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Summary 

In t h i s  paper expl ic i t  necessary and suff ic ient  conditions are estab- 

1 ished for  the ordinary and strong el 1 ip t i c i  ty  of the three-dimensional 

f i e l d  equations in the nonl inear equil i brium theory of incompressible, 

homogeneous and isotropic,  hyperel a s t i c  sol ids. The resulting system of 

inequalit ies involves the local principal stretches direct ly  and in ad- 

di t ion r e s t r i c t s  the f i r s t  and second partial  derivatives of the s t ra in-  

energy density with respect to  the deformation invariants or the principal 

stretches.  The conditions of ordinary and strong e l l i p t i c i t y  are found t o  

coalesce for  materials tha t  obey the Baker-Ericksen inequalit ies and pos- 

sess a posilive shear modul us a t  infinitesimal deformations. Various im- 

plications o f  these e l l i p t i c i t y  conditions for  special classes of materials 

and deformations a re  explored. 
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Introduction 

Issues related to  the el l i p t i c i t y  of the equations governing the f i -  

n i t e  equilibrium theory of perfectly e las t ic  solids and t o  the possible 

breakdown of e l l i p t i c i t y  in nonlinear e las tos ta t ics ,  have at t racted in- 

creasing attention during recent years. Moreover, t h i s  in te res t  has 

sprung from diverse and - to some extent -confl ic t ing motivations. 

Thus, some o f  the work to  which we are alluding seeks to  extend the 

scope of the theory to  equilibrium solutions of reduced regularity that  

encompass discontinuous deformation gradients of the kind associated with 

so-called 7oca7 Zzzd shear fa i lures .  The emergence of such singular equi- 

librium f ie lds  in homogeneous hyperelastic solids i s  accompanied 

by a fa i lure  of ordinary e l l i p t i c i t y .  Closely a l l ied  in purpose are 

investigations concerned with bifurcations of equilibrium solutions that  

are contingent upon a loss of strong e l l i p t i c i t y .  In contrast ,  other 

related work has a different  incentive: i t  aims chiefly a t  res t r ic t ions  

of the strain-energy density ar is ing from the postulate of "material s ta -  

b i l i t y"  in the sense of Hadamard, which precludes a loss of strong e l l ip -  

t i c i t y  in the e l a s tos t a t i c  f i e l d  equations. 

Although the present paper bears on both of these objectives, i t  

derives i t s  impetus from the f i r s t  of the foregoing two motivations and 

continues a sequence of studies in i t ia ted  in [ I ] .  The l a t t e r  was prompted 

by the surmise tha t  a certain crack problem in f i n i t e  e las tos ta t ics  of 

compressible hyperelastic sol ids f a i l s  t o  admit a solution of unl imited 

smoothness for  a par t icular  hypothetical isotropic material . This con- 

jecture,  in turn,  suggested that  the corresponding displacement equations 



of equilibrium suffer  a loss of ordinary e l l i p t i c i t y  in the presence of 

severe enough deformations. That such i s  indeed the case i s  borne out 

by the analysis in [I], which supplies an appropriate necessary and suf- 

f i c i en t  cr i ter ion of el 1 i p t i c i  ty.  

Explicit conditions necessary and suff ic ient  for  ordinary and strong 

e l l i p t i c i t y  of the two-dimensional f ie ld  equations in the theory of f i n i t e  

plane s t ra in  for  compressible isotropic hyperel a s t i c  bodies a r e  deduced 

in 121. The resu l t s  of [2] are appl ied in 131 to a local study of plane 

deformation f ie lds  that  possess continuous displacements, b u t  exhibit  

f i n i t e  j u m p  discontinuities in the deformation gradient. The energetics 

of such "e las tos ta t ic  shocks" a re  further explored by Knowles [4]. 

A necessary and suff ic ient  el 1 i p t i c i ty  cr i ter ion confined to  an t i -  

plane shear deformations of a c lass  of incompressible isotropic ,  perfectly 

e l a s t i c  materials i s  included in [4] and applied in [5]. Further, r e su l t s  

essent ial ly  analogous to  those contained in [2], [3], [4], b u t  pertaining 

to  pl ane deformations of incompressi bl e hyperelastic sol ids ,  a re  derived 

by Abeyaratne [6], who l imits  his attention to  ordinary e l l i p t i c i t y .  

Specific boundary-val ue probl ems involving a loss of e l l  i p t i c i t y  and 

the concomitant appearance of e las tos ta t ic  shocks are  treated in a number 

of publications, a l l  b u t  one of which deal asymptotically w i t h  the equi- 

librium f i e ld  near the t i p  of a crack in an incompressible body subjected 

to  anti-plane shear. References to  these papers can be found in a recent 

survey [ 7 ] .  1 

The present investigation furnishes expl ic i t  necessary a d  suf f ic ien t  

'TO these we append an asymptotic study by Abeyaratne [8], which has ap- 
peared s i nce. 



e l l i p t i c i t y  conditions appropriate to the general three-dimensional f i e l d  

equations fo r  incompressible isotropic hyperel as t ic  bodies. Further, both 

ordinary and strong e l l i p t i c i t y  a re  considered, and i t  i s  shown tha t  the 

corresponding e l l i p t i c i t y  c r i t e r i a  merge for a  material obeying the 

Baker-Ericksen inequal i t ies ,  provided i t s  shear modulus i s  positive a t  

infinitesimal deformations. Thus, in these circumstances, ordinary imp1 ies  

strong el 1 i p t i c i  ty.  

As f a r  as additional related l i t e ra tu re  i s  concerned, we c i t e  f i r s t  

an analysis of local ized shear fa i lures  due to  Rudnicki and Rice [9], as 

well as a  bifurcation analysis by Hill and Hutchinson [lo].  Both of these 

papers presuppose a  potential loss of e l l i p t i c i t y  in equilibrium continuum 

mechanics; t he i r  consti tutive set t ings,  however, go beyond purely e l a s t i c  

behavior. Finzily, i t  should be emphasized that  the work reported here 

i s  ra ther  cl3sely connected with, and complementary t o ,  a  ser ies  of in- 

vestigations due t o  Sawyers and Rivlin, s ta r t ing  with [ l l ] .  These papers 

a re  cited in a  survey a r t i c l e  by Sawyers [12], which summarizes the resu l t s  

obtained. The l a t t e r  include various necessary conditions for  strong 

e l l i p t i c i t y  within the context of the equilibrium theory of incompressible, 

homogeneous and isotropic ,  hyperelastic sol ids .  These conditions, which 

are  suff ic ient  merely for  certain restr ic ted classes of such materials o r  

when the deformation exhibits a  particular degeneracy, a re  included among 

the complete e l l i p t i c i t y  c r i t e r i a  established in the present paper. 

In Section 1 ,  which i s  partly expository, we assemble some essential 

ingredients of the nonlinear equilibrium theory for  homogeneous incompres- 

s ib l e  hyperelastic bodies. Here we also define the appropriate concepts 

of ordinary and strong e l l i p t i c i t y .  Proceeding from these two defini t ions,  

we establish corresponding necessary and suff ic ient  e l l i p t i c i t y  conditions 



that encompass - but are not confined to - the special case of material 

isotropy treated in the remainder of the paper. 

Section 2 is devoted to the derivation of explicit necessary condi- 

tions for ordinary el 1 iptici ty pertaining to the subclass of isotropic 

materials. The ensuing inequalities involve the principal stretches di- 

rectly, as well as through the first and second partial derivatives of 

the strain-energy density with respect to the deformation invariants. 

Further, at the end of Section 2, we deduce an equivalent system of in- 

equal i ties necessary .for ordinary el 1 iptici ty that depends upon the 

elastic potential exclusively through its first and second gradients with 

respect to the principal stretches and is fully symmetric in the latter. 

In Sectfon 3 we first establish the sufficiency of the necessary 

conditions for ordinary ellipticity arrived at in Section 2. We then de- 
* 

rive explicit necessary and sufficient conditions for the strong ellip- 

ticity of the elastostatic field equations o n  the assumption of material 

isotropy. Finzlly, we show that the conditions of ordinary and strong 

ellipticity coalesce in this instance under certain mild and physically 

plausible additional restrictions of the material response. 

The concluding Section 4 deals with applications of the ellipticity 

conditions established earlier to particular classes of deformations and 

to special types of elastic materials within the category under consider- 

ation. Here we examine the degenerate instances of a locally axisymmetric 

and a locally plane deformation, as well as the case in which the elastic 

potential depends merely on a single deformation invariant. Next, we 

infer the ellipticity, at all deformations, of the equilibrium field 

equations appropriate to a Mooney-Rivl in material. Finally, as an illus- 

trative example, we discuss in detail the domain of ellipticity in the 



space of the principal stretches for  a specific material t h a t  has an 

e l a s t i c  potential of a form proposed by Ogden 1131. 



1. Prel iminaries from f i n i t e  el as tostat ics .  Ordinary and strong e l l  ip- 

t i c i t y  for  imcompressi bl e ,  hyperelastic sol ids. 

In th i s  section we recall  certain prerequisites from the f i n i t e  equi- 

1 ibrium theory of homogeneous incompressible hyperelastic sol ids. We then 

define the notions of ordinary and strong e l l i p t i c i t y  in the present con- 

text  aqd deduce necessary and suff ic ient  e l l i p t i c i t y  conditions that  a re  

not contingent upon  any material symmetry restr ic t ions.  

Throughout this  paper, uppercase bo7 dface 1 e t t e r s  denote second-order 

tensors as well 3s three-by-threr matrice's; lowercase boldf3ce l e t t e r s  

denote vectors and a1 so three-rowed column matrices. Further, the same 

boldface l e t t e r  wi l l  be used to designate a tensor or vector and i t s  ma- 

t r i x  of scalar  components + i n  the underlying rectangular Cartesian coordi- 

nate frame. 

Let G be the three-dimensional open region occupied by the in te r ior  

of a body in an undeformed reference configuration. A deformation of t h e  

body i s  then described by a transformaiicn 

which maps R onto a domain R*. Here x i s  the position vector of a 
CY 

generic point in R, i ( x )  i s  i t s  deformation image in R*, and u i s  
CV N N 

the displacement vector f ie ld .  Thus, xi and yi a re  the Cartesian ma- 

t e r i a l  and spat ia l  coordinates, respectively. '  We shall suppose for  the 

time being that  the mapping y is  twice continuously different iable  and 
Tu 

' l a t in  subscripts have the range (1,2,3) and summation over repeated sub- 
scr ip ts  i s  taken fo r  granted. 



one-to-one on R. Next, l e t  

so tha t  ,-- F i s  the deformation-gradient tensor and J the Jacobian deter- 

minant (volume r a t i o )  associated with (1 . I ) .  Further, l e t  - C and G - 
stand for  the r ight  and l e f t  Cauchy-Green deformation tensors, whence 

Both rU C and - G are  symmetric, positive-definite tensors, which have the 

same fundamental scalar  invariants Ii  and hence possess common posi t ive 

2 principal va1u.s ai  ; consequently, h i >  0 are the principal s t retches 

of the deformation a t  hand. Thus, 

2 2 2 2  I = det L= J = A l  12x3 . 3 

Since the material i s  assumed to be incompressible, only local ly  

volume-preserving deformations are  admissible. Therefore, 

Let a ,  defined on 6?, be the nominal (Piola) stress-tensor f i e l d  
Cv 

'1f M i s  a three-by-three matrix with elements Mij, we al ternat ively 
write" [Mij] in place of 

Cu M ;  6 i j  i s  the Kronecker-delta. 

