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ABSTRACT 

From the equations of hydrodynamics and electrodynamics, a system of a 

coupled nonlinear equations governing the propagation of plane electromag- 

netic waves in a collisionless electron plasma is obtained. It is shown that soli- 

tary wave solutions exist for both the longitudinal and transverse components 

of the elect,romagnetic field. It is found that the velocity of the electromagnetic 

vector solitary wave depends on the amplitudes of all components of the field 

linearly. The relations among the longitudinal and transverse components that 

support the solitary waves are determined for different values of plasma tem- 

perature. It is shown that while transverse solitary waves cannot exist, except 

when they are supported by longitudinal waves, the latter can exist by them- 

selves. The dynamics of the plasma electrons during the passage of a longitudi- 

nal wave is analyzed and the interaction of such waves with each other is stu- 

died. An upper bound on the amplitudes of these waves is obtained. The unique- 

ness and stability of the longitudinal waves are demonstrated, A Lagrangian 

density function and two conservation laws for the longitudinal wave equation 

are found. Frequency spectra of the solitary waves are calculated and their low 

frequency content is emphasized. 
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1. INTRODUCTION 

The study of electromagnetic wave propagation in a plasma, that is, in an  ion- 

ized gas, has been the subject of a large number of papers and books. We shall 

here only mention some monographs which contain extensive bibliographies, 

namely books by Ginzburg [1970], Tsytovich [1970], Lifschitz and Pitaevskii 

[1981] and Spitzer [1962]. Besides the fact that studies of electromagnetic wave 

propagation in plasma enhance our understanding about dispersive media, 

waves in plasma play an exceptionally important role in astrophysics and in the 

physics of the ionosphere [Ginzburg, 19791. Although the development of plasma 

wave theory began with the consideration of linear effects only, soon it was 

shown that a linear theory does not answer the fundamental question of how 

significant plasma instabilities are and of how they effect plasma parameters 

[Tsytovich, 1970, Ch.11. Moreover, a linear theory does not explain the conver- 

sion of longitudinal waves into transverse waves, which is a purely nonlinear 

effect that plays an important role in the interpretation of many astrophysical 

phenomena, such as chromospheric flares and the emission from supernovae, 

whose investigation can provide us with considerable information about the ori- 

gin of cosmic rays [Tsytovich, 1970, Ch, 11. Since the concept of solitary wave (or 

soliton), which is a product of nonlinear wave theory, was introduced in physics 

an extensive search for electromagnetic solitary waves has been undertaken in 

plasma physics, because of their very interesting and promising features, 

namely their consistent shape, their constant ~elocit~y, and their ability to 

interact cleanly. Based on Ambartsumian's hypothesis that stellar flares and 

other stellar instabilities are due to the energy transport from the core of the 

star (prestellar matter) to its outer layer, Papas [I9761 introduced the idea that 

this energy is transported by solitons. His idea is based on the fact that since 

the content of the star is plasma, which is a highly dispersive media, it is 



unlikely that ordinary electromagnetic waves could travel enormously large dis- 

tances through the stellar matter to the outer layer of the star, because they 

would disperse in the process of propagation and leave no trace on the surface 

of the star. When solitons release their energy in the chromosphere, the 

charged particles obtain enormous amounts of energy and therefore they start  

to radiate inordinately. The mechanism of such radiation most likely resembles 

the mechanism that produces a gigantic electromagnetic pulse due to high alti- 

tude nuclear explosion in the earth athmosphere, which has become the subject 

of considerable interest [Marable et al., 19721. 

Another important application of solitary waves in plasma is electromagnetic 

wave propagation in the ionosphere. This phenomenon can play an exceptional 

role in communication between spacecraft and earth, since there are limitations 

on the frequency of ordinary electromagnetic waves travelling through plasma 

[Papas, 1965, Ch. $1, The transmission of information through the ionosphere by 

means of solitary waves would be free of undesirable distortions due to non- 

linear and dispersive effects because solitary waves are remarkably stable enti- 

ties. The study of solitary waves in laboratory plasma has recently attracted 

much attention from the theoretical and the practical points of view. 

Derivations of equations governing electromagnetic wave propagation in 

plasma are based, generally speaking, on a combination of the Maxwell equa- 

tions that describe electromagnetic wave propagation and the hydrodynamic 

equations that characterize the dynamics of a plasma as a fluid. 

The present work represents the first, to the best of our knowledge, treat- 

ment of electromagnetic vector solitary waves in an unbiased plasma, where the 

study of the existence and properties of such vector fields is based on the 

Maxwell equations and the equations of hydrodynamics, including, as it will be 



shown later, pressure and nonlinear Lorentz force terms. By vector solitary wave 

we mean some electromagnetic field quantity, say electric field E, all com- 

ponents of which are solitary waves. The main difficulty here, as pointed out by 

Whitham [1973, pp. 213-2141, is the coupling between different components of 

the same vector field, which gives rise to the interaction between these com- 

ponents. 

In order to obtain a single (scalar) equation for some electromagnetic field 

quantity in a plasma different approaches are used in the literature to approxi- 

mate the hydrodynamic equations for various states of a plasma. The complex- 

ity and variety of approaches and assumptions are based, primarily, on the com- 

plex nature of a plasma itself, since it is characterized by electrical, mechanical 

and also thermal properties. Davis et al. [1958] in their study of hydromagnetic 

shock waves in a cold, collisionless plasma consider infinite plane compressional 

waves travelling perpendicular to a uniform biased magnetic field, where the 

transverse component of the electric field is taken to be a constant, and obtain 

a scalar solitary wave solution for a magnetic field in the direction of propaga- 

tion. A large number of papers investigate solitons in a cold collisionless plasma 

by assuming that these solitons are governed by the Korteweg de-Vries (KdV) 

equation: 

where u denotes the magnitude of some perturbation. Gardner and Morikawa 

[1960] arrive a t  (1-1) by considering only one component of the electric field in 

the first-order approximation of a collisionless cold plasma in a biased magnetic 

field, and by neglecting the pressure term in the equation of motion. Lamb 

[198O, Ch. 6.31, Lifschitz and Pitaevskii [19B1, Ch. 38, 391, Ikezi et al. [1970] 

obtain equation (1.1) for ion acoustic waves, that is for fluctuations in the ion 



density in a two-component plasma, using perturbation expansions for scalar 

electric field, ion velocity, and density, and ignoring the nonlinear Lorentz force. 

Again, using (1-1) as the equation for the finite perturbations in plasmas, 

Berezin and Karpman [1967] found the conditions for the decomposition of dis- 

turbances into solitons, and gave an heuristic method for predicting their 

number and speed. Zabusky and Kruskal [1965], assuming periodic initial condi- 

tions, observed nonlinear interaction among solitary wave pulses in their 

numerical investigation of KdV equation. Studying a turbulent plasma, Gibbons 

et al. [1977] make extensive use of the conservation laws to study interaction 

processes between ion acoustic waves and Langmuir solitons, which result from 

the equations describing the nonlinear state of plasma instability [Zakharov, 

19721. As in many other investigations they neglect the nonlinear Lorentz force 

in the hydrodynamic approximation. Solitary hydromagnetic waves, propagat- 

ing parallel and a t  an angle to a uniform magnetic field in a cold collision-free 

plasma were derived by Saffman [1961a] and Saffman [1961b], where it was con- 

cluded that in the latter case the solitary waves are unstable. The only experi- 

mental work, known to us, with regard to plasma solitons is work by Ikezi [1978], 

where using electric discharge in argon gas he obtains small amplitude ion- 

acoustic density solitons. 

It should be emphasized that in what follows we shall have in mind a nonrela- 

tivistic gaseous plasma for the description of which it is sufficient to use the 

classical approximations. S t  is just this kind of plasma which one usually 

encounters in astrophysics, and in the physics of the ionosphere. 



2. FORWJIATION OF THE PROBIEH 

2.1 Derivation of the Vector Field EQuation 

To consider nonlinear effects in plasma, we assume that only the plasma elec- 

trons contribute to the plasma current, since the relation between plasma 

current and electric field in the linear approximation arises solely from the dis- 

placement of the plasma electrons. 

The equation of motion of the electrons in a collisionless plasma under the 

influence of external electric and magnetic fields is 

where w is the electron velocity; n is the electron density; no is the electron den- 

sity of a homogeneous plasma; E and H are the electric and magnetic fields 

respectively; c is the velocity of light; p is the electron pressure, and m and e are 

the electron mass and charge respectively. The equation of continuity of the 

electrons is 

The plasma current is assumed to include the contribution of every single 

electron and therefore can be written as 

j = e n w  (2.3) 

Furthermore, it is assumed also that plasma is of infinite extent. The elec- 

tromagnetic field in plasma is expressed by Maxwell equations: 

and 



Eliminating the magnetic field H from above system we obtain 

If we write the expression for j, generated in the plasma, in the form 

where subscript 1 indicates that this part of the current contains linear terms 

with respect to the total field, subscript 2 indicates that this part of the current 

contains quadratic terms with respect to the total field, etc., the equations (2.6) 

and (2.7) will constitute nonlinear equation in E, describing the electrodynamics 

of nonlinear wave propagation in plasma. 

Equations (2.1) and (2.2) together with (2.3) and (2.7) can be used to  find the 

nonlinear current to any order in the field E, This will enable us to substitute 

expression for the current into equation (2.6) and, therefore, to obtain a single 

equation for electric field E. At this point it is convenient to transform equa- 

tions (2.1), (2.2) and (2.3) from (r, t) space into (k,w) space expanding the vari- 

ables in Fourier series : 

where i; is a four-vector G = (k,w) , dl; = dkdw and w(G) is a counterpart of w(r,t) 

in a G space: 

Equations (2.1), (2.2) and (2.3) in a space become correspondingly, 



where dX = dcl dcz 6 (i; -cl - Lz) and 6 (6) is Dirac's delta function. 

