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Abstract

The one-dimensional (1D) world is quite different from its higher dimensional counterparts.

For example, the electronic ground state in 1D is not a Fermi liquid as in most solids, due

to the role of electron-electron interactions. Most commonly, electrons in 1D are described

as a Luttinger liquid, where the low-energy excitations are decoupled bosonic charge and

spin waves. Carbon nanotubes are clean 1D systems which have been shown to behave like

a Luttinger liquid at high electron density. However, at low electron density and in the

absence of disorder, the ground state is predicted to be a 1D Wigner crystal—an electron

solid dominated by long-range Coulomb interaction. Moreover, short-range interaction

mediated by the atomic lattice (umklapp scattering) is predicted to transform a nominal

1D metal into a Mott insulator.

In this thesis, we develop techniques to make extremely clean nanotube single-electron

transistors. We study them in the few-electron/hole regime using Coulomb blockade spec-

troscopy in a magnetic field. In semiconducting nanotubes, we map out the antiferromag-

netic exchange coupling as a function of carrier number and find excellent agreement to

a Wigner crystal model. In nominally metallic nanotubes, we observe a universal energy

gap in addition to the single-particle bandgap, implying that nanotubes are never metallic.

The magnitude, radius dependence and low-energy neutral excitations of this additional

gap indicate a Mott insulating origin.

Further, we use simultaneous electrical and Raman spectroscopy measurements to study

the phonons scattered by an electric current. At high bias, suspended nanotubes show strik-

ing negative differential conductance, attributed to non-equilibrium phonons. We directly

observe such “hot” phonon populations in the Raman response and also report preferential

electron coupling to one of two optical phonon modes. In addition, using spatially-resolved

Raman spectroscopy, we obtain a wealth of local information including the 1D temperature

profile, a spatial map of the thermal conductivity and thermal contact resistances, which

reveal the mechanism of thermal transport in nanotubes.

Finally, with multi-wall nanotubes (MWNTs), we use electrical breakdown as thermom-

etry to provide evidence for ballistic phonon propagation and obtain an estimate for the

quantum of thermal conductance. We also develop linear-bearing nanoswitches using the

low-friction properties of MWNTs.
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Chapter 1

Introduction

It is only appropriate to begin a thesis on electrons and phonons with a reference to John

Ziman who wrote the most exhaustive treatise to date on electrons and phonons titled,

well, Electrons and Phonons [1]. Ziman likes to quote Lewis Carroll; there was one very

imaginative quote in particular, which I’d like to borrow:

... they began running when they liked and stopped when they liked, so it was

not easy to know when the race was over.

Ziman makes a striking analogy between the chaotic nature of the caucus race and the

random behavior of electrons and phonons in solids. However, this analogy can also be used

to highlight the progress made in the ensuing decades towards understanding and controlling

their behavior. Several groups around the world have now isolated a single electron and

have used its spin as a quantum bit towards the holy grail of building a quantum computer.

Efforts are on at engineering phonons, which are often responsible for relaxing the quantum

bits, so as to obtain longer electron lifetimes. This progress has been due to the availability of

clean materials (two-dimensional electron gases (2DEGs), in the above case) and constantly

improving lithographic techniques. This thesis shall focus on the behavior of electrons and

phonons in clean carbon nanotube devices, made using special lithographic techniques. In

particular, the one-dimensional (1D) nature of carbon nanotubes gives rise to rich physics,

some of which has no counterpart in higher dimensions.

Electronic properties of most materials are understood from the most successful theory

in solid state physics, Landau’s Fermi liquid theory. However, it has been known that

this theory breaks down in 1D due to electron-electron interactions, and an alternative

paradigm, most commonly Luttinger liquid theory has been used to describe 1D systems [2].

Until recently however, the absence of 1D systems in experiment had prevented one from

expressing much confidence in this theory. In the last decade, the availability of clean
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1D systems such as carbon nanotubes [3], molecular beam epitaxy (MBE)-grown cleaved-

edge quantum wires [4] and edge states of the fractional quantum Hall effect (FQHE) in

2DEGs [5] have been used to verify that the 1D electron gas is indeed a Luttinger liquid.

Things can only become more interesting with the advent of cleaner materials and use

of alternative measurement techniques. In particular, the group of Hongjie Dai at Stanford

has recently pioneered a technique for growing nanotubes on metal electrodes and in a

suspended geometry [6]. These as-grown, suspended single-wall nanotubes avoid disorder

from the substrate or chemical processing and show unprecedented cleanness in transport

measurements [7]. In my graduate work, I developed this technique further and investigated

the behavior of interacting electrons in carbon nanotubes, in the process finding evidence

for two more electronic states in 1D: the Wigner crystal and the Mott insulator.

Nanotubes have a quantized 1D phonon spectrum. The interaction of phonons with

electrons and their propagation along the nanotube has important implications towards

use of nanotubes in miniaturizing electronic circuits. Nanotubes have been touted as the

replacement of CMOS transistors and copper interconnects. An understanding of electron-

phonon interactions and phonon transport in nanotubes can provide the necessary knowl-

edge towards effective thermal management in these high-heating applications. Our tool

in studying phonons in electrically-heated nanotubes is Raman spectroscopy. It turns out,

this study also yields some surprises, again in part due to the 1D nature of nanotubes.

Another material, a sibling of the single-wall nanotube (SWNT), is the multi-wall nan-

otube (MWNT). Its complex structure of nestled walls (or shells), much like a Russian

doll, provides a system with moving parts, moving with almost zero friction! I investigated

mechanical motion and thermal transport in this system in the early part of my Ph.D., and

it still remains a rich system for study.

Organization of this thesis

The rest of this chapter discusses the electronic and phonon dispersion of nanotubes, de-

scribes important concepts used in this work and reviews the relevant previous work. Chap-

ter 2 details the fabrication procedure used to obtain extremely clean nanotube data. Chap-

ter 3 treats theoretically the subject of electron-electron interactions in carbon nanotubes.

Chapter 4 shows evidence for a 1D Wigner crystal in semiconducting nanotubes. Chap-
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ter 5 deals with experiments in “metallic” nanotubes showing a Mott insulating state at

half-filling of energy bands. Chapter 6 shows the use of simultaneous electrical and Raman

spectroscopy towards understanding electron-phonon interactions and phonon transport in

nanotubes. Chapter 7 shows evidence for ballistic phonon propagation in MWNTs. Chapter

8 uses MWNTs to realize low-friction bearing devices. Chapter 9 concludes with a section

on possible future directions.

1.1 Carbon nanotubes; electronic and thermal properties

Carbon nanotubes, the thinnest and cleanest of all 1D systems, were first made by Ijima

in 1991 [8]. The first nanotubes were multi-walled, made from a carbon-arc soot. In

1996, single-wall nanotubes were produced in bulk for the first time using a laser ablation

technique by Smalley and co-workers [9]. Nanotubes were grown on chip for the first time by

the Dai group in 1998 [10], using a technique called chemical vapor deposition (CVD). All

single-wall tubes used in this study were CVD-grown, and this technique will be discussed

in more detail in Chapter 2. The multi-wall tubes in this study were produced by the

arc-discharge technique [8] in the group of Laszlo Forro at EPFL.

A single-wall nanotube is essentially a single sheet of graphite (called graphene) rolled up

into a cylinder (Fig. 1.1(a)). Graphene is an sp2 bonded network of carbon atoms arranged

in a hexagonal lattice with two atoms per unit cell. Figure 1.1(c) shows the low-energy

band structure of graphene in the first Brillouin zone (Fig. 1.1(b)). The Fermi surface of

graphene consists of six (Dirac) points at the corners of the hexagonal Brillouin zone where

the conduction and valence bands touch, obtained by translating the two inequivalent points

(corresponding to the two atoms in the unit cell) by reciprocal lattice vectors.

The band structure of nanotubes can be derived directly from that of graphene [12]. By

imposing periodic boundary conditions for translations by the roll-up vector that defines

the nanotube, the wave-vector k⊥ along the circumference πD is quantized as πDk⊥ =

2πj, where j is an integer. An example of this is shown in Figure 1.1(b) with horizontal

lines corresponding to the quantized k⊥. The resulting intersection of k⊥ with graphene’s

bandstructure is shown in Figure 1.1(c) in red lines. Thus, the band structure of a nanotube

consists of 1D subbands. For a 1 nm diameter tube the subband splitting is on the order

of one eV, and therefore nanotubes are truly 1D materials. The nanotube will have a band
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Figure 1.1. (a) Axes of a nanotube. (b) Quantized Brillouin zone of graphene. (c)

Quantization of graphene’s bandstructure to yield 1D sub-bands. [11]

Figure 1.2. Bandstructure of metallic (top) and semiconducting (bottom) nanotubes de-

pending on whether k⊥ passes through a Dirac point or not. [11]



5

gap unless the red lines in Fig. 1.1(c) pass though the two gapless points. Figure 1.2 shows

the band-structure of the resulting metallic and semi-conducting nanotubes. Effects due to

curvature or in-built strain or twist (during device fabrication) result in corrections to this

picture [13]. For example, this results in translation of the Dirac points of graphene and

opens a small band-gap for most metallic nanotubes. However, the class of nanotubes with

highest symmetry, called armchair nanotubes, are insensitive to most perturbations in a

single-particle picture. For the purposes of this thesis, nanotubes with energy gaps . kBT

at room temperature will be referred to as “metallic”, “quasi-metallic” or “small-band-gap”

while those with larger gaps will be called “semiconducting” (since the distinction, as per

zone folding theory, cannot be made in a transport experiment).

Similar to the band-structure, the quantized phonon dispersion of nanotubes can be

obtained by zone-folding the phonon dispersion of graphite [14]. The dispersion for graphite

and that for a representative armchair nanotube are shown in Figure 1.3. The sub-band

spacing for phonon modes is much smaller than the electrons, and many modes may be

occupied at room temperature. Among them the following optical phonon modes will be

studied in more detail in Chapter 6 using Raman spectroscopy:

• A longitudinal optical (LO) mode with atomic motion along the nanotube,

• A transverse optical (TO) mode with atoms vibrating perpendicular to the nanotube

axis.

Figure 1.4 shows the atomic motion for these modes.

1.2 Overview of concepts and techniques

The following techniques have been used in the course of this work:

Coulomb blockade spectroscopy

Coulomb blockade is a phenomenon that arises in small metallic islands connected to large

metal contacts through tunnel barriers (see Figure 1.5). If the size of the island is small

enough that the energy required to add a single electron (charging energy Ec = e2/C

where C is the capacitance of the island to the external world) is larger than the thermal

energy kBT and the barriers are sufficiently opaque so as to confine electrons on the island
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Figure 1.3. Phonon dispersions and density of states for graphite ((a) and (b)) and a

representative nanotube ((c) and (d)). [15]

Figure 1.4. Atomic motion for TO and LO phonon modes. [16]
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Figure 1.5. An island (or dot) connected to metallic leads. [17]

(in general, the contact resistance Rc should be much larger than the quantum resistance

h/e2 ' 25kΩ), no current can flow through the island. This blockade can be removed by

either changing the chemical potential of the island by varying an external gate voltage or

injecting electrons with high enough energy by applying a bias voltage, leading to flow of

current. This device is called a single-electron transistor (SET).

Another effect that is important in small systems is discretization of the energy spectrum

due to the formation of zero-dimensional (0D) electron states. Such a “quantum dot” or

“artificial atom” also shows similar behavior as above, with an additional energy scale (level

spacing ∆E between successive quantum dot energy levels). The energy required to add an

electron is now E = Ec + ∆E. Figure 1.6 shows this behavior schematically. See [18] for

a detailed treatment of Coulomb blockade in SETs and quantum dots. Coulomb blockade

has been extensively studied in metallic grains, nano-crystals, single molecules, vertical

and lateral quantum dots in semi-conductor heterostructures and finite-size segments of

nanotubes and nanowires. In this thesis, I show the use of this technique to study the

energy spectrum of clean small-bandgap nanotubes near the band-edge (see Chapter 5 for

more details).

A simple model used to understand Coulomb blockade is the Constant Interaction (CI)

model [18]. This model treats the interactions between electrons on the island as a con-

stant, irrespective of their number and captures this physics in the capacitance C. The

CI model has been remarkably successful in explaining experiments, however it has been

found wanting in explaining the behavior over a large change in carrier density [19]. In

particular, it is known that at extremely low carrier density, interactions dominate over
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Figure 1.6. (a) Current is blockaded and (b) the blockade is removed, in this case, by

changing the chemical potential via the gate voltage. [17]

kinetic energy [20]. This regime cannot be explained with a single constant independent of

density. We have explored this regime in detail for the first time in nanotubes, studying

semiconducting nanotubes at low carrier density (see chapter 4 for more details).

Raman spectroscopy

Raman spectroscopy involves the inelastic scattering of monochromatic light, usually from

a laser in the visible, near-infrared, or near-ultraviolet range, by phonons and other low-

frequency excitations of the system. The elastically scattered light is filtered out, and the

rest of the light is collected on a detector. By measuring the intensity of the scattered

light as a function of frequency (which is called the Raman spectrum), one can obtain an

accurate measure of the phonon frequencies of the material. Raman scattering of light can

occur by emitting phonons (Stokes process) or absorbing phonons (anti-Stokes process).

Raman spectroscopy has been studied in carbon nanotubes since the late 90s (see [15]

for a review) and has been used to correlate optical spectra to atomic structure. In spite

of the extremely small diameter of nanotubes (∼ 1 nm) compared to the wavelength of

light, nanotubes can have a large scattering cross-section if the energy of the incident or

scattered light corresponds to a van-Hove singularity in the electronic density of states of the

carbon nanotube. Such a process is called resonant Raman scattering. Previously, Raman

spectroscopy measurements have been performed by shining a laser on a large number of

nanotubes dispersed on a Si substrate, and gathering information on the tubes resonant

with the laser.

In studying electrically contacted individual nanotubes with Raman spectroscopy, one
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Figure 1.7. Schematic diagram of experimental setup for simultaneous transport and Raman

measurements

will almost surely not find it resonant with the laser. Nevertheless, we have studied over

a hundred nanotube devices using Raman spectroscopy and report on the resonant devices

or those with a measurably large Raman signal. Figure 1.7 shows a schematic diagram

of our experimental setup (the optical measurements were carried out in the lab of our

collaborator, Steve Cronin, at the University of Southern California). The nanotube device

was housed in a home-made chamber flushed with argon gas to prevent burn-out from the

high bias voltages involved in the experiment. In particular, we were interested in observing

the LO and TO phonon modes that have been proposed to be responsible for the current

saturation and negative differential conductance in nanotubes at high bias voltages (see

next section).

1.3 Previous work

Low-temperature electron transport

In this section, I shall review previous work in clean (i.e., ballistic) SWNTs with normal

metal contacts. A lot of low-temperature work has also been done with superconducting

and magnetic contacts, local gates and diffusive/disordered systems, which are beyond the

scope of this thesis. Single-electron transport in nanotubes was first observed by Bockrath
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et al. [21] and Tans et al. [22] in 1997 using resistive (weakly coupled) contacts. McEuen

et al. [23] showed that while metallic SWNTs form clean single quantum dots, similarly

long segments of semiconducting nanotubes break up into multiple quantum dots, due to

disorder. Four-fold filling of 0D electron states was observed [24, 25] and the relevant energy

scales (level spacing, sub-band splitting, ferromagnetic exchange, etc.) were determined.

Slightly better contacts led to the observation of the Kondo effect in nanotubes [26], where

electron wave-functions leak into the leads and interaction with spins in the leads becomes

possible. For almost transparent contacts, multiply-reflected electron waves formed an

interference pattern [27] analogous to Fabry-Perot interference in optical cavities. In 2004,

Jarillo-Herrero et al. [28] observed the few-electron-hole regime for the first time using a

suspended nanotube. Minot et al. [29] found that electron states near the band-edge had

a magnetic moment much larger than the Bohr magneton. This was understood semi-

classically as electrons orbiting around the circumference of the nanotube, the direction of

orbiting corresponding to the k-point degeneracy. The Kondo effect was also observed for

this orbital degree of freedom [30].

The observations above could be explained with a single-particle picture, as is expected

in quantum dots with energy scales dominated by charging energy and level spacing. The

role of interactions was observed when these energy scales were lowered by studying ex-

tremely long metallic nanotubes, ∼ 2 µm, with tunnel contacts. Bockrath et al. [3] found

power laws in non-linear transport and temperature dependence of conductance, in agree-

ment with Luttinger liquid theory, applicable for a 1D metallic system. Note that power

laws in clean systems are not to be confused with power laws in diffusive conductors, at-

tributed to disorder (see, e.g. [31]) and understood from the Coulomb blockade in a resistive

LC transmission line environment [32].

Room temperature high-bias transport

Relatively less work has been done on carbon nanotubes at high bias, in part because one

runs the risk of destroying the sample. (It will blow up anyway, if you live in a place as

dry as here. In our lab, we run humidifiers constantly, sprinkle water on the floor every

few hours, work bare-foot and ground ourselves before we touch anything, to keep our

samples alive.) Yao et al. [33] first studied high-bias transport in nanotubes and found

that the current in SWNTs saturated at ∼ 25 µA beyond a couple of volts of applied
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bias. They proposed that this saturation was related to electron scattering off LO and

TO phonons. Further work by Park et al. [34] and Javey et al. [35] estimated the mean-

free path of electron-phonon scattering at high bias to be ∼ 100 nm. Pop et al. [36]

discovered that suspended nanotubes showed negative differential conductance (NDC) in

their I-V characteristics instead of saturation (shown in Fig. 1.8). They attributed it to

a bottleneck of phonons, with a population higher than that arising from the equilibrium

lattice temperature (non-equilibrium or “hot” phonons). We have found direct evidence

of such hot phonons using simultaneous electrical and Raman measurements on nanotubes

(see Section 6.1 for more details).

Collins and co-workers [37] found that applying a high enough bias to MWNTs led

to burning of shells and demonstrated controllable shell burning one-by-one to engineer

nanotubes of various thicknesses. The current drop on burning each each shell was found to

be constant, ∼ 20 µA. We have used these observations to separate out MWNTs and ropes

of nanotubes from the SWNTs. Moreover, our experiments on breakdown in MWNTs have

led to the development of non-volatile switches based on telescoping motion of the concentric

shells (see Chapter 8 for more details).

We found that with ��Tac� � �0�T0=Tac� where the RT
thermal conductivity �0 � 3600 W m�1 K�1 (in line with
that of multiwalled nanotubes [20]) and � � 2:4, our
model reproduced the experimental I-V curves including
NDC remarkably well over a wide range of suspended
SWNT lengths and biases [21] [Figs. 2(a) and 3(a)]. The
self-heating (Teff

op and Tac) of the suspended SWNTs was
also calculated at various biases [Fig. 2(b)]. Importantly,
the I � I=V shape of the I-V curves in the NDC region is

found to strongly reflect the temperature dependence of the
thermal conductivity ��T� � 1=T that results from um-
klapp phonon scattering at RT and above [11,12] (electron
contribution negligible [22]). Alternative models for the T
dependence of the thermal conductivity (e.g., ��T� �
constant, or ��T� � linearly decreasing in T) cannot repro-
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FIG. 3. Currents in various-length suspended SWNTs. (a) I-V
of four suspended tubes with lengths: L� 0:8, 2.1, 3, and
11 �m. Symbols are experimental data; solid lines are calcu-
lations. The I-V curves are highly reproducible over many
sweeps without irreversible changes to the device, indicating
that the electrical characteristics are not due to irreversible
contact change. The tube diameters used in the calculation
(consistent with AFM) were d� 2, 2.4, 2.4, and 3.2 nm, respec-
tively. The contact resistance Rc was used as a parameter to fit
the I-V curves at low bias. Rc � 15 k� for all tubes except for
L � 3 �m which had Rc � 30 k�. This contact resistance is
much lower than the resistance along the tube under high bias
and most (> 95 percent) of the power dissipation occurs along
the tube length rather than at the contacts. (b) Measured peak
current (symbols) for suspended SWNTs of various lengths. The
peak current scales approximately as �1=L just like the thermal
conductance of the suspended nanotubes, an additional indicator
that this is a thermally limited effect. The deviation from the 1=L
behavior is attributed to variations in diameter between the
different tubes.
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FIG. 2. High-field electron transport in suspended nanotubes.
(a) Current-voltage (I-V) characteristics of the same-length (L�
3 �m) suspended and nonsuspended portions of a SWNT (d�
2:4 nm) at room temperature measured in vacuum. The symbols
represent experimental data; the lines are calculations based on
average tube temperature (similar within �5% to that based on
actual tube temperature profile and resistance integrated over the
�3 �m tube length). (b) Computed average acoustic (lattice)
and effective optical phonon temperature vs bias voltage for the
suspended tube segment in (a) quantifying the degree of self-
heating. The figure inset shows the energy flow in our model
from electrons (‘‘heated’’ by the electric field) to optical phonons
and then acoustic phonons. We estimated the heat dissipation by
radiation (ignored in our model) to be less than 1% of the power
input even up to average SWNT temperatures T � 800 K.
Dissipation at the contacts (I2Rc) is estimated to be less than
5% at high bias.
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Figure 1.8. Negative differential conductance in suspended nanotubes, as observed by [36]
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Thermal transport

Nanotubes have been predicted and reported to have a thermal conductivity ten times that

of copper [38]. This raises hopes that phonon-phonon scattering mean-free-paths are large

and that quantum thermal phenomena can be observed. Additionally, phonon transport in-

fluences the electrical characteristics, as mentioned in the previous section, and a systematic

study of electrically-driven thermal transport can reveal information about the underlying

electron-phonon coupling.

Previously, Philip Kim and co-workers heated MWNTs using micro-fabricated heaters

and reported a temperature dependence of the thermal conductivity [38]. They also used a

scanning probe technique to report the spatial variation of temperature in an electrically-

heated MWNT [39]. Similar information has also been obtained, somewhat indirectly, by

studying the melting of nano-particles placed around MWNTs [40]. These spatially-resolved

temperature measurements involve temperature drops at the measurement contact inter-

face. A non-contact measurement in electrically-heated single-wall nanotubes is desirable to

understand thermal transport better. In Section 6.2, we report such a measurement using

spatially-resolved Raman spectroscopy.
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Chapter 2

Fabrication of Ultra-Clean Nanotube Devices

There exist a number of procedures for making electrical contact to carbon nanotubes. The

most popular procedure is the one developed by my advisor during his graduate work [41]

with variations over the years:

• Disperse bulk-grown nanotubes into solution; deposit solution on Si/SiO2 substrate

(alternatively, deposit/pattern catalyst on substrate and CVD-grow nanotubes in fur-

nace).

• Image substrate using atomic force microscope (AFM) to locate nanotubes.

• Design pattern based on AFM image; write leads using electron beam (e-beam) lithog-

raphy.

• Evaporate metal, lift-off, measure.

