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Abstract

Experimental results are presented for the motion of neutrally buoyant drops of
non-Newtonian fluid through a wavy wall tube within a Newtonian suspending
fluid. The motion of these drops exhibits very different behavior with respect to
both Newtonian drop-Newtonian suspending fluid system and Newtonian drop-
viscoelastic suspending fluid system. In particular, drop breakup behavior is strongly
modified. At small flow rates (small capillary numbers) viscoelastic drops undergo
drop breakup. At large flow rates (large capillary numbers) breakup phenomena do
not occur and axial drop elongation is inhibited. For the cases in which drop
breakup occurs, it produces important effects on the time-dependent response of the
extra pressure drop and on the drop mobility. For high polymer concentration (1%)
in the viscoelastic drop, the resulting elastic effects are overshadowed by the

increase in viscosity which accompanies the addition of polymer.

The effects of flow type on the dynamics of the drop motion in a wavy wall
tube are investigated. According to the nature of the driving mechanism there are
two types of flow, each one of them presenting different properties (though identical
for non-drop conditions). One flow is susceptible to changes in flow resistance that
may appear in the experimental setup, the other is such that the volumetric flow rate
is constant. The former is generated by imposing a constant pressure gradient (CPG
conditions), the latter is generated by a gear pump (CFR conditions). Drop deforma-
tion in a CPG experiment is less severe than it is in a CFR experiment. Also, under

CPG conditions, the axial elongation and the mobility of a moving drop are
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independent of the viscosity ratio, whereas under CFR conditions they depend on it.
In addition, the magnitude of the extra pressure drop caused by the passage of the
drop through the test section is smaller under CPG conditions than it is under CFR

conditions.

Finally, a more realistic simulation of flow dynamics in porous media is con-
sidered. For this purpose, a parallel channel device was tested under constant pres-
sure gradient conditions. Measurements were taken in both arms of this device for
the extra pressure drop caused by the passage of drops through one of the channels
(a wavy wall tube). The ratio of the mean value of such measurements is nearly
constant regardless of the value of the total volumetric flow, drop size or viscosity
ratio. Obviously, the pressure drop measured in the bypass tube is a tangible indica-
tion of the increase (or decrease) in the volumetric flow through it, due to the

motion of the drop through the other arm of the experimental apparatus.
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Chapter 1

Non-Newtonian Effects of Viscoelastic Drops

Moving Through a Converging/Diverging Channel



1. Introduction

There are many interesting problems related to the two-phase flow of liquid
drops moving within another liquid fluid. Processes involved in the preparation of
emulsions, the preparation of polymer blends, the mixing of additives to polymer
materials, the motion of red blood cells in the capillaries, and the motion of a two-
phase fluid in porous media are all related in one way or another to the deformation

and sometimes dispersion of drops moving in a suspending fluid.

A number of researchers have studied these problems, both theoretically and
experimentally. Usually, in order to make the particular two-phase flow problem
tractable, special conditions have been adopted. Most commonly, the liquids stu-
died have been Newtonian, and the flows studied have been simple "unbounded"
flows, such as a simple shear flow or hyperbolic flow as obtained in a four-roll mill.
For the sake of tractability, especially in theoretical works, most studies until
recently have also considered only limited regions of parameter space, where drop

deformation is small.

The present work continues a series of studies in our laboratory of the motion
of drops through capillary tubes with periodically increasing and decreasing radius.
These studies are aimed at a better understanding of the dynamics of two-phase
flows in porous media at the scale of individual channels. The relationships
between the independent flow variables in this relatively simple flow system, i.e. the
physical properties of the fluids, the volumetric flow rate, and the channel geometry,
and the dependent flow variables, such as the extra pressure drop caused by the
drop, or the average velocity ("mobility") of the drop, are important in eventually

understanding two-phase flows in a "real" porous matrix. An additional critical



additional critical factor is an understanding of the conditions for drop breakup in

this type of flow system.