The second integral in (2.10) represents the Lorentz' force in a space. To 

rewrite this integral in terms of the electric field we use Maxwell equation (2.4) 

in a G space 

1 A H  (G) = -k x E (G) . 
C w 

Accordingly the second integrant in (2.10) becomes 

Substituting (2.14) into (2.10) we obtain 

Clearly, the terms containing the integrals describe nonlinear effects. We can 

neglect them in the first approximation to obtain 

w (G) = wo (L) + wl (g) , (2.16) 

+ - ie -+ 
wo (k) = O ;  Wl (k) - -E (k) + - urn mnow @ ( G I #  

where subscripts 0 and I play the same role as in (2.7). Substituting the first 

approximation (2.17) into nonlinear terms in (2.15) we find the second-order 



approximation with respect to the external Aeld, namely, 

where we assumed that passage of the wave in plasma causes one-dimensional 

adiabatic changes, so that 

where K is the Boltzmann's constant. In the derivation of (2.18) we used the 

Maxwell equation 

The assumption that leads to (2.19) reflects the adiabatic law p n7 and since y 

= ( N  + 2)/N, where N is the number of degrees of freedom, we have y = 3. The 

consequence of this assumption, as we will see later, is that the dispersion rela- 

tion for an infinite homogeneous plasma derived by the present method agrees 

with the dispersion relation obtained from the Boltzmann equation1 for the case 

1 of long wavelengths. Neglecting the term of order O ( T )  and cancelling 
no 

appropriate terms in (2.18) we obtain 

1 1 where symmetrization k2 + g (kl + b) = k was used. If we expand the den- 

sity n similarly to the expansions for J and w, namely, 

1 For the description of the Boltzmann's equation see Lifshitz and Pitaeakii [1981], or Ginzburg 
[I 9601. 



n = n, (G) + nl  (C) + n2 (C) + . , . I (2.22) 

the zeroth approximation corresponding to a homogeneous plasma 

no (r,t) = no = const, it follows that 

1 4  no ( i t)  = (-) / n o  (r.t) ei(Yt-k'd drdt = no 6 ( i ( )  
2n 

The first approximation follows from the continuity equation 

onl(;) = k / (no (GI) wl ($1 + nl (GI) w, (GZ)) d~ . 

With the use of (2.17), equation (2.23) becomes 

I 2 in, e 
nl (C) = - I (k . E (k) ) + 

mu2 4reu  [ k ( k E ( ~ ) ) ]  1 .  
Hence the first approximation for the nonlinear plasma current is 

jl (2) = e / no wl (Gz) d~ 

= en, Jw, ($,) 6 (2 -C1 -k2) 6 (Cl) d$,dG2 

-. 
= e no w, (k) 

2 

= en, -E(C) + 
wm lC0 k ( k E ( i ) ) ] .  1 le wne4r  

Similarly, with the aid of (2.12), the second order current term can be approxi- 

mated by 

j2G) = e / I n l  (GI) w1 td) + no wz (Gz) ] 

47~ noe2 
where WE = denotes plasma frequency. Transforming jl (C) and j2 (C) 

m 



back into (r,t) space, using (2.9), and substituting the transformed expressions 

in (2.6) we obtain 

2 2 
where a, = co /3w:  = KT /4moe2 is electron Debye radius, n is the Boltzmann's 

constant, T is the temperature, and 

Equation (2.20) describes electromagnetic wave propagation in an isotropic, col- 

lisionless electron plasma in the presence of Lorentz force and pressure force, 

both appearing in (2.1). The term w x  H and the second term in (2.1) constitute 

the nonlinearity that appears on the right-hand side of equation (2.28). 

This report is concerned primarily with an investigation of the electromagnetic 

waves, governed by equation (2.28). In particular, the main effort is focused on 

the study of the stationary wave solutions. 

To reduce (2.20) to the scalar form, let's assume that the electric field vector E 

consists of two components: longitudinal, in the assumed direction of propaga- 

tion of the wave, and transverse, in the direction normal to the direction of pro- 

pagation. Also let x denote the direction of propagation and z the direction of 

the transverse component of the electric field (see Fig.1). Clearly the electric 

I field can be expressed now as E (x,t) = [ E~ (x.t) 0 E~ (x.t) 1. The equalities 

(2.31)' (2.30) and (2.29) along with the above assumptions yield the following 



Figure 11.1 The longitudinal and transverse components of the electric field. 

scalarized version of (2.26) in terms of the 'potential" function p: 

where 5oL and rpT are the longitudinal and transverse components of the potential 

function p respectively, the subscripts x and t denote partial differentiation with 

respect to x and t ,  and 

and 

are linear operators. System (2.32) can be simplified by noting that for any 

wave profile moving with a speed U, the t and x derivatives are related by 

With help of (2.33), system (2.32) becomes 



where @ and qT are components of the potential function 70, defined in (2.28), 

and 

and 

Thus we shall study system (2.34), that clearly exhibits the coupling between 

longitudinal and transverse components of the field. This coupling constitutes 

one of the main difficulties of the problem. 

Consider the linear parts of system (2.34), namely, 

and 

~,? l ; r=0.  

The corresponding &spersion relations are 

2 
w = w, (1 + 3aek2) , 

and 

w = (o: + c2k2) I", 

where k stands for a wavenumber. 



With 2 k z < <  1, (2.35) can be approximated by 

Dispersion relations (2.36) and (2.37), that correspond to longitudinal and 

transverse waves respectively, are obtained here directly from the system (2.35). 

Lifshitz and Pitaevskii [1981] derive relations (2.36) and (2.37) from expressions 

for the dielectric constants in the transverse and longitudinal directions; zT and 

& respectively, considering collisionless and isotropic plasmas. In a case when 

plasma is cold we have a, = 0 and (2.38) reduces to 

Equation (2.38) shows that frequency w of the longitudinal wave is independent 

of the wave number k. Therefore, there is no dispersion in (2.38), whereas (2.36) 

and (2.37) exhibit the properties of dispersive waves, namely w (k) is real and 

8 0 Longitudinal waves with dispersion relation (2.38) are known as 
dk2 

plasma oscillations, [Tsytovich 1970, ch. 1.1. Sometimes they are referred to as 

Langmuir type waves [Lifshitz and Pitaevskii, 1981, 1 321. It is clear that the 

3 2 term -a,k2 in (2.37) is the result of inclusion of the pressure term in (2.1), 
2 

z z a3 
which in turn produces the term 3a,wp - in the linear operator L1,, since 

ax2at 
L 

V p - V p , p - V .E and therefore V p - V (V .E)  = Ex, ( p  denotes charge den- 

sity). 

Before we start investigating systems (2.32) or (2.34), an important observation 

should be made: @ = 0 implies qT = 0, and qT = 0 does not imply @ = 0. This 

means that in a nonlinear plasma transverse waves cannot exist by themselves, 

whereas longitudinal waves can. 



3, LONGITUDINAL WAVES 

3.1 Solitary Waves 

Using the following transformations of dependant variables 

\ k L =  U f U , ,  rL= w e ,  
m 

and 

where u, and v, are constants (independent of x and t), system (2.33) becomes 

1 2 ut + uoux + uu, + 3vovx + 3wx + , uttt - 3aeux* = 0 , 
UP 

New potentials u and v correspond to the longitudinal and transverse com- 

ponents of the field E respectively and they have dimension of velocity. Con- 

stants u, and v, should be regarded as characteristic velocities for the respec- 

tive components of the field. To the physical interpretation of these constants 

we shall return later. 

By assuming that 

l \ k , L \ k ~ ~  > > /*:*TI , 

and using (3.1.) and (3.2), equation (3.3) reduces to 

Condition (3.5) means that here the attention is limited to fields that are 

predominantly longitudinal. Solutions of constant shape and moving with con- 

stant velocity are found by assuming that 



u(x,t) = ii(x - Ut) = a(() , 

With an assumption (3.7), (3.6) becomes 

where primes denote differentiation w. r. t .  the variable I. Integrating (3.8), then 

multiplying the result by u' and again integrating give 

where 

U 2 2 U 2 h = (3a, r+ - u2) = 7 (c, - uZ) . 
UP UP 

where c, is defined in (2.19), and A and B are constants of integration. When A 

and B are different from zero, the solution of (3.9) can be expressed in terms of 

Jacobian elliptic functions sn (f, m) or cn (f, m), where m is the modulus of the 

elliptic function - parameter that depends on the distribution of the roots of the 

cubic polynomial on the right-hand side of (3.9). Solutions, bounded between 

two of the mentioned roots, exist when all three roots of C ( i i )  are real. Since we 

want -* 0 as [ rt m , constants A and B should be zero (actually, we can allow u 

-, const. as (: 5 m , since the required electric field is a derivative of u, however 

by proper choice of constants u, and v, we can require u + 0 as + m ) .  

Without loss of generality we assume the roots of C(B) to be a, 0, Q, as shown on 

Fig. 111.1 .With such a choice equation (3.9) can be integrated using the transfor- 

mation 

a =  a s e c h 2 ~ .  

With help of (3.1 I),  (3.9) integrates to 



Figure 111.1 Distribution of the roots of cubic polynomial C(u). 

Equation (3.9) also implies th.at 

showing that the velocity of the wave is proportional to its amplitude a. Equa- 

tion (3.13) is the remnant of the dispersion relation in this nonperiodic case. 