This procedure has been used to obtain the bulk of nanotube data in literature. Electrical

contact has been made to clean-enough segments, forming quantum dots and interesting

physics has been observed in metallic nanotubes (as summarized in Chapter 1). However,

quantum dot behavior in semiconducting nanotubes had not been observed for a long time.

Figures 2.1 and 2.2 show typical data obtained from two metallic and semiconducting nan-

otubes, respectively, of similar lengths.

The difficulty in obtaining ballistic data from semiconducting nanotubes can be at-

tributed to the so-called pseudo-spin, as was elucidated by McEuen and co-workers [23].

Recall from Chapter 1 that the electronic structure of nanotubes consists of two bands,

crossing at the two Dirac points in the case of metallic nanotubes. Each band can be at-

tributed to arising from either the bonding or anti-bonding molecular orbital of graphite.

This degree of freedom is called the pseudo-spin. Inter-band scattering at each Dirac point

is prevented in metallic nanotubes since the molecular states corresponding to the two bands
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Figure 2.1. Transport data from a metallic nanotube on substrate. [23]

Figure 2.2. Transport data from a semi-conducting nanotube on substrate. [23]
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are orthogonal. In semiconducting nanotubes however, the electronic states are a mixture

of both bands and scattering is only partially suppressed. This is shown schematically in

Figure 2.3. The scattering matrix element should scale with the bandgap. Note that this is

the response of the system to long-range disorder (such as that arising from inhomogeneities

on the substrate); short-range (atomically-sharp) disorder will cause inter-band scattering

in both metallic and semi-conducting nanotubes.

Figure 2.3. The Brillouin zone of graphene is shown in (a). (b) shows the difference in

molecular states in metallic and semiconducting nanotubes. [23]

In 2004, a few-electron quantum dot was reported from Delft in one semiconducting

nanotube, suspended after fabrication to avoid disorder from the substrate [28]. In 2005,

clean data was reported from Stanford in small-bandgap nanotubes grown in-place on top

of leads and in a suspended geometry [7]. From my trials, results in devices suspended after

fabrication have not been encouraging. We decided to use the latter technique with the aim

of obtaining clean data in semi-conducting nanotubes, since these were the devices most

likely to host the Wigner crystal.
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I have also used other techniques of device fabrication during the course of this thesis,

such as depositing nanotubes from solution on top of thick leads to achieve a suspended

geometry or (AC and DC) dielectrophoresis of nanotubes in solution to trap one (or few)

nanotubes across leads. However, none of these yielded the clean data obtained from the

procedure detailed below:

Fabrication procedure

1. The substrate is a p-doped Si/SiO2 (500 nm)/Si3N4 (50nm) wafer (see Figure 2.4 for

geometry). The first lithography step is for the trench over which the nanotube will

be suspended. Depending on the size of the trench, e-beam or optical lithography is

used to pattern the trench. The nitride is then reactive-ion etched all through. If a

metal layer needs to be evaporated for a local gate, the etching should be isotropic,

so as to create an undercut in the nitride below the resist. Even though this removes

more material than the size of the window, metal does not stick to the nitride walls of

the trench. The oxide is then wet-etched, about 300 nm deep. If etched all the way,

there can be problems with random nanotubes growing from the lead into the trench

and shorting the back gate (i.e., doped Si).

Figure 2.4. Fabrication geometry

2. The second lithography step involves patterning the leads across the trench using

photo-lithography (using a bilayer resist for undercut), depositing metal (most com-

monly, Pt with W sticking layer) and subsequent lift-off.

3. The next step involves patterning islands on the Pt leads, some distance away from
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the trench. This process is done using photo-lithography. A solution of catalyst

nano-particles (see section Catalyst for more details) is then spun on the sample.

The yield of nanotubes successfully crossing the trench is a sensitive function of the

density of catalyst material and the distance of the island from the edge of the trench.

Unfortunately, the best solvent for the catalyst is methanol, which was incompatible

with photoresist. I had to live with making catalyst in water, which does not dissolve

it well and hence there is less control on catalyst density. The catalyst is dried on a

hot plate, lifted off using agitation and ultra-sounded for variable amounts of time to

achieve some control on density.

4. CVD growth of SWNTs [10] involves the high-temperature decomposition of the feed-

stock material (see section Feedstock gas) on the surface of the catalyst to carbon,

which is released by the catalyst in the form of a nanotube (the lowest energy configu-

ration). The nanotubes drift (mostly in the direction of the flow) for a short distance,

typically a few µms, before they stop growing. CVD growth is carried out in a 1 inch

furnace with either methane, ethanol or ethylene as feedstock gas, along with H2 and

Ar co-flows in varying concentrations and various temperatures between 800 and 900

C. Temperature does not seem to be critical, as long as it is high. Samples are baked

in air before and after growth. However, the outcome/data obtained was similar even

when this step was not carried out.

5. Devices are first probed in air at low bias (∼ kBT ) on our home-built probe station to

detect electrically connected pairs of leads. Metallic and semiconducting nanotubes

have typical low-bias resistances ∝ length L (plus contact resistance, which depends

on the specifics of the procedure and nanotube bandgap, but typically ∼ 25 kΩ for

metallic and ∼ 100 kΩ for semiconducting) and differing by a factor of a few. The

length-dependence arises from acoustic phonon scattering. The difference in resistance

between metallic and semiconducting nanotubes can only be partly attributed to the

difference in contact resistance. Temperature dependence of resistivity ρ shows linear

behavior (unpublished data) characteristic of phonon scattering, with co-efficient dρ
dT

larger for semi-conducting than metallic nanotubes, again indicating enhanced scat-

tering in semi-conducting nanotubes. Single nanotube devices are then selected for

wire-bonding, and a more stringent screening at high bias.
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Figure 2.5. Optical micrograph of the layout of devices: the dark spots are catalyst islands

on Pt leads.

Figure 2.6. SEM image of a typical device: the right image is a zoomed-in version of the

red square in the left image.
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6. Devices selected from probing, which have resistances in the range expected for single

tubes, are wire-bonded and measured in argon gas at high bias. At high bias (typically

up to 1.5–2 V), all shells of the nanotube carry current, roughly in equal amounts.

In particular, suspended SWNTs have a characteristic maximum current of ∼ 10/L

µA, where L is the length of the device in µm, as was observed in [36]. This can be

attributed to a heating-induced current-limiting process since the power I2R scales

as 1/L, consistent with 1D conduction of heat which yields a P ∝ 1/L dependence.

Electrical heating is investigated in more detail in Chapters 6 and 7 using Raman and

transport spectroscopy, respectively. High bias enables one to pick out the single-tube

single-wall devices with certainty. Each (5 mm × 5 mm) chip typically has ∼ 50 pairs

of leads of which, on average, about 5 are single devices. However, this number drops

for longer devices. For our 10 µm long suspended samples, we either saw bundles

or nothing. Figures 2.5 and 2.6 are optical and SEM images of the layout and a

representative device, respectively.

I wire-bonded and characterized about 1000 devices at high bias and studied about a hun-

dred of the cleanest ones in the cryostat over various cool-downs. Figure 2.7 shows conduc-

tance G versus gate voltage Vg for a representative “clean” device, with a measured gap ∼

220 meV at 1.4 K and different axial magnetic fields, obtained using a low-frequency lock-in

technique, to be compared with typical data on substrate from a similarly long semicon-

ducting nanotube (Figure 2.2).

In addition, the following factors are crucial for the growth process:

Contact metal

The choice of contact metal is important since the metal should have a favorable work-

function, wetting characteristics, support nanotube growth, survive the high temperatures

involved in the growth process and not alloy with carbon or any of the other materials

involved in growth. In this work, the metals used included Au, Mo, Pd, Pt and W. While

Pt was the material reported by the Dai group, the user facility at Caltech did not have

an e-beam evaporator. Even though Au melts at the high growth temperatures, I was

able to successfully grow devices using a thick enough (∼ 200 nm) Au layer. However, Au
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tended to accumulate a lot of soot and the resulting devices were mostly disordered at low

temperatures. Pd is reported to make ohmic contacts when evaporated on top of nanotubes,

but I found it to be unsuitable as a growth substrate. In fact, the Pd leads were found to

grow their own tubes! After testing Pt leads evaporated by the Scherer group, subsequent

evaporations and related wafer-scale processing (steps 1 and 2 of the fabrication procedure)

were carried out at the nanofab in UC Santa Barbara. In addition, I also used Mo and W

in the hopes of making n-type and electron-hole symmetic contacts to nanotubes. However,

these metals had bad wetting characteristics and these attempts were largely unsuccessful.

Catalyst

The commonly used catalyst is the Fe/Mo salt mixture with alumina nanoparticles dispersed

in methanol, as developed by the Dai group [10]. However, this catalyst is not compatible

with photoresist. The catalyst used in this work was made in water with varying amounts

of Fe and Mo salts. It was reported in [42] that different ratios of Fe and Mo salts produced

nanotubes with different average radii. While AFM radius measurements are not possible

with the suspended geometry, the radial breathing phonon mode (RBM, which directly

yields nanotube radius) in our Raman measurements from resonant nanotubes correlates

with this observation. For most of the growth, I used two Fe/Mo salt ratios by weight:

• (Fe:Mo) 20:1.5 mg for small (. 1 nm) radius nanotubes for Raman measurements

(otherwise the RBM frequency, which goes as 1/radius, is cut off by the notch filter)

• (Fe:Mo) 20:4.5 mg for large (& 1 nm and up to 5 nm) radius nanotubes for magnetic

flux threading measurements

Feedstock gas

Methane, ethylene and ethanol were used as feedstock gases in the CVD process. The growth

process involves ramping up the temperature of the furnace to the growth temperature (800–

900 ◦C) with 0.2 and 0.4 standard liters per minute (SLM) flows of H2 and Ar, flowing the

carbon feedstock for 2–10 minutes depending on the length of nanotube samples required,

flusing the furnace with 2 SLM of H2 and cooling down with Ar flow. With methane as the

feedstock, I used variations of recipes developed by other groups to get clean nanotubes. In
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particular, the combination developed at Delft of (H2:CH4) 0.7:0.52 SLM worked well. Too

little H2 led to noticeable amorphous carbon and disordered devices. My attempts with

C2H4, even with trace amounts, yielded disordered devices. Ethanol was reported by the

Columbia group to grow mm-long nanotubes [43]. My SURF trainee, Scott Hsieh, and I

built an ethanol bubbler setup, and tried various mixtures of Ar gas bubbled into ethanol

with co-flow of H2. The combination H2:Ar of 0.075:0.175 SLM worked best; all of the

long nanotubes reported in Chapter 6 and some of the clean quasi-metallic quantum dots

in Chapter 5 were made using ethanol.

If anything can go wrong, it will

Anybody who has worked on experiments will know what I am talking about here, but the

sheer amount of time I spent on these issues makes me list them, with the hope that future

experimenters working on this system will learn from my mistakes.

• Commercially available ethanol is denatured by adding small amounts of contami-

nants. We found this was bad for growth only after measuring the resulting devices

with transport and Raman, where we found multiple quantum dot behavior and the

defect (D) band, respectively. We obtained better results after switching to non-

denatured alcohol (for which we paid food tax).

• Another problem was that, typically, for an individual nanotube crossing the trench,

many others fell into the trench on the metal at the bottom (see Fig. 2.4), shorting

the lead with the metal. This charged metal screened the nanotube from the back

gate, making these devices useless for most measurements. This happened in almost

50% of the devices. One will need a different fabrication design to overcome this issue.

• Clean devices require extremely clean growth conditions and the slightest presence of

impurities can lead to disordered devices. While I was quite diligent about regularly

making new catalyst, replacing the alcohol, cleaning the furnace, etc., there was one

very frustrating period when I could not obtain clean data in spite of changing every

variable of the growth process (and there are a lot of them!). This was finally traced

to a minute leak in the gas setup.
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Chapter 3

Interacting Electron States in Carbon Nanotubes:

Theory

Electron-electron interactions have a profound effect on the properties of solids. Under

certain conditions, they are known to be responsible for such exotic behavior as the frac-

tional quantum Hall effect (FQHE) and high-temperature superconductivity in two- and

three-dimensional (2D and 3D) materials, respectively. In general however, in 2D and 3D

interactions are well accounted for by Landau’s Fermi liquid theory. In this theory, low-

energy excitations of an interacting electron gas can be described in the same way as the

Drude or Sommerfeld theory of non-interacting electrons; there is a one-to-one correspon-

dence between non-interacting electrons and “dressed” quasiparticles of the Fermi liquid

theory.

In 1D, Fermi liquid theory breaks down even for arbitrarily weak interactions [2]. This

can be understood from the linear dispersion that arises in such conditions, where energy

and momentum conservation are essentially the same. This leads to large available phase-

space for electron scattering, in turn causing a vanishing lifetime for the quasiparticle.

The low-energy excitations of such a Luttinger liquid are bosonic in nature and comprise

of charge and spin excitations (plasmons and spinons) propagating independently of each

other (a phenomenon known as spin-charge separation). Indeed, Luttinger liquid behavior

has been observed in clean 1D systems such as carbon nanotubes [3] and edge states of

the FQHE liquid [5]. Spin-charge separation has been observed in parallel tunnel-coupled

semiconductor quantum wires [44].

The Luttinger liquid has certain conditions for validity, such as linear energy dispersion

and the inclusion of only forward-scattering electron-electron interactions. Relaxing these

conditions can lead to qualitatively different behavior. In this chapter, the Luttinger liquid

formulation in carbon nanotubes is described in Section 3.1. In Section 3.2, it is shown
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that introducing a curvature in the dispersion leads to the 1D Wigner crystal ground state.

In Section 3.3, it is shown that including electron-electron back-scattering interactions at

half-filling (umklapp scattering) for metallic nanotubes results in a Mott insulating ground

state.

1D systems are special, in that Coulomb interactions cannot be described using pertur-

bation theory [2]. Instead, one uses the equivalence of bosons and fermions in 1D, in a field

theoretical technique called bosonization. This chapter will use bosonization terminology

to describe mathematically the various processes involved in clean systems. Knowledge of

this technique is not necessary to understand the contents of this chapter; however, the

interested reader is guided to excellent references on bosonization [2, 45, 46].

3.1 Luttinger liquid formalism

Electron bands in metallic single-wall nanotubes form two pairs (i=1,2) of spin-degenerate

(α =↑, ↓) right- (R) and left- (L) moving branches intersecting at the band center, as shown

in Chapter 1. The Hamiltonian, without considering interactions, has the form [2]:

H0 = −i~vF
∫
dx
∑
iα

Ψ†iασ3∂xΨiα (3.1)

where Ψ is a two-component wave-function Ψ = [ψRψL]†, σ3 is the Pauli matrix, vF is the

Fermi velocity and x is the co-ordinate along the nanotube. In the procedure of bosonization,

where an electron is described in terms of an infinite number of bosons, one introduces a

bosonic displacement field θ and phase field φ, such that ρ(x) = ∂xθ(x)/π is the charge

density and p = ∂xφ(x)/π is the momentum conjugate to θ. One writes ψR,Liα ∼ ei(φiα±θiα)

where the dual fields satisfy [φiα(x), θjβ(y)] = −iπδiαδjβΘ(x − y). Expressed in these

variables, Equation 3.1 takes the form H0 =
∑

iαH0(θiα, φiα) where

H0(θ, φ) =
~vF
2π

∫
dx[(∂xθ)2 + (∂xφ)2]. (3.2)

This Hamiltonian describes a bosonic wave propagating at velocity vF , as can be verified

by using the commutation relations to obtain the equations of motion, ∂2
t θ = v2

F∂
2
xθ and

similarly for φ.

Interactions are included in the forward−scattering approximation, in which only pro-
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cesses involving small momentum transfer are considered. Interbranch scattering processes

(such as backscattering and umklapp) involve a momentum transfer of order 2kF ∼ 1/a,

where a is the carbon-carbon bond length. These processes are dominated by the short-

range part of the interaction, at distances r ∼ a, where the interaction changes significantly

from site to site. Such processes are ignored by using a short-range cutoff, 2r, the diameter

of the nanotube. Furthermore, long-range interactions are assumed to be screened on a

scale Rs, which is long compared to the radius r but short compared to the length of the

nanotube. Modeling the nanotube as enclosed by a cylinder of radius Rs, the energy to

charge the nanotube with an electron density eρtot is

Hint = e2ln(Rs/r)
∫
dxρ2

tot. (3.3)

Since Hint involves only charge, one introduces a spin and band decomposition via θi,ρ/σ =

(θi↑ ± θi↓)/
√

2 and θµ± = (θ1µ ± θ2µ)/
√

2, with µ = ρ, σ and similar definitions for φ. Now,

the branch ρ+ is charged while the other three branches (ρ−, σ+, σ−) are neutral. One

can write the Hamiltonian only for the charge sector as Hρ = H0(θρ+, φρ+) + Hint(θρ+),

and may be written as

Hρ(θρ+, φρ+) =
~vρ
2π

∫
dx[g−1(∂xθρ+)2 + g(∂xφρ+)2]. (3.4)

This describes the 1D acoustic plasmon which propagates with velocity

vρ =
√
vF [vF + (8e2/π~)ln(Rs/r)] and is characterized by the Luttinger parameter g =

vF /vρ ∼ 0.2 for nanotubes. The neutral modes are unchanged by interactions and propagate

at vF . Thus the charge mode travels ∼ 5 times faster than the neutral modes. This describes

the well-known spin-charge separation.

The above treatment makes two important assumptions which we shall now relax:

• Linear energy dispersion, and long-range cutoff at a distance Rs much smaller than

nanotube length.

• Neglect of back-scattering processes, i.e., short-range cutoff at the diameter 2r, larger

than inter-atom spacing.
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3.2 Inclusion of band-curvature: The 1D Wigner crystal

The Hamiltonian from the previous section is modified to account for the absence of screen-

ing, so that the Fourier component of the (truly) long-range interaction reads V (q) =∫
V (x)eiqxdx = e2ln[(qr)−2 + 1]. Now,

H0 = −i~vF
∫
dx

3∑
j=0

Ψ†jσ3∂xΨj +
1
2

∑
q

ρqV (q)ρ−q (3.5)

with the summation over j being the four modes as in the previous section. As shown by

Levitov and Tsvelik [47], band curvature (relevant for small-bandgap and semiconducting

nanotubes) is included by adding to the above Hamiltonian a back-scattering term

Vext = ∆0

∫
dx

3∑
j=0

Ψ†jσ1Ψj (3.6)

where ∆0 is the band-gap of the nanotube.

In computing quantities relevant for transport, e.g., tunneling density of states, one

considers the classical action, S, which can be written in terms of the Lagrangian L as

S =
∫
dxdτL, in imaginary time τ where

L =
i

π
∂τφ∂xθ +H(φ, θ). (3.7)

The Lagrangians corresponding to H0 and Vext become

L0 =
~vF
2π

(
(∂tφ0)2 −K (∂xφ0)2 +

3∑
a=1

(∂µφa)2
)
, (3.8)

Lext = −λ

(
3∏

a=0

cosφa +
3∏

a=0

sinφa
)

(3.9)

where λ is a renormalized coupling constant related to the band-gap ∆0 by λ = K∆2
0/(4π~vF )

and K = g−2 (g is the Luttinger parameter) is the “stiffness” of the charge mode, related

to the inter-carrier interaction potential and usefully approximated by a constant ∼ 20–40.

This is the well-studied sine-Gordon Lagrangian (the first correspondence between mas-

sive 1D fermions and the sine-Gordon model was made by Coleman [48] and Mandelstam [49]

in 1975). Adding an electron to the system corresponds to creating a sine-Gordon soliton.
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The excitation gap of such a system is given by the energy of the soliton. The difference

in velocities between the charge and neutral (flavor) sectors leads to a separation of energy

scales with the charge gap (measured energy gap) ∆ being stiffer than the flavor gap by

a factor K1/2; the flavor gap, ≈ ∆0, is relatively unaffected by interactions. The charge

soliton is confined in space to a region (width wρ) related to ∆ by wρ ∼ ~vρ/∆, where

vρ = K1/2vF is the charge mode velocity. The flavor soliton width is w ∼ K−1/2wρ.

One can think of solitons as a competition between the kinetic energy of localization,

arising from L0, which favors extended electrons, and the potential energy due to the

presence of a bandgap, Lext which favors point-like electrons. As a result of the competition,

the electron is localized within a finite region of space, i.e., the soliton width. For a multiple

electron system, the minimum energy configuration is a 1D lattice of solitons as shown

in [47]. This is a realization of the 1D Wigner crystal.

3.3 Inclusion of umklapp scattering: The Mott insulating

state

In general, backscattering interactions require the presence of atomically sharp impurities,

which are seen to be absent in clean samples. However, at commensurate filling of energy

bands, umklapp scattering is a viable backscattering mechanism. Such a process, where the

initial and final electron momenta differ by a reciprocal lattice vector, is governed by the

short-range part of the Coulomb interaction.

In this section, we consider the effect of umklapp scattering in metallic nanotubes,

at half-filling of energy bands. As discussed first by Balents and Fisher [50] and further

by Lin [51], one can establish equivalence between a nanotube and a two-chain version

of the 1D Hubbard model (also known as a two-leg ladder) as shown in Fig. 3.1 for an

armchair nanotube. The on-site interaction strength is averaged over the atoms along

the circumference (because the electrons are delocalized around the circumference of the

nanotube, and hence occupy the same site with reduced probability). One then accounts

for long-range interactions in the same way as the previous section.

The Lagrangian for a metallic nanotube at half-filling has the form L = L0 + Lumk,
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where L0 is the same as in the previous section

L0 =
~vF
2π

(
(∂tφ0)2 −K (∂xφ0)2 +

3∑
a=1

(∂µφa)2
)
, (3.10)

and the backscattering part [52]

Lumk = D

3∑
a=1

Va cos 2φ0 cos 2φa. (3.11)

The long-range part of the interaction stiffens the charge mode by a factor K1/2 as in the

previous section, Va is the short-range part scaled down by 1/N (N is the typical number

of atoms along the circumference)

Va = (e2/~vF )/N ∝ 1/r (3.12)

and D ' ~vF /r is the 1D bandwidth.

This is also a sine-Gordon problem with soliton solutions. The magnitude of the resulting

Mott gap is given by the energy of the charge soliton. Calculations [53] show that long-range

interactions give a non-trivial scaling to the Mott gap with nanotube radius r,

∆Mott ∝
1

r1/1−g
(3.13)

where g is the usual Luttinger parameter ∼ 0.2–0.3 in nanotubes.

The two-leg ladder is known to be a special type of Mott insulator, known as a spin-

liquid Mott insulator, with gapped neutral excitations [54]. Theories [50, 51, 53, 55, 56]

predict a similar ground state for nanotubes. The nanotube Mott state is predicted to have

neutral excitations (corresponding to the three neutral modes) smaller than the Mott gap

by a factor of the order g due to the effect of long-range interactions [53, 56].

