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ABSTRACT

The thermel component of the radio frequency
radliation from the sun l1lg derived from the laws of classical
phygics.

“ith the "velocity Cistribution” method of the
kinetlic theory of gas the mean number of collisions per
seconu between the particles is found. From this the
absorption coefficient for the radiation is obtained.

For the intensglity of the emitted radiation the equation

of transfer 1s solved in a three dimensional mec ium.

In the solution the emissivity is eliminated by means

of a modified form of Kirchhoff's law of raciation where the
index of refraction is generalized to include absorption

as well. For the path of the rays the eguation of the

iconal of geometrical optics is considered in a refracting
and absorbing medium. The solution does not exhibit the
phenomenon of total reflection, present in purely refracting
med iz,

Numerical calculations give the ¢istribution
of the radlation across the solar cisk Ffrom 30 me through
5000 me. At 3000 me the sun is of nearly uniform brizhtness
with e sharply defined limb. At the lower freguencies
a small central portion becomes guite bright and the limb

less distinect and darker.
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l.l Before the new field of radlo astronomy
could come into being, it was necessary that high Z8in,
low noise receivers be developed. Ever since the cays
of Marconi, radio engineers have striven to improve the
overall performance of their circults and antennas. by
the firslt years of the nineteen thirties, the art hac
reached such a point that weak extra-terrestrial radlio
frequency signals coulc be picked up. However, the great
impetus to the development of hich frequency, high gain
systems for radar sets occurred during the last war. This
was necessary before the field could make notliceable
advances .

Before consicering the observations of the early
workers 1t would be well to meation what advances nust
be mace before such observations could be undertaken with
success., Consider that the genersl character of the emitted
extra=-terrestrial radio freguency radiation is the same
as that of ordinary thermal agitation and tube noise.

Thus to detect such siznals, which are always weak, the

cevelopment of ko zain, 1low nolsge recelivers 1s essential.

This requirement must be coupled with that Tor highly

joT

irective antennas. Duch antennas will have high
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and hence be able to pick up weaker sources than broad

beam ones.
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h frequency receivers

It is necessary to use hi
not only to take advantage of highly directive antennas,
but also to be able to receive the radiation at all.

For just as the ionosphere is an aid to long distance
radio transmission,it is egually a hindrance to the recep-
tion of extra-terrestrial radiationm. Low frequency waves
incident upon the upper layers of the lonosphere from
above will be reflected and absorbed in much the same

way as similar frequency waves are reflected and absorbed
from below. Hence, it is possible to receive only those
waves whose frequencies are so great that they will not
be reflected by the ionosphere. In fact, in order 1o
obtain reliable information as to the absolute intensity
of the radiation, the frequency must be so high that the
effects of refraction and absorption in the ionosphere
may be considered to be negligible.

1.2 By 1932 the development of radio had reached
such a peint that K. G. Jansky (1) was able to discover
the existence of galactic radiation at a wavelength of

14 .6 meters (about 20 mc). As a result of continued obser-

vations, he (2) was able to locate that the most intense

source of radistion came from Bagittarius at right ascension

18 hours and declination =30 degrees. This coincides with
the direction of the center of the galaxy. Later work,
principally by Reber (§>? confirmed the general conclusions

reached by Jansky.



No further significant progress was made until
the postwar perliod. It should be mentioned, however,
that in February 1942, the signals produced by the sun
reached such an intenslity that they were recorded by ac-
cident on numerous British army anc alr Torce recelivers
(4) e Yorking in the 4 to 13 meter band (23 to 75 me),
they observed a high intensity disturbance in the direction
of the sun. It had the characteristics of thermal or
tube nolise. Later correlation showed that there was Intense
solar activity (5) in the form of sunspots and flares
during the same perlod. This correlation between optical
and racdio observations was later Tound to be generally
true .,

1.3 Upon the conclusion of World War II intensive
study of both the sun and the galaxy has been undertaken
by many workers I1n many lands. From this work considerable
knowledge of the character of the radiation has been
deduced over the entire frequencj band. In particular the
study of the sun soon showed that the rf intensity Is
highly variable with time, particularly at the lower
freguencies.,.

However, at no time cdo the data indicate that
the raciation drops below some constant minimum value.

In the microwave region this guliescent component is the
preceominant part of the entire radietion recelved Ilron

ﬂ

the sun, while in the lower frequency region the variable



components all but conceal the quiescent level.
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TABLE T

INTENSITY OF THERIFAL RAL TATICN

Frequency Observer Temperature
35, 300 mC. Hagen (6) 6,740 °K
24,000 7 Southworth (7) 2,000 "
Piddington, Minnett (8) 10,000 "
Zicke, Berringer (9) 10,000 "
¢,500 Mayer (10) 12,000 "
¢,h40 " Minnett, Labrun (11) 1,300 "
¢,380 " Southworth (12) 16,000 °
Bander (13) 22,000
3,000 " Mcﬁrea Y anﬂ 7, Payne-
Beott (14) 25,000
Southworth (15) 20,000 "
Pidd¢ington, Hindmen (16) - 54,000
2,800 " Covington (17) 56,000 "
Covington (18) 7¢,000 "
1,200 ° Pavsey, Payne-Scott,
McCready (19) 160,000 "
Lehany, Yabsley (20) 100,000 "
600 ¢ Pawsey, Payne-Scott,
McCreacy (21) 500,000
Lehany, Yabsley (22) 500,000
Leo T Reber (23) ca 1,000,000 "
Heber (24) ca 1,000,000
200 " Pawsey, Payne-Scott

MeCready (25) 2,000,000 "



Fregquency
200 nmc.

160 "

6,

TABLE I (cont.)

Observer
Pawsey (26)

McCready, Pawsey, Payne-
Scott (27)

Payne-Beott, Yabsiey,
Bolton (28)

Lehany, Ysbsley (29¢)
llen (30)

Pawsey, Yabsley (31)

Ryle, Vonberg (32)

Ryle, Vonberg (3%

Reber (%4)

Blum, lLenisse (35)

Ryle, Vonberg (36)

Tenverature

600,000 °k

500, 000

1,200,000
800, 000
120, 000
700, 000

2,000, 000
500, 000

1, 800, 000
830, 000

1, 300, 000

[6))



1.4 Of the above four components that make up

-

he radio frequency radiation from the sun, the only one
that does not defy explanation at present is the guiescent
raciations. It may be explained by recalling that the sun

is a hot body. Hence energy is emitted at all freguencies
including the radlo freguency region by the laws of thermo-
cynamics. If just the solar disk is considered as th
emitting source the values obtained <o not correspond at
all well with the observed values, particularly at the long-
er wavelengths. This presupposes that the solar corona and
chromosphere are transparent to radio waves. Such, however,
is not the case. By comparing the state of the ~ases there
with those in our ilonosphere, it is clear that as far as
absorption is concerned the effect upon the passage of
racio waves should Le similar. In both cases the gases are
higly ionlized and so they impece the passaze of the waves.
it turns out that source for solar radio waves must be

in the corona and chromosphere themselves. The million

R m

degree temperature of the coronal zases (58)‘reaﬁily
rermits the required explanation of the observed raciation.
Higher freguency components originate in the somewhat
cooler chromosphere. Observation and theory now tend

to fall into line.

1.5 The first detailed explanation of the actual

mechanism for the emission of raciation by the corons

anc chromosphere was advanced by Martyn (3¢) in



1046, A subsequent paper (40) clarified the details of
his theory. it was based upon applying the theory of the
earth’'s ionosphere to the solar corona and chromosphere
in a direct manner. Thus any differences that may exist
between radiation passing through a hot ionized gas and
a cold one were neglected. The index of refraction was
assumec to be independent of all absorptive processes.
Thus the trajectories were computed on ihe basis of reci-
procity between pencils of radiation entering ancd leaving
the lonized corona. The intensity of the emergent radiation
was obtained from Kirchhoff's law at the lowest point
of the re-entrant rays.
Following & similar line of reasoning in connec-
tion with the index of refraction, Smerdé and Westfold (42)
gsolved the same problem. This time however the intensity
of radiation was derived from the equation of transfer,
but the path followed by a ray was still determined by
neglecting all effects due to absorptlive processes. in
such a treatment of the index of refraction, there is
always a totally reflecting layer for the frequency of
radiation considered. For at that level the plasma frequency
equals the frequency of the radiation under consideration,.
1.6 In the following pages the theory for the
thermal emission of radio frequency radiation will be
developed on a somewhat different foundation. First the

amount of radiation passing through each cubic centimeter



of material will be fetermined by balancing the effects
of emission and absorption with the equation of transfer.
As the emission can be expressed in terms of inverse
apsorption, it will suffice to finc the latter alone.
Being in the long wavelength region of the spectrum,
it will be safe to use the classical theory for absorption.
This will be based upon the kinetic theory of gases and
Maxwell's electromagnetic equations. A comparison of the
results obtained bears this assumption out.

To complete the work it is necessgary to compare
theory with experiment. This requires a knowledge of
the physical structure of the corona and chromosphere in
terms of the electron density anc temperature as a func-
tion of the solar radius. From applying this knowledze,
the theoretical values for the thermal radiatlion are

founi to agzree very well with the experimental ones.

O
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IT, HEAT RADIAT ION AND THE EQUATION OF TRANSFER

2,1 The amount of radiant energy that would
be receivec by a radio antenna at some point on the earth's
surface, when <lirected toward the sun, will be the integrated
effect of the radiation emitted from each element of the
gurface of the sun. By the word sun it is meant that solar
sphere which contributes to the radiation in question.
In general its size is larger than the visual solar disk
anc 1is a function of wavelength. For the frequencies
uncer discussion here, it includes parts of the corona
anc chromosphere. To compute the total radiation from
the sun, consider that each element of area of the solar
surface will emit ifoéf ergs of energy per unlt area
per second into unilt solid angle between the frequencies
f anc f+af in the direction of the esarth. Ifo(o is the
angle of emergence of the pencil of radiation with respect

to the surface element, then
FPedf =af Sifocos%czz:\,. (1)

is the total amount of observed radiation. From Figure I
it can be seen that the element of area dA can be expressed
in terms of the radius Ry and the colatitude angleoco s0

that

2 (72
Pfdfzéﬁ780df A ifocosagsinxbddb



' Emitted Rediation i,

250
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7t is convenient to change the variable of integra-
tion from the colatitude angle to the radius y of the

projected solar sphere. From the figure
y=Rsine

Changing the variable of integration, the total racdiation

coming from the sun becomes:
Yo
Pfoé.f=2’ffdfso ipoy 4¥ (2)

This expression may be interpreted as an integration of

the intensity of radlation emitted by each element of

area of the projected solar surface over that surface.
Before the total amount of energy can be: computed,

it is necessary to know the value for the emergent Iintensity

ifo for each pencil of raciatione. ifo is the resultant of

the combined effects of absorption and emission along the

optical path for that ray. On this path every element of

volume will tend not only to adé to the intensitj by emission

but also to reduce it by absorption. The net effect of

these two processes, when integrated along the entire

path, will be ifo' In this chapter ifo will be found in

terms of the more specific properties of the corona and

chromosphere.

2.2 The straightforward approach to the problem



woulc be to compube the emission and absorptlon per unit
volume and then integrate along the path. Unfortunately,
however, this has been found to be impossible to do in
terms of the temperature and other parameters of the body
except for the hypothetical black body. But an equally
satisfactory solution, for the purposes of this paper,
would be to relate the emission and absorption of the
physical corona and chromosphere to that of the black
body. This method of attack has been successful.

2.5 Before proceeding further in relating the
physical corona and chromosphere to the black body, it
would be well to quote some of the results from the theory.
From the work of Planck (43) the specific intensity '1f
of radiation emitted by a black body of unit volume in
thermodynamic equilibrium between the frequencies T and
f+df into unit solid angle per unit time in a specified

direction is
1,6f =B, (T)af = {(gth/cg) {:ehf/kT-l] —l}df (3)

The symbol if in the above equatbtion will be used henceforih
to represent the specific intensity of radiastion from an
body, while the symbol Bf(T) will be reserved for a black
body. All the other letters have their usual meaning.

For the racdio frequency part of the spectrum,

the first term of the series expansion, that is the Rayleigh-
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Jeans' law (44), (45), is valid.
- ie i 2,2 ,
Be(T)af= (2kIf /c”)af (%)

The valicity of this approximate form ls particularly
accurate consldering the high temperatures encountered
in the corona and chromosphere.

2.4 A convenilent starting point in attacking
the problem is Kirchhoff's law. This law states that the
ratio of the emissivity ep to the coefficlent of absorption
Ke in a body in local thermocdynamic equilibrium is a

constant, namely
ep/Kp=const.

if the radiation Ifrom the body were Lo pass into a refrac-

ting but non-gbsorbing medium, then the law generslizes to
2
ef/(Kf}u )= const. (5)
where « 1s the coefficlient of refraction. By considering
raciative egulilibrium between a general body and a black
one, the constant of Hguatlion 5 is found to be egual Lo

the intensity of emlssion from a black body, namely

) 2
ef/’(Kf/a )=B,(T)
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Likewilse from the equilibrium conditions between two

black bodies having a purely refracting medium between them,
B(T)=1_/ik° (6)
£ £/

where 1p 1s the Intensity of the radiation in the refracting
med ium.

These laws cannot rigorously be applied to the
sun for the locations of the refracting and the emitting
elements are indistinguishable. Kirchhoff's law is, however,
a Tirst approximation to the correct result in those
reglions where the absorption is small. This is what Woolley
(47) usec in deriving the equation of transfer for the radio
frequency raciation emitted by the sun. For a more accurate
theory the equation should be generalized to include the
effects of absorption.