Analyzing (3.9) and (3.13) we arrive at : 

2 
c,> u2-, h >  O-, a >  O - r  u,> O - r  U <  co-, 0 <  a <  3(co-u,)-, u,< c, (3.14) 

2 
c,< u2-, h <  O-, a <  O-, u,> O-, U >  c,-, 3(c,-u,)< a <  O - r  u,> c, (3.15) 

In the case when h > 0, increase in a leads to increase in U. When h < 0, 

increase in a leads to decrease in U. Therefore, whether 3-dimensional thermal 

velocity of electrons is greater or smaller than the velocity of the wave, makes a 

qualitative difference. For definiteness we will first consider case when h > 0 

and later we shall return to the case h < 0. 



With the aid of (2.28) and (3.1) the longitudinal component of the electric field is 

2a w, 
EL = 

3n 
sech2 j(:)law,(x-Ut) tanh ( K ) l f l q , ( ~ - U t )  I i r  (3.16) 

3rln 1 e 1 

where 

2 
r = 12U (c, -u2) . (3.17) 

From the MaxwelI equation 

it follows that only the longitudinal component of vector E contributes to charge 

density function p.  From equations (3.16) and (3.18) we obtain charge density 

If we denote by (;, and (;, the abscissas of the peak values of EL and p respec- 

tively, then 

1 1 tm = - (L) '" arsinh - 
a 

Clearly Cn is proportional to (;n. The expression (3.20) shows that as a decreases, 

solitary waves, given by (3.12), 3.16) and (3.19), become broader and move more 

slowly, whereas an increase in a narrows the wave profiles and makes them 

move faster. This dependence of shape and velocity on amplitude is a typical 

property of nonlinear waves. 

The additive velocity u,, which we call the characteristic velocity, might be inter- 

peted here as the mean thermal velocity of the electrons, namely 

which determines the velocity of the electrons in the absence of external fields. 

Since equation (3.6) is invariant under the transformation 



x -, -x, u -, -u, and uo -, -uo, it governs also the propagation of similar waves 

having opposite sign and moving in the opposite direction, and thus the general 

expression for the velocity of wave is 

where "+" sign corresponds to the waves propagating in positive x direction 

whereas " - " sign corresponds to the waves propagating in the negative x direc- 

tion. 

The "degree of nonlinearity" can be represented by the dimensionless parameter 

v defined by 

where d is a characteristic length. For a solitary wave with d ( 5 ) ' ~  this 
~ W P  

parameter is of order 1. Large v indicates the dominance of nonlinear processes 

over dispersive processes and small v indicates dominance of dispersive effects 

For example, by increasing a we can achieve dominance of nonlinearity over the 

dispersion. 

With an aid of (3.14) and (3.22) we obtain the following bound on the amplitude: 

From the approximations used in deriving (2.26) we have 

Id no 14 I (3.25) 

where no is the electron density of a homogeneous plasma. Combining (3.25) and 

(3.19) we obtain a slightly more restrictive bond on a, namely 



and the corresponding upper bound on EL2 

-- - -- - - - - 

Figure 111.2 The potential function (a), the longitudinal component of the electric 
field (b) and the charge density function (c) in a time and frequency 
domain. 

It is of interest to study the frequency spectra of p and the fields u and E ~ .  Fig. 

111.2 represents the graphs of these quantities and their Fourier tranforms, 

where the presence of low frequencies is evident. Moreover, the peak values of 

~ ~ ( 0 )  occur at  w, < wp for any 

which includes the total permissible range for a. Hence the maxima of EL(o) 

2. Equation (3.27) is given in v/m, iC is given in MKS units (J/degree). 



always occur a t  w, < up, in contrast with the linear case where frequencies 

below y, do not propagate without attenuation. It should be mentioned that the 

case (3.15) leads to inconsistency with the assumption (3.21) that leads to 

(3.22), otherwise the analysis for this case is identical to the analysis for the 

case (3.14). 

3.2 Dynamics of the Electron Distribution 

In this paragraph we will study the local distribution of the electrons in some 

strip A x (see Fig. 111-3.) 

Figure 111.3 The pressure (F1) and electrostatic (F2) force densities, their sum (F 
= F1 + F2) and charge density distribution. 

Let the strip be bounded by two planes x = xl and x = xz. The total force density 

F consists af pressure force density F1 - F, and electrostatic force density 

F2 - pE. When wave is far  away from the strip (far to the left from the strip), F 



is positive and very small, such that the plasma inside the strip is almost neu- 

tral. When wave gets closer to the strip (approaches the strip from the left) F 

increases and it tends to push the electrons to the right, so that the number of 

electrons entering the strip exceeds the number of electrons exiting the strip, 

thus creating the excess of the electrons in the strip. When F achieves its max- 

imum the difference between the flux of electrons in and out of the strip is max- 

imum. To the left of its maximum F decreases, although it retains its sign which 

implies that more electrons are entering the strip, making it more negative 

(note, that the flux of electrons out of the strip also continues but with slower 

rate). When F = 0,  due to their inertia, electrons continue to penetrate into the 

strip. This process of inreasing the number of electrons in the strip continues 

until x = x,, a t  which p=p-. At this point we have 

w 

J Fdx = - f0 Fdx . 
Xo x m 

where x, is the abscissa to the right from x, ; where F vanishes. Showing that 

the energies of the electron in the region [ x , , ~ )  and [x,,x,] are the same. A t  x = 

x, we reach the balance between exiting and entering electrons. From x, all the 

way to the origin of the coordinate system F is negative, so it pulls the electrons 

to the left, In the region [x,, 0] electrons start moving to the left and the flux of 

the electrons out of the strip exceeds the flux of the electrons entering the strip 

from the right, thus making the strip less negative. 

At x = 0, F = 0 and p=p,,,, almost all electrons freed the strip, and amount of 

the electrons entering the strip is equal to the amount of the electrons leaving 

the strip. 

From 0 to x5 F changes its sign to positive, which results on applying force on 

the electrons to the right, thus decreasing the flux of the electrons out of the 

strip to the right. This implies that the strip becomes more negative. A t  the 



point where F reaches maximum there is already an excess of the electrons in 

the strip. This process continues up to the point x = - x,, where from the con- 

servation point of view we conclude that the electrons have zero velocity, and 

from -x, they start moving in the opposite direction, e.g. to the right of the 

strip. Similar to the region where x is positive, we have 

J-'* Fdx = - f 0  Fdx . 
-=o -w 

where -x, stands for the abscissa to the left from -x,, where F vanishes. 

3.3 Periodic Wavetrains 

The study of periodic wavetrains that are basic solutions in dispersive problems, 

can lead to the determination of the structure of the equation (3.6) - whether it 

is hyperbolic or elliptic, thus providing us with important information about sta- 

bility of the waves. I t  also can yleld the dispersion relation, which is not a trivial 

task, since equation (3.6) is nonlinear. Among other things periodic wavetrains 

are used in developing the modulation theory. 

It is of interest to see whether periodic wavetrains, governed by (3.6) exist or 

not. To do so, instead of considering equation (3.6), we will work with following 

equation 

which can be obtained directly from (3.6) by simple transformation u+ u - u , , ~  

and use the expansion 

$= kx-ot (3.30) 

in equation (3.29). CD = <$ is the electron thermal velocity. As a result of 
6 

3. Here we retain letter u for a new variable to avoid the extensive use of new letters. 



expansion (2.30) we obtain the following hierarchy 

and so on. The primes in (3.31) denote differentiation w.r.t. 19. 

With o  = wo(k) = o p d m 2  , which represents the dispersion relation for the 

linearized equation (see (2.36)), the solution to the first equation in (3.31) is 

t, = cos29. Similarly we obtain the next term in (3.30) 

Right hand side of the third equation in (3.31) has a resonant term (propor- 

tional to sin 6), which gives rise to a secular term in the solution. To avoid this 

we use Stokes' expansion for o  (see Stokes G.G. (1847)) 

Using (2.33) system (2.31) becomes 

and so on. Again, with the same uo(k) we have t1 = cosd, Cz is given by (3.32) and 

the third equation in (2.34) becomes 



Clearly, to avoid the secular terms we should take 

With the choice of (3.36) t3 is 

Therefore (3.30) becomes 

u -- kc, /* k2c: /3 - Ecos??-$ COS 2$+ E3 C O S ~ $ +  ..., 
c, /* 120, 1920;(1 + 3azk2) 

and 

It can be seen from (3.38) and (3.39) that the expansion parameter is really 

&kco 
, which corresponds to the modulus of the elliptic funtions, dis- 

w, dl + 3a,2k2 

cussed earlier [Whitham, 1973, pp. 457-4631, which in turn is proportional to the 

amplitude of the wave. Thus the nonlinear dispersion relation (3.39) shows the 

cruclal dependence on the amplitude. 

According to Whitham [1967, ch, 14.21, the sign of the term wo" wz determines 

the stability of periodic wavetrain. When w," w2 > 0, equation exhibits hyperbolic 

behavior, which leads to well-posed problems in the wave propagation context. 

When wow w2 < o, equation becames elliptic, which leads to ill-posed problems in 



the wave propagation context because of imaginary characteristics. It means 

that small perturbations will grow in time and in this sense the periodic 

wavetrain is unstable. It can be easily shown that in our case o," w2 > 0 implies 

that 

which is always true. Thus (3.29) exhibits hyperbolic behavior for any value a, 

2 
and k, and the less &k2 is, the more hyperbolic it is, the more stable periodic 

wave train is. 

