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Summary

In this paper explicit necessary and sufficient conditions are estab-
lished for the ordinafy and strong ellipticity of the three-dimensional
field equations in the nonlinear equilibrium theory of incompressfb]e,
homogeneous and isotropic, hyperelastic solids. The resulting system of
inequalities involves the local principal stretches directly and in ad-
dition restricts the first and second partial derivatives of the strain-
energy density with respect to the deformation invariants or the principal
stretches. The conditions of ordinary and strong ellipticity are found to
coalesce for materié]s that obey the Baker-Ericksen inequalities and pos-
sess a positive shear moduTus at infinitesimal deformations. Various im-
plications of these ellipticity conditions for special classes of materials

and deformations are explored.
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Introduction

Issues related to the ellipticity of the equations governing the fi-
nite equilibrium theory of perfectly elastic solids and to the possible
breakdown of e]]ipﬁicity in nonlinear e]asfostatics, have attracted in-
creasing attention during recent years. Moreover, this interest has
sprung from diverse and — to some extent — conflicting motivations.

Thus, some of the work to which we are alluding seeks to extend the
scope of the theory to equilibrium solutions of reduced regularity that
encompass discontinuous deformation gradients of the kind associated with
so-called localized shear failures. The emergence of such singular equi-
1ibrium fields in homog?neous hyperelastic solids 1is accompanied
by a faiTure of ordinary ellipticity. Closely allied in purpose are
investigations concerned with bifurcations of equilibrium solutions that
are contingent upon a loss of strong ellipticity. In contrast, other
related work has a different incentive: it aims chiefly at restrictions
of the strain-energy density arising from the postulate of "material sta-
bility" in the sensevof Hadamard, which precludes a loss of strong ellip-
ticity in the elastostatic fieid equations.

Although the present paper bears on both of these objectives, it
derives its impetus from the first of the foregoing two motivations and
continues a sequence of studies initiated in [1]. The latter was prompted
by the surmise that a certain crack problem in finite elastostatics of
compressible hyperelastic solids fails to admit a solution of unlimited
smoothness for a particular hypothetical isotropic material. This con-

jecture, 1in turn, suggested that the corresponding displacement equations
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of equilibrium suffer a loss of ordinary ellipticity in the presence of
severe enough deformations. That such is indeed the case is borne out
by the analysis in [1], which supplies an appropriate necessary and suf-
ficient criterion of é11ipticity.
Explicit conditions necessary and sufficient for ordinary and strong
ellipticity of the two-dimensional field equations in the theory of finite

plane strain for compressible isotropic hyperelastic bodies are deduced

in [2]; The results of [2] are applied in [3] to a local study of plane
deformation fields that possess continuous displacements, but exhibit
finite jump dfscontinuities in the deformation gradient. The energetics
of such "elastostatic shocks" are further explored by Knowles [4].

A necessary and sufficient ellipticity criterion confined to anti-

plane shear deformations Qf a class of incompressible isotropic, perfectly

elastic materials is included in [4] and applied in [5]. Further, results
essentially analogous to those contained in [2], [3], [4], but pertaining

to plane deformations of incompressible hyperelastic solids, are derived

by Abeyaratne [6], who limits his attention to ordinary ellipticity.

Specific boundary-value problems involving a loss of ellipticity and
the concomitant appearance of elastostatic shocks:are treated in a number
of publications, all but one of which deal asymptotically with the equi-
1ibrium field near the tip of a crack in an incompressible body subjected
to anti-plane shear. References to these papers can be found in a recent
survey [7].]

The present 1nve5tigation furnishes explicit necessary and sufficient

]To these we append an asymptotic study by Abeyaratne [8], which has ap-
peared since. A
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ellipticity conditions appropriate to the general three-dimensional field

equations for incompressible isotropic hyperelastic bodies. Further, both

ordinary and strong ellipticity are considered, and it is shown that the

corresponding ellipticity criteria merge for a material obeying the
Baker-Ericksen inequalities, providéd its shear modulus is positive at
infinitesimal deformations. Thus, in these circumstances, ordinary implies
strong ellipticity.

As far as additional related literature is concerned, we cite first
an analysis of localized shear failures due to Rudnicki and Rice [9], as
well as a bifurcation analysis by Hill and Hutchinson [10]. Both of these
papers presuppose a potential loss of ellipticity in equilibrium continuum
mechanics; their constitutive settings, however, go beyond purely elastic
behavior. Finally, it shou]d be emphasized that the work reported here
is rather cliosely Lonnected with, and complementary to, a series of in-
vestigations due to Sawyers and Rivlin, starting with [11]. These papers
are cited in a survey article by Sawyers [12], which summarizes the results
obtained. The latter include various necessarx-conditions for strong
e]]ipticity within the context of the equilibrium theory of 1ncompressib1e,
homogeneous ahd isotropic, hyperelastic solids. These conditions, which
are sufficient merely for certain restricted classes of such materials or
when the deformation exhibits a particular degeneracy, are included among
the complete eilipticity criteria established in the present paper.

In Section 1, which is partly expository, we assemble some essential
ingredients of the nonlinear equilibrium theory for homogeneous incompres-
sible hypere]aétic‘bodies. Here we also define the appropriate concepts
of ordinary and strong ellipticity. Proceeding from these two definitions,

we establish corresponding necessary and sufficient ellipticity conditions
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that encompass — but are not confined to — the special case of material
isotropy treated in the remainder of the paper.

Section 2 is devoted to the derivation of explicit necessary condi-

tions for ordinary ellipticity pertaining to the subclass of isotropic
materials. The ensuing inequalities involve the principal stretches di-
rectly, as well as through the first and second partial derivatives of
the strain-energy density with respect to the deformation invariants.
Further, at the end of Section 2, we deduce an equivalent system of in-
equalities necéssary‘for ordinary ellipticity that depends upon the
elastic potential exclusively through its first and second gradients with
respect to the principal stretches and is fully symmetric in the latter.
In Section 3 we first establish the sufficiency of the necessary
conditions for ordinary ellipticity arrived at in Section 2. We then de-

&

rive explicit necessary and sufficient conditions for the strong ellip-

ticity of the elastostatic field equations on the assumption of material
isotropy. Finally, we show that the conditions of ordinary and strong
ellipticity coalesce in this instance under certain mild and physically
plausible additional restrictions of the material response.

The concluding Section 4 deals with applications of the ellipticity
conditions established earlier to particular classes of deformations and
to speciaT types of elastic materials within the category under consider-
ation. Here we examine the degenerate instances of a Tocally axisymmetric
and a Tocally plane deformation, as well as the case in which the elastic
potential depends merely on a single deformation invariant. Next, we
infer the ellipticity, at all deformations, of the equilibrium field
equations appropriate to a Mooney-Rivlin material. Finally, as an illus-

trative example, we discuss in detail the domain of ellipticity in the
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space of the principal stretches for a specific material that has an

elastic potential of a form proposed by Ogden [13].



1.  Preliminaries from finite elastostatics. Ordinary and strong ellip-

ticity for imcompressible, hyperelastic solids.

In this section we recall certain prerequisites from the finite equi-
]ibrium theory of homogeneous incompressible hyperelastic solids. We then
define the notions of ordinary and Strong ellipticity in the present con-
text and deduce necessary and sufficient el]iptfcity conditions that are
not contingent upon any material symmetry restrictions.

Throughout this paper, uppercase boldface 1etteré denote second-order
tensors as well 1s three-by-three matrices; Towercase boldface letters
denote vectors and also three-rowed column matrices. Further, the same
boldface Tetter will be used to designate a tensor or vector and its ma-
trix of scalar components -in the underlying rectangular Cartesian coordi-
nate frame.

Let R be the three-dimensional open region occupied by the interior
of a body in an undeformed reference configuration. A deformation of the

body is then described by a transformation

(x)=x+u(x) on & , (1.1)

<>

Z’::

which maps R onto a domain R,. Here x is the position vector of a
generic point in R, iji) is its deformation image in ®,, and u is
the displacement vector field. Thus, X; and y; are the Cartesién ma-
terial and spatial coordinates, respective]y.1 We shall suppose for the

time being that the mapping 9 is twice continuously differentiable and

]Latin subscripts have the range (7,2,3) and summation over repeated sub-
scripts is taken for granted.



one~to-one on R. Next, let

F=vg=[s;/ox 0= [s +ou /o], d=detf on &,  (1.2)'

so that F is the deformation-gradient tensor and J the Jacobian deter-
minant (volume ratio) associated with (1.1). Further, let C and G

stand for the right and left Cauchy-Green deformation tensors, whence

C=F'F, G=FF on . (1.3)%

~r~

Both C and G are symmetric, positive-definite tensors, which have the
same fundamental scalar invariants Ii and hence possess common positive
principal values k? ; consequently, xi:>0 are the principal stretches

of the deformation at hand. Thus,

_ _? 2 2 N
_1 2 2y _ 2.2 2.2

L=5l(tr0) - tr(CT)I =25+ a505 #2050 » & (1.4)
_ _2_.2.2.2

Since the material is assumed to be incompressible, only locally

volume-preserving deformations are admissible. Therefore,

J=)\]>\2}\3=1, I3=1 on R . (1.5)

Let g, defined on R, be the nominal (Piola) stress-tensor field

]If M is a three-by-three matrix with elements Mjj, we alternatively
write [Mij] in place of M; &ij 1is the Kronecker-delta.

2A superscript T will always indicate transposition.
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accompanying the deformation. The equilibrium balance of linear and an-

gulaf momentum, in the absence of body forces, then demands that

. _ - _ 1T
d1V0—Q, gk Fo or Gij,j—O’ Oiijk_Fizgjg on R . (1.6)
Further, suppose 1 1is the true (Cauchy) stress-tensor field on R,. Ac-

cordingly,

(7(x) = a(x)F (

~~

X) ¥ xER . (1.7)

Turning now to the governing constitutive relations, we call W the elas-
tic potential of the hyperelastic material under consideration. The
scalar-valued response function W, which represents the strain-energy
density per unit undeformed volume, is taken to be defined and at least
twice continuously differqntiab]e on the set £ of all nonsihgu]ar second-

order tenscrs. The appropriate constitutive law may then be written as

i} -T ) NS B 2
g,-wF(g)-p§, or aij-—BW(f)/aFij iji , (1.8)

r~~

in which p, for the present assumed to be continuously differentiable on
R, stands for the arbitrary pressure field needed to accommodate the con-
straint of incompressibility (1.5).3

The elastic potential W 1ds subject to the requirement of material

]Subscripts preceded by a comma indicate partial differentiation with
respect to the corresponding material Cartesian coordinate.