The earliest work in our laboratory was due to Ho and Leal (1975) who stu-
died the creeping motion of neutrally buoyant, Newtonian drops through a straight
circular tube of comparable diameter, for both Newtonian and viscoelastic suspend-
ing fluids (this paper will be referred to as I). Later, Olbricht and Leal (1981) stu-
died the effects of buoyancy forces when the density of the drop is different from
that of the suspending fluid, for the same flow system (this work will be referred to
as II). Finally, the creeping motion of drops through a horizontal
converging/diverging tube was also studied by Olbricht and Leal (1983) for
Newtonian drops in both Newtonian and non-Newtonian suspending fluids, includ-
ing both neutrally buoyant and non-neutrally buoyant drops (this study will be

referred to as III).

In the following, we present the results of experiments on the motion of neu-
trally buoyant drops of a non-Newtonian fluid moving within a Newtonian suspend-
ing fluid through a wavy wall tube. Although this may seem to be a somewhat
minor variation on the previous study of Olbricht and Leal (1983) for Newtonian
drops in a viscoelastic liquid, we shall see that this is not at all the case. The
preceding study demonstrated that the breakup of drops suspended in viscoelastic
fluids was always strongly inhibited and modified in form compared to a similar
system with a Newtonian suspending fluid. The tendency of Newtonian drops at
moderate capillary numbers to undergo breakup is perhaps the most significant
feature of their motion in the wavy-wall tube. In the present study, we will show

that this and other aspects of their motion are strongly modified again, both with



respect to the Newtonian drop-Newtonian suspending fluid system and the
Newtonian drop-viscoelastic suspending fluid system studied earlier. Interest in
viscoelastic drops is motivated, in part, by the prevalence of "waxy crudes" in
North American oil deposits where the petroleum phase can be highly non-

Newtonian in behavior.

2. Experimental
2.1 Apparatus

Except for some slight modifications, the experimental setup used in our exper-
iment is the same as that used by Olbricht and Leal (1983). Hence, it need not be
described in any detail. As illustrated in Fig. 1, two video cameras are used. One
moves along a rail parallel to the test section and thus tracks the droplet in its pas-
sage through the test section; drop deformation is seen through this camera. The
second camera is focused at a strip chart recorder (Houston Omniscribe) which
records the actual time dependent pressure loss along the test section, as obtained
from a differential pressure transducer indicator. In addition, a timer was attached
to the chart recorder in order to measure the duration of the drop passage through

the test section so that an average velocity u can be calculated.

The images photographed by the two video cameras were combined in real
time on a single screen TV monitor by means of a "screen splitter”, and the com-
posed image was recorded by a Panasonic II videorecorder. By means of the com-
bined image, we were able to visually correlate the time variations of the pressure
drop with the motion and shape of the droplet as it moves through the wavy wall

tube. The test section contains 18 periodially repeating units forming the wavy wall



channel, and is 27 cm long. The detailed structure and exact measurements of this

test section are reported in III.

Much of the previous and current data is presented in terms of a single
effective radius, ryp for the wavy-wall tube. The motivation for assigning a constant
effective radius to the wavy wall channel was discussed in III, but the general idea
is that it allows results from the wavy wall geometry to be compared with the pre-
vious results (for example, I) which were taken in a straight wall tube. The
effective radius used in this and previous studies from our laboratory is defined as
the radius of fictitious straight-wall tube which causes the same pressure drop per
unit length for a single-phase Newtonian fluid as does the wavy-wall tube when the
same volume flow rate is applied. This is known as the Haegen-Poiseuille
radius. An estimate for ryr was obtained theoretically in III on the ad hoc basis of
applying the Haegen-Poiseuille law for a straight tube to a differential length dz of
the wavy wall tube, and then integrating over one period of the channel to obtain an
overall pressure drop for a periodic unit. Olbricht and Leal found that this pro-
cedure resulted in a theoretical value of 0.316 cm for ryp for the particular wavy-
wall tube used in the present study. Actual measurements of flow rate and pressure
drop through the test section gave an experimental value for the equivalent

hydraulic radius in excellent agreement with this theoretical value.
2.2 Condition of Experiments and Experimental Techniques