3.4 Interacting Solitary Waves 

We will investigate the interaction of the solitary waves, governed by (3.6) or ulti- 

mately by (3.29), using the approach that was utilized by G.B. Whitham [1973] in 

the study of Korteweg de-Vries equation, and also by R. Hirota [1972] in his 

study of Boussinesq equation. For convenience we rescale independent variables 

x and t to normalize the coefficients of equation (3.29) to obtain 

Using the transformation 

arid then integrating the resulting equation w.r.t. x gives 

2 
'It + Tx + 'Ittt - T~gt  = 0 

The nonlinear transformation 

yields the following equation for a new variable F 



It can be shown that if 

where fl0 and a are parameters, then the solution for a single solitary wave can 

be written as 

where $= m x  -at is a phase function. Furthermore F, given by (2.46), 

satisfies the following equation 

Ft + Fttt - Fd = 0 . (3.48) 

Moreover, when a < < 1, the same F satisfies also the whole equation (3.45). To 

study interaction we take 

F = 1 + ~ ( 1 )  + ~ ( 2 )  + . . , (3.49) 

Substituting (2.49) into (2.45) we obtain the hierarchy 

(1) (1) 
(F, + Fttt - F:S, = 0 

(2) (2) (2) (1) (1) (1) (1) (112 
(Ft + Fttt - Fx,) = (3Ftt - Fxx ) F::) - ZFx Fttx + 4Ftx 

+ (3~::: - F::) F!') . (3.50) 

and so on. 

If we take F(I) = f l  + f2,  where f i  = exp [ -- (x-xN) + ajt ] j = 1,2. ..., the 

second equation in (2.50) becomes 



The solution to (2.51) can be easily obtained, if we will seek it in a form F = Aflfz, 

where A is a constant. The result is 

The next equation in the hierarchy has zero on the right hand side, therefore F 

can be approximated by 

Hence (2.53) represents two solitary waves and is a solution of (2.45). The 

corresponding expression for u is 

where 

Equation (2.54) describes the interaction of two solitary waves governed by (3.6). 

For a single solitary wave we have 



with a maximum of f = 1, and 

maximum amplitude of u being 3a- , 

a position of a maximum at x = x, + 
dmt1 

velocity of the wave being a 
W '  

Equation (3.54) approximates a solitary wave with a,  for regions where f l  a 1 

and f 2  is either large or small, and for regions where f 2  fil 1 and f ,  is either large 

or small it describes a solitary wave with %. 

When f l  fil 1 and f 2  << 1 equation (2.54) reduces to 

and when f l  1 and f 2  >> 1 equation (2.54) becomes 

where = 7(a)f, . The latter is the solitary wave a, where xl, is shifted by 

c, = xlm - (1 + a:)-l&lny-'(a) . 

Similar considerations, in regions where f 2  1 and f is either large ( f l  >> 1) or 

small ( f l  << I) ,  imply the shift in x2, : 

&, = x2, - (1 + a:)-lfiln-17(a) . 

The interaction regions are the regions where f ,  a 1 and f 2  1. Regions where 

both f l  and f 2  are small ( f ,  << 1 , f 2  << 1) or large ( f l  >> 1 , f 2  >> I), u a 0. 

If we assume that wave a2 is faster than a,, i.e. a2 > a,> 0 then as t -r -m, f l  > f 2  

and (3.54) yields a 

solitary wave a, at x = x,, + a1 t for regions where f ,  M 1 , f 2  << 1, 



solitary wave qz at x = x2, - 1 dEf ln7 (a) + t where f l > >  1 ,f2w 1. 
dGi$ 

At the same limit there is no interaction region ( f l  M 1 , f 2  M I), and u fi1 0 when 

both f l  and f z  are small ( f l  << 1 , f 2  << I), or large ( f ,  >> 1 , f 2  >> I), 

As t + m ,  f l  < f2 ,  and (3.54) yields a 

solitary wave a, a t  x = xlm - ln-y-l(a) + a1 

rn d where 

f 1  fil 1 ,  f z  >> 1 and, 

solitary wave a2 at x = x2, + t ,wheref l<< 1 . f2M 1 .  
d i - q  

Finally, it is easy to see that the coordinates of the interaction region are 

and 

At these coordinates two solitary waves merge and then reemerge. 

( f l  a 1 , f z  1). Interactions of more than two solitary waves can be studied by 

starting with F") = 1 + f l  + f z  + . - . + fN, where N is the number of solitary 

waves under investigation, and then using exactly the same arguments as in the 

case of two solitary waves. In general, as time increases, the arbitrary sequence 

of solitons will reorder itself in such a way that solitons with larger amplitudes 

(fast solitons) will get ahead, followed by solitons with smaller height (slow soli- 

tons), and the initial and final number of solitons remains the same. 

Extensive numerical approaches were made in connection with phenomena of 



solitary wave interactions, B. Fornberg and B.G. Whitham (1977) developed a 

numerical method for the KdV equation with periodic initial value problem that 

enables investigation of solitary wave interaction. Zabusky and Kruskal [1965] 

and Zabusky [1967], using numerical analysis in their investigation of KdV equa- 

tion, observe nonlinear interactions among "solitary-wave pulses" propagating in 

nonlinear dispersive media for variety of initial conditions. Although we have 

obtained the qualitative features of the soliton interaction, governed by (3.41), 

further numerical verification of the interaction is needed. 

3.5 Stability 

If we assume that 

and properly scale dependent and independent variables in (3.6) we obtain 

Assumption (3.58) is a more strict version of condition (3.14). W e  adapt (3.58) 

because it is consistent with the previous assumption (3.14) and also because it 

significantly simplifies the stability analysis. This equation has been studied by 

Benjamin et al. [1971]. I t  was shown that solutions to the initial value problem 

for this equation have better smoothness properties then those of the KdV equa- 

tion. In foregoing analysis we will adopt Benjamin's approach to stability 

analysis for the KdV equation to show that solitons that are governed by (3.59) 

is also stable. The context of this paragraph in its entirety will be based on the 

analysis, conducted by Benjamin [1972] regarding the KdV equation. 

The solitary wave solution ii will be compared with a class of solutions u(x,t) that 

evolve from some initial conditions that are close, in some sense, to those for Ti. 

Intuitively, the stability of Ti can be seen as if a t  t = 0, ii and u are close to each 



other, then a and u will remain to be close to each other a t  later times. 

Mathematically (Liapunov definition) the stability of ti means that given an arbi- 

trary small E > 0, there exists such a 6(&) > 0, that if 

then 

where dl(u,ii) and dz(u,ti) represent some kind of a measure of a distance 

between u and a, The stability of can be assumed if there exist some con- 

stants yl > 0, 7 2  > 0, such that, when [d1(u,ti)lt=, I D, then 

yl [ dl(u,ii) ] 2 I(u,ii) a t  t = 0 

(3.61) 

7 2  [ d2(u,n) ] s I(u,ii) for t 2 0 , 

where I(u,B) is a certain functional, which is invariant with time when u is a 

solution of (3.59). and ii is a solitary-wave solution of (3.59). First inequality in 

(3.61) shows that the initial value dl(u,8) fixes an upper bound on the invariant 

I(u,a), whereas in the second inequality of (3.61) we see an upper bound on 

dz(u,ii). Some additional information on metrics dl and dZ is given in the Appen- 

dix A. The result in the form (3.60) means not only the uniform boundedness in 

time of variance of the difference A = u -a, and its x derivative, but in a view of 

(A-2) (see Appendix A), (3.60) means that the magnitude of A is everywhere uni- 

formly bounded. In order to determine stability of the solitary wave solution of 

(3.59) we need to find two nonlinear functionals that are invariant with time for 

solutions of (3.59). It should be mentioned, that the idea of using two invariants 

for stability purposes was first introduced by Boussinesq [1877], and later 

adopted by Keulegan and Patterson [1940]. Multiplying (3.59) by u and then 



integrating the result w.r,t. x between x = - m and x = we obtain 

Integrating by parts and assuming that u,ux,ud all vanish as x -, rt m,  we reduce 

(3.62) to 

and hence 

Next, we define 

so that (3.59) can be rewritten as 

Multiplying (3.64) by y, then integrating between x = - m and x = m using 

integration by parts, and assuming yxx and y vanish as x + & m, since u and u& 

are assumed to vanish at x = 5 m ,  we can show that 

and therefore 

The functionals N(u) and M(u) will play a key role in determination of a stability 

of the solitary wave solution of (3.59). Putting u = + A and restricting u so 

that M(u) = M(ii) we can determine the first variations of M and N as follows 



Adding (U + 1) times (3.66) to (3.67) and integrating by parts the third term in 

(3.66) we can isolate the terms that are linear in A ,  thus obtaining 

The first integrand in the brackets is equal to zero identically, since ii is the 

solution to (3.59), for if in (3.59) we assume u = T i  [ x  - (l+U)t ] and integrate the 

result once with respect to the new variable x - (1 + U)t, we can see that the first 

integrand is zero. Note that by assumption (SM = 0, therefore 

-6N+ (1 +U) 6M = -6N in (3.68). Finally we can rewrite (3.68) in a shorter form 

With the aid of (B-l), (B-2) and (B-3) we can obtain an upper bound on 6N, 

remembering that ii is a non-negative function. I t  is 

and if  11 A 1 1  5 D, then we have 



-6Ns 7 llA112 with y = (1 + U + -LD). 
342 

(3.7 1) 

Therefore, taking dl(u,ii) = I[u-iill =IIAII we have the form of estimate that is 

compatible with the first inequality in (3.61). 

To get a lower bound on 6N, we first observe that since a is an even function 

(3.69) can be rewritten as 

where r and s are even and odd part of A respectively. With the use of (B-3), ine- 

quality can further be reduced to 

The lower bound estimates for S2N(r) and 6*N(s) are determined in Appendix C, 

and they are 

where I ,  is given below (C.23), and 

Combining the inequalities (3.74) and (3.75) we obtain 

Theref ore (3.73) becomes 



4 where m = 1 + U, l3  = min ( -  m, U), 12 = - 
5 

and we used an equality 
342 ' 

11A1I2 = llr1I2 + 11s1I2. 