2Here and in the sequel, EﬁTldenotes the transposed inverse of the ten-
. =T e-Ty

sor F, while Fji—(i )ij'

3We emphasize that although this constraint restricts the argument of

W(E) to unimodular tensors, the particular manner in which the domain of

definition of W 1is extended to the set £ of all nonsingular tensors

affects merely the pressure p, and is therefore irrelevant.
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frame indifference, which demands that
W(E)=W(QE) v(’g,fv)ec&xx . ’ (1.9)

where © is the set of all proper orthogonal second-order tensors. More-
over, (1.8) and (1.9) are found to imply the second of (1.6) and hence the
symmetry of the true stress-tensor field T.

Subsfituting from (1.8) into the first of (1.6), appealing to (1.2),
and reéa11ing that F31,j= 0 for a unimodular deformation-gradient field,
one is led to the displacement-equations of equilibrium. Adjoining to the

latter the incompressibility condition (1.5), one arrives at the system of

partial differential equations

-1

provided c.

7jko(£) are the components of the fourth-order tensor defined

by

- N
Cijkz(i)"ckzij(f) =9 N(,E)/aFT.J.aFk2 . (1.11)

In the case of material isotropy, the strain-energy density W(F)

involves F only through the invariants I] and 12 of Ef:ETE: Thus,

~

W(E) = H(L, (F), L, (F) | (1.12)
From (1.3) and (1.4) follow

812

-——-—ZZF_'J, ET:—:—*—_-ZI
1]

3d -]
1Fis = 265,F,5 s o =0F5; (1.13)

For future convenience we adopt the abridged notation
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A ~ 2 1
wa-aw(I],Iz)/aIa R was' 3 W(I],IZ)/aIaaIB . (1.18)
Equations (1.8), (1.12), (1.13), (1.14) then yield the stress-deformation
relations for isotropic incompressible hyperelastic solids in the form
ol ' o) -1
(1.15)
- ot ~ ¢ -T
. or g-2(w1+11w2)g- szﬁ,i‘pi
On the other hand, on account of (1.3), (1.7), (1.15), the true stress
field 1 obeys the constitutive relation
- 2 (1] ' Nl '
1,-2(w]4~11w2)g,-2w2g -pl , (1.16)
where 1 stands for the idem tensor with the components Gij'

According to {(1.16), the principal axes of T and G coincide;
further, if 5 designates the principal true stress associated with the
principal stretch xi’ one evidently has

N 2r 2\ 7
Ti"-P'*ZXi[W14-(I]— xi)wz] (no sum) . (1.17)
Later on, we shaT] need to refer to the Baker-Ericksen inequalities,
which require that
(Ti"Tj)(Ai"Xj)> 0 if A A5 (no sum) , - (1.18)

and thus postulate that the greater true principal stress occurs always
in the direction of the larger principal stretch. Because of (1.17) and

(1.5), the inequality (1.18) is equivalent to

]Throughout this paper Greek subscripts have the range (1,2).
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A~ “2,\ .
w1+(x1.xj) w2>0 if Ai;z‘-xjf (1.19)

With a view toward defining the notion bf ordinary ellipticity rele-

vant to the system of partial differential equations (1.10)1 we consider
a surface <a7 lying wholly within R that admits a twice continuously

differentiable and one-to-one parameterization
*
x=x(8,,8,) ¥ (£1,8,) €1 (1.20)

where 1 is a region of the parameter-plane and (g],gz) are orthogonal
curvilinear coordinates on wf. Let P be an arbitrarily chosen, fixed
point on g/{ Then, within a three-dimensional neighborhood of P, we may

introduce orthogona?bcﬁrvilinear coordinates (51,52,c), such that
— *
%= X(E1:89,2) = x(£7,85) +2n(E,E5) (1.21)

in which n is the unit normal vector of o and |z| s the perpendic-
ular distance from de'of a point with position vector x. The mapping

(1.21) is locally one-to-one; let its inverse be given by

e =i (), z=z(x) (1.22)

¢4 a ~

where éa and ¢ are defined and twice continuously differentiable in
a neighborhood of P,

We now weaken the original smoothness requirements on u and p.
Thus, we assume that (u,p) is a solution of (1.10) with u continuously

differentiable and merely piecewise twice continuously differentiable and

]What follows is at once an adaptation to incompressible bodies of the
analysis in Section 1 of [1] and a generalization to three dimensions of
the development in Section 3.1 of [6].
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p continuous but only piecewise continuously differentiable on R. We

shall call such a (u,p) a "relaxed solution" of (1.10). On setting

ey 58552) = u(X(e:8,552)) 5 PlEysE,02) = P(R(E;58502)) (1.23)

~~

one confirms with the aid of (1.22) that

- - 2 2 3
au auy T 3u, ..
. = A S . o+ .
ROSNE TR S AT NS R TN A R TS T WA,
azik L BZUKA X
+ - .+ z T > “-24)
L T N AN
_ 8 ¢ 9p 2
.2 & L%
p:J 38 Ta,) aCCaJ
Q
[ J

On account of the assumed smoothness of u,p and of the mapping

(1.21), the first and second-order partial derivatives of Gk and the

2

first-order partial derivatives of p, except possibly Bzﬁk/aq and

op/dz, are continuous in the neighborhood of P under consideration;
further, the latter two derivatives may at most have finite jump discon-

tinuities across «f. Moreover, (1.24) and the smoothness of the inverse

mapping (1.22) give
Tuy o0 = [o70/0°0¢ 2 oo Op T=Dob/ochz ; onof , (1.25)

where [[h]] denotes the jump of a function h across~{/.
The second of (1.10) imp]iés J j==0, which — because of (1.2), (1.5),

]

and the last of (1.13) — is equivalent to

1 _
zk k.2 =0 on R. : (1.26)
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Consequently, in view of (1.25), (1.26) and the continuity of F and of

Ciike? equations (1.10) yield

2, 2as
cijkg(i)[[a u/oz ]k,z [[ap/at;]F“c,J Q,
(1.27)

1 2— A A
Fo Lo uk/agz]]r,,zz’fo on o .

Also, noting that vz/|vz| on «f coincides with the unit normal vector

n of < and defining

Qik(i"E) = Cijkz(i)njng ¥ _(,E,aﬂ) €Ex U

(1.28)"
v=T30c%T, q= 98] ' op/acT on <,
where U 1is the set of all unit vectors, we infer that
QEy-oF =0, v-(E)=0 on . (1.29)

Clearly, (1.29) constitute four linear homogeneous algebraic equations
in the jumps (vi,q) which admit only the trivial solution Vj =0, q=0
if and only if the determinant of their coefficientmatrix fails to vanish.

The system (1.10) is said to be elliptic at a relaxed solution (u,p)

1]
o

nd at a point x€R® if and only if u is twice continuously differentiable

|

and p is continuously differentiable at x. Accordingly, when (1.10) is

elliptic at (u,p) and x, there does not exist any surface (of the reg-
uisite smoothness) through the point X across which the "second normal
derivative" azgyacz or the "normal derivative" ap/dz s discontinuous.

It is evident from (1.29) that (1.10) is elliptic at a relaxed solution

There Qix are the components of the acoustic tensor Q, which is symmetric
because of (1.11).
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(u,p) and at a point x if and only if ~

Q1 Q2 O3 -y

A

Q1 Qp Q3 -y

A(Fsn) = det |0 ¥ e, \ (1.30)
~ Q37 Q3p Q33 -y
|1 N, om0
, Q=0(En), A=F ' F=Ltvuo) . J
or equivalently
. 'l ~ ~ .
[E.n) =L
MEsn) =5 EijkezmnninQQijkn 70 ¥ ned, :
(1.31)

Q=QEn), n=F 0, F=L+vulx)

'

IS

where €i5k stands for the components of the three-dimensional alternator.
1 (1.31) is violated for some unit vector n,then n is normal to a ma-
terial characteristic surface in R through x. These characteristic
surfaces are the only possible carriers of discontinuities in azg]acz

or 3p/3z, and ordinary ellipticity precludes the existence of real char-
acteristic surfaces.

We turn next to the definition of strong e]1ipt1c1ty] appropriate to

the system of partial differential equations (1.10). For this purpose we
consider an infinitesimal plane displacement-pressure wave superposed upon
a finite homogeneous deformation of an incompressible hyperelastic body

occupying the entire three-dimensional space €. Thus, if t denotes

]This concept is essentially identical with the notion of Hadamard sta-
bility. What follows is parallel to the analysis in Section 3 of [12],
which is however confined to isotropic materials.
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o]
the time, while F and B designate the constant deformation-gradient
and pressure fields associated with the homogeneous pre-deformation, we

set
’)Z(i,t)=’l?v3<y+vi(3<v,-t), p(’xv,t)=8+r(’>g,t) ¥ (x,t) E&x(—oo ) , (1.32)
regard |vw|, as well as |r|, small comﬁared to unity, and take
V,i(éat)%@(&-ﬁzs—ct), Y‘(,&,t)=w(&'igg—ct) . (1.33)

Here a and 2 are constant unit vectors, determining the direction of
motion and the direction of propagation of the plane wave at hand, whereas
c#0 1is its speed of propagation. Further, ¢ and ¢ are scalar-valued
functions, the first of which is twice — the second once — continuously
differentiable on (-, ). Finally, we take for granted that the deriv-
atives o« and v’ faifbto vanish identically. From (1.32) and the in-

compressibility requirement, one has

+vw, J=detF=1 on €&x(-0,m), detf=1. (1.34)

o

F=vy=

~

The time-dependent nominal stresses induced by the motion (1.32),
(1.33) follow from the constitutive relation (1.8) and are now subject

to the stress equations of motion

2 2
= . - y . 5
9333 0d u1/at on E€x(-00,0) (1.35)

provided p>0 1is the constant mass density and u is the displacement

field. 1In view of the first of (1.32), we see that

oy xe = (Fos - 80 )Xs + W : .36
Uy (358) = 35 (x58) = %y = (Fyg - 85 5)x +wg(xat) (1.36)

Recalling the identities
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detF=te . e F. (det F)F;;

6 “ijk par ip Jq Frrs F

v Fes , (1.37)

