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ABSTRACT

In many physical systems, an accurate knowledge of certain param-
eters is very difficult or very expensive to obtain. The designer of a
remotely piloted vehicle flight control system, for example, frequently
has available 1ittle data regarding aerodynamic coefficients, due to a lack
of wind tunnel tests. Commonly used controller design methods, based on
nominal values of plant parameters, often fail to achieve a satisfactory
design in the face 6f parameter uncertainty.

In this work two methods have been developed fof the design of
linear, constant gain feedback controllers for systems with uncertain
parameters:

1) The multistep guaranteed cost control method is based on the
concept of minimizing an upper bound of a cost functional in the face of
parameter uncertainty. An algorithm has been developed to analyze the
effect of parameter uncertainties on closed-loop system stability. An
extension of this algorithm results in a technique for choosing constant
feedback gains which guarantee a stable closed-loop system that possesses
some of the desirable features of optimally designed control systems.

2) The minimum discrete expected cost method is based on the
concept of minimizing the expected value of a cost functional overa finite
number of points in the range of parameter uncertainty. The design
process makes use of statistical information about the uncertain param-
eters and incorporates in its cost functional whatever effects accompany a

large departure in the plant parameters from their nominal values.
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An extensive comparison of these two methods, together with

the guaranteed cost control method, the minimax method, and the un-
certainty weighting method, has been done in the context of the design
of a fifth-order lateral autopilot for an RPV with uncertain aerodynamic
coefficients. A1l five methods were evaluated on the bases of perform-
ance and design effort required. Both new methods were found to avoid
some of the drawbacks associated with other techniques. The two newly
developed methods are easy to implement and offer‘the designer tools

for use in real control system design.
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Introduction

In many cases, a control problem can be represented as a system
of ordinary differential equations characterized by a finite number of
parameters. These parameters characterize various physical properties
of the system which one would like to control. In practice, an accu-
rate knowledge of parameters may be very difficult or expensive to
obtain. In addition, certain system parameters may vary or may be
changed during the period of operation. Modeling airplane dynamics,
for example, involves the estimation or measurement of aerodynamic co-
efficients, as well as the making of assumptions regarding actuator dynamics
and flight conditions. Accurate values of some of the’aerodynamic coef-
ficients (such as Cn , for example [1]) are very difficult to obtain by
analysis. Many of tﬁe aerodynamic coefficients will vary with flight
conditions such as dynamic pressure q and Mach number M. Some airplane
parameters, such as mass and center of gravity, may change durihg the
flight. A common objective of the control system designer is to achieve a
robust closed-loop system, i.e., a system that maintains an acceptable
performance in the face of uncertainties and variations in parameters.

Parameter uncertainties can be dealt with in several ways. They
can often be reduced substantially through extensive testing or through
real-time or non-real-time parameter identification techniques. Static
and dynamic wind tunnel tests, while complicated and expensive, can pro-
duce a better estimate of flight vehicle parameters than that acquired

through analysis only. The whole field of adaptive control is concerned

with identifying system parameters in real-time and adapting the control
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law to cope with changes [2]. In the last decade, the subject of non-
real-time system identification has been receiving considerable attention.
It is possible to improve estimates of system parameters through flight
tests and advanced identification techniques [3],[4]. Programming
the control law (i.e., changing gains during operation) is another way to
handle those cases where the parameters are varying during the period of
operation, assuming that something is known about the variations.

A different approach to the problem is to accept parameter uncertain-
ties at their a priori levels, and to design a control system that will be
robust to parameter variations. It is this approach that is investigated
in this work. Two basic directions may be taken in the design bf feedback
controllers for a system with some given level of parameter uncertainty.

The first is based on frequency domain design methods. A great deal is
known about the design of a single-input, single-output feedback system
in the presence of parameter uncertainty [5],[6]. The notions of gain
and phase margin are well developed for those cases. The use of Bode or
Nyquist plots provides a means of assessing the above quantities, and
makes it easy to design the required control law. Unfortunately, in mul-
tivariable systems, the situation is not so simple. Considerable effort
has been expended recently to develop frequency domain techniques which
will work in multi-input, multi-output cases. The sequential return dif-
ference method [7]; and methods based on the concepts of singular values
and singular vectors [8] are only two examples of the work in this

direction.

The second basic direction draws upon time domain techniques, specifi-
cally, the state space approach,to produce controller design methods.

Optimal control concepts are common to all the methods using the state
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space approach. A central feature of these methods is a single
figure of merit, called a cost functional (or performance index). The
design objective is to find the control law so as to minimize this cost
functional. The state space design methods can be grouped mainly into
three categories: the stochastic approach, the sensitivity (first-order
perturbation) approach, and the bounded cost approach.

In the stochastic approach, an a priori probability distribution
is assumed for the uncertain parameters, and the control law is chosen

to minimize the expected value of some performance index. Some methods

have treated the variable parameters as random variables, and requiré the
assumption that parameter perturbations are small [9]-[12]. The small
perturbation assumption is waived in references [13]-[15]; but this
causes an increase in the computational load and leaves open the question |
of the practicality of these methods.
Sensitivity methods are based on the assumption

that the parameter uncertainty is small, so that first-order perturbation
equations can be obtained, from which a controller is designed to
minimize a performance index that includes some measure of trajectory
sensitivity [16]-[18]. This approach is not valid in cases where
the range of uncertainty is not small. Usually, the implementation
of these methods requires additional state Variab]es, an increase in com-
putational complexity, and the use of extra trajectory sensitivity states
for feedback [19].

In the bounded cost approach, a cost functional is defined, and a

control law is sought so as to minimize an upper bound on the cost
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functional over the whole range of parameter uncertainty. The minimax
design method [20] and the guaranteed cost control design method [21] are
two of the methods in this category. A major drawback of this kind of
approach is the tendency to produce large feedback gains and an overcon-

trolled closed-loop system [22],[23].

To date no one design technique for systems with uncertain param

eters has received widespread acceptance from control system designers.
In reference [19], a comparative assessment of seven methods based on
an optimal control approach was made. Most of these methods were found
to be at least somewhat burdensome computationally, and most did not
produce control system designs judged to be significént improvements
over designs which assume precisely known parameters.

The objective of this research was to investigate some of the
above approaches and to develop easily implementable design methods for
linear deterministic systems with uncertain (or varying) parameters.

In particular, an optimal control approach was taken, and a state space
notation was employed. Attention was limited to design methods that

will produce a linear constant gain feedback controller, such that the
closed-loop system behavior is acceptable for all values of the uncer-
tain parameters within a specified bounded region (not necessarily Emall).
Two such methods are suggested here, one from the bounded cost
category and the other from the stochastic category. For each
method, a general theory is presented and a design procedure is given.

Special attention has been given to the areas of practicality, implementa-

tion,and computational load. Each design method is accompanied by a detailed
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algorithm and an example. A comparison of several existing tech-
niques, together with the two new ones, in the context of the design
of a lateral autopilot for a rudderless remotely piloted vehicle
with uncertain aerodynamic coefficients was carried out. Qualitative,
as well as quantitative results are presented, and some conclusions
as to the advantages and drawbacks of each method are given.

The structure of the thesis is as follows: In the first chap-
ter the general guaranteed cost control design method is presented.
Using the work by Chang and Peng [21] as a starting point, more general
theorems are stated, and some limitations are removed. It is shown that
this method produces not only a stable closed-Toop sysfem, but also an op-
timal one, for all values of the uncertain parameters. This optim51ity
has the unique feature that different weighting matrices are associated with
each value of the uncertain parameter vector. A multistep guaranteed cost
control design method is suggested, and its advantages are demonstrated.
Different design parameters and their influences on the design are
described. A detailed algorithm for the multistep guaranteed cost control
method is given, and a demonstrative example is presented. The minimum ex-
pected cost design method is described in the second chapter. The general
approach follows works by Ly and Cannon [141 and Heath and Dillow [15].
Necessary conditions for a minimum of the expected cost are given, and a
gradient of the cost functional with respect to the gain matrix is derived.
The discrete minimum expected cost design method is developed, and its

practicality demonstrated. A detailed algorithm for the discrete minimum



-6-

expected cost design method is described, and an example is given. The
third chapter is devoted to a comparative study of six design methods for
systems with uncertain parameters. Some conclusions as to the relative

advantages and disadvantages of each method are derived.
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GUARANTEED COST CONTROL DESIGN METHOD

1.1 Statement of the Control Problem

Using state space notation, one may describe the dynamics of many

systems by the linear differential equations

x(t)

y(t)

where

x(t)
u(t) =

w(t)

8(t)

Alw(t)]
BL6(t)] =
y(t)

H =

Alw(t)] x(t) + B[e(t)] u(t) , te [0,t,] (1.1.1)

H x(t) , (1.1.2)

state vector (nx1)
control vector (mx1)

vector of uncertain parameters in open-loop
system matrix, referenced to their nominal
values (n' x1)

vector of uncertain parameters in control
distribution matrix, referenced to their
nominal values (m' x 1)

open-loop dynamics matrix (nxn)
control distribution matrix (nxm)
vector of measured outputs (rx1)

output distribution matrix (r xn)

The following assumptions are employed throughout this chapter:

1) The matrices

A and B depend on time only implicitly through the un-

certain parameter vectors w and 6, which may vary with time. Nominal

design conditions are w(t) = 0, 6(t) =0, t EE[O,t]].

2) The vector w(t) lies somewhere within a closed bounded region

‘ .
Q€R" (n'-dimensional real cartesian space) for t € [0,t,]. The
1
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vector 6(t) lies somewhere within a closed bounded region ©O€ Rm
(m'~-dimensional real cartesian space) for t & [O,i]]. For simplic-
ity, it is assumed that Q and O are rectangular in shape and

include the origin, so that each of the components of w(t) and 6(t)

are bounded as follows:

a; <w;(t)<b; , i=Tl,-ee0n', t € [0,t;] (1.1.3)

i = 1,000 ,m 1.4
20ty <dy ,  F=lyeee,m té‘[o,t1] (1.1.4)

¢ < 0 , 0xd

The structure of Alw(t)] is as follows:

n
Alw(t)] = A+ 1‘2] wi(t) Ai ‘, (1.1.5)

where Ai; i=0,1,---,n', are constant (nxn) matrices, i.e., the un-
certain parameters are assumed to enter A in a linear fashion.

The structure of B[6(t)] is as follows:

B[e(t)] = B, + _?1 0, () B, (1.1.6)
i=

where Bi’ i=0,1,-++,m", are constant (n xm) matrices.

[Ao’Bo] form a controllable pair.

Control system performance is characterized by a quadratic cost func-

tional J, defined as follows:
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b
J = f (xTQx + uTRu) dt (1.1.7)
0
where Q is an (n xn) constant positive semi-definite symmetric matrix,
and R is a constant (mxm) positive definite symmetric matrix.

7) {AO,Q]/Z} form an observable pair, where Q]/2

denotes any square root of the matrix Q, i.e., (Q]/?')T QV2 =Q .

The objective of our discussion is to design a linear constant gain

feedback controller that will guarantee the boundedness of J, of the form

u(t) = -cy(t) . tElo.t] | (1.1.8)

~ to produce, in some sense, acceptable closed-loop behavior for all w(t)en,

8(t)eo, t e[O,t]]. The matrix C is a constant (mx r) matrix.

1.2 _General Theorems of the Guaranteed Cost Control Method

We will now present and prove the general theorems of the quaranteed

cost control design method.

Theorem 1.1: Let S(t) be an (nxn) symmetric matrix with continuously dif-
ferentiable elements, and let n[x(t),t] be a feedback control law {i.e., a

partitu1ar form of u), which together satisfy the fol]qwing inequality:
[x(t)Tax(t)+ n'[x(t),t] Rnlx(t), 11+ x(£)T8(t)x(t) + 2x(t) T (t){ALw(t) Ix(t)

+ B[o(t)] nlx(t),t]} < 0 (1.2.1)

Vueca, s€o, x(t)eRr", t € [0,t]

with
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S(t]) =0 (1.2.2)

Then, the value of J achieved using u(t) = n[x(t),t] is bounded from above

as follows:

J < x7(0) $(0) x(0) (1.2.3)
Proof: If wu(t) = n[x(t),t], Eq. (1.1.1) yields

S5 IX(®)TS(0x()] = x()T8(e)x(t) + 2x(t) TS () {ALw(£) Ix(¢)

+ B[o(t)] nlx(t),t1} t € [0,t,] (1.2.4)
Thus Eq. (1.2.1) yields

x(£)'0x(t) +n'[x(t),t] Rlx(t),t] < - S Ix(t)Ts(e)x(£)]
te [O,t]] (1.2.5)
Integration of Eq. (1.2.5) from 0 to tys in conjunction with Egs. (1.1.7),
(1.2.2) yields Eq. (1.2.3). 7
Such an S(t) and n[x(t),t] are called a guaranteed cost matrix and
a guaranteed cost control, respectively.
It is instructive to examine the specific case where £ and © are reduced

to a single point each (the origin). Then Eq.(1.2.1) will take the following
form:

x(t)TQx(t) + nT[x(t),t]Rn[X(t),t] + X(t)TS(t)X(t) + ZX(t)TS(t) (1.2.6)

x [Ax(t)+Bnlx(t),t]] <0, Yx(t)€R", t € [0.t;]

Let us assume n[x(t),t] to be a linear feedback control law of the form

n[x(t),t1=-Cy(t) = ~CH x(t) (1.2.7)
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As t]-t + oo, S(t) will tend to zero in systems which satisfy the following
assumptions [24]:
(1) (AO-BOCH) is a stability matrix.
(it) AO,BO,Q,R,H are constant matrices.
(iii) Q-FHTCTRCH is a positive-semidefinite matrix.
(iv) [Ao,(Q+HTCTRCHyﬁ form an observable pair.