The temperature during the present experiments was kept constant at 25°C.
Details of the experimental procedures may be found in previous works (I, II, III),
and little will be said here regarding them. However, it is important, in order to

avoid possible future confusion, to note that a numerical discrepancy was found



between the results given here for AP* and the corresponding result given in III
These discrepancies arose from the increased precision used in the present study for
calibration of the pressure transducer system in the presence of extremely small
differential pressures (see Appendix for calibration procedure). As a consequence,
comparisons in this paper between results for Newtonian and viscoelastic fluids
were all based upon our own results — when necessary, experiments with
Newtonian drops were repeated to obtain directly comparable data. It should be
emphasized, however, that the discrepancies found with past work were quantitative
in nature — in no case were the qualitative trends reported earlier found to be

incorrect.

2.3 Experimental Materials and Dimensionless Parameters Governing

the Flow

As stated earlier, the two-phase system studied here consists of viscoelastic
drops moving within a Newtonian medium. The Newtonian suspending fluid was a
Ucon Oil 1715 LB series (Union Carbide) having a viscosity of 6.54 poises at 25°C
and a density of 0.9980. Solutions of Separan AP-30 in distilled water were used
as the drop liquid at two different concentrations, 0.5% and 1% by weight. The
density of these liquids (0.9997 and 1.0008 respectively) at 25°C was nearly the
same as that of the Ucon oil, and therefore no appreciable buoyancy effects were
present in the experiments (Ap ~ 0(107*). Experimental results will be presented in
terms of several independent dimensionless parameters, which are intended to take
account not only of the properties of the Newtonian suspending liquid but also the

viscoelastic nature of the suspended phase. We discuss these parameters below.



The most important is the capillary number, which provides a measure of the
relative importance of viscous and surface tension forces. Of course, the impor-
tance of the capillary number for deformation of Newtonian droplets within a
Newtonian suspending liquid has been well established since the early work by
Taylor (1934) on the deformation of drops subjected to viscous shear flows. The
capillary number I" for the present experiments is defined as I' = pgv/y, where p, is
the suspending fluid viscosity, v is the average flow velocity defined as the ratio of

the volumetric flow rate Q to the effective cross-sectional area of the test section

Q

(hence, v=—5
Trip

), and y is the interfacial tension between the two phases. In the

present experiments, variations in I' were brought about primarily by changes in the

flow rate (i.e. variations of v).

Another important parameter for Newtonian fluid systems is the viscosity ratio
o = WY, where p; is the viscosity of the drop. It is convenient, for purposes of
comparison, to retain this parameter in the present study. However, it is important
to recognize that there are substantial ambiguities involved in assigning a single
viscosity to a viscoelastic liquid drop moving through a wavy wall channel — not
only because of the non-Newtonian characteristics of the drop and the complex
kinematics of the flow field, but also because the different drop volumes used in our
experiments lead to nontrivial modifications in the flow. Unlike Newtonian fluids,
the effective viscosity ratio for viscoelastic drops in Newtonian fluids is not strictly
a material parameter, but depends on the flow rate (i.e. on I') due to the shear-rate
dependence of the viscoelastic fluid properties. In order to estimate a sensible value
for the drop viscosity, we follow a number of earlier researchers [Han and Funatsu

(1978), Chin and Han (1979,1980); Olbricht and Leal (1981,1983)] and estimate the



viscosity of the suspended drops from shear viscosity data at the "average" wall
shear rate of the suspending fluid, B, (estimated as the wall shear rate within the

"equivalent” straight-wall tube). For a Newtonian fluid, the wall shear rate is

Bo= —2 . (1)

We believe this to provide a reasonable estimate of the characteristic shear rate for
estimation of drop viscosity in the present system, especially for those larger drops
which must deform according to the actual geometry of the channel. Values for T
and o used in this work, as well as values for other physical properties of the 0.5%
and 1.0% solutions studied here, are given in Tables 1(a) and 1(b) respectively.
The value of the viscosity ratio given there is based upon the value of the wall
shear rate at the particular flow-rate corresponding to each value of I, and
viscometric rheological data for 0.5% and 1% solutions of Separan AP30 in water

(Leal et al., 1971).