Phase diagram of carbon nanotubes

Upon considering interactions as detailed in this chapter, the phase diagram of appropriately

long carbon nanotubes looks as shown in Figure 3.2. In nanotubes with a bandgap, there

is a crossover from a 1D Wigner crystal to a Luttinger liquid as a function of doping. In
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metallic nanotubes, there is a quantum phase transition from a Mott insulator to a Luttinger

liquid on adding an electron.
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Figure 3.1. Short-range interactions on an armchair nanotube shown to be the equivalent

of a two-chain Hubbard model. [50]

1D Wigner
crystal

Luttinger liquid

E

k

Luttinger liquid

Mott insulator

Figure 3.2. Phase diagram of electrons in metallic (left) and semiconducting (right) carbon

nanotubes
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Chapter 4

The One-Dimensional Wigner Crystal in Carbon

Nanotubes

Abstract

A dilute system of electrons interacting through long-range Coulomb forces

has been predicted to form a periodic solid known as a Wigner crystal. We

demonstrate using low-temperature single-electron transport spectroscopy that

a hole gas in low-disorder carbon nanotubes with a band gap is a realization of

the one-dimensional Wigner crystal. In an axial magnetic field, we observe three

distinct regimes of spin and isospin polarization as carrier density is varied. We

explain these regimes using a Wigner crystal picture based on a gapped Luttinger

liquid model, with the carriers represented by spatially localized solitons. Our

observation can lead to unprecedented control over the behavior of the spatially

separated system of carriers, and could be used to realize solid state quantum

computing with long coherence times.

Electron-electron interactions strongly affect the behavior of low-dimensional systems.

In one dimension (1D), arbitrarily weak interactions qualitatively alter the ground state

producing a Luttinger liquid (LL) [2] which has now been observed in a number of experi-

mental systems [3–5, 57, 58]. Interactions are even more important at low carrier density,

and in the limit when the long-ranged Coulomb potential is the dominant energy scale, the

electron liquid is expected to become a periodically ordered solid known as the Wigner crys-

tal [59]. In 1D, the Wigner crystal has been predicted to exhibit novel spin and magnetic

properties not present in an ordinary LL [20, 60–63]. However, despite recent progress in

coupled quantum wires [64, 65], presence of disorder has precluded unambiguous experi-

mental demonstration of this state.
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Carbon nanotubes are high mobility quantum wires that may enable the study of the

intrinsic properties of the 1D electron gas without significant disorder. Individual-nanotube

transport experiments have demonstrated Coulomb blockade [24, 25] and Kondo physics

[26], down to the few-electron-hole regime [7, 28, 29]. These experiments have generally been

interpreted using the orthodox model and four-fold shell-filling. However, deviations have

been noted at low density [7, 28], suggesting the importance of electron-electron interactions.

In 1D, the ratio of inter-electron Coulomb energy to kinetic energy scales as 1/(naB), where

n is the carrier density, aB = ε~2/me2 is the Bohr radius, ε is the dielectric constant, e is

the electric charge, ~ is Planck’s constant, and m is the electron effective mass. On the

basis of this order-of-magnitude estimate (see e.g. ref. 9), the Coulomb energy becomes

dominant and the system should begin to cross over to a strongly interacting regime at

n ∼ aB
−1 = me2/ε~2. Thus, nanotubes with larger bandgap and hence effective mass are

more favorable for the observation of the Wigner crystal state; yet to date most studies

in the few-electron regime have been done on nanotubes with relatively small gaps (<100

meV).

We report axial magnetic field measurements on low-disorder carbon nanotubes with

larger bandgaps than previous studies. We observe for the first time three distinct regimes

as a function of carrier density and magnetic field: (I) a completely spin and isospin polar-

ized state, (II) an isospin polarized, spin antiferromagnetic state, and (III) an unpolarized

state with a four-fold addition energy period. The transitions among these regimes can be

quantitatively and intuitively explained using a Wigner crystal picture based on a gapped

LL model [47]; the carriers are represented by spatially localized soliton solutions of the the-

ory. The value of the soliton width we obtain from our analysis, corresponding to the spatial

extent of the carrier wavefunctions, agrees with theoretical estimates [47, 66]. Surprisingly,

we observe a sudden quenching of the Kondo effect for odd hole states as the magnetic

field is tuned through the transition from the antiferromagnetically ordered regime to the

four-fold filling regime. This can be understood based on the formation of large spin states

with spin S ≥ 3/2 resulting from the interplay between the spin and isospin degrees of

freedom in the Wigner lattice.

Nanotubes with a bandgap are known to be more susceptible to disorder than metallic

nanotubes [23]. Our fabrication procedure, based on Cao et al. [7], is designed to reduce

disorder by growing nanotubes in a suspended geometry to eliminate perturbations from
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Figure 4.1. Experimental geometry and characteristic transport data. (a) Scanning electron

microscope image of a representative suspended nanotube device. Samples are fabricated by

chemical vapor deposition growth of single-walled carbon nanotubes, from lithographically

defined Fe-Mo catalyst islands [10] across predefined Pt electrodes [7], by flowing a gas

mixture of methane (0.5 SLM) and hydrogen (0.7 SLM) at 800 ◦C for 5 min. Devices are

first studied at room temperature in an inert environment and the gate voltage and high

bias (up to 1.5 V) electrical transport characteristics are recorded. Devices determined

to have a bandgap and that show negative differential conductance at high bias with a

maximum current of ∼10/L µA (where L is the known device length in µm), corresponding

to individual, suspended, single-wall nanotubes [36], are then selected for low-temperature

measurement. (b) Schematic of device geometry showing nanotube with attached source,

drain, and doped Si gate electrode ∼600 nm below the nanotube. (c) Conductance versus

gate voltage for a 500 nm long device at temperature T=1.4 K.
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the substrate and directly over metal contacts in order to avoid disorder due to chemical

processing. Fig. 4.1(a) shows a scanning electron microscope image of a representative

device, while Fig. 4.1(b) shows a schematic diagram of our devices, consisting of a nanotube

with attached source, drain and gate electrodes.

At low temperatures, we typically observe Coulomb peaks in the conductance G versus

the gate voltage Vg, when each additional hole is added to the nanotube dot. Fig. 4.1(c)

shows such G versus Vg data taken at temperature T = 1.4 K from a device D1 with length

500 nm. Vg >1 V depletes the nanotube, placing the Fermi level in the bandgap. The

regularity of the Coulomb peaks indicates that we are studying a single quantum dot that

is essentially free from disorder and pinning. Non-linear transport spectroscopy results for

D1 are shown in Figure 4.2(a) as a color-scale plot of dI/dV versus source-drain bias V

and Vg. The data exhibits Coulomb blockade diamonds, shown by the dashed lines, and

analysis of the data yields a charging energy U ∼10 meV, consistent with that expected for

a 500 nm-long nanotube dot. We also measure the scale factor α between energy and Vg

and find for D1 α ≈ 14. Using the value for α and a measurement of G versus Vg over the

bandgap, we infer the bandgap 2∆, which for D1 was found to be ∼220 meV.

Each Coulomb peak corresponds to the addition of a hole, with both a physical spin and

an isospin that corresponds to its sense of the orbital motion around the tube waist [29].

In a magnetic field B, the increase in ground state energy from each hole shifts by the

sum of contributions Eorb from its orbital magnetic moment [7, 29] and the Zeeman energy

EZ from the hole spin [67]. These energies are given by Eorb = ±µorbB = ±revFB/2 ≈

±0.41meVB[T]r[nm] [7, 29], and EZ = ±gµBB/2 ≈ ±0.058B[T] meV, where µB is the

Bohr magneton, r is the tube radius, e the electric charge, vF the Fermi velocity, g ≈ 2 is

the electron g-factor. As the position of Nth Coulomb peak in Vg is α times the energy

difference between the N and N + 1 hole ground states, we determine the spin and isospin

of each added hole by applying B parallel to the tube axis (Fig. 4.2(b)) and studying the

Coulomb peaks’ shifts versus B. Our results are plotted in Fig. 4.2(c), which shows a

color-scale plot of G vs. B and Vg from D1. (Line traces of G versus Vg for various B > 0

were shown in Fig. 2.7).

Three distinct regimes are evident. For peak numbers N up to ∼12, their evolution is

nearly parallel from near B = 0 T up to B = 8 T, shifting to larger Vg for larger B (positive

slope). This region is referred to as region I. At more negative Vg, the slopes alternate
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Figure 4.2. Transport spectroscopy and magnetic field evolution of Coulomb peaks. (a)

Color plot of dI/dV versus gate voltage Vg and source-drain bias V . (b) Magnetic field B

orientation relative to nanotube. (c) Color plot of G versus Vg and magnetic field B. The

three different regions and curves, obtained from a model fit, delineating them are described

in the text.

between two different positive values (region II). Finally, a region where both positive and

negative slopes are observed in the vertical features, producing a zig-zag pattern, with

similar magnitudes to the slope in region I. In addition, approximately horizontal features

occur quasi-periodically in B (region III). The zig-zag pattern persists down to relatively

weak fields, but is difficult to resolve below B = 3 T over the Vg range shown. Additionally,

in region III, a four-fold period to the addition energies is observed, particularly at large

carrier density (for example, Fig. 4.1(c) for Vg ∼-6 V, where the largest interval is typically

∼5% larger than the next smaller interval). The boundaries delineating these three regions

are superimposed on the data as solid curves, which are calculated using a theoretical model

as discussed below.

The spin and isospin states of each added hole can be inferred from the corresponding

Coulomb peak slopes dE/dB = (e/α)dVg/dB. Figure 4.3(a) shows the measured slopes

at B = 8 T in region I and II versus N . The peaks in region I are nearly parallel, with

d(EZ + Eorb)/dB ∼ 0.4 meV/T; in contrast, peaks in region II show a pronounced slope

alternation, with an amplitude ∆Es ∼ 0.14 meV/T. This indicates that in region I, all
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the holes enter the dot with the same spin and isospin; in region II, the holes enter with

alternating spins, but with the same isospin (see Fig. 4.3(a) insets). We thus find µorb ∼ 0.33

meV/T, yielding r ∼0.8 nm. The electron g-factor is estimated from ∆Esto be ≈2.4, in

good agreement with the theoretical value '2. Similar behavior has been found in all

devices with a significant gap that showed regular Coulomb oscillations, attesting to the

generality of this behavior in low-disorder samples. (Data from another device D2 is shown

in the supplementary section in Fig. 4.5.)

The spin polarization observed in region I is surprising. In a shell-filling picture, the

subbands corresponding to different isospin are split by the field [7, 29], and holes first begin

to fill the lowest energy subband. This could account for the consistent isospin of the added

holes. Yet, we expect because of the spin degenerate hole wavefunctions, they will tend to

enter with alternating spins. Indeed, simple shell-filling models based on non-interacting

electrons (such as a parabolic potential [28] or hardwall potential [7]) fail to reproduce the

observed behavior (a detailed analysis is given in the Supplementary Discussion and Fig.

4.6), suggesting that strong interactions at low densities fundamentally alter the carriers’

ground state.

This observed behavior, however, can be accounted for by assuming that the holes form

a 1D Wigner crystal, in which the carriers become periodically ordered and interact via

an exchange interaction J [20, 62, 68]. When B > 0 the state of the Wigner crystal is

a competition between magnetic and exchange energy. At low n [62, 69], J is predicted

to become exponentially small and the total energy will be minimized by having the holes

with both spin and isospin polarized. At intermediate n, since Eorb >> EZ , we expect a

transition to an antiferromagnetically spin ordered, isospin polarized chain when gµBB =

2J . For larger n, the carrier wavefunctions overlap strongly and we expect that exchange

energy becomes large. We note that in nanotubes, carrier pairs have an exchange energy

cost if and only if they have the same exact quantum numbers, including both spin and

isospin; otherwise, a given carrier pair can both occupy their lowest energy molecular orbital

state. This produces a four-fold addition energy pattern [47]. This picture thus qualitatively

accounts for the existence and behavior of the three distinct regions as well as the transitions

among them as n increases.

To analyze our data quantitatively, we utilize the theory of Levitov and Tsvelik [47].

The carriers in the 1D Wigner crystal within the nanotube are treated in terms of a linear
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Figure 4.3. Energy shift of Coulomb peaks with B and schematic diagram of solitons

corresponding to the four combination of spin and isospin. (a) Energy shift per tesla dE/dB

of Coulomb peaks measured at B=8 T in region I and II. dE/dB is roughly constant in

region I and shows alternation in region II. The value of the tube radius we find from

analysis of this data is consistent with the range of radii typically reported for methane-

based nanotube growth over the catalyst we employ [10], although knowledge of the tube

radius is not essential to our analysis and interpretation. Inset: schematic diagrams of

spin configurations in region I and region II. The holes all have isospin up. (b) Spatial

variation of the four fields corresponding to charge sum in the two isospins (φc+), and

three flavor modes corresponding to the charge difference (φc−), and spin sum (φs+) and

difference (φs−). The corresponding hole configuration is shown at the top with the arrows

indicating the spin and the color indicating the isospin, with blue indicating isospin up and

red, hatched isospin down. The flavor soliton width w is indicated by the red lines.



38

combination of a charged bosonic field and three neutral flavor bosonic fields, chosen to

yield their given spin and isospin. The fields’ behavior is governed by a kinetic energy

cost for localization that competes with a gap-dependent potential energy gain. This yields

spatially-localized soliton solutions for the fields, with an optimal width w for the flavor

solitons. Theoretical estimates yield a range of w ∼ 5− 20 nm for sample D1, and a charge

soliton width approximately five times larger [47, 66]. Figure 4.3(b) shows the classical

spatial variation of the four fields necessary to produce a chain with the four different spin

and isospin combinations.

We use the theory of Levitov and Tsvelik in a classical approximation (details are

provided in the Supplementary Discussion) to compute the ground state energy for a spin

polarized (I), antiferromagnetically ordered (II), and four-fold period (III) ground state

using the spin and isospin configurations shown in the insets to Figs. 3(a) and 3(b). As

n increases, the flavor solitons overlap more strongly and J increases, leading to ground

state transitions among the three states for B > 0. Note that our model assumes a uniform

J ; nevertheless, if the potential along the nanotube is non-uniform, as expected in our

geometry [28, 70], the transition should occur with a similar energy per carrier as calculated

by our method.

Using w as a fitting parameter, we fit the observed transition between regions II and

III to the calculated B where the two states are degenerate. Fitting the data in Fig. 4.2(c)

yields w ∼ 9 nm. This fit is plotted in Fig. 4.2(c) as the yellow curve and follows the

observed boundary closely. The fitted value falls well within the range of theoretically

expected values. In the next step, using the fitted value for w = 9 nm, we directly compute

the boundary between regimes I and II. The result is plotted in Fig. 4.2(c) as the grey

curve, indicating the expected number of spin-polarized holes added at B = 8 T is ∼9,

in agreement with the observed number ∼12. Although this boundary is not as distinct

as that between II and III (attributed to the thermal smearing ∼ kBT/gµB ' 1 T), the

agreement is satisfactory given that the curve is plotted without free parameters.

Finally, we focus on the transition between regions II and III, which reveals a unique

aspect of the strong electron correlations. Fig. 4.4(a) displays a color-scale plot of the

conductance, G versus B and Vg. Regions II and III are divided by a black dotted line. In

region II, G between adjacent Coulomb valleys alternates, with larger G in the odd-hole val-

leys, as shown in Fig. 4.4(b). This is a well-known signature of the Kondo effect [71], which
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Figure 4.4. Kondo effect and flavor configurations. (a) Color scale plot of G versus Vg and

B. The boundary between regions II and III is shown by the black dashed line. Points A

and B are in an odd-hole valley, while points C and D are in an even-hole valley. (b) G

versus Vg showing Coulomb peaks in region II taken at B = 5 T. (c) Line traces from part

a taken along the odd-hole valley (shown in red) and in the even-hole valley (shown in dark

yellow). (d) Shell filling picture of the transition between region II and III. Isospin up is

shown by blue levels, while isospin down is shown by red levels. (e) Wigner crystal picture

of the transition between region II and III.
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results from the screening of a local spin on the nanotube with the conduction electrons

in the electrodes to form a spin singlet state. This state has characteristic binding energy

∼kBTK , where TK is the Kondo temperature [71], and kB is Boltzmann’s constant. The

conductance alternation between valleys, and slopes of the Coulomb peak motion discussed

previously indicates that the spin on the nanotube changes between S = S0 in the even

valleys and S = S0 + 1/2 in the odd valleys, where S0 is a constant [67].

To understand the appearance of the Kondo effect in our system, we note that in this

regime of n, the spacing between flavor solitons ∼15–20 nm is comparable to their width ∼10

nm. As a result, J is large and the spin wave velocity approaches ∼ vF . For kBTK lower than

the quantum level spacing for spin wave excitations, ≈ hvF /2L ∼ 3 meV, the Kondo effect

will be sensitive to the total spin and isospin on the dot. This order of magnitude estimate

is supported by theoretical calculations of the Kondo effect in quantum dot chains, which

are conceptually similar to our system (see e.g. ref. [72]). We estimate from the measured

parameters of our dot that kBTK is ∼0.1 meV at the center of the Coulomb valleys [26] and

thus we expect the total spin and isospin to be relevant.

An unexpected feature of the Kondo effect is the decrease in G by ∆G ∼ 1.5 µS in an

odd-hole valley when B is tuned from region II to region III. In contrast, in the even-hole

valley no such drop is observed (Fig. 4.4(a) points C and D). Fig. 4.4(c) shows G versus B

taken along the red and yellow vertical dashed lines in adjacent Coulomb valleys. A shell-

filling model could possibly account for the ridges by Kondo resonances enabled by level

crossings [30]. However, this picture cannot readily account for the observed conductance

drop ∆G since an odd hole state with total spin S = S0 + 1/2 remains in the same spin

state even when the up and down isospin bands first align at the Fermi level, as illustrated

in Fig. 4.4(d). This picture therefore predicts ∆G = 0, contradicting the observed dip.

However, according to the theoretical model discussed above, there are still strong cor-

relations that can lead to different predicted spin ground states than a shell-filling picture.

In particular, the transition between region II and III occurs via a succession of isospin

flips, as indicated by the zig-zag pattern in region III. We attribute this to the previously

mentioned non-uniform potential along the nanotube that produces a spatially inhomoge-

neous exchange interaction. When B is lowered from region II, the first localized isospin

flip occurs in the region of maximum J . This will also be accompanied by a physical spin

flip, which minimized the magnetic energy without an exchange energy cost. The total spin
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state becomes S = S0 + 3/2, as shown schematically in Fig. 4.4(e). Since TK generally

becomes lower as S increases [73], we expect G to drop between A and B, as observed. Thus

the observation of ∆G > 0 in the odd-hole valley provides a clear experimental signature

of the strongly correlated nature of carriers in our experiment, that cannot be readily ac-

counted for in a non-interacting electron picture. Note that while a classical description of

the solitons can be used to explain our observations, further experimental and theoretical

work is necessary to fully elucidate the behavior of the Kondo effect in our system. Nev-

ertheless, taken together with the quantitative agreement of the transition boundaries to

the theory of Levitov and Tsvelik, our data provides convincing evidence that carriers in

carbon nanotubes at low densities form a 1D Wigner crystal.

The realization of this long predicted state can be used to test theories of interacting

electrons in 1D in the clean limit [20, 61–63, 66]. For instance, at B = 0 the equilib-

rium state is determined by a competition between the thermal energy kBT and J . If

kBT >> J , the spins and isospins can flip freely because of thermal fluctuations. This

spin-incoherent regime is predicted to exhibit different behavior from an ordinary quan-

tum wire, for example reduced conductance [20]. This may be observable in our system

in future experiments provided we can achieve ballistic contacts to the nanotubes, for ex-

ample by using Pd electrodes [74]. Moreover, we note that at low density, the experiment

achieves a carrier separation of ∼100 nm which gives experimental access to control of in-

dividual exchange couplings, say using local gates. One could then utilize the many-body

Wigner crystal as a chain of quantum bits towards realizing spin-based quantum comput-

ing in carbon, where intrinsic spin lifetimes are expected to be longer than in conventional

semiconducting materials.

Supplementary Discussion

Calculation of exchange energy

The Levitov and Tsvelik theory [47] treats the carriers in a nanotube as a gapped

Luttinger liquid (LL). The interactions in the gapped LL are characterized by a charge

stiffness parameter K which is related to the inter-carrier interaction potential and can be

usefully approximated by a constant ∼ 20 − 40 [47, 66]. The interactions renormalize the

non-interacting electron bandgap, making it ∼ K1/2 times larger.



42

In a nanotube LL, the two spin and two isospin states are described by one charged

and three neutral flavor bosonic fields. When a spectral gap is introduced into the LL,

the minimum energy field conguration becomes a lattice of sine-Gordon solitons, concen-

trating charge, spin, and isospin into localized packets to form the 1D Wigner crystal.

The characteristic width wc of the charge solitons is related to the measured gap ∆ by

wc ∼ ~vc/∆ [75], where vc = K1/2vF is the charge mode velocity [47]. The flavor soliton

width is w ∼ K−1/2wc [47, 66].

We compute the exchange energy in the Wigner crystal starting from the bosonized

Lagrangian for the gapped Luttinger liquid with the four bosonic fields, which is the sum of

two terms V0 + V1. The competition between V0 and V1 leads to soliton solutions for these

fields. The solutions [47], together with the potential, enable us to compute the energy

treating the fields classically.

The first term V0 arises from the kinetic energy of localization [2, 47]

V0 =
~vF
2π

∫
dx

3∑
a=1

(∂xφa)2 (4.1)

where φ0 = φc+ is the charged field φ1,2,3 = φs+, φs−, φc− are the three flavor fields, q is a

wavevector, x is a position coordinate, vF is the Fermi velocity, and ~ is Planck’s constant.

The second term V1 is an effective potential that arises from the gap, given by [47]

V1 = −4λ
∫
dx[cos(φc+) cos(φc−) cos(φs+) cos(φs+)

+ sin(φc+) sin(φc−) sin(φs+) sin(φs+)], (4.2)

where λ ' ~vF /(4πw2) is a (renormalized) coupling constant that is related to the physical

flavor soliton width w.