2 %ike®jpq kp Lq

we substitute from (1.34) into (1.37) and, upon a linearization with re-

spect to Ww, arrive at

o O 'I

1
Jd= detF~detF+ ]+kakz’

2%ijk® pgqsL ip Jq k [
g b : (1.38)
Fii~F3i " Sikeipa  kp"eng

. N [e]
Further, expanding wF(E) in (1.8) as a Taylor series in [ around F,
appealing to (1.11), (1.34), as well as (1.32), (1.38), and linearizing

with respect to vw and r, we obtain

CE

_'I 1 o o [} o_'l

Tso
"710

% F
3" iJ

(_1

% _

z'r'lo

Now, (1.35) and the second of (1.34), together with (1.39), (1.36), and
the first of (1.38), lead to the linearized version of the displacement-

equations of motion and the linearized incompressibility condition

F]—paw/at

2 p-1
“igke B, 77,5751

F ok, =0 on ex (-o,00) . (1.40)

For the plane wave characterized by (1.33), equations (1.40) give

(1.41)

in which

O. _ 0' B [¢] OT
Rip(B32) = R (Fsp) = ¢y (B L) (E/8) (1.42)
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From (1.41) follows
_ 1‘ .o _ _ " .o ) _ o‘
a8y 0, v’ (g Fx-ct)=bg (2-Fx-ct), b"'liakRik(Ef&) , (1.43)

and hence,

CIR(F32) - ocP1Ta-bg=0, 220 . (1.44)

The system (1.44) constitutes four linear homogeneous algebraic equations
in (a%,b) and has a nontrivial solution if and only if the determinant
of its coefficient matrix equals zero. It is easily confirmed that this

determinant may be written as

F , -
Ryp-ec Ri2 Ry %
2
cet Ro1 Rypmec Roz 2y
R3 R3p  Rgz=pC™ -1
5&] 22 2-3 0
1 2.9 (R. -pc™6. YR, - C2<S )
2 SijkEpartitp ia 7% %3q’ ke TPC Ckr/ ¢

On expanding the right-hand side of (1.45), one sees that equations (1.44)

have a nontrivial solution (ai,b) if and only if pc2

tor & satisfy the secular equation

2 4

o C -(Rkk-R..g.z.)pc2+

131

which is a quadratic equation in

]Upon specialization to an isotropic material and to a pure homogeneous
pre-deformation, (1.46) reduces to equation (3.12) of Sawyers [12], who

sets o= (pcé)-l.

2
pC .

€ijk"pgr

i4oR5qRkr =

"O,

and the unit vec-

=R(F:p) . (1.46)
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We show next that the discriminant of (1.46),

o - v °
A(E;r’éa)':‘(Rkk R1J£1’QJ) 1jk€pqu12pRJqur’ R=R(Es8)

[+] ) .
is non-negative for every nonsingular F and every unit vector 2. To

this end let

=R,, - R =R =R, - R

41 = Ryp = Rags ) = Rys = Ryps ag = Ryq = Ryps
Y% 2Ro35 vp = 2R3y5 3= 2Ry
and note first that if 2]= 23==O, one has A(E}&)==a§4‘yg2f0. On the
2 2

other hand, if 2yt 25> 0, one verifies after a straightfcrward computation

making use of 2385 = 1, that

N S 2
ME L) = Doy oty = g3 = vty = Yoty * Yplal

2

2y-1 2+2
4—2(21+-23) (Y223-a22])2]22]

2, .2y~ 2
Hlvpiy -ty - vaty + 20+ 23) 7 (vt - apy)epigl =0
©
Consequently, for every F &€& and every £ €% there exist two — possibly
coalescent — real values of pc2 satisfying the secular equation (1.46).
We proceed now to the relevant definition of strong ellipticity.

The system (1.10) is said to be strongly elliptic at a solution (u,p)

and at a point x€® if and only if a body of the same material occupying

€, having been subjected to a homogeneous deformation with the deformation-

[o]
gradient F=1+ vu(x) and toaconstant pressure p=p(’>g), admits only in-

finitesimal plane displacement-pressure waves of the form (1.33) with real

non-zero propagation speeds. Unless (1.10) is strongly elliptic at (Hﬁp)
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and x, there is an & such that (1.46) is satisfied for two conjugate
imaginary values of ¢ or for c=0. In the first instance, there exist

superposed infinitesimal metions of the form (1.33) with

ct)],1 =1,

2'110 .

wix.t) =aexp[i(g-

which grow unbounded in time. When c¢=0, in turn, one can satisfy the

linearized equations of motion with

4

e
>
——rt

w(x,t) =atexp(ig-

so that in either event the body is dynamically unstable.

Evidently, necessary and sufficient in order that (1.10) be strongly
e]]iptfc at a solutfon (u,p) and at a point x s that both real roots
pC2 of the secular equation (1.46) be positive for E=;L+vyj§) and for

every unit vector 2. Accbrding to (1.46), this is the case if and only if

(1.47)

R(F;2) = [ETe)2Q(Fsn) ¥ (F,0) €8x %, n=Fg/|F'2] . (1.48)

~

so that the strong-ellipticity conditions (1.47) may be expressed in terms

of the acoustic tensor Q‘ as

O) Qkk Q > 0 VD,E'ZA:

6ijkgpqr i pQJqri 7 13 it

(1.49)

= ,Q(,E;,Q) R ji: ’E n, E = l-l‘ V’L\J‘(X)

~~
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Finally, by comparing (1.31) with the first of (1.49), we confirm that
strong ellipticity implies ordinary ellipticity.

It is essential to remark that conditions (1.31), as well as (1.49),
are inadequate as a méans for testing the Tocal e]]iptitity of a par-
ticular equilibrium solution appropriate to a specific material within
the class under consideration. For the important subclass of isotropic
materials, however, one may deduce from (1.31) and (1.49), corresponding
intrinsic ellipticity criteria in a form suitable for this purpose. It
is this task that constitutes our main goal and to which we presently

turn our attention.
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2. Explicit necessary conditions for ordinary ellipticity in the case

of isotropy.

Our current objective is to deduce from (1.31), which is necessary

and sufficient for ordinary ellipticity, a set of explicit necessary

ellipticity conditions for the special case of an isotropic material.
This get of conditions involves exclusively the Tocal principal
stretches, which enter directly, as well as through the first and second
partial derivatives of the strain-energy density with respect to the
deformation invariants or the principal stretches.

As'a first step, we derive an e]]ipticity condition equivalent to
(1.31), but analytically more amenab]e.] Since [Cij]= iji‘ is a sym-
metric matrix with the principal values A?, there is an orthogonal

matrix M= i{i) ., such that

T -2
MCM =D, Dij ¥ 61.\]. (no sum) . (2.1)

Next, for every nonsingular E, and every unit vector m , Tet

N=N(F) and H=H(F;m) be the auxiliary matrices defined by

r~ Ll o ~ "~~~

N(F) = MWE L H(Esm) = NQ(Fshm) N (2.2)

in which Q 1is the component matrix of the acoustic tensor introduced

~

in (1.28). Evidently H 1ds symmetric. On setting

T

-T
m=Mn,
Fa*l Pa i ad

n,
o~

=>

=F

-

=

=
1

. H=H(Fsm), Q=Q(Fsn) ¥ (F.n) € g,

222

]Nhat follows is suggested by the development in Section 3 of [1].
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one readily confirms the block-matrix equation

provided O stands for the null three-rowed column matrix. It follows

at once that

(det N)2 det

il

(2.4)

Appealing to {1.30) and (2.1) through (2.4), one sees after elementary

manipulations that for every unimodular F and every unit vector m,
~ Lad

r .
itz s M
Hyy Ho, Hoo -
A(Fim) = det | 20 22 23 20 goqgily
' Hyp Hgp M3z -Mg

m] m2 my 0

-

where ﬂ, is the orthogonal and Q’ the diagonal matrix appearing in
(2.1). Consequently, a necessary and sufficient condition for ordinary

ellipticity, equivalent to (1.31), is given by

A(F3hm) = 5 ¢

~r

F0 Vmey, H=H(Fm), f=0""n .

®ijk®pari p Jq My PAMSSS
(2.5)

Next, from (1.3) and (1.11) through (1.14), one finds that for an

isotropic material



S5 ykglF) = 200 + Ty )og 850 + Ay g + 21, + Ty H,)) FosFy o

- 2y (Fy Fyg B85y * 858y ) = 4+ THo ) (FL 6, Py

* Gimijsz)+'4WZZGimijGknFnz : | y

Further, (2.2), (1.28), (2.6), (1.3), (2.1), and the first of (2.3) even-

tually yield

-1
1J

L W 2T+ 120, )

Ha(g Hy +Hy + 2L 5+ TYW,

H..(Fm) = 2[@14-(1]—<D m, m )QZJD

TR ke"k™e iy

~

- W8, .~ 4(w]2-+I]WZZ)(miDjkmk+-D12m

2843 m.)+4W,,D. . mD. m

2] 22 ik kjae
(2.7)
Let ByoW, and Bij’B be defined by

A~

=Wy + 2y
B' - 'l T _i"jz s

32 .2y 2,.2 4 =2y, 2~ 4
W, = Ai(‘i“ A1)81+‘2Ai(11— 212-Ai-2li )(w]]4-2Aiw]2 +-AiW22) (2.8)
(no sum) ,
=2 =2 =2 - -2
By = 2y BBy s Boo= Ao BaBy s Bag=AgBiBy 5 By BoMat Ay BBy,
Byy = 8-W 4—A’28 B B,, = B.W 4~A_28 B B, = B.,W 4—1—28 8
21 ~ ByW3T Ay Ppbz s Bogm By T Ay Boby s Bap T BNy T A3 PPy o
B,, = B,w 4—A"26 8 B,,=8.W 4—A'25 B >’
31 "2 773 P32 > P13 P32 T A PiPe o
=22 -2.2 22 42 42 _-42 2
B = 4k] 814-4x2 824-4A3 83-A] w]-kz wz-A3 w3+2>\3w]w2
2 2
+2A]w2w3+ 2x2w3w] . S

(2.9)

]Note from (2.9), (2.8), (1.14), (1.4) that Bi' and B are solely
functions of the Ak' J
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Upon a lengthy computation involving (2.5), (2.7) through (2.9), (2.1),
and (1.5), one verifies that for every unimodular F and every unit vec-

tor m,
o d

A(F3Mm) = E(;2) = 451.J.z1?z. + Bz,2.2 = mi . (2.10)"

i PA%e%3 0
Suppose now that (1.10) is elliptic at (u,p) and x . If

A= A1(5)> 0, with AAhs= 1, are the corresponding local principal

stretches, one thus has

E(x;z) # 0 ¥ £€EA . (2.11)
where

+z, =1} . | (2.12)

.20, z,+z 3

17T

Evidently, A is the bounded and closed plane region in z-space whose

boundary is the equilateral triangle (Figure 1) with vertices at

5 = (1,0,0) .z, =(0,1,0) , z5=(0,0.1) . (2.13)

~

In view of (2.11) and the continuity of E(X;z) in z , this function

is of one sign on A , so that in particular,
E(xszq) E(,’\f,%) >0, EQ;EZ) EQ"EB) >0 .
Consequently, by virtue of (2.10), (2.9),
BBz >0 » B8y >0, (2.14)

and

]Here and in the sequel, A and z stand for the triplets of real num-
bers (A],AZ,A3) and (21,22,23), respectively.
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E(x3z)>0 ¥ zenr . (2.15)

[ ad

In order to deduce additional necessary conditions for ordinary

ellipticity, we require the following

LEMMA. Let a,b,c,d be real constants, with a>0 and d>0.