In 1910 Laue (48) attempted to broaden the coverage
of Kirchhoff's law to include the effects of absorpbion.
Although his results are not generally accepted, they are
best extant. To derive the result, he had to assume that
the radiation in an isotroplc absorbing medium is both
homogeneous and isotropic. However, it is generally believed
that the raciation passing through such bodies isg aeolotropice.
Using Laue's hypothesis for the case of thermodynamic

equilibrium, Equation 5 is replaced by
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if/(f-g{nkg) =B (T) (7)

where k is the imaginary part of the complex index of

refraction,
n=gxc+ik (8)

From the form of the above two expressions,

it is plausible to assume (49) that the general formula is
v o ’
Bf(T)l‘ ef/(Kfo) (<)

where My is some function of the frequency of the radistion,
the temperature and the physical properties of the material.
For non-absorbing media it will reduce tou . As the theory
is developed, the conditions of the problem are such that

it is eliminated from the Final result. So its analytical
form is irrelevant and need not be cetermined. To find

the intensity within the medium, Equation ¢ reduces to
B_(T)=1 /M2 (10)
f A ¥

2.5 .With the above law replacing Kirchhoff's,
consicer how the intensity of radiation if will vary along
the path of a ray. This path may be thought of as passing
through a three dimensional medium similar to that treated

by D. Hilbert (50). Such a2 consideration of the mecium
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is necesgsary because of the large solar volume that contrib-
utes significantly to the radio freguency radiation. At
optical wavelengths only & relatively shallow layer 1is
involvec in producing radiation, and hence a one-dimensional
theory will be sufficiently accurate. With these facts
in mind, consider a peancil of radiation of cross-sectionsal
area A § and of Intensity ifdf entering a volume element
of length A1l (see Figure II). The raciastion leaves the
element of volume with an intensity iédf through an area A S,

While passing through the volume element, emission

of the material will add
erH(A 5+ AS)N 1656t (11)
ergs of radiation in time dt between the frequencies

f ané f+df. To a first approximation the volume of the

element is taken as
FHAs«ASA L
At the same time.
Ko 1.3 (O 8+A8)A larat (12)

ergs will be-absorbed, and






SeleE(ABe AS) Alafit (13)

ergs scattered and reflected, where gp 1is coefTliclient
of scattering and reflection. Collecting the various

factors involved, the emergent energy will be
1A ASETaL = 1p ABATateopb( AS+ AS) ALdfdt
~Kp3(AB+A8) Alafdt-ged(AB+ AS) Alarat (14)

To a first approximation it will be sufficiently accurate
to expanc the primed quentities in a Taylor Series about
the unprimed ones. For the-intensity, the zeroth order
terms cancel, leaving the first order equation

S04 TPt = APEt = Safa
dl(lfAS)AleQt-efAlASuf‘c,t Kfifalawfgt

~gpls ALABATAL (15)

Cancel the common differentials and substitute Equation 9

for epd

a(1,48)/a1= (K M;B, (T)-K )AS (16)

ple=8plp

ln order to express the coefficilent of reflection in terms

ot
O

of the other quantities, apply the above equation of transfer
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to the case of equilibrium at a constant temperature.
Then not only is Equation 10 valid, but also the cross-
sectional areas of the vpencils of radiation are no longer
a function of the length of the volume element. The first

two terms on the right are now equal leaving

Taking the logarithmic derivative of Eguation 10 to

eliminate the intensity, the scattering coeflficient becomes
_ 2N @ )
gp= =(1/Mg)(aME/d1) (18)

This result 18 substituted into the equation of transfer

(No. 16); where, after a re-arrangement of the terms,
, 2 L2
d(lfAS/Mf)/dlI[Kfo(T)-*Kf(lf/Mf)] AS (19)

The above derivation of the equation of transfer
hag been made without reference to any particular set
of coordinates. The actual path of the ray through the
gsun will be found in Chapter V to be a function of the
solar radius and the polar angle. S0 the element of path
length dl in the above equation is a function of these
two solar coordinates. But as long as a particular coordi-

nate system is not explicitly requirec for the integratiomn,
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it will be: ignored.
2.6 The equation of transfer will be formally
integrated in the usual manner. Introducing the optical

deplth

1

T = -J Kedl (20)
1o

where the integration is along the pencil of radiation.

Of the two limits 1, corresponds to the point of obser-

vation, in this case outside the sun, while 1 corresponds

to some point within the medium. Thus the direction is

opposite to that of the differential element of length

dl in HEquation 19. The choice is made so that 4 is essen-—

tially positive. To reduce Equation 20 to differential

form, consicder the optical cepth from outside the sun

of two neighboring points P and P/separated by a dlstance

Al (see Figure III). If Equation 20 fepresents the case

at P, the optical cepth at P will be At smaller. So

T+ AL

Lk ALS - Kedl (21)
lO

Subtracting the two expressions

1+A1 1 1+A1
JANY =-§ Kf-iil-a-( Kedl= -J Kpdl (22)

1o 1o 1

In the limit as P approaches P,
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Thus a2 positive increment in the optical depth corresponds
to a negative one In the distance 1. (Kf ig essentlally

positive. )

-2 2
~Kpe A(ipAS/Mp) =KpAS

——
o
o
}
w0
P
I
I
M

. 2
Bf(T)e ut (ip/Me)e

The left sice together with the second term on the right
form a complete c¢ifferential. Then integrating from ¢ =0
to T, where the former limit corresponds to the point

of observation at the distance 1y, while the latter corre-

sponds to 1 at point P, one finds

i, As (ngse"WMﬂ +\ B_(T)AsSe "t
ro 0 I o £

Paa
o

L1

S

AL points outside the sun the inlfex of refraection and
hence Mfo is unity. This s the expression reguired by

Egquation 2 for computing the totel Intensity of radiation

coming from the sun toward the earth.
2.7 The Integrated equatlion must now be applied

to the physical problem of the sun. For the problem at

P

=

hand we are primarily interested In the iation of an

Pt

3

Fal
f=h

(
-



opague medlium with a temperature zradlient. Two approsasches
for the sclution appear at this point, In the Tirst ag
one goes ceeper Into the sun, to smeller velues of 1,

the opticel cepth v increases without limit. The body

becomes opague as great depths are reached. The exponentisl

factor of the Tirst term becomes Iinsignificant, so that

1/ (MB n)ete

The other approesch to the physical problem rests

‘..Jo
C")
o~
ny
(@)

upon the eguilibrium concitions. The deeper one cets
into the sun, the closer are the conditions to those of
equilibrium. The exact level at whi¢h the egquilibrium
conc.itions are fulfilled dependis upon the freguency of
the raciation under considerstion. Specifically the sun
ust become quite opague for these conditions to hol
true. It will be shown that the absorptive properiies
of the material are fwecuencv sensitive. Thus at these
lower layers, the valility of Equation 10 increases. So

for great depths Eguation 25 becomes

The relative validity of the two equstions will
cepenc upon the physical conditilonsg present although, in

ceneral, there should be 1little to choose between them.
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It ig Interesting to note thet in either case the unknowm

function Mf has <disappeared. Its value would be important
Fa oo =

only if we wished To Imow the Intensity of radiation

et some point within the sun. For then it would be necessary

to evaluate Mf 2t the point of interest.
intesrating Equation 27 by parts

- R - Lo P S}

where T, correspon’s to the temperature at the point of
observation outside the sun. It micht at first be consiiered
to be negligible; bulbt upon realizing that the optical

Zfepth of the uppermost layers of the corons 1s essentially

gy

etic temperature there is- very hizsh,

;
®
it
d
o
n}
r}ﬁ
ct
@
o

it ig far from being unimportent.

Bl

2.8 To conform with the method used for presenting
the experimental ‘ata (see Table E), it is found convenlient
to express the intensity of the observed radiation in

terms of the temperature that a black body would have 1o
1

have to produce an Intensity of radiation egua

1
e
L
5
Q
0]

observel . This temperature will be desimmsted T, .
by Rayleirh-Jeans' law, Hguation 4, Te and if are Llinearly

related, Hguation 28 reduces to

T -2 (1) )
T, =Tg+(1/A8,)\  Ase aT (29)
: T

&)
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If the other apnroach to the physical problem hac been
followed through in like manner, Equation 26 would reduce
to

O

T, =(1/A8 )\ T(t)Ase tar (30)
(8]

The results obtalined for the two cases will, in general,
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I¥T. THE CONDUCTION CURHENT

3.l In Chapter I1 the intensity of the thermal
component of the radiation emitted by the sun was found
to depend upon only two variables: the temperature and
the optical depth. The former is a physical parameter deter=
mined by the egquation of state of the matter, while the
latter is some analytical function of the material and
its properties. The first step in the determination of
this function was given in Equation 2-23 by defining it
in terms of the coefficient of absorption of the material.
Before progress can be made in determining ﬁhat form the
coefficient of ébsorption will take, it will be well to
cescribe the conditions that exist in both the corona and
the chromosphere. Then, from a knowledge of the state of the
matter, it will be possible to determine which formsg of
abgorption will predominate. Knowing this the required
coefficient may be worked out.

Ze2 Both the corona and the chromosphere must
have a very low density since they are normally completely
tfanﬁparent in the optical region of the spectrum. The corona
is uncoubtedly composed of almost pure hydrogen with but
a slight admixture of helium (51). The heavier elements,
which are the source of the coronal lines, make only a

“ble contribution to the total. These gases will be

completely ionized, by the million degree temperature that
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is believed to exist (52). Such temperatures are necessary

to explain the coronal spectrum lines. To be specific it can
be assumed that there are seven electrons and five hydrogen
nuclel for each helium nucleus. As will be shown later on,
the absorption is a function of the ratio of charge to
masg.'Thus the electrons will make the major contribution

to the coefficient of absorption. The relative effects of
the hydrogen and helium nucleil will be nearly the same, for
a doubling of the charge is accompanied by a fourfold
increase in mass when vassing from hydrogen to helium. Hence
it is assumed that there are equal numbers of electrons and
hydrogen nuclel present, and no helium,

Between the corona and the photosphere lies the
chromosphere. Data on its composition are less well known
than for the corona. Ususlly its chemical composition is
assumed to be similar to that of the corona, particularly
at the greater altitudes. Regarding the temperature, it
is definitely established that there is & strong positive
temperature gradient between the vhotosphere and the corona.
Hedman's value of 35,000 degrees Kelvin (5%) in the lower
chromosphere is quite well established. From a consideration
of the equilibrium conditions that must be maintained in the
gas, it has been possible to predict values for both the
electron density and the temperature as a function of
altitude (54),

3.% As the models acopted for the corona and

chromosphere have the same general physical cheracteristics,



it is safe to predict that the coefficient of absorption
will be of the same form throughout. The chromosphere is
just more dense and cooler than the corona. fegarding the
absorptive processes, they may be looked at either from
a quantum mechanlical point of view or from a classical
one with use of the kinetic theory of gases. In the former
method of attack the elemental process of absorption
may be considered to be transitions between two states
within the continuum (free-free transitions). The bound-
Tree transitions will also contribute to the coefficient of
absorption. Gaunt (55), Menzel and Pekeris (56), Sommerfeld
(57), Elwert (58) and others have obtained the atomic
absorption coefficient by this method. Then, assuming that
the particles in the gases obey a Maxwellian velocity
distribution, the coefficient of absorption is evaluated.
The other method of approach is along the lines of classical
theory. From the kinetic theory of gases the number of
collisions per second between ions can be computed. This
is equivalent to a conduction current in the gzas., Maxwell's
electromagnetic equations then permit one to compute
how much a wave will be attenuated due to this induced cur-
rent. This is the required coefficient of absorption
needed in the ray theory of Chapter II.

The results obtained from the two theories agree
very closely. For the wavelengths under consideration
the correspondence principle indicates that the classical

approach should be vallid to a high dezree of approximation.
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For this reason and also Ffor Dbeing a more straightforward
approach, the classical method was chosen. In this chapter
the theory for finding the conduction current will be presen=-
ted leaving the electromagnetic theory to Chapter IV,
3.4 The number of colli ns per secondc vetween
the electrons and protons (hydrogen nuclei) in the gas

may be obtalned by either the "free path method" or the

o

"velocity distribution method®. The former approach,

uged by Smerd and w stfold (52), assumes that the velocity~

o

2l

-~
£
},m

sty

I-x’

bution functlon is unaffected by radiation or by
any other non-uniform steacy state condition. Thus the
nunber of collisions per second 1s deduced from a pure
Maxwell-Boltzmann cistribution function. The conduction
current 1is then derived by solving the egquation of motion
for a free electron under the combined influence of an
external oscillating electric field and a camping force

.

due to collisions. In this eguation the coordinates o

2]

o
L

o

ogition ¢o not take into account the rapid kinetic motion

(!

of the electron. This is considerable with the million
cegree coronal temperature.

On the other hand the "welocity distribution
method " used by Hagen (60), takes into sccount the external
forces and the density gradients in deriving the velocity=-
digtribution function. The Tirst approximation to this
function is the Maxwell-Boltzmann functlion. Higher order
terms retain the Boltzmann factor but also include the

effects of the forces. Thus the above mentioned objection
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to the "free path method" is corrected. However, Hagen
¢id not consider that the frequency of the radiation
field would be greater than the number of collisions

er second, but rather found the number of collisions

o)

for a static electric field and then proceeded to use
the above mentioned equation of motion.

In the following it is proposed to consicder the
entire problem from the point of view of the "velocity
distribution method" of the kinetic theory of gases.

For this purpose consider that the field of racdiation
passing through the gas of the coronsa and chromosphere
can be expanded by a Fourier series. For any term of
this expansion the electric field will be the real part

of

> >
E=Ejexp(iwt) (1)

Ey

.= f§==e T exp(iwt) (2)
upon the first component of the gas. (In the following
theory the subscript 1 will denote either component of

the gas. When aecessary to speak of both the electrons

anc the protons, the subscript 2 will be used for the

other component.)
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The molecules of this conmponent will be in random
motion, whose overall characteristlics may be expressed
by a velocity-distribution function fl. (The word molecule

ig used in 2 broad sense to indicate the elechtrons and

<

protons that make up the gas.) The function fl will,

. - - s - - - . .

in general, depend upon the veloclty vy and the position
> Pl » ¢ 5

r of each molecule at every instant of time t. Physically

- -

the function Il denotes the number of molecules within

b 1 k4 LR = 2T
a volume <V, having velocities between Vl and Vq44vy

4
a7%

the time ©. After a short interval ¢t the velocity of

ach molecule will have increased to
> Z oo
v1+(el/m1)£ at,
the position vector to r+v1¢b, and the time to t+dt. The

change that has occurred in fj curing this time must be

equal to the net change in the number of molecules nrezent

[
w

2 =3 3 -? b e P - - &) -
in &v avy due to collisions. This change 1s represented

e}
Ry

(aefl/at)@%?l@v at (3)



On c¢ividing through by < vlbv dbt and passing to the limi

as ¢t tends to zero, Boltzmann's equation for fl is obtalned
(e1)
>
(Qfl/at)+vl. 1+ el/ml).u.vv_' —'(a .Ll/a't; (4)

In this eguation the operator
T.=1(9 x)430 /y)+k(d /=) (5)

has been introduced. A similar operator is indicated
by V
y Vl‘

The external radiatlon fileld and the zradients
. . i . o . >
within the gas will produce a general mass motion Vo of
the gas as a whole., As a result of this motion it is

found to e more conveénient to re-express Boltzmann's

equation in terms of the peculiar velocity,

-~ - -~ > P
¢y = V-V, (6)
- ~ . nd -
anc ‘the mass velocity rather than the velocity vy in
inertiael space. The velocity of mass motion is defined

= (1/g) (p171+ £,7) (7).

W

(S}



where fl’ fg end ¢ are the dengities of the first, second,
anc. total gases respectively; and %i and %é are the mean
values of the velocities. Since ¥V, and hence Ei is a
function of ¥ and t, the variables ¥ and t appear not
only explicitly in any function of gi, ¥, and t but alsgo

implicitly through its depencence on 51. Hence the fol-

lowing changes in the derivatives are necessary (63)

(@ /at) - (2 /3’5)+()63/3t)-\761=(9 /Jt)-(ax"r’o/o?t)-vcl (8)
(@ /Px) - (2 Px)-(V ).(@F /Px) (9)

Cl O
Yy, = Vo (10)

Substituting these into Boltzmann's equation, one finds

- . > - e
(”fl/bt)+ol‘vrll+[}el/ml>“_(Lvo/”t)]'vclfl

+7 _f é’l:v v =(Jefl/o7t) (11)

cl 1 ro

where the mobile opersastor of hydrodynamics,

(U /o) =(d /Jt)wo . (12)



has been iantroduced. The last term on the left of Eguation
11 is the couble procduct of two dyadics.

3.5 The right hand side of Boltzmann's egquation
must now be interpreted in terms of the change in the
population in the volume element dV and in the velocity
range d?i c¢ue to collisions, The collisions can be separated
into two groups, those with like and those with unlike

molecules. Hence
(9 £1/d%) = (9 1 /It)+(d £,/dt) (13)

where the first term is with like and the second with
unlike particles. Each of these terms is a balance between
/

. 5 = ) > E -
those molecules entering and those leaving aV dvqe Luring

g time dt there will be
£,f,ky 4K 67,av,aV Gt (14)

molecules lost to the set as a result of encounters with
molecules of the second kind having velocities between
> e S o R : .