Combining Eqs. (1.2.6) and (1.2.7) together with

$(t) »0 ty-t > o (1.2.8)
yields |
xT[Q+H CTRCH + S(A - B_CH) + (A -B_CH)'SIx < 0 (1.2.9)
Y xer

When Eq. (1.2.9) is an equality, i.e., the left-hand side is strictly equal
to zero, the symmetric matrix inside the brackets should be zero identic-

ally. This yields the well known Lyapunov equation. ‘It is known [2%] ..
that

T _ T.T
S(AO-BOCH) +(A, - BOCH) S = -Q-HCRCH (1.2.10)

has a positive definite symmetric matrix solution S, if the above stated
assumptions hold. When H is assumed to be a square matrix of rank n (i.e.,

a full state feedback law is assumed), it is possible to show [24] that
nlx(t),t] = -R"1B] sx(t) (1.2.11)

is the control law which minimizes J (as defined in Eq. (1.1.7)), so that

Eq. (1.2.6) can be written as the following equality:
T T 1.7 _ n (1.2.12)
X [SAo + AOS ~ SB,R BOS+ Qlx = 0, x€ R

For Eq. (1.2.12) to hold, the symmetric matrix inside the brackets should
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be zero identically. This yields the familiar algebraic Riccati equation.
Conditions on the existence of S{t) and n[x(t),t] for the general
case are not yet known. Even for systems which follow our assumptions of
linear control logic and specific form of Q and O, the existence of a gain
matrix C such that {A[w(t)] - B[O(t)]CH} is a stability matrix for every
w(t) € @ and 6(t) € 0 is not assured. Oﬁe may assert, based on the pre-
vious discussion and continuity properties of Alw(t)], B[6(t)], and S(t)
that when © and © are sufficiently small, such an S(t) and n[x(t),t]
always exist. For the remainder of this chapter, we will assume S{t) and

nix(t),t] to exist, and will show some methods to evaluate them.

I.  The Output Feedback Case

Following Egs. (1.1.2) and (1.1.8), the control law n[x(t),t]

is assumed to be of the form
u(t) = n[x(t),t] = -CH x(t) (1.2.13)

Let tp -t and assume that Eq. (1.2.8) holds. Substitute Eq.

(1.2.13) into Eq. (1.2.1) and arrange to get

XT[Q+ HTCTRCH +AT (w)S + SA(w) - SB(B)CH - wTcTaT(e)sTx < 0

¥ xer (1.2.14)

An equality consistent with Eq. (1.2.14) is the following:

xT[Q+HTCTRCH+AZS + SA - SB CH - HTcTBlS+‘U(S) - V(C,$)Ix=0 (1.2.15)

¥/ x € R"

where U(S) and V(C,S) are upper and lTower bounds. respectively, on the
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effects of parameter uncertainty, in the sense that

xTU(S)x > xT[

e
——d

o (t)(ATS+ SA)Ix , ¥ xeR", te[o,t]
(1.2.16)

i

XV(C,S)x < xT[E' 8,(t) (SB,CH+HCTBI S)Ix, ¥ x€RY , t€[0,t,]
= (1.2.17)

There are a nunber of ways to construct U(S) and V(C,S) such that
Eqs. (1.2.16) and (1.2.17) hold [26],[27]. We will present here one way,

which is as follows. Let

nl

u(s) = I N1E1N¥ v (1.2.18)
i=1
where Ni is the orthogonal transformation which diagonalizes the symmetric

matrix (SA1. + AITS):

T,AT _ A
Ni(AiS+SAi)N1.—A1. i=1,c,n (1.2.19)

(Ai is diagonal and contains the eigenvalues of A]TS+SA1., i.e.,

(Ai)kk = ()\i)k, (Ai)kj =0, k # j, where (ki)k is the kth eigenvalue of
T

AsS +SA].). The matrix E; is defined by
( () > Oyl <0 )
Byl = by (A;) (A:), >0
(A . ) >
4 ! 1k 1k 1=]:"'anl (].2.20)

(El)kJ = 0 , k #J

! b

The symmetric matrix V(C,S) will be constructed in a similar way,

as follows:

ml
V(C,S)= | MM | (1.2.21)
ey A
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where Mi is the orthogonal transformation which diagonalizes the symmetric

matrix(sB;CH +H'C'B]S). The matrix F, is defined by
W
f
(Fo)o. = cilogly (o3)y 2.0
TRk 4y (ay) (ay), <0 v
{ VGl ik Yi=T,---.m' (1.2.22)
L(Fi)kj = 0 s k #3J )

where (Gi)k is the kth eigenvalue of (581CH-+HTCTB§S). One should note
that by construction, U(S) is a symmetric positive semi-definite matrix,

and V(C,S) is a symmetric negative semi-definite matrix.
In order for Eq. (1.2.15) to hold for every x(t) € R", the symmetric
expression in the bracket should be identically zero. Hence, the following

theorem, describing guaranteed cost control in the output feedback case:

Theorem 1.2: Let S(t) be a symmetric positive definite matrix that satis-

fies

S(A,- B,CH)*+(A - B CH)TS + u(s) =. -q-HTcTRCH +V(C,5)  (1.2.23)

S(ty) =0, S{t)~0 as  (ty-t) + e (1.2.24)

where U and V are consistent with Egqs. (1.2.16) and (1.2.17). Let C be a

non-empty set, ¢ cR™T sych that for every C€ C, (Alw)-B(9)CH) is a stable
matrix for every w&€ Q and 8 € 8 . Then, J as defined by Eq. (1.1.7), with

t]—t + «, s bounded from above as follows:
J < x'(0) s x(0) (1.2.25)

Proof: Follows the proof of Thm. 1.1 with the use of Egs.
(1.2.16), (1.2.17).
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One can see from Eq. (1.2.25) that the bound on J depends on the

initial condition x(0) as well as on S. In many engineering systems an
exact knowledge of x(0) does not exist. In order to make the design

process independent of initial conditions, let us define

3(c) = E[x'(0) S x(0)] = Tr[S(C)X,] (1.2.26)
where

X, = E[x(0) x1(0)] (1.2.27)

The operator E[+] in the above equations is the expected value with re-
spect to the random variable x(0). When no statistical information on

x(0) 1is known, one might assume that the initial condition vector lies with

equal probability on the surface of a sphere of radius 1 in rR", Hence,

in this case, the following holds:

Ko = 1 (1.2.28)

ahd 3(c) becomes
J(c) = Te[S(C)] (1.2.29)

where S(c) satisfies Eq. (1.2.23). The objective now is to
find C*eC so as to minimize S(C) (as defined by Eq. (1.2.26) or Eq.
(1.2.29)).

By virtue of Thm. 1.2, the time-invariant closed-loop matrix
[A(w) - B(8) (4] is a stable matrix for every constant w € 2 and 0 € 0.
For the time-varying uncertain parameters, w(t) € Q and 6(t) € 6, the

"stability of the closed-loop system requires somewhat more complex condi-

tions. Details may be found in [21] and [28].
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II. The Full State Feedback Case
Whenever y(t), as defined in Eq. (1.1.2), is an (nx1) vector and H
is nonsingular, the control law, Eq. (1.1.8), becomes a full state feedback
taw. Without loss of generality, one may then assume H to be the identity

matrix.

Let us assume the control law to be of the following form:
u(t) = -R'87(6 ) x(t) , e <o (1.2.30)
and assume that Eq. (1.2.8) holds. Then Egqs. (1.2.1) and (1.2.8) yield
X110+ SB(8 )R 18" (8)S + SA(w) + AT ()3~ SB(O)R™'BT (05

- sB(8,)R"18T(0)51x < O (1.2.31)

VY wvea, 06€0, .x € R
An equality which is consistent with Eq. (1.2.31) is the following:

T 1T T = 1.2.32
- x'[Q-SB(B )R 'B'(6 )S+SA + A S+ U(S)Ix=0, B8 €0 )
provided that Eq. (1.2.16) holds and that

2x"[sB(0_)R"1BT(6,)S]x < xT[se(e)R"BT(eo)s+ SB(eo)R']BT(e)S]x
° (1.2.33)

for all x€R", o €0 , for some eoé .
Hence, in the full state feedback case, Eq. (1.2.33) replaces Eq.

(1.2.17) as a requirement for the inequality Eq. (1.2.31) to be replaceable
by the equality Eq. (1.2.32). The question as to whether a point Ooe; ]
exists such that Eq. (1.2.33) is satisfied can be answered in the process
of searching for such a point. The matrix B(eo) is here called the control

distribution design matrix. One can see that u(t) in Eq. (1.2.30) will be

of the familiar form for the LQR problem when B(eo) is used in place of the
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control distribution matrix.

When Eqs. (1.2.16) and (1.2.33) hold, in order for Eq. (1.2.32)
to hold for an arbitrary x , the symmetric form within the bracket

has to vanish identically, i.e.,

T

T
o (

eo)S+Q+U(S)=‘0 , B €0 (1.2.34)

SAO+ A 0

S - SB(eO)R“B

This equation is similar to the algebraic Riccati equation with the in-
clusion of the additional term U(S) [21],[22].
Let us consider the question of how to find a eoea 0, such that

Eq. (1.2.33) holds. Using Eqs.(1.1.6) and (1.2.33) one can write
., ™ 1.7 1.7
0<x'S {izr (858, )[B;R™'B (8,) + B(8 )R B; 1} Sx ,

- xeR", 8 €0, and fixed 8,& © (1.2.35)

~ where eoi denotes the ith component of 60. Eq. (1.2.35) is a scalar ine-
quality. An equivalent matrix inequality is
ml
1,7 1,7
. o_<_1_§1 (ei-em.)[BiR B (eo) + B(eo)R Bi] .
for all 6 €0, and some 8, © (1.2.36)

~ That Eq. (1.2.36) is equivalent to Eq. (1.2.35) can be observed when one

recalls that S is a symmetric positive definite matrix which maps R" RM,
A necessary and sufficient condition for Eq. (1.2.36) to hold is

that each of the symmetric matrices

-1BT

-] T i = LRI '
(60) + B(eo)R Bi] » 1']9 »M ’

(8;-64; (B4R
6; &€ 0, and some 6,& © (1.2.37)

be positive semi-definite. From Egs. (1.1.4) and (1.2.37) 1t is clear

that if such an eoe 0 exists, then



eoi = ¢ or 901 = di . i=T,,m (1.2.38)

i.e., the point 8, ©, such that Eq. (1.2.33) holds (if such a 8, exists)

will always be one of the Zm' corners of 6.
Two interesting special cases are considered below:
1. The case B(9) = GB] , 1<8<b,

which is treated in [21], is just a special case of that discussed here.

Let us write B(6) as follows:

B(e) = BO + e]B] (1.2.39)
where

Now B(8) in Eq. (1.2.39) complies with our notation. Following our pre-
vious discussion, we shall check Eq. (1.2.37) at the two corners of O.

Letting 60 =0

yields | B(8;) =

Substitution into Eq. (1.2.37) yields
26,8,R" B] .Y 6,€ 0 (1.2.40)

Thus, Eq. (1.2.37) holds, and the control distribution design matrix is

B], as was derived in [21].

2. Llet us assume that when the control] distribution matrix is of

the following form:

B(6) = B + ) 6.8, , 6 €0 (1.2.41)
i=1

where



o ]
- o
Bo = 1.. (1.2.42)
.“m
L -
and
B .
0
dim
Bi = . i=1,* " ",m (1.2.43)
'Gim
. -

ag, 1=1,---m in Eq. (1.2.42) are constants, and B, is the nominal con-

trol distribution matrix. Furthermore, it is assumed that

a; + 6, ,0& e]. , =1, ,m (1.2.44)

does not change sign, and that R, the control weighting matrix, is
diagonal. Then, it can be shown that there is always a point 60<£ © which
satisfies Eq. (1.2.37). The form of B(8) in Eqs. (1.2.41)-(1.2.43) is
appropriate to the case in which actuator dynamics are included in the
modeling of the system. Such a system is described in the fifth-order
example in Sec. 3.2. In cases where some of our assumptions do not hold
(R is not diagonal or a; + 6, change sign for some i, for example) there
will not be a point 6, € O which satisfies Eq.v(1.2.37). It is possible

to show that when such a point exists, B(eo) is unique.
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1.3 Multistep Guaranteed Cost Control Design Method

One of the drawbacks of the guaranteed cost control design method
as presented in [21] 1is that it tends to result in overcontrolled beha-
vior, i.e., large feedback gains and correspondingly relatively large control
effort [22],[23]. The problem is due mainly to the fact that the term U(S)
in Eq. (1.2.15) or Eq. (1.2.31) is a function of the matrix S, as well
as the uncertain parameters. Thus, in cases where S increases due to
open-loop instability ([29] , for example), the effect of parameter
uncertainty is magnified and results in large feedback gains and large
control effort. This can be shown as follows.

Rewrite Eq. (1.2.34), and assume that Sd is a constant symmetric

positive-definite matrix which satisfies

T

-1,T
SdA0+ Ao S B

-SdB(GO)R (GO)Sd-+Q-+U(Sd) =0 (1.3.1)

d

Define Q* as

Q* = Q + U(s,) (1.3.2)

Sd thus satisfies the following Riccati equation

T -1, T *
SdAo+ A0 Sd-SdB(eo)R B (eo)sd +0Q° =0 (1.3.3)

U(S), by construction, is a positive-semidefinite matrix; thus
Q* > Q _ (1.3.4)
(For two symmetric matrices A,B with the same dimensions, A > B means that

the matrix C = A-B is positive-semidefinite. For A > B, C as defined

above is positive-definite). It is well known [29] ,[30] that the
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feedback gains and control effort will generally increase as the state
weighting matrix Q is increased. In Eq. (1.3.3), Q* will increase as
54 increases and will tend to produce an overcontrolled design.

A means of overcoming this problem is suggested here. The essence
of the approach is to perform the design in several steps. First, one
stabilizes the open-loop system, using a linear-quadratic technique with
no parameter uncertainty assumed. Then one tries to modify the resulting
closed-loop system so as to accommodate the effects of uncertainty.