'A superscript T will always indicate transposition. 



accompanying the deformation. The equilibrium balance of l inear  and an- 

gular momentum, i n  the absence of body forces, then demands tha t  

T T div %= 0, zr = r z  or o - - 0, o i k F j k =  Fiaoje on R . (1 .611 
i j  , j  

Further, suppose T i s  the t rue (Cauchy) stress-tensor f i e ld  on . Ac- 
N 

cordi ngly, 

T T ( ~ ( x ) )  = o(x)F ( x )  V x €63 . 
NCVN N N N  N N 

(1.7) 

Turning now to the governing constitutive relat ions,  we cal l  W the elas- 

t i c  potential of the hyperelastic material under consideration. The 

scal ar-val ued response function W ,  which represents the strain-energy 

density per c n i t  undeformed volume, i s  taken to be defined and a t  leas t  

twice continuously different iable  on the se t  L of a l l  nonsingular second- 

order tensors, The appropriate consti tutive law may then be written as 

in which p ,  for  the present assumed to be continuously different iable  on 

63, stands for  the a rb i t ra ry  pressure f i e ld  needed to accommodate the con- 

s t r a i n t  of incompressibility (1.5) .  3 

The e l a s t i c  potential W i s  subject to  the requirement of material 

'subscripts preceded by a comma indicate partial  different iat ion w i t h  
respect to  the corresponding material Cartesian coordinate. 

 ere and in the sequel F - ~  denotes the transposed inverse of the ten- 

ru 

i - sor F, while F;:= (L- l i j .  
J We emphasize tha t  although th i s  constraint r e s t r i c t s  the argument of 
W(k) t o  unimodular tensors, the particular manner in which the domain of 
definit ion of W i s  extended to the se t  S of - a l l  nonsingular tensors 
a f fec ts  merely the pressure p ,  and i s  therefore i r relevant .  



frame indifference, which demands that 

W(F)=W(QF) m+ -- v ( Q , F )  E o x x  , 
ry - (1.9) 

where 8 is the set of all proper orthogonal second-order tensors. More- 

over, (1.8) and (1.9) are found to imply the second of (1.6) and hence the 

symmetry of the true stress-tensor field T. 
N 

Substituting from (1.8) into the first of (1.6) ,  appealing to (1.2), 
< 1 and recall ing that F1. = 0 for a unimodular deformation-gradient field, 

J I  

one is led to the displacement-equations of equilibrium. Adjoining to the 

latter the incompressibility condition (1..5), one arrives at the system of 

partial differential equations 

Cijke(F)uk,Qj - pyj~j: = 0, J = det N F = 1 on 61 , 

provided c. .. (E) are the components of the fourth-order tensor defined 
i j K Q  

by 

In the case of material isotropy, the strain-energy density W(F) - 
T involves - F only through the invariants I1 and I2 of C =  F F. Thus, 

N N N  

From (1.3) and (1.4) follow 

For future convenience we adopt the abridged notation 



Equations (1.8) ,  (1.12), (1.13), (1.14) then y i e ld  t he  stress-deformation 

re1 a t ions  f o r  i so t rop ic  incornpressi bl e hyperelast ic sol  i d s  i n  t h e  form 

On t h e  other  hznd, on account of (1 . 3 ) ,  (1 .7) ,  (1.15), t h e  t r u e  s t r e s s  

f i e l d  ?; obeys the  cons t i tu t ive  relat ion.  

where stands f o r  the  idem tensor w i t h  the  components 
'ij. 

Accordiq  t o  (1.16),  the principal  axes of N T and G ,., coincide;  

f u r t he r ,  i f  ri designates the  principal  t r ue  s t r e s s  assoc ia ted  w i t h  the  

principal  s t r e t c h  A i ,  one evidently has 

Z A  Z A  
T = -p c 2 A i [ W 1  -i- ( I ~  - hi)W2] (no sum) . i (1 -17) 

Later o n ,  we sha l l  need t o  r e f e r  t o  the  Baker-Ericksen i n e q u a l i t i e s ,  

which require  t h a t  

T - T ~ ) (  0 i f  h i +  A j (no sum) , (1.18) 

and thus postula te  t h a t  the  g rea te r  t r ue  principal  stress occurs always 

in the  d i rec t ion  of the  l a rger  principal  s t r e t ch .  Because o f  (1.17) and 

(1 .5 ) ,  the  inequal i ty  (1.18) i s  equivalent t o  

'~hroughout  t h i s  paper Greek subscr ip ts  have the  range (1,2).  



W i t h  a view toward defining the  notion of ordinary e l l i p t i c i t y  r e l e -  

1 vant t o  the  system of pa r t i a l  d i f f e r en t i a l  equations (1 -1 O) ,  we consider 

a surface 4 lying wholly within 6t t h a t  admits a twice continuously 

d i f f e r en t i ab l e  and one-to-one parameterization 

where Z i s  a region of the  parameter-plane and ( e l  , c2 )  a r e  orthogonal 

curvil  inear  coordinates on $. Let P be an a r b i t r a r i l y  chosen, f ixed 

point on $. Then, within a three-dimensional neighborhood of P ,  we may 

introduce orthogonal curvi 1 inear coordinates (cl  ,c2 ,<), such t ha t  

* 
x = ~ ( ~ ~ ~ ~ ~ ~ 5 )  = &(el , e 2 )  + <k(el ,c2) , N (1.21) 

i n  which - n i s  the  uni t  normal vector of v/ and 1 i s  the  perpendic- 

u la r  d is tance  from d of a point with position vector r4 x. The mapping 

(1.21 ) i s  local  l y  one-to-one; 1 e t  i t s  inverse be given by 

where ia and 5 a r e  defined and twice continuously d i f f e r en t i ab l e  i n  

a neighborhood of P .  

We now weaken the  or ig inal  smoothness requirements on and p .  

T h u s ,  we assume t h a t  (u ,p)  - i s  a solution of (1 . l o )  w i t h  - u continuously 

d i f f e r en t i ab l e  and merely piecewise twice continuously d i f f e r en t i ab l e  and 

'what follows i s  a t  once an adaptation t o  incompressible bodies of the  
analys is  i n  Section 1 of [ I ]  and a genera1izatio.n t o  three  dimensions of 
the  development in  Section 3.1 of [ 6 ] .  



p continuous b u t  only piecewise continuously differentiable on . We 

sha l l  call  such a (u,p) a "relaxed solution" of (1  , l o ) .  On se t t ing  
m 

one confirms with t he  aid of (1.22) that  

On account cf the assumed smoothness of p and of the mapping 

(1.21 ) , the f i r s t  a n d  second-order partial  derivatives of ck and the 

f i rs t -order  par t ia l  derivatives of p, except possibly a2~k/a<Z and 

ap/ar, are continuous in the neighborhood of P under consideration; 

fur ther ,  the l a t t e r  two derivatives may a t  most have f i n i t e  jump discon- 

t inui  t i e s  across $. Moreover, (1 .24)  and the smoothness o f  the inverse 

mapping (1.22) give 

where uhl] denotes t h e  jump of a function h across d. 
The second of (1.10) imp1 i e s  J = 0, which - because of  (1.21, (7.5), 

j 

and the l a s t  of (1.13) - i s  equivalent to  



Consequently, in view of (1.251, (1.26) and the continuity of F and of 
.-4 

'i j k a '  equations (1.10) yield 

c i jka ( ~ ) ) ~ ~ a ~ u ~ / a c ~ ~ i , , i , ~  - ~ a i i / a t ~ ~ j i t , ~  = 0, 1 (1.27) 

Also, noting tha t  or;/ Iv? 1 on $ coincides with the u n i t  normal vector 

n of d and defining 
N 

where '4 i s  t h e  se t  of a l l  unit vectors, we in fer  tha t  
4 

Clearly, (1.29) const i tute  four 1 inear homogeneous a1 gebraic equations 

in the jumps (vi ,q), which admit only the t r iv i a l  solution v i  = 0, q =  0 

i f  and only i f  the determinant of the i r  coefficientmatrix f a i l s  to vanish. 

The system (1.10) ---- i s  said to  be e l l i p t i c  -- a t  a relaxed solution ( j l ,p) 

and a t  a point x €62 i f  and only i f  u i s  twice continuously different iable  --- - - - N - -  - ---- 
and p - i s  continuously different iable  - a t  x, Accordingly, when (1.10) i s  

N 

e l l i p t i c  a t  (u,p) and x ,  there does n o t  ex is t  any surface (of the req- 
Fv IV 

u i s i t e  smoothness) through the point x across which the "second normal 
Cv 

2- 2 derivative" a %/as or  the "normal derivative" aE/ar; i s  discontinuous. 

I t  i s  evident from (1.29) that  (1 . l o )  i s  e l l i p t i c  a t  a relaxed solution 

I 
Here Q j k  are  the components of the acoustic tensor %, which i s  symmetric 

because of (1 .11). 



-1 4- 

(k,p) and at a point - x if and only if 

or equival entfy 

A(5;p) E det 

C 

where cijk stands for the components of the three-dimensional alternator. 

- 
01 1 

42 1 

Q31 
A 

- nl 

If (1.31 ) is violated for some unit vector r ~ ,  then is normal to a rna- 

terial characteristic surface in R through . These characteristic 
2- 2 

surfaces are the only possible carriers of discontinuities in a g a g  

or a F / a g ,  and ordinary el 1 ipticity precludes the existence of real char- 

acteristic surfaces. 