Then
3 2 2 3 _
as”+bs“t+cst“+dt’>0 for all s>0, t>0,s+t=1, (2.16)

if and only if

either 4acs +4db> - b%c% - 18abcd + 27a%d%>0 or b>0,c>0. (2.17)

To prove this lemma, note first that (2.16) implies

s{z) s'ag34-bg24‘cg+-d >0 forall £>0

1S

Necessary and sufficient in order that the cubic polynomial 6(z) have

three real zeros is that

nac + 4db3 - b2c? - 18abed + 27a%d% < 0 . (2.18)]

Accordingly, (2.18) together with (2.16) imply the existence of real
numbers £ (i=1,2,3) and E& (=1,2), such that

Thus

o'(£)=3ac”+2be+c = 3a(e-E)(e-F,)

]See, for example, Dickson [14], p. 47. The truth of this assertion

requires merely that a,b,c,d be real with a#0 .
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and therefore (2.16) and the negation of the first inequality in (2.17)

necessitate

- 3.(F 4% o
b~—§a(q+£2)>0 , c=3a £, > 0

Hence (2.16) implies (2.17). <Conversely, b>0 and c>0 at once assure
that (2.16) holds. On the other hand, (2.16) also follows from the first
of (2.17). 1Indeed, the latter mandates the existence of but one real
Zero 6f 6(¢); this zero is negative because a>0 and d>0, so that
6(£)>0 for all £20, which is easily seen to give (2.16). This com-

pletes the proof.

The inequality (2.15) in particular requires E(A;E):>0 on the

side of the triangu]ar_boundary of A with z]==0, whence from (2.10),

3 2 2 3 -
82222+-Bz32223-+ 83222234-833z3> 0 for all 222;0, 232_0, 224-23— 1.
(2.19)
The foregoing lemma thus entitles us to conclude that
. 3 03 2 .2 2 2
either 48,83, + 4833853 BBy = 1885853835833+ 27855833 0
(2.20)
or 823>0, 832>0.
Bearing in mind (2.14), we now set
p; = Bi/xis]ssz >0 , w; = wi/xiei (no sums) , (2.21)

)

and, with the aid of (2.9), (2.21), infer the identity
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3 3 9 2 2 2
4B)oB3p + 4B33Byg -~ BygBa, - 188,,8,385,853+ 278,835
4422 1 a2, 2
== X187 By 683 [y - (pp05" +0,705)1" (wy-4) . (2.22)

Further, on account of (2.22), (2.9), (2.21), we draw from (2.20) that

either w$<4 or m]+p2p§]>0 , m1+p§] p3>0 . (2.23)

Since the second alternative in (2.23) implies
w, > ~min( 1o ) > -1
1 9203 sp2 93 Z s

one has w]+'2> 0. Thus and from parallel arguments applied to the

edges of A 1lying in the planes 2= 0 and 23= 0, one arrives at
wi4'2 >0 , (2.24)

as necessary conditions of ordinary ellipticity.
With a view towards applying (2.15) to certain points in the
interior A of the triangular region A, we now suppose that z, > 0

and define functions Vs through

S T B 1. -1 S, 1)
Vi 7 "_1(‘*’1“3% ZpZg +Mgh3 2325 ) F pohgdy 2925 Fpghoky 242, s

) S TS I T .- 1. A1 &
v, pz(w2+x]x3 2321+ Aghy 2924 ) Foghh, 2,2, toydghy ZyZ4 0, (2.25)

1. -1 “1 -] -1 -1 -1 -1
292y ¥ Mg 2pZ1 ) Feghghy 292y ool Ag 797y y

V3 = pglug sy

After some tedious algebra based on (2.10), (2.9) and involving (2.25),

(2.21), one obtains
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E(l5£)= - B%Bé B§212223 (v%+—v§+~v§— 2v]v2-2v2v3-2v3v])

for z,>0. (2.26)
Consequently, (2.15) yields

2. 2.2 o
Vi

TV, tvg- 2v]v2— 2v2v3-2v3v] <0 on A, (2.27)

and thus from (2.25), (2.24), (2.21) one infers that (2.15) necessitates

Q
vy < v]4-v2%-2/v]v2 s Vs> 0 on A . (2.28)
For our present purpose it is expedient to introduce the transforma-
tion

1

- ) = - -1 °
n, = ”a(ffi) =gk 77y ¥z €A (no sum) , (2.29)

which is a mapping, depending parametrically on A , of R into the open

first quadrant
n-= {(n],nz)’n]>0s n2>0}

of the (n],nz)—p1ane. Inverting (2.29) — keeping in mind that

214-224-z3= 1 on A —one is led to

\ _ -1
z = Za(”1’”2;i) = Aana(k]n] * don, * A3) (no sum) ,
(2.30)

1

23 = 23(71]:1’12;2\‘) = }\3()\171]"')\2”2"')\3) ¥ (n],nz_) en .

Thus, (2.29) in fact constitutes a one-to-one mapping of A onto T .

Next, let functions f and g be defined by
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Fngsnpso )= 0q g+ np 3 )+ opny Fpgnyny
n], 22 ]ap1apzap3 p] 1 n2 n2 QZT]] p3n]n2 s

9(71] :n25w1 swzap-l ,02?93) = p]w] + p2w2+ 2021’\] + Zp-lnz >(2-3])

2Ly sng30507505503) Tlngamyingangeoq503)1 /¥ (ngnp) €11,
o

in which w 505 are given by (2.21), (2.8) and u]timate]y] depend solely
on A . It is clear from (2.31), (2.29), (2.25), and the second of
(2.28) that

f(n](Z;A) > nz(i;'}\v);w'l,p]spz:p:g) = V'i >0 > (2_32)
f(nz('z‘;'}:’) s n](rzv;’):);wzapzap]ap3) = V2 >0 v E’ € K .

Further, as a consequence of (2.25) and (2.30) through (2.32), the first

of (2.28) is equivalent to
93"03 < g(n] anz;w]:wzap]:pzsp3) ¥ (n],nz) cll . (2.33)

At this stage we derive from (2.33) an additional restriction on

Wy 5P ; by choosing ny and n, SO as to minimize g(n],nz;w],wz,p],pz,p3)

on 1. Thus, holding w_,p; fixed, we take (n],n2)==(ﬁ},ﬁé) , Wwhere

3g/on, =0 . (2.34)

Substituting from (2.31) into (2.34), we are led to the unique solution

]Recall from (1.4) that I, and hence W (I],IZ), @aB(I],Iz), are ex-

pressible in terms of the principal stretthes.
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_ -1 -
M =e+0)™ L my= (1407, k= Doglug+2/eylw,+2)12, (2.35)]
and (2.31) now gives

o o 2 —
f(n]anZ;w] 501302503) =K f(n29n];w2:92a9]sp3)a

(2.36)
g(ﬁ] aﬁz;w] >w2a01902303)=203+ [‘/D](w]+2)v+ /02(w2+2)]2 .
Finally, from (2.33), in view of the second of (2.36), follows
o3lug=2) < [oyTay 720 + /o lup 7 201° . (2.37)

Proceeding similarly from the two cyclic permutations of (2.28), one

“arrives at

0y(wy=2) < Do lu, ¥2) + oglug® )1,
(2.38)

Dz(wz - 2) < [/03(w3+ﬂ + ‘/p'l(w] +2)]2

We now summarize the results established in this section. To begin
with, equations (2.10), (2.15), and the first of (2.3) justify the asser-

tion: for the special case of isotropy, the system of partial differen-

tial equations (1.10) is elliptic in the ordinary sense at a relaxed

solution (u,p) and at a point x only if

]Equation (2.34) merely characterizes (ﬁj,ﬁ?) as a stationary point

of g(ny,npswy,wpsp7sp503); that this choice of (ny,np) actually
minimizes g on M for fixed ) —as is shown in, and essential to, the
analysis in Section 3—1is irrelevant at present. Indeed, as far as
our immediate objective is concerned, but for lack of motivation,
(ﬁjzﬁé) )cou]d have been defined directly by (2.35), without recourse
to (2.34).



A(F;n) >0 ¥Ynelk, F= lj—ijx) R (2.39)

where A(E}n) is the determinant defined by (1.30) and involves the
acoustic tensor introduced in (1.28). Moreover, in view of (2.14),

(2.24), (2.37), (2.38), a set of explicit necessary conditions for

ordinary ellipticity in the circumstances under consideration is supplied

by the inequalities

’ | B
ByB3 > 0, By83>0 (a)
w; +250 , (b)
ooy -2) < Woylap 720 + foglog ¥ 2012 1) > (20
oploy = 2) < [iglog# 2] + oyl ¥ 2)1° , ¢ ()
o3lug=2) < oy (wy %27 + Voylwy v 201° L))

Here p.,w.,8; are accounted for in (2.21), (2.8), (1.14) and are given

by

Py = Si/ki816263 Ly = Wi/8, (no sums) , (2.41)

6. = B (1,.0.) 428 W.(1,,1.) \

i T MUt Ay Woldyatod s

2 2 2,2 R T

W = J\i(I]—Ai)s1.+2x1.(I]—212-x1.—2x1. )[N”(I],IZ) > (2.42)

F 8 W (1, 1) F AT W (1,,1,)]  (no sum) J
i Wyollyslol T Ay Wooliysdy >

where A = Ai(x) are the local principal stretches associated with the

displacement field u, while wa(I]’IZ) and waB(IT’IZ) are the

r~
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corresponding local values at Ia= Ia(f) of the first and second partial
derivatives of the strain-energy density with respect to the deformation
invariants.