Vo anc Voidvp and for certain values of the impact para-

) > a s - ° ®
meters k12 and dk. These define an encounter by the initial
conditions and the angle of deflection. The exact values
will be discussed later on. The total number of such
molecules lost due to collisions of this kind is the

3 —> = .
integral of the above over all values of Vo and the impact



variablesy viz.

2 v j . o
av,av dt ) )£ Tk, Ak av, (15)

If £/ and 7 denote the velocity-distrilution
1 2

functions after a collision, it can be shown that

>

She 3 et 2 &
av,av Qtjj-flf2kl2ﬁk v, (16)

indlcates the number of molecules of the first kind enter-
s ‘.—) £y 1~ = o -

ing avl dV in time ¢t as a result of encounters with
particles of the flrst kind. In ceriving this expression

. . N . . s = >

it is shown that the Jacobian relating ¢vq,dv, before an

) L . N
encounter to svigv; after an encounter is unity. Thus

the net gain in avy dV as the result of such collisions

2 Z LAY At =T A 2 plel '?—’ g
(9.£,/7%) ¥ eV ¢t =av av Qt‘ff(flfg-flfg)klguk av,  (17)

A corresponding net gain for collisions of par-
ticles of the first king with one another may be cerived.
Thus the first term of Equation 13 is

( 3 = ! - 1 - Y
(Jefl/at)l— ff(f fi—;fl)li ¢k av (18)

The subsecript 1 has been left off the variable of inte-



gration in order to be able to distinguish the two fune-
tions Irom one another. For subseguent work the intro-
cuction of the following notation for the above integrals

will be useful:

2 £1/2t) = J1 (£ 7) (19)
fl/at),‘ 12<flfg) (20)

With this the derivation of the Boltzmann's equation in

terme of the velocity-distribution function is complete.
3.6 Before proceeding with the solution %o

Boltzmana's eguation (Hos. 4 or 11), it will be well to

L

derive certalin useful relationships beitween the parame-

ers of the problem. These relationships are used in

the evaluation of wvarious Tunctions introduced in the
solution to the equation.

First let *i be any general molecular property.

It may be a function of ?i, 7 anc ts or 3&, 7 and t in
either vector or scalar form. The mean value of such s
property is defined (64) by
¢ =

1/N f¢ = (1/N )fd’fcc (21)

1 1 1 l

where Nl is the number cdensity of the first as. Note

o
&

n 5 . > P . o . .
that the masz velocity v, of Eguation 7, was derived for
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¢1(equal 3&. Tor the solution to Eoltzmenn's equatilon
particular interest is focused on those parameters which
remain invariant as a result of encounters. oSpecifically
they are the number density, the linear momentum and

the kinetic energy of translation of the gas. The relations

required for the use of these quantities can best e obtain-

£

o
o
o

ed by studying the variation in the mean value of 43
to collisions rather than the mean vglue itself. For the
three summational invariants this variation is necessarily
ZET0 o

Now, to find the variation in the mean value of
<P1 due to encounters, multiply Boltzmann's equation
(No. 11) by ¢ldgi and then integrate throughout the range

_>
of Cl'

J ¢1{(Bfl/m)+é’l T L F [( el/ml)?z’_(:

-
<y
™~

A

fad
At

L

e
Y

= [4 > ‘,'_’ - N + ~
+v01flcl'vrvo} ae, =N, A CPZL (22)
where W8, = [O,0,0,00)0F, = [@)(3 5, 0017, (23)

e

by the equality of the rangesg of integration over 31
R 1 p
and Vy. The significance of Aqﬁﬂmay be zeen from the
-

second equation. {JeflAJt)dvl reasures the rate of change

. 4 . . . . >
in the number of molecules having velocities between vy and



v +F$' due to collisions. Consequently the above intezral
17771

represents the variation in ¢i due to encounters. By

means of certain transformations (65), such as

= o0

o o C1x
j"’{"*l/aclx)‘“‘“cl B ffq)lfl .

10 sl
A
~1x 7

-

- J.ii(a 4)]_//901}{)@31 = -\31(5251/301;{) (24)

on the components of the vector anfl, Lauation 22 mey

be expressed in terms of various mean values of 4& in

combination with other functions. In performing the par-

tial integration avove, it should be noted that <Plf1 must

tend to zero for large positive and negative values of
- . o . - .
Cqs @ general requirement on all fuactions 4Hf The relation

resulting from such trensformations is

Ny AP, =y ¢ /o) PV ATy CPla’l)-Nl{(;: ¢ /0t)

ps

AW]
N
-

o

PELT B [(en/my B 07, /00)] T8, T 6,5 T )

This expression will now be applied to each
of the three summational invariants in turn. For +the
aumber density @, is unity as is also its mean value.

This may be seen readily from Equation 21. The number

densgity is, of course, unaltered for each zas separately.
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Hence from Eguation 25 and & similar eguation for the

second component, one obtains
T S - > > _ -~
(DNo/Dt) #0,.V T 4V (N,8,) =0 (27)

The second summational invariant is the momen-

tum. In this caze

C AT =li(e 3V midee 3 (0 = Yurr —
Nl_.mlcl [?(flul’/zEJ+Y161(vr'vo)*vr'(flwlcl)

’ '_? ” - > )
- $aller/mE- (7 0] 4 g ) T 7, (29)

in terms of the mass denzity f. Uiffering from the number
Censity the mean momentum of each kind of partiecle is
not conserved separately but rather only the total. This

may be expressed by



Upon adding Eguation 2¢ to & similar equation for the
second gag and taking into account thet the momentum of

the gas as e whole is alzo zero, one findgs that

0=7, p-(Me 4l e, )T+ p(L7, /t) (31)

where D 1s the pres

sure tensor (66). The first term of

its series expans

H-

on isg

rg
oF
-
7
D
4

wérostatic presoure (N1+Nm)kT.

The third independent summational invariant +that

i1z necessary and suffielent to describe a cas having

ok

purely translational energy is the kinetic energy. In

thig case

The mean values of ¢l and ¢2 are both (3/2)kT where T

ie the kinetic temperature. The equation of change (No. 25)

for tne first gas is

' A “:*f ;2 : 3 ‘:‘ ”}- m 33.1 4 "3 I TV ¥ I3
N, sm. oF 3/2)k LNll/ t>+()/*)ﬂlder'vo+vr'q

- .
_flgie[(el/ml)ﬁ’<L§7wtﬂ+flgigi:vf$; )

where ol is the thermal flux vector. This ecuvals NI, on

(67). Like the momentum, the energy iz conserved only

for the gas as a whole. So
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2 =0 (54)

Upon adding dguation 3% to a similar one Tor the second

- :'7)

0 =(3/2)(Ny 410, )k(D2/04)4V,, F=(3/2) KTV, . (3, & 410, &,

= Yy Z T 2 =
1103+ e,,) JEapiT T, (35)

5.7 Having derived certain relationships for
the summatlonwi invariante, the solution to Boltzmann's
equation (Nos. 4 or 11) proceeis according to the theory
of succeszive approximations ceveloped by Enskog, as given

by Chapman and Cowling (68). The zeroth order solution

s for the unperturbed state of the gas with no forces

Jde

acting upon it, namely the Maxwell-Boltzmann velocity=-
distribution formula. Successive orders of approximation
reflect the effects of the external forces as of the
space anc time variations of the summational invariants

upon the velocity-digtribution funection fl. To ¢o this

expant T4 into the infinite series

The functions Ty are not as yet completely specified.,



As the solution develops, certain subsidiary coniitions

will be atded so that successive approximations o fl

5

will follow the plan outlined above. The first ztep is

to subsztitute the above series into Zoltzmana's equation.
Both the integral and ¢ifferential parts are then suit-
ably arrsnged into two infinite series. By equating terms

-y £

of the same orcer, the successive terms of Zquet

j

on 36
are evaluated.

First consider the integral or righi hand sife.
Using the notation of Equations 1C an: 20, the substitution

of the above series yielcs

To reduce this to a single series, let each term of the
new gerieg correspond to the mode of grouping the terms
in the expression for the product of two infinite serieg

(69). Then
(3,8,/91) =25l (39)

where J{1)= g (pl0)s

1 1 (f(l)fii*lb+...+J1(f(i)f(o))

1

ve(0)a (1) (1) p(0) o
‘+J12ifl £, )+“'+512(fi £ ) (40)
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The method for gubdividcing the differential
or left hand =ide 1g not as obvious (70). It is =0 chosen
that the space ani time derivatives of the 1'th term are

o . . 1) e s
not required for the evaluation of fl . There is one
important exception to this. Namely, since the frequency
of the radiation field is much greater than the number

of

collisions per second between the molecules, it is
necessary to include that part of the time <erivative

of f£i> which cepencs upon the radiation field. In thig
respect the following theory differs from earlier theories
of the radiation from the =zolar corona and chromosphere.,
The peculiar choice of terms used in the series expansion
for the cdifferential part of Boltzmann's equation is

mace such that the time derivatives of the summational

invariants are known to the same degree asg is the approx-

imation to £4 from which theyv are ceterminec . To simplify
1

f&i)

which depends upon the radiation field will be neglected.

the following, that part of the time derivative of

It will be introduced at the approvpriate points in the
actual solution to the problem. To effect this method

of smolution, let the time Cerivative in DPoltzmann's equation
(No. 11) and¢ ¢o0 in the mobile operator of Hguation 12 be

formally expanied into the series

(@ /It) = (30 /9t>+()l JIt) 4 eee (41)



twerms of the seriss

cgerivatives with respect
(1)
l e

to Nl’
implicitly through T
the time derivatives in the eguations
ab summational -invariants.

ove for the

mobile operator will be introduced in

the zeriesg

(Lg /it)= (3 /0t)7, .7,

Bguation 26 iz

5 N,/Dt = =1 v
D Oml/u-, NV, o¥
(1)

2,81/ = -V 1,3

9,7 Bt =-(1/p)V_ .;2(:1)

to take care of the space Jerivatives;

They are found by expanding

of change ligsted
In each caze the
of

the first term

ViZ e

(42)

the time derivative of the number density

¢ivided into the following terms:

(43)

(1>0)

——
o
e

g

the mass veloclity the results come from

Wy by
lel+mgeg) {(45)

(1>0)

where p is the Tirst term in the series expansion of the



pressure tensor p. This first term is equal to the hydro-
static pressure (Nq+N,)kT,
For the time derivative of the temperature recourse

is made to Bouation 35, so that

LT o) ->
o+ o Pd
Tt° <3k(N1+§é )Vr'vo (47)

2T 2 3. . (1) ., ¢(1) 3(2 )
O T BR( i, |2 FT Ve (8 T4 lip8 )+ (yey &y
e, Eet)) Boy, g ) 7.7, | (1>0) (48)
where E(1> is the i'th term in the series expansion of the

thermal flux vector Q. The first term of this expension
(i equals O) is zeroe.

Now by substituting the formal expansion for
the time derivative (Equation 41) as well as that for
the velocity~distribution function (Equation 36) into
Boltzmann's equation (No. 4), the left hand side can be

expanded into a series of the following terms

~(0) (1) p(1-1)
ER T T G RGN/ RSN ERE D
1 2t 2t Jt 1°r 1
+(el/m1)§;v 1f§‘ 1) (49)

The summation of these terms is the differential

part of Boltzmann's equation, viz.



&7

£ , —) . ;o
2.0 1) 2 (T, /I )+T T Ltley/my )i T 1 (50]

The equation has thus been expanded into two infinite

series (Equations 39 and 50) such that

Zoit) = 5l (51)

da

the left. From the
i)

. . e aas . 5
arbitrariness of the definition of the functions f%“

ble to eguate the two

inclusion would another term on

£,

series term by term. Thus the zeroth and flirst crder

approximations to the velocity distribution function are

3.8 The zeroth order zolubtion to Holtzmann's

equation will now be evaluated. It zshould be noted Ffrom

the ¢efinition of ﬁgl} (Bquation 4¢) that

p{®)= o (54)

Hence the zeroth order solution 1s a s=olution to the



48

equation

W1
(S}
o

o o). (o ! (o) (o) _
J:(L = Jle’:f 2! ))+312(f1 ’fé My =0

from the ¢efinition of J§°} {Eguation 40). With rezard
to a remark mace above that frequency of the raciation
field is high, a term of the form [?féO}AQt]l should also
be Includec . (By the square brackets around a time deriv-
ative is meant that part of the time derivative of fl
which cepends upon the radiation Tield only and not other
parameters.)

But since the field does not appear in either
of the above integrals, it may be logically assumed to
have no effect on the form of f%e)w So,,expanding the
above expresgsions as complete integrals (see Equationsg
17 through 20},

“

‘ffif/io)fl(o)_f§0)f(o))kldg'dg +.[J{f£(o)fgo>

~f§°)fé°))k 0% av_ =0 (56)

o i
Multiply this through by 1n f§ )é§i anc then integrate

over al1l values of 3i to obtain



) , \ ; . . > ) )
Jj(fg_w)f’\a)m fgoﬂ-f]\aol’f(o)lnfgo}jl«:lci}: av.av

+J;Tif/<0)f,:<o)ln fgo) (o)s (O In fém;zclgof) dx}’liw? =0 (57)
In the theory developed here the translational

energy 1s conserved during an encounter. Hence every en-

counter may be considered to be the inverse of every

other encounter (71). Thus the result of integrating over

all velocities and values of the encounter variables

yields the same as a similar integratbtion over the variables

of an inverse collision. 3y a use of this principle it

can be shown theé above integrals may be replaced

by

0= ifffrare{)elod speledprlod) (prlo)pato)

f‘o)“io)) 1dk av av. +3Jj In( f(O)/f%o)) . o)f/(o)

ax av,av, (58)

A similar equation is obtained for the second component
of the gas. When the two equations are added, the result

has In it three integrals of the form o. the first term

(o), (o)

Y
. . . o .
in the above; 1.6, one in fg 7 and f 10ther in fq

(o) o)

end £{9); enc the thira in £,°/ ana . In each of these
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terms the logarithmic factor is always of opposite gion
to the algebraic one. Hence each intesrand is elither

negative or zero. As the variables of integration are
2ll essentially positive, the only possible solution for
the szbove equation is for each integrand to vanish sepa-

rately, or for

The logarithms of both BEguations 5C and 61 show that

.(0) (o)

In £777 end 1n £57° must be summational invariants as each
is conservel Juring encounters. In Section 3.6 1t was
shown that there are only three summational invariants.

, o) . . .
Thus In fé * and 1n féo> must be linear combinations of

them, namely

There should be six constants in the solution except thaet

the momentum and the energy for a ras mixture are congerved
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only for the gas az a whole. For this reason « and «

are the sawe in Ttoth sguations

U}

The conztants of the above molution are evaluated
(72} in the same manner as though they represented the
complete szolution to fl and fp; 1e€s in terms of the
number density, mean temperature, and mass motion of the

» a whole., Then

O]
]

()

a

]

-

clolg N (ml/°'7k¢ )/ exp(nmloi/sz) (64)

Enough flexivility is still left in the cefinitions of

fe

Y

the higher orier terms of the series expansion of [, 80

.i.’

e Ty

that the number censity Ny, the temperature T and th
he zas can be assocliated with the
zeroth order approximation. Dy

soary that ths

order

zero. These integrals are those Tor the mean values of

the three sunmational invar

with . equal to each of “he summational invarianis in



jféj‘}mlcié‘??l-l Jféi)mgcaé? =0 (1>0) (67)
It should be noted that the zeroth order term for fl

1s the came ag the uniform steady-state solution of Maxwell
and Boltzmann.