The right-hand side of (3.78) attains maximum value at 

312 and maximum is f(llAllo) = fo .  Let us assume that the arbitrary value - 
811 

(smaller than //A/],) will be considered as an upper bound for I1AII. For this value 

of IIA / I 1  we have 

If 1 1 ,  S [$I, then 1. sz - 31 and (3.78) becomes 
8llAll ' 

13 , where The right-hand side of (3.79) achieves maximum at  IIAII" - 
212 

13 13 " Assuming that the arbitrary value llblll = - (smaller g~llAll = ~1 " 
412 



that /(A([ a t  which g([IA/( is max.) will be considered as an upper bound for 1(A1(. 

1 193 
Then g(llAII,) 24 and since 

it follows that 

and therefore (3.79) becomes 

Using (C.l) and (3.81) in one hand and (5.2) and (3.71) on the other hand we 

obtain 

and 

where I(A) = -6N(A). This is the required result in accord with system (3.61) 

Using the right-hand side of (3.79) and (3.70) we can specify D to be the positive 

root of the following equation 

and hence the initial condition 

ensures that I(A) satisfies (3.81). Comparing (3.04) with the right-hand side of 

1 3  (3.79), it is seen that D < -. , which implies that 11AII has an initial value less 
412 



23 than - . Moreover, IlAll can be assumed to vary continuously with time, and 
412 

thus the conditions providing the inequality (3.81) are satisfied for all t. This is 

the justification for (3.82) and (3.83), which hold if (3.85) is-satisfied. The system 

(3.82)-(3.83) shows, therefore, that as long as M(u) = M(u) throughout the evolu- 

tion of the wave, the solitary wave solution ti is stable. 

Putting u = ti + q in KdV equation and linearizing in E,  Jeffrey and Kakutani 

[1970] examine the linearized equation for q and show that there are no runa- 

way solutions in the form il"(x)eot with Re(u) > 0. Although this result does not 

contradict with u being stable, it does not prove stability either. 

3.6 Uniqueness 

We want to show that Cm solutions of (3.6), which together with their x deriva- 

tives tend to zero as x -, k m ,  are uniquely determined by their initial values. 

Since it is more convenient to work with (3.59) instead of (3.6) we will show the 

uniqueness for (3.59), which whould imply the uniqueness for (3.6). Let y be 

another solution of (3.59) : 

Yt + YYx + Yttt - Yxxt = 0 

Subtracting (3.86) from (3.59) we obtain 

where w = u - y. Integrating (3.87) with respect to x from -m to +m gives 

Using integration by parts we can show that the last three integrals are zero, 

assuming that both w and wx tend to zero as x-, k = , since 

m OD 1~ 00 

f wyxdx + / uwxdx = / wyxdx + / udw 
-40 -QD -w -00 



= J wy.dx + uw 1 - - / r d u  
-m 

-00 
-D) 

and 

Therefore (3.88) reduces to 

where 

Equation (3.89) implies that 

and therefore 

F(t) = ~e~~ + Be-it + const. 

If initial conditions are zero, i.e. F(0) = 0, this means that 

A +  B + const. = 0 

and since we have assumed that w -, 0 as x -, rt m ,  A = B = 0, and F(t) = const = 

0. Therefore w = 0 for all t. In other wards if u and y correspond to the same ini- 

tial waveform, say g(x), so that w = u - y is identically zero at t = 0, then F(0) = 

0, and since (3.90) should hold for all t andSw -, 0 as x -, * m ,  ~ ( t )  = 0, and 

therefore u = y for all finite t. 



3.7 Conservation Laws and Lagrangian 

Equation (3.6) represents a particular case of a more general class of equations 

where G(u) is a nonlinear operator. In most of the equation that belong to class 

(3.91) and have a soliton solution, operator G contains explicitly the function u 

along with its various spatial derivatives. Examples of such equation are KdV, 

Boussinesq equation, nonlinear Schrodinger equation etc. For thorough review 

of these equations reader can be referred to Miura [1976], Miura [1967], Miura 

et al. [1967], Hirota [1972], Whitham [1973], Lax [1960], Zakharov and Shabat 

[1972]. In contrast with the above mentioned equations, (3.6) differs from them 

since if written in the form (I),  operator G would contain also time derivatives of 

u along with its spatial derivatives. The only other equation known to us, that is 

similar to (3.6) in this respect and has a solitary wave solution is Born-Infield 

equation 

which was derived in the spatial dimensions by Born and Infield [I9341 as a non- 

linear modification of the Maxwell equations. Most of the above equations are 

known to have common properties such as possession of solitary wave solutions, 

clean soliton interactions, an infinite number of conservation laws and also they 

all can be derived from a suitable Lagrangian density function. 

For the sake of completeness, we will briefly discuss the concept of conservation 

law and Lagrangian density in connection to equation (3.6). Consider a pair of 

(nonlinear) operators D(u) and F(u). If 

for any u satisfying (I), then (3) is said to be a conservation law, where D(u) is 



the conserved density and F is the conserved flux. The functional 

is said to be a constant of motion provided the integral exists and integrand 

satisfies appropriate boundary conditions a t  x = rt =. 

Conservation laws and constants of motion provide simple and efficient methods 

to study both quantitative and qualitative properties of solitons [Miura, 19671, 

namely stability, evolution of solitons and decomposition of solitons [Benjamin, 

19721. There also seems to be a close relation between conservation laws and 

interaction of solitons [Miura, 19761, Zabusky and Kruskel [1963] first guessed 

and then numerically verified clean soliton interaction just by studylng the con- 

servation laws for the KdV equation. The two conservation laws for the normal- 

ized version of (3.6), namely (3.41) are 

and 

Conservation law (3.95) follows directly from (3.59) simply by grouping the 

appropriate terms, and identity (3.96) can be obtained by multiplying (3.59) by 

2u and rearranging the appropriate terms. Assuming u, and ux both tend to zero 

as x -r & = we have 

which is a constant of motion. Perhaps there are more conservation laws associ- 

ated with (3.59), than there are for the other evolution equations, mentioned 

earlier. 



It is known that one way of characterizing nonlinear wave systems in which 

dispersion (or energy storage effects) dominate and dissipative effects are 

neglected, is to demonstrate the existence of Lagrangian density L, or so-called 

"energy function" from which the equation defining the system can be derived 

[Scott et al., 19731. A Lagrangian density L is an explicit function of u and its 

time and space derivatives, namely ut,ux,uxx,u~,utt, ... . Scott et al, [1973] show 

that i f  the equation under consideration can be derived from Lagrangian den- 

sity, that does not explicitly depend on time, then this equation may be con- 

sidered lossless, or conservative in the conventional sense. This fact is well 

d~ aL known in classical mechanics [Landau, 19671 and it states that - = -, where 
dt at 

E stands for total energy of a system. This concept of Lagrangian density is 

widely used in a study of nonlinear dispersive wave propagation. Whitham [1967] 

presents the resonant near-linear interaction theory in terms of the Lagrangian 

density function. In the other paper Whitham [1974] uses various manipulations 

of the average Lagrangian density in the study of slowly varying wave trains. 

Introducing a new potential 

normalized (3.59) becomes 

rlxt + 6rlxrlxx + rlxttt - rlxxxt = 0 (3.98) 

To seek the Lagrangian density function, from which (3.98) can be derived, we 

consider the variational principle 

for a function q(x,t). The corresponding Euker-Lagrange equation is [Whitham, 



A suitable Lagrangian density function corresponding to (3.98) is 

which can be verified directly by substituting (3.101) into (3.100). Note, that 

while the majority of the evolution equation, known to us, including the KdV and 

Boussinesq equations, are invariant under the Galilean transformation 

equation (3.6) and (3.41) are not. The only other, evolution equations cited in 

literature that are not Galilean invariant are Modified KdV and Born-Inf eld equa- 

tions [Barbashov and Charnikov, 19661, as far as we know. 



4.1 Case When Longitudinal W a v e s  are Dominant 

As it was shown earlier, in a nonlinear plasma, transverse waves cannot exist 

all by themselves, although they can exist together with longitudinal waves. In 

the case when [uu, I > > I w, 1 ,  which is ultimately the condition (3.5), we prefer 

to start with the second equation in (2.32). If we rewrite the right-hand side of it 

as (pTp$), and then integrate both sides with respect to the variable t we obtain 

the following equation for pT : 

where G is a constant of integration, which a t  this point will be assumed to be 

zero. Using the transformations (3.1) and (3.2) together with the potential 

representation pt = + and also assuming vo = 0, it follows from (4.1) that 

where u, as it is shown earlier, is a solution of the longitudinal wave equation. 

Assuming a travelling wave solution 

v(x,t) = v (x -Ut) = v (<) (4.3) 

and also substituting the solitary wave solution for u, as given by (3.12), we find 

that equation (4.2) reduces to 

where r is given by (3.17). At this point it is convenient to use the change of vari- 

ables 



Accordingly, (4.4) becomes 

where 

and 

To ensure that condition (3.5) is satisfied we require the following boundary 

conditions on B : 

along with the requirement that v and its all derivatives vanish as X -, * = . 

We easily recognize that (4.5) represents a scattering problem with sech2 X as 

its potential function. Formula (4.6) shows the dependence of the eigenvalue hl 

on the amplitude a of the longitudinal wave u, which again indicates the cou- 

pling between the two components EL and ET. Formally, when XI = h2 equation 

(4.5) has the bound-state solution 

In general the potential sech2x with an appropriate sign (as in our case) is an 

attractive potential in a sense that it gives a possibility of having eigenfunctions 

that are bounded. Solution (4.9) also shows coupling between the longitudinal 

and transverse waves. For example, in the above mentioned case when hl = h2 , 



the width of the transverse wave depends on the amplitude of the longitudinal 

wave. Generally speaking there are many classes of bounded solutions of (4.5) 

for different values of Al and Az. Lamb [I9801 surveys the whole class of solitary 

wave solutions to the problem (4.5). 