With a view towérds expressing Bi’wi in terms of the partial deri-
vatives of the strain-energy density with respectyto the principal

stretches, we note from (1.4),(1.5) that

_ ¥ .2 2 2.-2
I, = I](x],xz) AT,
(2.43)
_ ¥ 2.2 -2 -2
12 = Iz(x],xz) = AP AT,
We now define
* _ ~ % *
W(xpon,) = w(I](x],xz),IZ(x],xz)) , (2.44)
and adopt the notation
* *
* aw(x],xz) * azw(x],xz)
wa(x]s)\z) - """‘5‘;""'_— s WOLB(X],XZ) - ""W (2.45)
o a B
From {(1.5),(1.14) and the chain-rule then follow
AN 2 1\ 5 . -2 2% | A
Na(x],xz) = Z(Aa— A3A.a) (wli-xa A wz) {(no sum) ,
: _ 2 =200y a2 20y
wua(x],xz) = 2(14-3x3xa )(w]4-x3 Ay wz)
2 -1\2 7 -2 =20 R
+ 4(xu-x3 A ) (w” +2x3 A w]2+;\3 A NZZ)(no sum), >
* .30 LN 2 20,2 2.0 2. .2\4
Wyp(gsnp) = Mgy +057W, ) + B 0g - 23) 05 - 25) Ty + Gy #2350y,
20,1, J

in which
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=>

* *
(I]()\]s)\z)a Iz()\]a)\z)) >

="

_ -1 _
A= Ogg) T, W=l

(2.47)
~ -,\ * *
Wog = Mo (T3 (2250515 (02500

By means of (2.42), (2.43), (2.46), and (2.47), we can verify that

x 1,2 21
By = B 00525) =5 05-03) L 0050,) s A

¥ 22T 1,02 - )]
W-l -—'W]()\]’}\Z) = ()\2 )\3) >\2 NZ(X],}\Z)'*'Z >\3 wzz()\]a)\z) Y )\3 ()\]}tz)

(g #23) s

_x _1 2 21
B = Bp(Aa2p) =7 0 -3) 7 gl Byag)

o 2 2-1.1 ] -2k i -1 &,
Wy =p(01525) = (07 = 03) 77T Wy (g 0p) 45 037 H 1 (g535) 5 A= ()

(37 24) .

B, = 8,(A x)=1—(x —xz)’][xﬁ(x A)—xﬁ(x An) ]
3 "3T1T2 2 1 2 171172 22172 ?

K L2 211 1
3= waliyaiy) = 07 -05) Dy Hy(h0,) =2y i (0525)]
1r.-2 * -2 * ~1,-1 % '
tolnn ™ Wy (ga2,) +397 Wps (g505) - 20 g7 Wy 00001 (g 7 25) - 4

(2.48)
Equations (2.48) exclude the case of coalescent principal stretches.
In order to derive representations for Bi’wi applicable when two of

the A; are equal, one makes use of (2.44),(2.43) to infer

* —* ——* —"‘J& _ _'l
N(A],AZ) - N(Azsk]) - W(A29A3) - (K35K])3 A3- (A]XZ) s

whence
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* __* * 3 * *
Wy Ogag) =W, (g0 )5 My Ogany) = W0 (9509 )s Wyp(g50p) =5 (g

l)b‘ B * *
WM (0q525) = 2y 0g223) = Ay (39005) )

Al () = <Al "
My O220) = =25l O )+ ag, 0500)

2 % )
Ao lon(2ys2y) =

z'ﬁ'( 22 2y - ( )
Ay 0 xg) a5l (gadg) +a3 W0 (hg003) = 20y W5 (0ps25)

2% _
A (gaay) =

2% -1k

*
2>\3N]( 32 M )+>\3 ”( o8 )+x 22()\3,>\ )—2>\2 w]z(x3,x]) .

_ -1
;\3— (xlxz) J
) J
(2.49)
Substitution from (b) of (2.49) into (2.48) gives
* * * *
By Oy525) =8500,505) 5wy (0s0,) =wa(3)00,)
(2.50)

*

_* * % ' = ( -1
BZ(A],X2)~83(A3,>\]) , wz(xl,xz)-w3(>\3,x]), Ay = x]xz)

N
X]),(a)

> o)

Further, on account of the first two of (&) in {2.49), an obvious limit

* *
process applied to BasWs in (2.48) yields

A“]ﬁ](x,xhﬁ”(x 2 -, (01 (1>0).

Consequently, if one sets

F DL o) i i, (1,1)] =2y =
/7 [ ]A,x) ”(A,A)— m(x,x for X, = A, =24,

1 72

a )—\1 2 2\l & *
é—(x]—xz) [A]w](x],xz)-xzwz(x},xz)] for *17”‘2

(2.51)
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[A w]

\

-_IN

- Az)f][;\'] ﬁ (k Ay

*
(A,x)+wn(x,x

.
) - N]Z(x,x)] for A= 2, = 1,

_]*
)' k] w"()\]sxz)]

4] -2 -1,-1%
—2~[A2 ](x],x )+ My (hg5200) = 20 T35 L 5 (352)]
for A]f Aos )
(2.52)
then (2.48), (2.50), (2.51) justify
81=8(0003) 5 Bo=BUAgn) 5 B3=8(apany) s
(2.53)

w]==W(A2,A3) , w2==W(x3,x])’, w3==w(x],x2) ,

which accommodate all A; > 0.

Finally, from the second and fourth func-

tional relations in (b) of (2.49) and the second in (a), one finds that

g,Ww may more conveniently be written as

\

8252,

1 -2

i’ wn(x,x )
W(X]J\Z): -1, 2 2.-1 *

A, (X —xz) A, )+

Hy(Ogs2g

]

&>(2.54)

2’ 3)

for A]= A2= A,

1 2%
7 A Uy 05503)

_ -1
for A]#)\Z, >\3—(x]xz) P

Equations (2.53), (2.54) comprise the desired intrinsic representa-

tions of B and Wy in terms of the A, and the requisite partial

*
derivatives of W. Moreover, Bs and W, now exhibit the cyclic
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symmetry inherent in (2.53). Each of (a), (b), and (c) in the elliptic-
ity conditions (2.40) is carried into itself by a cyclic permutation of
the indices.] For the purpose of writing (2.40) as a set of inequalities
symmetric with respect to (A],AZ,AB), we define functions CPINCH
through
p(}\]akz):klkz/ﬁ(}\za}\?’) 8(A3=)\]) >
(2.55)
- _ -1
w(k]ﬁ)\z)_A]AZW(A]skz)/B(A]akz) ) >\3_ (}\])\2) ]
o1 (A1o25) = 8(05525) g(x3,x]) , WZ(A]ak2)=ln(k1»K2)*'2 s

\. (2.56)

(P3(k'ls>\2) = D(A]zi)\z)[z ‘w(k] :>\2)] + [‘/p—(kza}\3)c?2(>\25>\3‘)

ICoT I co e ) IREP W I PO ALy
with g,w given by (2.54). Because of (2.55), (2.53), (2.41), we have
o(0s2p) =05 5 p0uag) =0y 5 plageny) = 0y
w(250) = wg s wlgarg) = ey s wligedy) = wy s
and thus, on appealing to (2.53), (2.56), conclude that
@ 0030) = Bty > 9 0003) =Bty s 9103027) = Bgby

Pp(Mpadp)mugt 2, 9 lguag) =g+ 2, P (Ags2y) =, + 2,
(2.57)

| 2
QP3(>\-',)\2)=Q3(2-U)3)+[/p-](w]+2) + /52(w2+2)] s

Tafter one cyclic step, (a) of (2.40) becomes 8,8, > 0, 838> 0, which
is equivalent to (a).
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930005) =01 (2-w) + [Vo,(w, 7 2] + /oglug¥2) 1°

93003001 = 0,(2 - wy) + [Voglay* 2 + Voylug #2) 17

Hence, the necessary ellipticity conditions (2.40) are equivalent to the

nine symmetric inequalities

1
@i(xl,xz) >0, wi(kz,AB) >0, @i(x3,x}) >0, (2.58)

with ¢; supplied by (2.54) through (2.56).

We observe that (2.58) remains invariant under cyclic permutations
of (A],AZ,AB). In addition, we gather‘from (2.82), (a) of (2.49), and
(2.55) that

s(x],xz) = B(AZ,A1) R W(A],Az) = W(AZ,A]) .

(2.59)
Q(A'la}\z) = p()\zak’)) > w(A]axz) = UJ(>\2,>\-!) -
Further, (2.56) now gives
CP.i(A":)\Z) = c‘oi(}\Z’A]) > (2.60)

so that the ellipticity conditions (2.58) are in fact invariant under
all permutations of the principal stretches and thus reflect the isotropy

of the material.

]C1ear]y, (a) of (2.40) implies ByBo > 0, whence (2.40) 1is equivalent

to the set of nine conditions consisting of (2.40) augmented by
B8~ > 0.
172
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3. Sufficiency of the conditions necessary for ordinary ellipticity.

Explicit necessary and sufficient conditions for strong elliptic-

ity in the case of isotropy.

In this section we show first that the set of necessary ellipticity
conditions (2.40) is also sufficient in order that the system of partial
differential eguations (1.10) be elliptic in the ordinary sense, pro-

vided the solid at hand is isotropic. Thereafter, we prove that (2.40)

with (a) replaced by Bi> 0 are necessary and sufficient conditions for
for the strong ellipticity of (1.10). Finally, at the end of the sec-
tion, we note circumstances in which the conditions of ordinary and
strong ellipticity coalesce.

Aiming at the first of the foregoing three objectives, we now sup-

pose (2.40) holds and demonstrate that then

E(iﬁf) >0 Yzenr , (3.1)

™~

where E(lﬁﬁ) and A are given by (2.10), (2.9), (2.8), (2.12). It is
evident from (2.5) and (2.10) that (3.1), in turn, will suffice to
assure the local ordinary ellipticity of (1.10) at the relaxed solution
under consideration.

From (a) of (2.40), in conjunction with (2.9) and (2.41), directly
follows

Bii >0 r(no sum) , 0;> 0o . (3.2)

Further, since m]4'2 > 0 according to (b) of (2.40),

either —2<(u]< 2 or wy 2 2 . (3.3)
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On the other hand, (3.3) and the second of (3.2) permit the inference

. -1, - -1 -1
either —2<w]<2ipzp3 +02]g)3 or w]+023 2, w]+02 o3>2 .

so that, because of (a) in (2.40),

4 4 2

. 2 -1
elthe_r K]B] 28 [m (p2p3

v 05%0,)1%E-4) 5 0
(3.4)

=1 -1
or >\]8183<w] +0203') >0, )\]B]Bz(w]+pz 93) >0 .