1 We turn next to the definition of strong ellipticity appropriate to 

the system of partial differential equations (1.10). For this purpose we 

consider an infinitesimal plane di spl acement-pressure wave superposed upon 

a finite homogeneous deformation of an incompressible hyperelastic body 

occupying the entire three-dimensional space @. Thus, if t denotes 

 h his concept is essentially identical with the notion of Hadamard sta- 
bility. What follows is parallel to the analysis in Section 3 of [121, 
which is however confined to isotropic materials. 



the time, while - and designate the constant deformation-gradient 

and pressure fie1 ds associated with the homogeneous pre-deformation, we 

set 

regard / V E ~  , as we1 1 as 1 r 1 , small compared to unity, and take 

Here and & are constant unit vectors, determining the direction of 

motion and the direction of propagation of the plane wave at hand, whereas 

c f 0 is its speed of propagation. Further, (F and ) are scalar-valued 

functions, t h e  First of which is twice - the second once - continuously 

differentiable on (-my m). Finally, we take for granted that the deriv- 

atives ' and ' fai; to vanish identically. From (1.32) and the in- 

compressi bi? i ty requirement , one has 

The time-dependent nominal stresses induced by the motion (1.32), 

(1.33) follow from the constitutive relation (1.8) and are now subject 

to the stress equations of motion 

provided p > 0 is the constant mass density and is the displacement 

field. In view of the first of (1.32), we see that 

u.(x.t) I - =ii(%,t) - xi = (Fij - 6 .  .)x. fwi(x-,t) . (1.36) 
1J J 

Recalling the identities 



-1 6- 

1 F F .  F (de t  5~;; = k c i  k a ~ j p q  k p  aq - 
d e t f = 6 ' E i j k E p q r  i p  jq kry F F v F C C  , (1.37) 

we s u b s t i t u t e  from (1.34) i n t o  (1.37) and, upon a l i n e a r i z a t i o n  w i t h  re -  

spec t  t o  vw, - a r r i v e  a t  

O 1 0 0 

IU 
F .  F .  w = 1  J = det  F -det  i+ l ~ i  j k ~ p q e  , p  J q  k y a  

0 

Fur ther ,  expanding WF(L) i n  (1.8)  as  a Taylor s e r i e s  in  - F around - F , 

appealing t o  (1.11),  (1.34) ,  a s  well a s  (1.32),  (1 .38) ,  and l i n e a r i z i n g  

w i t h  respect  t o  v w  - and r ,  we obta in  

Now, (1 .35) and t h e  second of (1.34),  together  w i t h  (1.39) ,  (1.36) ,  and 

t h e  f i r s t  of (1 .38) ,  1 ead t o  the  1 inear ized  version of the  displacement- 

equat ions of motion and t h e  l i n e a r i z e d  incompress ib i l i ty  condit ion 

For t h e  plane wave charac ter ized  by (1 .33) ,  equations (1 -40)  give 

in  which 



From (1.41) follows 

a a = 0 ,  $ ' (a  x - c t )  = byi' ( a  O f  x - c t ) ,  b = k . a  R .  (;;a) , (1.43) k k  N Cum CV C V N  1 k l k - -  

and hence, 

The system (1.44) c o n s t i t u t e s  four  l i n e a r  homogeneous a lgebra ic  equat ions  

in  ( a i , b )  and has a non t r iv i a l  so lu t ion  i f  and only i f  t h e  determinant  

of i t s  c o e f f i c i e n t  matr ix equals  zero.  I t  i s  e a s i l y  confirmed t h a t  t h i s  

determinant may be wr i t t en  a s  

On expanding t h e  right-hand s i d e  of (1.45),  one sees  t h a t  equat ions (1.44) 

have a non t r iv i a l  so lu t ion  ( a i  ,b) i f  and only i f  pcL and the u n i t  vec- 

t o r  s a t i s f y  t h e  secu la r  equation 

2 4 2 1 
p c - (Rkk - R .  . a . a . ) p ~  + - E  a .a  R. R = 0 ,  Cu R = R(;-a)  . (1.46)'  

1J -I J 2 i  jkEpqr -I p jq kr 

2 which i s  a quadra t i c  equation i n  pc . 

'upon s p e c i a l i z a t i o n  t o  an i s o t r o p i c  material  and t o  a pure homogeneous 
pre-deformation, (1.46) reduces t o  equation (3.12) of Sawyers [12], who 
s e t s  a = (pc2)-1 . 



We show next that  the discriminant of (1.46), 

0 

i s  non-negative for  every nonsingular - F and every unit vector - a .  To 

t h i s  end l e t  

0 

and note f i r s t  t ha t  i f  al  = a 3 =  0, one has d(F;e) rv rv = a$+y:20. On the 

2 other hand, i f  a: + e3 > 0, one ~ e r i f i e s  a f te r  a straightfcrward computation 

making use of "ai = 1 , that  

0 

Consequently, fo r  every - F E X and  every L E  2-i there exis t  two - possibly 

coalescent - real values of pc2 satisfying the secular equation (1.46). 

We proceed now to the relevant definition of strong e l l i p t i c i t y .  

The system ( 7  . T O )  i s  said t o  be strongly e l l i p t i c  a t  a solution ( ~ , p )  - -- ---- 

and a t  a point: ;E R i f  and only i f  a body of the same material occupying --- ------ 

@, having been subjected -- t o  a homogeneous deformation with the deformation- 

gradient i= l+ vu(5) and to a constant pressure = p ( ~ ) ,  admits only - i n -  

f i n i  tesimal plane displ acement-pressure waves ---- of the form (1 -33) -- with real 

non-zero propagation speeds. Un1 ess (1.10) i s  strongly el 1 i p t i c  a t  ( 5 , ~ )  -- 



and &, there  i s  an such t ha t  (1.46) i s  s a t i s f i ed  fo r  two conjugate 

imaginary values of c o r  f o r  c = O .  In the f i r s t  instance,  there  ex i s t  

superposed infinitesimal mctions of the  form (1.33) with 

2 d 5 , t )  = ~ e x p l i  ( 2  N N N  F x - c t ) ] ,  i  = -1 , 

which grow unbounded i n  time. When c = 0, in turn, one can s a t i s f y  the  

l inear ized equations of motion with 

w ( x , t )  = a t exp(ia , 
N N N N 

so t h a t  i n  e i t h e r  event the  body i s  dynamically unstable. 

Evidently, necessary and su f f i c i en t  in order t ha t  (1 . l o )  be strongly 

e l l i p t i c  a t  a solution (k ,p )  and a t  a point - x i s  t h a t  both real  roots 

2 
P C  of the  seczlsr equation (1.46) be posi t ive  f o r  i= L+ ou(&) and fo r  

* 
every u n i t  vsc:or - a .  According t o  (1.46), t h i s  i s  the  case i f  and only i f  

B u t ,  from (1.28) and (1.42),  

so t h a t  the s t rong -e l l i p t i c i  ty conditions (1.47) may be expressed i n  terms 

of the  acoustic tensor Q a s  
Iv 



Finally,  by comparing (1.31 ) with the f i r s t  of (1.49), we confirm t h a t  

strong el 1 i p t i c i  t y  imp1 i e s  ordinary e l  1 i p t i c i  ty .  

I t  i s  essent ia l  t o  remark t ha t  conditions (1.31), as  well as  (1.49),  

a r e  inadequate as a means f o r  t es t ing  the local e l l i p t i c i t y  of a par- 

t i cu l  a r  equi 1 i b r i  urn solution appropriate t o  a spec i f i c  material w i t h i n  

the c lass  under consideration. For the important subclass of i so t rop i c  

materials ,  however, one may deduce from (1.37 ) and (1.49),  corresponding 

i n t r i n s i c  e l l i p t i c i t y  c r i t e r i a  in a form su i t ab l e  f o r  th i s  purpose. I t  

i s  t h i s  task t ha t  const i tu tes  our main goal and t o  which we presently 

turn our a t t en t ion .  



2. Expl i  ci t necessary condi t i  ons for  ordinary el 1 i  pti ci ty in the case 

of isotropy. 

Our current objective i s  to deduce from (1.31),  which i s  necessary 

and suff ic ient  f o r  ordinary e l l i p t i c i t y ,  a s e t  of expl ic i t  necessary 

el I i p t i  ci ty conditions fo r  the special case of an isotropic material. 

This s e t  of conditions involves exclusively the local principal 

s t retches,  which enter direct ly ,  as well as through the f i r s t  and second 

part ia l  derivatives of the strain-energy density with respect t o  the 

deformation invariants or the principal stretches.  

As a f i r s t  step,  we derive an e l l i p t i c i t y  condition equivalent to  

1 T (1.31 ), b u t  analytically more amenable. Since [C. .I = F F i s  a sym- 
1J  w -  

metric matrix w i t h  the principal values A: , there i s  an orthogonal 

matrix M = bl(F) , such tha t  
N N N  

L M ' C M =  D ,  D i j  = h i  6 N- ...d i j  (no sum) . 

Next, f o r  every nonsingular F and every unit vector m , l e t  
)Lv h 

N = N ( F )  and H = H ( F ; m )  be the auxiliary matrices defined by 
N - -  N N - I V  

T N ( F )  = M ~ F - '  , H(F;m) = NQ(F;Mrn) N , 
N N  - N  N N N  - h - N  

( 2 . 2 )  

in which Q i s  the component matrix of the acoustic tensor introduced 
N 

in (1.28).  Evidently H i s  symmetric. On set t ing 
rv 

'what follows i s  suggested by the development in Section 3 of [ I ] .  



one readi ly  confirms the  block-matrix equation 

provided 0 stands f o r  the null three-rowed column matrix. I t  follows 
N 

a t  once t h a t  

- - (de t  N N ) ~  e t l - 1  

N 

Appealing t o  (1.30) and ( 2 . 5 )  through (2 :4) ,  one sees a f t e r  elementary 

manipulations t h a t  f o r  every unimodular F and every u n i t  vector rn, 
N N 

where M i s  the orthogonal and D the diagonal matrix appearing i n  
Cv N 

A(F;/+m) = bet 
N M  

(2 .1) .  Consequently, a necessary and su f f i c i en t  condition f o r  ordinary 

e l l i p t i c i t y ,  equivalent to  (1.31),  i s  given by 

H22 H23 -'2 

H31 H32 H33 %3 

Next, from (1.3) and (1 .11) through (1.14),  one f inds  t h a t  f o r  an 

i so t rop ic  material 

- 1 , G = D  m y  
N N C I .  



( F )  = 2(Q1 + 1 ~ i ~ ) 6 ~ ~ 6 ~ ~ +  4 ( i 2 + i 1 1  + 211P12+ 1 i 6 ~ ~ )  F i j F k a  'i j k a  , 

F u r t h e r ,  ( 2 . 2 ) '  ( 1 . 2 8 ) ,  ( 2 . 6 ) '  ( 1 . 3 ) ,  ( 2 . 1 ) '  and t h e  f i r s t  o f  ( 2 . 3 )  even- 

t u a l l y  y i e l d  

l A  * H .  I J  .(F;m) r v -  = 2[W1 + ( I 1 -  Dkemkma)W2]~f: + 4(2- W 2  + 1Il1 + 2 1 ~ i ~ ~  + 1:iz2)rnimj 

,, A * e 

- 2Y2si - 4(W12 + 11W22)(m.D. 1 j k  m k + Diamamj) + 4W22DikmkDjama . 