The constant in (4.9) can be determined from initial conditions, so that the 

energy of some initial pulse would be divided into energies carried by longitudi- 

nal and transverse waves. Next we consider the following problem 

where = A2 (1 + A2) This equation can be obtained similarly to the one 

obtained in (4.5), except here we use different dependent variable \kT, given ear- 

lier by (3.2), and we retain a constant of integration G. We will seek solution of 

(4.1 0) in the form 

The choice of a such \kT stems from a fact that by the analogy with \kL, we can 

also require \kT to approach a constant (v,) as X -, * m , since the actual field, 

which can be obtained by differentiating (4.11) according to (2.28), will go to 

zero as X -+ k providing W(X) does not force the second term in (4.11) go to 

infinity. If we assume that vo can be interpreted as the mean thermal velocity of 

the electrons, i.e, vo = flk, similar to uo in (3.21), then it follows from (4.10) 

and (4.11) that 

Substituting (4.1 1) into (4.10), and taking Al ;I q we obtain 

I sechqX [ W" - 2q tanh W' + (hg - 7 - q2) w - sech2x ] 



= G + v, (A? - g sech2x) , 

Using the tranformation 

1 z = - (1 - tanhX) 
2 

equation (4.13) becomes 

where the primes now indicate differentiation with respect to the new variable z. 

If we divide all terms of (4,15) by 4z(1-z) we obtain 

I z(l -z)wtl + 1 1  + q - z ( 2 + 2 q ) ] ~  - ( A ~ + x ~ - $ ) w  = 

Noting that Al  = q (see above (4.13)) and using (4.12) (4.16) 

Noting that Al = q (see above (4.13)) and using (4.12) we can further reduce 

(4.16) thus obtaining 

1 
A1 

z(1-z)WV+ [ d - z ( a + b + l ) ] ~ ' - a b W  =-v,Q ( 4 ~ ( 1 - z ) ] - ~ .  (4.17) 

where 

Introducing the new variable 



we can rewrite (4.17) in the following form 

1 z(1 -z)yee + L d -z(a + b + I) ] y' - sby = zB-' (1 -z)~-' . 
where 

Equation (4.22) represents nonhomogeneous hypergeometric equation. For the 

detailed study of such equation we refer reader to Bailey [1935]. Expanding 

(1 -z )~- '  in a power series in z we find a particular integral 

The solution (4.24) can be further reduced to 

where 

In (4.27).3F2,(n+1) stands for the first (n+l)  terms of the generalized hyper- 

geometric series with the given parameters. Therefore the general solution of 

(4.10) is 

1. F'rom here on an extensive use of results on hypergeometric functions is utilized. e.g. see Bailey 
[1935], or Babister [1967]. 



r 
tT = vo + sech lX CIFl  + C2 F2 - B-~'V~@P~ " I 

where C1 and Cz are constants, and 

and 

are shorthand for hypergeometric functions - two linearly independent solutions 

of the homogeneous hypergeometric equation. Since X lies in the range (-mlm) 

the variable z ,  given in (4.14) lies in a circle 

We should require Cz = 0 , since 

sechA' x lim F2 
A 1  X'a, 

= lim 
X*- 



= lim 2tanhX - - m 
sechX X+- 

where the fact that limF2 = 0, and the L'Hospital rule were used. With C2 = 0, 
z-0 

(4.28) becomes 

f = vo + s e c h " ~  [ CIFl -2-A1vo@~1 ] (4.32) 

and theref ore 

m X E~ = hlpmsech 'X tanhX [ CIFl -AQ1 ] 

where 

and 

4 2  Numerical Results 

Note that for the computational purposes a and b can be obtained directly 

from (4.19) and (4.20). They are 



and 

It is convenient, for the computational purposes, to express all hypergeometric 

functions in (4.32) and (4.33) in the form that can be easily executed on com- 

puter. With an aid of (4.18), (4.36) and (4.37) we have 

= i n n  F(d) 2 I'(a + n)r(b + n)zn 2" = 
,-0 n!(d>n ( a ) )  F(d + n)n! 

, (4.38) 

where 

(a), = ( a+  l)(a+2)(a+3) - - - (a+n-1)  ,(a), = 1 

(b), = (b + l)(b + 2)(b + 3) . - - (b + n  -1) ,(b), = 1 

(d), = (d+  l)(d+2)(d+3) . . . (d+n-1)  ,(d), = 1 

Series (4.38) converges for lzl < 1, and it converges conditionally when z= 1. On 

the circle of convergence (z = I), series (4.38) converges absolutely when Re (d - 

a - b) > 0, and converges conditionally when -1 < Re (d - a - b) 5 0. Since z lies 

inside a unit circle, the convergence is guaranteed for Al < 0 and series (4.38) 

conditionally converges for Al > 0, since Re (d - a - b) = Re (- A1) = - Al (A is 

real). From (4.6) it is clear that ~f is positive, therefore we can select A, < 0 to 

get an absolute convergence. Using the same arguments as in derivation of 

(4.38) we obtain 



and 

where 

In order to satisfy condition (3.5) we select C1 such that E~ (X = 0) = 0. Hence 

from (4.33) and (4.18) - (4.20) it follows that 

where 



and Q2(X=O) and Q3(X=O) can be obtained directly by summing up series (4.41) 

1 and (4.42) for z = - 
2 ' 

Because of the complex nature of the hypergeometric functions it is difficult 

to see the graphical representation of the solution (4.33). However with the help 

of the relationships (4.40)-(4.45) we can evaluate ET, for different values of hl 

and r2, numerically. Fig. IV.1 shows the crucial dependence of ET and EL on 

amplitude of the longitudinal potential function for a given temperature T and 

electron density n. The transverse field wavefront in Fig. IV.l (the positive part 

of ET) is big compared to its tail (the negative part of ET), in contrast with the 

longitudinal wave EL, for which we have the absolute symmetry with respect to 

the origin. I t  can be explained, perhaps, due to the fast convergence of the 

hypergeometric series in the region 0 < X < m (0 < z < k), and relatively slow 

1 
convergence rate of the same series in the region - = < X < 0. (2- < z < 1). 

Graphs for ET in Fig. IV.l were obtained by summing only 10 terms in the hyper- 



Figure IV.1 The longitudinal (solid lines) and transverse (dashed lines) electric 
fields for different values of a. The graphs for ET are plottes for T = 
lo8 K, n = 8 x 1018, and by summing up only 10 terms in the expres- 
sions (4.43) - (4.45). 

geometric series, since adding more terms creates the overflow in the computer. 

It is noted, that increase of number of terms in the series enlarges the tail 

(negative part) of ET, yet retaining the wavefront of ET almost unchanged. This 

leads us to believe that adding up sufficient number of terms in hypergeometric 

series would lead to the symmetrization of ET with respect to the origin, and, 

therefore, it would make the shapes of ET and EL look alike. 

Fig. IV.2 shows dependence of the amplitudes of EL and ET on temperature, for 

a given electron density n and amplitude a of the potential Xi. While / E L X I  is 

decreasing, as temperature goes up, I E:,, I increases. To retain consistency 

with (3.14) the values of T were limited from below by T = 10°K. Although it is 

not shown here, the numerical results indicate that increase in a produces a 

shift in both of the curves I E:,, I and ]EL I upwards, whereas decrease in a 



Figure IV.2 The dependence of the maximum values of ET and EL on temperature. 
The plots are drawn for a = 3x10~ and n = 8 x 1 0 ~ ~ .  

shifts these curves downwards. As we showed earlier, transverse waves cannot 

exist in a nonlinear plasma all by themselves. This is confirmed simply by inves- 

tigating (4.5) or (4.10), and the solution (4.33) under the condition a+ 0 

(remember that X is a function of a also!), namely ET+ 0 as a+ 0. 

4.3 General Case 

In this paragraph the objective is to solve (3.3) and (3.4) without using condi- 

tion (3.5). We will be seeking for the solitary wave solutions for the longitudinal 

and transverse waves, u and v respectively. If we use (2.32), with U replaced by V, 

and integrate it once, equation (3.3) can be put in a form 

We seek solution of (4.49) in a form 



and, < = x -Vt . Note that we have assumed the new velocity of the wave V instead 

of U, defined in (3.7), since it is reasonable to assume that velocity of a two- 

component wave (EL and ET) should in general differ from velocity of the longitu- 

dinal wave, however the former one should reduce to latter one in the limit when 

E~ -, 0, in other words V -, U as ET -, 0. We did not think it was necessary to do 

these adjustments in the case when waves were predominantly longitudinal. 

The choice of (4.47) is justified because when v -, 0 , u approaches the already 

obtained solution (3.12), which was found under the assumption that the 

transverse wave is much smaller (or is zero) than the longitudinal wave. Substi- 

tuting (4.47) in (4.46) we obtain 

where G is a constant of integration and primes denote differentiation with 

respect to <. If we multiply both sides of (4.49) by v' and then integrate the whole 

equation with respect to {we get 

2. See (3.12) and (3.17). 



where 

2 al = - 1 
3 

, az=-(V-3vo-u,) , a s = G  , & = K ,  
2 

K being a constant of integration. To solve (4.53) we assurne 

The assumption (4.52) based on the fact that if we can find such coefficients bi , 

where i = 1,2,3,4, of the cubic B(v) so that (4.55)is satisfied providing us with 

some function v(f), then the right hand side of (4.50) will be represented by 

some other cubic 

where E(u) = -al? + aZ$ + a3v+ a, as given in (4.50). This will allow us to solve 

(4.50) and then match its solution with the solution, obtained by solving (4.52) if 

the latest can be done! Differentiating (4.52) with respect to t and then dividing 

the result by v' we obtain 

Equation (4.54) is quadratic for v, and therefore can be easily solved. If we take 

b3 = 0 and 



then it follows from (4.54) that 

By examining (4.55) we immediately recognize that when the transverse com- 

ponent of the wave is zero, then the expression in parentheses is zero, requiring 

that bl+ m so that v would vanish. 