Next, recalling (2.22), (2.41), and (2.9), we see that (3.4) is equiva-
Tent to (2.20). But (2.20), as a consequence of the first of (3.2) and
the Temma established in Section 2, implies (2.19), which then — by

virtue of (2.10) — gives
E(x;z) > 0 for every z €A with zy = 0

Proceeding similarly from the remaining two inequalities in (b) of-(2.40),

one thus obtains

A-h | ’ (3.5)

i

E(a3z)> 0 ¥ Z €31

whence (3.1) is true on the edges of A.

We have yet to confirm the inequality (3.1) on the interior A . As

a first step in fhis direction, we show presently that
g(n'lsnz;m] :wzap'l ,02303)29(71] :ﬁz;w]swzap]’pzsps’) Y (n]anz) €, (3-6)

where g is the function introduced in (2.31), while ﬁ& is given by
(2.35); as before, 1 denotes the open first guadrant of the (ﬂ}:nz)‘

plane. Accordingly, we are to prove that the choice (n],n2)==(ﬁ},ﬁé),
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which is already known from (2.34) to render g stationary for fixed X,
in fact minimizes this function on 1 .

In order to verify the above claim, we note that the firstbof (2.31)
allows us to write

, 2. A 2 . |
f(n],nz,w],p],pz,p3) = ¢]+D]n2 (]_nz) +02n]+p3n]n2 ( )
3.7

. 2 -1 2 -1
, f(n2,n1 swzapzsp]:p?)) - \U2+02n] (-I -n]) +p]n2+p3n] nz,
provided
v, = Vo, ma-+2 (no sum) . (3.8)
A lengthy, but straightforward, computation then confirms that
f(ﬂ]sﬂz;w]sﬁ]spzﬁ)?)) f(nzan];w2>pzap]:o3)
2
= [Q3+W]w2+p](] - n2)+02(] - n])]
- - -1 - 2
+ (o3o]n]]'szo3n2]'*p]pzn]]n21)(n]+‘n2- 1)
-1 -1 2 -1 2
* Py No (n2¢]-n1w2) *‘p]nz{w]- ny (1- nz)wz]
- 2 ,
+ pony Doy =y (1= n vy 1" (3.9)

Since ps > 0 and v, > 0 by (a),(b) of (2.40), all terms in the right-

hand member of (3.9) are non-negative, and
f(n] >n2;w] ap] 592393) f(ﬂzan] ;03239239] 393)

2

2 [O3+¢]¢2+p](1-n2)+02(]-n])] Y (n]anz)EH-

Combining this lower bound with (3.8) and the second of (2.31), we are
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led to

g(n] anz;.w] awzsp] 302:03) _>._293 + [‘/p'l (w] + 2) + ‘/pz(wz + 2)]2

v (n],nz)_éﬂ. (3.]0)

Finally, from the second of (2.36), it is evident that (3.10) is equiva-
lent to (3.6).

Next, from (3.10) and the last inequality in {(c) of (2.40) at once
follows (2.33). Furthermore, (a) and (b) of (2.40) assure that V> 0
on X, if the v, are the three functions defined in (2.25). But
(2.33), with the aid of (2.31), (2.29), (2.32), and (2.25), is then
readily found to imply (2.28). Parallel considerations applied to the

first two inequalities in {c) of (2.40) result in
v]< v2+v3+2/v2v3 R v, < v3+-v]4-2/v3v] on A . (3.11)
Therefore, as vy is positive,

/V;'< /Vg+~/7§ y N,

and thus

(N, - /Vg)z < vy o oon R | (3.12)

The inequalities (2.28) and (3.12), in turn, enable us to conclude that

(o]

—2¢v]v2 < v3--v]--v2 < 2/v]v2 on A s

whence we arrive at (2.27). The latter, because of (2.26) and (a) in

(2.40), yields

E(x;z) >0 ¥V zel, (3.13)
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which — together with (3.5) — justifies our original claim (3.1).

We are now in a position to assert that the set of inequalities

(2.40), or alternatively its symmetric equivalent (2.58), are both

necessary and sufficient for the ordinary ellipticity gf_the system of

partial differential equations (1.10) at a relaxed solution (u,p) and

a point x , provided Ai==ki(5) are the local principal stretches.

Our next task is to derive from (1.49) an explicit set of condi-
tions necessary and sufficient for the strong ellipticity of (1.10) in
the special case of isotropy. To this end we recall (2.2), (2.3) and
note thaf

hence

trQ-A-04 = (W) ()

~ Lad

'w @ D - - (T - (39)

2:3>
1>

Further, from (2.2), (2.1), and (1.3) follow

1

N T T RO TR

") tr (DR - - (3.15)

Let us define a matrix [Lij] in terms of the By oWs in (2.8) by set-

ting , ; N
_ -2 _
L’i'l - )l.i (8-{+82+83 B.") (no Sum) >
_ 1.2 -2
Lz =Ly =7 078 # 0 8 ug) s > (3.16)
Ly, = L =~]—(A’25 +x'23 +w,)
23 = L3p =7 Uy Byt AgBatuy)
_ 1,2 -2
Lyy = Lyz = 7 (03783 2By +wy) o J
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A considerable amount of algebra, based on (2.7), (2.1), (2.8), and
involving (2.3), (1.5), (3.16), enables us to deduce

m (0w tr(DH) - mtn = 2K(y2) | (3.17)

"~

provided

K(rsz) = L..z.z. , 2z, = me - (3.]8)]

zZ.
1713
Consequently, applying (1.31), (2.10) to the first inequality in (1.49),

and (3.15), (3.17) to the second, we obtain

E(h:z) >0, Kasz) >0 Yzeh (3.19)

M

as a set of conditions, equivalent to (1.49), that are necessary and
sufficient for strong é]]ipticity.

We show presently that (2.40) with (a) replaced by B; > 0 holds
if and only if (3.19) holds. Indeed, suppose (3.19) is true. The first
of (3.19) coincides with (2.15) and hence, as shown in Section 2, im-

plies (2.40). Moreover, from the second of (3.19) we draw in particular
K('}L;E;I) >0 ,

where ¢, , introduced in (2.13), is the vertex of A on the z;-axis
&I 1

(see Figure 1). Thus (3.19) necessitates
Ly = 2 2(8, 4 8,) > 0
11 1 2 "3 ’

which, together with (a) of (2.40), at once requires

TNote that because of (3.16), (2.8), (1.4), and (1.14), the L, are
solely functions of the Ak .
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B; >0 . (3.20)

Therefore, (3.19) in fact implies (2.40), (3.20), and Hence (2.40) with
(a) replaced by (3.20);

Convefse]y, suppose (2.40) and (3.20) hold. Earlier in this sec-
tion,] we have shown that (2.40) implies the first of (3.19). We now
substitute for w, from (2.41) into (3.16) and find — bearing (1.5) in

mind — that K(a;z), defined in (3.18), admits the representation

~ o~

Y o S N Sl -142 A1, 142
K(asz) B](kz Zy- 23 23) +82(>\3 Zq Al z]) +s3(x] zy =2y 22)

2, -2
HDry T8y g B agglug T 2)] 297
#0508, #2508+ 08, (0 +2)] 2,2
2 Byt 3 Byt Byl 273

-2 -2
+[k3 Byt 2y B]ﬂzsz(w2+2)] z42y - (3.21)

Finally, on account of (3.20) and (b) of (2.40), the sum of the first
three terms in (3.21) is positive on A except at the interior point

7 defined by

~
[s]

z; = 200,40

-1
)
whereas the sum of the remaining three terms is positive on A except at
the vertices ¢, . Hence, (3.20) and (b) of (2.40) imply the second of

(3.19). This completes the proof of the claim that (2.40), (3.20) hold

if and only if (3.19) is true.

]See the proof of (3.1).
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The foregoing results entitle us to conclude that a set of condi-

tions necessary and sufficient for the strong ellipticity of the system

of partial differential equations (1.10) at a solution (Efp) and a point

X , 1s given by

g. >0 (a{\

1

w1+2>0, (b)

o (- 2) < Doylay 3 2) + vhglug¥ 21 12 A > (3.22)

oplug=2) < Woglug#2) + /oy (g ¥ 21 1° > (c)

o5log-2) < [Voyla 2]+ Vo luy #2) 1°
For convenience, we cite here from (2.41), (2.42) that

o5 = Bi/XiByBoBg 5 w5 = Wi/ A 8, (no sums) , (3.23)

g 2 0
B‘ - w](I]alz) + Ai w2(11312) >

2 2 2,2 RPN > (3.20)
W, = A.(I]—A.)3.+2)\.(I] 21 2 )‘i )[W”(I],Iz)

40
A

+ Zx W]Z(I],I )+ A 22( ],12)] (no sum) ,

where 2. = Ai(x) are the local principal stretches associated with y

O~ o~

and Ia= I (x(x)) . With the help of (3.23), the system of inequalities

(3.22) is immediately found to be equivalent to the more tractable set
g: >0 (a)

wi4-2xisi > 0 (no sum) , (b)
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luy - 208 < [P ln, + 22,8, J3 son8,) 12 )

M

Ao (w - 20,8,) < [Jx (wy+23485) /A 1t 2 3])] , 7 (¢)

-2 . 2 2
rg (Wg-2383) < [‘H] (wy +20y8y) J'\z (wy+2258,) 17

Here g.,w. are defined in terms of the derivatives of ﬂ by (
i , :

/

&>(3.25)

3.24)

*
or alternatively in terms of the derivatives of W through (2.53),

(2.54).

In order to bring out the invariance of (3.25) under permutations

of F(A1,A2,A3), we define functions X,

i by

1

x](x],xz) B(A],Az) R xz(x],xz)=w(xl,xz)+2x]

"

-2

+

where B and w are given by (2.54); thus

1 * -2 _ ~ N\
gwn(x,x ) for A=Ay =2

#ypag)- 1. .2 2\-1% 1
-5 AZ(A] - Az) w](xz,x3) for }\] # ;\2, x3= (1112) ,

2 1 .-2*
[¢) ]—x ) w (Az }\3) 5 x] wn(xz,x3)

-1

-1 . )
Ay B(Ay525),

-2 -2 2 - -1
[\/)\] XZ()\Z,AB) + \/AZ Xz(}\?):)\])] > >\3‘ ()\1)\2) :/

>(3.26)

>> (3.27)

for )\-l f >\2 ()\])\2) )

In view of (2.53), the set of inequalities (3.25) may now be written as
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XT-(A],AZ) >0, xi(xz,x3) >0, x}.(AB,)\]) >0 . (3.28)
Moreover, from (3.26) and the first two of (2.59), we infer

xi(x],xz) = xi(xz,x]) ; (3.29’)

By virtue of (3.29), the set of strong ellipticity conditions (3.28) —
like the system of ordinary ellipticity conditions (2.58) — is fully
symmetric with respect to the principal stretches.