A single soliton centered at the origin for the charge field is approximated by [47]

f0(x) =
π

4

[
e

x√
Kw θ(−x) +

(
2− e−

x√
Kw

)
θ(x)

]
, (4.3)

where θ(x) is the unit step function. As a composite soliton of charge and flavor modes is

the lowest energy state [47], the flavor fields then vary as

fi(x) = βi
π

4

[
e
x
w θ(−x) +

(
2− e−

x
w

)
θ(x)

]
, (4.4)



43

where β̄=(1,1,1) for a spin up, isospin up carrier, β̄=(1,-1,-1) for a spin up, isospin down

carrier, β̄=(-1,-1,1) for a spin down, isospin up carrier, and β̄=(-1,1,-1) for a spin down,

isospin down carrier. A soliton lattice corresponding to a chain of N carriers with density

n is given by

φ0(x) =
N∑
j=1

f0(x− j/n) (4.5)

φi(x) =
N∑
j=1

βijfi(x− j/n), (4.6)

where βij are the numbers βi for the jth carrier. The energy is computed by substituting

the expressions for φ0(x) and φi(x) into the the potential V0 +V1 and computing the energy

numerically. The magnetic energy is computed by multiplying the net spin by gµBB/2

and the net isospin by µorbB. The sum of the exchange and magnetic energy for a spin

and isospin polarized electron or hole lattice, a spin-alternating, isospin polarized lattice,

and a four-fold period lattice is used to determine which of these three states is the ground

state. The result for the boundary between the four-fold and spin-alternating region is then

converted into a mathematical interpolation function to fit to the data.

We note that this model is expected to be valid as long as the soliton width significantly

exceeds the tube diameter [47], as it is expected to theoretically, and as it does in our fitted

results.

Magnetic field and gate-voltage dependence from different devices

Figure 4.5(a) shows the differential conductance versus Vg and B for sample D1 taken to

larger negative gate voltages than shown in the main text. Figure 4.5(b) shows similar data

from another sample D2, also taken at 1.4 K. Note that the soliton spacing becomes smaller

than the characteristic soliton size which occurs at ∼L/w ∼ 50 holes for devices D1 and D2.

In this regime, the solitons should merge together. This corresponds to a nearly constant

charge and flavor density. In this limit, we expect that the device will therefore cross over

to a metallic hole-liquid like regime, where the behavior can be described by a conventional

shell-filling picture [24, 25], consistent with the well-defined four-fold periodicity of the

Coulomb peaks we observe in this regime.
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Addition energies; analysis of hardwall and parabolic potential models

Figure 4.6(a) shows the addition energies for sample D1 for different magnetic fields

(offset for clarity). The data was obtained at each magnetic field value from the measured

peak spacings and the value for α given in the text. Arrows mark the approximate beginning

and end of region II for each magnetic field value. We note that the addition energies arise

from the total energy to add each hole, including the Coulomb energy. In contrast the slope

of the Coulomb peaks’ evolution depends only the coupling of each hole’s energy to the

magnetic field. Therefore, determining the quantum number of the added carriers from the

Coulomb peak evolution as we have done in the main text is more straightforward than

using the addition energies.

Figure 4.6(b) shows a plot of the calculated level spectrum from a hard-wall model

(HWM), for the length and measured µorb for D1. In addition to the coupling to the

magnetic field from the electrons orbital motion [7], we also include the Zeeman energy

from the electron spin. The levels are then derived from the equation

En,σ,δ = ~vF
√

(
∆

~vF
+ δ

reB

2~
)2 + (πn/L)2 + σ

gµBB

2
, (4.7)

where the signs are determined by the spin (σ = −1, 1) and isospin (δ = −1, 1) correspond-

ing to each level, n is an integer ≥1, and other variables are as given in the text.

In the simplest picture, these single-particle levels with lowest level spacings ∼150, 250,

350... µeV would be filled with electrons up to the Fermi level. Up to B = 9 T, 4 holes are

in region I, significantly less than the ∼12 spin-polarized carriers we observe. In addition, if

we assume a constant charging energy U , The HWM predicts kinks in the Coulomb peaks

evolution because of the numerous level crossings, which also we do not observe. In our

calculation, we have assumed subband degeneracy, yielding a four-electron period for B = 0,

although relaxing this assumption produces no qualitative differences in the results.

We also consider a parabolic potential model, as done in the electron hole symmetry

work by Jarillo-Herrero et al. [28] However, this yields a mean level spacing ∼1.5 meV,

and thus this model predicts the absence of region I over the entire range of magnetic fields

studied, and predicts only ∼5 holes would be added before reaching region III, far fewer than

we observe. This makes a shell-filling model even more difficult to accept as an explanation

for our data, since an approximately parabolic potential is most likely appropriate at the
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low densities we obtain in region I and II [28].

Finally, note that the results from region I differ from those of Tans et al. [76], in which

repeated addition of the same spin electron to a metallic nanotube was observed over a

limited range of gate voltage for B <∼ 1 T, followed by a complex spin-filling pattern at

larger B. Here, the spin polarization is observed reproducibly in gapped nanotubes in the

low density regime, and persists over the entire measured range of B up to 10 T.

The importance of non-nearest neighbor exchange coupling in producing a four-

fold addition energy period

In a nearest neighbor exchange picture, an exchange energy cost only exists when pairs

of adjacent carriers in the chain have the same exact quantum numbers, considering both

spin and isospin. This symmetry between spin and isospin follows from both the molecular

orbital picture of exchange discussed in the text, as well as the Lagrangian discussed by

Levitov and Tsvelik. In a magnetic field, since an isospin down has a larger magnetic energy

cost than physical spin down, a state where each carrier is isospin up minimizes the magnetic

energy. However, a spin antiferromagnetic state minimizes exchange energy since each

nearest-neighbor pair has different quantum numbers. The ground state, which minimizes

both nearest neighbor exchange and magnetic energy is therefore spin antiferromagnetically

ordered, with each carrier isospin up. This would preclude four-fold filling, unless the

exchange interaction between non-nearest neighbor pairs is considered.
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Chapter 5

Observation of a Mott Insulating State in Carbon

Nanotubes

Abstract

The Mott insulating state is a dramatic manifestation of strong electron in-

teractions in nominally metallic systems. Using transport spectroscopy, we show

that an energy gap exists in nominally metallic carbon nanotubes, and occurs

in addition to the band-gap in small-band-gap nanotubes, implying that carbon

nanotubes are never metallic. This gap shows universal behavior, with magni-

tude 10–100 meV and nanotube radius dependence ∼1/r, in good agreement

with predictions for a nanotube Mott insulating state. We also observe neutral

excitations within the gap, as predicted for this state. Our observation enables

a gate-tunable one-dimensional Mott system, and comprises a realization of a

nanoscale Mott transistor.

According to the quantum theory of solids, materials can be either metals or band insula-

tors. However, this theory breaks down in metals at half filling of energy bands when strong

Coulomb repulsion makes it energetically favorable for electrons to localize, one electron per

atomic site, to form a Mott insulator [77]. This state is known to be anti-ferromagnetically

ordered in higher dimensions and has been observed in a variety of bulk materials, including

thin-films [78] and nanobeams [79]. The one-dimensional (1D) analog of this state is, how-

ever, remarkably different. Known as a spin-liquid Mott insulator, it has only short-ranged

magnetic order and may have gapped spin excitations [54]. The presence of a spin gap in

some classes of spin-liquids is believed to be related to the emergence of high-temperature

superconductivity in cuprate oxides [80], motivating a search for such systems. Theoreti-

cal work [50, 51, 53, 55, 56] predicts that carbon nanotubes are a realization of a gapped
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spin-liquid Mott insulator.

Experiments on bulk quasi-1D Mott insulating systems [54] typically use chemical dop-

ing which introduces additional disorder. Carbon nanotubes offer the unique opportunity

of studying electronic phenomena without interference from disorder by using electric-field

doping. Recently, the fabrication of ultra-clean nanotube devices [7] has facilitated the

observation of long-predicted phenomena such as Wigner crystallization [81] and spin-orbit

coupling [82], and may produce favorable conditions for observing a tunable 1D Mott insu-

lator in an individual nanostructure.

Here we show that carbon nanotube transistor devices exhibit energy gaps that cannot

be accounted for using non-interacting electron pictures, but agree well with predictions for

a spin-liquid Mott insulating state in carbon nanotubes. These finite-size samples act as

quantum dots, and Coulomb peaks corresponding to a single electron/hole at the band edge

are observable. We tune the magnitude of the energy gap by applying an axial magnetic field

[29]. By tracking the first electron and hole addition energies using transport spectroscopy,

we accurately estimate the magnitude of the gap as it is tuned. Our data show that, in

contrast to the expectation of non-interacting electron models, in which gaps are produced

by the displacement of the Dirac points in the Brillouin zone of graphene by symmetry-

breaking mechanisms such as strains, twists, or curvature [13, 83], this gap cannot be tuned

to zero with an applied magnetic field. The gap instead reaches a minimum value at a

critical magnetic field. Moreover, we measure the dependence of the minimum gap on

the nanotube radius r and find a characteristic approximate 1/r dependence. Both the

magnitude and behavior of the minimum gap with radius are consistent with theoretical

predictions for the behavior of a Mott gap in a nanotube [50, 51, 53, 55, 56]. By measuring

the critical magnetic field to minimize the gap, we determine the single-particle band-gap

for each nanotube as well, finding values within the theoretically expected range from a

curvature-induced mechanism. Finally, we also observe neutral low-energy excitations in

the gap by inelastic cotunneling, which have a strong dependence on magnetic field. We

interpret these as the neutral excitations of the spin-liquid Mott insulating state. Crucially,

we note that such low-energy excitations do not exist in a non-interacting electron picture,

where the single-particle gap sets the minimum excitation energy.

Previous work has shown the presence of energy gaps in carbon nanotubes. Indeed, de-

pending on their radius and chirality, 2/3 of nanotubes are expected to be semiconducting



50

due to the boundary conditions causing the allowed wave-vectors in the Brillouin zone to

miss the gapless Dirac points. For the remaining 1/3 of tubes which are expected to be

metallic in a zone-folding picture, the non-interacting-electron symmetry-breaking mecha-

nisms mentioned above can open a band gap [83]. Scanning tunneling microscopy studies

of nanotubes have attributed energy gaps to curvature [84]; however these studies were

performed on metal substrates, which screen electron-electron interactions. Previous trans-

port experiments on nanotubes, where interactions are not screened, have shown gaps in

the range ∼10–100 meV [85], but their origin was not investigated. To assess the role of

curvature in producing the observed gaps in transport studies, we first studied armchair

nanotubes, which are predicted to be metallic by band structure calculations and protected

by symmetry from having curvature-induced gaps [83].

Figure 5.1(a)(right) shows the conductance G versus gate voltage Vg for two 500 nm

segments each on two armchair nanotubes, fabricated and characterized by Rayleigh scat-

tering measurements (Fig. 5.1(a)(left)) according to ref. [86]. All segments show a dip

characteristic of an energy gap [85]. Similar behavior has been observed in ∼90 devices

fabricated on 5 separate armchair nanotubes. Thus curvature can not fully account for

the observed gaps in transport experiments. Nevertheless, gaps of similar magnitude or

larger in tubes could also occur e.g. because of twists or strains produced during the device

fabrication [29], making the origin of the observed gaps in transport studies still unclear.

To address the origin of energy gaps in “metallic” nanotubes, we fabricate extremely

clean, as-grown, suspended devices free from disorder due to chemical processing or the

substrate. These samples, discussed exclusively in the remainder of this chapter, are fabri-

cated by chemical vapor deposition (CVD) growth over Pt electrodes as reported in detail

previously [7, 81], and are presumed to have random chirality. The growth substrate is a

Si3N4 layer on Si that has a trench between the two electrodes that enables the nanotubes

to be freely suspended. Additionally in this work, varying ratios of Fe/Mo catalyst salts

are used to vary the average nanotube radii [42]. Figure 5.1(b) shows a scanning electron

microscope image of a representative device, with a measurement geometry similar to that

employed earlier [81]. After growth, individual single-walled nanotube devices are selected

based on their room-temperature transport characteristics [81].

Figure 5.1(c) shows the conductance G versus back gate voltage Vg for a representative

device D1 (length ∼100 nm) at several different temperatures. The device shows a dip
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Figure 5.1. (a) Rayleigh scattering spectra (left) and room-temperature transport char-

acteristics (right) of two armchair nanotubes. (b) Scanning electron microscope image of

a representative suspended nanotube device. The scale bar indicates 2 µm. (c) Conduc-

tance versus gate voltage for D1 at temperatures T=1.5 K (black), 150 K (red) and 300 K

(green). (d) Color plot of dI/dV versus gate voltage Vg and source-drain bias V for D1.

The numbers indicate the number of charge carriers in the blockaded state.
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similar to that in Figure 5.1(a). As the temperature is lowered the minimum conductance

tends towards zero. Figure 5.1(d) shows a plot of G in color scale versus Vg and bias

voltage V for D1 at 1.5 K. The gap corresponds to the large diamond marked with the red

dotted lines. For the electrons, smaller diamonds marked by the blue dotted lines indicate

Coulomb blockade with a charging energy U ∼ 40 meV. On the hole side the conductance is

somewhat larger and the features are reminiscent of the Fabry-Perot interference behavior

observed previously in strongly coupled nanotube quantum dots [27]. These regular features

are indicative of extremely clean quantum dots. Energy gaps were observed in all clean

samples studied.

The magnitude of the gaps in single-walled nanotubes can be modulated with an ax-

ial magnetic field [29]. Figure 5.2(a) shows a plot of conductance G versus Vg and axial

magnetic field B for device D2 with length 200 nm at 1.5 K. As with D1, the hole side is

more conductive than the electron side and the two are separated by an energy gap. On

application of the field, the lowest quantum energy levels (namely, the first electron and hole

state) do not undergo crossings and can be used to accurately determine the gap. At low

fields, the Coulomb peaks for the electrons evolve with a slope dE/dB = αdVg/dB = 0.79

meV/T, and with a similar magnitude, but opposite sign for the holes. The gap therefore

decreases as the magnetic field is increased from B = 0. However, at a critical magnetic

field Bc ∼ 4 T, the gap stops closing and begins to open again. At this field we also often

see an approximately horizontal conductance ridge extending across the gap in the G versus

B and Vg plot.

This gap includes contributions from the charging energy U arising from electrostatic

energy as well as a term ∆E from contributions due to the discrete energy levels of the

electron system. Both these contributions arise from the finite size of the nanotube and

would vanish in an infinite tube. To find the magnitude of the intrinsic gap that would

occur for a very long nanotube, the contributions from U and ∆E must be subtracted.

We therefore subtract the measured energy (≈ 12 meV for D2) obtained from Coulomb

blockade diamonds from the measured energy of the gap. The inset to Fig. 5.3(b) shows

the corrected gap versus B. Remarkably, this gap does not reach zero when B = Bc, but

instead reaches a minimum value of ∆min ≈ 37 meV. One can directly reduce finite-size

effects by studying longer devices. Indeed, as shown in Figures 5.2(b) and 5.2(c) for devices

D3 and D4 of lengths 500 nm and 2 µm respectively, the minimum gap dominates the
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Figure 5.2. Color plot of conductance G versus Vg and magnetic field B for three devices:

(a) D2, L ∼ 200 nm (b) D3, L ∼ 500 nm (c) D4, L ∼ 2 µm. The electron and hole

states are indicated for each device. Note that the first electron/hole energy level does not

undergo crossings and can be used to study the gap. The evolution of higher charge states

has been studied using quantum dot spectroscopy [82, 87]. Note also that, in part c, the

first few electrons are not visible in the linear conductance plot. However their position is

known from non-linear transport experiments.
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charging energy and confirms the generality of the observed behavior.

Such a gap could possibly result from curvature in non-armchair tubes, or perturbations

such as built-in strain or twists from the nanotube growth process. In a non-interacting

electron picture [83], these perturbations cause the quantized transverse electron wave-

vector to miss the zero-gap Dirac point of graphene’s band-structure. This opens a gap in

the nanotube band-structure [83]. The axial magnetic field shifts the transverse wave-vector

[29], sweeping the quantization through the Dirac point for large enough field. However,

the gap would be zero at the minimum rather than the finite value we observe. This

contradiction with experiment, along with the observed energy gap in armchair nanotubes,

rules out curvature, strain or twist as a possible mechanism for ∆min.

To gain further insight into the origin of this gap, we have investigated how ∆min

depends on the nanotube radius r. The radius was obtained by measuring the slope of the

Coulomb peak evolution in the magnetic field, and using the gate-efficiency factor α obtained

from non-linear transport measurements on each device to determine dE/dB = αdVg/dB.

This can be related to the radius via the orbital magnetic moment µorb using the relation

dE/dB = µorb±µZ = ±revF /2±µZ , where µZ is the electron spin magnetic moment. This

procedure has been used by a number of groups to estimate nanotube radii [7, 29, 81, 82, 87].

A plot of ∆min versus r for fifteen devices is shown in Fig. 5.3(a). The data follow an

approximate 1/r relation. The inset to Fig. 5.3(a) shows the value of the additional gap

that occurs at B = 0 as compared to when B = Bc, taken to be the single-particle band gap

∆sp. Unlike the minimum gap plotted in the main panel, ∆sp shows no trend with radius.

However, it falls within the theoretical prediction for a curvature induced gap (shaded

region) [83], which is given by ≈ 20 cos(3θ)/(r[nm])2 meV, with 0 < θ < 30◦ the range of

nanotube chiral angles [84].

Another possibility for ∆min is the Peierls instability, which opens an energy gap in 1D

systems. However, due to stiff carbon-carbon bonds, such a gap for nanotubes is expected

to be ∼1 meV for a 1 nm diameter nanotube [83], and recent calculations give ∆peierls =

0.26/r3 meV where r is in nm [88]. Theoretical calculations thus are two orders of magnitude

smaller that the observed gap and and have a different r dependence for ∆min than we

observe.

Having ruled out these non-interacting electron pictures, we now consider the influence

of electron-electron interactions. In the simplest picture, electron-electron interactions are
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Figure 5.3. (a) Variation of the gap ∆min with nanotube radius for 15 devices. The largest

contribution to error bars comes from pixel size in Figure 5.2 and uncertainty of nanotube

alignment with magnetic field (±20 degrees). (Inset) Plot of the single-particle band-gap

∆sp versus nanotube radius. The shaded region corresponds to the prediction for curvature-

induced gaps [83] depending on chirality. (b) Log-log plot of ∆min with nanotube radius.

(Inset) Variation of energy gap with magnetic field for D2.
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considered in the forward-scattering approximation, producing a Tomonaga-Luttinger liq-

uid state governed by the long-range part of the Coulomb interaction, which retains the

metallic behavior [83]. However, at half-filling of energy bands, umklapp scattering via

short-ranged Coulomb interactions is a viable backward-scattering mechanism. These in-

teractions arise from the confinement of the electron wavefunctions due to the nanotubes’

wrapped geometry.

Upon considering umklapp scattering, theory [50, 51, 53, 55, 56] predicts the formation

of a Mott energy gap in metallic nanotubes at half-filling, rendering the metallic state into

a Mott insulator. As discussed in refs. [50] and [51], one can establish equivalence between

a nanotube and a two-chain version of the 1D Hubbard model (a two-leg ladder). The

equivalent on-site interaction in this model is the average over atoms along the circumference

of the nanotube, which gives a universal 1/r scaling to the energy gap in all nominally

metallic tubes [53]. The renormalization-group calculation [53] suggests that the long-range

part of the Coulomb interaction modifies the Mott gap scaling with radius to r−1/(1−g),

where g is the Luttinger parameter, taken to be ∼ 0.2-0.3 for nanotubes [83].

In Fig. 5.3(b), the measured ∆min is plotted against r on a log-log scale. The data

falls on a straight line with a slope ∼-1.3±0.15, which yields an estimate for g ∼ 0.13− 0.3,

in agreement with the expected range of values. The slope reveals that the data follow

the curve ∆ = βr−1.3, with β = 60 meV·nm−1.3 This value for β is in agreement to the

theoretically estimated range of 10–100 meV·nm−1.3 [53].

We now turn to neutral excitations which are observed within the Mott gap. Figure

5.4(a) shows a plot of dI/dV versus Vg and V for a device D5 of length 200 nm. The gap

region is indicated by the dashed lines. A number of features approximately independent

of gate voltage appear in the gap. These features arise from inelastic cotunneling [89], in

which a tunneling electron leaves behind a neutral excitation on the nanotube. The bias at

which they occur directly yields the energies eV of these excitations. Figure 5.4(b) shows a

plot of dI/dV versus V and B for Vg in the middle of the gap. Bc for this device is indicated

by the vertical dashed green line. Near Bc the features corresponding to the lowest energy

excitations acquire a slope with an energy shift of µex ∼ 2 meV/T, indicating that they are

of electronic origin rather than from, for example, phonons. Similar features were observed

for all strongly-coupled devices where data was taken.

Neutral massive (gapped) excitations of the Mott insulator in a metallic nanotube are
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Figure 5.4. (a) Color plot of dI/dV versus gate voltage Vg and source-drain bias V for D5.

The diamond indicated by black dashed lines corresponds to the energy gap. (b) Color

plot of dI/dV versus magnetic field B and source-drain bias V in the middle of the gap

(Vg corresponding to the white dashed line in part a). The yellow dashed line corresponds

to Bc, where the energy gap is minimum. (c) dI/dV versus V at three different magnetic

fields in part b corresponding to the black, green, and red dashed lines. Note the green

curve has been scaled down by a factor of 10 and offset for clarity. Note also that the green

curve shows a Kondo-like peak at zero bias that could account for the ridges observed for

example in Fig. 5.2a and b at B = Bc.
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characterized by several quantum numbers such as spin and vorticity [53, 56]. Symmetry-

breaking mechanisms can also give rise to charge and neutral gaps as shown in ref. [47].

Neutral gaps in both pictures are separated in energy from the charge gap by the Luttinger

parameter g. While the interplay between these two mechanisms for a realistic metallic

tube has not been considered theoretically, it is likely that the gapped neutral excitations

will generally persist even in the presence of a single-particle gap. This is consistent with

our observations (Figure 5.4), as the neutral excitations remain gapped for any magnetic

field. The lowest energy neutral gap, is predicted to be a fraction 0.26 of the Mott gap, for

D5 [53]. We observe the ratio to be ∼0.2 in good agreement with theory. This measured

separation of scales between the neutral and Mott gaps is also consistent with the value g

of the Luttinger parameter for nanotubes.

At the critical field Bc, the symmetry-breaking single-particle gap ∆sp is likely to be

compensated by the field. This regime may still be more complex than that considered in

ref. [56], since the gap vanishes for only one of the two Dirac points. Furthermore, away

from B = Bc, it is likely that the gap in the neutral sector will increase mostly due to single-

particle terms of the kind considered in ref. [47] which scale as ervF (B − Bc), consistent

in magnitude with the observed µex. Our observation of a universal gap along with two

independent measures of the Luttinger parameter thus provides convincing evidence for the

1D Mott state in nanotubes. Future theoretical work will address the behavior of excitations

in systems when both a single-particle gap and a Mott gap are present, in nanotubes with

known chirality.