Another independent variable in the present study is the drop size (or drop
volume). In order to characterize the size of a drop, we follow Olbricht and Leal
(1983) and introduce A as the ratio of the radius of the undeformed drop to the
effective radius of the tube ryp. The drop volumes and the corresponding A’s used
in our experiments are given in Table 2. Relatively large values of drop volume
were used for the present study compared to previous work. Where it is necessary
to compare results for viscoelastic and Newtonian drops, the Newtonian data of ear-

lier studies was extended to larger values of A.

In order to account for the viscoelastic character of the suspended drops, it is

necessary to introduce at least one elastic parameter. Before discussing this,



however, we note that the purely-viscous non-Newtonian property of shear-thinning
is already inherently included in the viscosity ratio — where the drop viscosity is
taken as the shear viscosity at the effective wall shear rate. The relative importance
of elasticity is characterized in this present study by the dimensionless Deborah
number, which is the ratio of the primary relaxation time of the fluid, 6 to a
characteristic timescale for changes in the rate of strain of the flow, 6,. We have
estimated the relaxation time 6; from rheological data for the shear viscosity and the
primary normal stress difference according to a formula which pertains to the con-
vected Maxwell fluid, i.e.

o= 2 @)

2y

where {;; - L, is the primary normal stress difference for a steady simple shear flow
with shear rate y. Values for ¢ — & 1; and y were taken from available
viscoemetric data (Leal et al., 1971) at the effective wall shear rate B,. 6, was
estimated to be the inverse of the strain rate t that a viscoelastic drop experiences
as it moves from a bowed section to a constriction in a section of the wavy-wall
tube. The strain rate t is calculated following the analysis of Marshall and Metzner
(1977) for flow in the frusta of right cylindrical cones, which was derived as an
approximation for flows into and out of the constrictions in a porous medium. In

their analysis, the characteristic time for the flow is given by
-1
8, = [x/D/Dt(uIdl)“’] 3

where II; represents the second invariant of the deformation rate tensor. Marshall
and Metzner’s analysis shows that the RHS of this expression can be approximated

in the form
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T = 25 (VL) + o (VI @)

where V is the mean velocity of flow through a porous medium or conduits and L,
and L, are two length scales related to the geometry of the particles which make up
the porous medium. Combining (2)-(4), Marshall and Metzner obtained an approxi-

mate expression for the Deborah number,

De = ef— 3 + o QL )

We used Eq. (5) in our work to calculate a value for De. In our case, we have

taken V to be
V=V,= L@, -7) (6)
v

where v, and v, are the average velocity of the suspending fluid, without the drop,
calculated at the throat and bowed section of the wavy-wall tube, respectively, and
wv is the drop mobility (defined below) which is expected to account for the actual
rate at which the viscoelastic drops move; L, (0.75 cm) is the length scale chara-
ceristic of a half period in the tube geometry; L, (0.45 cm) is the radius of the max-
imum cross sectional area of the wavy-wall tube. Introducing Eq. (6) into Eq. (5),

our expression for De becomes

De = ef—\/ =+ = (LI/Lz)z (7

In addition to the time-dependent drop shape which was recorded on video-
tape, the other important dependent variables are the dimensionless extra pressure

drop, AP*; the dimensionless magnitude of the periodic part of the signal pressure,
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3(AP*), and the drop mobility, W¥v. AP* is the measured change in the pressure drop
caused by a droplet in its passage through the test section, rendered dimensionless
by the quantity pv/irge. For practical purposes, our results are presented here in