We now prove that the conditions for ordinary and strong ellipticity

coalesce for an isotropic material of the type under consideration that

obeys. the Baker-Ericksen inequalities (1.19) and, in addition, has a

positive shear modulus at infinitesimal deformations.

Clearly, in the case of distinct ki’ the inequalities (1.19) —
in view of (3.24), (].5) ~ imply (3.20) and hence the equivalence of
(2.40) and (3.22). On the other hand, suppose two of the principal
stretches coincide but are different from the third, say A]= Azf x3.
Then (1.19), (3.24); (1.5) give By=8, > 0 , and again (2.40) holds if
and only if (3.22) is true.

Finally, suppose all three Ai are equal, so that Ai= 1. In

this degenerate instance, (2.53), (2.54), and (3.23) yield

._]* _
Wi o= g-w]](1,1) > wy=2 . (3.30)

PN et

B~

Thus, conditions (2.40) and (3.22) at present respectively reduce to

ﬁ”(m)yeo and ﬁ”(1,1)>0. (3.31)

One easily confirms that if p is the shear modulus of the material at

infinitesimal deformations,



b= 2[&1(3,3)”712(3,3)]: 1,1) . | (3.32)

Accordingly, when u>0 , fhe two conditions in (3.31) are equivalent.
This concludes the proof of the preceding claim concerning the equiva-
lence of ordinary and strong ellipticity. A

It is of interest to note upon substitution from (3.24), (1.4),
(1.5) into (a),(b) of (3.25), that these inequalities hold if and only
if

(3.33)

]2+-AiW22) > 0 (no sum),

=

and consequently one recovers the necessary conditions for strong ellip-
ticity cited by Sawyers [12].] To see that the additional restrictions

(¢) of (3.25) are 1in general independent of (a) and (b), consider the

elastic potential defined by

' 31

3 ;2 597
N(I],IZ) s 12 -

1*76 12 - 20 80 (3.34)
and a deformation with local principal stretches

_ 1 - = 5
M= os A =2 5, ag=1 . (3.35)

In this instance, (a) and (b) of (3.25) are satisfied, while the first

inequality in (c) is violated.

]See inequalities (4.1) of [12].
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4. Ellipticity conditions for special classes of deformations and

materials.

In applying the'ellipticity conditions established-in the preceding
sections to particular classes of deformations and hyperelastic solids,
we shall take for granted that the material obeys the Baker-Ericksen
inequalities (1.19) and has a positive shear modulus at infinitesimal
deformations. Hence, there will be no need to distinguish between the
criteria for ordinary and those for strong ellipticity.

We consider first a deformation with local principal stretches
-y - _ =2
MEAEX Ay = A . (4.1)

If 5 is the principé] true stress corresponding to A » induced by

this deformation, (1.17) gives
= . (4.2)

Conversely, (4.2), (1.17), and (1.4), (1.5) — because of (1.19) — imply
(4.1). Thus, the special deformation at hand is associated with a

locally axisymmetric state of true stress. Further, by virtue of the

hydrostatic pressure field p, this state may in particular be one of

local uniaxiaj stréss, in which case 7T, 0; alternatively, it may

be a state of local equi-biaxial stress with T3 0.

From (4.1), (2.53), (2.54), and the first two of (2.59) follow

2

o ~ -2 =
B]-BZ—B(A A, w]—wz—w(x ), 2x3e3 w3—w(x,x) . (4.3)

With the aid of (4.3), the ellipticity conditions (3.25) for a
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deformation locally characterized by (4.1) are readily found to reduce
to
' 1
By > O. ., B3> 0o, w]-PZAs] >0 . (4.4)

We show now that the first of these inequalities is automatically satis-
fied under our present assumptions. Indeed, if A# 1, the Baker-
Ericksen inequalities (1.19) and the first of the relations (3.24) at
once give By > 0;if r=1,1in turn, then By > 0 follows from (3.30)
and (3.32) with n>0 . Thus, bearing in mind (3.24), (1.4), and (4.1),

one arrives at

~

W 4‘A—4Q >0

1 2
(4.5)
4.~ 25 3 2,0 20, 4
X (w]ﬂ w2)+2(x -1) (w”+_2A Wypt 2 "’22) >0,
with
S s .2, -4 _ o2, .4
1u-1a(11,12) , was’was“]’lz)’ L=at+xy ", 1, 23 C+AT,
(4.6)

as necessary and sufficient ellipticity conditions in the circumstances
under consideratidn.

It is also useful to cast (4.5), or alternatively the last two
inequalities in (4.4), in terms of the partial derivatives of W
We note from the first relation in (a) of (2.49) and the second in (b)
that
%)

ﬁ](m’ -0 ¥ as0. (4.7)

]Substituting from (3.24), (4.1) into (4.4) and invoking (1.4), one

recovers the inequalities (4.8) of Sawyers [12], who observes that the
latter are both necessary and sufficient for strong ellipticity so long
as the deformation locally conforms to (4.1).
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Thus and by (4.3), (4.1), (3.27), the last two of (4.4) are equivalent
to
* -
NH(A,A 2) >0, zﬁ](x,x)n(] +A3) ¥

;160 > 0, (4.8)

so that these two inequalities are also necessary and sufficient ellip-
ticity criteria when the local principal stretches satisfy (4.1).
Consider next a deformation corresponding to a state of local plane

§;raiﬁ with principal stretches
=%, Ay=1 . (4.9)

In this instance our assumptions (1.19) and pu>0 are easily seen to
imply 61:>O . In fact, if x#1, (1.19) and (3.24) immediately yield
B; > 0, whereas for A=1 the B; are positive as a consequence of
(3.30) and (3.32). Thus, for local plane strain, the only ellipticity
conditions to survive are (b) and (c) in (3.25).

Abeyaratne [6] deduced necessary and sufficient conditions of or-

dinary ellipticity for a deformation of global plane strain with a

displacement field obeying
=0 . (4.10)

Such a deformation gives rise to (4.9) throughout the body. The condi-

tions of ordinary ellipticity arrived at in [6] are

W(I) £0, 1+2(1-2) [W(1)/H (1)]>0, 4.11)"

]See inequalities (3.21) in [6].
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where

2 2

I=1,-1=1,-1=2"42"% | W(I)=W(I+1,1+1) . (4.12)

We now verify that (4.11) is at present implied by (b) and (c) in (3.25),
as must be the case when the Baker-Ericksen inequalities (1.19) are
assumed to hold and u> 0. Indeed, one gathers from (3.24), (4.12),

and (4.9) that

WD) =gy »  W(I)+2(I-2) WD) = AZ(A2+1)'2(W3+2A333); (4.13)

‘But w3+-2k383> 0 according to (b) in (3.25), while 83‘>0 under the
assumptions just mentioned, whence (4.11) fo]lows.]
The necessary and sufficient ellipticity conditions appropriate to
a local state of plane strain governed by (4.9) are in general far more
restrictive than (4.11) since the former involve all three inequalities
in (b) of (3.25), as well as the three inequalities in (c). These addi-
tional restrictions stem from the fact that the local hypothesis (4.9)
admits a larger class of deformations than does the global requirement
(4.10); furthermore, (4.11) —with (1.19) in force — preclude potential
discontinuities in the relevant normal derivatives of the displacements
and pressure merely across cylindrical surfaces with generators parallel

to the principal direction of the deformation tensor C that is asso-

ciated with A3= 1.

]It should be noted that (4.11), as expected, is also implied by the

conditions of ordinary ellipticity (2.40) even if the Baker-Ericksen
inequalities fail to hold or if uw <O .
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We proceed now to special classes of materials and in this connec-

tion consider first elastic potentials that depend on a single deforma-

tion invariant. Suppose

~

H(I;.1) = W(T) | (4.14)

We show presently that in this event, (a) and (b) imply (c) in the
ellipticity conditions (3.25).] From (4.14) and (1.4), (1.5), (3.24)

we draw

zwl(I'l) >

=200 s )= 2, o0 Ty e 2= <Tyun \ (4.15)
Xs (wiz-ZkiBi)— (I]- Ay )M (I])4-2(11— 2§ F] ()]

(no sum) . “

Assume now that (a) and (b) in (3.25) hold true, or equivalently
W‘(I]) >0 , W'(I])+2(I] -xf-a]‘.]) W“(I]) >0 . (4.16)

With a view towards inferring the first inequality in (c) of (3.25), we

note that the latter can be written as

s < T1/2 (4.17)

provided

-2

2
S (W2+2)\262) . >\3

i

-2 -
X (w] - ZA]B] ) - Ay (w3+ 2x353) R

(4.18)
2 N
= 4)\] (w2+ szez) (w3+ 2

-
!

383)

Clearly, T > 0 under our current hypotheses.

One may show similarly that (a) and (b) imply (c) in the ordinary
ellipticity conditions (2.40) whenever (4.14) holds.
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On account of (4.18) and (4.15), (1.4), (1.5),

S= 202+ 2,) O + ) W (14) + 2(2y = 2) 00 - AW (1T 1)
4.1

T=s2+y |

where

- 2 2 2 [} il
U~8(x]+xz) (}\]+/\3) (/\2—)\3) W (I]) W (I]) . (4.20)
In order to establish (4.17), it is convenient to observe that
either Ap=Ay OF AZ# Ay W"(I])S_O or A2¢ x3,W"(I]);>O. (4.21)
If the first of these three eventualities holds, (4.16), (4.19) imply

S=-2(3 +A2)2[w'(1])+2(x] -xz)z (1)1 <0,

1

and hence (4.17) follows. On the other hand, the second alternative in

(4.21) justifies
2(>\-| - xz)(x] - A3)N“(I]) > min[Z(A] - xz)zw“(l]), Z(A] - >\3)2N”(Il)] .

so that (4.16), (4.19) again yield S<O0 and thus (4.17). Finally,
the last alternative in (4.21), together with (4.20), (4.19), and the

2 which confirms (4.17) in

first of (4.16), gives U>0 and T >S5S
this case also. Strictly parallel arguments enable one to infer the
remaining two inequalities in (c) of (3.25).

