METABOLIC ENGINEERING OF SACCHAROMYCES CEREVISIAE FOR THE PRODUCTION OF BENZYLISOQUINOLINE ALKALOIDS

Thesis by
Kristy Hawkins

In partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

California Institute of Technology
Pasadena, California
2009
(Defended October 28, 2008)
© 2009

Kristy Hawkins

All rights reserved
ACKNOWLEDGEMENTS

The completion of this thesis work was a long and arduous journey which has consumed the past five years of my life and I have many people to thank. First I would like to thank my research advisor Christina Smolke for taking me on as one of her first students. When I started in the lab, I did not even know how to use a pipette or basic principles of molecular biology. Christina gave us our first lessons in cloning but later allowed us the freedom to direct much of our own research work.

I also have to thank my colleagues in the lab that have become some of my best friends. In particular, Stephanie Culler is an amazing scientist and one of the most genuine people I have ever met. Her work ethic is unparalleled and she has kept me company during many late nights and weekends. I also have to acknowledge Dr. Kevin Hoff who has always taken the time to dwell on others’ research problems, and more often than not, come up with some valuable suggestions if not solutions. Chase Beisel is another lab member who is always willing to lend an ear, and it has been a pleasure getting to know both him and his lovely wife Amy. Finally, I have to thank Michael Siddiqui for being brave enough to take on this challenging project so that my work building the BIA pathway is not lost. Michael also assisted me with some of the upstream pathway experiments presented here.

For never-ending support and unconditional love, I have to thank my parents Barbara and Terry Hawkins. They have always been incredible role models without even trying. And lastly, I have to recognize Branden Ray who has been my rock for the past
year. When I doubt myself, he reassures me; when my enthusiasm is lost, he helps me
find it; and when I have a breakthrough, he is the first person I run to tell.
The engineering of synthetic metabolic pathways in microbial hosts holds much promise for the synthesis of new chemicals and materials, including a variety of natural and non-natural products. The benzylisoquinoline alkaloids (BIAs) represent a large and structurally diverse class of plant secondary metabolites that exhibit a broad range of pharmacological activities. The reconstitution of a BIA biosynthetic pathway in an engineered microbial host offers several advantages over isolation from plants, including the targeted production of key intermediate molecules, rapid biomass accumulation, ease of purification, and the availability of genetic tools for strain engineering and pathway optimization.

Here we describe the development of a synthetic BIA pathway in an engineered yeast host which incorporates heterologous enzymes from a variety of organisms. The BIA backbone is derived from two molecules of tyrosine and is assembled through a heterologous pathway comprising enzymatic activities from plants, bacteria, and humans. Simultaneous efforts have focused on the downstream portion of this pathway to convert a commercially available substrate to the major branch point intermediate reticuline. By synthesizing both stereoisomers of reticuline from a racemic substrate, we have demonstrated production of BIA metabolites along the diversified sanguinarine/berberine and morphinan branches. Further optimization, scale-up, and a combination of bioconversions and chemical synthesis will potentially revolutionize drug discovery and manufacturing of these compounds.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. v

LIST OF FIGURES AND TABLES .. xi

CHAPTER I. INTRODUCTION ... 1

1.1. Yeast as a host organism .. 1
1.2. Tools for metabolic engineering in yeast .. 2
1.3. The benzylisoquinoline alkaloid (BIA) pathway .. 4
1.4. Metabolic engineering of \textit{S. cerevisiae} for the production of BIAs 6

CHAPTER II. THE REGULATORY ROLES OF THE GALACTOSE PERMEASE
AND KINASE IN THE INDUCTION RESPONSE OF THE GAL NETWORK IN
\textit{SACCHAROMYCES CEREVISIAE} .. 8

Abstract ... 8

2.1. Introduction ... 9
2.2. Results .. 13

2.2.1. Galactose permease deletion results in a linear induction response 13
2.2.2. Constitutive expression of the galactose permease results in a tunable linear
response ... 14
2.2.3. Constitutive expression of regulatory proteins enhances the switch-like
response of the network ... 16
2.2.4. Galactokinase deletion results in a regimed network response 20
2.2.5. Population distributions in GAL2-modified strains exhibit graded responses