For simplicity and c]afity of the presentation, the mu]tisteb
gdaranteed cost control design method will be described for systems which

satisfy the assumptions stated in Section 1.1 as well as the following two

assumptions:

1) A point 0, € ©s such that Eq. (1.2.33) holds, exists. Thus, let

B = B(eo) (1.3.5)
for the remainder of the section.

2) The output distribution matrix H (in Eq. (1.1.2)), is assumed to be
of rank n; i.e., full state feedback is assumed. Without loss of gener-

ality, one may assume H to be an identity matrix.

Theorem 1.3: Let us assume that there exists a mafrix Sd, symmetric,

constant, and positive definite, which satisfies the following equation:
SA+ATs, -5, 88 8Ts 4 Qs p (S, = 0 0,20 (1.3.6)
do "o °d d d d " d : d=- T

where U(S ) is consistent with Eq. (1.2.16). Then,

i) The control law

u(t) = -C4 x(t) (1.3.7)
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Cy = R8s, (1.3.8)
is an optimal control law for all constant w such that
Pad5 S wy S p by i=1,-+-,n' (1.3.9)
where Pa is that value of p which causes the quantity
Qqlp) = Q + (py-p) ulSy) (1.3.10)

to change from positive-definite or -semidefinite to indefinite.

ii) The control law of Eqs. (1.3.7) and (1.3.8) will make the closed-

loop system stable for all w(t) such that

Pay Swi(t)y <p by, d=1,---n' , t 20 (1.3.11)

where p_ is as defined by Eq. (1.3.10).

Proof: For the first part, let us define

n
* - T
() = Qf-de(Sd) - 121 wi(SdAii-A1 Sd) (1.3.12)
Eq. (1.3.6) may be written as
S A(w)+A (w) S, -5 BRTBTS, +Q*(w) = 0 (1.3.13)
d d “d d "

where use has been made of Eqs. (1.1.5) and (1.3.12). In Eq. (1.3.13),
Sd is the positive-definite solution to the Riccati equation for a pre-
cisely known system with dynamics matrix A(w) (w constant) and a state

weighting matrix Q*(w). For Eq. (1.3.13) to be a meaningful Riccati
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equation, Q*(w) should be positive-definite or -semidefinite, and

[A(m),Q*]/z(w)] should form an observable pair. Note that

T T, T n
px U(S )x < x [121 w (SR +A; SPIx . ¥ x &R, |
where p > 0 (1.3.14)

if w is consistent with the inequalities

pa; < w; < pb, §=1,-0,n (1.3.15)

i i=""
This follows from Eqs. (1.2.16). Thus, from Egs. (1.3.10), (1.3.12),
(1.3.14) follows the inequality

xTQ*(w)x > xTQd(m)x . /V x € R" (1.3.16)

for all w consistent with Eq. (1.3.15). Thus, 0*(w) is positive-definite
or -semidefinite whenever Qd(w) is positive-definite or -semidefinite,
which is for p <Py Since Sd is positive-definite and satisfies an alge-
braic Riccati equation with a positive-definite control

weighting matrix and a positive-definite or -semidefinite state weight-
ing matrix, and controllability and observability conditions are satis-
fied, the controller described by Eqs. (1.3.7), (1.3.8) is an optimal
controller for all constant w consistent with Eq. (1.3.9).

For the proof of the second part, Sd can be viewed as the solution

to the guaranteed cost matrix equation

1,7

: T - -
Sqho + Ay Sq - SqBRTB'Sy + Qq + p U(Sy) = 0 (1.3.17)

which follows from Eq.(1.2.1) with the useof Eqs. (1.3.7), (1.3.8), and

(1.3.10). Equation (1.3.17) is a guaranteed cost matrix equation
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provided that Qd is positive-semidefinite, which is for p < Py Thus,

from Theorem 1.1, the cost functional

J = J (xTde + uTRu)dt (1.3.18)
0

is bounded as follows
3 < x(0) s x(0) (1.3.19)

The boundedness of J, together with the stated conditions in [21],[28],

implies the stability of the closed-loop system for every w(t) consistent
with Eq. (1.3.11).
Theorem 1.4: Let So be a symmetric, constant, positive-definite solu-

tion to the equation

:
SOA0+ AO

=1,T -
So - SOBR B So+-Q 1-p0U(So) = 0, Po >0 (1.3.20)

and let the corresponding control law be

u(t) = -CO x(t) (1.3.21)
o oo-1,T | |
Co = R 'B S0 (1.3.22)
Define
Fo = A0 - BC0 ' (1.3.23)

and let S] be a symmetric, constant, positive definite matrix solution

to

T

1.7
Fot Fo 3

-S,BR 'B S]'+Q]-+p]U(S]) = 0, (1.3.24)

S 173

1

Then the control law
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u(t) = -C; x(t) - (1.3.25)

1,T

C B'S

1 CO + R 1 (1.3.26)

is an optimal control law (i.e., minimizes some cost functional J) for
all constant w such that
paif_wiipbi ’ 1=],"',n' (]3.27)

where p 1is that value of p which causes the quantity

Q= Q +Q;+p U(S ) +0,U(S)) -pU(S_ +S;) (1.3.28)

to change from positive-definite or semidefinite to indefinite.

Proof: Let us define

S = S0 +5 (1.3.29)

1

So defined, S is a symmetric, constant, positive-definite matrix solu-

tion to

1T

'S'A0+AZ§ -SBRBS+T+ouU(E) = 0 (1.3.30)

This can be shown to be true by the use of Eqs. (1.3.20),(1.3.22)-(1.3.24),
(1.3.26), (1.3.28) and (1.3.29). But Eq. (1.3.30) is a meaningful guaranteed
cost matrix equation provided that Q is positive-semidefinite, which is
for p < p. Since the matrix S is positive-definite and satisfies a
guaranteed cost matrix equation, the optimality of the control law of
Egs. (1.3.25), (1.3.26) follows from Theorem 1.3.

The controller optimality described in the above two theorems

should not be interpreted as optimality with respect to an a priori
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defined cost functional. The controller is optimal with respect to a
cost function J (in particular a state weighting matrix Q) defined only
after the controller has been determined. As shown above, the controller
is optimal with respect to a cost functional J which includes a differ-
ent state weighting matrix for different values of the uncertain param-
etef vector w. Nevertheless, for each constant w consistent with Eq.
(1.3.9) or Eq. (1.3.27), the various desirable properties of an optimally
designed control system described in [24,31,32] (e.g., global asymptotic
stability, phase margin of at least 60°, infinite gain margin, tolerance
of nonlinearities, etc.) hold.

A design method based on Theorems 1.3 and 1.4vis suggested here.
The first step is to find 6,€ © (if it exists) such that Eq. (1.2.33)
holds. Assign B(eo) the role of the control distribution matrix B.
Choose weighting matrices Q and R, so as to produce a satisfactory
nominal c]dsed-]oop design. The selection of Q and R can be done by
model matching techniques [ 33 ],[ 34 ], the pole placement technique [ 35],
the total system damping approach [30 ], or trial and error methods.
Solve Eq. (1.3.20) with Py = 0 (which yields the usual algebraic Riccaii
equation) to yield S0 and Co. The nominal (w = 0) closed-loop system
matrix is F, (as defined in Eq. (1.3.23)). Beyond this stage of the de-
sign process, the effects of parameter uncertainties will be taken into
account. Since the nominal closed-loop system has been designed to have
some desired behavior (by the selection of Q and R), one would like to
place a relatively large penalty on additional control effort required

due to uncertainties. Thus, Q] in Eq. (1.3.24) 1is chosen to be uQ
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with 0 < y < 1. The value of py can be selected by the designer or be

assigned the value of Pq evaluated according to Eq. (1.3.10). A solution of
Eq. (1.3.24) with the associated éontrol law of Egs. (1.3.25)and (1.3.26)
yields a closed-loop system which is stable for some range of parameter un-
certainties. This range can be determined by the use of Eq. (1.3.10); more-
over, the resulting closed-loop design is an optimal one (i.e., has the de-
sired properties described above) for a range of parameter uncertainty
determined by the use of Eq. (1.3.28). If these ranges of uncertainty (for
optimality or stability) are equal to or greater than the range over which

the parameter vector may vary, the design process is terminated. Otherwise,
define

Fisp =R =BGy i=1,--, (1.3.31)

where

1,T.

Ci=Ciy *+R7B'Sy , i=1,00, (1.3.32)

1 1

and go through the design process as described above. Once the range of
uncertainty for which the closed-Toop system is stable (optimal) has ex-
ceeded the predetermined range, a satisfactory controller design has been
achieved. If the range of stability (optimality) tends toward a limiting
value less than the desired one, one may conclude that constant feedback
gains do not exist which will stabilize the closed-loop system over the
entire range of parameter uncertainty.
The above design process is described in an algorithm in Section

1.4, and an example of using this approach is presented. in Sec. 1.5.

1.4 Algorithm for the Multistep Guaranteed Cost Control Design Method

Throughout this section we will present an algorithm for the design

of a constant gain feedback control law, using the multistep guaranteed
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cost control design technique.

The algorithm is as follows:

]. Iﬂput: Ao, {Ai "i:]"",n'}, BO; {B.i,i=1,"',ml}, Q, O,

Q,R,u .

2. Check to find 8, (Eq. (1.2.37)). If sucha 6 €0 exists, let B=B(eo).

When 60 does not exist, stop.

3. Determine the positive-definite solution So to the following algebraic
Riccati equation:

T - -
SoPo* Ag So - SoBR™'B'S_+Q = 0 (1.4.1)

The method of eigenvector decomposition [36 ],[37 ] is recommended.

4. Evaluate the controller feedback gain matrix

Co-1Te |
C, = R7'B'S, (1.4.2)

and set j equal to zero.

5. Evaluate U(Sj) in accordance with Egs. (1.2.18), (1.2.19),
and (1.2.20), or in accordance with the prdcedure described in Appen-

dix A, whichever is appropriate.

6. For j=0, determine the value of Po which makes

Q= Q - p U(S,) (1.4.3)
indefinite. For j > 0, determine the value of P; which makes either

QS or QO indefinite. QS is defined as follows:
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QS = uQ - (DJ' - DJ’_]) U(Sj) : (1.4.4)
Q0 is defined as follows:
j J
Q, = (1+3ju)Q + .fl R U(Si)-pU(.ZO 55) (1.4.5)
i= i=

When Fﬁ is determined according to Eq. (1.4.4) it gives a range of
parameter uncertainty for which the closed-loop system is stable.
When pj is determined from Eq. (1.4.5), it gives a range of param-

eter uncertainty for which the closed-loop system is optimal.

If P; 2 1, a successful control system design has been achieved. If
J > maximum desired number of iterations, the desjgn process terminates

unsuccess fully.

Increase j by one and evaluate

F, , = A0 - BC

5o (1.4.6)

J=1

Assign to 'E% the value of P51 obtained in step 6, or a predetermined

value.

Obtain the positive-definite solution Sj to the following equation

1,7

S.F. +F! - SBRTB'S+ 10+ P u(s;) = 0 (1.4.7)

iT3-1* FiarS;
A modified form of Kleinman's iterative technique [38] for solving this

equation is described below. The Aitken acceleration method [39] can

be used to improve the convergence rate.
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11. Evaluate the feedback gain matrix

1.7

C,=C, ,+R'B Sj (1.4.8)

J J-1
and go to step 5.

In [21], equations resembling Eq. (1.4.7) are solved by backward
integration until a steady-state solution is achieved, using Eq. (1.2.2)
as a starting condition. A modified version of Kleinman's iterative tech-

nique is suggested here for solving Eq. (1.4.7);

a) Set k=1, g 1= Fioq Sg =0, and L, =0, where L, is an (mxn)

matrix.

b) Evaluate

- g TgTeke1 |
L, = R8s} (1.4.9)
FK . = F. . - BL
S = Fiq - 8L (1.4.10)

c) Obtain the positive-definite (unique) solution SK

j to the following

linear algebraic equation

S§ Py (FTsE v+ 55 sk e Ry = 0 (1.4.11)

J

The algorithm of Bartels and Stewart, [40] is used to solve the equa-
tion above.

d) Check for convergence. Let (S ) denote the pq element of the matrix

s§ . If
k k-1
(S3)q - (S577)
Bpq = : f:k-l) L Pdl < p=1,04,n3 q=pyeeean
J

Pq (1.4.12)
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where ¢ is an accuracy parameter, the solution to Eq. (1.4.7) to the

desired accuracy,is Sg. The convergence of (S'})pq can be accelerated by

using the Aitken method. If qu > ¢ for some p and g, increase k by

one and go to step b.
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1.5 Examples

In this section we will present two simple examples of the use
of the methods described throughout the first chapter. Other examples
of control system design using the guaranteed cost control method and
the multistep guaranteed cost control method can be found in [22],[23]
In Chapter 3 a more comprehensive study of these methods, together with

a comparison of these and some other methods, will be presented.

a) A First-Order Example

Consider a first-order system of the form of Eq. (1.1.1)

x = a(w)x + b(6)u , t>0 (1.5.1)
where

alw) = wy . -1 < wy <1 (1.5.2)
and

be) =1+06, , -l/2<e, <1/2 (1.5.3)

Let the weighting matrices Q and R be

Q: 1 ’ R =] (].5.4)

i) The output feedback case: Although in a first-order system
output feedback is equivalent to full state feedback, we will treat this
example as an output feedback problem and will compare the results to .
those obtained by a full state feedback approach.

Let
X =1 (1.5.5)
Clearly,
H =1 | (1.5.6)
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We seek to find C so as to minimize J(C) in Eq. (1.2.29), where
Eq. (1.2.23) is satisfied.