The realization of an electric-field tunable 1D Mott insulator in an individual nanos-

tructure facilitates a model system for studying theories of strong electron interactions

(e.g. [90]). Moreover, the field-induced Mott transition has been shown to be a basis for

the operation of transistors [91]. Our observation of a chirality-independent gap, which

can be much greater than kBT at room temperature for sub-nm diameter nanotubes, could

be combined with techniques for growth of small-diameter devices. This would render all

nanotubes semiconducting at room temperature, towards application as Mott transistors in

nanoelectronics.
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Chapter 6

Simultaneous Electrical and Raman Spectroscopy

Measurements

6.1 Direct observation of mode selective electron-phonon cou-

pling in suspended carbon nanotubes

Abstract

Raman spectra of individual pristine suspended single-walled carbon nan-

otubes are observed under high electrical bias. The LO and TO modes of the

G band behave differently with respect to voltage bias, indicating preferential

electron-phonon coupling and non-equilibrium phonon populations, which cause

negative differential conductance in suspended devices. By correlating the elec-

tron resistivity to the optically measured phonon population, the data are fit

using a Landauer model to determine the key scattering parameters.

Electron phonon coupling in carbon nanotubes has been studied by many research groups

[92–98]. In metallic carbon nanotubes (m-CNTs), conduction electrons have been predicted

to couple strongly to the Γ-point longitudinal optical (LO) phonons and to the 2kF -point

transverse optical (TO) phonons. The G band Raman spectra of m-CNTs and semicon-

ducting CNTs (s-CNT) are qualitatively different because of this strong electron-phonon

coupling [99]. In metallic nanotubes, the lower-frequency component of the G band (G−)

exhibits a broad Breit-Wigner-Fano (BWF) lineshape, and is significantly downshifted in

frequency with respect to its counterpart in semiconducting nanotubes [15]. Recent experi-

ments have shown that this phonon softening can be removed by shifting the Fermi energy

of m-CNTs with an applied gate voltage or chemical doping, which modulates this coupling

and results in an upshift of the G− band frequency [100–102]. Density functional theory
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calculations have shown that the assignment of the upper and lower frequency components

of the G band Raman modes, G+ and G−, to the LO and TO Γ-point phonon modes may

be reversed in m-SWNTs and sc-SWNTs [16]. This is thought to be caused by the strong

downshifting of the LO mode due to the Kohn anomaly, also referred to as a Peierls-like

distortion phenomenon [103]. Other experiments have shown that this downshift may be

caused by inter-nanotube bundling effects [104].

Negative differential conductance (NDC) has been observed by several research groups

at high voltage bias in suspended nanotubes and is understood on the basis of electrons

coupling strongly to Γ-point and 2kF -point optical phonons (OPs) [36, 105, 106]. At high

voltage bias, the electrons emit OPs, causing increased scattering from absorption of those

OPs, and an increase in resistance. In the experiment reported here, we simultaneously

observe the OP populations and nanotube resistance, and are able to correlate the electron

scattering length to phonon population.

When CNTs are heated, the G band downshifts in frequency [107–114], broadens [115],

and decreases in intensity [107, 109] due to thermal expansion, which weakens the bonds. In

thermal equilibrium, both the LO and TO optical phonons downshift together. We observe

preferential downshifting of only one of the OPs at high currents, indicating strong coupling

of electrons to only one band and a non-equilibrium phonon population.

Preferential e-ph coupling and coherent phonon generation was first reported in Ruby

in 1961 [116], and was followed by other reports describing the phenomenon in GaAs and

other semiconductor crystals [117–119]. More recent work analyzed selective amplification

and emission of OPs in electron transport experiments [120], and a full quantum treatment

of THz phonon laser design [121]. This observation of selective e-ph coupling in carbon nan-

otubes supports the possibility of using carbon nanotubes as a source of coherent phonons

as suggested elsewhere [106]. Suspended SWNTs were grown using CVD on Pt electrodes

prepared with islands of lithographically patterned catalyst. Out of 40 devices per chip,

typically only a few have just one SWNT bridging the contacts of the device. The trench

width for the devices range from 0.5 µm to 2 µm. Figure 6.1 shows one such device fab-

ricated in this study. Raman spectra were measured in a Renishaw InVia spectrometer

with a 785 nm Ti-Sapphire laser. An Ithaco current preamplifier was used to measure the

current passed through the nanotube.

Sample fabrication proceeds as follows. A trench is first made between two Pt electrodes
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Figure 1. SEM image of a suspended carbon 

nanotube grown on top of Pt electrodes. 

Sample fabrication proceeds as follows. A trench is first made between two Pt electrodes 

on a degenerately doped Si substrate by one of two methods34, 35. In the first method, Pt 

electrodes are patterned by lithography on a Si substrate capped with 300nm of SiO2, which is 

then wet-etched in HF using the Pt electrodes as an etch mask. In the second method, the Si 

substrate is capped with 500nm of SiO2 and 50nm of Si3N4. The nitride is then dry-etched in a 

CF4 plasma to form the trench, the underlying oxide is wet-etched and the Pt contacts are then 

patterned. Islands of Fe-Mo catalyst salts in an alumina matrix are then defined on top of the 

contacts in lithographically defined areas36. Nanotube growth is carried out by flowing a mixture 

of methane (0.5SLM) and hydrogen (0.7SLM) over the wafer for 5 minutes at 800oC. Devices 

that show negative differential conductance at high bias (1-2V) with a maximum current of 

~10/L µA (where L is in µm) correspond to individual suspended single-walled nanotubes, and 

are selected for further study16. 
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Figure 6.1. SEM image of a suspended carbon nanotube grown on top of Pt electrodes

on a degenerately doped Si substrate by one of two methods [6]. In the first method, Pt

electrodes are patterned by lithography on a Si substrate capped with 300 nm of SiO2,

which is then wet-etched in HF using the Pt electrodes as an etch mask. In the second

method, the Si substrate is capped with 500 nm of SiO2 and 50 nm of Si3N4. The nitride is

then dry-etched in a CF4 plasma to form the trench, the underlying oxide is wet-etched and

the Pt contacts are then patterned. Islands of Fe-Mo catalyst salts in an alumina matrix

are then defined on top of the contacts in lithographically defined areas [10]. Nanotube

growth is carried out by flowing a mixture of methane (0.5SLM) and hydrogen (0.7SLM)

over the wafer for 5 minutes at 800 ◦C. Devices that show negative differential conductance

at high bias (1–2V) with a maximum current of ∼10/L µA (where L is in µm) correspond

to individual suspended single-walled nanotubes, and are selected for further study [36].

Figure 6.2 shows the G band Raman modes of a nanotube device under large voltage

biases. The bandgap of this nanotube was determined to be ∼60 meV from the current-gate

voltage dependence. The G+ band is observed to downshift by more than 26 cm−1, while the

G− on average doesn’t change by more than 1 cm−1. There is a clear crossing that occurs

at ∼1.0V, above which the G− band becomes higher in frequency than the G+ band. The

linewidths of the G+ and G− bands in the nanotube of Figure 6.2 also vary with the applied

bias voltage. Here the G+ band broadens while the G− band remains largely unchanged.

Finally, the intensity of the G+ band decreases monotonically with bias voltage, while the

G− band remains constant. This behavior suggests preferential heating of the G+ phonon

mode, since the G band Raman spectra are known to downshift, broaden, and diminish in
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Figure 2 shows the G band Raman modes of a nanotube device under large voltage 

biases. The bandgap of this nanotube was determined to be ~60meV from the current-gate 

voltage dependence. The G+ band is observed to downshift by more than 26cm-1, while the G- on 

average doesn’t change by more than 1cm-1. There is a clear crossing that occurs at ~1.0V, above 

which the G- band becomes higher in frequency than the G+ band. The linewidths of the G+ and 

G- bands in the nanotube of Figure 2 also vary with the applied bias voltage. Here the G+ band 

broadens while the G- band remains largely unchanged. Finally, the intensity of the G+ band 

decreases monotonically with bias voltage, while the G- band remains constant. This behavior 

suggests preferential heating of the G+ phonon mode, since the G band Raman spectra are known 

to downshift, broaden, and diminish in intensity with increasing temperature19-27.  The integrated 

areas of both the G+ and the G- Raman peaks remain constant, indicating that there is no change 

in the resonance condition of this nanotube with applied bias. Preferential heating of the G+ 

phonon was observed in 4 out of 15 devices measured in this study, including one 

semiconducting device. Because the unbiased G- band exhibits a broad, downshifted BWF 

lineshape, we assign it to the LO phonon mode, and we assign the G+ to the TO phonon mode.  

 

Figure 2. G band Raman spectral data versus bias voltage. G band Raman (a) shift, (b) width, 

and (c) intensity. The inset shows the Raman spectra at zero bias voltage. 
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Figure 6.2. G band Raman spectral data versus bias voltage. G band Raman (a) shift, (b)

width, and (c) intensity. The inset shows the Raman spectra at zero bias voltage.

intensity with increasing temperature [107–114]. The integrated areas of both the G+ and

the G− Raman peaks remain constant, indicating that there is no change in the resonance

condition of this nanotube with applied bias. Preferential heating of the G+ phonon was

observed in 4 out of 15 devices measured in this study, including one semiconducting device.

Because the unbiased G− band exhibits a broad, downshifted BWF lineshape, we assign it

to the LO phonon mode, and we assign the G+ to the TO phonon mode.

Figure 6.3 shows the G band Raman modes of another nanotube under large voltage

biases. NDC can be clearly seen above 1.2V in the current-voltage (I-Vbias) characteristics

of this device, as shown in the inset of Figure 6.3. Here, the voltage dependence of the G+

and G− bands are reversed from those shown in Figure 6.2. Over the range of applied bias

voltage, the G− band is observed to downshift by 15 cm−1, while the G+ band doesn’t change

by more than 1 cm−1. Furthermore, the linewidth of the G− band increases significantly

with bias voltage and drops in intensity, while the G+ band remains of constant width and

intensity. Contrary to Figure 6.2, this data exhibits preferential heating of the G− band,

which we again assign to the LO Γ-point phonon mode. This case is rare and was only

observed in one out of fifteen nanotubes measured in this study. Again, the integrated

areas of both the G+ and G− peaks remain constant, indicating that there is no change

in the resonance condition. The broadening of the G+ feature is consistent with thermal

broadening in SWNTs as reported by Jorio et al. [115]. Both nanotubes shown in Figures

6.2 and 6.3 are metallic, and all changes in the Raman spectra are reversible.
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Figure 3 shows the G band Raman modes of another nanotube under large voltage biases. 

NDC can be clearly seen above 1.2V in the current-voltage (I-Vbias) characteristics of this device, 

as shown in the inset of Figure 3. Here, the voltage dependence of the G+ and G- bands are 

reversed from those shown in Figure 2. Over the range of applied bias voltage, the G- band is 

observed to downshift by 15cm-1, while the G+ band doesn’t change by more than 1cm-1.  

Furthermore, the linewidth of the G- band increases significantly with bias voltage and drops in 

intensity, while the G+ band remains of constant width and intensity. Contrary to Figure 2, this 

data exhibits preferential heating of the G- band, which we again assign to the LO Г-point 

phonon mode. This case is rare and was only observed in one out of fifteen nanotubes measured 

in this study. Again, the integrated areas of both the G+ and G- peaks remain constant, indicating 

that there is no change in the resonance condition.  The broadening of the G+ feature is consistent 

with thermal broadening in SWNTs as reported by Jorio et al.27. Both nanotubes shown in 

Figures 2 and 3 are metallic, and all changes in the Raman spectra are reversible. 

 

 

 

Figure 2. (a) The G band Raman shift versus bias voltage, with the I-Vbias inset exhibiting 

NDC. (b) Raman spectra taken at Vbias = 0V and 1.4V.    
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Figure 6.3. (a) The G band Raman shift versus bias voltage, with the I − Vbias inset

exhibiting NDC. (b) Raman spectra taken at Vbias=0V and 1.4V.

A weak radial breathing mode (RBM) was observed in the Raman spectra of this nan-

otube at 146.5 cm−1, which corresponds to a nanotube diameter of 1.70 nm by the relation

ωRBM = 204/dt + 27 [122]. The strongly enhanced Raman intensities from suspending

the carbon nanotubes off the substrate [123] make it possible to observe RBMs with the

incident laser off resonance. The weak RBM observed for this nanotube implies an off-

resonance condition, which creates significant uncertainty in the transition energy Eii, and

hence the chirality assignment of this nanotube. The maximum current density of this

nanotube can be obtained by dividing the peak current (10 µA) by the cross-sectional area

of the nanotube (3.81×10−18 m2), obtained by multiplying the circumference of the nan-

otube with the thickness of graphene (0.355 nm). This results in a peak current density

of 5.3×108A/cm2. The behaviors shown in Figures 6.2 and 6.3 can be explained by the

previous theoretical work of Piscanec et al. [16], which describes the strong electron-phonon

coupling of the Kohn anomalies (KA) in metallic carbon nanotubes. One KA occurs at zero

momentum (Γ-point) in the LO phonon band and gives the G− band in metallic nanotubes

its downshifted and broadened BWF lineshape [124]. Another KA occurs at a finite phonon

momentum q = 4p/3T (2kF -point) in the TO phonon branch, where T is the length of the

unit cell in the nanotube. These two KAs provide the primary source of electron-phonon

scattering in pristine m-CNTs at high bias voltages.

It is surprising that the narrow G+ band (TO band) in Figure 6.2 is so strongly coupled
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to the electrons, while the broad G− band (LO band) remains unchanged with applied

bias voltage. We can explain this by considering that the energy of the 2kF -point phonons

associated with the TO KA (∼0.16 eV) is significantly lower than the energy of the G−point

phonons of the LO KA (∼0.195 eV). This results in a lower threshold energy for TO phonon

emission in electron transport. Thus the electrons are scattered by emitting TO phonons

before ever attaining enough energy to emit LO phonons, which results in heating of only

the TO phonon band. This, together with the fact that the electron-phonon coupling for

the 2kF -point KA is two times stronger than that of the G−point KA [16], explains why

the G+ band (TO) is observed to be strongly heated for nanotubes of the type shown in

Figure 6.2. While the finite momentum phonons cannot be observed directly in first order

Raman spectra, the modes in each phonon branch are expected to equilibrate thermally.

The orthogonality of the LO and TO phonon bands enables them to remain in a state of

extreme non-equilibrium and exhibit preferential heating.

The seemingly contradictory results of Figure 6.3, in which only the G− band (LO)

downshifts with applied bias voltage, can be understood on the basis of a rare chirality,

where R = GCD(n,m)/GCD(2n+m, 2m+n) = 1, which only occurs for slightly less than

1/3 of all metallic nanotubes. In fact, this behavior was only observed 1 out of 15 nanotubes

measured in this study, which is consistent with the rarity of this chirality. In this case, the

Raman active TO phonon branch does not exhibit a KA [16], and heating by hot electrons

is only observed in the LO phonon band.

The high temperatures reached under large voltage biases were corroborated by anti-

Stokes (AS) Raman spectroscopy. A G band anti-Stokes peak was observed at biases

above 0.4V on the device shown in Figure 6.3. The ratio of the AS (absorbed phonons) to

the Stokes (emitted phonons) Raman intensity is given by the Maxwell-Boltzmann factor

exp(−Eph/kBT ), where Eph is the phonon energy (195 meV), kB is Boltzmann’s constant

and T is the temperature in Kelvin. Figure 6.4 shows the temperature as determined from

the AS/S ratio plotted as a function of electrical power. The temperature shows a linear

dependence on electrical power that reaches ∼700 ◦C at high bias. At higher voltages, the

nanotube was destroyed. This temperature is consistent with the work of Cataldo, who

measured the burnout threshold of carbon nanotubes in air to be ∼800 ◦C [125]. The

optical phonon temperature was also determined independently from the downshift of the

G− band by the relation ωG,LO(T ) = −3.5 × 10−5T 2 − 6.5 × 10−3T + 1581.5, which was
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measured on one of our devices in a temperature controlled stage. This data is also plotted

in Figure 6.4 and is in good agreement with the anti-Stokes/Stokes ratio data. We would

like to point out that, while the anti-Stokes spectra of the LO mode yields a temperature of

∼700 ◦C, the TO mode was not observed in the anti-Stokes spectra. This, together with the

lack of change in the TO Stokes Raman frequency, indicates that the population of the TO

phonon remains close to room temperature. These data show that the coupling between

the two OP polarizations (LO and TO) is very weak, and that they can exist in a state of

extreme non-equilibrium.

which was measured on one of our devices in a temperature controlled stage.  This data is also 

plotted in Figure 4 and is in good agreement with the anti-Stokes/Stokes ratio data.  We would 

like to point out that, while the anti-Stokes spectra of the LO mode yields a temperature of 

~700oC, the TO mode was not observed in the anti-Stokes spectra.  This, together with the lack 

of change in the TO Stokes Raman frequency, indicates that the population of the TO phonon 

remains close to room temperature. These data show that the coupling between the two OP 

polarizations (LO and TO) is very weak, and that they can exist in a state of extreme non-

equilibrium.  

 

 

Figure 4. Optical phonon temperature versus 

electrical power. Temperature is measured for 

the device in Figure 3 by anti-Stokes/Stokes 

Raman spectroscopy and by G band 

downshift. 

By measuring electrical resistivity and optical phonon population simultaneously, we 

gain new information about the phonon scattering mechanism responsible for the observed 

NDC16, 17 as suggested by Lazzeri18.  Figure 5 shows the electrical resistance plotted as a 

function of LO phonon population Nop(Top), which is fitted from the experimental data in Figure 
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Figure 6.4. Optical phonon temperature versus electrical power. Temperature is measured

for the device in Figure 6.3 by anti-Stokes/Stokes Raman spectroscopy and by G band

downshift.

By measuring electrical resistivity and optical phonon population simultaneously, we

gain new information about the phonon scattering mechanism responsible for the observed

NDC as suggested by Lazzeri [106]. Figure 6.5 shows the electrical resistance plotted as a

function of LO phonon population Nop(Top), which is fitted from the experimental data in

Figure 6.4. We can understand this data using the Landauer model developed by Pop [36],

Mann [105], Park [34], Yao [33], and others [106, 126], in which the nanotube resistance is

expressed as

R(V, T ) = Rc +
h

4q2
L+ λeff (V, T )
λeff (V, T )

(6.1)

where Rc is the contact resistance, L is the nanotube length, and λeff = (λ−1
ac + λ−1

op,ems +
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λ−1
op,abs)

−1 is the bias and temperature dependent electron mean free path [36]. The acoustic

scattering length is given by λac = λRTac (300[K]/Tac)−1. The acoustic phonon temperature

is Tac = (Top+αTsample)/(1+α), where the non-equilibrium phonon coefficient α is taken as

2.3 from Mann et al. [105] and the optical phonon temperature Top is measured by Raman

spectroscopy. The optical phonon scattering length for emitted phonons is given by

λop,ems =
EphL

qV
+ λminop

1 +Nop(300[K])
1 +Nop(Top

(6.2)

and for absorbed phonons by

λop,abs = λminop

1 +Nop(300[K])
1 +Nop(Top

. (6.3)

In these equations, Eph is the OP energy, and λminop is the scattering length for electron

scattering from OP emission in the nanotube after the electron has accelerated to high

energy ≥ Eph. Low energy electrons may scatter with this length scale from absorption of

thermally populated OPs as well, as described by equation 6.3. In addition to the constant

contact resistance Rc, this model has one fitting parameter, λminop . An approximate value

of λRTac =2400 nm was used in the fit in accordance with previous work [34], and the fitted

value for λminop was generally found to be insensitive to the value of λRTac .

The solid and dashed lines in Figure 6.5 correspond to fits of our data using this model

with OP emission and absorption and with OP emission alone, respectively, with λminop =26

nm. This value is consistent with those reported previously in the literature [34, 35]. The

model including OP emission and absorption is in good agreement with the experimental

results for phonon populations below 0.09. The failure of the model without OP absorption

indicates the important role that the non-equilibrium optical phonon population plays in

the electron transport of suspended SWNTs. At larger phonon populations, corrections to

the model are needed to account for the non-uniformity of the temperature along the length

of the nanotube, as shown previously in finite element thermal analysis calculations [105].

We have performed a systematic study measuring the optical and high bias electronic

properties of 5 suspended nanotubes that exhibited preferential downshifting of the G+

or G− band. This data has been fit to the model described above and their results are

listed in the Figure 6.6. The figure lists the metallic/semiconducting nature and bandgap

of the nanotubes, as determined from the electron transport data. The Raman feature
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The solid and dashed lines in Figure 5 correspond to fits of our data using this model with 

OP emission and absorption and with OP emission alone, respectively, with  = 26nm. This 

value is consistent with those reported previously in the literature42, 45. The model including OP 

emission and absorption is in good agreement with the experimental results for phonon 

populations below 0.09.  The failure of the model without OP absorption indicates the important 

role that the non-equilibrium optical phonon population plays in the electron transport of 

suspended SWNTs.  At larger phonon populations, corrections to the model are needed to 

account for the non-uniformity of the temperature along the length of the nanotube, as shown 

previously in finite element thermal analysis calculations17.  

min
opλ

 

 

Figure 5. Electrical resistance plotted as 

function of phonon population. The phonon 

population is fit from the measured data in 

Figure 4, for the device in Figure 3. The two 

models shown are for LO scattering through 

emission plus non-equilibrium OP absorption 

and through OP emission alone. 

 We have performed a systematic study measuring the optical and high bias electronic 

properties of 5 suspended nanotubes that exhibited preferential downshifting of the G+ or G- 

 11

Figure 6.5. Electrical resistance plotted as function of phonon population. The phonon

population is fit from the measured data in Figure 6.4, for the device in Figure 6.3. The two

models shown are for LO scattering through emission plus non-equilibrium OP absorption

and through OP emission alone.

that is preferentially downshifted with bias voltage is also indicated in the figure. The

diameter is indicated for nanotubes that exhibited a RBM in their spectra. Despite the

very different results observed in their optical spectra, we find little variation in the optical

phonon scattering parameter λminop amongst m-SWNTs.

band. This data has been fit to the model described above and their results are listed in the table 

below.  The table lists the metallic/semiconducting nature and bandgap of the nanotubes, as 

determined from the electron transport data.  The Raman feature that is preferentially 

downshifted with bias voltage is also indicated in the table. The diameter is indicated for 

nanotubes that exhibited a RBM in their spectra. Despite the very different results observed in 

their optical spectra, we find little variation in the optical phonon scattering parameter  

amongst m-SWNTs.   

min
opλ

Table 1.  Summary of electron and phonon 

parameters of 5 suspended nanotubes.  
 

