequency points of the distribution shift according 

to the factor '"'" This results in a parallel translation of the graph of F (x) or F (x). 

Figure 8-5 shows two lognormal distributions with the same standard geometric devi

ation but different geometric mean values. The geometric mean concentrations of the 

two distributions are 0.05 ppm and 0.10 ppm, and the standard geometric deviations 

are both 1.4. The mean concentrations can be calculated with the aid of (1.3-4) and 

the results of Section 8.2. We find E 1 {c} = 0.053 ppm and E2 {c} = 0.106 ppm. The 

variances can likewise be calculated using {1.3-2) to obtain Var1 { c} = 0.00034 ppm2 

and Var2 {c} = 0.00134 ppm2. 

Let us suppose that the first distribution represents current conditions and there

fore that the current probability of exceeding a concentration of about 0.13 ppm is 

about 0.0027 - which corresponds to about one day per year if the distribution is of 

24-hour averages. If the emission rate were doubled, the new distribution function 

would be given by the second distribution. The new distribution has a median value 

twice that of the old one since total loadings due to emissions have doubled. Under 

the new case, a concentration of 0.13 ppm will be exceeded 22 percent of the time, or 

about 80 days a year, and the concentration that is exceeded only one day per year 

rises to 0.26 ppm. 

The expected return period and its variance can be calculated from (8.5-13) and 

(8.5-15) for any given concentration level. For c = 0.2 ppm, for example, 

E1 {n}-+ oo, Var1 {n}-+ oo 

E2 {n}-+ 47.3, Var1 {n}-+ 2194.0 

In summary, it was shown that the conventional manner in which the rollback 

equation (8.7-1) has been used in which the concentrations are extreme values is 

incorrect. Whereas annual mean concentrations can be expected to scale linearly 

with emission levels, the extreme values, in general, do not. However, in particular, a 

lognormally distributed concentration will scale linearly with emission level changes, 
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when it is assumed that the geometric mean scales with the emission level changes, 

and the standard geometric deviation remains constant. In such a case one can use 

(8.7-1) modified as 

(8.7 - 7) 

where c, as defined earlier, is calculated from a lognormal distribution that has been 

fitted to the whole set of present-year concentration data (averaged over the time 

period that is stated in the definition of c8 ). 
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8.8 PLUME MODELS 

AND STATISTICAL DISTRIBUTIONS 

In the previous section it was assumed that when emission level changes occur 

for a pollutant whose statistical distribution is lognormal, the standard geometric 

deviation remains unchanged and the geometric mean scales with the emission level 

change. In this section we wish to examine this assumption using a simple plume 

model. 

The statistical distribution of pollutant concentrations over a region is a result 

of the day-to-day fluctuations in meteorological conditions (since emission levels are 

more or less constant from day to day). The lognormal (or any other of the distribu

tions in Table 8-1) behavior has been demonstrated by Bencala and Seinfeld (1976) 

to be a possible result of similar distributions for wind speed variations.("') 

To assess the relationship between emission level changes and changes in the 

statistical distribution of a pollutant's concentration let us consider the following 

idealized situation. Consider a city occupying the square region in the (x, y) plane 

[O, L] x [O, L] in the (x, y) plane. Assume that over the city exists a spatially continuous 

ground-level area source of strength Sa (x,y) = Qas (x,y), where Qa is a source 

strength scaling parameter and s(x, y) is the source spatial distribution. Thus, if 

emission level changes occur, they affect only Qa and not s(x, y). 