In our example:

u(s) = 2s (1.5.7)
v(C,S) = -CS (1.5.8)
Eq. (1.2.23) can be written as follows:
-25C + 25 = -1 - €2 - ¢S (1.5.9)
or
$(2-C) = -1 - ¢2 (1.5.10)
Clearly, for S positive it must be true that C > 2.
We can write
' 2
~ _ e _ 1+C
Jic) = s = 25 (1.5.11)
In this simple example we can find the minimum of J(C) as follows:
o 2
(C-2)
which yields
c*=2+/% (1.5.13)
and ) .
J(C*) =4 + 2/5 (1.5.14)

A quick test shows that the closed-loop system matrix (uﬁ —(1+6])C*) is

stable for all values of the uncertain parameters Wy and e].

ii) The full state feedback case: Let us solve the same problem

using Eq. (1.2.34). First use Eq. (1.2.37) to find that
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8, = 1/2. Then, Eq. (1.2.34) yields

1 -85 +25=0 (1.5.15)
S=4+2/05 ' (1.5.16)

From Eq. (1.2.30),
C* = 5 (4+2/5) = 2+/5 | (1.5.17)

Hence, the results obtained using the two approaches are equal,

as must be the case.

b) A Second-Order Example

Consider a second-order system of the form of Eq. (1.1.1) with

0 1 0
Alw) = R B = (1.5.18)
where
-1 < Wy <1
(1.5.19)

and assume H of Eq. (1.1.2) to be the identity matrix. Let the weighting

matrices be

1 0 ,
Q= J . R=10 (1.5.20)
0 1

Using the notation of Eq. (1.1.5) with constant w yields
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A = , I\.I = s A, = (1.5.21)

The design will be performed by three methods: the standard linear-
quadratic regulator method (LQR), where the parameters are assumed to
have their nominal values and the uncertainty is ignored; the guaranteed
cost control design method (GCC); and the multistep guaranteed cost
control method (MGCC). Feedback gains and closed-loop eigenvalues are
given in Tables 1.1 and 1.2. The feedback gains and closed-loop eigen-
values for nominal parameter values obtained with the multistep guaranteed
cost control with different design parameters p and u'are given in Table

1.3.

Table 1.1 Controller Feedback Gains Determined by GCC and
MGCC Design Methods

Design Method C]] C]2
GCC 1.36 6.42
MGCC .30 3.44

LQR .03 2.07
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Table 1.2 Closed-Loop Eigenvalues for Various Parameter Values Using
Feedback Gains Calculated by Various Methods

[] L] -l -l L

LQR -.5411,32] -1.04+1.4j +.21+1.73] +.21¢ ,99j -.82,-1.26
GCC -.71,-4.7 -.77,-5.65 -1.96+.72] -.74,-3.18 -.39,-6.03
MGCC -1.22+.90j -1.72+.58j -.47%1.75] -.47+1.04j -.43,-3.01

Table 1.3 Feedback Gains and Closed-Loop Eigenvalues for Nominal Param-
eter Values Achieved Using the Multistep Guaranteed Cost
Control Method

Iterations Closed-Loop
H of Main Cll C12 : Eigenvalues
Algorithm w=10
.01 5 * 0.30 3.44 -1.22+.90j
.01 4* 0.34 3.55 -1.28+.84j
.01 3% 0.61 4.40 -2.23,-1.17
.5 . 5% 0.37 3.55 -1.28+.86]
. 9 0.36 3.40 -1.20+.96j
1.0 7 0.42 3.46 -1.23£.95j

*
Sequence {p,} input to program.

Note the relatively large feedback gains and the real, overdamped
closed-Toop eigenvalues produced by the guaranteed cost control design

method. One should note that the closed-loop system obtained with the LQR

-1 1
design is stab] t = d = .
g unstable at [1.5]an w [].5]
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2. MINIMUM EXPECTED COST DESIGN METHOD

2.1 Statement of the Control Problem

Using the state space notation, one may describe the dynamics

of many systems by the linear differential equations

x(t) = Alw) x(t) + B(w) u(t) , t30 (2.1.1)

y(t) = H(w) x(t) (2.1.2)
where

x(t) = state vector (nx1)

u(t) = control vector (mx1)

w = vector of uncertain parameters referenced to their
nominal values (n'x1)

A(w) = open-loop dynamics matrix (nxn)
B(w) = control distribution matrix (nxm)
y(t) = vector of measured outputs (rx1)
H(w) = output distribution matrix (r xn)

t = independent variable

The following assumptions are employed throughout this chapter:

1) The vector w is constant and lies somewhere within a closed bounded
region Q € R"' (n'-dimensional real cartesian space).

2) [A(w),B(w)] form a controllable pair for all w € .,

3) Control system performance is characterized by a quadratic cost

functional J, defined as follows:
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o

J = J (xTQx + uTRu) dt (2.1.3)
0

where Q is an (nxn) constant positive semidefinite symmetric matrix,
and R is an(m xm) constant positive definite symmetric matrix.

4) [A(w),Q]/z] form an observable pair for all w € Q, where Q1/2

denotes
any square root of the matrix Q, i.e., [Q]/z]T Q]/z = Q.
5) The distribution of w within Q is described by a probability density
function p(w), defined as follows:
po(w) , we&gQ

plw) = (2.1.4)
0 weé€ N

2

where po(w) has the following properties:

pylw) >0
(2.1.5)

J p,(w) du = 1
Q
The objective of our discussion is to design a linear constant

gain feedback controller of the form:
u(t) = -Cy(t) , t €[0,0] (2.1.6)

which will produce acceptable closed-loop behavior for all w e @,

t € [0,=]. The matrix C is a constant (mxr) matrix.
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2.2 Minimum Continuous Expected Cost Design Method

It is well known [24], [41], that for a system with perfectly
known parameters and an exact measurement of the state vector available
as a fuﬁction of time, the minimization of J, as defined in Eq. (2.1.3),
yields a linear constant gain feedback control law. This control law is
independent of the initial conditions and possesses some attractive prop-
erties in the frequency domain, namely, an infinite gain margin, a phase
margin of 60° (or more), and at least a 50% gain reduction tolerance [32 ].
In cases in which system parameters are not known exact]y‘or only a por-
tion of the state vector is available for feedback (i.e., rank H < n), the
optimal set of gains C does not possess the above properties. For any
given constant gain matrix}C, the value of J, using u(t) as defined in

Eq. (2.1.6),will be as follows:

J = x7(0) S(w,C) x(0) (2.2.1)

-

where x(0) is the state vector at time t=0, subject to the condition
that the closed-loop system matrix [A(w) - B(w) CH(w)] obtained using

Eq. (2.1.6) be a stability matrix (i.e., all its eigenvalues lie in the
open left-half of the complex plane). S(w,C) in Eq. (2.2.1) is a sym-v
metric positive semi-definite matrix which satisfies the following matrix

equation:
S(w,C)[A(w) - B(w)CH(w)] + [Alw) - B(w)CH(w)T" S(w,C)

= -Q - HT(w)CTRCH(w)u, for wé&f (2.2.2)

where Q and R are the weighting matrices given in Eq. (2.1.3).
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Equation (2.2.2) has the form of a Lyapunov equation. Some con¥
ditions regarding the existence of solutions to this equation can be
found in [24 1,025 1. From Eqs. (2.2.1) and (2.2.2) one can see that the
cost functional J is a function of the initial condition vector x(0), the
vector of uncertain parameters w, and the set of feedback gains C. The

boundedness of J is dependent upon the stability of the closed-1oop sysfem.

Given the probability density function p(w) as defined in Egs.
(2.1.4), (2.1.5), it is possible to define a cost functional J* as fol-
lows [42]-[46]:

Ix(0),C1 = E[31x(0)0,C1] = | 30x(0).0C] (o) o
' we i
= xT(O) [ $(w,C) pla) w] x(0) (2.2:3)

we

where Ew[-] stands for the expected value with respect to the uncertain
vector w [47 ]. Thus, J*[x(0),C] is the expected value of the cost func-
tional J[x(0),w,C] over all w€ . For J* to be bounded, the set of |
feedback gains C must produce a closed-loop system matrix which is stable
for every w& Q. General conditions regarding the existence of such a C are
still to be determined (see Section 1.2). It is clear that there are

cases where such a gain matrix C can be found. In some other cases, where
the region  is simply too large, no such gain matrix exists.

Usinag the same arquments as in Section 1.2. we will define a new cost

functional G(c) to be independent of the initial conditions

3(c) = Tr [s*(C)X,] (2.2.4)
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where
X, = E[x(0) x1(0)] (2.2.5)
s*(C) = ] S(w,C) plw) du (2.2.6)
we€ Q

In Eq. (2.2.5) the expected value is taken with respect to the
random variable, x(0). Clearly, S(C) depends on statistical knowl-
edge. of the initial conditions. In many cases, no specific data on
the initial conditions exist. Following the discussion in Section 1.2,

Eq. (1.2.28), one might then assume the following to hold
X =1 - (2.2.7)
) thatia(c) becomes

J(C) = Tr[S*(C)] | (2.2.8)

Let us assume that there exists a nonempty subset ( of R™T such
that [A(w) - B{w)CH(w)] is stable for every w € Q and all C € C. The
design objective is to determine C € € so as to minimize S(C). The
evaluation of 3(C) is quite complicated in general. It involves
obtaining S(w,C) as a function of w &€ Q for fixed C, through Eq. (2.2.2),
and then evaluating the integral in Eq. (2.2.6). Both these processes
can be done analytically only in simple cases,such as a Tow order system
expressed in phase canonical form [13].

In order to minimize J(C) one should derive the gradient of J(C)

with respect to C. An expression for the gradient is given in [14],
based upon a derivation in [48] for problems with known parameters. We

will follow a derivation suggested by Dr. L. J. Wood.
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Let us define the matrix D(w,C) as follows:

D(w,C) = S(w,C)[A(w) - B(w)CH(w)] +[A(w) -B(m)CH(w)]T S(w,C)
+ Q +H (w)CRC H(w) (2.2.9)

Y wea,CEC
From Eq. (2.2.2) it is clear that

D(w,C) =0 , YV wea , CEC (2.2.10)

Equation (2.2.4) can be written as follows:
J(C) = E {Tr[S(w,C)x,]} - (2.2.11)

where use has been made of Eq. (2.2.6) and the fact that the order of the
expected value operator and any linear operator can be interchanged [47j.
The objective now is to minimize 3(C) subject to the constraints
on S(w,C), Eq. (2.2.2). This can be done by adjoining the constraints
to 3(C) with a matrix of Lagrange multipliers. Thus, let us define <

as
e - f I(w,C) = 3(C) + Tr{E [L(w,C) D(w,C)]} (2.2.12)
wes?
where L(w,C) is an (nxn) symmetric matrix of Lagrange multipliers, 2 now
will be minimized with C and S(w,C) treated as independent. Use will

be made below of the following four lemmas pertaining to matrix traces:
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Lemma 1: For A an arbitrary square matrix

Tr(A) = Tr(AT) (2.2.1'3)

Lemma 2: For arbitrary square matrices A and B of consistent dimen-
sion

Tr(A+B) = Tr(A) + Tr(B) ' (2.2.14)
Lemma 3: For arbitrary A (nxm) and B (mxn) matrices

Tr(AB) = Tr(BA) (2.2.15)

Lemma}4: For the above matrices A and B

Iﬂ%ﬂ = AT ' , (2.2.16)

Proofs of the above lemmas are based on the definitions bf the trace opera-
tor and of the differentiation of a scalar with respect to a matrix.

Two stationarity conditions for @ are

0P

3 - 0 (2.2.17)

and Eq. (2.2.10). Using the above lemmas together with the fact that dif-

ferentiation is a linear operator, one gets:

3P

3¢ - 2{RCE_[H(w) L(w,C)HT(w)]-Ew[BT(w) S(w,C) L{w,C) H ()1} = 0,

cec (2.2.18)

Now define I(w,C) (the integrand of @) as

Lw,€) = Tr[S(w,C)X ] + TrlL(w,C)0(w,C)] Fuer, Cec  (2.2.19)
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At the stationary point, variations of the integrand of P with re-
spect to S(w,C) should vanish. Thus, let us choose the matrix of Lagrange

multipliers L(w,C) so as to make §l£%§92.= 0. Then,

L(w,C)IA(w) - B(w)H(w)]" + [A(w) - BOH(w) JL(wiC) = -X, (2.2.20)

wen, CEC

This is the third stationarity condition for @.

Thus, in order to find the set of gains C so as to minimize 3(0),
Eqs. (2.2.2), (2.2.18), and (2.2.20) should be solved. It is clear that
solving these equations is not practical in the general case. In some
special cases, where the order of the system is low (first or second
order), and p(w) has a simple form (such as a uniform density function of
a set of S-functions), an analytical solution might be found. In order
to implement the idea of minimum expected cost as a useful design method,

one must modify the approach described above [23].
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2.3 Minimum Discrete Expected Cost Design Method

Determining the set of feedback gains C so as to minimize 3(C)
(defined in Eq. (2.2.4)), requires the solution.of one integral equation
(Eq. (2.2.18)), and two linear equations (Egqs. (2.2.2),(2.2.20)), over
all w € Q. In general, an analytical solution does not exist when a ﬁon-
tinuous probability density function is assumed. whén numerical minimi-
zation fechniques are used to find C, the computational requirements are
excessive [13]. Each evaluation of 3(C) requires an integration over all

th

w & Q. Each integration step requires the solution of an n~" order alge-

braic Lyapunov equation, while the gradient evaluation requires the solu-

th

tion of an adjoint n™" order Lyapunov equation (Eq. 2;2.21) for all we Q.

These computational obstacles can be reduced to a manageable level,
however, if the point of view is taken that the inclusion of all w€
in the definition of 3(C) is unnecessary in practical terms. If only a
fairly small number of points in @, which are in some sense representative
of the entire region, are considered (for example, the corners and selected
intermediate points), much computational effort can be avoided at little
cost in performance. In effect, the continuous probability density func-
tion p(w) in Eq. (2.2.6) is replaced by a collection of Dirac delta func-
tions throughout Q, whose amplitudes add to unity [23].

A more rigorous argument to justify the above point of view will be
presented here. We will assume the following statements to hold:
1) The region @, defined in Section 2.1, is assumed to be a convex polygon.
2) The system matrices A(w), B(w), H(w) defined in Eqs. (2.1.1) and (2.1.2)

have the special. form
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n' h
A =A + A,
() = Ay 121 1%
B(w) = B | ? )/ w€ Q (2.3.1)
H(w) = H )

where Ao’ Ai’ i=1,+++,n', B, and H are constant matrices.