With the assumption (4.52) and with use of (4.53), equation (4.50) becomes 

where we put a3 = a, = b3 = b, = 0, and 

Denoting 

and using exactly the same procedures as in (3.9)-(3.12)~ we obtain 

and therefore 

Comparing (4.56) with (4.60), and making use of (4.55) yields 



and theref ore 

and (4.60) becomes 

Since az is given by (4.51), condition (4.62) fixes the value for bz. Thus, if  con- 

dition (4.63) is satisfied, then (4.60) is a solution of (4.46), and therefore it fol- 

lows from (4.47) and (4.60) that 

To conclude that u and v, given by (4.64) and (4.60) respectively, are solutions of 

(3.3) and (3.4), we need to show that these u and v satisfy (3.4) as well. To do so 

we first simplify (3.4) by using (2.32), with U replaced by V, and then integrating 

result once with respect to x to obtain 

where HI is a constant of integration. Substituting (4.65) and (4.60) in (4.66) we 

obtain 

where A, as before, is given by (4.48). Clearly to satisfy (4.67) we require the 

terms in square brackets to vanish. This leaves us with a system of three non- 



h e a r  algebraic equations (third being (4.63)) : 

and 

where 

4.4 Generalization of the Wave Velocity 

Investigation of the system (4.68)-(4.70) leads us to the following interesting 

observations: 

1. (4.68) shows that if 

a )B=O then 0 = 0 ,  

b) a + @ = 0 then 19 = O(also a = 0) 

2. (4.69) shows that if 

a. /? = 0 , then vo = 0. We can think of vo as of a constant (independent of x and 

t), andis zero iff /? = 0. 

1 1 vo b. (a + @) = 0. then @(V- 3 v 0  - 3 u O )  = B ?+ 8 -  Thus f? = 0. 
3 '  

3. (4.70) shows that if 

a. = 0, then V = uo + K. (V + U). Only longitudinal wave exists. 
3 



a v-u, - - 
b. ( a  + 8) = 0, then 8 = -8 3 , so that ,!3 = 0 , and thus a = 0. 

2a  v-3v,-u,-- 
3 

This leads us to the following important conclusions 

i. longitudinal wave can exist by itself, 

ii. transverse wave does not exist unless longitudinal wave does exist. 

To further simplify system (4.68)-(4.70) let us equate terms p a y  in (4.68) and 

(4.69). Accordingly we have 

which can be put in a form 

where U, as before, stands for the velocity of a solitary longitudinal wave, and 

a (a, p ,  v, , u,) is an excess velocity due to  the presence of the transverse wave. 

We want limo = 0. This will bring a new condition for v,. Using (4.72) and (4.73) 
8'0 

we deduce from (4.70) that 

and therefore system of equations (4.68) and (4.74) should be solved subject to  

condition (4.73). Note that if we assume some form for a ,  for example a = K a p ,  

where K is some constant, then (4.73) yields 



With this choice of a we have 

limo = limv, = 0 . 
8'0 8'0 

(4.76) 

Substituting a = Ka@ into (4.74), and (4.72) into (4.68), we obtain 

From (4.77) it follows that 

If we put (4.79) into (4.78) we obtain polynomial 

where 



If we assume u, = flz as before, then specifying @ and T we can determine a, 

being a root of (4.80). Numerous computer runs were made in order to deter- 

mine the values of a that would support a given @, for different temperatures, 

numerically. Fig. IV.3 shows this dependence for respective values of Ti, i = 1,2,3, 

being 1000°,20000 and 4000' respectively.' The plots indicate that the relation- 

ship between a and /3 is linear for almost entire ranges of tried values of T E [I.,  

10~] ,  and /3 E [O, 10'1, except for @ < 20, and @ > 5 x lo7,  where the slopes of the 

curves slightly increase. Fig. lV.4 shows the values of excess velocity u as a func- 

tion of /3 for a different temperatures T. 

- --- - 

Q u r e  TV.3 Dependence of a + @ on @ for different temperatures T, = lon. 

In most of the regions of interest a depends on @ inearly, and for every tempera- 

ture Tn = lon,  n is real, there is a region, that can be approximated by the fol- 

lowing inequalities 

3. Complex roots, along with negative roots were excluded from consideration. Also excluded were 
the roots that were too big (greater than the speed of light). 



where u < 0, and V changes its sign. We call this region the instability band. At 

the vicinities of the respective bands (4.82), the graphs exhibit obvious non- 

linearities. Another interesting observation is that 

Figure IV.4 The excess velocity a as a function of 8. 

all the curves, right from the region of instability, converge to the line u = @, 

whereas all the curves, that lie to the left from the region of instability, as they 

approach this region from the left, tend to converge to the line @ = @,-, where 

fin- is the lower bound of the respective region (4.82). The fact that all the 

curves, that are to the left of the region (4.82) and lie above the line u = 8, indi- 

cates that up to @ = 8,- there is some coefficient of proportionality, say p, 

between u and @, such that a = pp,  ( p  1 1) where p would depend on 



temperature: as larger the temperature the smaller is p. In the limit when T -, 

m , p tends to 1. Thus velocity V of the two-component wave also depends linearly 

on amplitude of the transverse component. 

The presence of transverse wave guarantees the existence of the magnetic 

Figure IV.5 ET and B in x - V t coordinate system 

field, since according to the Maxwell's equation 

while the longitudinal component of the E-field does not contribute to the mag- 

netic field, since E = E(x) only. I t  follows from (4.83) and (4.61) that 

where e, stands for a unit vector in the y direction. Fig. IV.5 shows E~ and B in 

the (x - Vt) coordinate frame. 



5. SDm PKYSICALKEMARKS 

5.1 Motion of the Electron in a Solitary Field 

The differential equation of motion of a charged particle is 

where v = (vl vz vS)T is a velocity of a particle. The scalarized version of (5.1) is 

since there is no y and z dependence. To determine the law of motion of a parti- 

cle of charge e and mass m in the field of a plane electromagnetic wave, it is 

convenient to use the following transformation 

where n is a unit vector in the direction of propagation. Accordingly system (5.2) 

becomes 

- -  r 
m dv'it') dt' [l ? ] = e [ ~ ~ ( t ' ) - - H ( t ' )  v 3 ( t f )  c 1 , 

Using the relation 

[ :' ] can be iac- which follows directly from the Maxwell equation (2.4), term 1 - - 

tored out on the right-hand side of the second equation in (5.4) thus reducing 



the second equation to 

dvs m-= 
dt' 

e ~ ~ ( t ' )  . 

Therefore the transverse velocity and the transverse displacement of electron 

are 

where 

is the component of the momentum of the particle in the E,H plane. Using (5.7) 

the first equation in (5.4) becomes 

dv1 - [ I  - $1 = Q(t.) . 
dt' 

where 

- e I 1 - , [ EL(t') + (t') VQ . I 
Equation (5.9) can be easily integrated to yield 

where it was assumed that a t  t=  0, the particle was a t  rest a t  the origin. Since 

EL(t') = %sech2 qt'tanh q t '  , 

and 



~ ~ ( t ' )  = @,, sech2 q t' tanh q t' , 

where 

and 

q = - AV, (A is given by (4.48) ) , 

it follows from (5.9) and (5.10) that 

v3 = pstanh2qt' + C, , 

where 

and C1 is a constant of integration. Clearly C1 = -ps because vs vanishes as t' -, 

k = . Thus, we have 

v3 = -p3 sech2 q t' . 

Accordingly (5.10) becomes 

and theref ore (5.1 1) reduces to 



where 

and Cz is a constant of integration. We choose C2 = 9Vm2 -pl and an appropri- 
4ez 

ate sign in (5.1 1) since vl = - V as t' -, & m . Hence (5.20) reduces to 

Integrating (5.18) and (5.23) we obtain displacements of the electron in the z 

and x directions respectively 

and 

where constant of integration in (5.24) is chosen so that z(t') vanishes as 

t -, - m .  Formula (5.24) implies that as the solitary wave propagates, electron 

- 2 ~ 3  undergoes some finite dispacement z = - in the transverse directon. For- 
q 

mula (5.23), however, indicates that vl = -V as t' -+ * m , which implies that in 

these two limits electron is stationary since v1 represents the longitudinal com- 

ponent of the electron velocity in the coordinate frame that moves with velocity 

V. Hence in the longitudinal direction electron also undergoes finite dispace- 

ment that is given by (5.25). 



5 2  Electmrnagnetic Energy Density 

The quantity V . S represents the rate of change of the electromagnetic energy 

density W, that is 

a v . s = K w .  

where S is the Poynting's vector that is defined by 

S = E x H ,  

and it is 

where el and Q are unit vectors in the x and z directions respectively, and 7, is 

a shorthand for the amplitude of the magnetic field, namely 

Since S depends on x and t only, and their derivatives relate through the wave 

velocity V, (5.26) can be reduced accordingly 

and theref ore 

where S1 stands for the component of the Poynting vector in the direction of 

wave propagation, namely in x direction. Although the amplitude of the longitu- 

dinal wave does not appear in (5.27) it does contribute to the energy density 

since @, has to be supported by longitudinal component a,. In the case when 



waves are  predominantly (or completely) longitudinal we have W = 0, which 

implies that there is no energy propagation, and we rather have energy tran- 

sportation. 