( 2 . 7 )  
Le t  ei ,wi  a n d  B i  j , B  be d e f i n e d  by 

l ~ o t e  from (2.9)' ( 2 . 8 ) ,  ( 1 . 1 4 ) ,  ( 1 . 4 )  t h a t  B i j  and B a r e  s o l e l y  
f u n c t i o n s  o f  t h e  h k .  



Upon a lengthy computation involving (2 .5 ) ,  (2.7) through ( 2 . 9 ) ,  (2.1 ), 

and (1 .5) ,  one v e r i f i e s  t ha t  f o r  every unimodular F and every u n i t  vec- 
N 

t o r  m , 
N 

Suppose now t h a t  (1 . l o )  i s  e l l i p t i c  a t  (u ,p )  and x . I f  
N lu 

A .  = A .  (x) > 0 , with A l  A 2 A 3  = 1, a r e  the corresponding local principal  1 1  
f 

s t r e t che s ,  one thus has 

where 

Evidently, A Ss the bounded and closed plane region i n  z--space whose 

boundary i s  the equ i la te ra l  t r i ang l e  (Figure 1 )  with ver t ices  a t  

In  view of (2.11) and the cont inui ty  of E(A;z)  in z , t h i s  function 
Cv lv r" 

i s  of one sign on A , so t h a t  in  pa r t i cu l a r ,  

E ( A ; C  6.9 -1 E ( L ; ~ )  > 0 , E ( X ; ~ )  E ( ; ; 2 )  > 0 . 

Consequently, by v i r t ue  of (2.  l o ) ,  ( 2 . 9 ) ,  

and 

 ere and in the sequel ,  and - z stand f o r  the t r i p l e t s  of rea l  num- 
bers ( A  , A  , A  ) and (z l  , z2 ,  z 3 ) ,  respecti  vely . 1 2 3  



In order t o  deduce addit ional  necessary conditions f o r  ordinary 

el  1 i p t i c i  t y ,  we require the following 

LEMMA. - Let a,b,c,d -- be real constants, w i t h  a > O  and d > O .  

Then 

3 2 2 3 as + b s  t + c s t  + d t  > O  -- f o r  a l l  s l O ,  t ~ 0 ,  s + t = l ,  (2.16) 

i f  and only i f  ---- 

e i t h e r  4ac3 + 4db3 - b2c2 - 18abcd + 27a2d2 > 0 - o r  b > 0 , c > 0 . (2.17) 

To prove t h i s  lemma, note f i r s t  t h a t  (2.16) implies 

3 2 s ( 5 )  r a t  +bg  + c g + d  > 0 f o r  a l l  6 2 0  . 
I 

Necessary a n d  s u f f i c i e n t  in  order t h a t  the cubic polynomial e ( 5 )  have 

three  real  zeros i s  t h a t  - 

Accordingly, (2.18) together with (2.16) imply the existence of real  

numbers Si  ( i  = 1 ,2 ,3 )  and 5 ( 0  = 1 ,2)  , such t h a t  
C1 

< y  < <  < F  < [  < o  . ~ ( E ~ ) ' O  Y e l ( ? , ) = O  C1 - 1 - - 2 - 3 

Thus 

' see ,  f o r  example, Dickson [14], p .  47. The t r u t h  of t h i s  asser t ion 
requires merely t h a t  a ,b,c,d be real with a #  0 . 



and therefore  (2.16) and the negation of the f i r s t  inequal i ty  i n  (2.17) 

necessi t a t e  

Hence (2.16) imp1 i e s  (2.17). Conversely, b > 0 and c > 0 a t  once assure  

t h a t  (2.16) holds. On the other hand, (2.16) a l so  follows from the  f i r s t  

of (2.17). Indeed, the l a t t e r  mandates the existence of but one real  

zero of e(S) ; t h i s  zero i s  negative because a > 0 and d > 0 ,  so t h a t  

e ( 5 )  > 0 f o r  a l l  S L O  , which i s  e a s i l y  seen t o  give (2.16). This com- 

p le tes  the proof. 

The inequal i ty  (2.15) i n  pa r t i cu la r  requires E(1;z) > 0 on the 
Cv Cv 

s ide  of the t r i angu l a r  boundary of A with z, = 0,  whence from (2.10),  

3 2 2 3 B 2 2 ~ 2 + B 2 3 ~ 2 ~ 3 +  B z z + B  z ' 0  f o r  a l l  z > O ,  z 3 1 0 ,  z + z 3 = l .  32 2 3 33 3 2- 2 

(2.19) 

The foregoing lemma t h u s  e n t i t l e s  us t o  conclude t ha t  

3 e i t h e r  4B22B32 f 

(2.20) 

Bearing i n  mind (2.14),  we now s e t  

P i  = B ~ / A - B  B B > 0 , m i  = w ~ / A ~ B ~  (no sums) , 1 1 2 3  

and, w i t h  the a id  of (2 .9) ,  (2.21), i n f e r  the iden t i ty  



Fur ther ,  on account of (2.22) ,  (2 .9) ,  (2.21), we draw from (2.20) t h a t  

e i t h e r  W: < 4 o r  w1 + P ~ P ; '  > 0 , 0, + P~ --I p3 S O .  (2.23) 

Since t h e  second a l t e r n a t i v e  i n  (2.23)  implies 

one has w + 2 > 0 .  Thus and from p a r a l l e l  arguments a p p l i e d  t o  t h e  1 

edges of A ly ing  i n  t h e  planes z 2 =  0 and z 3 =  0 ,  one a r r i v e s  a t  

a s  necessary condi t ions  of  ord inary  e l l i p t i c i t y .  

W i t h  a  view towards applying (2.15) t o  c e r t a i n  p o i n t s  i n  t h e  

i n t e r i o r  o f  the t r i a n g u l a r  region n , we now suppose t h a t  z .  > 0 
1 

and de f ine  funct ions  v i  through 

Af ter  some ted ious  a lgebra  based on (2 .10 ) ,  (2.9) and invo lv ing  (2.25),  

(2.21) ,  one ob ta ins  
/ 



f o r  z i > O .  (2.26) 
Consequently, (2.15) y i e ld s  

and t h u s  from (2.25),  (2.24),  (2.21) one i n f e r s  t h a t  (2.15) necess i t a tes  

For our present purpose i t  i s  expedient t o  introduce t h e  transforma- 

-1 -1 
Oa = n ( z ; A )  = A A z z Y z ~i (no sum) , 

a  C v N  3 a  a 3  Cv 

(2.29) 

0 

which i s  a rnzpping, depending parametrically on , of h i n t o  the  open 

f i r s t  quadrant 

of the (ql  ,q2)-plane. Inverting (2.29) - keeping i n  mind t h a t  
0 

Z, + z  + z 3 =  1 on A -one i s  led t o  2 

0 

T h u s ,  (2.29) in f a c t  cons t i tu tes  a one-to-one mapping of A onto n . 
Next, l e t  functions f and g be defined by 



1 in which :p a r e  given by (2.21), (2.8) and ultimately depend solely 
u i  

on A . I t  i s  c lear  from (2.31), (2.29), (2.25), and the second of 
N 

(2.28) tha t  

Further, as a consequence of (2.25) and (2.30) through (2.32), the f i r s t  

of (2.28) i s  equivalent to  

A t  t h i s  stage we derive from (2.33) an additional r e s t r i c t ion  on 

wi ,p i  by choosing nl  and q 2  so as to  minimize g(n ,n  ;o ,w ,p ,p ,p ) 1 2 1 2 1 2 3  

on n . Thus, holding w,,pi fixed, we take (nl ,n2) = ($ ,F ) , where 1 2  

Substituting from (2.31 ) into (2.34), we are  led to  the unique solution 

' ~ e c a l l  from (1 - 4 )  that  I, , and hence WU(II , I 2 ) ,  WuB(~l , I ~ ) ,  are ex- 
pressible in terms of the principal stretches.  



and (2.31) now gives 

Finally,  from (2.33),  i n  view of the second of (2.36), follows 

Proceeding s imilar ly  from the TWO cycl ic  permutations of (2.28), one 

a r r ives  a t  

We now summarize the resu l t s  established i n  t h i s  section.  To begin 

with, equations (2.10),  (2.15). and the  f i r s t  of (2.3) j u s t i f y  t h e  asse r -  

t ion :  -- fo r  the special  -- case of isotropy, - the system - of pa r t i a l  d i f fe ren-  

t i a l  equations (1 . l o )  - i s  e l l i p t i c  -- i n  the ordinary --- sense a t  a relaxed 

solution (g ,p)  ---- and a t  a point x only i f  
CV -- 

' ~ ~ u a t i o n  (2.34) merely characterizes ( 7 )  a s  a s ta t ionary  point 
of g(ql . q ; ~ l  . u 2 . ~ 1  Y P ~ , P ~ ) ;  t h a t  t h i s  choice of ( n l  ,n2) ac tua l l y  
minimizes g on n fo r  fixed 5 - a s  i s  shown i n ,  and essen t ia l  t o ,  t he  
analysis  in Section 3 - i s  i r re levan t  a t  present. Indeed, a s  f a r  as 
our immediate object ive  i s  concerned, b u t  f o r  lack of motivation, 
(iil ,v2) could have been defined d i r ec t l y  by (2.35). without recourse 
t o  (2.34). 



where A(F;n) i s  the determinant defined by (1.30) and involves t he  
N lv 

acoustic tensor  introduced in (1.28).  Moreover, i n  view of (2.14),  

(2.24),  (2.37), (2.38) '  --- a s e t  of expl i c i  t necessary condit ions for 

ordinary e l  1 i p t i c i t y  i n  the circumstances under considerat ion is supplied 

by the  inequa l i t i e s  

Here 
y ~ i  

a r e  accounted f o r  in (2 .21) ,  (2.8) ,  (1.14) and a r e  given 

by 

- 
p i  = B i / A i ~ , B 2 B 3  3 wi - w i / h i f i i  (no sums) . (2.41) 

2 w ~ ~ I ~ , I ~  + A  2 2 ~ 1  I (no sum) , J 

where h i  = A .  ( x )  a r e  the  local  principal  s t re tches  associa ted wi t h  t h e  
1 Cv 

A A 

displacement f i e l d  u .  while W,(I,.12) and  WaB(11,12) a r e  the  
Cv 



corresponding local values a t  I = I ( x )  of the  f i r s t  and  second p a r t i a l  
a a -  

der ivat ives  of the s t r a i  n-energy density with respect  t o  the  deformation 

invar iants .  