10 out of the 15 nanotubes measured in this study did not exhibit preferential 

downshifting of the G+ or G- bands and were not included in Table 1. In 5 of these 10 nanotubes, 

the relative intensity of the G+/G- bands was so great that a clear resolution of both peak 

positions was not possible, and hence it was not possible to observe whether preferential heating 

occurred. The G+/G-  intensity ratio has been theoretically predicted and experimentally shown to 

be a function of chiral angle46, 47.  We attribute the behavior of these 5 nanotubes to the extreme 

cases of large and small chiral angles.  In the remaining 5 nanotubes not shown in Table 1, both 

the G+ and the G- bands downshifted when heated with electrical current. This is attributed to 

anomalous phonon-phonon anharmonic coupling, and further indicates the high purity of the 

pristine nanotube samples that did exhibit strong selective coupling and extreme non-equilibrium 

phonon populations. 
 12

Figure 6.6. Summary of electron and phonon parameters of 5 suspended nanotubes

10 out of the 15 nanotubes measured in this study did not exhibit preferential downshift-

ing of the G+ or G− bands and were not included in Figure 6.6. In 5 of these 10 nanotubes,

the relative intensity of the G+/G− bands was so great that a clear resolution of both peak

positions was not possible, and hence it was not possible to observe whether preferential
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heating occurred. The G+/G− intensity ratio has been theoretically predicted and exper-

imentally shown to be a function of chiral angle [127, 128]. We attribute the behavior of

these 5 nanotubes to the extreme cases of large and small chiral angles. In the remaining

5 nanotubes not shown in Figure 6.6, both the G+ and the G− bands downshifted when

heated with electrical current. This is attributed to anomalous phonon-phonon anharmonic

coupling, and further indicates the high purity of the pristine nanotube samples that did

exhibit strong selective coupling and extreme non-equilibrium phonon populations.

In conclusion, we observe preferential electron-phonon coupling of the G Raman bands

in carbon nanotubes under high voltage bias. This preferential coupling is caused by the

differences between the two Kohn anomalies in the TO and LO Raman bands. Surprisingly,

in most metallic nanotubes, the narrow G+ band (TO band) is strongly heated by electron-

phonon scattering at high biases. Because of the preferential electron-phonon coupling, high

voltage biases produce a non-equilibrium phonon population, as observed by anti-Stokes

Raman spectroscopy. By correlating the electron resistivity to the phonon population,

measured by Raman spectroscopy, we determine the high energy electron-OP scattering

length λminop in m-SWNTs to be ∼30 nm.

6.2 Spatially-resolved temperature measurements of electrically-

heated carbon nanotubes

Abstract

Spatially-resolved Raman spectra of individual pristine suspended carbon

nanotubes are observed under electrical heating. Spatial temperature profiles of

the Raman G+ and G− bands are obtained for the first time. In these devices,

the bands show unequal spatial heating profiles. The non-equilibrium phonon

populations are more pronounced in short nanotubes (2 µm) than in long nan-

otubes (5 µm). These results are understood in terms of the decay and thermal-

ization of non-equilibrium phonons. The measurements reveal the mechanism of

thermal transport in nanotubes, which occurs through non-equilibrium phonons

in short nanotubes and through thermalized phonons in long nanotubes.

The temperature of a macroscopic solid is manifest in the energy of its lattice vibrations, or
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phonons. In nanostructures with dimensions approaching the mean-free-path of phonons,

this definition of temperature could break down. This is particularly true if the phonon

population is driven out of equilibrium with an electrical current. In this case, some phonon

modes can have effective temperatures higher than the rest of the lattice depending on

their coupling with the electrical current. In the past, several interesting observations

have been made in electrically-heated carbon nanotubes such as current saturation [33], Γ-

point and K-point optical phonon scattering [34, 35], ballistic phonons [129] and electrical

breakdown [130]. In freely suspended carbon nanotubes, the ability of phonons to relax is

hindered on account of not being thermally sunk to a substrate and, as was first observed by

Pop et al [36], suspended nanotubes showed remarkable negative differential conductance

(NDC) at high electric fields. This observation was explained using non-equilibrium or

“hot” phonons [36, 93].

These high-field properties are particularly relevant to carbon nanotubes’ applications

in field-effect transistors and interconnects towards the miniaturization of electronics. It is

more insightful to probe these phenomena optically, rather than by transport measurements

alone. In particular, since nanotubes are one-dimensional structures with a huge aspect-

ratio, these phenomena could vary spatially and a local probe of temperature is necessary to

fully understand thermal transport in nanotubes. Previously, scanned force microscopy [39]

and local melting of nano-particles [40] have been used to extract local temperatures of

multi-walled nanotubes under high bias. However, these techniques suffer from temperature

differentials at the measurement contact interface.

Raman spectroscopy is a powerful, non-contact method of probing phonons in nan-

otubes. This technique enables one to probe the Γ-point longitudinal optical (LO), trans-

verse optical (TO) and the radial breathing mode (RBM) phonons, among others. Recently,

hot phonons in nanotubes have been directly observed using Raman spectroscopy in con-

junction with electrical transport [131, 132]. Thus, spatial investigation of electrical heating

using Raman spectroscopy forms the motivation for our experiment.

Individual single-walled carbon nanotube devices were grown on top of Pt leads, as

reported in detail previously [131]. Devices used in this work were grown using ethanol

as the carbon feedstock, which has been shown to yield long and low-disorder nanotubes

[43]. Figure 6.7 (right inset) shows a scanning electron microscope image of a 5 µm long

nanotube device. Raman spectra were measured in a Renishaw InVia spectrometer with
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Figure 6.7. Raman spectra of the center of device D1 at two bias voltages. Left inset:

I -V characteristics of D1. Right inset: SEM viewgraph of a typical device. Scale bar

corresponds to 2 µm.

Spectra-Physics 532 nm solid state and 785 nm Ti sapphire lasers. Typical integration

times were 60-120 seconds. An Ithaco current preamplifier was used to measure the current

through the nanotube. All measurements were performed in an argon environment to

prevent burn-out of devices at high bias voltages. Figure 6.7 (left inset) shows the current-

voltage (I -V ) characteristics of a typical quasi-metallic device D1 (5 µm long). Note the

NDC, characteristic of suspended devices, above Vsd ∼ 0.6 V in D1. In addition, D1 shows a

“kink” in the I -V curve at Vsd ' 0.4 V. (This kink has been shown to be absent in vacuum

and attributed to heating-induced gas desorption [42].)

Figure 6.7 shows Raman spectra taken at the center of D1 using a 532 nm laser at

two bias voltages, Vsd=0 V and 1.2 V. Note the narrow G+ and broad G− peaks that

are characteristic of the TO and LO phonon modes, respectively, of metallic nanotubes.

The two peaks downshift unequally in energy on application of a 1.2 V bias voltage. A

low enough laser power was used such that the laser itself did not cause any downshift or

heating. Note that the defect-induced D band peak in the Raman spectrum, occurring in

typical nanotubes around 1350 cm−1, is absent in most of our devices, as it is in D1. This

attests to the low-defect nature of our devices.
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Figure 6.8. Spatial profile of Raman shifts of (a) G+ and (b) G− bands for device D1 at 0

V and 1.2 V bias. (c) Temperature profiles of G+ and G− bands. Inset: G+ and G− shifts

for D1 in a temperature-controlled stage
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We take spatially resolved Raman spectra of our devices at different bias voltages. The

532 nm laser with a diffraction-limited spot-size of 360 nm, affords 10–20 data points along

the length of D1. Figure 6.8(a) shows the Raman shifts of the G+ and G− bands, along

the length of the nanotube, for Vsd=0 V and 1.2 V. At Vsd=1.2 V, the bands downshift

significantly and develop a spatial profile. The G+ profile fits to a fourth order polynomial,

while a parabola suffices for the G− profile. The Raman shifts observed at high bias are

subtracted from the reference (Vsd=0 V) at every spatial point. This corrects for extraneous

local variations in the Raman spectra of the nanotube.

Previously, we showed that the downshift of the G+ and G− bands could be interpreted

in terms of increased phonon populations [131] and hence effective temperatures. This

interpretation was in agreement with the Stokes/anti-Stokes intensity ratio observed in

that work. In this work, we calibrated the G band downshifts with temperature in a

temperature-controlled stage. This calibration data is shown in the inset of Fig. 6.8(b) for

device D1. The downshift is linear in temperature, with almost equal slopes for the two

bands. The G band temperature is obtained at each point along the nanotube by dividing

the voltage-induced change in the Raman shift by the slope of the calibration line. The

resulting temperature profiles for the two bands are shown in Fig. 6.8(b).

This result constitutes the first observation of a spatial temperature profile of a single-

walled nanotube under Joule heating. Figure 6.8(b) also shows that the temperatures at the

ends of the nanotube are higher than room temperature and highly asymmetric, indicative

of asymmetric thermal contact resistances. However, the most surprising aspect of Fig.

6.8(b) is that the temperatures of the two bands are quite different. Of ten 5 µm devices

studied, 3 devices exhibited G+ and G− bands that could be resolved separately with bias

voltage. All three devices showed the same qualitative behavior described above. Note that

the G band Stokes/anti-Stokes intensity ratio was not resolvable with bias for any of these

three devices.

In an earlier work [131], we reported that only one of G+ or G− bands downshifted with

bias. This observation was most prominent in shorter devices (≤ 2µm). Figure 6.9(a) shows

the G+, G− and a third mode (at 1545 cm−1) as a function of bias voltage for such a 2 µm

device, D2. In this device, the broad G− band (LO) downshifts by 35 cm−1, while the other

bands remain unchanged within 1 cm−1. The insets of Fig. 6.9(a) and (b) show the I -V

and Raman spectrum for D2. Figure 6.9(b) shows the (converted) effective temperature of
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the G+ and G− bands at Vsd=1.2 V, along the length of D2. Surprisingly, while the G−

band shows a non-uniform temperature profile, the G+ band shows no modulation in space

(within the error of the measurement). This seems to be a limiting case of unequal heating,

where one band is not heated at all.

We now interpret these results. In thermal equilibrium, both G+ and G− downshift

equally, as observed in the temperature-controlled stage data of Fig. 6.8(b)-inset. Even

in the case of thermal non-equilibrium, each phonon mode is likely to be at least at hot

as the lattice. The lower temperature profiles shown in Fig. 6.8(b) and 6.9(b) are, thus,

upper bounds on the lattice temperature profile. However, in Fig. 6.9(b) this lower profile

coincides with room temperature. Hence, the observation that one of the modes in short

nanotube devices does not modulate with bias or space indicates that the lattice remains

at room temperature. The other Raman-active mode exists at an elevated non-equilibrium

effective temperature, as a direct result of generation by high-energy electrons. In long nan-

otube devices, these hot phonon modes transfer energy to the pool of thermalized phonons

through inter-phonon scattering processes, thus heating up the rest of the lattice.

For a quantitative approach, we first model the hot phonon profile of the simpler case

of no lattice heating (Fig. 6.9). In this case, thermal transport is not governed by Fourier’s

law (diffusive heat transport), since the thermalized phonons are not heated. Instead, one

needs to understand the decay process of the hot phonons. Consider a nanotube of length

L under uniform heating by an electric current I (this assumption is substantiated by finite

element calculations showing that the resistivity of the nanotube does not change by more

than 10% along the length of the nanotube). Let g(I) be the hot phonon generation rate

per unit length, d be the phonon decay length and τ be the decay time. Hence, a phonon

generated at point x has a probability of reaching point x0 given by exp(−|x − x0|/d),

which is a general characteristic of decay processes. Considering phonons arriving from

both directions and a decay rate of n/τ , where n is the phonon population at any point,

the continuity equation gives:

dn

dt
=
∫ x0

0
g(I)e−

x0−x
d dx+

∫ L

x0

g(I)e−
x−x0
d dx− n

τ
= 0. (6.4)

Plotting the solution for L=2 µm, one obtains a good match to the temperature profile of

G− in Fig. 6.9(b) using a decay length d ∼ 1µm.
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We also need to understand the mechanism of power dissipation. In device D2, at a bias

Vsd=1.2 V, the power input to the nanotube is 6 µW. This power should be carried away

mainly by thermal conduction along the nanotube. Other mechanisms of energy transfer,

such as radiation or heat sinking to the gaseous atmosphere, have been shown to be negligible

(see e.g . [105]). The electronic contribution to thermal conduction is also known to be a

small fraction (1/5th or less) of the equilibrium lattice contribution [133]. An upper bound

to the lattice thermal conductance, Gth, of nanotubes in quasi-equilibrium is the ballistic

phonon case (theory [134] predicts that the phonon mean-free-path at room temperature in

nanotubes is ∼ 1µm. Hence it is not unreasonable to consider ballistic phonon transport).

At room temperature, Gth ∼ 8rt W/K [134], where rt is the nanotube radius in meters.

A weak RBM was observed in the Raman spectra of this nanotube at 240 cm−1, which

corresponds to a nanotube diameter of 0.96 nm by the relation ωRBM = 204/dt + 27.

This yields a thermal conductance of 4 nW/K for the nanotube assuming near equilibrium

conditions. From the relation
.
Q= Gth/∆T , the lattice cannot conduct away the 6 µW of

power without heating to extremely high temperatures. However, such lattice heating is

not supported by our observation, as discussed earlier.

An explanation for this apparent mismatch between heat generation and conduction lies

with the hot phonons. The estimate for Gth assumes that all phonon modes are in thermal

equilibrium. Using the Landauer model for phonon transport to calculate the thermal power

conducted [133],

.
Qph=

∑
m

∫ ∞
0

dk

2π
~ωm(k)vm(k)η(ωm, Thot)ζ(ωm), (6.5)

we can estimate an upper bound for the heat transport by hot modes in the ballistic phonon

limit. In equation 6.5, η is the Bose-Einstein distribution function, ζ is the transmission, set

to 1 [133], vm is the group velocity of the mth phonon mode and ~ωm is the phonon energy.

Since the effective temperatures under consideration (Thot ∼900 K) are much smaller than

~ωm (∼2000 K), the distribution can be taken to be constant. Integrating over the range of

energies of these phonons (1300–1600 cm−1), equation 6.5 reduces to
.
Qph= 0.185Nη µW,

where N is the total number of hot phonon modes. Since η '0.1 in our case, it is possible

to dissipate the generated heat if '150 phonon modes participate in heat transport. This

is smaller than the total number of phonon branches of D2 and hence reasonable. Figure
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6.10(a) shows a schematic of this heat removal mechanism (see top for short devices).

With this understanding of hot-phonon decay and thermal transport for the strongly

non-equilibrium case, we now consider the longer devices, which show conditions closer to

equlibrium. As Fig. 6.10(a) (bottom) shows, the bulk of the lattice becomes heated because

the devices are long enough for the hot phonons to thermalize. In this case, the lattice could

carry away a significant proportion of the heat generated. Since the lattice is almost as hot

as the non-equilibrium phonons, we can estimate the thermal conductivity in the limit that

all the heat were to be carried away by the lattice. The value of thermal conductivity

thus obtained can indicate the validity of this assumption. We use an iterative Fourier’s

law approach along with the Landauer model for electron transport, as developed in [36].

Following their formulation:

A
d

dx
(κ(x)

dTac
dx

) + I2dR(λeff )
dx

= 0 (6.6)

with

λeff (Tac(x), Top(x)) = (λ−1
ac (x) + λ−1

op,ems(x) + λ−1
op,abs(x))−1. (6.7)

Here, κ(x) is the thermal conductivity and R(x) is the resistance, corrected for contact

resistance ∼25 kΩ and dependent on the effective electron mean-free-path λeff (x). λeff (x)

is a function of the lattice temperature Tac, hot phonon temperature Top (which are known

from our measurement) and scattering parameters λac,RT , λop,min [36]. The spatial variation

of the parameters necessitates the use of a finite element iterative calculation. Using suitable

values for the scattering lengths (as obtained from experiment [34, 35]), λac,RT=1.6 µm and

λop,min ∼180 nm, we can obtain a spatial variation of the thermal conductivity. Note that

the thermal conductivity as obtained from Fourier’s law (eqn. 3) is extremely sensitive

to the diameter of the nanotube. While device D1 did not show an RBM in its Raman

spectrum, similar data was obtained from device D3 (L=4.6 µm, ωRBM=124 cm−1, dt=2.1

nm). The above analysis yields a spatial variation of thermal conductivity for D3 as shown

in Fig. 6.10(b).

We note that the magnitudes of κ are similar to other measurements on single-walled

nanotubes [135], thus validating the assumption in longer devices that the lattice is the

dominant heat carrier. The hot-phonon thermalization length is thus larger than 1 µm

and at most 2.3 µm, considering L/2. Note that κ shown in Fig. 6.10(b) approaches 6000
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Calculated spatial variation of thermal conductivity for device D3

W/m-K at 900 K and is among the highest reported for any material. Our analysis also

shows an almost-linear T dependence much above room temperature, as theoretically pre-

dicted [134]. Our observation deviates from estimates on multi-walled nanotubes [38, 129],

which show a downturn and 1/T dependence beyond room temperature due to Umklapp

scattering. Theory predicts that the onset of Umklapp scattering occurs above 1000 K [134].

However, the presence of multiple shells or defects in multi-walled nanotubes could cause

this downturn at the lower temperatures observed by these groups.

Our data also allows a direct estimate of thermal contact resistance, Rth. Previously,

laser heating of nanotubes was used to determine the ratio of thermal contact resistances

of the left (L) and right (R) lead, Rth,L/Rth,R [136]. In our case, since both temperature

and heat flow are known, we can directly compute both Rth,L and Rth,R. For D1, we obtain
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Rth,L ' 8 × 107 K/W and Rth,R ' 107 K/W respectively. Similar values are obtained for

other devices. The asymmetry is device specific and likely dependent on the nanotube-metal

contact interface. Thermal contact resistance, thus, accounts for a significant temperature

drop at the ends of the nanotube.

In summary, the spatial temperature profile of a single-walled nanotube is obtained for

the first time. This measurement provides insights into the mechanism of thermal transport

and gives a measure of the thermal conductivity and thermal contact resistances of carbon

nanotubes.
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Chapter 7

Ballistic Phonon Thermal Transport in

Multi-Walled Carbon Nanotubes

Abstract

We report electrical transport experiments using the phenomenon of elec-

trical breakdown to perform thermometry that probe the thermal properties

of individual multi-walled carbon nanotubes. Our results show that nanotubes

can readily conduct heat by ballistic phonon propagation. We determine the

thermal conductance quantum, the ultimate limit to thermal conductance for a

single phonon channel, and find good agreement with theoretical calculations.

Moreover, our results suggest a breakdown mechanism of thermally activated

C-C bond breaking coupled with the electrical stress of carrying ∼ 1012 A/m2.

We also demonstrate a current-driven self-heating technique to improve the con-

ductance of nanotube devices dramatically.

The ultimate thermal conductance attainable by any conductor below its Debye temper-

ature is determined by the thermal conductance quantum [137, 138]. In practice, phonon

scattering reduces the thermal conductivity, making it difficult to observe quantum thermal

phenomena except at ultra-low temperatures [139]. Carbon nanotubes have remarkable

thermal properties [140–143], including conductivity as high as ∼3000 W/m K [38]. Here

we report the observation of ballistic phonon motion and quantum thermal transport in

micron-scale individual carbon nanotube devices, demonstrating the universal limit to ther-

mal transport. In this qualitatively different regime, quantum mechanics limits the entropy

flow, giving a maximum thermal conductance and an absolute physical limit to the infor-

mation bandwidth that a nanotube can transport per unit power [137, 138]. From our data,

we obtain a measurement of the thermal conductance quantum that is in good agreement
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with theory.

Very recently the thermal conductance of a carbon nanotube attached to an AFM tip

has been observed to be independent of the AFM retraction length, and the result was

interpreted in terms of ballistic phonon propagation [144]. However, the phonon scattering

length and thermal conductance quantum were not determined. In our experiments, we

heat multi-walled nanotubes (MWNTs) with an electrical current and monitor tempera-

ture by the electrical breakdown phenomenon [130, 145]. Our data yields an experimental

measurement of the thermal conductance quantum, which agrees with theoretical predic-

tions [133, 137, 138] as well as thermal transport results on cryogenically-cooled Si3N4

nanobridges [139]. This demonstrates that fundamental knowledge about thermal trans-

port in nanotubes can be obtained from an electrical transport experiment. This knowl-

edge, which is challenging to obtain by other means, also contributes toward understanding

thermal management issues relevant to the rational design of nanotube interconnects and

logic devices.

Fabrication of free-standing and substrate-supported MWNT devices was described else-

where(e.g. [21, 146]). A device diagram is shown in Fig. 7.1(a) and a scanning electron

microscope (SEM) device image in Fig. 7.1(b). We mainly studied devices in which elec-

trical leads were placed over the tubes. In the work of Collins et al. [130], it was shown

that sufficiently high electrical power dissipation in MWNTs causes the current I to drop in

abrupt events separated by ∼1 s, due to the ablation of individual nanotube shells, behavior

recently imaged by transmission electron microscopy (TEM) [147]. It was carefully argued

that the breakdown temperature TB was ∼900 K [130]. Nevertheless, Joule heating alone

is not likely to account entirely for the shell breakdown [148].

To address the role of TB in the breakdown process, we compared the behavior of both

freestanding devices and supported nanotube devices. In the latter, the substrate provides

an additional cooling pathway for the nanotubes. Figure 7.1(c) shows current-voltage (IV )

data from three freestanding nanotube devices with radius R=10 nm, determined by SEM

imaging. The samples’ lengths L were 0.50 µm, 0.64 µm, and 1.58 µm, respectively (top

to bottom). At breakdown, the resistance is directly proportional to the nanotube length,

indicating that it originates primarily from the nanotube. The IV curves end at an abrupt

∼10 A current drop, marked by the black circles, indicating shell breakdown. The voltage

V was then quickly reduced, to prevent further shell breakdown [145]. The dotted line is a
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Figure 7.1. (a) Diagram of a freestanding multiwalled nanotube device. (b) SEM image

completed device. (c) IV characteristics from freestanding nanotube devices with R=10 nm.

The arrow indicates increasing lengths. Dotted line: iso-power curve. (d) IV characteristic

of substrate-supported devices with R= 8 nm, 9 nm, and 14 nm, increasing in length

following the arrow. Dotted line: iso-power curve. (e) P vs. L on a log-log scale for

freestanding tubes (open circles) and substrate supported nanotubes (filled squares). Dotted

line: P ∝ L, dashed line: P ∝ L−1
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constant power curve corresponding to the breakdown power P for the shortest tube. From

this, we deduce that increasing L leads to decreasing P .

Figure 7.1(d) shows IVs from supported nanotube data with L= 0.74 µm, 1.26 µm, and

1.66 µm, for curves with ends going from left to right, respectively. P increases with L,

showing the opposite behavior from free-standing nanotubes, and is relatively insensitive to

R.