If the steady state form of the Gaussian plume equation can be assumed to apply, 

the predicted concentration at location (x, y) is given by 

-( ) 1L1L Qas(a,{3) [ (y-(3)2 l d d4 c x, y = exp - a fJ 

0 0 U7rCJx (x - a) Uy (x - a) 2u~ (x - a) 
(8.8 - 1) 

("') In fact it is the bivariate normal distribution that is usually used for the statistical 
description of the two orthogonal components (the third considered negligible) of the 
wind speed. In this case the wind speed itself, independent of direction, must have a 
chi-square distribution with two degrees of freedom, also called the Rayleigh distribution, 
which is very similar in appearance to a Jognormal but it is a different distribution. 
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It is now assumed that the wind speed u is lognormally distributed over the time 

period of interest, e.g. one year, 

(-) 1 [ (ln u- µu-)
2

] Pu u = y'2;r exp - 2 uu- 211" 20'-u I.I 

(8.8 - 2) 

For simplicity, the mean wind direction is taken as always oriented in the direction 

of the positive x-axis. 

One can now calculate the statistical variation of c(x, y) given that for u in (8.8-

2). In doing so, one must assume that the time scale associated with wind speed 

changes (e.g. several hours) is much longer than that over which a steady state 

concentration is achieved. In that case, the Gaussian plume equation in (8.8-1) can 

be assumed to apply, a presumption that underlies the use of most multiple source 

urban plume models (Calder, 1977). 

Equation (8.8-1) can be expressed as 

-( ) g(x,y) c x,y = _ 
u 

(8.8 - 3) 

The pdf's of the random variables u and c are related by 

(
- Pu (u) 

Pc c;x,y) = ~ 

ldul 
(8.8 -4) 

Since jdc/ dui = g(x, y) /u2 , (8.8-2)-(8.8-4) yield 

• ( r. _ ,, 'i2 'I 

(-. )- J. l [lilC-llllg-µuJrJ Pc c, x, y - y'2;r exp - 2 cu- 211" 20'-u I.I 

(8.8 - 5) 

Thus, it follows that the concentration is itself lognormally distributed with 
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Now let us consider the effect of a change in emission level. If the source strength 

changes from Qa to KQa, g(x, y) changes to Kg(x, y) and the new concentration dis

tribution is given by 

(-. ) _ 1 { [Inc- (lnKg - µu-)]
2

} 
Pc c, x, y - J27r exp - 2 ca- 27r 2a-u u 

(8.8 - 6) 

That is, the concentration variation after the emission level change is also lognormal 

with parameters 

Typically it is supposed that the relevant air quality standard is based on a 

value not to -be exceeded more than P percent of the time. According to the above 

distribution cp is given by 

p 
(8.8 - 7) 

100 

With the aid of tables (8.8-7) can be written as 

(8.8 - 8) 

Before a emission level change 

(8.8 - 9) 

whereas after the change 

(8.8 - 10) 

Defining 

(8.8 - 11) 

it follows that 

(8.8 - 12) 
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This result is expected and confirms that with equal uc-'s, all frequency points on the 

distribution shift according to the factor ""· 

Now suppose that the air quality standard is expressed in the form that the 

concentration not exceed a level Cs more than 0.01 percent of the time, and current 

air quality is such that Cs is exceeded P percent of the time. We seek to determine 

the fractional reduction in emissions"" needed to meet the standard. Thus, we have 

where 

(
lnc - µi1>) p 1-<I> s c -

uc- 100 

(
lnc - µ<2>) 

1 - <I> s <Jc- c = 0.0001 

µ~1 ) = lng - µu; 

µ~2 ) = lng + lny;, - µu; 

From (8.8-13) and (8.8-14) it follows that 

In Cs + µu; - ln g - ln"" = 11<
2> uu; 

which may be solved for"" to give 

For example, if 

p = 1.0 

(8.8 - 13) 

(8.8 - 14) 

(8.8 - 15) 

(8.8 - 16) 

(8.8 - 15) 

and cru; = 1.0, 11<
1> = 2.32635 and 11<2> = 3. 71902, so that "" = 0.2484. Thus, to reduce 

the percent of exceedences of the level Cs from 1 % to 0.01 %, for a situation in which 

the standard deviation of the wind speed fluctuations is au; = 1.0, an approximate 