W i t h  a view towards expressing B~ ,wi i n  terms of t h e  p a r t i a l  de r i -  

vatives of the strain-energy density with respec< t o  the pr inc ipa l  

s t re tches ,  we note from (1 .4) , (1 .5)  t h a t  

We t:ow define 

* * 
W ( h l  9h2)  = i(Tl ( A l  y h 2 ) , ~ 2 ( h l  ,A2)) , (2.44) 

and adopt the notat ion 

From (1.5),(1.14) and the chain-rule then follow 

2 - 1 2 -  -2 h-2 * -4 -4^ 
+ 4 ( h  u - h 3  A a ) ( W l l  ). 2h3 a W12 + h3 ha WZ2)(no sum), t 

in which 



By means of ( 2 . 4 2 ) ,  (2.43), (2 .46 ) ,  and (2.47), we can verify that 

Equations (2.48) exclude the case o f  coalescent principal stretches. 

In order t o  derive representations for Bi ,wi  applicable when two of 

the h i  are equal, one makes use of (2 .44) ,  (2.43) t o  infer  

whence 



* * 
h 2 w 2 ( h l ~ h 2 ) = h 2 w l ( h 2 > h 3 ) - h 3 ~ 2 ( h 2 y h 3 )  , 

* * * 
A 1 1  w (A 1 2  9' ) = -h3Wl (h3,hl)  + hlW2(13yh1) 3 

2 * 
h2 WZ2(" ,h2) = 

-1 * 
2 ~ ~ ~ ~ ( h ~ ~ ~ ) + h ~ 8 ~ ~ ( ~ ~ h ~ ) + h ~ W * ~ ~ ( h ~ ~ h ~ ) -  211 W12(h2~h3) 3 

2 * 
h l  W l l  (hl ' h 2 )  = 

* 3 * 2 * -1 * 
2 h 3 W 1 ( ~ 3 = " ) + h j W 1 1 ( ~ 3 ~ h l )  + A l  W22(13911)-212 W12(h3,11) 3 

A 3 =  ( A  h )-I  1 2  J 

(2.49) 

Subs t i tu t ion  from ( b )  of (2.49) i n t o  (2.48) gives 

Fur ther ,  on account of  the  f i r s t  two of ( a )  i n  (2.49) ,  an obvious limit 
* * 

process appl ied  t o  03,w3 i n  (2.48) y i e l d s  

Consequently, i f  one s e t s  



* 
- 1.J12(i,h)] f o r  h1 = h 2 =  h ,  

w(Al J 2 ) =  

f o r  h l  f he,  J 
(2.52) 

then (2 .48) ,  (2.50)'  (2.51) j u s t i f y  

which accommodate - a l l  h i  > 0 .  Fina l ly ,  from the  second and f o u r t h  func- 

t iona l  r e l a t i o n s  i n  ( b )  of (2.49) and the  second i n  ( a ) ,  one f i n d s  t h a t  

~ , w  may more convenient ly be wr i t t en  a s  

i; ( A X 2 )  /8 11 f o r  h = h = X ,  1 2  

* 
A (h2 - A:)-' w l  (h2,h3) f o r  f h2,  h3 = ( A  1-l 2 2 7  1 2  

f o r  h l  f h2 ,  h j =  (Al he)-') 

Equations (2 .53) ,  (2.54)  comprise the  des i red  i n t r i n s i c  representa-  

t i o n s  of  oi and wi i n  terms of t h e  h i  and the  r e q u i s i t e  p a r t i a l  
* 

d e r i v a t i v e s  of W .  Moreover, B~ and wi now e x h i b i t  the  c y c l i c  



symmetry inherent in (2.53). Each of ( a ) ,  (b) ,  and ( c )  i n  t h e  e l l i p t i c -  

i t y  conditions (2.40) i s  carried i n to  i t s e l f  by a cyc l i c  permutation of 

the indices . l  For the  purpose of writ ing (2.40) a s  a s e t  o f  inequa l i t i e s  

symmetric with respect  t o  ( h l  ,h2,h3) , we define functions p yuycpi 

through 

with 8,w given by (2.54). Because of (2 .55) ,  (2 .53) ,  (2.41 ), we have 

p ( h 1 . h 2 )  = ~3 9 p(h2,h3) = 5 ~ ( h 3 , h ~ )  = ~2 

u(hl.h2) = ~3 3 0 ( h ~ . i 3 )  = ~1 u(13,hl) = ~2 9 

and thus, on appealing t o  (2.53),  (2.56). conclude t h a t  

l ~ f t e r  one cycl i c  s t ep ,  ( a )  of (2.40) becomes B2B1 > 0 , B3B1 > 0 , which 
i s  equivalent t o  ( a ) .  



Hence, the necessary e l l i p t i c i t y  conditions (2.40) - a r e  equivalent  -- t o  the  

nine symmetric inequal i t ies  -- 

' P i ( ~ ]  , A ~ )  > 0 , vi(h2,h3)  > 0 , ' ~ ~ ( h ~ ~ i ~ )  > 0 = (2.58) '  

with yi supplied by (2 -54) through (2.56). 

We observe t h a t  (2.55) remai ns invariant  under cyc l i c  permutations 

of ( h ,  , h 2 , h 3 )  . In addit ion,  we gather from (2.52), ( a )  of (2.49), and 

(2.55) t ha t  

6(hl , h e )  = B ( A ~ , A ~ )  9 w(hl = w(h23hl) 

P ( A ,  , h 2 i  = P(h2~Al , w ( h l . ~ 2 )  = ~ ( A ~ , A ~ )  - 

Further, (2.56) now gives 

so t h a t  the e l l i p t i c i t y  conditions (2.58) a r e  i n  f a c t  i nva r i an t  under 

a l l  permutations of the principal  s t re tches  and t h u s  r e f l e c t  the  isotropy 

of the  material .  

' ~ 1  ear ly ,  ( a )  of (2.40) imp1 i e s  B~ B2 > 0 , whence (2.40) i s  equivalent 
t o  the s e t  o f  nine conditions c o n s ~ s t i n g  of (2.40) augmented by 
B102 > 0 .  



3. S u f f i c i e n c y  o f  t he  cond i t ions  necessary f o r  o rd ina ry  e l l i p t i c i t y .  

E x p l i c i t  necessary and s u f f i c i e n t  cond i t ions  f o r  s t rong  e l l i p t i c -  

i t y  i n  the case' o f  i so t ropy .  

I n  t h i s  sec t ion  we show f i r s t  t h a t  the s e t  o f  necessary e l l i p t i c i t y  

cond i t i ons  (2.40) i s  a l so  s u f f i c i e n t  i n  order  t h a t  the  system of p a r t i a l  

d i f f e r e n t i a l  equations (1  . l o )  be e l l  i p t i c  i n  t he  o r d i n a r y  sense, p ro -  

v ided the  s o l i d  a t  hand i s  i s o t r o p i c .  Thereaf ter ,  we prove t h a t  (2.40) 

w i t h  (a )  replaced by Bi > 0  a re  necessary and s u f f i . c i e n t  cond i t i ons  f o r  

f o r  the  s t rong  e l l i p t i c i t y  of (1 . l o ) .  F i n a l l y ,  a t  t he  end o f  t he  sec- 

t i o n ,  we note circumstances i n  which the cond i t i ons  o f  o r d i n a r y  and 

s t rong  e l l i p t i c i t y  coalesce. 

Aiming a t  the  f i r s t  o f  t he  foregoing th ree  ob jec t ives ,  we now sup- 

pose (2.40) holds and demonstrate t h a t  then 

where E(x;z) N N and A a re  g iven by (2.10), (2.9), (2.8), (2.12). I t  i s  

ev iden t  from (2.5)  and (2.10) t h a t  (3.1), i n  tu rn ,  w i l l  s u f f i c e  t o  

assure the  l o c a l  o rd ina ry  e l l i p t i c i t y  o f  (1 . l o )  a t  the  re laxed  s o l u t i o n  

under consi dera t ion .  

From ( a )  o f  (2.40), i n  con junc t ion  w i t h  (2.9) and (2.41), d i r e c t l y  

f o l  1  ows 

Bi i > o (no sum) , p i>  0  . (3.2) 

Fur ther ,  s ince w1 + 2  > 0  according t o  (b )  o f  (2.40), 

e i t h e r  -2 < w1 < 2  o r  w1 2 2 . (3.3)  



On the other hand, (3.3) and the second of (3.2) permit the inference 

e i ther  - 2 ' w  < ~ L P  P 
-1 -1 

1 2 3 " 2 ~ 3  or w1 + P ~ P ; ~ > z ,  w 1 + p i 1 p 3 > 2  , 

so tha t ,  because of ( a )  in (2.40), 

Next, recalling (2.22), (2.41), and (2 .9) ,  we see tha t  (3 .4)  i s  equiva- 

1er;t to (2.20). B u i  (2.20), as a consequelice of the f i r s t  of (3.2) and 

the lemma established in Section 2 ,  implies (2.19), which then - by 

vir tue of (2 .10 )  - gives 

E ( h ; z )  > 0 for  every z € A  with z1 = 0 . 
t.. r" r" 

Proceeding similarly from the remaining two inequalit ies i n  (b)  of (2.40), 

one t h u s  obtains 

whence (3.1) i s  t rue on the edges of . 
0 

We have yet t o  confirm the inequality (3.1) on the i n t e r i o r  A . A s  

a f i r s t  step in th is  direction, we show presently tha t  

where g i s  the function introduced in (2.31), while i s  given by 

(2.35); as before, n denotes the open f i r s t  quadrant of the (nl ,n2)- 

plane. Accordingly, we are  to  prove that  the choice   TI^ ,n2) = (3 ,F2) , 
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which i s  a1 ready known from (2 .34)  t o  render  g s t a t i o n a r y  f o r  f i x e d  #.. A , 

i n  f a c t  minimizes t h i s  func t ion  on n . 
In o rde r  t o  v e r i f y  t he  above claim,  we note  t h a t  t h e  f i r s t  o f  (2.31) 

a l lows  us t o  w r i t e  

provided 

a 
= J- (no sum) . 

C1 
(3.8) 

A 1  engthy, but  s t r a i g h t f o r w a r d ,  computation then confirms t h a t  

S ince  p i  > 0 and $a > 0 by ( a ) ,  ( b )  o f  (2 .40) ,  a l l  terms i n  t h e  r i g h t -  

hand member of  (3 .9)  a r e  non-negative,  and 

f (nl ,n2;u1 , p l  ,p2.p3) f (n2 ,n1  ; u 2 y ~ 2 y ~ 1  ,p3) 

2 
1 [ ~ ~ + 6 ~ 1 ~ + ~ ~ ( 1 - ~ ~ ) + ~ ~ ( 1 - n ~ ) 1  ~ ( o ~ Y Q ~ ) € ~ -  

Combining t h i s  lower bound with ( 3 . 8 )  and t h e  second o f  (2.31 ), we a r e  
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led t o  

Finally,  from the  second of (2.36),  i t  i s  evident t h a t  (3.10) i s  equiva- 

l e n t  t o  (3 .6) .  