5.5 Having completed the zeroth order solution,
attention will now be focused on finding the first order
solution to f1e &s long as the radiation Tield can be
consicdered to be static, the equation to be solved is
Number 5%. The series expansion in Section 567 wWas made
uncer this assumption. However, such is not the case
here. Rather, the effect of the frequency of the radiation
field upon the velocity distribution function must be

includ

[0}

¢e In thie respect this theory differs from earlier

ones. The first order approximation to the time derivative
(1) . e e . . - : . .

of 1( / ig added to the right side of Equation 53 to give

(1) [5p(1) ]_ (1) .
The values for the two sides of the equation are obtained
Trom Equations 40 and 4G, With the time variation of
the electric field (Eouation 1) explicitly expressed,

one obtains
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?i - > { i .:i 't E l =
(é%flo)ﬁat}+vl.vrfgo)+xel/ml)boe @ .Vvlf§o)+[?f§ >ﬁ9t)l

) ( ) (1 ) (1). (O)) (6C)

Celo) (1) (1)
It is seen that the time depenience of the electric field
is exponential, so it is assumed that that part of the
time derivative of f( ) which depends upon the radiation
field will vary in the same manner. Hence the first ap-

(1)

proximation to the time cerivative of T3 is assumed

to he

[af(l)/.?t] = s corid) (70)

Before proceeding fufther with the solution,

it would e well to change the variables of the function
£, from Vi, Tand t to 3&, T and t. Making use of the
transformations in Equations 8, ¢ ané 10,

i >
(}Eofgo )/‘E;t ) 4»%?1 .Vrf](_o ) + [_( el/ml )Eoexp( Towt)

{7 ¥ (o)_ (0) T =
(¥ /ot)] .« Vof (S RCT AN

=Fwfl

(1 A1 1)
{ >+Jl(f(°)l§ Mea, (2l Je{o))

13,800 e{ M) eg (2{B)e o)) (71)



The next step 1ls the evaluation of the various derivatives
on the lelft side of the above in terms of the zeroth

approximation. From Bguation 64

) 0) ™ W r"}//2 2 kY
D.f1 __f(o) MOlﬂ(Jlﬂ ) . m, Cq D 1nT (72)
ot e} Dt

The first term in this is zero (Equations 43 and 47). The
second term is re-expressed by the def: n'tgon of D v /ut

(Equation 45), so that
‘ (o) /1y _elo)y 2 /=2y > -
@Of‘l /ot)= fl \_mlcl/jlm )vr oV (73)

(o)

The other two derivatives of fl are

Vrfé o) = f:(LO [v 1n(N, T )/2)+(m ¢,/2kT)V_1in ‘1’] (T4)

54

v zlol= _¢(0)(n T /1) (75)

. ' . . - .
The formal time derivative of the mass velocity v, in

the square bracket of Equation 71 may be found from Equation

45, With this value the gquare bracket reduces to
/ ped - f 2 e
ael/ml)hoexpﬁlLot)~\uovo/nt)==(l/?) V.p

+?ﬁEe /n -(e /m ﬂ (iw t)} (76)
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Having evaluated all of the various derivatives, the

left hand side of Equation 71 may be expressed by

-

Ne+M4 m 0
B . é) laV 1nT+( L “)g o +(~&)3 TV F (77)
1

after a considerable rearrangement of the terms. The

> e
guantity d19 is deflined by

1 v (m /{:: +10 )+[le\z,)(mg—ml)/(3@14»3@@)J VPJ_n 0

[
€
ot

[ I e 4 1 -
(?192/109"[(el/ml)“{e;z/mz)J o8 (78)

(<]
1 G- is a second order tensor whose diverzence ig

ser0e Notlice that the other component of the zas lg guch

f

i
QJ
——
~
0
B

Having put the left hand side of Equation 71 into

a convenient form for computation, consider the form

1 ey AT

of the solutions The right hand side contains the unknown

3, :}.. = - o L) k] - ] 3
function Q( ) linearly and the left hand side ig expressed
in terms of known functions. Hence if F§l> is a solution

-

to the equation, any other solubion is

r{t (V) (20)



where Xél) is a solution of the right hand side when

- < o » v e
equatel to zero. 50 the most general solution (73%) i

{{1

/ -
the zeneral sgolution K\1> for the right hand side plus
- 1
g particular solution Fil)abwo Tind such a general solution,

let

Xg—l)—_-_f:(i-o)\I/

’E;S
I,..J
e’

1

Then the first two integrals of Bquation 7L (¢efined by

..,

Equations 18 and 19) may be combined

J (e(o)p(L)y J “f(l)f(o)‘
PR TR 1

a’

f »

- jjﬂo)f Y+ Y=Y Y

ling inverse encounters
wag used in deriving the Tirst part of this expression.

In a similar manner let the other two inte

ped

;wq

le{f§O>fél) )wlg(fil)féo)) N NI \l/l*' \}/2) (83)

Thus the equations to be solved for the two components

of the gas are



\O> 4’2 i F “ 2N
-1 (/Ufl \‘V‘z ""M 111\Y1>+2‘31L‘}2.{12{ \*/l.“ \l/g) - O {&)‘}'3'3
. a(oj«\f/ Wg / Y T —_ )
-1 _5::—3 2+‘xk213\\¥2,+N1N3.&21(\|/1+ \1/2)“0 (&)5)

By a series of arguments similar to the ones used in

qe

1.

obtaining the zeroth order solution in Section 3.8, 1t
can be shown that\Yi must be a summational invariante.

So

- 2 -
Y, T+ dfeml€3+ dmémlcl (86)
_ 1] -)” -~ [ 1, 2 \
\{/2 =0t & em Tt & am,eg (87)

5]

X ; . . . >
where the constants are arbitrery functions of T and e

¢

At this point the general solution to the Tirst
order approximation to fl may be written down. As it was
Tound convenient to obtain the solution for the integzral
part in terms of the zeroth order solution, the general

solution will probably be of the same form
(1) = ¢(0) ,
£ 0%y . (88)

For this to be so, it must be a solution of



Ui
[ee)

Na+I- m ()
"fl’.!fi—(,—--—32»*«5)—Z 2 (k%)* ?"V ?

E\}.l G:é‘lgool’i’ pagpevel Glulg » o

o
H
H

-+

}d——:;
NS

i
‘..—‘
o
;,._J

+
m;
g

™
ey

g

{ T 48 iy T ey P NPEE . R - S e
(Bguations 71, 77, &2 and 83). & similar equation applies

to the other component of the,gasgwﬁinoe\Pl is 8o linsar

scalar funtion of

tiong need be conslidered. Also, all of the derivatives
on the left sice are of first order, so the ceneral solu-
tion must be the sum of four parts: (1) linear combi-

- -
12, (2) of V.9,

s
4
z_.._!
6]
@
w
o
@]
N
o
)

an® (4) the ceneral solution to the inte

solution (74) can be obtalined only

first two by vector functions, and

the Tourth by use of Hquation &6.

- » - -—Z -2 " -
\yl = ,é.l »Vrllrlrﬂ 4 (.N 1‘[‘3.“2 )Eflsz’mlz +i'l :V:,‘VO

- w 1. o .
-014-0( Zmy e (c0)

fol e &
l+“ PN pit l

]

- >
The unknown functions ﬂl,ﬁl and B, are functions of %1,

ed by substitubis

. > 2 ae A
T, and ¢y, and are detern

the integral eguation (No. &¢). The constants from the cen-

ereal solubion of th e chosen in aceoy

with the boundary conditions of Hgquations 65,

it oig found that
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and that o{"may be absorbed into the functions Al and

- - . e . % ke . .
A?a Substitute the above solution back into the Integral

equation (No. 89) and equate the coefficients of v.I,

i
dlE and Vggg to obtain the series of equations:
o3 (o)
(0) (1%l _ 5y3 _ °Z £ c2
f.l {—-'-2-—}5;5 2)01-— =3 W J.l .s-l+Nl l(.*é- )+N1 o 12(31"'3-2) (/‘««)

[ E (O> - 3 ( ) T ?:? Y
(1/Ny )£ = —;wfl 1'1+N111(3 1)+L N,Iq,(D 1""’*"2) (¢3)

O o] .
81h= "‘“’fg )31*1\111(31““13‘72112(31*-3;}) (c4)

From these 1t 1s obvious that the unknown vector
functions can be written Iin terms of secalar functions

of the form

N 4
Ty= 3 0 (eq) (c6)
_ >0 o @]

Thus the second term in the series solution for the veloc-

ity-distribution function is

\\Jﬁ
\0



[
O

.m<1>_ (O) (: N T Z ¢
£a7 = fl Al(g )V 1&T+(W +€ )T 1 l> 10| ¢y
- 4 on
‘Bli\cl)c 1 Vrvo (./CJ)
In order that the conditions of solubility
(Eouations 65, 66 and 67) be fulfilled, the functions
- - =P - a £
Al and. bl must be so chosen that
:EO )mlcl oAlC'LVl‘l'ffé )mgag °§2d{?2 =0 (\ 5_»)
and elo)y 3 Foav-felodn 3 3 v =0 (100)
e 1 1717171 2 U

3,10 By using the above solution, it will
pogsible to find a Tirst approximation to the conifuction
current induced and hence the conductivity present in
the lonlzed gases. From the value of the conductivity
the coefflcient of absorption is computed in the next
chapter. Tt will cevelop that the conductivity ig actually
complex. The real part correspondis principally the
deamping effect of the collislons between the molecules
while the Imaginary part is due to the ogcilllations induced
in the gas by the electric field. The results obtalined
here ciffer from those of the other theories in that
the conduction current is obtained directly from the
kinetic theory of

sases rather than from the ecustion

I3
N

o motion of an electron in the Tileld of fTorece due to
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the electric fleld. For thig problem the conduction current

in an ionized gas is defined by

—

- = e -
1= N e,C. 101
J=Nye 8 +Npe 0, (101)
< pd 5 =} - E ey =]
The mass velocily v, will nroduce no net currents asg

the gas is considered to be electrically neutral. From

the conservation of momentum of the gas as a whole,
— ——; Ee : Lo
¥.om.c Az m.c, = O ( 10‘5«%)

Using this expression, the current may be written in
the form

3= (g ) (eqmmepmy ) (Z-Zo) (103)

where ?ig acain the mass density of the gzas. bHo the problem
left to be solved is Lo compute the difference between
the mean velocities of the two components from the above
first order solution to the Boltzmann's equation.
.11 First, the mean value of the peculiar

veloclity needed 1in computing the current is obtalined
by using the equation for the mean value of any guantity
-—p
¢

1
for a Tirst order golution to Boltzmann's equation, the

(No. 21) witb<¥l equal %o o In evaluating the integral

zeroth order term and the tensor term contribute nothing
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aom ) v -> )
as they are odd functions of ¢4 DO

T :s 7 "z o 3 <O) oy
N1C1==*1/5}{Vr1“i°5}1 Al(cl)mltvl

= (o) 2. )
{ N & \ s s Z
+\Nl+hg)ﬁlg.j 1 Llaol),lavl (104)
The part of the conduction current induced by the radia=-

tion fleld s of paramount interest. Since the Tield

= o

- & q e - . m -2 “ - 3 . )
is dncluded in the fefinition of élo, the function ul(c
L

must be determinel.® do this, assume that
vV, 1nT=0 (105)

Then from Zguation 104 and a similar one for the other

- —
component, remembering that dlq eguals minus d21 (Equation
790,
; _ﬂ? - A N AT ? 4 /‘17 .< O) g : 2 _;—3
¢y -¢, -\1/3)(n1+u2)a12,[(L,il)jfl gl(cl)clavl

_(1/Né)jféo)ﬁ2(cg)cgd?é] (106)

The functions El(cl) and 32(02) are assumed
to be expangible into two infinite series of the form (75)

)

oo
- ‘ . > (1



-00
2> > Z‘ =)
-_— (3 — ez a
Dy=cyDples)= L ©1%2

2 50 (ngol/2nm) 7y (1>0)
‘aéOL ,g?l/?)(mg/\/gm")?g

‘Eé ;) \’m /2kT 8 gi)(chq/ 2KkT ) 2 (1>0)

and the /g (x) are Sonine polynomials.

The first coefficients of the two serlies can

be shown to be egual from the condition of solubility

[6)}
N

(108)

(110)

(111)

(Bouation 100) by the following: Upon meking the substitu-

nish, leaving only

(o]

5, those terms for which 1 coesg notb

(113)

This may readily be seen to be satislfied by substituting

>(o0) .

ot
—

[0]
<

W

!...J
o

o
o
5
C

[

with that for the mean kinetic energy, vizs

<1/“~1>5f§ I, o2a¥, = (1/:,) £0)n_oZa¥

In this manmner the condition on the geries coeffliclient

roan and an and comparing the result

(114)
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To evaluate the conshtant do for the
erm, multiply Equation 93, which i
-2

zeroth order
a in the integ
i2

< 4]
18 nae
A=

coefficlent of

Lote
§

. -2 e S s
2.l equation, by a§ dvy end integrate
over all valu give

B T &

317 dvy (115)
Subtracting this from a gimilar eguation for the second
component of the gas,

Ko)é (1) 2 /u -
(1/5 Jfl Gy e8y7 dvy (1,@2)j1

= % w j‘ )j .g:g‘}“)d?l—jf(o)ﬁ qé:‘L)

. = >(1 AR B - = !
where {1, a(l)}==ﬂljij(yl).a§ )dv1+Nlﬁ S%lg(ml+@2)£§§l)@?l
2 N Zz T y2(L).2 2 2y (1) 2
- T y ™y 3 - 1
NN, i21($1+m2)o32 v, NQ EE(QL).aE av (117)
—

‘he unknown I&ﬂCuaﬁﬂsigl and 32 in the above ecuation

re replaced by their seriez expanci 1

7 and 108, 1

64
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TS a3 2(4)
. i {1 .
gy e {9, 200} (118)
-0
The range of 1 and J in the above integrals is from minus

- N

to plus Infinity. ALl terms that have not been cefined in

i

v

the series are zmero., Actually all of the integrals egual

zero unless 1 equals j. The first two are also zero unless

i is zero. This is sgeen from the relationg between the

Sonine polynomials (76) that

(a)

o0
e Sép)(x) By (x) xdx

=40 (p#q) C
{P(m+p+l>/p! (‘g:g) (1)

(o)

and that Sm

e - s - kY 3 6
(x) equals one. The variable of integration v

. ; - : 2, . -@ Ak - - .
in spherical coordinates is v 8in® ¢@ ¢ dv. In this manner

the first constant &, may be found. Substituting the values
o) J =
Ay
a0} . . . olo) o : ,- .
for &4 / (Equation 10¢) and Ié ) (Equation 64) and working

out the integrals, Eguation 118 reduces to

)= -3lwd (/27 ) (@ +fs)
+le\§2ca0{§(0>, 3(0)} | (120)

: . = -
Thus, & first approximation to the function D1 and

hence to the current will be obtained, once the value of
the curvel brackets is determined. Actually this approx-

imation to the complete result is a pretty zood one. The
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theory of the veloclty of <diffusion 1s based on practically

EN

» E) P - Frrer N oy e ey ey e
the same theory as the above. Results (77) 1 cate that

the coefficient of ciffusion chanzes around 15% when carried
to higher orcers. The accuracy of the results obtained from
this theory are probably not that good when all the other
approximations are taken into account.