Figure 7.1(e) shows a log-log plot of P vs. L. Free-standing tubes approximately follow

P ∝ L−1 behavior, while the supported tubes exhibit P ∝ L behavior. This behavior can be

understood using a diffusive thermal transport model. For freestanding tubes, the necessary

power P to increase the temperature at the tube center by ∆T is then P = 8πR2κ∆T/L,

where κ is the characteristic nanotube thermal conductivity. Taking the previous estimate

TB∼900 K [130], a linear fit to our data with ∆T=600 K [dashed line in Fig. 7.1(e)] yields

a thermal conductivity of κ ≈ 600 W/m K, consistent with previous thermal conductivity

measurements on individual MWNTs in the diffusive regime [38]. For supported nanotubes,

the relation P ∝ L indicates that the cooling occurs mainly by heat conduction into the

substrate. We estimate heat transport in this geometry as between concentric cylinders.

This yields P = 2πLκ∆T/ln(R0/R), with R0 the outer cylinder radius at which T drops to

the ambient value, and κ the substrate thermal conductivity. Taking R0=50 nm, and R=10

nm the fit shown by the dotted line in Fig. 7.1(e) yields κ ∼0.5 W/m K, in agreement with

the bulk thermal conductivity of SiO2, κ ≈1.5 W/m K. Considering the two cases together,

our data and analysis indicate that the shell ablation occurs at a well-defined temperature

TB.

We now focus exclusively on freestanding nanotube devices, representing a broad range

of L and R values. Figure 7.2 shows P/8πR2 vs. L−1 for ∼30 samples. Based on diffusive

heat transport, we expect plotting the normalized power PN = P/8πR2 vs. L−1 should

yield a straight line with a slope of TB. Remarkably, although the initial trend for the longer

tubes appears linear, for nanotubes with L−1 &(0.5 m)−1 (filled squares) PN saturates and

becomes L independent. This shows that heat flow from the nanotube occurs at an L-

independent rate, depending only on R. The rest of the shells are then broken, producing a

gap in the nanotube. The Fig. 7.2 inset shows the gap position, normalized to the suspended

tube length. This breakpoint is near the center for tubes longer than ∼0.5 µm, but for L

in the saturation regime the scatter in the breakpoint values increases. As the statistical
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Figure 7.2. P/(8πR2) vs. L−1. Open circles: longer tubes L−1. Shorter tubes: filled

squares. Dashed line: fit to data to an interpolation formula described in text. Inset:

breakpoint position normalized to L vs. L on log scale

distribution of breakpoints reflects the temperature distribution along the nanotube, this

suggests the nanotube temperature becomes more spatially uniform as they become shorter

than ∼0.5 µm.

Figure 7.3(a) shows P vs. R on a log-log scale. Data from short tube samples and linear

fit, showing thatP ∝ Rα, with α=2.1. Some data from longer samples, fall near the line,

but for the longest nanotubes, the data points fall below the line. The curve followed by the

short nanotube data represents an upper limit to P ; modulo experimental scatter, data for

each nanotube falls on or below the curve and achieves the maximum only for nanotubes

with L ≤0.5 µm. The Fig. 7.3(a) inset shows the same data and fit on a linear scale.

We now consider potential interpretations for this behavior. One possibility is that a

dominant metal-nanotube thermal contact resistance κC produces the saturation seen in

Fig. 7.2. This is unlikely, however, as κC was determined to be negligible in ref. [38], which

also used metal contacts as thermal reservoirs, as well as in ref. [144] which used graphite

contacts as a thermal reservoir. Finally, based on the supported tubes’ behavior, we would

expect κC , and hence P , to be approximately independent of R. The observed systematic

relationship P ∝ R2 differs sharply from this expectation.

Another possibility is that because of ballistic electron transport [149], the electrical



84
        Chiu et al., Fig. 3 

 

P
(m

W
)

R (nm)

(a)

10 200.1

1

0 5 10 150
1
2
3

P
(m

W
)

R (nm)

P
(m

W
)

M (×103)

(b)

0 1 2 3
0

1

2

3

 15

Figure 7.3. (a) Log-log plot of P vs. R. Open circles: longer tubes. Shorter tubes: filled

squares. Dashed line: linear fit to short nanotube data. Inset: same data and fit on a linear

scale. (b) P vs. M . Dashed line: linear fit through origin to data taken from nanotubes

with L < 0.6 µm
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current primarily heats the electrodes. In this case, the required power to reach TB may

be relatively L-insensitive. However, both experiments and theory [33, 34] indicate the

electronic mean free path due to phonon emission at the high biases applied to our samples

is ∼10 nm. Since each optical or zone boundary phonon emission is associated with an

energy ∼180 meV [34], we expect even for our shortest nanotube studied (∼150 nm) most

of the energy eV provided by the electric field to each electron is converted into phonons

within the nanotube.

We now discuss the possibility of ballistic phonon transport within the nanotube. In

this picture, a diffusive heat transport regime with Umklapp inter-phonon scattering as the

dominant scattering mechanism [38] makes a transition to a ballistic center-of-mass motion

regime for sample lengths L ∼0.5 µm. This suggests the temperature distribution along

the tube should broaden as L decreases, consistent with the data in the Fig. 7.2 inset.

Furthermore, because the characteristic distance the phonons travel before escaping the

tube is ∼ L/2, we would infer a characteristic Umklapp scattering mean-free path lU ∼0.2

µm. We note that this situation, where the electron mean free path is shorter than lU ,

is reminiscent of the conditions prevailing in silicon-based transistors [150]. This must be

accounted for to understand thermal management in Si transistors. Similar issues may

therefore occur in nanotube transistor devices.

In the ballistic regime, the heat flux carried by the phonons P is given by [133, 139]

P =
∑
n

∫
dωn
2π

~ωn[ηne(ωn)− η(ωn, T0)]ξ(ωn) (7.1)

where the integration is over each of the nth photon modes bandwidths, ηne(ωn) is the non-

equilibrium phonon distribution for the nth phonon branch, η(ωn, T0) is the Bose-Einstein

distribution corresponding to the phonons injected into the nanotube at the electrode tem-

perature T0, and ξ(ωn) is the transmission coefficient for phonons escaping into the elec-

trodes.

We now make several assumptions to simplify eq. 7.1. Although the geometry de-

pendence of ξ(ωn) for various situations was calculated by Rego and Kirczenow [151], our

geometry of an extended lateral contact was not addressed. However, considering the neg-

ligibility of κC as discussed above, as well as the relatively large characteristic thermal

phonon wavevector ∼1010 m−1 compared to that studied in ref. [151], we take ξ(ωn) ≈1.
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Moreover, since TB >> T0 we neglect η(ωn, T0) relative to ηne(ωn). Since breakdown de-

pends on P , rather than V or I separately the hot phonons emitted by the electrons likely

achieve thermodynamic equilibrium over a thermalization length lth � L after a few L

independent characteristic number of collisions. Thus we set ηne(ωn) = η(ωn, T ), where T

is the tube temperature. We also set ωn,min ≈ nc/R [152], where c ∼1.5×104 m/s is the

in-plane speed of sound in graphite [153]. Since TB is considerably less than ΘD ∼2500 K,

the graphene Debye temperature, we replace ωn,max by infinity. Finally, motivated by the

observed P ∝ R2 relationship we assume that the thermal current is carried by the different

nanotube shells in parallel.

Summing over the contribution from each shell in the MWNT spaced by a=0.34 nm

independently (justified by weak coupling between graphite sheets), the power dissipated

by phonons exiting the nanotube is then

Pph ≈ 2ζ(3)(kBT )3
R2

π~2ac
(7.2)

taking into account the heat flow into both contacts and phonon mode degeneracy factor

of two, with ζ the Riemann zeta function. Note that this expression contains no free

parameters. We rewrite eq. 7.2 as Pph = 2MκQT , analogous to the well-known Landauer

formula for the ballistic conduction of electrons. Here M ≈ 1.5πkBTR2/hac, corresponding

to the characteristic number of occupied phonon branches, and κQ = π2kB
2T/3h is the

thermal conductance quantum [137, 138].

Plotting P vs. M for samples shorter than ∼0.5 µm should thus yield a straight line

with a slope of 2TBκQ. Figure 7.3(b) shows such a plot with T=TB=900 K for tubes with

L .0.5 µm. The data closely follows a straight-line with a fitted slope of 1.0 µW/branch.

From this, we infer a value for the thermal conductance quantum of 6 10−10 W/K. This is

the key experimental finding of this work. Although the accuracy of this measured value

of κQ is somewhat limited by the uncertainty in TB and the assumptions of our model,

our experimental determination of κQ is nevertheless in good quantitative agreement to

the theoretical value κQ=9×10−10 W/K. This demonstrates that we readily reach quantum

mechanical limits to thermal transport in our nanotube devices that act as ballistic phonon

waveguides. This is the first such observation for a nanostructure under ambient conditions,

enabled by the unique thermal properties of carbon nanotubes.
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Figure 7.4. IV characteristic of a freestanding nanotube device with R=14 nm. The arrow

indicates a dramatic current increase. Inset: expanded view of data in the rapid-increase

region

From our model and the data of Fig. 7.2 we also obtain an estimate for the phonon mean

free path, which was not determined in ref. [144]. Since the thermal conductance in the

diffusive limit may be written as K = λMκQ/L, where λ is the phonon mean free path we

can obtain an interpolated expression for the power, appropriate to T=900 K, that agrees

with the asymptotic limits discussed earlier, Pint = 2MκQL
−1/(L−1 + 3/8λ). The dashed

line is a fit of Pint/8πR2 to the data of Fig. 7.2 with λ=220 nm, yielding a satisfactory fit

to the data over the entire length range with only a single free parameter.

Furthermore, our data yields insight into the breakdown process. The well-defined

breakdown temperature suggests it requires an initial defect-forming step with activation

energy ∆. We expect the defect formation rate is Γ ∼ NωAexp(−∆/kBTB), where ωA is a

characteristic attempt frequency, and N is the number of atoms in the tube at temperature

TB ∼900 K. We find ∆ ∼3–4 eV with Γ=1 s−1, a range of ωA ∼108–1018 s−1 and N ∼106,

highly insensitive to the choice of N and Γ. One possible origin for ∆ is the formation of a

Stone-Wales defect. However, our estimated ∆ is considerably smaller than the theoretically

determined barrier ∼10 eV to form a Stone-Wales defect in graphite and MWNTs [154]

ruling out this possible mechanism.

Our data suggests instead a shell breakdown mechanism based on thermal activation of
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bond-weakening σ − π∗ electronic transitions, similar to the results of scanning tunneling

microscope (STM) cutting experiments [155] which were interpreted as originating with

the electronic excitation of such transitions [156]. Indeed, the characteristic energy cost

Eσ−π∗ ∼3.6 eV(see e.g., ref. [153]) is close to our estimated ∆ ∼3–4 eV. Finally, we are

able to improve nanotube device conductance considerably using the electric current flow.

Freestanding samples with initial low-bias resistance ∼50 kΩ up to 10 MΩ typically show

a rapid increase in conductance as the voltage across the sample is ramped, such as shown

in Fig. 7.4. At higher voltages, a cascade of shell ablation begins and the current decreases

in a stepwise fashion. The inset shows that the rise in conductance occurs in a smooth

fashion. This behavior may be related to the structural annealing recently imaged by

TEM [147]. Further experiments, however, are necessary to fully clarify the origins of this

behavior, which is of practical value in addressing the challenge of obtaining a high yield of

conductive nanotube devices.
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Chapter 8

Carbon Nanotube Linear Bearing Nanoswitches

Abstract

We exploit the remarkable low-friction bearing capabilities of multi-walled

carbon nanotubes to realize nanoelectromechanical switches. Switching occurs

through the sliding of the inner nanotube shells to close the gap, producing a

conducting ON state. For double-walled nanotubes in particular, a gate voltage

can restore the insulating OFF state. Acting as a non-volatile memory element

capable of several switching cycles, our devices are straightforward to implement,

self-aligned and do not require complex fabrication or geometries allowing for

convenient scalability.

Microelectromechanical structures have produced a wealth of novel devices for sens-

ing, actuation, and lab-on-a-chip applications. Making smaller nanomechanical systems

promises faster and more compact versions of their larger counterparts, opening up the

possibility of highly-integrated nanoscale machines and logic circuits [157, 158]. However,

challenges such as friction and precise control of device geometry remain important obsta-

cles to the miniaturization of mechanical systems. Carbon nanotubes promise to address

many of these challenges because of their intrinsic nanoscale dimensions, mechanical stiff-

ness, structural perfection, and low inter-shell friction. Here we exploit the remarkable

low-friction bearing capabilities [159–161] of multi- and double-walled carbon nanotubes

(MWNTs and DWNTs) to realize a nanoelectromechanical switch that operates on an en-

tirely different principle than previous efforts exploiting nanotube bending [162–166]. Our

devices are straightforward to implement, self-aligned and do not require complex fabri-

cation or geometries allowing for convenient scalability. We find double-walled nanotube

devices in particular act as non-volatile memory elements capable of several gate-voltage

driven switching cycles.
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Our nanotube bearing devices are fabricated in high yield by using electric break-

down [130] to create gaps in a freestanding multi-wall nanotube device producing an in-

sulating OFF state. The devices are actuated with electrostatic forces and undergo linear

bearing motion that telescope the inner shells in the two MWNT or DWNT segments [167]

so that they bridge the gap. This restores electrical contact and produces an ON state.

Adhesion forces between the nanotube ends maintain the conductive state. For double-

walled nanotube devices in particular, the insulating state is controllably restored using a

gate voltage, enabling several repeated ON/OFF cycles. We thereby create three-terminal

non-volatile memory devices. We model the device behavior by considering the balance of

electrostatic forces tending to close the device and restore the conductance and the retrac-

tion force from the inter-tube van der Waals forces. A fit of our model to data yields an

estimate for the inner shell retraction force, which agree with theoretical calculations as

well as the results from atomic force microscopy (AFM) measurements [168]. Our results

suggest that the intra-tube electrostatic repulsion makes a significant contribution to ac-

tuating the bearing motion. Finally, we estimate the switching speed of our devices, and

find sub-nanosecond switching times for the typical nanoscale device geometries employed

in our experiment, with considerable scope for further optimization of switching speed by

using shorter and thinner nanotubes.

Samples are fabricated by one of two methods on top of heavily doped Si wafers capped

by 300 nm of SiO2. The first method is to evaporate Cr/Au contacts on arc-discharge

synthesized MWNTs (dispersed in 1,2-dichloroethane) deposited on the substrate, and then

using 10:1 buffered HF to etch the oxide and suspend the tubes. The second is by forming

the electrical leads, etching the oxide with 10:1 buffered HF and then depositing MWNTs

on top. A device schematic with the nanotubes on top of the leads is shown in the inset to

Fig. 8.1.

Our ∼40 MWNT samples studied typically had an initial resistance ranging from ∼10

kΩ to a few MΩ. A sufficiently high voltage V across the higher-resistance samples usually

resulted in a rapid drop in resistance [129, 147]. This phenomenon enabled us to obtain low-

resistance nanotube devices with resistance ∼10–20 kΩ from nearly all contacted nanotubes.

Figure 8.1 shows an IV curve taken in an Ar atmosphere from a device that was pre-

annealed (device D1). The current rises approximately linearly until V ≈4.45 V at which

point I drops to zero and V is quickly ramped down. This observation is consistent with



91

Fig. 1 
 
 
 

0 2 4

0

100

200

V(V)

Au A

MWNT device

Au

MWNT device

Vg

A
Vsd

SiO2
p++ Si

Au A

MWNT device

Au

MWNT device

Vg

A
Vsd

SiO2
p++ Si

50 nm50 nm

I(
μA

)

 12

Figure 8.1. Relay device from freestanding MWNT. Main panel: IV characteristics of

device D1 leading to electrical breakdown. Upper left inset: MWNT device geometry with

attached electrodes and back gate. Lower-right inset: MWNT D2 with nm-size gap after

electrical breakdown.

previous work in which heating and electrical stress result in the successive breakdown of the

nanotube shells [130]. Indeed, SEM examination of devices after breakdown typically shows

two segments with tapering ends, with each segment consisting of 10–30 shells, separated

by a gap d ≈5-20 nm. Figure 8.1 shows an SEM image from a representative device D2

with such a gap. After the gaps are formed, the devices are in an insulating OFF state,

consistent with expected negligible tunnel current for electrode separation exceeding ∼1–2

nm.

On application of a higher bias (typically in the range ∼5–10 V) to D1 in the OFF state,

at a voltage V=4.53 V as shown in Fig. 8.2, the current increases abruptly, leading to a

conductive ON state (open squares). Once the bias was reduced to 0 V, the device remains

latched in this ON state, showing a finite zero-bias resistance (filled squares). In the latched

ON state, subsequent SEM imaging of the devices shows that the gap vanishes, indicating

nanomechanical motion of the nanotube shells to physically rejoin the two nanotube seg-
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Figure 8.2. Relay device ON characteristics. Main panel: Abrupt rise in conductance of

device D1 on sweeping of voltage Vsd (open squares) and subsequent latching in the ON

state (filled squares). Lower right inset: SEM image of D2 after latching shows that gap

has closed. Upper right inset: Schematic cup and cone model of the tube ends used for

analysis.

ments and complete the electrical circuit. The Fig. 8.2 lower right inset shows this closure

for device D2. Our devices thus act as an electrostatically actuated nanomechanical switch.

Approximately 1/3 of MWNT devices switched to the ON state with V .10 V.

Careful examination of the MWNT positions in a number of representative samples

before and after joining showed that the outer shell remains pinned to the contact even

when gaps as large as ∼20 nm have been closed. Furthermore, SEM examination of our

devices rarely shows any observable slack, consistent with the high mechanical stiffness

of the ∼10–20 nm diameter MWNTs. Thus, actuation is unlikely to occur in general by

nanotube bending. Having ruled out these possibilities, we then consider telescoping of

inner shells from their outer casing as the actuation mechanism [159]. We use the linear

bearing model of Cumings and Zettl [159] to model the van der Waals force between shells
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within the MWNT. The bearing is expected to act as a constant-force spring, i.e. the force

is independent of the extended length, with the expected retraction force FR = αR, with

R the extended core radius and α ∼1 N/m a constant. To close the circuit, FR must be

overcome by the electrostatic force due to the applied voltage. To model the electrostatic

force, we approximate the MWNT segments with a cone for the tapered part, and a spherical

cap at the tip (Fig. 8.2 upper left inset) [169]. The geometric parameters for this model

(cap radius R, gap d, cone half-angle θ) are carefully extracted from the SEM images

using a MATLAB image-processing program. We calibrated the SEM radius measurements

carefully by comparing SEM images to AFM images on the same nanotube, for a selected

subset of the nanotubes. The estimated radius measurement error is ±1 nm as indicated in

Figure 8.3.

The two main force contributions arise from electrostatic attraction between the seg-

ments and intra-shell electrostatic repulsion within a segment. Both of these forces tend to

slide one or more shells out to close the gap. It is most straightforward to estimate these

for the case where the two segments are far apart (d� R). In this case, the attractive force

between segments (considered to be point charges for this evaluation) is πε0V 2R2/(d+2R)2

while the repulsive force within a segment (modeled as force between two halves of a charged

sphere) is πε0V 2. The force balance gives,

αR = πε0V
2

[
R2

(d+ 2R)2
+ 1
]
. (8.1)

Plotting V 2 versus of R for data points with d/R � 1 should thus yield a straight line

with a slope α/πε0 where α ≈1 N/m, obtained from previous AFM measurements [168].

Scaling data points as d/R in Fig. 8.3, indeed we find that data points with the largest

d/R (corresponding to the bigger squares) lie closest to α=1 N/m.

This demonstrates that for d/R in this range the dominant actuation force comes from

the intra-tube repulsive forces rather than the inter-tube attractive forces. For data with

d ≈ R (corresponding to the smaller squares) the data falls below the line, signifying a

smaller voltage to overcome the van der Waals forces for a given R. Although accurate

modeling of the electrostatics for d ≈ R is challenging due to lack of charge distribution

information on individual shells, we expect that in this regime both the electrostatic intra-
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Figure 8.3. Plot of V 2 vs R. Data points’ sizes are proportional to d/R. Plot shows that

data matches the parameter-free model (as indicated by the force constant of 1 N/m) closely

for large d/R, where it is expected to have the greatest validity. The plot also reveals that

samples with nanotube segments close-in (R ∼ d) are actuated at lower V than those well

separated (d� R).

tube repulsion and inter-tube attraction are ∼ πε0V
2, leading to a smaller closing voltage

than in the d� R regime, in qualitative agreement with our observations.

The above procedure of electrical breakdown and closing of gap with bias voltage has

been applied to DWNTs as well. DWNTs were obtained commercially from NanoLab,

Inc. and had a typical diameter d ≈3–6 nm. Using the p-doped Si wafer as a back gate

in these samples, we find that for high enough gate voltage devices switch back to OFF

state, thus enabling repeated ON-OFF cycles. Fig. 8.4 shows the time-trace plot of DWNT

device D3 (with a pre-breakdown resistance of 100kΩ) for two cycles in Ar environment. In

the OFF state, on applying a bias voltage the conductance increases abruptly at Vsd=9V

leading to the ON state. With Vsd=10mV, at Vgate=110V the device snaps back to the zero

conductance (OFF) state. On application of bias voltage, at Vsd=9V the device turns ON

again. Nearly all of the ∼10 DWNT devices tested successfully switched back to the ON
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Figure 8.4. Three-terminal relay switching and operation. Plot shows the time trace of bias

voltage (V ), gate voltage (Vg) and conductance (G) for DWNT device D3 for two cycles.

The device initially in OFF state turns ON, OFF and ON again as seen in the plot of G.

Transport data was obtained from D3 in series with a 1 MΩ protection resistor.

state after electrical breakdown, and either became insulating or remained latched in the

ON state within 3–4 switching cycles.

We consider the possible explanations for this reversible gate-switching. Previously, a

gate voltage has been used to induce the same sign charge and create repulsive electrostatic

forces between nanotubes in lateral contact [170], thereby breaking the contact between two

nanotubes. However, in our devices this mechanism is unlikely because with the tapered

geometry the electrostatic forces are unlikely to have any tensile component.

Another possibility is that the gate voltage places a bending stress on the nanotube

that acts to break the connection. After setting the gate voltage back to zero, the nanotube

segments elastically return to their original OFF state positions. The electrostatic force

(per unit length) on the nanotube due to Vg is Fel = πεV 2
g /h[log(2h/R)]2. Based on

elementary beam mechanics, the maximum bending stress corresponding to Fel, (occuring
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at the mid-point of the nanotube) is σ = 4FelL2/(3πd3). This is ∼1011 Pa for V=110V and

typical values of d, L and h (d=5nm, L=500nm, h=350nm). We note that this force greatly

exceeds the van der Waals forces between tube-ends, which correspond to a binding stress

of ∼107 Pa, using the value for the inter-layer adhesion in graphite. Further evidence for

this mechanical switching action comes from that we do not see gate-voltage switching with

MWNTs which have much larger diameters and greatly-reduced induced bending stress.