Next, from (3.10) and the l a s t  inequali ty in ( c )  of (2.40) a t  once 

fol lows (2.33).  Furthermore, ( a )  and ( b )  of (2.40) assure t h a t  v i  > 0 
0 

on A ,  i f  the  vi a r e  the three functions defined i n  (2.25). B u t  

(2.33),  with the a id  of (2.31),  (2 .29) ,  .(2.32), and (2.25),  i s  then 

readi ly  found t o  imply (2 .28) .  Para1 l e l  considerations appl ied t o  the  

f i r s t  two inequa l i t i e s  in ( c )  of (2.40) r e su l t  in 

Therefore, as  v i  i s  posi t ive ,  

and thus 

The inequa l i t i e s  (2.28) and (3.12),  in  turn, enable us t o  conclude t h a t  

whence we a r r i ve  a t  (2.27). The l a t t e r ,  because of (2.26) and ( a )  in 

(2.40),  y ie lds  



which - together w i t h  (3 .5)  - j u s t i f i e s  our or iginal  claim (3.1 ) .  

We are  now i n  a  position to a s se r t  t h a t  --- the s e t  o f  inequa l i t i e s  

(2.40), - or  a1 ternat ively  i t s  symmetric equivalent (2.581, -- a r e  both 

necessary and su f f i c i en t  -- f o r  the ordinary e l l i p t i c i t y  -- of t he  system - of 

par t i a l  d i f f e r en t i a l  equations -- (1 . l o )  -- a t  a relaxed so lu t ion  (LJ,~) and 
a point  5 , provided A -  = A x )  a re  the local pr incipal  s t re tches .  - 1 N 

O u r  next task i s  t o  derive from (1.49) an e x p l i c i t  s e t  of condi- 

t ions  necessary and su f f i c i en t  for  the s t rong e l l i p t i c i t y  of (1.10) i n  

the special case of isotropy. To t h i s  end we reca l l  (2.2), (2.3) and 

note t ha t  

hence 

T T T n * ~ t r ~ - ~ - 4 n = ( N m ) * ( N m ) t r ( ~ - ~ ~ N - ~ ) - ( N m ) - ( ~ - ~ ~ m ) .  (3.14) 
N N  N FrNN ,"N N N  ," NN N C V  CY N N  

Further, from (2.2) ,  ( 2 .1 ) ,  and (1.3) follow 

so t h a t  (3.14) gives 

Let us define a matrix [ L .  . I  in  terms of the  B~ ,wi i n  (2.8) by s e t -  
1J 

t ing  



A considerable amount of algebra, based on (2 .7 ) ,  (2 .1) ,  (2 .8) ,  and 

involving (2 .3 ) ,  (1 .5) ,  (3.16), enables us to  deduce 

rn. CY ( D - ~ M )  IV CY tr(D H )  - r n - H  m = 2K(h;z) , 
C Y m  N N N  m N 

(3.17) 

provided 

Consequently, applying (1.31),  (2.10) t o  the f i r s t  inequal i ty  i n  (1 .49) ,  

and (3.15), (3.17) t o  the  second, we obtain 

E ( x ; z )  > 0 , K(x ;z )  > 0 'd z cn , 
N r" Cv CY CY 

(3.19) 

as  a s e t  of conditions, equivalent t o  (1.49), t h a t  a r e  necessary and 

s u f f i c i e n t  f o r  strong e l l i p t i c i t y .  

We show presently t h a t  (2.40) w i t h  ( a )  replaced by f i i  > 0 holds 

i f  and only i f  (3.19) holds. Indeed, suppose (3.19) is t rue .  The f i rs t  
1 

of (3.19) coincides with (2.15) and hence, as shown i n  Section 2 ,  i rn-  

pl ies  (2.40). Moreover, from the  second of (3.19) we draw i n  p a r t i c u l a r  

where il , introduced in  (2.1 3 ) ,  i s  the vertex of A on the  zl-axis 
CY 

(see Figure 1 ) .  Thus (3.19) necess i ta tes  

which, together w i t h  ( a )  of (2.40), a t  once requires 

' ~ o t e  t h a t  because o f  (3.16), ( 2 .8 ) ,  ( 1 .4 ) ,  and (1.14), t he  Lij are 
so le ly  functions of the  A k  . 



Therefore, (3.19) i n  f a c t  implies (2.40),  (3.20), and hence (2.40) w i t h  

( a )  replaced by (3.20). 

Conversely, suppose (2.40) and (3.20) hold. Ear l i e r  i n  this sec- 

t ion, '  we have shown t h a t  (2.40) implies the f i r s t  of (3.19). We now 

subs t i t u t e  f o r  wi from (2.41) in to  (3.16) and f ind - bearing (1 - 5 )  i n  

mind - t h a t  K(x;z) cV rv , defined i n  (3.18),  admits the  representat ion 

Finally,  on account of (3.20) and (b )  of (2.40), the  sum of t he  f i r s t  

three  terms in (3.21) i s  posi t ive  on A except a t  the  i n t e r i o r  point  
0 

z defined by 
lv 

whereas the  sum of the  remaining three  terms i s  pos i t ive  on A except a t  

the ve r t i ces  c .  . 
Nl 

Hence, (3.20) and ( b )  of (2.40) imply the second of 

(3.19).  This completes the proof of the claim t h a t  (2 .40) ,  (3.20) hold 

i f  and only i f  (3.19) i s  t rue .  

' s ee  the  proof of (3.1 ).  
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The foregoing resu l t s  e n t i t l e  us t o  conclude t h a t  a s e t  o f  condi- 

t ions  necessary and su f f i c i en t  fo r  the strong e l l i p t i c i t y  of the  system -- - -- 

of p a r t i a l  d i f fe ren t ia l  equations (1 . l o )  a t  a solution (u,p) and a point  - 
N 

x , i s  given by 
r" 

For convenience, we c i t e  here from (2.41 ), (2.42) t ha t  

- 
p i  = B ~ / ~ ~ B ~ B ~ B ~  , ui - w i / h i B i  (no sums) , (3.23) 

+ 2 1 2 ~ 1  I + 2 2 ~ 1  , I ~  (no sum) , 

where h i  = Ai(x) a r e  the local principal s t re tches  associated w i t h  u 
r" 

and Ia = I a ( h ( x ) )  . With the  help of (3.23),  the system of inequa l i t i e s  
r" N 

(3.22) i s  immediately found to  be equivalent to  the more t r ac t ab l e  s e t  

wi+2h.B 1 i  > 0 (no sum) , 



A 

Here ei .wi a re  defined in terms of the derivatives of W by (3.24) 
* 

or a1 ternatively in terms of the derivatives of W through (2.53), 

In order to  bring out the invariance of (3.25) under permutations 

of ( A  , A  , A  ), we define functions xi  by 1 2 3  

where B and w are given by (2.54); thus 

- 2 (3.27) 
- h W l l  ( h , h  ) for A1 = h 2  = A 

w ( h l  $9) = / -'* 
1 ( - "2) 2 -1* W1 ("¶"I + 1 -2" 

A l  w l l  ( A 2 ¶ " )  

In view of (2.53).  the s e t  of inequalities (3.25) may now be written as 
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xi ( A l  . A 2 )  > 0 , xi(h2.h3) > 0 , xi(h3,hl)  ' 0 . (3.28) 

Moreover, from (3.26) and the f i r s t  two of (2.59), we i n f e r  

x i ( "  ,$2) = ~ ~ ( i ~ ~ h ~  I (3.29) 

By v i r tue  of (3.29),  the s e t  of strong e l l i p t i c i t y  condit ions (3.28) - 

l i k e  the  system of ordinary e l l i p t i c i t y  conditions (2.58) - is  f u l l y  

symmetric with respect  t o  the principal s t re tches .  

We now prove t ha t  - the conditions f o r  ~ r d i n a r y  - and -- s t rong e l l i p t i c i t y  

coalesce -- fo r  an isot ropic  material of the type under consideration t h a t  ---- 

obeys the  Baker-Ericksen inequa l i t i e s  (1 -19) &, in addi t ion ,  has a -- - 

pos i t ive  shear modulus a t  infinitesimal deformations. 

Clearly, i n  the case of d i s t i n c t  A i  , the  i nequa l i t i e s  (1.19) - 

in view of (3 .24) ,  (1.5) - imply (3.20) and hence the equivalence of 

(2.40) and (3 .22) .  On the other hand, suppose two of the pr incipal  

s t re tches  coincide b u t  a r e  d i f fe ren t  from the t h i rd ,  say h, = A 2  # h3. 

Then (1 .19) ,  (3.24), (1.5) give B, = B 2  > 0 , and again (2.40) holds i f  

and only i f  (3.22) i s  t rue .  

Finally,  suppose a l l  three A a r e  equal, so t h a t  A i = l .  In 

t h i s  degenerate instance,  (2.53),  (2.54). and (3.23) y i e l d  

T h u s ,  conditions (2.40) and (3.22) a t  present respect ively  reduce t o  

* 
W l l ( l , l )  # 0 and 611(1,1] > 0 . (3.31) 

One ea s i l y  confirms t h a t  i f  11 i s  the shear modulus of t h e  material a t  

infinitesimal deformations, 



Accordingly, when > 0 , the two conditions i n  (3.31 ) a re  equivalent .  

This concludes the proof of the preceding claim concerning the  equiva- 

lence of ordinary and strong e l l i p t i c i t y .  

I t  i s  of i n t e r e s t  t o  note upon subst i tu t ion from (3.24),  (1 .4 ) ,  

(1.5) in to  ( a ) , ( b )  of (3.25),  t h a t  these inequa l i t i e s  hold i f  and only 

2 ' .  
W 1 + X i  w 2 > 0  , 

(3.33) 
-1 " 4: 

1 1 2  + h i  WZ2) > 0 i + h ? i  + 2(1] - A:- 2hi )(11~-, +2h i  w12 (nc sum), 

and consequently one recovers the  necessary conditions f o r  strong e l l i p -  

t i c i t y  c i t ed  by Sawyers [ l ] .  To see t ha t  the addit ional  r e s t r i c t i o n s  

( c )  of (3.25) a r e  in genera1 independent of ( a )  and (b) ,  consider the  

e l a s t i c  potential  defined by 

and a  deformation with local principal s t re tches  

- 1 h l - 7  . h 2 = 2  , h 3 = I  . (3.35) 

In t h i s  instance,  ( a )  and (b)  of (3.25) a r e  s a t i s f i e d ,  while t he  f i r s t  

inequal i ty  i n  ( c )  i s  violated.  

'see inequa l i t i e s  (4 .1)  of [12]. 



4. El l ip t ic i ty  conditions for special classes of deformations and 

materials. 

In applying the el 1  ip t i c i  ty conditions establ ished i n  the preceding 

sections to  particular classes of deformations and hyperelastic so l idsy  

we shall take for granted that  the material obeys the Baker-Ericksen 

inequalit ies (1.19) and has a  positive shear modulus a t  infinitesimal 

deformations. Hence, there will be no need to  distinguish between the 

c r i t e r i a  for  ordinary and those for  strong el 1  i p t i c i  ty.  