Uging the principle of momentum, It cen be shown

(78) that the Tirst and last integrals in the definition of

{3(0 ,'3(0)}(Equation 117) are zero. The other two integrals
may be combined by the principle of inverse encounters,

0

enunciated in HBection 3.8, to reduce the curved brackets to
- ( :
{a("), "é,‘o)} (mq M/ AKTN N, ) j'f‘(o) (o) (2

o7 ) (Bp-8A) k00 aFpavs (121)

(o)

To evaluate this Integrael the functions fl and. féof are
substituted (Equation 64) in the above. It is Tound conven=
ient to change the coordinates of the peculiasr velocities
to those of the velocities of one particle relative to

another in a collision. bpecifically let
. '> -_3 ~> -yt >
am1+mg)a==ml o Vo = My Ve +ms Vo (122)

be the momentum of mass motion of the two particles curing

a collision. The veloclity of mass motion G Iis conserved in

all encounters considered. Also let
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be the initial velocity at infinity of a particle of

the second kind relative to one of the first kind during
a collision, and 1et'§’be the same for the final relative
velocity. Using these velocity variables, the parameters

of impact (see Figure IV) are

dKk=g b db d€ (124)

They indicate the specific geometry of a particular impact.
From the figure b isg the impact parameter and€ represents
the angle of rotation of the plane defined by the impact
from some arbitrary reference plane. Now making all of

the above substitutions,the multiple integral for the

curved brackets may be revlaced by the following series

of eguations:

{%‘50), E(Q)}=-(ml+m2)kT/E (125)
E= l{T{ml-i-mg)d/(Smlmgﬂlg(l) ) (126)
5/2 0 2
m.-m -
195 ] (0 1 P =y 4
1) = X 172 e (12
‘r%g( ) £m1+m2)2kT | W?:ycplze“p[” 2(m1+m2)k$}% de (127
o

and 4)12 =J{ 1-~cos X )gb db (128)
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The only new guentity introduced ig the angle'xw From

the figure this is seen to be the angle through which

the first particle is deflected relative to the second
during an encounter. Needless to say, only binary encounters
are conslideredes

3.12 The evaluation of these equations depencs

upon the law of interaction between the molecules. In

the present case the inverse square law between two charged

particles g applicable. The force between such particles

o

18,/7

for a separation r. The first step in the evaluation

is to cetermine the angle of deflection X during an encounters,
This requires a knowledge of the orbit of one particle

aboult the other. In such an orhbit the angular momentum

ig conserved, so in terms of the reduced mass

.2 .
(mlmg/(ml‘fmg) )rTe = const. = (mlmg/(ml+m2> )@b (130),—

&=

nergy is also conserved, or

2 2 . ~
1( Mty <g£) = (ua)]+ °1°%2 _( Mo )f (131)
S\mpfmy )| \dE) Y O\GE r “\2(mq+my)/© =

Upon eliminating the time between these, the differential
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equation of the orbit is obtained; viz.

;22 s P 2,202 1.2_ _
(g™ v~/ 2x )[(dr/de )+ ] =g (m1+m2)ele2/mlmgr (132)

wWhen solved by quadratures,

-1/
// 2 dlq

o0
. . , ]
& =:gw [{r4/b2)~r2~2(ml+m2)elegr’/mlmgggb'] (133)
“oo

where oo is distance of closest approach. Thus @measures

the engle between the apse line and asymptote of particle

No. 1 at infinity. Introducing two new variables

v="D/r (134)
3 2 .
and Vo= bmymag”/ (mg +ms ) e e, (135)
the integral reduces to an expression of the form

v : =-1/2
907—5 0 [lavg—:é(v/vo)] / av (136)
o

wheres voo is the real positive root of

l«v2~2(v/vo)=<3 (137)

This upper limit was determined from the fact that at

the apse of the orbit



dr/ae = dv/dae = 0 (138)
When solved, one finds

Vo= V= (1/7) 0 Lbvo-1) (139)

Before evaluating the integral, the angle of deflection X

will be introduced. From the figure it is clear that

Voo 5 ~-1/2
X =mn-20 O=n~25 [1—v”’-2(v/vo)} av (140)
e}

Integrating by Pierce #161 (70), one obtains

=

1

=1 2, =%
X =2 gin “(levg) © (141)
From the relations of trigonometry, it follows that
2 .2 J
oosx.=,(v0«1)/(vo+l) (142)

This can then be substituted into Equation 128;

Vize
4’12 {[3-‘("5"1)/(’\’"?'*1)] g b db (147%)

Change the variable of integration by means of Eguation

135 and simplifying the integrand to read
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2 AV l

o ol o
<plz= g[(ml+m2)91eg/mlm2g } gS vo/(vo+l)dvo (144)
o

Then by Pilerce #53

]

/ e 2 45
CPlg —i}m1+m2)ele2/mlm2g ] glﬂ(vol+1) (145

where VOl is the upper limit of integration. This limit
should be taken ag infinite; but by taking such a limit,
the value of ¢32 would likewise be infinite, giving zero
valvue to the conduction current. The trouble lies in

the electrostatic forces which do not fall off Tast enoughe
So partieles even when a great distance apart have appre-

ciable effect upon one another. At these distances the

encounter is n

O

longer strictly a binary one (80) . Rather

the particle Ig essentially in a general field of force

L
Lol

cetermined by the distribution of charge in its neigh-
borhood. The magnitude of this charse should be included

ag & force acting on the particles of the gas n Boltzmann's
eguations For the problem at hand this static force is

on the average zero, as the numbers of positively and
negatively charged particles are assumed to be equale.

Lo, as long as the mean distance between the particles

d 1s counsicerably grester than the impact parameter b,

an encounter may be consicered to be essentially binary.

Inceed, being & logarithmic term, appreciable variations

in the exact limit will have little effect upon the final
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result. Thus in Equation 134 for v let the impact parameter
. -

b have the upper 1limit d.. for an upper limit to the dis-

tance r consider the energy equation

: 2
eleﬂ/r==§mlm2g /(ml+mg) (146)

waefe the expression on the right is the kinetic energy

of one particle relative to the other at infinity. The
value of the left side corresponds to the potential energy
at closest approach. This will meximize the value of Ve

¢ energy should

e

-

In addition the above value for the kinet:i

foln

be replaced by its mean value.
Thisg may be found in & manner analogous to that

used in computing the mean values of guantities in iner—

Equation 21). Equation 14 defines the number

Hia
W

q

~

L Ce

¥
|£5]

\p

of coll

[
foda

slions between two particles. If this were integrated

over the encounter variables and the two velocity renges,

the mean number of collisions would be obteined. By anal=-

ogy if a funct on(b*ﬁle inserted, its mean value would

be
- = 5 S
M.~ =\ £ k. ~dk dv.,av, 47
¢ 10 555 1Ts Pk dk v, AV, (147)
Substituting the zeroth aporoximations for fl and T,

(Equation 64) and letting



¢> ,mlm2¥ /(ml+mg) (148)

N . e~ B e A - =) o Ju TT e
oraer a,;_apfo::;.,mab,z_on 18 0T sUuIirliclient alcuracye. hence

in Equation 145

< = liA1 140

v = 400 [SERS]

Ol ¥ {T/ lbg (-J-‘ )
, ,
: s f2(e) (o)
Heturning to the evaluation ox{a ., & ,

the result from Equation 145 iz substituted into Equation

o

-
12{l)= Vnﬁﬂyg/{ml+m2) (el 2/ 2Kk T ) 1n[k4d&?/el Q)

w oy
/ 1 o
1'1] gog exp(~gmmog / (mq+my ) KT )dg (150)

Integrating by FPlerce #403,

(151)

o
.

>0 _?io ’ n-lﬂlxpg e @2 AL, {

{"( ), 3 )} [( = "L) +1} (152)

L
2kT(mq+m,) | kT e1€o
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To simplify let
22
RN

|2

V = Jmlmr«lmm ng(Lﬂlﬁhﬁq) Clef‘)

oo {» o) = 0/}= #(gmlmgﬂ?)p (154)

The quantity Vintroduced above has the dimensions of
time and Lg interpreted as the mean number of

collisions per second between molecules of the two come-

ronents of the zas.

The value of QO will now be ottained. Substituting

£

the above expression into Egquation 120, do is found to

He
[z 1. b B
~ao(j?l§b/?)(9+g, (155)
el The difference in the mean velocities,
which is neeced Tor computing the conduction current,
was given I terms of Dy and Dse Substi-

tute the series expancions Tor these and keep only the

A ﬁﬁ+(0)->-
‘\.al"" Wt D - -\ 2 > (\Nl‘*ﬁ\sr))@.l; ou [( l/ uljf 1(&'?1

oAV, (156)

(__-3
y
A R
O
ol
194
O
S
¢
I
¥
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0 1ls were evaluated in Tinding Eguation 120,

Substituting the value for d, from above,,

[(Nlﬂ )91&/9192(2)) +3 W )]5’12 (157)

Y

The conduction current of Eguation 103 is now

introduced to compleie the solution

j S

(N +H5) KT (eqmo=eom A
Fo (1 o)kt oy, 1) a, (158)

emqmp(V4+itw)

In the corona and chromosphere it can very probm~-

ably be assumed that the gradients of temperature, density,

R

and pressure are everywhere small over any region covering

meny wavelengths. Indeed these bodies are usually considered
to besin equilibrium and not to bhe In general mass motion.

Hence the assumption of neglecting the temperature gradient

fods

eries

8]

(Equation 105) in obtaining the Tirst term In the
. 2 \ .

expansion for o4 maey be supplemented by similar neglects

with regspect to density and pressure. Under these condi-

. . P 4 -
tions the sole remaining term of Aoyp | (Bquation 78) is

<

that due to the elechtric field in the Tield of radiation

and thus
T= /o) (e. / )2(2y ~1w )/ (4 P24 z)g o
= (@109 el,ml-»»ez/mz2 (2y -2 4 VTHWT)E e (159)

to complete the theory of this chapter. The exact form



of this result should be compared to thalt obtalined from
the "free path method" of the kinetic theory. Under that

method of attack two conduction currents would have been
obtained, one for each component. Each of them would
have been a Tunction of its own properties and the forces
acting upon it alone. Such is not the case here, Hather

the current is esgsentlally a mean value of the two currents
in the other theory. It is the more logical result since
the components of a physical gas undoubtedly do interact

with one ancothere.

T



IV THE COMPLEX INEX OF REFRACTION

4,1 In Chapter I7 the equation of transfer
was cerived and solved on the basis of the ray theory of

optics. The gzeneral expression was found to be a function

N

of the temperature, the optical depth anc e funcltion

Me of the index of refraction of the medium. Upon appli-

cation to the raclio frequency case under discussion, the

unknown function Me was eliminated. Chapter I1I emphasized
the properties of the material more than the field of
radiation. There it was shown that a field of radiatbion

of engular frequency ®Wwould Incuce a conduction current in
the ionized zases. Thus to complete the problem, it is
necessary to relate the conduction current to the optical

2%

depth, or rather to the coefficient of absorption, as one

2

is defined in terms of the other. is <one by contin-
uing the work of the last chapter with the electromagnetic
wave theory. From this theory it will be possible to
cderive a coefficient of absorption for a plane wave. The
two coefficients are then sald to be equal.

4.2 From various considerationg Maxwell's elec-
tromagnetic equations will be used on a sub-macroscopic
scale. FFor this scale of magnitudes the cdiscreteness of
the electric charge is still replaced by uniform charge
densities, but such gross effects of matter as the dielectric

constant and permeablility are negleclted. Using one term

f
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from a Fourier vansion of

eguationsg in Caussian units

¢}

-

7

the field of radiation, Maxwell's

-

are

v E=0 (1)
Div B=0 (2)
Curl §==~{iu)/c}3 (3)
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To simplify the above expres

a'= (4"?192/?)[(

1,

This quantity has the <imens

't may be compared with the

frequency, first introduced

2 2
W S=4TNe /m

gag. His expression was

b
bl e E ) N 3 e
The two become identical if

be substituted into the seconc

onduction current (Eguatlion

of the curl

lon,

S

el/ml)—(ez/mgjla (6)

ions of angular freguency.

expression for the plasma

by Lengmuir for an electron

one component of the binary
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mixture is removed. This again clearly shows an essential

difference between the "free path methol" and the "veloc-

Ly

ty=cistribution method” in the kinetic theory of gases.

T

ot

he former method derives guantities which are separate

for the two components of the nmixture while the latlter
method proviies only one which is essentially a mean of
the two separate resulis.

The mean plasma freguency of Equation 6, is
seen to be depencent only upon the constants of the material
anc not upon the incident wave. Hence it will be a useful

parameter with which to compare the freguency of the

that the plasma fredguency may be a natural period of
vibration of the material. The calculations of the radiation
in Chapter VII will indicate that the amount of Jamping

encountered by a wave in this region is considerable.

Making use of this parameter, Egquation 5 becomes

2 s) 2 }_n. 2
Curl 3-“’( N 2)?5+ in [y B (8)
c 4y “rw c (2 T4V “+w =)

Physical interpretation of the termg in the above equation
is most easily made by comparing 1t with two other stancard
forms for the corresponding Maxwell equation.

4,3 First consicer the propagation of a wave

of freguencywthrough a polarizable isotroplc concucting

mecium. In such a material one of the ield eguationg is
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where P is the polari:

ration. Being an isolbtropic medium,

the last two terms may be expressed in terms of the electyric
Tield, vize

=G /e) (LA TX)Be (4T /e) o B

(10)
where X is the e

ity. Compar:

lectric susgceptibility and oothe conductiv-

ing this with Equation 8, it is seen that

the racdiation field produces an equivalent susceptbibility,

X:~.§12/[4v (-’—'rv2+w2>] (11)

8

e conductivity

a-n2v/|emaveiw?)]

(12)
in the lonized mases.

4.4

As the above physical interpretation coes

not lead further than that indicated, another approach

is taken. In this case HEquation 8 will be comparec with

the propagation of a wave through an isotroplic non-con=-
(?

onding

<

ucting dielectric medium. For such a medium the corre-
8D i

Maxwell equation is
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where L 1is the displacement and € the dlelectric constant.

This eguation may likewlse e compared to HEquation 8. IT

(=1

B0, the coefficient of hU/G)u may be congidfered as g

couwplex clelectric constant:
€=¢+i€p (14)
—-lﬁf)?/(+v rCO° Eyﬁqjlglﬂi’WV“+gupﬂ (1:)
.Gonsiéer for a moment the solubtion to Maxwell's

equations Tor a2 plane wave tra

v
such as that cescriBec by Eguation 13. The solution is
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vhere n 1s the Index of refraction. This indexw is delined

28 the sguare root of the <ilelectric constant. 5o a com-

lelectric constan as In Kguation 15, wmeans a
couplex index of refractlion anc hence a <amped plane

v o -t I 4 T - LY
vave solutlion. For if
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n=r4+:?.k='\/? (17)

then
i -'-E?O exp(-wkr/c) exp{_iw[\(,’x 1"/0)"“@]} (1€)

This 18 Just the solution cesired to relate the
ray theory of Chapter Il to the wave theory of this chapter
and the last one. The intensity of the radiation described

by Equation 18 may be found from Foynting's vector,
—{f':(c;/gﬂ)ﬁxg% (19)

As the induction field will be perpencicular to the electric

field and of the same form, the magnitude of the intensity

at any point is

jf‘richTr)Eoﬁoexp(~2ujkw/c) (20)
IT this is compared with the equation for the attenuation
of a ray passing through matter, one sees that the coef-
Ticient of absorption Kf is related to the imaginary part

of the complex index of refraction (Equation 17) by

Ke=2wk/c=4mk/X (21)



The real and imaginary parts of the complex
inctex of refraction have yet to be solved in terms of
the real and Imaginary partse of the dielectric constant.