3) p(w) = o (constant) /we Q (2.3.2)

Although the three assumptions stated restrict the generality of

our discussion, many engineering systems satisfy these conditions.

Theorem 2.1: Let SE(C) be defined as follows:

: N
* 21 k $21 0o '
Sk(C) = N;‘ iZ] S(wi,C) ’ w.i c Q, i=1, st
L ce e (2.3.3)
where
N = (2Ke ) (2.3.4)

and S(wi,C) satisfies Eq. (2.2.2) for each w; - Let us assume the kM set

‘of points {wgs i=1,---,N }, to be distributed uniformly over @ and to

include all the vertices of Q. The function Tr[S(w,C)] is assumed to be

a convex function over Q. Then:

i) Him SH(C) = $*0) = [ S(0) plu) o, CEC (2.3.5)
k> ‘ we€

ii) The sequence Tr[S:(C)] is bounded and monotone decreasing.

Proof: Use of Egs. (2.3.2), (2.3.3), and (2.3.4), together with
the definition of an integral [49], proves that the limiting process on
the left-hand side of Eq. (2.3.5) converges to the value of the integral
on the right-hand side. Hence, the first part of the theorem has been

proved.
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For the proof of the second part of this theorem we will make use
of the assumption that Tr[S(w,C)] is a convex function. One can find a
definition of convex functions and some of their properties in [50]7.
We cannot establish this hypothesis as a fact yet, but we have been unable
to find an example where it was not true. Let us state here two proper-

ties of a convex function defined on bounded, closed convex region € .
a) Let f(x) be a convex function over Q and let XysXy € Q. Then for
every X € [0,1], H
F(axy + (1-0)x5) < Af(xp) + (1-2) F(xp) (2.3.6)
holds.

b) If f(x) has a maximum over Q,it is achieved at an extreme point of

2 .

Clearly, from our assumptions and hypotheses

Trlsg(€)] 2 Trlsg(C)]y o 2 Trls*™(C)] , CEC (2.3.7)

where use has been made of property (b) stated above. (When k=0, the

]
set {wi' j=1,e0,2" } includes only the vertices of Q ).

For simplicity and clarity of the presentation, we will demonstrate
the fact that Tr[S:(C)] is a monotone decreasing sequence for n' =1}
(i.e., the closed, bounded, convex region is a line in R). We will make
use of Eq. (2.3.6), with X = 1/2, to correspond to an intermediate point
with two equidistant neighboring points. The value of the function at an

intermediate point can}be represented by
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X%y 1
f(X3) = f(—-?——ﬁ = 7-[f(x]) + f(xz)] -2 8.2 >0 (2.3.8)

To prove the monotone decreasing feature of the sequence, Tr[S;(C)], one

would have to show that

TrLSE(C)] 2 TrlS,, (€)1, k=0,1,-+-, CEC  (2.3.9)

Let us define

-t
]

Trls(w;,C)1 i=1,---,N> CEC (2.3.10)

Let us define
94

Tr[S(wi,C)] R i =N+, ct ol (2.3.11)

as the value of Tr[S(w,C)] evaluated at the points included in the k+1St

set but not in the kth set, Now define Ak as
= TrlSE(0)] - Trlsy,(0)] , cec (2.3.12)

gs. (2.3.3), (2.3.4), (2.3.10), (2.3.11), and (2.3.12) yield

_ ] l; 1k NE” ] (2.3.13)
L f., + g. 2.3.13
PRI e N PN 4
Making use of Eq. (2.3.8) yields
N N N, -1
k k k f.+f,
1 1 i i+l
- [§ f, + (- e 1 )1(2.3.14)
Noih TR L AL it
Rearrangement yields
—— [(2X-1) +f“" %k ] (2.3.15)
A 2 -1 - f. +N,E 2.3.15

where
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zk
Eq. (2.3.8) yields
- . _ k
f] = Aif-l + (1'A_i)fN - 61 Y E.' Z 0, 1 -2, ,2 (2'3-]7)
where
_i-1 _ k
Ai == i=2,004,2 (2.3.18)
2
Egs. (2.3.15), (2.3.16), (2.3.17), and (2.3.18) yield
E E : "
1 2
A, = + (2.3.19)
ko Newp NNy -
where zk
E, = es > 0 (2.3.20)
Hence, from Egqs. (2.3.15), (2.3.19), and (2.3.20)
Ak_>_0 . k=0,1,+--, (2.3.21)

which proves that Tr[S:(C)] is a monotone decreasing sequence.

We have shown that Tr[S*(C)] (as defined by Eq. (2.2.6)) is
bounded from above by Tr[S:(w,C)] and that this upper bound decreases
as k increases. Our experience shows that the relative difference
Ak/Tr[S*(C)], becomes small even for fairly small values of k.

An algorithm that makes use of the above theorem as a way to
overcome the computational difficulties involved in solving Egs. . (2.2.2),

(2.2.18), and (2.2.20) is presented in Section 2.4.
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2.4 Algorithm for the Minimum Discrete Expected Cost Design Method

In this section we will present an algorithm for the design of a

constant gain feedback control 1law, using the minimum expected cost.

design technique.

The a]gokithm is as follows:
Input: A(w): B(w)s H(w): §2, p(w)’ XO' Q, R, N.

Select points w;€ @, i=1,---,N distributed over Q.

(Points on the boundary of @ should be included.)

Evaluate
p(w])
Os =

i i=1,000 N (2.4.1)

where M is defined as
N _
M= z p(u)i) (2.4.2)
i=1
Choose COG C such that [A(“’i) - B(“’i)coH(“’i)] is a stability matrix
for every wy € Q, i=1,-+-,N. The choice of C0 can be done by an
alternate design technique (the multistep guaranteed cost control,
for example) or by trial and error. Set j equal to zero.
Use a quasi-Newton method [52],[53] to find the value of C € C which
minimizes 3N(C). The program [54] makes use of the gradient DN(C) and
requires the evaluation of SN(C). Determination of DN(C), 3N(C) re-
quires the positive-definite solutions S(wi’cj) and L(wi'cj) to the
following Lyapunov equations:

S(w-i ’CJ)[A(“)1) - B(w'l )CjH(w'i )1+ [A(w.i) - B(wi )ch(mi )]T S(w'i ’Cj)

= -Q-Hl T T
Q-H (w;) CRCH(w;)s i=1,000,N ;€C  (2.4.3)
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L{ugo€5) [ACoy ) =Bl JC3H () 17+ [ACw;) - Blag )€yl ] Ll aC5)

= -XO s 1=1,-°,N, CjE c (2.4.4)

Eqs. (2.4.3) and (2.4.4) are adjoint. Thus, when the algorithm of
Bartels and Stewart [40] is used to solve Eq. (2.4.3), a transforma-
tion suggested in [51] enables the efficient solution of Eq. (2.4.4)

at the same time. Evaluate

N
2 Trls(u;Ci)X 0 , CEc (2.4.5)

Wy = 2 j

DN(C.)

N
T
; 2{RCj[i£]H(wi)L(mi,Cj)H (wi)-ai]

N |
T T
[121 B (w'i)s(m'i’cj) L(wi ,Cj.)H (wi).ai]} , CJG C (2.4.5)

3N(Cj), it follows from Theorem 2.1, is an approximation to G(Cj) in
Eq. (2.2.12). Dy(C;) is the gradient of SN(C) with respect to C,

evaluated at Cj. This follows from Egs. (2.2.18) and (2.2.20).

6. Check the closed-loop system behavior over 2, achieved with the use

of the control law

u(t) = -Cy(t) (2.4.7)

If the results are satisfactory stop, otherwise increase N and go to

step 2.

The algorithm described above for the diScrete-va1ued uncertain
parameter minimum expected cost design method is similar in philosophy to

the design concept described in [15].



-52-

The choice of N and the selection ofc% € Q, i=1,-++,N, although
important, are not critical for a successful design. Our experience has
shown that the sensitivity of the controller design and closed-loop sys-
tem performance with respect to N is not great [23]. This is demonstrated

in our examples in Section 2.5 and Section 3.2.
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2.5 Examples

Two examples of the use of the minimum discrete expected cost
method will be presented here, a second-order system that was considered
in [13] and was presented in Section 1.5, and a third-order system,
similar to a problem considered in [21]. The application of this design
method to a higher order system was presented in [23] and will be dis-

cussed in Chapter 3.

i) A Second-Order System

Consider a second-order system of the form (2.1.1) with

0 1 0 1 0
Aw) = , B= , H= (2.5.1)
-2+w] 1+w2 1 0 1
where
p(w-') - -5 ] -] < w'l ..<-.]
(2.5.2
) = 4 o Tyl )
The weighting matrices Q and R are
1 0
Q= s R=10 (2.5.3)
0 1
The controller gain matrix

was calculated using various values of N to evaluate 3N(C). An

analytical expression for S(C) can be obtained in this particular example
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[13]. Numerical techniques are needed only for minimizing 3(C) with re-
spect to C. ReSults generated by this means are denoted MEC, while MDEC(30)
and MDEC(99) denote results generated by the minimum discrete expected cost
method using 30 and 99 points, respectively. For comparison, results ob-
tained using the linear-quadratic regulator approach (denoted as LQR) are
also presented. In this approach, the parameters are assumed to have their
nominal values--uncertainty is ignored. In Table 2.1, the controller

gqins and the trace of the cost function for w = 0 are presented. In

Table 2.2, the eigenvalues of the closed-loop system matrix A(w)-BC are
evaluated for five values of the uncertain parameter vector w . In Section
1.5, the same problem was solved using the guaranteed cost control method

and the multistep guaranteed cost control method.

Table 2.1 Controller Feedback Gains and Trace of Cost Matrix for w = 0
for the Various Design Methods — Second-Order Example

Design

Me thod “h C12 Tr[s(0,C)]
LQR 0.02 2.07 62
MEC 0.38 3.69 74
MDEC (99) 0.42 3.84 76

MDEC(30) 0.45 3.97 77
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Table 2.2 Closed-Loop Eigenvalues for Various Parameter Values Using
Feedback Gains Calculated by the Various Methods — Second-
Order Example

Design L N [ ML
Method 0 -1 s 15 -1

LQR -.5441,32] -1.04+1,4j +.21£1.73j  +.21+ .99 -.82,-1.26
MEC -1.34 .76] -1.66,-2.02 -.59%1.74j -.59+1.01j -.42,-3.27
MDEC(99) -1.42% .63 -1.40,-2.44  -.67£1.725 -.67¢ .98 -.41,-3.43
MDEC(30) -1.49+ . .49j -1.28,-2.69 -.74%1.70§ -.74x .95j -.41,-3.57

Note that the standard linear-quadratic regulator approach produces

\ -1 1
an unstable closed-loop system for w =[] s]or w =[] 5].

ii) A Third-Order System

Consider a third-order system of the form (2.1.1) with

0o 1 0 0 .
Alw) =0 0 11, B={ 0 , H=1 (2.5.5)
0 0 w ]
where
p(w) = 1/3, -1.5<w<1.5 -
(2.5.6)
The weighting matrices Q and R are:
1 0 O
=y 0 0 01, R=1 (2.5.7)
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The controller gain matrix
C = [Cn C12 C]3] (2.5.8)

was calculated using various numbers of points to evaluate 3N(C). In
Table 2.3, the controller gains and the value of SN(C) are presented. In
Table 2.4, the eigenvalues of the closed-loop system matrix when the un-

certain parameter assumes its nominal value are presented.

~

Table 2.3 Controller Feedback Gains and JN(C) Using Various Numbers of
Points in Parameter Space

No. of Points C]] (:]2 C]3 JN(C)
3 1.52 2.96 3.94 10.293

7 1.44 2.76 3.53 9.414

1 1.41 2.7 3.42 9.214

31 1.38 2.65 3.30 9.005

Table 2.4 Closed-Loop Eigenvalues for Nominal Parameter Values Using
Various Numbers of Points in Parameter Space

No. of Points Closed-Loop Eigenvalues for w = 0
3 -.39 +.57j -3.15
7 -.41 +.60) -2.7
1 -.42 +.,61) -2.59

31 -.43£,62j -2.45




-57-

Note the relatively small changes in the feedback gains and the

cost function when the number of points is increased.
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3. A COMPARISON OF SEVERAL DESIGN METHODS
FOR SYSTEMS WITH UNCERTAIN PARAMETERS

3.1 Description of the Various Design Methods

In Chapters 1'and 2 we presented the multistep guaranteed cost con-
trol design method and the minimum discrete expected cost design method.
A survey of several design methods for systems with uncertain parameters
was done by Harvey and Pope [19 ]. A comparative assessment of seven such
methods was made in the context of wing load alleviation for the C-5A,
with uncertainties assumed to exist in dynamic pressure, structural damping
and frequency, and the stability derivative Mw' The techniques investi-
gated were referred to as the additive noise design, the minimax design
[20] the multiplant design, the sensitivity vector augmentation design
({161, for example), the state dependent noise design, the mismatch estim-
ation design, and the uncértainty weighting design. Most of the methods
were found to be at least somewhat burdensome computationally, and most did
not produce control system designs judged to be significant 1mprovements
over a standard linear-quadratic synthesis design [41]which assumes pre-
cisely known parameters. The uncertainty weighting and minimax techniques
were judged to be generally superior to the other approaches. In this
chapter the minimax method, the uncertainty weighting method, and the
standard linear-quadratic synthesis method, the gquaranteed cost control
method, the multistep guaranteed cost control method, and the minimum dis-
crete expected cost design method are compared. The notation used follows

that in Sections 1.1 and 2.1.
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Let us describe the various design methods:

Standard Linear-Quadratic Regulator Design Method

The standard ]inear—quadratic regulator design, as described in
[41],bases the choice of controller feedback gains on nominal parameter
values. Parameter uncertainties are not explicitly taken into account
in the design process. The controller gains are determined by finding

the positive definite solution to the algebraic Riccati equation

SA. + AT

-1.T o
ot Ay S-SR B'S+Q=0 (3.1.1)

and then evaluating

¢ =-R"'87s (3.1.2)

Under the controllability, observability, and positivity assumptions

made above, a unique positive definite solution to the algebraic Riccati
equation is guaranteed to exist [ 25]. It is easily determined using

the methodAof eigenvector decomposition [37 ]. The resulting closed-Tloop
system is guaranteed to be stable when the uncertain parameters lie
within some neighborhood of their nominal values. In many situations,

though, this neighborhood does not include all of Q.