We consider f i r s t  a  deformation with local principal s t retches 

If -ci i s  the principal true s t r e s s  corresponding to  hi , induced by 

th i s  deformation, (1.17) giues 

Conversely, (4 .2 ) ,  ( 1 . 1 7 ) ~  and (1.4) ,  (1 -5) - because of (1 -19) - imply 

4 . .  Thus, the special deformation a t  hand i s  associated w i t h  a  

locally ax isymetr ic  --- s t a t e  of true s t ress .  Further, by v i r tue  of the 

hydrostatic pressure f i e ld  p ,  t h i s  s t a t e  may in par t icu lar  be one of 

local uniaxial s t r e s s ,  in which case r l = r 2 = 0 ;  a l te rna t ive ly ,  i t  may 

be a  s t a t e  of local equi-biaxial s t r e s s  w i t h  r 3 =  0. 

From (4.1) ,  (2.53),  (2.54),  and the f i r s t  two of (2.59) follow 

With the aid of (4.3),  the el1 i p t i c i t y  conditions (3.25) f o r  a 



deformation 1 ocal l y  characterized by (4.1 ) are  readi 1y found t o  reduce 

t 0 

8, > O  , B 3 > 0  , w1+2hB1 > O  . (4.4)' 

We show now t h a t  the f i r s t  of these inequal i t ies  i s  automatically s a t i s -  

f i ed  under our present assumptions. Indeed, i f  A f 1 , the  Baker- 

Ericksen inequal i t ies  (1.19) and the f i r s t  of the r e l a t i ons  (3.24) a t  

once give B 1 > O ; i f  h = l  , i n  t u r n ,  then B ~ > O  follows from (3.30) 

and (3.32) with v > O  . Thus, bearing i n  mind (3.24), (1.4),  and (4 .1 ) ,  

one arr ives  a t  

with 

as necessary and su f f i c i en t  e l l i p t i c i t y  conditions i n  the circumstances 

under consideration. 

I t  i s  a l so  useful t o  ca s t  (4 .5) ,  or  a l t e rna t ive ly  the  l a s t  two 
* 

inequal i t ies  in  (4 .4) ,  in terms of the par t i a l  de r iva t ives  of W . 

We note from the  f i r s t  r e la t ion  in  ( a )  of (2.49) and the  second i n  (b)  

tha t  

' subs t i tu t ing  from (3.24),  (4.1) in to  (4 .4)  and invoking ( 1 . 4 ,  one 
recovers the inequal i t i e s  (4 .8 )  of Sawyers [12], who observes t h a t  the  
l a t t e r  are  both necessary and su f f i c i en t  f o r  strong e l l i p t i c i t y  so  long 
as  the deformation loca l ly  conforms to  (4.1 ) .  



Thus and by (4 .3 ) ,  ( 4 .1 ) ,  (3.27), the l a s t  two of (4.4) a re  equivalent 

t 0 

so t ha t  these two inequal i t ies  are a l so  necessary and s u f f i c i e n t  e l l i p -  

t i c i  t y  c r i t e r i a  when the local principal s t re tches  s a t i s f y  (4.1 ) .  

Consider next a deformation corresponding t o  a s t a t e  of -- local plane 

s t r a i n  with principal s t re tches  -.- 

In t h i s  instance our assumptions (1.19) and p > 0 a r e  ea s i l y  seen t o  

imply B~ > 0 . I n  f a c t ,  i f  A #  l , (1.19) and (3.24) immediately y i e ld  

i > 0 , whereas f o r  i = 1 the fi i  a r e  posit ive a s  a consequence of  

(3.30) and (3 .32) .  Thus, f o r  local plane s t r a i n ,  the only e l f  i p t i c i t y  

conditions t o  survive a r e  (b)  and ( c )  i n  (3.25). 

Abeyaratne [6] deduced necessary and su f f i c i en t  conditions of or-  

dinary e l l i p t i c i t y  f o r  a deformation of global plane s t r a i n  with a 

displacement f i e l d  obeying 

U = o ,  u 3 = 0  . 
(393 

(4.10) 

Such a deformation gives r i s e  t o  (4.9) throughout the  body. The condi- 

t ions  of ordinary e l l i p t i c i t y  arrived a t  i n  [6] a r e  

' see  inequa l i t i e s  (3.21) i n  [6]. 



where 

We now verify t h a t  (4.11 ) i s  a t  present imp1 ied by (b )  and ( c )  i n  (3.25), 

as  must be the case when the Baker-Ericksen inequal i t ies  (1.19) a r e  

assumed t o  hold and p > 0 . Indeed, one gathers from (3.24), (4.12), 

and (4 .9)  t h a t  

B u t  w3 + 2A36, > 0 according t o  (b )  i n  (3.25),  while B3 > 0 under the  
J 

assumptions j u s t  mentioned, whence (4.11 ) follows. 1 

The necessary and su f f i c i en t  e l  1 i p t i c i  t y  condit ions appropriate t o  

a local s t a t e  of plane s t r a i n  governed by (4.9) a re  i n  general f a r  more 

r e s t r i c t i v e  than (4.11) since the former involve a l l  thr-ee inequa l i t i e s  

in (b)  of (3 .25) ,  as  well as  the  three inequa l i t i e s  i n  (x). These addi- 

t ional  r e s t r i c t i o n s  stem from the f a c t  t ha t  the  local hypothesis (4.9) 

admits a larger  c l a s s  of deformations than does the global  requirement 

(4.10);  furthermore, (4.11 ) - with (1.19) in force - preclude potent ia l  

d i scon t inu i t i es  i n  the  relevant normal derivatives of t h e  displacements 

and pressure merely across cyl i ndrical surfaces w i t h  generators para1 l e l  

to  the principal  d i rect ion of the deformation tensor C t h a t  i s  asso- 
rn 

cia ted with A ~ =  1 . 

' 1 t  should be noted t ha t  ( 4 . 1 )  as expected, i s  a l so  implied by the  
conditions of ordinary el 1 i p t i c i  ty (2.40) even i f  the  Baker-Ericksen 
inequa l i t i e s  f a i l  t o  hold o r  i f  11 L O  . 



We proceed now t o  special classes of materials and i n  t h i s  connec- 

t ion consider f i r s t  e l a s t i c  potent ia ls  t ha t  depend on a s i n g l e  deforma- 

t ion invar iant .  Suppose 

We show presently t h a t  i n  t h i s  event, ( a )  and ( b )  imply ( c )  i n  the  

e l l i p t i c i t y  conditions (3.25). From (4.14) and (1.4),  (1.5),  (3.24) 

we draw 

(no sum) . J 

Assume now tha t  ( a )  and (b)  in (3.25) hold t rue ,  o r  equivalently 

With a view towards in fe r r ing  the  f i r s t  inequali ty in  ( c )  of (3.25), we 

note t ha t  the l a t t e r  can be writ ten as 

provided 

Clearly,  T > 0 under our current  hypotheses. 

7 
I One may show s imi la r ly  t ha t  ( a )  and (b )  imply ( c )  in the ordinary 
el 1 i p t i c i  ty  conditions (2.40) whenever (4.14) holds. 



On account o f  (4 .18)  and (4.15), (1.4),  (1.5), 

\ 

where 

2 2 2 U =  8(h1 + h2) ( h i  + h3) (he - h 3 )  Wi(Il) w" ( I1  - 

I n  o r d e r  t o  e s t a b l i s h  (4.17),  i t  i s  convenient  t o  observe t h a t  

e i t h e r  k2  = " o r  A" A?, WW"(I,) 2 0  o r  h 2 f  5, W"(Il) > 0. (4.21) 

I f  the  f i r s t  o f  these t h r e e  e v e n t u a l i t i e s  holds,  (4.16), (4.19) i m p l y  

and hence (4.17) f o l l o w s .  On t he  o t h e r  hand, t h e  second a l t e r n a t i v e  i n  

(4.21) j u s t i f i e s  

so t h a t  (4.15), (4.19) aga in  y i e l d  S < O  and thus (4.17). F i n a l l y ,  

t h e  l a s t  a1 t e r n a t i v e  i n  (4.21),  t oge the r  w i t h  (4.20), (4.19), and t h e  

f i r s t  o f  (4.16), g i ves  U >  0 and T > S' , which con f i rms  (4.17) i n  

t h i s  case a l so .  S t r i c t l y  p a r a l l e l  arguments enable one t o  i n f e r  t h e  . 

rema in ing  two i n e q u a l i t i e s  i n  ( c )  o f  (3.25). 

As i s  now c l e a r ,  (4 .16)  c o n s t i t u t e s  necessary and s u f f i c i e n t  e l  7 i p -  

t i c i  t y  c o n d i t i o n s  when t h e  e l a s t i c  p o t e n t i a l  obeys (4.14).  Moreover, 

t h e  Baker-Er icksen i n e q u a l i t i e s  and u >  0 imp l y  t h e  f i r s t  o f  t h e  two 

i n e q u a l i t i e s  (4.16.)  



I f ,  instead of (4.14),  

one f inds s imi la r ly  t h a t  ( a ) , ( b )  once again imply ( c )  i n  (3.25) and i s  

led t o  

as  necessary and su f f i c i en t  el 1 i p t i c i  t y  conditions. 

I t  should be mentioned t ha t  the e l l i p t i c i t y  conditions (4.16) and 

(4.23),  appropriate t o  (4.14) and (4.22), respectively,  recover e a r l i e r  

r e su l t s  reported by Sawyers [12]. I 

Consider now the special case of a Mooney-Rivlin mater ia l ,  f o r  

which 

A 

W(11,12) = c l ( I 1  - 3 )  + c2(12-  3)  (4.24) 

The Baker-Ericksen inequal i  t i  es (1.19) necess i ta te  

and with (4.25) in fo rce ,  the e l l i p t i c i t y  conditions (3.25) a r e  found 

t o  be automatically s a t i s f i e d  f o r  a l l  principal s t re tches .  T h u s ,  f o r  a 

Mooney-Ri vl in material t h a t  obeys the Baker-Ericksen inequa l i t i e s  , 

e l  1 i p t i c i  ty  obtains a t  a1 1 deformations. 