terms of AP*, defined as an arithmetic average of the maximum and minimum value
of the periodic pressure signal, i.e., AP* = %(AP;;:, + APL). Likewise, we define the

nondimensionalized magnitude of the periodic part of the pressure signal as
3(AP™) = (AP, — AP7Y), which can be important, as we will see, under certain flow
conditions. The drop mobility is the mean velocity of the drop as it passes
through the test section (the distance between fixed marks located at the ends of the
test section, divided by the elapsed travel time) relative to the average flow velocity.
AP* is thought to provide one measure of the relative accessibility of individual
pores of a porous matrix to two-phase flow relative to pores that do not contain
drops. Likewise, the drop mobility (wv) is thought to be related to the mobility of
the suspended phase in an actual two-phase flow through a porous media. We will
also make use of a drop deformation parameter d, defined here as the ratio of the
maximum longitudinal drop length measured along the centerline of the flow to the

wavelength of a single period of the wavy-wall tube.

Finally, we found it useful on a strictly empirical basis to introduce the dimen-
sionless group (De/T's) since drop shape and drop deformation seemed to correlate
better with this ratio of parameters, than with any of the parameters taken individu-

ally.

3. Experimental Results
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A drop moving within the wavy-wall tube causes a periodic variation in the
pressure signal. There is one oscillation each time the drop passes through one
period of the test section. In addition, small spurious transient disturbances appear
at the beginning and at the end of each experiment corresponding to the passage of
the drop over the pressure ports located at the entrance and the exit of the test sec-
tion. The particular form of the pressure signal depends on the time-dependent
drop shape, the latter depends on A (drop size), on I' (ratio of viscous forces to
interfacial tension forces) and presumably on elastic forces as will be discussed in

the following sections.
3.1 Small-T Systems (0.5% Polymer Concentration)

We first consider the two smallest flow rates within the range of our experi-
ments which correspond to Systems 1 and 2 [see Table 1(a) for their properties].
We additionally limit our discussion to drops which are 0.5% polymer. Later, we

shall consider similar results for a 1% polymer solution.
3.1.a System 1

System 1 corresponds to the slowest flow rate used in the present study, Q =
1.05 cc/min, which already gives I' = 0.077 (and, consequently, ¢ = 1.68). The
most surprising and potentially important fact is that the elasticity of the drops, at
this very small flow rate and small T, actually appears to promote drop breakup
(for A => 1.442). This result is entirely opposite the behavior observed for viscoe-
lastic suspending fluids, which always tended to stabilize drops against breakup. In
fact, in the present case, Newtonian drops flowing under the same conditions would
not undergo breakup at all! On the other hand, we find that large viscoelastic drops

(A > 1.442) in a Newtonian suspending fluid break up as they pass through the first
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constriction of the test section! We shall discuss the details of this breakup process,

as well as observations of the drop shape later in this subsection.

First, however, we highlight two additional differences between the present
results for a viscoelastic drop at small flow rates (I' = 0.077), and the behavior of a

Newtonian drop in a Newtonian fluid. These are

(1) Insensitivity of drop behavior to polymer concentration for 0.5% polymer
and lower concentrations — specifically, we tested two additional poly-
mer concentrations for the drop fluid (0.01% and 0.1%) for the same I' =
0.077. The results for drop mobility and for the time-dependent pressure
signal are practically identical for all three polymer concentrations. This
is particularly surprising in view of the fact that the viscosity is much
different for the three fluids tested, and the viscosity ratio was found in
earlier studies to be very important for both mobility and pressure for
Newtonian drops in Newtonian fluids. The only difference in the drop
mobility relative to the Newtonian case is that there appears to be a
minimum in Wv at an intermediate value of A = 1.04, whereas Newtonian-
Newtonian systems appear to approach the asymptotic value for wv in the
limit A >> 1 in a monotonic fashion. Figures 2(a) and 2(b) show, respec-
tively, AP* vs. A and wv vs. A for the small-I' systems. Data for a
Newtonian-Newtonian system with large values of A has also been
included for comparison purposes. Note that for system 1, in those cases
where drop breakup occurs, (A>1.44) the mobility of both the leading drop
and the trailing drop (after breakup) has been plotted. Insofar as the