Substituting Eguation 14 into Equation 17, squaring the

1t

result, and then equating the real anc lmaginary parts,

one finds that
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k 5 61161\»62

To cetermine which sign should be used before the racical,
consicer the speclal case where there is no camping. Then
both k and 62 are zero. These conditions require the

upper sign. S50

polle et | )
k.=\/?s[—€l+~/e THES T (23)

This then completes the solution to the problem
of computing the total amount of raciation emitted by

the sun in the racio frequency spectrum. We have seen

that from a knowledge of the temperature distribution

anc lon censities in the corona and chromosphere the

mean number of collisions per second between the mole-
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cules of the two components of the gas may be found.

The complex dielectric constant and hence the coefficient

of absorption are then mowm. If the path of

civen, the optical denth and =o the emers

ey

of raciation ls easi

o2

7y found, thus completing the compu-

iy

«

tation. In this manner only the na

1 3 [ T B - -
patngs of the ravs are

8till unknown, the subject of the next chapter.
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at these frequencles must be based upon slightly
postulates then at optical wavelengths. In the latter

case the effects of refraction are guite

and so the patl be regarded as rectilinesr. Such,

however, frequency spectrum.
For here both refraction and sbsorntion must be taken

into account.

5.2 To obtain an ides

(02}

will have upon

but non-absorbis mecium. Thig

approximete the upper parts of b
tion is guite small. For this
mey be derived Trom Snell's law

the law consider

T - e
at altitudies ® and

ﬁiOme

A pencil of radiastion

it
]




Figure Vl

Path of a Single Rey
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the angle of incidence will have changed to «+¢ Kag a
result of the change In the incex of refraction and also
of the curvature of the solar surface. Since ¢ifferential

elements are being cealt with, Snell's law of refraction

is

/Jsind /1+g# n(«+do+d G ) (1)
vhere © ig the polar engle of the radius vector. Expand
the right side of the equation and neglect second orcer
terms to obtain

0= @%sino(-ﬁjjcosd(ﬁo(—i-d B)

Then with the use of the differential right triancle

BCE, 40 mav be eliminated +o give the differential equation
9 S -
::%u4p+cogddd/sind+dﬁ/ﬁ

This may be readily intesrated to

N>
o

y:f§isind (Z

where y ls the constant of integration. From the Tigure

it is seen that for large R where f&is esgentlially unity,

L

v is the perpendicular distence of the pencil of radistion
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from a parallel pencil passing out from the center of the
gun. This 1ig identical to the projected solar radius y
used in Chapter II.

5.3 The above solution, éf course, 1is not the
required one. Instead 1t l1s necessary to consider both
refraction and absorption in deriving the result. Snell's
law of refraction is no longer applicable. Rather one
must turn to a law of refraction which takes IiInto account
absorptlon as well as refraction. But under these conditions
the very concept of a ray becomes questlionable. For 1if the
places of origin and absorption of the energy were taken
into account, then the directlon of its flow would no longer
depend upon the local conditions, but rather would be 2
cooperative phenomenon of the whole system. And so 1t could
be represented only as a non-holonomic system of rays.

herefore simplifications are unavoidable. The best
avalilable approximation to the solutlon of the provlem
ig contained in a paper by Epstein (81l) in 1930. In this
paper he treated the case of a finite pencll of rays nassing
from a non-absorbing medlum into a refracting and absorbing

one. The radiation in the sun is, of course, produced
in the sbsgorbing medium; and, Iin ﬁ~ﬂera1 such radistion
will be Inhomogeneous and & functlion of iLts points of

origin. It was ascertalned, however, for gpeclal cases

Hs

in plane stratified medla that the difference between

=

the two resulis was not significant. ds the deg



curvature of the sun s guite small, it may be salely

assumed that the ¢ifference <due to the curvature will

not materially affect the result. In a will
be gseen in the following chapters that the real part of

the Incex of refraction is much zreater than the ima

inary

vart over much of the corona. This will also tend to

recuce the degree of Inhomogeneity present in the radiation.
}

B4 In hig paper Epstein showed that the sguation

of the iconal

s
[43]
S
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+
;.:
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wag compatible with the seneral equation for a wave passing

o L L T R S T 2
200 aps8oriping med lum 1aving

index of refraction n. The eguation of the ray was shown

to be

Fe Udu ]:*ii VQV :l:ﬁ [ Waw ] (4)
' dENHU) (8/>7) YENAY D

for general orthogonal curvilinesar coordinates having

&

a line element

2 2 2 2
al ——Ugu SVav #aw

Bl
A

in the cage where tThe constant of Inteszration

kel

Tfor Eouation 3 is real (see below), the real and
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parts may be interpreted physically. The surfaces

Re 8=conste (5)
are those of equal phase while the ones

Tm §=const, (6)

are those of equal intensity. The Fermat principle cannot
be used for this type of medium as the quantities t (time)
and v (velocity) lose thelr simple physical meaning. Also
strictly speaking the above equation may be applied only

to the case where n changes appreciably in distences

long compared to the wavelength of the radiation. This

condition is well fulfilled throughout the corona and

chromosphere except near the altitude where the mean

plasme frequency (Equation 4-6) equals the frequency of

the radiation. As this region is quite small, it is neglected.
The eguation of the iconal will be applied to

the problem, illustreted in Figure V, where n is a function

of the solar radius only. Then the optical path will be

e Tunction of R and © only. Under these coordinates Hguation

% becomes

2

(05/0R)%+(1/2%) (08/2 6 ) 7= 0 = (u4i1)” (7)
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To find the solution, let 5 be express

two functions

PN
o
L

s=8 @)+8" (©)

Subsgtituting and then re-arranging the terms

be v, two Tirst
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If the separat
order linesr Cilffex

by quadratures,

a8
e

Je.{ VR | (

o
e
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The lower limit R, of the integration is the radius of

5

the top surface of the sun, above which the effects of

b

be considered o be negligible.

refraction and absorption may

nt in the sun under discussion

t}a

The other limit is the po

e moment.

:\‘l
ok

With the above result the optical path length

may be calculated but not its location in the sun. To

do the latter, the equation of the rays must be found

from Equation 4. For spherical coordinates this is
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With reference to the differential triangle BCE in the
figure

tano = R (a © /R ) o)

So upon substituting the values for the partial derivatives

into the above, the angle of incidence of the ray becomes
- NN/ B~
tanel =He [(;v/ﬁ)/ n2- (y/R) (11)

To evaluate the separation constant vy, consider the special

casge where there is no absorption. Then n is real and
» 2 e D
tano = (y/R)Nn“=(y/R)
or &mx=(m@%7—

Thig is the same as Zguat

Late

on 2. 1t shows that y is again
the projected solar radius since at these altitudes k
is essentially zero,

For actual calculations it is necessary to take
the real part of Eguation 11. Substitute the complex
value for n (Equation %), and then upon evaluatlion one

finds
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N (y/R) ¢Q%ﬁ~(yfﬁ)2J2+~€§;{€l“(y/%>2]

tone = (12)

Vel [El-(y/ﬁ )9] 24-»5?

s gives the angle of incidence « as & function of the

[

Th
racius R. To find the other coordinate © of a ray, consider
Bquation 10. When integrated,

DO

o~
{1
fo

O=| (1/R)tan«dr
The upper 1limit hasg been so.chosen that © is zero for
Infinite values of R. These two equations then cefine
the path traveled by any given pencil of radiation in
the corona or chromosphere., |
To obtain a physical idea of the path follow

by any ray, consider how & will vary as
5\ 2
€ -(y/R)

varies. For negative values of the above, corresponcing
to layers deep in the sun, ¥ 1s seen Lo be quite small.
This weang that the radiation is flowing almost parallel
to a radius vector. Then as €l'becomes equal to (y ﬁ)g,
L increases to almost 90 degrees. The exact value will
depend upon the magnitude of‘€2. As 1t is a very small
guantity in the present application, it means that the

-

rays turn almost perpendicular to the radius vector Tor
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Pinally at still greater elevations & gradually decreases
to zero once more. For those reglons where the absorption
is guite small £ varies essgentially in the same nanner

as in a refracting but non-absorbing medium (see Section
5-2)

5.5 Having derived the path along which any
given penclil of radistion will travel, it will be found
convenlient to express the path length 1 in terms of the
racius vector R. Irom the differential right triangle
BCHE of Figure V,

cosxX' = dr/al (14)

This will be use@ to change the varlables of Integration
in the eguations for the optical depth and the intensity
of emitted radistion to that of the radius vector. As
was seen above, no trouble will occur from the zeros of
cos el as they do not exist in the physical problem. The

optical depth (FEguation 2-20) now becomes

l....J
P
i
DN

R
1= —j Kpsecxdi (
Ro

The lower limit R, represents the radius vector to the

i
d
(L:‘
=)
o
n

point of observation, replacing 1,. gimilerly
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replaced 1. ITf the absorption coefficlient

Lds
n

5 expresse

-

2.,
i

in terms of the imaginary part of the complex of refraction

(Bauation 4-21), then

R
t==(4TT/A) k sec«dR (16)
Rg
in the case of the eguation of transfer the various

-

golutions given in Chapter II had the optical depth as

the variable of integration. For the purposes of computation
it is more convenlent to re-express this in terms of the
radius vector. So using Houations 2-23, 4-21, and 14, the
emergent Intensity of each pencil of radiation (Eguation

2-26) ig

Ro

oo = (BT/A)(1/AS )| B(T) k secxe "AS R (17)
R

The cross-sectional area AS of the pencil of
racdistion still needs to be determined in terms of known
quantities. Consider a pencll of radiation having a differen-
tial area ABCD at an altitude R and colatitude angle ©
(see Figure VI). This pencil wiil likewise intercept an
area ABEF on a sphere of constant R. The common side

EB of these two areas is

IB=R sinOAQ



Flgure VI
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where (P is the azlimuthal angle. The other dimension of
the area ABEF is of magnitude R A ©. Since the two areas
are at the angle of Incldence o with respect to one another

BD =BF cosx=R cosx A ©

Thus the cross-sectlional area at any point in the sun

will be
AS=ABCD=2%g1in Ocosec AOAD (18)
Congider for the moment the value of A S at
lerge distances from the sun. In this region, where there

is negligible absorption and refraction, the angles o

and © become equal. Eguation 186 reduces to
As =y Ay AQ (19)

Since the parameters v and (P completely define
a ray, the various factors of Houation 18 must be expressed
in terms of them. From the eguations def ining the path

of a ray, all of the gquantities are known except A 9 .

Ag the variation of © is taken along R equal a congtant

a@/b:«)‘Ay (20)

%
HEN
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To evaluate the partisl derivative, the angle « must be

;_v.

elimineted from the intesral definine © . (Substitute

Bouation 12 into 13.) Then upon carrying out the reguired

o~

Cifferentiation, one fTinds

- oy \ 2
tene , yj €1-(y/ﬁ1
= 5 5Y3/E
F* oR Phan« [%f(y/ﬁ)g] +€§ 5/

[¢-vm)2]2-¢
[€-G/0%]%

ar (21)

e

This expression should also be evaluated For normal gmergence
(v equal zero). Substituting value Tor tan of and

going to the Llimlt as y tends to zero, one finds
oo
= {50)
Ve

/ — /s e 2 2 =
(28 /3y). = /J/ (REVET+€S) | R
L ey
R
where the value fOT/A was found from REguation 4-22,
e emercent Sntenadt F the radiaetion o now
The emergent iIntensity of the radiation is now
completely determined. Substituting Equations 18, 19, and

20 Into 17, one finds for a general ray emerging with

e projected solar radius y that

—~—
O

U

e

this rediuces Lo
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,O=(41T/A) Bf(i)he“"(a ©/vy) R @R (24)
R +

kJa

If one wishes to express the emerzent intensity

.ck body temperature T

'ﬁ

in terms
O 8,

(see Section 2.8), then the lasgt two eguations become
-]
Rg

=(4TT/y A) The™ " he/yvy) R%s1n O R (25)
= R

and

R

.-n\.o
-4 i
T,= (4TT/A) Tke 3O/ y)_R dR (26)
2 jad
5.7 With these equations the theory for Tinding

] S A

the thermal component of +the redslio frequency radiation

generated by the sun is concluied. In the past chapiers
it was shown how the kinetic theory of gases will predict
the number of collisions per second in s binary gas, a
Zood approximation to the zases in the solar corona and
chromosphere. Then with the use of the electro arnetic
wave theory a complex dlelectric constant and an index
of refraction were found. These guantities determine

z
7

the path of a pencil of radistion tzrouﬁ" the solar atmog-

phere. Finally the solution to equation of transfer Tor

a um gives the emergent Intensity

over the solar svhere.



VI PHVPICAL PROPERTIES OF TIHE CORCHA AND

6.1 The test of an
predict‘the regultes obtained from experiments. The above
presented theory was developed on just this assumption .
But before such a comparison can be made, it will
necegsary to have alequate phyéjsél mocdels Tfor both the

corona and the chromosphere. These models. must be able

to present both the temperature and particle distribubtions

2

as functions of the solar coordinates. In addition it
would be desirable if they were made up of binary rases
(electrons and protons ) havingz spherical symmetry and

if they would represent the quiet conditions in the sun.
By fulfilling these confitions the above theory would
closely fit the mocdels. Those that have been ceveloped

ES

to describe the parts of the sun that are of interes

c
O
o]

infeed have the mnecessary qualifications.
6.2 Of the two parts of the sun that are of

interest, the outer one hag the more sstisfachory model.
9

The one arfopted for this paver was derived by van de Hulst

(82) in 1950. It represents the mean quiet concition

-

in the sun between the maximum ané minimum phase. He

101

assumes that the corona is composed of almost pure hydrosen

with but a slicht admixture of helium. The small contribution

of the heavier elements that proiuce the coronal lines

AT

wes neglected. To be specific he assumed that there are
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of about one million

degrees Kelvin (83), these atoms are assumed to be com-

0y

pletely ioniz

helium atom. Under this assumptlion the mean
M in the corona will be 9/13 due to 13 particles but
only ¢ mass units.