Final ly ,  as an i l l u s t r a t i v e  example, we apply the e l l i p t i c i t y  con- 

d i t i ons  es tabl ished in  t h i s  paper t o  a c lass  of hypothetical mater ia ls  

'see Section 5 of [12]. 
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introduced by Ogden [13]. The assoc ia ted  mechanical response is  gov- 

erned by an e l a s t i c  po ten t i a l  of t h e  form 

* 
w(hlYh2)=: (A;+ h ; + h T -  3)  , h 3 =  (hlh2)-l  , c >  0 ,  a >  0 .  (4.26) 

According t o  (3.27)  and (4 .7)  one has a t  present  

I $ ha-2 f o r  h l  = h 2  = 

where s = h l / h 2  . W i t h  t h e  a i d  o f  (4.27) and by recourse t o  (2.53) ,  one 

can show t h a t  

- 2 C 
h i  (wi + 2h .B. ) > - (A; + h i  + - A;) ( a  - 1 ) (no sum) , 

1 1  2 
(4.28) 

- 2 C 
hi ( w i - 2 h . B . ) ~ - ( h ; + h a + h a - h p ) m a x [ O ,  1 1  2 2 3 a -11  (nosurn)  . 

The f i r s t  of (4.28)  imp1 i e s  t h e  Baker-Ericksen inequal i  t i e s  (1.19) ,  and 



(4.26)-together w i t h  (3.32)-gives v = c a / 2 > O  ; fu r the r ,  ( a )  i n  (3.25) 

i s  s a t i s f i e d  fo r  a l l  ;ij and a l l  u > 0 . Moreover, when a 2 1  , we 

eas i ly  see  t h a t  ( b )  and ( c )  in (3.25) a l so  hold fo r  a l l  ri . In con- 

t r a s t ,  a s  may be shown by means of the second of (4.27) and the l a s t  

of (4.28),  f o r  O < a < l  , ( b )  and ( c )  hold i f  and only i f  

provided € = & ( a )  i s  the unique solution of the equation 

a. (1 + ~ ) ( E + E  ) = ( 1  - a ) ( )  + &a'1.) , O C  E <  1 . (4.30) 

Therefore, f o r  an e l a s t i c  potential  obeying (4.26) w i t h  a ~ l ,  e l l i p t i -  

c i t y  prevai ls  a t  a l l  deformations, whereas i f  O <  a <  l . the  inequal i -  

t i e s  ( 4 . 2 9 )  a r e  necessary and su f f i c i en t  fo r  e l l i p t i c i t y .  I 

The inequal i  t i e s  (4.29),  which a r e  contingent upon 0 < o: < 1 , 

describe the i n t e r i o r  n of a convex hexagonal pyramid i n  the  space of  

the principal  s t re tches , '  the origin of which coincides w i t h  t h e  vertex 

of t h i s  pyramid. The in tersect ion c of n w i t h  the  "isochoric surface" 

h1h2h3 = 1 represents the e l l i p t i c i t y  domain i n  this instance.  

1 
Evidently, (4.30) can be solved exp l i c i t l y  i f  a = T .  In t h i s  

special  case, the  e l l i p t i c i t y  conditions (4.29), upon e l  imination of 

A , may be wri t ten  as 3 

logden [13], on the  basis of t e s t s  performed on vulcanized natural  rub- 
ber, suggests the  choice a = 1.2 and c = 6.8 kg/cm2. 

'see the in te rpre ta t ion  of inequal i t ies  (3.1) of [I].  



Conditions (4.31 ) define the open region z12 in the (1, ,h2)-plane 

depicted as the shaded area in Figure 2.  This region i s  the projection 

onto the ( A ,  ,h2)-plane of the e l l i p t i c i t y  domain E ; the projections 

L Z 3  and E3, of 1 onto the other two principal-stretch planes are  once 

again represented by the shaded region in Figure 2,  provided (A, ,") 

in th is  diagram i s  replaced by (h2,h3) or  by (h3,hl) . 
I t  i s  of in te res t  t o  examine the response, t o  cer ta in  basic 

homogeneous deformations, of the material characterized by the e l a s t i c  

potential (4.26). For a pure homogeneous, vol ume-preserving deforma- 

tion of the form 

- yi - "xi (no sum) , q $ h 3  = 1 , (4.32) 

one gathers from (1.7), (1.16), the f i r s t  of (2,46), and (4.26) tha t  

while 
* 

A . G  = -i T - = h W ( A  , A  ) = C(A; - A;) (no sum over i or  8 ) .  
I i  i i  ' B B  B B  1 2 

(4.33) 

In par t icular ,  for  a pure homogeneous deformation of (i) uniaxial 

s t r e s s  or ( i i )  equi-biaxial s t ress  or ( i i i )  plane-strain uniaxial 

s t r e s s  ("pure shear"),  (4.33) yields respectively: 

- -a/2 ( i )  '11-722 = 0 , A G ~ ~ ( A )  = ~ ~ ~ ( h )  = c(ha - h ), h 3  = h ,  h 2 = h = h 

a -2a -2 . ( i i )  - c ~ ~ = O  , ~ ~ ~ ~ ( h ) = - i ~ ~ ( h ) = c ( h  -0, A = =  = A  , h = h  , 1 2  3 

- 1 ( i i i )  - r Z 2 = O  , h ~ ~ , ~ ( A ) = ~ ~ ~ ( h ) = c ( f - h ~ ~ )  , h l = h 2  = h  , h 3 = 1  . 



Next, consider a deformation of simple shear given by 

where k i s  the amount of shear. The corresponding principal s t retches 

obey 

and the in-plane true shear s t ress  r12 here i s  found to  sa t i s fy  

When a r l ,  the normal stresses 033("y -tj3(h) and O ~ ~ ( A ) , T ~ ~ ( X ) .  

as well as o (h ) , - t l l (h ) ,  arising in the pure homogeneous deformations 1 1  

(4.34)' are  monotone increasing functions of A fo r  0 < < When 

0 < a < 1 , on the other hand, this  monotonicity property i s  retained by 

tbe true s t resses  rj3(A), rZ2(h) ,  T l ,  ( A )  , b u t  the associated nominal 

s t resses  ~ ~ ~ ( h ) ,  ~ ~ ~ ( h ) ,  o1 ( A )  a re  steadily increasing merely f o r  

O <  h <  A,, possess a maximum a t  A =  A , ,  and monotonically decrease t o  

zero on A, < A < , where from (4 .34) ,  

( i i i )  A, = [ ( ] + a ) /  ( 1 - a ) ]  1/2a , I y 

respectively. The graphs of 0 3 3 ( ~  and T ~ ~ ( A )  appropriate t o  case ( i )  

1 of uniaxial s t r e s s  are  shown in Figure 3 for  the three values a =  3 / 2 ,  

'1n the in te res t  of c l a r i ty ,  the curves for  T ~ ~ (  A )  have been omitted 
for  O < h < l  . 



u = 1 , o = 1/2 . The graphs of oZ2(A), T ~ ~ ( A )  and dl  ( A )  , T ~ ~  ()' corre- 

sponding t o  the cases ( i i  ) and ( i  i i ) ,  a r e  qua l i t a t ive ly  qu i t e  s imi la r .  

As f a r  as the simple-shear deformation (4.35) i s  concerned, (4.37) 

reveals T ( A )  t o  be s tead i ly  increasing over the e n t i r e  range 0 < A < rn, 

provided a 1 . When 0 < a < 1 , however, T ( X )  increases monotoni- 

ca l ly  only f o r  E'" < A < E - " ~ ,  with E =  E ( U )  given by the  root  of 

(4.30);  f o r  t h i s  range of the parameter a , ~ ( h )  has a m i n i m u m  a t  

A =  , a maximum a t  A =  E -'I2 , and i s  s t r i c t l y  decreasing f o r  

O < ~ < E  'I2 and E 
-1 / 2  

< A < . The graphs of T ( A )  corresponding t o  

a = 3 / 2 , a = l  , and  a = 1 / 2  are displayed.in Figure 4. 

I t  i s  evident from the foregoing discussion of the three  pure 

homogeneous deformations introduced in  (4.34) t ha t  when 0 < a < 1 , the  

nominal normal s t r e s se s  singled out there a re  no longer i nve r t i b l e  func- 

t ions  of the appropriate principal s t re tch  A over the  range 1 < A < , 

which corresponds t o  an elongation. No such loss  of i n v e r t i b i l i t y  is  

encountered in contraction,  i . e . ,  f o r  O <  A < l  . Furthermore, e l l i p t i -  

c i t y  i s  l o s t  when O < a < l  in both extension - and contract ion,  and as 

i l l u s t r a t e d  by Figure 3 - which pertains t o  uniaxial s t r e s s  - t he  maxi- 

mum of ~ ~ ~ ( h )  occurs in the  i n t e r i o r  of the range of e l l i p t i c i t y .  
1 

As regards the  behavior in simple shear of the special  material  

under discussion, we-note t ha t  here, f o r  0 c a < 1 , the  range of 

'1n case ( i i ) ,  which re fe rs  to  equi-biaxial s t r e s s ,  i n v e r t i b i l i t y  of 
o ( A )  i s  l o s t  once again only i n  extension, b u t  t h i s  l o s s  occurs out- 
s?$e the range of e l l  i p t i c i t y  f o r  0 < a < a,. 0.714 and fa1 1 s i n s i c  
t h i s  range fo r  a,< a <  1 . 



e l l i p t i c i t y  

precisely coincides with the range of h over which the shear-response 

function T ( X )  i s  monotone increasing, and the two extrema of T ( A ]  

occur a t  the endpoints of this  range (see Figure 4) .  

I t  i s  now also apparent tha t  for  the material characterized by 

(4.26), e l l i p t i c i t y  prevails a t  a --- local s t a t e  of plane s t r a in  with 

-1 O 
h = h = h ,  h g  = 1 i f  and only i f  the shear-response function T ( A )  has 1 2  

a positive slope a t  h = . This conclusion i s  in complete accord w i t h  

a resu l t  previously arrived a t  by Abeyaratne [6]. A related conclusion 

had been reached s t i l l  ea r l i e r  by Knowles [4], who found tha t  the dis- 

placement equations of equilibrium appropriate to  global anti-plane 

shear of a c lass  of incompressible hyperelastic materials are  locally 

e l l i p t i c  a t  a solution i f  and only i f  the response curve fo r  simple 

shear has a positive slope a t  an amount of shear equal to  the magnitude 

of the local displacement gradient. 

The preceding observations suggest that  a loss of e l l i p t i c i t y  in 

f i n i t e  e las tos ta t ics  always en ta i l s  some loss of inve r t ib i l i t y  of the 

underlying stress-deformation relations.  A physical interpretation 

along these 1 i nes of the three-dimensional el 1 ip t i c i  ty conditions estab- 

lished in t h i s  paper has so f a r  eluded our e f for t s .  
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FIGURE 1. THE PLANE REGION A IN - z-SPACE. 



F I G U R E  2. ELLIPTICITY DOMAIN IN THE (A,  ,A,)-PLANE 

F O R  THE SPECIAL MATERIAL.  



FIGURE 3. BEHAVIOR OF THE SPECIAL  M A T E R I A L  
UNDER U N I A X I A L  STRESS. 
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FIGURE 4, RESPONSE OF THE SPECIAL MATERIAL 
TO SIMPLE SHEAR. 