6. CONCLUSIONS 

Starting from the Maxwell equations and the equations of hydrodynamics we 

have obtained a nonlinear vector differential equation, governing electromag- 

netic wave propagation in a collisionless electron plasma. Based on the analysis 

of this equation we draw the following conclusions: 

In a nonlinear collisionless plasma transverse electromagnetic waves cannot 

exist, unless they are accompanied by longitudinal waves; however, longitudinal 

waves can exist by themselves. The same is true for solitary electromagnetic 

waves. The velocity of a vector solitary electromagnetic wave depends linearly on 

the amplitude of each component of the field. Moreover, the relationship among 

the amplitudes of the longitudinal and transverse waves is likewise linear for 

physically reasonable ranges of amplitude and plasma temperature. While the 

increase in plasma temperature has a tendency to decrease the amplitude and 

to broaden the longitudinal wave profile, it leads to greater amplitudes of the 

transverse waves in the case where the waves are predominantly longitudinal. 

The longitudinal solitary waves are stable in the Lyapunov sense, and the 

analysis of a periodic wavetrain solution indicates that the equation for these 

waves is hyperbolic in nature. The longitudinal wave equation can be derived 

from a Lagrangian density function; accordingly, the wave equation is 'lossless", 

or conservative in the conventional sense. The longitudinal solitons, whose mag- 

nitudes are limited by the electron density and plasma temperature, are 

uniquely determined by their initial values. Frequency spectra of the solitary 

waves show the dominance of low frequencies. Although the qualitative features 

of the soliton interaction are obtained, further numerical verification of the 

interaction is needed. 



SELeCTION OF THE MATRICS 

The metric that we use to measure the distance between u and il is a functional, 

that should satisfy the following axioms: 

and 

d(u,ii) 5 d(u,u,) + d(u,,Ii) , (triangle inequality) , 

where u, ii and u, are defined on the whole real axis . It is clear that d(u,il) is 

a function of time, since u and Ii are functions of time. 

We select the metrics d,(u,Ii) and dz(u,i3) to be 

dl(u,n) = 1 1 ~  -all , 

and 

dz(u,ii) = inf I ~ T U  - i3II , (A- 2) 

where the symbol 11.11 means the norm in the Banach space Wzf (R) ,  (see Appendix 

B), and T stands for a group of translations along the x-axis, such that 

T ~ ( x )  = f(x - f )  , 

where f is any real number. 

Choice of a metric (5.2) allows to discriminate the stability problem respecting 

only the shape of solitary waves. Although the choice of metric may be to a 

large extent arbitrary, it is often crucial to stability analysis. There are dynami- 

cal systems, in which the motion is stable with respect to one metric but not 

with respect to another [Nemat-Nasser and Hermann, 19661. The set of 



functions, obtained by such a translation constitutes some quotient space P, 

subspace of W j  ( R ) ,  each element of which is an equivalent class of functions 

that are translations of each other. For example 

which is solitary wave solution of (3.59), is the same element of P for all t ,  and 

- 
can be represented by ii = JU sech2 [ $p- X I .  We want the solitary wave 

1 + u  

solution to be stable with respect to the metric dz, which is actually defined in a 

subspace P, where the difference A = u -ii represents the difference between the 

shapes of u and 8. 



SOME RESULTS FROM FUNFPIONAL ANALYSIS 

We assume that for all t ,  the solution u is, as a function of x, an element of the 

Sobler function space W$(R). Therefore W$(R) is the Banach space of functions 

f(x), that are square-integrable [f €&(R)]. The norm in Banach space is defined 

by 

Since [f€&(R)] and [ft€L2(R)], their Fourier transforms r(k) and F(k) = -ikF 

respectively are also the functions. Using the Parsival's theorem, the norm in 

Wd( R) is 

Therefore f= (1 + k2)f(l + k2)-In dk is an L1 function, since it is the product of 

two functions. Hence f(x), which is inverse Fourier transform of f(k), is a con- 

tinuous function of x, which vanishes as x + rt m .4 

By expanding f as the inverse Fourier transform of fc; arranging f as the product 

of two functions and then using the Schwarz inequality we obtain 

Inequality (B.3) represents an explicit upper bound for If/ .  

4. See Riemann-Lebesque theorem for integrals, e.g. Rudin [1966,§ 9.61. 



WWER BOUND ESITJUTION FOR THE: FVNCTIONALS 

Before we estimate tS2N(r) and tS2~(s) it is important to observe that if expanded, 

(3.66) can provide us with an important constraint on the even function r(x) 

and its derivative, namely, 

= - 2 J (Tir + uxrx) dx + / (iis + ~ s , )  dx 
-w -00 

= - 2 J (iir + a,rx) dx , 
-m 

since A(x) = r(x) + s(x) , A (-x) = r(x) - s(x), and / (Tis + &sX) dx = 0 for the - 
integrand is an odd function. Condition (C.1) will play an important role in 

estimating the lower bound for d2N(r) used as the constraint on r(x). The esti- 

mation of the lower bounds for 6"(r) as well as b2N(s) will be based on the spec- 

tral theory of singular boundary value problems. Consider the integral 

where p and q are constants. We want to obtain the lower bound for J, instead of 

computing the lower bound for d2(r) which is given by 

as seen in (3.69). To have b2N(r) r J we want the negative part of the integrand 

in (C.2) be larger than the negative part of the integrand in (C.3) compared with 

the terms in r$ respectively in (C.2) and (C.3). The proper choice of constant Q 

- 
should do it. Introducing the new variable y = $-P-x  we can rewrite (C.2) 

in the following form 



We want to expand sech2y term as a linear combination of the eigenfunctions of 

the associated eigenvalue problem 

where q(y;X) is defined on [0, m) and is required to remain bounded as y -r =,  

and h is real. The problem (C.5) is a well-known problem and solutions to it, for a 

given values of Q are available [see Morse and Feshbach, 1953, p. 7681. In our 

case eigenvalue spectrum consists of a finite number of discrete negative values, 

together with a continuous spectrum on the interval [0, m). Since r€Lff [0, m) 

there exists a transform pair5 

and 

where the spectral function p(h) is non-decreasing on the whole interval 

-m < A <  m ,  has a jump at each negative eigenvalue, non-decreasing at any A< 0 

not an eigenvalue, and is continuous for A 2  0. It is shown (see Titchmarsch 

1962, 5 2.21) ; that since r and r' both vanish as y -, k m ,  and ~ E W ;  [0, m) we 

have 

The only value of Q in (C.5) that enables us to express the sech2y as a linear 

combination of the eigenvalues of the problem (C.5) is 20. This coefficient also 

ensures the negative part of the integrand in (C.2) be larger than the 

corresponding term in (c.3), compared with r'2 terms. The two negative 

5. See, for example, Coddington and Levinson 11955, ch. B], or Titchmarsh [1B62, part 1, ch. 231. 



eigenvalues and their respective eigenfunctions in (C.5) with Q = 20 are 

A,=-16,  q l =  4 sech4y 

when the coefficients are chosen to normalize the eigenfunction, so that 

Hence expansion (C.7) becomes 

where 

and the Parseval's equality becomes ' 

Therefore (C.0) reduces to 

m 00 

/ (rf - 20 r2 sech2 y) dy = - 16 Rf - 4 ~ $  + / R'(A) h dp(A) . (C. 13) 
0 0 

and hence using (C.4), (C.8). (C.12) and ((2.13) we obtain 

To further reduce (C.14) we first note that sech2y can be expressed as a linear 

combination of the eigenfunctions ql  and q2, namely 

6. For any pair of functions r and r t h e  Parseval's equal& is 



If we multiply both sides of (C.15) by r(y) and integrate both sides from o to m 

and also use (C.11) we obtain 

Applying the same change of variables y = 54%~ in the constraint (C.1) 

we obtain 

Noting that ti = 3 U s e ~ h * ~  and integrating the last integral by parts we get 

But since 

m m 

J 'ii,rdy = J (4 sech2 y - 6 sech4 y) rdy 
0 0 

R, = LdF f (6 sechz y - 7 sech4y) rdy 
2 0 

and 

equation (C.18) can be written in a following form 

and therefore (C. 16) becomes 

where 



Thus (C.14) reduces to 

Selecting p = 4 makes the last term vanish and implies also that the first 

integral is non-negative, and therefore (C.19) becomes 

Since < 1. we have 
4(1 +U) 

Comparing (C.2) and (C.3) with /I = 4 and Q = 20 it can be easily shown that (C.3) 

can be written in terms of J as follows 

With the aid of (~ .21 ) ,  equation (C.22) becomes 

where 

To obtain the contribution to b2~(A)  from odd functions, namely b2~(s ) ,  we note 

that u as an element of P can represent any translation, so we can choose such 

a translation that expedites the needed comparison between u and ti. We specify 

such a constant v so that 



OD m 

1 u(x - v) -ii(x) jz dx = inf (u(x - 8 -ii(x) j2 dx . 
-00 

(C.24) 
SeR -- 

The infinurn is achieved for some finite v, since u and ii are elements of WJ(R) 

and therefore converge to zero as x -, i m .  Moreover, it also implies that at  

some 1 = v the right-hand side of (C.24) is stationary w.r.t. [, therefore 

thus giving 

and since u(x -v) = ~ ( x )  + A(x), where A(x) = r(x) + s(x), we obtain 

The constraint ((2.26) will be used in a same manner as (C.1) was used in 

estimating the contribution to d2N(A) from even functions. It is clear now that 

(C.24) together with (C.2) implies that 

To obtain an estimate on d2N(s) we use (3.70) and the fact that 11A112 = l/r112 + lls112, 

and therefore 

Using the same spectral theory (see (c.10)-(~.'13)) we obtain 



where p(h) is a spectral function, defined earlier, and 

where wi are the eigenfunctions corresponding to the negative eigenvalues of the 

following eigenvalue problem, defined on [0, m): 

The only negative eigenvalue in (C.31) is A, = - 1 and corresponding eigenfunc- 

Thus (C.30) and (C.26) give 

Therefore the summation term in (C.29) vanishes and (C.28) becomes 

00 

since f S2 Xdp(A) 2 0. 
0 
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