Minimax Method

The goal of the minimax design method [19], [20]. is to choose feed-
back gains so as to optimize the performance when the uncertain param-
eters assume their most unfavorable possible values. Specifically, we

Rmxn

seek the gain set C*€ such that

Tr[XoS(w,,C0] < TriX S(w,,C)], ¢ ¢ € R™" (3.1.3)
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where wwe Q is such that

TrX S(w,,C")] 2 TriX S(w,tM)], Yuweq (3.1.4)

If w, has been determined subject to no constraints on C, determination
of C* is simple--the problem reduces to a standard linear-quadratic
regulator design with w = W, e Determination of W, is quite expensive
computationally, in general. In cases where Q, the region of parameter
uncertainty, is a polygon in Rnl space, and A(w) has the structure of
Eq. (1.1.5), w, will 1ie at one of the vertices of Q [55]. When there.
are no constraints imposed on C, o, might not exist, as will be shown

Rmxn

later. When C is restricted to be in a subset C & » W, may exist, but

W
then the determination of C" at the point W, becomes a complicated

process [19],[20].

Uncertainty Weighting Method

The uncertainty weighting method was suggested by Porter in [19].
The basic idea is to minimizé the difference in output occurring when
pérameters assume their worst possible values, i.e., w = W, s relative to
when they assume their nominal values.

One can describe the dynamics of the corresponding state variations
as follows:

AX = Afw, )bx +_(A(ww) - Ao)xo (3.1.5)
where X denotes the state vector when the parameters assume their nominal
values.

In order to keep Ax small one would like to keep [A(ww)- Ao]x0

small. Thus, let us define

% & [Alw,) - A Ix | (3.1.6)
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and augment the cost functional J by including the term

XX | (3.1.7)

in it. Hence, once w, is known (it can be found with the minimax method), a
standard linear-quadratic regulator design is carried out with w = 0. The
state weighting matrix Q, used in the design process is replaced by the

matrix

Q + ATA(w,) - AT AlAGw,) - A (3.1.8)

where A > Oris a design parameter to be selected. The usefulness of this
method in any given situation depends upon the existence of w,, and upon
one's ability to identify it.

Guaranteed Cost Control Method

With the guaranteed cost control design method [21 ], controller
gains are determined by

¢ =-r"18Ts (3.1.9)

where S is the solution to the matrix equation

1

SA, + AlS- SBR™IBTS + Q + U(S) = 0O (3.1.10)

U(S) can be constructed in accordance with Eqs. (1.2.18)-(1.2.20)
or in accordance with the procedure described in Appendix A, whichever is
suitable. Eq. (3.1.10) can be solved by an extension of Kleinman's
method described in Section 1.5.

New Methods

The multistep guaranteed cost control design method and the minimum

discrete expected cost are presented in Chapters 1 and 2, respectively.
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3.2 Design of a Fifth-Order Lateral Autopilot for a Remotely Piloted
Vehicle

One may describe the lateral dynamics of a remotely piloted vehicle

by
x = Alw)x + Bu s t>0 (3.2.1)
Alw) = AO + wlA'I (3.2.2)
with
T CnGa— 2-0
X = [VypsTsd,8.Jou =38 = ——rre 3.2.3
Lvsp.rs9,8,] a > ( )
where
v = component of vehicle velocity parallel to pitch axis
p = vehicle roll rate
r = vehicle yaw rate
¢ = vehicle roll angle
Ga = aileron deflection
Ga = commanded aileron deflection
c
Ch. = dimensionless partial derivative of moment about vehicle
6a yaw axis with respect to aileron deflection
and
-.85  25.47  -979.5 32.14 0
-.339 -8.789 1.765 0 59.89
A° = .021 -.547 -1.407 0 6.477 (3.2.4)
0 1 .0256 0 0
- 0 0 0 0 -20
[~ 0 0 0 0 0 O
0 ' 0o 0 o0 0 11.7Nn
B = 0 s A1 =f{ 0 0 0 0 3.22 (3.2.5)
0 0O 0 0 o0 O
L 20 0 0 0 0 O©
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-1.5 <w<0.5 ' (3.2.6)

The above perturbation equations describe the lateral dynamics of a par-
ticular remotely piloted vehicle which has no rudder. The aerodynamic:

derivative C“d is assumed to be an unknown constant within the range
d R

1.0 < Gy, <30, p(Cy, ) = .25 (3.2.7)
a a

for this flight condition. Its nominal value is assumed to be 2.0 (w=0).
The open-loop eigenvalues at nominal w are: -20.0, -9.90, -.56 +6.28],

-.035. The following féatures are desired of the closed-loop system:

1. The closed-loop system must be stable for all C"6 consistent with
Eq. (3.2.7). | |

2. The closed-loop poTes corresponding to vehicle (as opposed to ac-
tuator) dynamics should be in the vicinity of -5.0, -0.2, and

-1.4+3.13 when Cna takes on its nominal value.
: a

3. The sensitivity of closed-loop pole locations to changes in Ch

a
should be as small as possible.

In accordance with requirement 2, the desired closed-loop behavior

was modeled as

y=Lly . y = Hx (3.2.8)
where ’
-2.6 0 2 0
- 0 -2.8 0 -11.57
L 2.88 0 -2.6 0 (3.2.9)
0 1 0 0
1 0 0 0 0
- 0 1 0 0 0
H = 6o o 1 0o o (3.2.10)
. 0 0 0 1 0
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The performance functional was chosen to be of the same form as Eq.

(1.1.7), with

_ T
Q = (HA, - LH) Qy(HAO - LH) (3.2.11)
Qy = Diag(.01, .1, .01, .1) (3.2.12)
R = 2500 : (3.2.13)

The controller gain matrices

c=1[cC C C C C (3.2.14)

1 12 13 14 15]

calculated using each of the design methods along with the required CPU
times,are presented in Table 3.1. MDEC(21) and MDEC(6) denote the mini-
mum discrete expected cost method using 21 and 6 equally spaced and
equally weighted points in the region of parameter uncertainty Q .

Table 3.1 Controller Feedback Gains and CPU Time for the Various
Design Methods — Fifth-Order Example, One Uncertain Parameter

. CPU
Design
Method G %2 Ci3 Ga G .{;Qg)
LQR -.0029 - -,084 1.80 .013 .34 0.8
GCC -.017 -.10 2.84 -.023 4.96 3.7
MGCC -.0065 -.075 1.83 .012 1.24 33.3
MDEC(21) -.0091 - .093 .95 .081 .26 16.4
MDEC(6) -.0090 1 .84 .083 .28 7.3
MM No Solution
UW No Solution

Closed-Toop eigenvalues and the trace of the cost matrix when C"6
a
assumes its nominal value (w = 0) associated with the various design

methods are presented in Table 3.2. 1In Table 3.3, the three dominant
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closed-loop eigenvalues are given for the extreme values of w for the

various design methods.

Table 3.2 Closed-Loop Eigenvalues and Tface of Cost Matrix at Nominal
w for the Various Design Methods °

Design

Method - Closgd-Loop Eigenvalues Tr[S(0,C)]
LQR -19.74, -10.96, -3.30+5.23j, -.62 1660
GCC -117.1, - 9.90, -1.57%¢6.51j, -.10 2359
MGCC -41.28, -10.05, -2.14%6.22j, -.29 1803

MDEC(21) -15.92+10.60j, -2.00+7.31j, -.36 1998

MDEC(6) -16.27+10.78j, -1.86+7.38j, -.34 2096

The standard linear-quadratic regulator approach again produces an
unstable closed-loop system at an extreme value of the uncertain param-
eter. The guaranteed cost control, multistep guaranteed cost control,

and expected cost methods produce closed-loop systems which are stable at

the nominal and extreme parameter values. The guaranteed cost control
approach produces larger feedback gains than the other methods and re-
quires a very fast actuator (pole at -117.1). For the multistep guaran-
teed cost control method, the parameter u was chosen to be 0.0001, and
the sequence (pj, j=1,+-+,6) was chosen to be 0.375, 0.75, 0.8125,
0.875, 0.9375, 1.0. The undesirable features of the guaranteed cost
control design were avoided using the multistep guaranteed cost control
approach. The discrete expected cost designs based on 6 and 21 points
were both quite satisfactory and not significantly different from

each other. The minimum discrete expected cost methods were less costly
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Table 3.3 Dominant Closed-Loop Eigenvalues at Extreme Values of w for
the Various Design Methods

Design Dominant Closed-Loop Eigenvalues
Method w= -1.5 w= 0.5
LQR +.1345.08j, -.38 -5.17+4.273, -.70
GCC -.48+5,65j, -.08 -1.94x6.74j, -.11
MGCC -.34£5.40j, -.21 -2.86+6.36j, -.30
MDEC(21) -.915.103, -.39 -2.41+7.87j, -.35
MDEC(6) ~-.97¢5.17§, -.36 -2.19+7.95j, ~-.33

computationally than the multistep guaranteed cost control approach in
this example. The 33 seconds of CPU time associated with the latter
approach is still not particularly expensive, though. The minimax and
uncertainty weighting methods failed when applied to the problem, since
there is no o, € 2 consistent with Eqs. (3.1.3) and (3.1.4).

The discussion of the results obtained by the guaranteed cost
control method and the multistep guaranteed cost control method was
based on the assumption that Cnsa is an unknown constant within certain
bounds.

It should be noted that the multistep guaranteed cost control al-
gorithm would have produced the same feedback gains if Cnsa were assumed
to vary in some arbitrary manner within this range. The resulting
closed-loop system would be asymptotically stable for all such varia-
tions. Thus, for cases in which C"Ga is a function of angle of attack,
for example, which varies with time, this controller design would still
be applicable (as long as the small perturbation model for the lateral

dynamics is valid.)
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Let us reconsider the design of a lateral autopilot for the re-
motely piloted vehicle described above, with two uncertain parameters now,
instead of one. In addition to uncertainty in Ch. » we assume now Y ,

83 p
the side force due to roll rate, to be uncertain.

Let

22.90 < Yp_g 28.00 (3.2.15)

Thus, Eq. (3.2.2) is replaced by
Alw) = Ao + w]AI + szz (3.2.16)

with Ao’ A], Wy remaining as before, and

0 2.55 0 0 0]
A, = 6 06 o o O (3.2.17)
0 0 0 0 0
0 o0 0 0 0 |
and
T2w, 21, P(wz) = .5 (3.2.18)

The weighting matrices Q and R remain the same as in Eqs. (3.2.11)-
(3.2.13).

The controller gain matrix calculated using the standard linear
quadratic approach remains as in Table 3.1. In this approach the addition
of a second uncertain parameter makes no difference.

The minimax method and the uncertainty method failed again, since
there is no w, €9 consistent with Eqs. (3.1.3) and (3;].4). In Table 3.4,

the controller gain matrices, of the form (3.2.14), calculated using the
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guaranteed cost control design method, the multistep guaranteed cost
contro]lmethod, and the minimum discrete expected cost method, are pre-
sented. MDEC(36) and MDEC(4) denote the minimum discrete expected

cost method using 36 and 4 equally spaced and equally weighted points

in the region of parameter uncertainty Q .

Table 3.4 Controller Feedback Gains and CPU Time for the Various Design
Methods — Fifth-Order Example with Two Uncertain Parameters

Design CPU Time
Me thod th €12 C13 Ciq C1s (sec)
6CC -.037  -.18 5.55 -0 10.69 14.8
MGCC -.012  -.084 2.37 -.006  2.93 69.5
MDEC(36)  -.0089 .11 .84 .084 .27 74.6
MDEC(4) -.0082 .15 57 N .37 13.4

Closed-1oop eigenvalues and the trace of the cost matrix when C,

a
and Y_ assume their nominal values (w = 0),associated with the various

p
design methods, :are .presented in Table 3.5. The three dominant closed-
loop eigenvalues are given in Table 3.6 for the extreme values of w for
the various design methods.