time-dependent pressure is concerned, one can see in Fig. 3 that the actual
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time-dependent pressure signals for drops made of 0.01%, 0.10% and
0.5% polymer are practically identical for a value of A = 1.15, as is also
the case for the other values of A. The photographs in Fig. 4 show the
three different viscoelastic drops in a highly deformed configuration at the
moment of breakup and again the close resemblance among them can be

seen.

The phase relationship between AP* and drop position is different for
viscoelastic drops as compared with Newtonian drops. The maximum
value of the time-dependent pressure signal for a viscoelastic drop in a
Newtonian suspending fluid is attained as the drop approaches a constric-
tion of the wavy-wall tube. In the case of a Newtonian-Newtonian sys-
tem, on the other hand, maximum values of AP* were always attained
when the drop was midway through a constriction. It is evident that elas-
ticity of the viscoelastic drops plays a strong role, for this small T, in
resisting drop deformation, hence requiring larger values of AP* to force

the drop into a constriction.

It is evident that the differences cited above between Newtonian and

viscoelastic drops at small I' are due largely to pure elastic effects in the

liquids. The strongest evidence that shear thinning or other "nonelastic" man-

ifestations of non-Newtonian behavior is not a significant factor is that drop

dynamics is basically invariant to changes in polymer concentration from

0.01% to 0.5% by weight. On the other hand, all elastic effects discussed

above were found to occur at a relatively constant value of De of O(107!). The

De number calculated on the basis of Eq. (7) for the smallest flow rate (I' =
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0.077) is De = 0.086 for 0.5% solutions De = 0.05 for the 0.1% solution and
De = 0.02 for a 0.01% solution, respectively. Such a low estimate does not
rule out the existence of at least moderate elastic effects. Of particular interest
in this regard, is the work of Marshall and Metzner (1967) on the flow of
viscoelastic fluids through porous media. They found that the critical value of
De, at which appreciable influences of fluid elasticity were first observed, was

between 0.05 and 0.06.

It is difficult to understand why drop elasticity promotes drop break_up at
this low flow rate. Drop breakup was observed only for drop sizes such that
A2 1442 (r = 0.077, o = 1.68). The mode of drop breakup is illustrated in
the photographic sequence shown in Fig. 5 for the 0.5% polymer
solution. The viscoelastic drop moves very slowly into the first constriction in
the wavy-wall tube and takes on the dog-bone shape shown in the first photo-
graph in Fig. 5. This shape is not much different than would be observed for
a Newtonian drop at the same value of A and I'. In the present case, however,
the central waist becomes thinner and thinner until finally the drop splits into
two daughter drops. The breakup process observed resembles closely the
snap-off process that oil bubbles undergo when they are forced to move slowly
through the throat of a capillary pore which initially contains only water.
Quasi-static analyses of this snap-off process are described in detail by Pickell
et al. (1966) and Roof (1970). Additionally, dynamic effects in the snap-off
process for gas bubbles moving within constricted capillary have been studied
recently in a series of papers by Radke et al. (1987). These studies, though,