Also, the gap-closing OFF-ON transition is not as stable as seen in Fig. 8.4, if the

device is imaged in the SEM in the intermediate stage or even just exposed to the ambient

atmosphere, indicating that the cleanliness of the tube ends is important for stable adhe-

sion. This and the large magnitude gate-induced bending stress suggests that the nanotube

adhesion results from the formation of one or more covalent bonds between the atoms in

the tube ends. However, further experiments are necessary to fully elucidate the adhesion

mechanism, for example high-temperature vacuum annealing of the device post-breakdown,

to close and cap the ends of the inner nanotube shells [171]. It is expected that the tube ends

would then adhere with the smaller van der Waals bonds, and may permit, for example,

the realization of microwave-frequency oscillators [172, 173] or charge shuttles.

We also note that the observed switching voltage can likely be reduced by optimiza-

tion of the geometry such as using thinner nanotubes and decreasing the distance between

the nanotube and the back gate. Using a core mass m ≈2×10−19 kg corresponding to a

nanotube of length 500 nm and core radius 5 nm, an accelerating force ∼5 nN, and a gap

distance ∼5 nm, we estimate using Newton’s laws a switching speed ∼400 ps, comparable

to silicon-based transistor technology. This could be reduced substantially in principle by

using shorter core lengths and smaller diameter to decrease m. The time to turn the device

off should be much faster, comparable to the femto- or picosecond characteristic timescale

for chemical bond breaking. These intrinsic nanomechanical time scales represent a lower

bound for the switching speed approachable in practice only by carefully reducing the stray

device capacitances and hence the characteristic RC charging times.

In sum, we report nanoelectromechanical non-volatile memory devices that operate by

using multi-walled nanotubes as a low-friction bearings. The devices are straightforward to

fabricate in high yield and go through reversible ON-OFF conductance cycles with extremely

high estimated switching speeds and high ON/OFF ratios. Aside from their use as nanoscale

memory elements, their unique closing motion can exploited, for example, as adjustable-
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gap probes to make electrical contact to other nanostructures that are attached using the

flexible chemistry of the open nanotube ends.
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Chapter 9

Conclusion

In this thesis, we investigated three important aspects of physics in carbon nanotubes,

namely electron-electron interactions, electron-phonon interactions and phonon transport,

all strongly influenced by the 1D nature of nanotubes. We also realized an application

using the low-friction sliding degree-of-freedom of these low-defect structures. In addition

to contributing to the physics of nanotubes, the work also highlights the use of nanotubes

in studying many-body states like the Wigner crystal and Mott insulator. Future work will

involve further investigating signatures of these states, perhaps using different geometries

or high-frequency measurements, showing the crossover from the 1D Wigner crystal (WC)

to a Luttinger liquid (LL), the interplay between the band-gap and Mott gap, or the effect

of spin-orbit coupling on all of these ground states at mK temperatures and so on.

One can also use these states to realize even more theoretical predictions. One interesting

state is the spin-incoherent Luttinger liquid [174]. While one could think of it as the

high-temperature regime of the Wigner crystal in which the the spin degree of freedom is

thermally excited, it shows qualitatively different behavior from a LL or WC and has been

predicted to be responsible for one of the unsolved mysteries of mesoscopic physics, i.e.,

the 0.7 anomaly. Carbon nanotubes could be used to shed some light on this problem.

Futhermore, the Mott state as observed in nanotubes, or indeed an artificial Mott insulator

using nanotubes, could be used to realize the complex many-body states predicted by the

Hubbard model (though a superconducting ground-state is not a likely outcome). With

thermal transport, it would be nice to observe a few quanta of thermal conductance at

low temperatures. Using suspended structures such as ours, one might be able to study

the interplay between quantum thermal transport and macroscopic (mechanical) modes of

vibration.

In terms of technology, as was suggested in Chapter 4 one could think of the Wigner

crystal as a self-assembled chain of electrons (with an inter-electron separation of ∼100
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nm) to gate locally and use the interaction between adjacent spins to perform quantum

operations. There has been some effort towards realizing a phonon laser, and our observation

of electron scattering preferentially off one phonon mode makes nanotubes a promising

candidate. And the linear-bearing nanoswitch is a classic example of a nano-sized system

with moving parts which would not seem out of place in a (nanoscale) futuristic movie!

There is indeed much physics and technology to be realized using carbon nanotubes.



100

Bibliography

[1] J. M. Ziman, Electrons and Phonons (Oxford University Press, 2001).

[2] M. P. A. Fisher, L. I. Glazman, Mesoscopic Electron Transport (Kluwer Academic,

Boston, 1997).

[3] M. Bockrath, et al., Nature 397, 598 (1999).

[4] O. M. Auslaender, et al., Science 295, 825 (2002).

[5] A. M. Chang, Rev. Mod. Phys. 75, 1449 (2003).

[6] J. Cao, Q. Wang, D. Wang, H. Dai, Small 1, 138 (2005).

[7] J. Cao, Q. Wang, H. Dai, Nat. Mater. 4, 745 (2005).

[8] S. Iijima, Nature 354, 56 (1991).

[9] A. Thess, et al., Science 273, 483 (1996).

[10] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. Dai, Nature 395, 878 (1998).

[11] E. D. Minot, Tuning the band structure of carbon nanotubes, Ph.D. thesis, Cornell

University (2004).

[12] R. Saito, G. Dresselhaus, Physical properties of carbon nanotubes (Imperial College

Press, 1998).

[13] C. L. Kane, E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997).

[14] M. S. Dresselhaus, P. C. Eklund, Advances in Physics 49, 705 (2000).

[15] M. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Physics Reports 409, 47 (2005).



101

[16] S. Piscanec, M. Lazzeri, J. Robertson, A. C. Ferrari, F. Mauri, Phys. Rev. B 75,

035427 (2007).

[17] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, L. M. K. Vandersypen, Rep.

Mod. Phys. 79, 1217 (2007).

[18] L. P. Kouwenhouven, et al., NATO ASI Series E Applied Sciences 345, 105 (1997).

[19] L. P. Kouwenhoven, D. G. Austing, S. Tarucha, Rep. Prog. Phys. 64, 701 (2001).

[20] K. A. Matveev, Phys. Rev. Lett 92, 106801 (2004).

[21] M. Bockrath, et al., Science 275, 1922 (1997).

[22] S. J. Tans, et al., Nature 386, 474 (1997).

[23] P. McEuen, M. Bockrath, D. Cobden, Y.-G. Yoon, S. Louie, Phys. Rev. Lett. 83, 5098

(1999).

[24] W. Liang, M. Bockrath, H. Park, Phys. Rev. Lett. 88, 126801 (2002).

[25] S. Sapmaz, et al., Phys. Rev. B 71, 153402 (2005).

[26] J. Nygard, D. H. Cobden, P. E. Lindelof, Nature 408, 342 (2000).

[27] W. J. Liang, et al., Nature 411, 665 (2001).

[28] P. Jarillo-Herrero, S. Sapmaz, C. Dekker, L. P. Kouwenhoven, H. S. J. van der Zant,

Nature 429, 389 (2004).

[29] E. D. Minot, Y. Yaish, V. Sazonova, P. L. McEuen, Nature 428, 536 (2004).

[30] P. Jarillo-Herrero, et al., Nature 434, 484 (2005).

[31] A. Bachtold, et al., Phys. Rev. Lett. 87, 166801 (2001).

[32] M. H. Devoret, et al., Phys. Rev. Lett. 64, 1824 (1990).

[33] Z. Yao, C. Kane, C. Dekker, Phys. Rev. Lett. 84, 2941 (2000).

[34] J. Y. Park, et al., Nano Lett. 4, 517 (2004).

[35] A. Javey, et al., Phys. Rev. Lett. 92, 106804 (2004).



102

[36] E. Pop, et al., Phys. Rev. Lett 95, 155505 (2005).

[37] P. G. Collins, M. S. Arnold, P. Avouris, Science 292, 706 (2001).

[38] P. Kim, L. Shi, A. Majumdar, P. L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).

[39] P. Kim, L. Shi, A. Majumdar, P. L. McEuen, Physica B 323, 67 (2002).

[40] G. E. Begtrup, et al., Phys. Rev. Lett. 99, 155901 (2007).

[41] M. Bockrath, Carbon nanotubes: Electrons in one dimension, Ph.D. thesis, University

of California at Berkeley (1999).

[42] D. Mann, Synthesis of single-walled carbon nanotubes and their electro-thermal and

opto-electronic properties, Ph.D. thesis, Stanford University (2006).

[43] L. Huang, et al., J. Phys. Chem. B 110, 11103 (2006).

[44] O. M. Auslaender, et al., Science 308, 88 (2005).

[45] T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, 2004).

[46] A. O. Gogolin, A. A. Nersesyan, A. M. Tsvelik, Bosonization and Strongly Correlated

Systems (Cambridge University Press, 2004).

[47] L. S. Levitov, A. M. Tsvelik, Phys. Rev. Lett. 90, 016401 (2003).

[48] S. Coleman, Phys. Rev. D 11, 2088 (1975).

[49] S. Mandelstam, Phys. Rev. D 11, 3026 (1975).

[50] L. Balents, M. P. A. Fisher, Phys. Rev. B 55, R11973 (1997).

[51] H.-H. Lin, Phys. Rev. B 58, 4963 (1998).

[52] D. S. Novikov. Personal communication.

[53] A. A. Odintsov, H. Yoshioka, Phys. Rev. B 59, R10457 (1999).

[54] E. Dagotto, T. M. Rice, Science 271, 618 (1996).

[55] Y. A. Krotov, D.-H. Lee, S. G. Louie, Phys. Rev. Lett. 78, 4245 (1997).

[56] A. A. Nersesyan, A. M. Tsvelik, Phys. Rev. B 68, 235419 (2003).



103

[57] Z. Yao, H. W. C. Postma, L. Balents, C. Dekker, Nature 402, 273 (1999).

[58] A. Schwartz, et al., Phys. Rev. B 58, 1261 (1998).

[59] E. Wigner, Phys. Rev. 46, 1002 (1934).

[60] H. J. Schulz, Phys. Rev. Lett. 71, 1864 (1993).

[61] G. A. Fiete, K. Le Hur, L. Balents, Phys. Rev. B 72, 125416 (2005).

[62] M. M. Fogler, E. Pivovarov, Phys. Rev. B 72, 195344 (2005).

[63] M. Kindermann, P. W. Brouwer, A. J. Millis, Phys. Rev. Lett 97, 036809 (2006).

[64] H. Steinberg, et al., Phys. Rev. B 73, 113307 (2006).

[65] M. Yamamoto, M. Stopa, Y. Tokura, Y. Hirayama, S. Tarucha, Science 313, 204

(2006).

[66] D. S. Novikov, Phys. Rev. B 72, 235428 (2005).

[67] D. H. Cobden, M. Bockrath, P. L. McEuen, A. G. Rinzler, R. E. Smalley, Phys. Rev.

Lett. 81, 681 (1998).

[68] K. A. Matveev, Phys. Rev. B 70, 245319 (2004).

[69] A. D. Klironomos, R. R. Ramazashvili, K. A. Matveev, Phys. Rev. B 72, 195343

(2005).

[70] Y. Oreg, K. Byczuk, B. I. Halperin, Phys. Rev. Lett. 85, 365 (2000).

[71] D. Goldhaber-Gordon, et al., Nature 391, 156 (1998).

[72] R. Zitko, J. Bonca, A. Ramsak, T. Rejec, Phys. Rev. B 73, 153307 (2006).

[73] S. Sasaki, et al., Nature 405, 764 (2000).

[74] A. Javey, J. Guo, W. Q., L. M., H. J. Dai, Nature 424, 654 (2003).

[75] I. V. Krive, A. A. Nersesyan, M. Jonson, R. I. Shekhter, Phys. Rev. B 52, 10865

(1995).

[76] S. J. Tans, M. H. Devoret, R. J. A. Groeneveld, C. Dekker, Nature 394, 761 (1998).



104

[77] N. F. Mott, Rev. Mod. Phys. 40, 677 (1968).

[78] M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

[79] J. Wu, et al., Nano Lett. 6, 2313 (2006).

[80] P. A. Lee, N. Nagaosa, X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).

[81] V. V. Deshpande, M. Bockrath, Nat. Phys. 4, 314 (2008).

[82] F. Kuemmeth, S. Ilani, D. C. Ralph, P. L. McEuen, Nature 452, 448 (2008).

[83] J.-C. Charlier, X. Blase, S. Roche, Rev. Mod. Phys. 79, 677 (2007).

[84] M. Ouyang, J.-L. Huang, C. L. Cheung, C. M. Lieber, Science 292, 702 (2001).

[85] C. Zhou, J. Kong, H. Dai, Phys. Rev. Lett. 84, 5604 (2000).

[86] X. Huang, et al., Nano Lett. 5, 1515 (2005).

[87] P. Jarillo-Herrero, et al., Phys. Rev. Lett. 94, 156802 (2005).

[88] W. Chen, A. V. Andreev, A. M. Tsvelik, D. Orgad, arXiv.org:0807.1936 (2008).

[89] S. De Franceschi, et al., Phys. Rev. Lett. 86, 878 (2001).

[90] M. Garst, D. S. Novikov, A. Stern, L. I. Glazman, Phys. Rev. B 77, 035128 (2008).

[91] D. M. Newns, et al., Appl. Phys. Lett. 73, 780 (1998).

[92] G. G. Samsonidze, et al., Phys. Rev. B 75, 155420 (2007).

[93] M. Lazzeri, F. Mauri, Phys. Rev. B 73, 165419 (2006).

[94] O. Dubay, G. Kresse, Phys. Rev. B 67, 035401 (2003).

[95] N. Caudal, A. M. Saitta, M. Lazzeri, F. Mauri, Phys. Rev. B 75, 115423 (2007).

[96] M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, J. Robertson, Phys. Rev. B 73,

155426 (2006).

[97] O. Dubay, G. Kresse, H. Kuzmany, Phys. Rev. Lett. 88, 235506 (2002).



105

[98] R. B. Capaz, C. D. Spataru, P. Tangney, M. L. Cohen, S. G. Louie, Phys. Rev. Lett.

94, 036801 (2005).

[99] M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. S. Filho, R. Saito, Carbon 40,

2043 (2002).

[100] L. Kavan, et al., J. Phys. Chem. B 105, 10764 (2001).

[101] P. M. Rafailov, J. Maultzsch, C. Thomsen, H. Kataura, Phys. Rev. B 72, 045411

(2005).

[102] S. B. Cronin, et al., Appl. Phys. Lett. 84, 2052 (2004).

[103] S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes (Wiley-VCH, 2004).

[104] R. Kumar, S. B. Cronin, Phys. Rev. B 75, 155421 (2007).

[105] D. Mann, et al., J. Phys. Chem. B 110, 1502 (2006).

[106] M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, J. Robertson, Phys. Rev. Lett. 95,

236802 (2005).

[107] M. Z. Atashbar, S. Singamaneni, Appl. Phys. Lett. 86, 123112 (2005).

[108] A. Bassil, P. Puech, L. Tubery, W. Bacsa, E. Flahaut, Appl. Phys. Lett. 88, 173113

(2006).

[109] S. Chiashi, Y. Murakami, Y. Miyauchi, S. Maruyama, Chem. Phys. Lett. 386, 89

(2004).

[110] L. Ci, et al., Appl. Phys. Lett. 82, 3098 (2003).

[111] F. Huang, et al., J. Appl. Phys. 84, 4022 (1998).

[112] P. V. Huong, R. Cavagnat, P. M. Ajayan, O. Stephan, Phys. Rev. B 51, 10048 (1995).

[113] H. D. Li, et al., Appl. Phys. Lett. 76, 2053 (2000).

[114] N. R. Raravikar, et al., Phys. Rev. B 66, 235424 (2002).

[115] A. Jorio, et al., Phys. Rev. B 66, 115411 (2002).



106

[116] E. B. Tucker, Phys. Rev. Lett. 6, 547 (1961).

[117] R. E. Nahory, Phys. Rev. 178, 1293 (1969).

[118] R. W. Shaw, Phys. Rev. B 3, 3283 (1971).

[119] R. Merlin, Solid State Communications 102, 207 (1997).

[120] C. G. Rodrigues, urea R. Vasconcellos, R. Luzzi, Solid State Communications 140,

135 (2006).

[121] I. Camps, S. S. Makler, H. M. Pastawski, L. E. F. F. Torres, Phys. Rev. B 64, 125311

(2001).

[122] J. C. Meyer, et al., Phys. Rev. Lett. 95, 217401 (2005).

[123] Y. Zhang, J. Zhang, H. Son, J. Kong, Z. Liu, J. Am. Chem. Soc. 127, 17156 (2005).

[124] S. D. M. Brown, et al., Phys. Rev. B 63, 155414 (2001).

[125] F. Cataldo, Fullerenes, Nanotubes and Carbon Nanostructures 10, 293 (2002).

[126] C. L. Kane, et al., Europhys. Lett. 41, 683 (1998).

[127] R. Saito, et al., Phys. Rev. B 64, 085312 (2001).

[128] Y. Wu, et al., Phys. Rev. Lett. 99, 027402 (2007).

[129] H. Y. Chiu, et al., Phys. Rev. Lett 95, 226101 (2005).

[130] P. G. Collins, M. Hersam, M. Arnold, R. Martel, P. Avouris, Phys. Rev. Lett. 86,

3128 (2001).

[131] A. Bushmaker, V. Deshpande, M. Bockrath, S. Cronin, Nano Lett. 7, 3618 (2007).

[132] M. Oron-Carl, R. Krupke, Phys. Rev. Lett. 100, 127401 (2008).

[133] T. Yamamoto, S. Watanabe, K. Watanabe, Phys. Rev. Lett. 92, 075502 (2004).

[134] N. Mingo, D. A. Broido, Phys. Rev. Lett 95, 096105 (2005).

[135] C. H. Yu, L. Shi, Z. Yao, D. Y. Li, A. Majumdar, Nano Lett. 5, 1842 (2005).

[136] I.-K. Hsu, et al., Appl. Phys. Lett. 92, 063119 (2008).



107

[137] J. B. Pendry, J. Phys. A 16, 2161 (1983).

[138] R. Maynard, E. Akkermans, Phys. Rev. B 32, 5440 (1985).

[139] K. Schwab, E. A. Henriksen, J. M. Worlock, M. L. Roukes, Nature 404, 974 (2000).

[140] J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 59, R2514 (1999).

[141] J. Hone, B. Batlogg, Z. Benes, A. T. Johnson, J. E. Fischer, Science 289, 1730 (2000).

[142] M. C. Llaguno, J. E. Fischer, A. T. Johnson, J. Hone, Nano Lett. 4, 45 (2004).

[143] M. R. Buitelaar, T. Nussbaumer, C. Schonenberger, Phys. Rev. Lett. 89, 256801

(2002).

[144] E. Brown, L. Hao, J. C. Gallop, J. C. Macfarlane, Appl. Phys. Lett. 87, 023107 (2005).

[145] B. Bourlon, et al., Phys. Rev. Lett. 92, 026804 (2004).

[146] J. Nygard, D. H. Cobden, Appl. Phys. Lett. 79, 4216 (2001).

[147] J. Y. Huang, et al., Phys. Rev. Lett. 94, 236802 (2005).

[148] J. Cumings, P. G. Collins, A. Zettl, Nature 406, 586 (2000).

[149] S. Frank, P. Poncharal, Z. L. Wang, W. A. De Heer, Science 280, 1744 (1998).

[150] A. Bezryadin, C. Dekker, J. Vac. Sci. Technol. B 15, 793 (1997).

[151] L. G. C. Rego, G. Kirczenow, Phys. Rev. Lett. 81, 232 (1998).

[152] L. X. Benedict, S. G. Louie, M. L. Cohen, Solid State Commun. 100, 177 (1996).

[153] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon

Nanotubes: Their Properties and Applications (Academic Press, 1996).

[154] E. Kaxiras, K. C. Pandey, Phys. Rev. Lett. 61, 2693 (1988).

[155] L. C. Venema, et al., Appl. Phys. Lett. 71, 2629 (1997).

[156] P.-M. Allemand, et al., Science 253, 301 (1991).

[157] M. Roukes, Phys. World 14 (2), 25 (2001).



108

[158] T. Rueckes, et al., Science 289, 94 (2000).

[159] J. Cumings, A. Zettl, Science 289, 602 (2000).

[160] A. M. Fennimore, et al., Nature 424, 408 (2003).

[161] B. Bourlon, D. C. Glattli, C. Miko, L. Forro, A. Bachtold, Nano Lett. 4, 709 (2004).

[162] J. M. Kinaret, T. Nord, S. Viefers, Appl. Phys. Lett. 82, 1287 (2003).

[163] S. N. Cha, et al., Appl. Phys. Lett. 86, 083105 (2005).

[164] J. E. Jang, et al., Appl. Phys. Lett. 87, 163114 (2005).

[165] E. Dujardin, V. Derycke, M. F. Goffman, R. Lefevre, J. P. Bourgoin, Appl. Phys.

Lett. 87, 193107 (2005).

[166] S. W. Lee, et al., Nano Lett. 4, 2027 (2004).

[167] L. Forro, Science 289, 560 (2000).

[168] A. Seiji, Y. Nakayama, Jpn. J. Appl. Phys. 42, 4830 (2003).

[169] S. Hudlet, M. Saint Jean, C. Guthmann, J. Berger, Eur. Phys. J. B 2, 5 (1998).

[170] P. Kim, C. M. Lieber, Science 286, 2148 (1999).

[171] H. Z. Geng, et al., Chem. Phys. Lett. 399, 109 (2004).

[172] Q. S. Zheng, Q. Jiang, Phys. Rev. Lett. 88, 045503 (2002).

[173] S. B. Legoas, et al., Phys. Rev. Lett. 90, 055504 (2003).

[174] G. A. Fiete, Rep. Mod. Phys. 79, 801 (2007).


	List of Figures
	List of Publications
	Introduction
	Carbon nanotubes; electronic and thermal properties
	Overview of concepts and techniques
	Previous work

	Fabrication of Ultra-Clean Nanotube Devices
	Interacting Electron States in Carbon Nanotubes: Theory
	Luttinger liquid formalism
	Inclusion of band-curvature: The 1D Wigner crystal
	Inclusion of umklapp scattering: The Mott insulating state

	The One-Dimensional Wigner Crystal in Carbon Nanotubes
	Observation of a Mott Insulating State in Carbon Nanotubes
	Simultaneous Electrical and Raman Spectroscopy Measurements
	Direct observation of mode selective electron-phonon coupling in suspended carbon nanotubes
	Spatially-resolved temperature measurements of electrically-heated carbon nanotubes

	Ballistic Phonon Thermal Transport in Multi-Walled Carbon Nanotubes
	Carbon Nanotube Linear Bearing Nanoswitches
	Conclusion
	Bibliography