- In carrying out the multistep guaranteed cost control design, a
predetermined sequence p., j=1,°**,6 was chosen: 0.375, 0.75,

J
0.8125, 0.875, 0,9375, 1.0. The parameter p was taken to be 1074,
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Table 3.5 Closed-Loop Eigenvalues and Trace of Cost Matrix at Nominal
w for the Various Design Methods

Design

Method Closed-Loop Eigenvalues Tr[S(O,C)].
GCC -231.6, -9.95 -1.60:6.56j, -.06 2801
MGCC - 76.0, -10.0, -1.79#%.47j, -.15 2057

MDEC(36) -16.23+10.88j, -1.86%7.38j, -.34 2093

MDEC(4) -17.55+11.39j, -1.47+7.43j, -.33 2443

Table 3.6 Dominant C]osedéLoop Eigenvalues at Two Extreme Values of w
for the Various Design Methods

Dominant Closed-Loop Eigenvalues

-1.5 .5
Design Method w= w=
-1 1

GCC -.49+5.58j, -.05 -1.98+6.77j, -.06
MGCC -.42+5,503, -.12 -2.26+6.74j, -.15
MDEC(36) -.98:5.16j, ~-.37 -2.16+£7.95§, ~-.33
MDEC(4) -1.06+5.38j, -.34 -1.63+7.98j, -.34

The CPU time for the minimum discrete expected cost method with
36 points in Q is 10 times larger than the time for the same design with
one uncertain parameter and 6 points in Q. The CPU time for the multistep
guaranteed cost control method grew by a factor of 2. The guaranteed cost
control method produces larger feedback gains than the other methods and

results in an overcontrolled closed-Toop system with one pole at -232 and

another at -.06. The minimum discrete expected cost method produces the
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smallest feedback gains and the best closed-loop pole 1ocations. One

should note that the feedback gains produced by MDEC(36) are very similar

to the feedback gains produced by MDEC(21) in Table 3.1, which may indi-

cate that the second uncertain parameter has no great influence on the

design. Although the feedback gains of the multistep guaranteed cost con-

trol method are smaller than those of the guaranteed cost control method,

they are larger than those produced by the minimum discrete expected cost

method and require a faster actuator (pole at -76.0). The minimum discrete

expected cost designs based on 4 (only the corner points included) and 36

points were both satisfactory and not significantly different from each other.
In applying the multistep guaranteed cost control approach to this

example, a predetermined sequence of P5 was used in step 9 in the MGCC

algorithm (Section 1.4), instead of pj produced by step 6. In order to use

step 6, the state weighting matrix Q was modified according to the proce-

dure described in Appendix B. The relative influence of C"Ga and Yp'on'the

nominal closed-loop design was evaluated, and it was found that while C"Ga

~is an important parameter for the design, Yp has no great influence on the

closed-loop design. Thus, a design based on uncertainty in C"Ga only, will

be applicable for cases when there is uncertainty in Yp within certain bounds.
It should be noted that an analysis of the lateral dynamics of this

specific vehicle shows that Y_ is not an influential parameter. Thus, the

P
multistep guaranteed cost control method enables us to confirm this analy-
sis, and can be used to determine the relative importance of uncertain

parameters in complex systems.
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3.3 Evaluation of Design Methods

In this section we describe the results of a qualitative and
quantitative evaluation of the five controller design methods that
were compared in this work. A design method will be judged to be
superior to another one when it produces a more desirable closed-loop
system behavior, and the level of effort that is required in the de-
sign does.not compromise its usefulness.

Several criteria which reflect important capabilities that a de-
sign method should possess are defined below for our evaluation. Throughout
the following discussion we refer to systems which follow the'represén-
tation of Section 1.1 or Section 2.1. -

1. Information Required Regarding Uncertainty

This item refers to what type of information about parameter un-
certainty is required by the design method. The guaranteed cost control
method, the multistep guaranteed cost control method, the minimax
method, and the uncertainty weighting method require only an a priori
knowledge of the bounded region of parameter uncertainty Q. The
minimum discrete expected cost method requires and makes explicit use
of a weighting function throughout Q, which may be chosen to correspond
to a probability density function.

The gquaranteed cost control method and the multistep guaranteed
cost control method accept a time-varying uncertain parameter vector
w(t) € Q without requiring explicit knowledge of w(t). A1l the other

methods accept only a time invariant vector w.
2. Computational Load

A11 the design methods discussed here deal with an optimal
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controller design for multivariable systems via digital computer,

this item refers to the computational load required by each method.

In cases where W, exists, the minimax and the uncertainty weighting
methods require the least amount of computation. The identification

of W, requires the solution of an algebraic Riccati equation at each ver-
.tex of @, in conjunction with solution of a Lyapunov equation at all the
other vertices. The solution of these matrix equations is well documented
and is very efficient. Clearly, the computational load will increase con-
siderably as the number of uncertain parameters n' increases.

The computational load is considerably higher for the guaranteed
cost control and the multistep guaranteed cost control methods, especially
for the latter. The design process reqﬁires the iterative solution of a
modified Riccati equation with an extra term U(S) that needs to be |

evaluated each iteration. For the multistep guaranteed cost control

method this procedure is repeated several times for an increasing range
of parameter uncertainty. The number of uncertain parameters n' in-
fluences only the construction of U(S), which is not very costly compu-
tationally. Thus, those two methods are more sensitive, from the point
of view of computational effort, to the order of the system n than to
the number of uncertain parameters n'.

The minimum discrete expected cost method seems to require the
largest computational load in general. It requires the solution of a
Lyapunov equation and an adjoint Lyapunov eqdation at each point consid-
ered in parameter space, for the cost and gradient evaluation. Then, a
numerical minimization procedure must be used in order to determine C*.

The computational load for this method increases considerably as the number
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of points selected to represent the range of uncertainty is increased.
Thus, this method will be more sensitive to the number of uncertain param-

eters n' than to the order of the system n.

3. Treatment of Engineering Design Criteria

As mentioned above, for a design method to be acceptable, it has
to produce a closed-loop system that has various desired features. These
features include stability of the closed-loop system for ajl possible
values of uncertain parameters, a satisfactory transient response at
nominal and off-nominal points, and an acceptable level of control effort.
Of all the methods considered here, only the uncertainty weighting method
does not explicitly ensure stability of the c]osed-]obp system for all
possible values of w. For the minimax method, when W, exists the stabil-
ity criterion is satisfied. As was shown in our fifth-order example,
however, such an o, does not always exist. The guaranteed cost control,
multistep guaranteed cost control, and minimum discrete expected cost
methods provide a stable closed-loop system whenever a solution to the
design problem exists,

The transient response criterion is dealt with only at the W,
point in the minimax design method. The uncertainty weighting method
deals with the transient response only at the nominal point. The multi-
step guaranteed cost control method can emphasize transient response at
nominal operating conditions if u is chosen to be small. The minimum
discrete expected cost method can be used to shape the transient re-
sponse in any one portion of the parameter uncertainty range. The guar-
anteed cost control design method does not directly deal with transient

response.
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As was shown in our exaﬁples in Section 3.2 and in [22],[23], the
minimax method and the guaranteed cost control method tend to produce
relatively large controller feedback gains, relatively large control
effort, and overdamped closed-loop poles. The three other methods,
when a successful design can be achieved, tend to produce reasonable

controller feedback gains and control effort.

4. Insight into Design Problem

We feel that a good design method should provide the designer
with some data that will shed light on critical design problems. The
multistep guaranteed cost control method is the on]y'method among those
considered here which satisfies this criterion. Evaluation of P3 (Egs.
(1.4.3)-(1.4.5)) gives the range of parameter uncertainty for which the
design is stable or optimal. The determination of Pj can be done for each
uncertain parameter individually, assuming the other parameters to be
precisely known. This enabies the designer to evaluate the relative im-
portance of each parameter among a group of parameters. Among the other

methods, the minimax method gives the worst operating condition of the

system, which may be of interest to the designer.

5. Generality of Design Problem

Certain assumptions must hold in order to apply each design method.
The more general a problem that can be handled by a design method, the
greater its versatility. Among the methods considered here, the minimum
discrete expected cost method will accept the most general problem. There

are no restrictions on the structure of the system,nor on the way the
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uncertain parameters influence the system dynamics. The range of
parameter uncertainty  can have any shape in R"'. The design
method can handle full state feedback and output feedback with-

out any modification or chanae 1in the procedure. The minimax method,
and consequently the uncertainty weighting method that uses W, found

by the minimax procedure, require the structure of A(w) to follow Eq.
(1.1.5) and restrict  to be a poiygon in R" . These require-
ments are needed in order to reduce the computational burden in deter-
mining W, [19]. These methods handle the full state feedback cases, but
the output feedback case requires modification of the procedures. The
guaranteed cost control method and the multistep guaranteed cost control
method require A(w) to satisfy Eq. (1.1.5) and restrict Q to be a polygon
in R"'. These requirements are needed in order to construct U(S). Full
state feedback cases are handled by these two methods. Although output
feedback cases can be handled also (Section 1.2), this seems impractical

because of computational requirements.

6. General Comments

It is clear that each of the design methods discussed here has
advantages and disadvantages. We will comment here on some of the fea-
tures of each method that have not been discussed above.

The minimax method: In one of our examples, a point W, which
satisfies Egs. (3.1.3) and (3.1.4) does not exist. If there exists a
subset C € Rmxn_, such that for every C € C the closed-loop system matrix
[A(w) - BC] is stable for every w &€ R, and one seeks C*€ C so as to

satisfy Egs. (3.1.3) and (3.1.4), then such an w, may exist. When this
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restriction in the allowahle gain set is imposed, the solution becomes
more complicated. One cannot use the standard linear-quadratic approach
at each vertex of @, but must instead use a numerical minimization tech-
nique which increases the computational load considerably.

The uncertainty weighting method: The use of this method requires
the existence of and determination of W, This method usually [19],[23]
produces a better closed-loop design than the minimax method, without
_ substantial increase in the computational load.

The guaranteed cost control method: As has been demonstrated
throughout this work, this method tends to produce an overcontrolled
closed-loop system. Computationally it requires less time than the mul-
tistep guaranteed cost control method and can be used as a way to get a
set of gains that stabilize the closed-loop system for all possible
values of w (assuming that such a set exists). This method does not re-
quire any initial gain matrix for starting the optimization procedure,
and can treat constant uncertain parameter vector as well as time-varyin§
vector.

The multistep guaranteed cost control method: In all the examples
we have studied, this method has been found to perform well. Although
the computational load is high compared to that of some of the other
methods, it is by no means objectionable. This method seems to be attrac-
tive for low dimensional systems, but with a large number of uncertain
parameters. Like the guaranteed cost control method, this method does
not require an initial gain and can treat constant as well as timé-

varying uncertain parameter vectors.
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The minimum discrete expected cost method: The main problem
with this method is the requirement for an initial gain matrix Co for
starting the minimization procedure. This gain matrix C0 should sta-
bilize the closed-loop system for all possible values of w. It is
not clear how to find such a matrix, in general. This method seems
more practical for high dimensional systems with a small number of un-
certain parameters.

A summary of the evaluation of the five design methods investi-

gated here versus these five criteria is shown in Table 3.7.
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Conclusion
In thié thesis two new techniques for optimally designing constant
gain feedback controllers for linear systems with large parameter uncer-
tainty have been developed. The first is a genera11ied form of the
guaranteed cost control method, based on general theorems derived here,
which allows treatment of more general systems than can be handled with
the previously published guaranteed cost control approach of Chang and
Peng [21]. Output feedback cases can be handled ana the control dis-
tribution matrix is allowed to have a more general form of parameter un-
certainty. This generalization eliminates certain limitations such as
restrictions on the shape of the uncertain parameter region, for example,
and thus makes the method more readily usable for engineering designs.
The new theory is accompanied by development and demonstration of a
computational procedure. An algorithm has been developed to analyze the
effect of parameter uncertainty on closed-loop system stability. An
extension of this algorithm, based on the multistep guaranteed cost con-
trol method, produces constant gain feedback controllers which result in
a stable closed-loop system for all values of the uncertain parameters
within some bounded range, the extent of which is easily determinable.
Multistep guaranteed cost control designs are shown to overcome the over-
controlled behavior often associated with the guaranteed cost control de-
signs and to possess some of the desirable features (infinite gain margin,
phase margin of at least 60°, etc.) associated with conventional optim-
ally designed systems assuming fixed parameters.
The minimum discrete expected cost method is the second method
developed in this work. It is based on the minimum expected cost approach

due to Ly and Cannon [14]. The minimum discrete expected cost method
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is shown to be an easily implementable method. Only a modest number of
points in the range of parameter uncertainty is needed to achieve a satis-
factory design. An algorithm for the implementation of this method is
developed, and two examples are carried out to demonstrate its usefulness.

Chapter 3 presents an extensive comparison and evaluation of the
two new methods, together with other recommended techniques for control
law design for systems with uncertain parameters: the minimax method,
the uncertainty weighting method, and the guaranteed cost control method.
Specifically, the design of constant gain feedback controllers for a
fifth-order lateral autopilot for an RPV with oné or two uncertain param-
eters is performed using the five different methods. Two of the methods,
the minimax method and the uncertainty weighting method, which had been
recommended based on earlier tests [19], failed when applied to the
fifth-order examples in this study. The reason is that in our tests there
is no point in the specified region of parameter uncertainty with the de-
sired minimax property. Of the three other methods considered in the com-
parison, the guaranteed cost control method produced an unacceptable
control systeh design due to the large gains and large control effort
required. The two new methods, the multistep guaranteed cost control
method and the minimum discrete expected cost method, both produced accep-
table designs without any objectionable computational Tload.

A detailed evaluation of each of the five methods with regard to

five criteria is done in Chapter 3. Recommendations fegarding the use of

each method are presented.



10.

-81-

REFERENCES

Roskam, J., Flight Dynamics of Rigid and Elastic Airplanes, Part
One, Self-Published, Lawrence, Kansas, 1973.

Landau, I. D., "Model Reference Adaptive Systems--A Survey," Trans.
of ASME J. Dynamic Systems, Measurement, and Control, Vol. 94, June

1972, pp. 119-132.

Hall, W. E. and Gupta, N. K., "System Identification for Nonlinear
Aerodynamic Flight Regimes," J. Spacecraft and Rockets, Vol. 14,
February 1977, pp. 73-80.

Gupta, N. K., Hall, W. E.,Jr., and Trankle, T. L., "Advanced Methods
of Model Structure Determination from Test Data," J. Guidance and

Control, Vol. 1, May-June 1978, pp. 197-204.

Horowitz, I. M., Synthesis of Feedback Systems, Academic Press, New
York, 1963.

Horowitz, I. M., "Optimum Loop Transfer Function in Single-Loop
Minimum-Phase Feedback Systems," Int. J. Control, Vol. 18, July 1973,
pp. 97-113.

Shaked, U. and MacFarlane, A.G.J., "Design of Linear Multivariable
Systems for Stability under Large Parameter Uncertainty," Proc. 4th

IFAC Int. Symposium Multivariable Technological Systems, Pergamon

Press, Oxford, pp. 149-157.

Doyle, J. C., "Robustness of Multiloop Linear Feedback Systems," Proc.
IEEE Decision and Control Conference, San Diego, CA, January 1979,
pp. 12-17.

Hadass, Z., "Design of State Feedback Controllers Including Sensitivity
Reduction with Applications to Precision Pointing," SUDAAR No. 482,
Stanford University, Stanford, CA, August 1974 .