As is now clear, (4.16) constitutes necessary and sufficient ellip-
ticity conditions when the elastic potential obeys (4.14). Moreover,

the Baker-Ericksen inequalities and u>0 dimply the first of the two

inequalities (4.16.)
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If, instead of (4.14),

~

W(I],Iz) = W(IZ) , (4.22)

one finds similarly that (a),(b) once again imply (c) in (3.25) and is

led to

)0, W (I,)+2(1,- xgz— 205) W'(1,) >0, (4.23)

2) 2
as necessary and sufficient ellipticity conditions.

It should be mentioned that the ellipticity conditions (4.16) and
(4.23), appropriate to (4.14) and (4.22), respectively, recover earlier
results reported by Sawyers [12].]

Consider now the special case of a Mooney-Rivlin material, for

which

&u1J2)=c]ul_3)+c2u2-3). (4.24)

The Baker-Ericksen inequalities (1.19) necessitate

c >0, ‘%u = ¢ te, >0 , (4.25)

and with (4.25) in force, the ellipticity conditions (3.25) are found
to be automatically satisfied for all principal stretches. Thus, for a
Mooney-Rivlin material that obeys the Baker-Ericksen inequalities,
ellipticity obtains at all deformations.

Finally, as an illustrative example, we apply the ellipticity con-

ditions established in this paper to a class of hypothetical materials

Tsee section 5 of [12].
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introduced by Ogden [13]. The associated mechanical response is gov-

erned by an elastic potential of the form

* _C /.0, 0, .0 o -1
w(x],xz)—&—(x]+x2+x3—3) . >\3~(>\]>\2) , ¢>0,a>0. (4.26)

According to (3.27) and . (4.7) one has at present

ac ,a-2

( ) ) A for A]= A2= A . ~
BlAq,0,) =
172 5

) 2

N[O

() Ty s20) +2(300,) T 800y 52)]

~Nlo

o -1 atl o .
1+6 a- 1)1 a+1)(s+67)] ,
Ap(148) TLla-1)(T+s )+ ( (5+8 > (4.27)

() Ty 0y) = 20025) 7 8 (3750)]

/O for )\1=A2

i o s+ 1)(s%- 1)
\%(Aﬁkz)[w%é_])(a%])] for a7, s

where 5¥ A]/AZ. With the aid of (4.27) and by recourse to (2.53), one

can show that

B.] >0,
-2 C o o o o
As (w].+2)\1.81.) >§()\]+)\2+}\3—)\i) (a-1) (no sum) ,
(4.28)
-2 c o, .Q o o
A5 (wi-ZAiei) 5_§-(A]-+A2-+A37-A1) max[0, a-1] (no sum) .

/

The first of (4.28) implies the Baker-Ericksen inequalities (1.19), and
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(4.26)——together with (3.32)—gives u=ca/2>0 ; further, (a) in (3.25)
is satisfied for all A and all o>0 . Moreover, when o>1 , we
easily see that (b) and (c) in (3.25) also hold for all Ay In con-
trast, as may be shown by means of the second of (4.27) and the last

of (4.28), for O<a<1, (b) and (c) hold if and only if
e < A /h. < e (4.29)
i’ o ’

provided e=¢e(a) s the unique solution of the equation

on+]‘

(T+a)(e+e”) = (1-a)(1+*7') , O<e<l . (4.30)

Therefore, for an elastic potential obeying (4.26) with a>1, ellipti-
city prevails at all deformations, whereas if O<a<1 , the inequali-
ties (4.29) are necessary and sufficient for eﬂipticity.1

The inequalities (4.29), which are contingent upon O<a<1 ,
describe the interior o of a convex hexagonal pyramid in the space of
the principal stretches,2 the origin of which coincides with the vertex
of this pyramid. The intersection & of @ with the "isochoric surface"
A]A213= 1 represents the ellipticity domain in this instance.

Evidently, (4.30) can be solved explicitly if ‘u==%F. In this
special case, the ellipticity conditions (4.29), upon elimination of

XB’ may be written as

coapyleet contae cad <t ea7-av3z0.0m18.
(4.31)

]Ogden [13], on the basis of tests performed on vulcanized natural rub-
ber, suggests the choice o=1.2 and ¢=6.8 kg/cmz.

ZSee the interpretation of inequalities (3.1) of [1].
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Conditions (4.31) define the open region 1o in the (A],AZ)—p]ane
depicted as the shaded area in Figure 2. This region is the projection
onto the (A],Az)—plane of the ellipticity domain % ; the projections
Zo3 and Z33 of £ onto the other two principal-stretchApTanes are once
again represented by the shaded region in Figure 2, provided (A],AZ)
in this diagram is replaced by (Az,x3) or by (x3,x]) .

It is of interest to examine the response, to certain basic
homogeneous deformations,}of the material characterized by the elastic
potential (4.26). For a pure homogeneous, volume-preserving deforma-

tion of the form

Yi = A% (no sum) , AAghg = 1, (4.32)

one gathers from (1.7), (1.16), the first of (2.46), and (4.26) that

=0 =00 (i£])

while
\ =1 craa= AW (a0,) = c(0%-22) (no sum over i or g)
i%i T4i 2 Tgg T T33 7 "g"'1772 B "3 '

(4.33)

In particular, for a pure homogeneous deformation of (i) uniaxial

stress or (ii) equi-biaxial stress or (iii) plane-strain uniaxial

stress ("pure shear"), (4.33) yields respectively:

'\
. -af2 -1/2
(1) 1= tpp=0 4 dogg(d) = 1a300) = 0@ -7 2), ag =0, 0y =y = 27175
. B - 3 o L -20 _ _ _ =2 . >
(i) T33—'0 , AOZZ(A)-'TZZ(A)—-C(X -2 ), AT A= h 5 3700
171 = = = o -Q = —]: =
(ii1) T95=0 s xo]](x)-T]](x)-c(x -2 ), M=hy =X g 1. )
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Next, consider a deformation of simple shear given by

Y= Xy tka, Yo = Xy Y3= X3 (4.35)

where k 1is the amount of shear. The corresponding principal stretches

obey
— = 3 (k+kPea), a1, k=ag -yl (4.36)
and the in-plane true shear stress 12 here is fbund to satisfy
T-lz:T()\):C(}\a—)\—a)/(}\’f')\—]) s AT (4.37)

When o>1, the normal stresses 033(x), 133(x) and OZZ(X),TZZ(A),
as well as U}](k),T]}(A), arising in the pure homogeneous deformations
(4.34), are monotone increasing functions of A for 0 <i<w. When
O<a<1, on the other hand, this monotonicity property is retained by
the true stresses T33(A),T22(A),T]](A) , but the associated nominal
stresses 033(A),622(A),o]](x) are steadily incréasing merely for
O<Xx<xy, possess a maximum at A=A, , and monotonically decrease to

zero on Ag< A< , where from (4.34),

(1) A, = [(2+0)/2(1-0)7%/%% 5 1, )
(i) A, = [(1+20)/ (1-0)7"/3% > 1, > (4.38)
(111) A= [(1+a)/ (1-)]V/2% 5 )

respectively. The graphs of 033(A) and r33(x) appropriate to case (i)

of uniaxial stress are shown] in Figure 3 for the three values a=3/2,

IIn the interest of clarity, the curves for T33(A) have been omitted

for O<x<1 .
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a=1,a=1/2. The graphs of cZZ(X), TZZ(A) and o]](K),T11(l), corre-
sponding to the cases (ii)and(iii), are qualitatively quite similar.
As far as the simple-shear deformation (4.35) is concerned, (4.37)}
reveals t(2) to be éteadi]y increasing over the entire range O<i<=,
provided o«>1 . When O<a<1 , however, () increases monotoni-

/2 —1/2, with e=e(a) given by the root of

<A<eg

cally only for
(4.30); for this range of the parameter o, t(A) has a minimum at

RV -1/2

, a maximum at A=¢g , and is strictly decreasing for

/2 and e—]/2< A<w . The graphs of t()) corresponding to

O<x<e
a=3/2,a=1,and a=1/2 are displayed in Figure 4.

It is evident from the foregoing discussion of the three pure
homogeneous deformations introduced in (4.34) that when O<a<1, the
nominal normal stresses singled out there are no longer invertible func-
tions of the appropriate principal stretch 1 over the range T<A<e ,
which corresponds to an .elongation. No such loss of invertibility is
encountered in contraction, i.e., for 0<A<T . Furthermore, ellipti-
city is Tost when O<a<1 in both extension and contraction, and as
i1lustrated by Figure 3 — which pertains to uniaxial stress — the maxi-

mum of 633(A) occurs in the interior of the range of e]lipticity.]

As regards the behavior in simple shear of the special material

under discussion, we note that here, for 0<a<1 , the range of

]In case (ii), which refers to equi-biaxial stress, invertibility of

o2 (1) is lost once again only in extension, but this loss occurs out-
s1§e the range of ellipticity for O<a<ax=0.714 and falls inside
this range for agz<a<]1 .
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ellipticity
[e(a)]'? < & < [e(a)]71/?

precisely coincides with the range of X over which the shear-response

function <(x) -is monotone increasing, and the two extrema of (1)
occur at the endpoints of this range (see Figure 4).

It is now also apparent that for the material characterized by
(4.26), ellipticity prevails at a Jocal state of plane strain with

=128
Ap= Ay =, A

3= 1 if and only if the shear-response function t(x) has
a positive slope at } = X . This conclusion is in complete accord with
a result previously arrived at by Abeyaratne [6]. A related conclusion
had been reached still earlier by Knowles [4],vwho found that the dis-
placement equations of equilibrium appropriate to global anti-plane
shear of a class of incompressible hyperelastic materials are locally
elliptic at a solution if and only if the response curve for simple
shear has a positive slope at an amount of shear equal to the magnitude
of the Tocal displacement gradient.

The preceding observations suggest that a loss of ellipticity in
finite elastostatics always entails some Toss of invertibility of the
undef]ying stress-deformation relations. A physical interpretation

along these lines of the three-dimensional ellipticity conditions estab-

Tished in this paper has so far eluded our efforts.
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FIGURE 1. THE PLANE REGION A IN z-SPACE.
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FIGURE 2. ELLIPTICITY DOMAIN IN THE ()\4,>\2)-PLANE
FOR THE SPECIAL MATERIAL.
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