Thus, as soon ag the absolute abundance of any
one of the three components 1g known as a function of
altitude, those of the others are known. The problem of

determining these abundances was i

(84) in 1937 on the assumption thet

by the corona is due to scattering
Subsequent work (85) has shown his work to be in error

by some 15%. This was the result of bringing out the

importance of the inner zodiacal light or F-corona. The

theory acopted by ven <{e Hulst considers that the lisht
from the corona is due to (a) the emission lines or L-corona,
(b) the scattering of sunlight by the free electrons or
K=component, and {(c) the F-corona.

in order to determine the electron density it
was necessary for him to know the masnituie of the K-

component. The correction cue to the L-eomponent was con-

sidered to be negligible, being less than than
total. This was not true of the F-component. It was removed

" o

from the photometric {ata on the assumption that the



103

AT ‘g

Fraunhofer lines are completely obliterated by the K-

corone but are present Iin the F=-corons..

this reasoning to the experinmental data,

i

2in the values of the transversge com=
ponent of the K-~component of the coronal emission as a
function. of altitudes From the results the following

empiricael formula was derived

] -
Z 7 { ¥
-y aa { =t &i/

o~
}...J
S

" - K3 ey T A B
wnere ? LB Telatnive

L - o [/ A B e R R = e m . T
better than 2% with the experimental cata. Then the elec-

@

tron censity W mayr be foune from the following series

"

of formulae together with Eguation 13

~
A
g

sin y =1/}>
o
2A+B=1-(cos ) /siny )1:(1[{14-5:2:(1] }/cos ] +

12/3)(1-cos y ) (3)
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2A-B= z{l4sin"y - (cos d’_/sm)’)ln (1

+siny)/cosgﬂ}+(2/9)(1~COSBY) (&)
N——-Kt(?)/[act(gn)g,@.(g)] (5)
where: C 1s a proportionality constant equal to 3.44x10'6 ce

and Qt{?) is an ewpirical correction factor. Its value

a8 a function ofg?may be.found from Table 11,

Table [T
0 1.00 1.03 1.06 1.1 1.2 1.3 1.5
Gt 0.380 0,383 0,390 0. 404 0445 Qoti74 0405
e 1.7 2.0 2.6 30 4,0 5 6
Gt 0.504 0,510 0.542 0.577 0.690 0.770 0.820

In addition to a knowledge of the electron density,
it 1s necessary to find the kinetic temperature. Van de Hulst
proceeded on the assumption that (a) the corona is in
hycdrostatic equilibrium and (b) the temperature gradients
are all small. Then from the equation of hydrostatic equilib-

rium he found

T)/T=d(1n N)/a(1/p)+d(In T)/a(1/p) (6)
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6 o

wheres Tl={4M®GmH/R@k:=l,58X1O K

M@= mass of the sun
Re= radius of the sun (6.97x105 km)
G = gravitational constant

my= mass of the proton.

6.3 Next the physical model adopted for the
chromosphere will be presented. Its exact nature has
st1ll not been completely understood. However, it has
been definitely established that there must be a strong
temperature gradient between the six thousand degree
prhotospheric temperature and the million degree value in
the corona. Among the various theories that have been
presented on the structure, the one developed by Thomas (86)
in 194% appears to be the most satisfactory. In its formula-
tilon he tried to avoid the difficulties of other theories
by interpreting simultaneously the intensity as a function
of height and the Balmer decrement at each height in the
solar flash spectrum. By doing this, the optical depth
in the lines was fouad to be greater than that previousiy
supposec, and thus the effect of self-absorption becomes
important. Bince most of the observed intensity pfobably
comes from the base of the observed sector, this region
was treated as being isothermal. Uging these considerations,
he Tound that the number of atoms in the ground state of

the Balmer seriesg lying along the line of sight could be
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expressed as a known function of the electron density
aad kinetic temperature aside from a proportionality
constant.

In addition to the above considerations, Thomas
assumed that, to a first approximation, the chromosphere
was in hydrostatic equilibrium. For a model of a quiet
chromosphere this is a reasonable assumption. The decision
was also made to set the electron temperature egual o
the kinetic temperature, a novel idea. To eliminate the
unknown constant in the radiation problem, the logarithmic
gerivatives of the solutions for both phases of the work
were taken. The résulting equations were then solved
simultaneously for the gradients of the kinetic temperature
and electron density. However, the integrations required
Tor a complete solution can only be obtained numerically.

In a form convenient for computation, the final results

4 o ny Glni 2uMGmey
.,.%_. b 4 — M.._,,_% — ; - 2 — P H 7
= [2 In T= i 1n bg]— = e (7)
2 b 2 1
M1N=hﬂ&ﬁy@)~ WM%ﬁﬂﬁ@ﬂ Wfﬂ dh (8)
hgo

where: d{ln Ngfdh)=:—l.86xld“6/cm is the gradient of
the population of the Balmer ground

state.
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3900 £, 27900 is the actual ratio of the population
of the Balmer ground state to that In
temperature is assumed to equal the
kinetic temperature; (For purposes of
calculation a meén value of 1ln bo= G, 00
was chosen.)
V.. is the series limit for the Balmer series.

2

N TO are the electron density and temperature

09
at the altitude hj.
A1l of the other quantities have already been defined.
As the accuracy of the theory is probably not
as good as that in the corona, a mean molecular weight
of % was adopted by Thomas. To make a numericel integration
of Equations 7 and &, it is necessary to know N anéd T at

some height h. Thomas (87) considered that for h,= 500 km

above the photosphere
N0==1.74x1011 /cc
TO==35,OOO degz Kelvin

6.4 With the adoption of the above models the
electron density and kinetic temperature for both the
corons and chromosphere were calculated. The results are

given Iin Table III and in Figure VII as a function of the



TEMPERATURE

OF THI CORQONA AND CHROMOSEL

Helative FBolar Altitude Electron Temperature

Racius p h Dengity N i

0.0835 500 km 1. 74%10T /e 35,0x10° OK
0.983¢ 750 * Loa7s W 36.8 *
0.0842 1000 © 1.250 " 36,0 M
0.9846 le2s0 ™ 1.0662 " 41.3 0"
0.064¢ 1500 " 9;0878x1010/ce 47,9 "
0.9853% 1750 " 7.7840 " 46,6 "
0.0857 2000 " 6.6665 50.% %
0.9860 2050 ® 5.,7000 54,7 °
0.0864 2500 4,9330 ¢ 58.4 O ©
0.0867 2750 4,2603 " 3.2 "
0.9871 3000 " 3.6771 © 68.8 ®
0.9874 3250 3,185 © 75.1 "
0.9578 3500 " 2.7585 2.3 "
0.9882 3750 2.3062 " cQ.4 "
0.9685 4000 2.0792 09,7 ®
0.9889 4o50 1.6000 ® 110 "
0.0802 4500 " 1.5737 " 122 !
0.0896 47e0 R 1.3717 *© 136 "
0.9900 5000 " 1.1045 * 152 ¢
0.9903 5250 1.0421 " 17 "

0
0.2907 5500 O L0771 0% - i
e DTN e | 7:110 /CC 1 _i,l
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solar radius. In these calculations it was assumed that

the chromosphere is 12,000 km. thick and that the radius

of the base of the corona is 697,000 km. Since the two
models do not provide for e transition region from one to
another, they were joined by smooth curves between 9000 km.
and 14,000 km. This region is shown on an expanded scale

in Figure VIIT,

6.5 It should be noted that the high values of
the temperature predicted by Thomas, above, for the chromo-
sphere have been disputed by numerous authors. The most recent
values have been by Piddington (88) and by Woolley and
Allen (8¢). They base their arguments in part upon the
amount of radiation received by the earth in the ultra-high
radio frequency portion of the spectrum. The results of
Piddington are similar in. general form to those quoted
above except the values are lower. They start with a 5000
degree temperature at 2000 km. and climb to the million
degree value near 16,000 km. above the photosphere. The
other paper combines the radlo frequency data with that
Tor the ultra-violet radiation necessary to produce the
observed degree of lonization in the earth's ionosphere.
Thig results in a nearly constant temperature in the lower
chromosphere up to an altitude of 6000 km. Then in a distance
of 1000 km. the temperature rises to 230,000 degrees. Al
higher altitudes it increases more gracdually to the million

degree point at 46,000 km. These values have not been adopted
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for this work as it is felt that the theory cannot be
checked using data that areobtained in part as a result

of the theory.
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VII CALCULAT

Tel In the last chapter the physicel properties
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was shown that these bodies cen be congifered to be composed

completely lonlzeld hydrogen with a slizht aimixture

o
i)

In the corona the hich kinetic tempersture

O
h
=
@
}_J
e
z
&

of one and one half million degrees will completely loniz
the helium as well. For the somewhat cooler chromosphere
the degree of ilonization of the helium will < epend upon.
the kinetic temperature and hence upon the altituie, Thus,
only in the corona and in the top of the chromogphere
may all the atoms be regariec ag hydrozen like.

To find the coefflcient of absorption by the
classical method, as was done in this paper, it is necessary

that the stoms must be treated in this manner. IT hey

are not, then quantum mechanics must be used.
the kinetic theory of zases to complstely ionized atoms,
certain glmplifications may be introduced. These represent
the cifference in mass between the electron and the heavier

particles anc the discreteness of electric charge. I

the electrons are assumed to be the First component of
the gas and either the protons or the helium nucleil the

second, then the Tollowing are valid:
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m= M<Ky = My OF Mg (2)

where Z ig the atomic number. For the above relation

on the number densities, 1t was assumed that the gas as

a whole ig electrically neutral. Eguality in this relatlion

represents the case where none of the helium is lonized.
First consider the effect of these relations

upon the wmean number of collisions per second between

the particles., ThHese collisions will cause the fileld

of radistion: passing through the matter to be damped.

The fleld Incuces an in-phase oscillatlon of the particles.

Any collislions between them will cestroy the in-phase

motlon and so attenuate the radlatlion. Houatlon 3-153

for the mean number of collislons per second can be simpliw=

fied to

e 2 g 282,
Vo= (4n,2% /35T ) V 1T/2mkT 1n |(4dkT/2e” ) 41 (%)
In this expression it should be recalled that & represents
the mean dJdistance between the particles. To a good approx-
Imetion it may be expresgsed In terms of the number censity
of the electrons. Since there are nearly 2N particles

per cubic centimeter, each particle must occupy 1/2N cubic



centimeters. If these volumetric elements are taken as

cuble, then

d=v1/20 (5)

The exact shape used 1s not critical since (a) the value

self an

0

for the expressilon in the logarithmic term is it

approximation and (Db) any variation in YV with cifferent

Tactors will be small as it is a lozarithmic term. Making

o

this substitutlon and neglecting the second term in the

logarithmic factor as being negligible, one finis
2 4 .25
VW =(4,% e /3kT)V 2T /ukT 1n(4kT/ze” Van) (6)

(A substitution of numerical values shows the last to

be true.) In the corona where van de Hulst assumed that
there are 5 hydirogen atoms for every helium one, the
number of collisions resulting from electron-proton colli=-
slons will be 5/4 the number of electron=helium nuclei
collisionsg. Thus the damping from the two sources will

be nearly equal.

It would be of interest at this point to compare
the above result with that from other classical theories
on the same subject. Smerd and Westfold (90) in their paper
used the "free path method" for deriving the number of
collisions per second between the particles rather than

the "velocity cdistribution method" used here. In this
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approsch to the problem each component 1s treated independ-

ently rather than collectively. Their result isg

1

- 3 = ,
V= (z"gz;?"eb“/w)\/ 2 T/okT 1n(4kT @/Zeg \’/-e,r) (7)

This differg from Equation 6 in two regspects. As g result
of using the "free path method" the factor 4/3 coes not
appear. Also in the logarithmic term they assumed that

each molecule occupiled a spherical volume element
(417 /3)(a/2)° =1/n (8)

rather than a cubic one. It would appear from this that
the two approaches to the problem vield essentially the
same result. Hagen's Cerivation (C1) of this quantity
was based upon the "velocity cistribution method" as is
that in this paper. Hence his solution is icentical to
Houvation 6.

Next consider the effect of the simplifying

0]

concitions (Nos. 1, 2 and 3) upon the mean plasma Ffreguency

) (Equation 4-6). This quantity now reduces to
2 2,
() =41¥e /m (9)

which Is the game as that of the mean plagme freguency

lntroduced by Langmuir for an electron gas (Egustion 4=T7) e
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7.2 In accition to the simplifications given
above, others are applicable over large parts of the

sun. in Chaplter IV 1t was seen how the conduction current
intuced by the osgclillating radiation field could be expressed
in terms of a complex ¢ielectric constant. The real part

of this constant represents the in-phase component of

the motion of the particles with respect to the radiation
field, while the imeginary part represents out-of-phase

7

component or damping factor. In both parts of the formulsa

for the dielectric consgstant the Tactor

V¥t

appears, where w 1g the angular frequency of the radiation.

Sample calculations show that

VKo (10)

Tor all re:

frequencies that are of iInterest.

Uncer this condition and with the simplified form Ffor

BN

2

vinary parts of the

1

14 and 4-15) become:

el=1~z~:fe2/ T me= (11)

€= 6™ v/ T %me? (12)



If in addition the relation between ¥V and e« given above

be appliec to the two parits of the dielectric constant,

>> €

oo
-
o
p—g

exceplt In the reglon where the two terms in €1_afe nearly

equal .
The behavior of C1 with solar altitude is of
interest. At very great heights N will be small anc so

t
€., will be near unity. As the distance from the center
of the sun decreases, El will decrease through zero to
negative values. The value of zero will occur at that
altitude where the mean plasmea freguency equals the freguency
of raciation. Thus there are tw regions one above and one
below the plasma freguency that must be considered.
Usinz the usual relationship between the index

L

of refraction and the dielectric constant, it was shown

=

ielectric constant lmplies

o

in Bectlon 4-4 that a comple:
a complex incex of refraction. The real part is identical
to the normal Intex of refraction while the imagzinary
part is proportional to the coefficient of absorption.

n the two reglions divided by the plasme frequency, the
incex of refraction simplifies to different values. In the
hizh altituce region of positive €‘1 where Equation 13

i1s valid, the Index of refraction (Equations 4-22 gnd 4-23)
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N
(S

m=Ve (14)
k= Iégl/z/u. (15)

In the region near the plasma frequency where the order

of magnituie conition between the two prarts of the
¢lelectric constant is no longer valic, no simplification

is possible. Passing to the region below the plasma freguency
where €l is nesative and Equation 1% is azain valic,

the intex of refraction may arain be simplified to

2.

At this point it will be of interest to compare
these results with those from other theériean These other
theories congidered tﬂat all of the observed radiation
came from layers above the plasma frequency. They assumed
that there would be total reflection of any radlstion
that was incident upon this layer from either above or
below. Thig is only true in the case of a refracting

ion

c'i‘

but non-absorbing medium. It was shown in the deriva

of the path followed by a gliven pencil of rays in Chapter V.



that with absorption rays can never become perpendlicular
to the solar radius vector. Thus total reflection cannot

occur. In comparing the results derived in this paper

P
e

ith those of others, only the reglon above the plasma

1 &

s region the

)

iw

frequency will be considerec. For tr
coefficient of absorption on the basis of the preceding

theory becomes (Equationg 4-21, 6, 12 and 15)

o

26 > 2.3 :
Ko= (&N % e /Zkkcmk[ff YW 2/ mukT 1n(4kT/%e” V2N ) (18)

e

If this result 1s compared with that found by OSmer

and
Westfold (¢2) and by Hagen (?3), it 1s found to be twice
thelrs. In additlion it has already been noted that Bmerd

-

anc Westfold have a <¢ifferent numerical factor in the
logarithmic term (Equation,S). The factor of two comes

from the different method of handling the effect of the
raciatlon fleld upon the motion of the particles in the

zag. It was assumed in Chapter III that the frequency

of thisg field was hig zh compared with the number of collisions

between the particles. Others have treated 1t as a d-c

The work by Burkhardt, Blwert and Unsdld (94)
algo ciffers from the above by a slight amount. They find

”Z

2
e6/'3kacf2\/ 2 kT )in(kT/1.44%e \/’J) (19)
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also a different

y
C\Jv
[&]
=
1

There 1s again the same Tactor o

Since

cr
o
i
D
4
O
ol
b
o
oy
?Ti
s

@]
s
0}
v
=
®

numerical coefficlient in
they <ld not consider refractlon this factor is also

migsing. Thelr result was based upon the atowic coefficlent

of absorption rather than the number of collisions per
second from kinetic theory. & fourth paper on thig subject
by Townes (CF) zives the same result s Burkhardt et al.