Hadass, Z. and Powell, J. D., "Design Method for Minimizing Sensitivity
to Plant Parameter Variation," AIAA J., Vol. 13, No. 10, October 1975,
pp. 1295-1303.



1.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

-82-

Kleinman, D. L. and Rao, P.K., "An Information Matrix Approach for
Aircraft Parameter-Insensitive Control," Proc. 1977 IEEE Conf. on
Decision and Control, Vol. 1, New Orleans, LA, Dec. 1977, pp. 316-325.

Palsson, T. and Whitaker, H. P., "Parameter Uncertainties in Control
System Design," Proc. JACC, Stanford, CA, August 1972, pp. 248-254,

Ly, U., "A Direct Method for Designing Optimal Control Systems That
Are Insensitive to Arbitrarily Large Changes in Physical Parameters,"
Ae. Eng. Thesis, California Institute of Technology, Pasadena, CA,
August 1977.

Ly, U. and Cannon, R. H., Jr., "A Direct Method for Designing Robust
Optimal Control Systems," Proc. AIAA Guidance_and Control Conference,
Palo Alto, CA, August 1978, pp. 440-448.

Heath, R. E. and Dillow, J. D., "Incomplete Feedback Control-Linear
Systems with Random Parameters," Proc. IEEE Conf. Decision and Control,
Phoenix, AZ, Nov. 1974, pp. 220-224.

Kreindler, E., "On Minimization of Trajectory Sensitivity," Int. J.
Control, Vol. 8, July 1968, pp. 653-658.

Kreindler, E., "On the Definition and Application of the Sensitivity
Function," J. Franklin Inst., Vol. 285, No. 1, January 1968, pp.26-36.

Kreindler, E., “Closed Loop Sensitivity Reduction of Linear Opfimal
Control Systems," IEEE Trans. Automat. Contr., Vol. AC-13, June 1968,
pp. 254-262.

Harvey, C. A. and Pope, R. E., "Study of Synthesis Techniques for Insen-
sitive Aircraft Control Systems," NASA CR-2803, April 1977.

Salmon, D. M., "Minimax Controller Design," IEEE Trans. Automat. Contr.,
Vol. AC-13, August 1968, pp. 369-373.

Chang, S.S.L. and Peng, T.K.C., "Adaptive Guaranteed Cost Control of
Systems with Uncertain Parameters," IEEE Trans. Automat. Contr., Vol.
AC-17, August 1972, pp. 474-483.

Vinkler, A. and Wood, L. J., “"Guaranteed Cost Control of Linear Systems
with Uncertain Parameters--Application to Remotely Piloted Vehicle
Flight Control Systems," Proc. AIAA Guidance and Control Conf., Palo
Alto, CA, August 1978, pp. 226-234.




-83-~

23. Vinkler, A. and Wood, L. J., "A Comparison of Several Techniques for

24.
25.

26.

27.
28.
29.

30.

31.

32.

33.

34.

Designing Controllers of Uncertain Dynamic Systems," Proc. IEEE Conf.
Decision _and Control, San Diego, CA, Jan. 1979, pp. 31-38.

Anderson, B.D.0. and Moore, J. B., Linear Optimal Control, Prentice-
Hall, Englewood Cliffs, N.J., 1971.

Barnett, S. and Storey, C., Matrix Methods in Stability Theory,
Thomas Nelson and Sons, London, 1970.

Wu, Y. W. and Chang, S.S.L., "Guaranteed Cost Control and Guaranteed
Error Estimation of Stochastic Systems with Uncertain Parameters,"
Proc. IEEE Conf. Decision and Control, Phoenix, AZ, Nov. 1974, pp.
214-219.

Jain, B. N., "Guaranteed Error Estimation in Uncertain Systems,"
IEEE Trans. Automat. Contr., Vol. AC-20, April 1975, pp. 230-232.

Peng, T. K., "Invariance and Stability for Bounded Uncertain Sys tems,"
SIAM J. Control, Vol. 10, No. 4, Nov. 1972, pp. 679-690.

Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems, Wiley-
Interscience, New York, 1972.

Kawahata, N., "Linear Control System Optimization by Optimal Selec-
tion of the Weighting Matrices in Quadratic Cost Functions," PhD
Dissertation, Princeton University, Princeton, New Jersey, 1972.

Wong, P. K. and Athans, M., “Closed-Loop Structural Stability for
Linear-Quadratic Optimal Systems," IEEE Trans. Automat. Contr., Vol.
AC-22, Feb. 1977, pp. 94-99.

Safonov, M. G. and Athans, M., "Gain and Phase Margin for Multiloop
LQG Regulators," IEEE Trans. Automat. Contr., Vol. AC-22, April
1977, pp. 173-179.

Tyler, J. S., Jr., "The Characteristics of Model-Following Systems
as Synthesized by Optimal Control," IEEE Trans. Automat. Contr.,
Vol. AC-9, Oct. 1964, pp. 485-497.

Kreindler, E. and Rochschild, D., "Model Following in Linear Quadratic
Optimization," AIAA Jour., Vol. 14, July 1976, pp. 835-842.



35.

36.

37.

38.

39.

40’

41.

42,

43.

44,

45.

46.

-84-

Wonham, W. M., "Onh Pole Assignment in Multi-Input Controllable
Linear Systems," IEEE Trans. Automat. Contr., Vol. AC-12, Dec.
1967, pp. 660-665.

Potter, J. E., "Matrix Quadratic Solutions," SIAM J. Appl. Math.,
Vol. 14, No. 3, May 1966, pp. 496-501.

Hall, W. E., Jr. and Bryson, A, E., Jr., "Optimal Control and Filter
ter Synthesis by Eigenvector Decomposition," SUDAAR No.. 436,
Stanford University, Stanford, CA, Nov. 1971.

Kleinman, D. L., "On an Iterative Technique for Riccati Equation
Computations," IEEE Trans. Automat. Contr., Vol. AC-13, Feb. 1968,
pp. 114-115,

Isaacson, E. and Keller, H. B., Analysis of Numerical Methods, John
Wiley and Sons, New York, 1966.

Bartels, R. H. and Stewart, G. W., "Solution of the Matrix Equa-
tion AX+XB=C," Comm. of ACM, Vol. 15, Sept. 1972, pp. 820-826.

Bryson, A. E., Jr. and Ho, Y. C., Applied Optimal Control, Ha]stead,
New York, 1975. '

Aoki, M., Optimization of Stochastic Systems, Academic Press, New
York, 1967.

Aoki, M., "On Minimum of Maximum Expected Deviation from an Unstable
Equilibrium Position of a Randomly Perturbed Control System," IEEE
Trans. Automat. Contr., Vol. AC-7, March 1962, pp. 1-12.

Sworder, D. D., "A Study of the Relationship between Identification
and Optimization in Adaptive Control Problems," J. Franklin Inst.,
Vol. 281, March 1966, pp. 198-213.

Spang, H. A., "Optimum Control of an Unknown Linear Plant Using

Bayesian Estimation of the Error," IEEE Trans. Automat. Contr., Vol.
AC-10, Jan. 1965, pp. 80-83.

Locatelli, A. and Rinaldi, S., "Open- vs. Closed-Loop Implementa-
tion of Optimal Control," IEEE Trans. Auto. Contr., Vol. AC-14,
Oct. 1969, pp. 570-572.




47.

48.

49,

50.

51.

52.

53.

54,

55.

-85-

Papoulis, A., Probability, Random Variables, and Stochastic Proc-
esses, McGraw-Hill, New York, 1965.

Levine, W. S. and Athans, M., "On the Determination of the Optimal
Constant Output Feedback Gains for Linear Multivariable Systems,"
IEEE Trans. Automat. Contr., Vol. AC-15, Feb. 1970, pp. 44-48.

Kaplan, W., Advanced Calculus, Addison-Wesley, Reading, Mass.,
1959.

Luenberger, D. G. Introduction to Linear and Nonlinear Programming,
Addison-Wesley, Reading, Mass., 1973.

Kleinman, D. L. and Rao, P. K., "Extensions to the Bartels-Stewart
Algorithm for Linear Matrix Equations," IEEE Trans. Automat. Contr.
Vol. AC-23, Feb, 1978, pp. 85-87.

Fletcher, R., "Fortran Subroutines for Minimization by Quasi-Newton
Methods," Report AERE-R7125, Theoretical Physics Division, Atomic
Energy Research Establishment, Harwell, Berkshire, United Kingdom,
1972.

Gill, P. E. and Murray, W., "Quasi-Newton Methods for Unconstrained
Optimization," J. Math, and Its Applications, Vol. 9, 1972
pp. 91-108.

Devine, C. J., "Minimization of a Multivariable Function Using Der-
ivatives," JPL Fortran V Subprogram Directory, Edition 5, Feb.
1975, 1846-23, pp. 9.2-1-9.2-3.

Horisberger, H. P. and Belanger, P. R., "Regulators for Linear
Time Invariant Plants with Uncertain Parameters," IEEE Trans.
Automat. Contr., Vol. AC-21, Oct. 1976, pp. 705-708,




-86-

Appendix A
CONSTRUCTION OF U(S) FOR A NON-RECTANGULAR REGION Q

One Timitation of the guaranteed cost control design method and
the multistep guaranteed cost control method is the requirement that Q
be a rectangle in Rn', Eq. (1.1.3). This requirement is needed for the
construction of U(S) as defined by Eqs. (1.2.18)-(1.2.20). This con-
struction method was suggested in [21]. Another method was suggested
in [28], for which Eq. (1.1.3) must also be satisfied. In some engineer-
ing systems this restriciion on the shape of Q can limit the applicahility
of these design methods. In this appendix we will relax the restriction
on @ and allow it to be any convex polygon in Rn..

Throughout this appendix the assumptions of Section 1.1 hold.
Let us assume © to be a closed bounded convex polygon in R"' with 2

vertices which includes the origin. Thus Eq. (1.1.3) is replaced by
PTlu(t) + b < 0 t € [0,t,] (A.1)

where P is a constant (n' x £) matrix and b is a constant (£x1) vector
and

b; <0, i=1,:-,2 (A.2)

Let us seek a matrix functional U(S) such that

Tu(s)x > %70 3 w (£)(SA, +AIS)Ix , w(t)€ @, (A.3)

i=1
t € [0,4,]

holds for every x€ R". Let us define
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L{w,x) = xT[.E] wi(t) (SA1-+A1TS)] X (A.4)
i=

Clearly, L(w,x) is a scalar function, linear in Wy and quadratic in x,
It is known [50], that the maximum of a Tinear function defined over a
polygon will occur at one of the vertices of the polygon. Thus, the max-
imum of L(w,x) with respect to w will be at one of the vertices of Q.
For different x's, the maxima can occur at different vertices. In order
to construct U(S) such that (A.3) holds for every x < R", the fo]lowingb

procedure is suggested:

Let us denote the vertices of Q as wJ, j=l,+2,0. Let

. n . T . '
K= 7 wj(t) [SA;+A;S] , J=Tl,ee0n (A.5)
i=1
thus
L(wd,x) = xkx Y x€Rr" © (A.6)
Let us define
wW=0 (A.7)
j = j -l: i = '..’2,

where Nj is the orthogonal transformation which diagonalizes the sym-

metric matrix (UJ']-KJ):

J

1]
—
-

N
-
=

Tod=! _dw. =
Nj(U K )Nj Aj’ (A.9)

The matrix Ej is defined by
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g )
0 ., (r.), <0
- Jj'k
(Ej)kk ) (r;) (x;)
A » (Ay), 20
( Ik Ik > (A.10)
L(Ej)"‘ = 0 SRS
where (AJ.)k is the kth eigenvalue of (Uj'l-Kj). Let
u(s) = vt (A.11)

It remains to be shown that U(S) so constructed will satisfy Eq. (A.3) for

all weQand all x< rR", By construction,

u(s) = vt > , J=1, 2 (A.12)

(For two symmetric natrices A and B with the same dimension, A > B
means that C = A-B is positive-semidefinite matrix). This can be seen
when one notes that NJEJN} is a positive-semidefinite matrix for
j=1,+++,2 by construction.

Eqs. (A.5), (A.6), and (A.12) yield

T U(S)x 2 L{wd,x) . §=1,-ee,8, xeR"  (A.13)
But for some j
L(mjsX) 2 XT[121 w,(t)(SA,’ +AIS)]X ’ w(t) € Q, (A.14)

x € R"

Egs. (A.13) and (A.14) prove that U(S) as constructed here satisfies
Eq. (A.3).
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Appendix B
A STATE WEIGHTING MATRIX FOR THE MULTISTEP GUARANTEED
COST CONTROL ALGORITHM

One of the features of the multistep guaranteed cost control al-
gorithm is the ability to investigate the effects of parameter uncer-
tainty on closed-loop system stability. Determination of p in Eq. (1.4.3)
provides this information. A difficulty in this procedure may occur
when Q, the state weighting matrix, is a positive-semidefinite matrix
(instead of being a positive-definite one). In these cases, it may well
be that the smallest value of p > 0 which makes § in Eq. (1.4.3)
indefinite, will be found to be zero. One should recall that the choice
of Q was done so as to produce a satisfactdry nominal closed-loop design.
A way to modify this state weighting matrix so that the design algorithm
can provide useful information about closed-loop stability is sugges ted
here.

Let Q be a symmetric matrix defined by
Q=Q+eNEN'  , 13650 (B.1)

where € is an arbitrary chosen real constant, and N is the orthogonal

transformation which diagonalizes the symmetric matrix [U(SO) - QJ:
NTLU(S,) - QN = A | (B.2)

The matrix E is defined by



N
~ 0 , M <0
(E),, =
kk
( (B.3)
(E)jj= 0 itd
.

where ) 1is the kth eigenvalue of fu(s,) -ql.

a so defined will assume the role of the state weighting matrix
a in the multistep guaranteed cost control algorithm. It should be noted
that a is a positive-definite matrix whenever U(SO) is such a matrix.

This enables us to use in step 9, the values of p produced by step 6 of

the algorithm (Section 1.4).