75% reduction in emissions is required. 
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8.9 CONCLUSIONS 

Prediction of the degree of compliance with air quality standards resulting from 

control strategy implementation generally requires knowledge of the statistical be

havior of air pollutant concentrations. This knowledge can usually be incorporated 

in sets of statistical distributions of concentrations and utilized appropriately there

after. In this perspective a variety of similar distributions have been proposed to 

fit aerometric data. The object of this chapter has been to present a treatment on 

the general features, the methods of determination and the uses of such distribu

tions when dealing with air quality data. Further, the properties of certain random 

variables crucial in characterizing aerometric data, such as extreme concentrations, 

exceedances of critical levels and waiting times between exceedances, were studied 

and level crossing theory. Using this analysis one can show, for example, how differ

ent forms of air quality standards can be evaluated and how rollback calculations can 

be properly carried out when extreme values are involved. 
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APPENDIX A8.1 

General Inequalities 

for the Means of Extreme Values 

In the most general case of dependent, non-identically distributed, random variables c,. (t1), 

distribution-free bounds for individual expected values of the order statistics can be obtained as a 

consequence of a theorem due to Arnold and Groeneveld (1979) which leads to 

l m-r+l l m 

---+-l L µi;m :5 µm-r+l;m :5 - L m-r r 
i=l i=m-r+l 

(AB.1-1) 

where E{c,. (t,)} = µ0 and Var{c.,. (t1)} = CTr 

In the case µ;. = µ and u 0 = CT for all i (identically distributed variables) one has 

( 
r-1 )t (m-r)t µ - CT :5 µm-r+i·m :5 µ+CT --

m - r + 1 ' r 
(AB.1- 2) 

For 1 :5 a < r :5 m it follows that 

1 

< [m(m-a+l+r)]~ 
µ•;m - µr;m - CT r(m - 8+1) (AB.1- 3) 

For independent variates we obtain the following (sharper) bounds in the case of the highest and the 

lowest order variate: 
(m-l)CT 

E{ C1;m} :5 µ + ( )1; 2 2m-1 
(AB.1- 4) 

(m- l)CT 
E{cm;m} 2:'. µ - ( )1/ 2 2m-1 

(AB.1- 4) 

One must note, however, that these bounds are not usually sharp enough (so as to serve as approximate 

estimates of the expected values) especiaiiy in the case of skew distributions like the ones corresponding 

to concentrations of air pollutants. 
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APPENDIX A8.2 

Extensions of the Asymptotic Theory of Extremes 

to Non-I.I.D. Variates 

Berman (1969) showed that the results of asymtotic extreme value theory for i.i.d. variates also 

apply to stationary, autocorrelated, Gaussian processes, provided that I::i r~ < oo, where r 0 is the 

correlation coefficient of the first and (1 + i)st observations. Of course sequences of air pollutant 

concentrations are not Gaussian, but if they can be transformed into stationary Gaussian processes 

satisfying Berman's condition (which is often the case; see Horowitz and Barakat, 1979; Box and 

Jenkins, 1976),· the above results hold for them even if they are autocorrelated. 

Horowitz and Barakat (1979) further extended the appiication of the asymptotic theory to non-

stationary time series data resulting from a process that satisfies Berman's condition and has the 

form: 

ln c,. (ti) = /,. (t.) + e,. (t,;) 

where /,. (t1) is a deterministic process and e,. (ti) is normally distributed, possibly autocorrelated, 

with E{e,. (t1)} = 0 for all i. The limiting distribution A (x) (Section 8.4) holds for this case and the 

norming constants a.re now determined from 

where E{ e2 (t;)} = u 2 for all t0 

and 

am= V2 lnm _In (lnm) + 4ln 1f 

2v'2inm 

/;,. = u ln [_!_ 'texp (v2Inm/,. (t,))] 
v'2lnm m 1=1 u 

If f (t) = µ (constant) this reduces to the result of Singpurwalla (Section 8.4.4). 
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