[_)a

Tactor in the log Lhmic

fO

Eed
le

[
3
=
o

1 &
He has 1.64 instesd of 1.44. His approach to the problem
‘g also from the atomlc absorption coefficlent,
(.5 To gimplify the formulae for the path followed
by the raclatlon, the conditlon on the resl and imarinary

parts of the dielectric constant (o. 13) is replaced

oy
Lz

[, ~crmr2]es e (20)

parts ol the sun. The quantity on the left
e of the above varies in uhe Same manner as aoes 61

PRI R T
with altitude,

the hisgh 2ltitude resion the

of incidence o« (Foguation 5-12) will reluce +to
Sj:fla(zy/)/uf‘l (21)

This

..._I

is the same as the expression for a ray in a refraciting

but non-absorbing melium {(see Hection 5-2). As the iniex

\ e



o)
5

refreaction 1s less than one, the ray will bend away
de

irom the center of the sun as one follows it back into

the sun. Then at the level where

the ray will turn sharply In along e radius vector. The
angle with respect to the radius vector when Eguatilon
20 ig again valid will be

s . |3/2
ta,no(rlfgl (y/R)/2 [(y/ﬁ)c‘—-el (22)

The formula (No. 5=1%) for the other coordinsa ate, the colati-

tude angle ©, of the ray does not simplify.

Finelly turning to the expressions for the emergent

Intensity of the radiation as derived from the eguation

of transfer (see Section 5-5), considerable gimplifications
result in the partial derivative (Bouation 5-21) of ©

with respect to y. This is used in finding the chanze

in the cross-sectional ares of a pencill of rays as it

travels through the sun. At the high alti

€ (/R)® (23)

W
T
5
petd

Equation 20 1s wvalid, one finds



L] .
N6 Ny)= tene/yRcos“d)dR (24}
bl

"

In the lower regions where the inverse of No. 23 is true,

the Integrsl in that reglon becomes

QO Nylg= - [(tan«/yR) [zw/m%g}/ {(zf/iﬂg—ﬁl] R (25)

Thus the total integral for (bé)/ay)m ig the sum of two
RS
parts, a positive one covering the high altitude reglon

and a negative one in the lower region. The sum of these
two parts becomes egual to zero at an altitude only a
little below the turning point of the ray. This meens
that essentially all of the observed radiation comes
from layers above the meximum value ford,

74 These simplified formulae will be used
in the actual calculatlion of the theoretical emission
from the sun. To make a comparison with the observed

"

intensitles reported by experimental workers, it ig neceg-
the gsun. & convenient measure of this radiation is the
temperature that a black body of the size of the vigual

golar disk would have to be at in orier

observed Intensity. Calling this tempersture Tfo’ 1t

2 A, “ . & - 7 \»
can be easily shown that (see BEguation 2-2)

i
i

o [7°
mP:«@%& T _ydiy (26)

=]

foch}



where y 1s the projected sgolar radius.
7.5 Looking at Teble I in Chavter I it iz seen

that the radio frequency spectrum covers the ranze from
50 megacycles per second through 3000 megacyeles per

result the theoretical radietion was computed

®

second . Ag
at the frequencies of 30 me, 100 mc, 300 mec, 1000 mc

end 3000 me (wevelengths of 10 m, 3 m, 1 m, 30 cm and

10 cm respectively). For each of these frequencies the
emergent intensity of the central ray (y=0) was found,
This indicated, qualitatively, how the emergent ntensity
from the sun varies with frequency. Then to obtain a
plcture of the Jdistribution of the emﬁr"eﬂt radistion
acroge the solar disk, the intensity for various rays

was calculated at 30 mec, 300 mc and 3000 mc. Finally

a summation of the intensities emitted by the various

rays zeve the total emisslion. This agrees guite well with

the experimental data in Table I.
7.6 The steps taken in finding the emission
along any ziven ray were the same in every case. For the

s

purposes ol simplifying the calculation it was assumed

that the corona and chromosphere were composed of pure
hydrogen. The first step is to calculate the mean number
of collisions per second W between the electrons and

.

protong ag & function of soler altitude (Bauation 6 with

Z equal 1). For this purvose the values of ¥ and T lisbted



in Table III (Chapter VI) were used. The altitude was
essured in terms of h (the helght above the photosphere)
in the chromogphere and In terms of f equal n/ (the

relative solar radius) in the corona. The results ar

shown In Filgure IX. The bend at an eltitude of about

12,000 km reflects the g

the complex Cleleciric constant,
€C=€ 4i€
1t

(Fouations 9 and 10). At this point it became evident

that additional values of h or f would e needed to evaluatle

€ near its zero UGi1t. Only by so <oing

to obteln a continuous verlation of the complex incex

of refraction through this reglon. For this purpose it

e T T S s I3 .- L
was agsumed that N and T varied Llineax .LT,’ between the

e

i

not strictly

163

accurate, 1t wag felt that the errors introduced would
not materially alffect the end result.

T - RS e e B S ey Ea ; ;
The valueg Tor the complex Index of refraction,

and. 15, or 16 and 17 depending upon the masnituies of

L”{“‘
i

€ and €,). A summary of these results are shown in Flgures
b ol "

Timures it should be realized

L and XI. In

EX

roaches tnat

tLat/ug;oes not zo Lo zero bult merely
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(from Hquation 5-12). Taking a typical larze value for
€2 from Figure XI, it 1s seen that tan « will be zreater
than about 10,000 for reasonable values of y/ﬁ. In conputing
the path Tollowed by each pencil of radistion, it was
followed <own from the top of the corona (f==6) to a
level only a little below the maximum value for « , Calcula-
tions on each ray showed that the contribution to the
obsgerved Intensity from still lower levels was insignificant.

The other coordinate of the path, namely ©

—

(Equation 5-13%), was easily found by numerical Integratione.
g o o o

For this purpose, ani also in subseguent integrations,

impson's one third rule or occasionally the trapezoidal

-
ko

3

rule was employed. It'was felt that the inaccuracies of
’these lavws were @ot gfea£ enough to justify the employment
of more complicated rulese.

The results from this determination of the paths
are portrayec in Figure XII. On the graph the value of
the projected solar radius for each of the rays is expressed

in relative terms,

N=7/Rg

A study of the graph will show that the rays for 30 mc
rediation bend quite sharply towards large values of «
Just preceeding the point where the angle decreases azain.

This same phenomenon occurs at the higher freguencies but
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does not show up cue to the small scale on the graphe.
In this point the theory of this paper differs from that
in others. The latter assume that there will be total
reflectlon anc hence the path of the ray will be symmetrical
about the point where it is perpendicular to the radius
vector. Such is not the case here.

Following the determination of the paths followed
by the pencils of raciation, the optical depth 1 was
computed. (Equation 5-16). The intesration was inward
along the ray elther to such a depth that T exceeded
7.0 or to the lowest altitude for which « had been computed.
The results are shown in Figure XIII. The value of the
relative projected solar'raéius/q ls given on each of
the rays. Bach curve represents the optical depth between
an observer outside the sun and the altitude in question.

#

Notice the "cusps" on the curves for which wr=y/R® ig

greater than zero. They represent the regzions where the
ray is at a large engle with resvpect to the radius vector.
Hence the amount of attenuation per unit change in the
radlus vector will be greater than for a ray along the
racius vector. The sharp points on these curves occur
at the altitute where « has its maximum value.

As a last step the emergent intenslity of the
raclation was found along each ray (Equations 5-25 and

5-26 with the values of (béi/by)q given by Nos. 5-21,
v

5=22, 24 and 25), The step by step cumulative temperature
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for each of the rays computeld is shown In Figure XIV.
The temperature T given a2t any altituie repregents the
egulvalent black bocy temperature for the radilation emitted
by the sun.from points above the altitude in question.
Thus the horizontel lines on the left portions of the
curves indicate that the radilatlion Irom these reglons
will be completely absorbed before it can escape. A stuly
of the central rays (n=0.00) at 30 mec, 100 mc and 300 mec
shows a sharp increasge in the amount of emitted radiation
Just prior to the horizontal portion of the curves. This
occurs near the plasma Ifreqguency and ig a reflection. of
the similarly observed gharp increase in k at these levels.
Only for these three rays does some of the observed radia-
tion come from below the level ot which the plasme freguency
equals the freguency of radiation. For all other rays
all of the observed radiation comes from hicher levels.
Thege curves have the same "cusps" on them ag was noted
in the curves for the optical depth. Again they represent
the radlation produced in the region where the rayvs have
a large angle of Incidence with the radius vector.

The final values for T, obtained along each of

the above rays 1s the emitted Intensity of the sun along

¢t
B
jail
bk
gl
]
=
ot
[N
o)
o
9

ar ray. by comparing the intensitlies from
gseveral rays at the same frequency, the clstribution of
the radistion across the solar disk is known. From this

distribution the varlation of the emitted intensity with
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frequency can be easlly obtained. This may then be compared
with the experimental results. These subjects will be

treated in the next chapter.



VIIT COMPARISON OF THE THEORETICAL

AND OBSERVED RADIATION

8.1 From Figpure XIV in the last chepter one

saw how the emitteld intensity was produced along the
various rays in the sune. The meximum value shown Tor
each of these rays eguals the intensity that will be
obgerved as coming out of the sun along that ray. From
2 serles of these rays at' the same Ireguency the digtributlon
of intensity scrogs the solar sphere ig known. The results
are shown in Figure XV at 30 me, 300 me, and 5000 mec. The
center of the sun is on the left edge of the graph. The
value of q_equal 1.00 corresponds to the linb of the
- visual solar disk. A study of these curves reveals how
the distribution of emitted Intensity varles with frequency.
At 3000 me the disk appears to be of nearly
uniform brightness. The center ls obsgerved to be only

a little darker than the edge. This dark center may be

}.Jo

expleined by considering the altitude from which the

racistion comes., On the average the energy along the
central ray comes from a somewhat lower aliitude than
does the radistion from the elges of the digk. Since
there is a positive temperature gradient within the
chromosphere, the energy for the central ray comes, on

the average, from a somewhat cooler region than does the

energy from near the limb. The sharp limb at these
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frequencies occurs because the corona 1s essentially
transparent, and the effects of refraction are guite
negligible.

These results should be compared with the ﬁheoret-
ical predictions of Martyn (96) and Hagen (C7) whose theoret-
ical approaches are substantlally different from the one used
here. Martyn founc¢ that the solar disk at these frequencies
will be of uniform brightness with a bright liﬁb about 1it.
Hagen at a slightly higher frequency makes the same predic-
tions as does Martyn. Both of these predicted bright limbs
are of much greater intensity than the brightening that is
suggested here.

Returning to a study of Figure XV, one sees that
the intensity has increased markedly as the frequency is
Gecreaset to 300 mc. A new phenomenon has now occurred
arounc the center. of the sun. This part has now become
much brighter than the rest of the solar disk. To explain
this, again consider the layers from which the radiation
wlll come. For this frequency and still lower ones the
racistion comes mostly from the corona and very little
from the chromosphere. In addition the effects of refraction
are becoming quite pronounced. Along the central ray
vhere refraction will not influence the path of the ray,
the observed intensity comes from layers fairly deep
in the sun. The value of the optical cepth may increase
to essentlially infinite values. This 1s not true for the

non-central rays. Here, due to effects of refraction,
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a ray followed back into the sun will bend away from the
center of the sun until it is almost perpendicular to
the radius vector. It then turns sharply in along the
radius vector. However, it was shown in Section 7.3 that
essentially all of the observed racilation comes from layers
gbove this sharp bend. For these rays the effective optical
cepth does not reach as high a value as along the central
ray. Thus it is seen that the intensity emitted along
the central ray will be greater than that alongz any other
raye. A part of this effect is cancelled by the obliqueness
of the non-central rays to the radius vector. This doesg
not, however, completely cancel the increase in absorption
with depth. For the region in the center of the sun,
where most of the radiation originates in reglonsg near
the plasma freguency, the coefficient of absorption and
so the optical depth change rapidly with altitule. Hence
the change in the obgerved intensity between the central
ray and one only a short distance away will be quite
areat.

Near' the limb the intensity is seen to fall off
fairly rapidly. However the 1limb is seen to be less well
defined then at the higher freguencies.. This i1ll-defined
limb is a property of radistion from the corona. For here
the change In density with altitude is much slower than
in the chromosphere. As a result the observed intensity

comes from a much larger region than in the chromosphere.
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The above results agree reasonably well with
Martyn's except at the center of the disk. He obtains
a solar disk having a slightly dark center; much like
the 3000 me digtribution predicted here, Hisg 1limb has the
same general properties as the one described here.

The bright central portion of the curve deséribe&
here does not occur in those theories (Martyn's, Smerd
and Westfold's (98) etc.) which consider the radistion
to be totally reflected. For in the theory presented in
this paper the added intensity that produces the very
sharp central region comes mostly from below the plasma
fregquency. By not considering this region, only a slight
increase would be noticed at the center.

This dlscrepancy could be resolved experimentally
by use of interferometer type antennas. With a sgeries
of narrow lobes sweeping the sun an increase in intensity
should be expected at the center of the sun according to
the present theory. This increase would correspond to
the highly intense central region.

Finally turning to the curve for 30 mc in Figure XV
one sees that the obgerved racdiation has decreased once
more. The two items that were noted in the curve for
300 mc have become more pronounced. The high intensity
central portion has become much stronger than what it
was before. In addition the limb is no longer well cdefined.

In fact the edze of the sun gradually trails off as greater
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and greater solar radii are reached. Looking at Martyn's
results once more, 1t may be noted that the two agree
except at the center. As was noted above, a bright center
would not be expected in a theory that considers total
reflection.

Experimental cata taken during eclipses give
the best information on the digtribution of energy across
the solar c¢isk. Reber (¢9) working on 480 me found that
the decrease in observed intensity during the partial
eclipse of November 23, 1946 was equal to the fraction
of the visual solar disk covered. Thils result 1s in agree-
ment with those predicted above at 300 mec. Sanders' obser-
vations (100) of the eclipse of July 2, 1945 on 9000 mec
seem to indicate that the radio fregquency disk agein eguals
the visual disk. He also obtained some evicence of 1limb
brightening. Ags the magnitude was not stated, it 1s not
possible to find out whether the radiation is in agreement
with the theory predicted here or with that of Martyn
and. of Hagen.

Oe2 To obtain gualitative confirmation of the
theory, the distribution of the total emittec radiation
with frequency must be considered. This was found by
intezrating the distribution shown in Figure XV over
the solar surface (Equation 7-26). The results are shown
on Figure XVI together with a number of the experimental

results quoted in Table I (Chapter I). The number in
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the zood agreement In the 200 me region it is suspected

1“ to predlct the

s
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observations, it was felt that they could not be used Iin
the present paper. However, the emitted intensity
1000 me was computed for the central ray on the basls
of their theories. The results, marked by their initials
an Figsure XVI, show close agreement with the experimental
points. If a curve were crawn through the above computed
results at 300 mc and then through the values obltalned
from thelr theory at 1000 me, it would Iintersect the exper-
imental points In this region of the spectrum. Thus it
must be concluced that the values of temperature suggest
by Thomag (103), and used in this paper, are too areat
for precicting the observed ragdio freguency racilation,

It is regretable that no experimental cata ls
avallable on the low Irequency end of the spectrum. It
woull be of interest to obtain a confirmation of the pre-
dicted Talling off of the intensities at these frequencies.
This same drop in intensity is also predicted by Martyn.

In conclusion 1t may be sald that the radiation
preiicted by this paper agrees in the middle frequency
region with the experimental results but not at the high
frequency end. This is undoubtedly due to the high kinetic
temperature chosen for the chromogphere. The sgomewhat lower
value reguired to explain the radlo frequency radiation
is at vériamoemwith certain obsgervaltlons in the optical

rezion of the spectrum.
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