have been made for Newtonian-Newtonian systems and their results depend on
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the particular characteristics of their experiments (for example, the uncon-
stricted capillary radius, the geometry of the constriction, the length of the ini-
tial bubble, etc.). However, the mechanism for snap-off is common in all
those systems. Snap-off occurs due to a difference in the interfacial curvature
that allows suspending liquid (wetting phase) to be driven by surface tension
into a growing collar at the pore constriction. In our particular case, a viscoe-
lastic drop breaks up at the first constriction of the wavy-wall tube while an
equivalent Newtonian drop does not. A comparison between the correspond-
ing drop shapes may be made by looking at the photographic sequences in
Figs. 5(a) and 5(b), which show, respectively, the changes in shape of both a
viscoelastic drop and an equivalent Newtonian drop as they move through the
first constriction of the wavy-wall tube. Such comparison shows clearly that
even though both drops begin with similar shapes (first and second photo-
graphs in both sequences), their shapes become quite different as they advance
through the constriction. We denote the radius of the waist of the viscoelastic
drop as W(t) and the radius of the waist of the Newtonian drop as Wy(t). For
the viscoelastic drop, W,(t), is independent of time for a short interval, roughly
between the time of the first photograph and just before the second photo-
graph, of Fig. 5(a). Afterward, however, W,(t) decreases rapidly for an inter-
val of time between, t,, at which a sharp curvature starts to form in the waist
of the drop, and a time t,, at which the drop breaks up. t, corresponds to the
second photograph and t, corresponds to the fourth paragraph in Fig. 5(a). The
time taken for drop breakup to occur is t, - t, = 9 sec. Note that the charac-

teristic time for the flow process at I' = 0.077 based on Eq. (3) (residence time
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for the drop) is about the same magnitude (8, = 8.3 sec), therefore allowing the
snap-off process to occur. We will see that this is not the case for the next
larger flow rate in which it seems that the shorter time residence time for the
drop in the constriction does not provide enough time for snap-off of the drop.
In contrast, we can see from Fig. 5(b) that Wy(t) is essentially constant func-
tion at all times. The photographic sequence shows that the Newtonian drop
moves through the constriction without any sign of possible breakup. The fifth
photograph in Fig. 5(a) shows the two daughter drops produced after drop
breakup, its counterpart in Fig. 5(b) shows the intact Newtonian drop entering
the second constriction of the test section while it has not yet entirely cleared

of the first one.

In the remainder of this subsection, we give a detailed account of drop
deformation, drop breakup and their influence on the dynamics of the drop for
System 1. First of all, the time-dependent pressure signal depends strongly on
A, as was also true of the Newtonian and non-Newtonian systems studied ear-
lier. Typical pressure signals from the pressure transducer chart recorder are
shown in Fig. 6 for several values of A. Corresponding photographs showing
the drop shape are presented in Fig. 7. For these small I' systems, the smallest
drop, i.e. A = 0.61, barely deforms (its undeformed radius is smaller than the
radius of the "throats" in the wavy wall tube) and the extra pressure drop is
essentially constant, independent of time. When A increases to 0.77, the dro-
plet undergoes much more deformation (its undeformed radius is larger than
the radius of the throats in the wavy wall tube) and the pressure signal

becomes clearly time dependent and periodic. As A increases, the drop
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undergoes a great deal of deformation, the drop shape in the throat resembling
a peanut with a narrow waist and bulbous ends parts that occupy an entire
period of the wavy wall test section. Such is the case for A = 1.04 (drop
volume 0.15 cc) and A = 1.15 (drop volume 0.20 cc). It is interesting to note
that we have a minimum value for the drop mobility at A = 1.04, with larger
values obtained for A = 1.15 (W¥ vs. A is shown in Fig. 2(b) ). This fact was
mentioned earlier in this section as an example of departure from purely
Newtonian-Newtonian behavior, but remains basically unexplained. However,
a smaller increase in mobility, wv, with increase in A was also found for A =
1.44, which we do understand to be a consequence of drop breakup. Indeed,
for A = 1.44 (original drop volume 0.40 cc), drop breakup produced two
daughter drops, the first slightly larger than the second; therefore, the first drop
had a volume slightly larger than 0.20 cc (hence, A > 1.15), and the second
drop had a volume less than 0.20 cc (hence, A < 1.15). Now, as these two
drops travel along the test section, the first drop "advances" its relative position
with respect to the second drop — so much so that, by the end of the run
through the test section, there are about two periods of the wavy wall tube
between them. Indeed, it can be seen in Fig. 2(b) that there is a reasonable
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