2.2.6. Deletion of the galactokinase results in multiple stable populations

2.3. Discussion

2.4. Materials and Methods

2.4.1. Yeast strain construction

2.4.2. Yeast expression plasmids

2.4.3. Fluorescence assays

2.4.4. Flow cytometry assays

CHAPTER III. SYNTHESIS OF THE BENZYLISOQUINOLINE ALKALOID BACKBONE FROM TYROSINE IN SACCHAROMYCES CEREVISIAE

Abstract

3.1. Introduction

3.2. Results

3.2.1. Functional expression of tyrosine/dopa decarboxylase from Papaver somniferum

3.2.2. Production of dopamine

3.2.3. Production of 4-hydroxyphenylacetaldehyde and 3,4-dihydroxyphenylacetaldehyde

3.2.4. Production of norcoclaurine and norlaudanosoline

3.3. Discussion

3.4. Materials and Methods

3.4.1. Plasmid and yeast strain construction

3.4.2. Analysis of metabolite production
CHAPTER IV: PRODUCTION OF (R, S)-RETICULINE AND DOWNSTREAM BENZYLISOQUINOLINE ALKALOIDS IN SACCHAROMYCES CEREVISIAE 74

Abstract... 74

4.1. Introduction .. 75

4.2. Results ... 76

4.2.1. Synthesis of reticuline from norlaudanosoline in yeast... 76

4.2.2. BIA production in the yeast strains is substrate limited ... 85

4.2.3. Tuning enzyme levels with a novel titration strategy ... 88

4.2.4. Synthesis of sanguinarine/berberine intermediates .. 93

4.2.5. N-methylation of (S)-tetrahydroberberine for the production of a noscapine pathway intermediate.. 99

4.2.6. Pathway for laudanine production ... 101

4.2.6. Synthesis of the morphinan intermediate salutaridine ... 102

4.3. Discussion ... 106

4.4. Materials and Methods .. 109

4.4.1. Plasmid and yeast strain construction .. 109

4.4.2. Growth conditions .. 113

4.4.3. Analysis of metabolite production ... 114

4.4.4. Fluorescence quantification .. 116

4.4.5. Analysis of protein levels through Western blotting ... 116

4.4.6. Analysis of transcript levels through qRT-PCR ... 117
4.4.7. Analysis of stereoisomer forms of BIA metabolites through capillary electrophoresis-based chiral separation ... 118

4.4.8. Preparation of cell extracts .. 119

CHAPTER V. PRODUCTION OF MORPHINAN ALKALOIDS IN SACCHAROMYCES CEREVISIAE .. 120

Abstract .. 120

5.1. Introduction .. 121

5.2. Results ... 123

5.2.1. Expression and activity of Papaver somniferum salutaridine synthase 123

5.2.2. Expression of Papaver salutaridine reductase variants for the production of salutaridinol ... 124

5.2.3. Expression of salutaridinol-7-O-acetyltransferase and development of a process for thebaine production ... 128

5.3. Discussion .. 138

5.4. Materials and Methods .. 139

5.4.1. Plasmid and yeast strain construction .. 139

5.4.2. Cell growth conditions .. 141

5.4.3. Analysis of metabolite production ... 141

5.4.4. Analysis of protein levels through Western blotting 142

5.4.5. Fluorescence quantification .. 143

CHAPTER VI. CONCLUSIONS AND FUTURE WORK 144

6.1. A new tool for tuning protein expression .. 144

6.2. De novo biosynthesis of BIA backbone molecules.. 145
6.3. Production of the intermediate reticuline and downstream berberine and morphinan alkaloids ... 146

6.4. Construction of a strain to produce downstream BIAs from tyrosine 148

REFERENCES .. 149
LIST OF FIGURES AND TABLES

Figure 1.1. General schematic of the BIA pathway…………………………………………………………..6

Figure 2.1. Diagram of the native GAL network…………………………………………………………..11

Figure 2.2. Population-averaged response from strains with altered Gal2p regulation…………16

Figure 2.3. Population-averaged response from strains with altered Gal3p and Gal80p
regulation……………………………………………………………………………………………………...19

Figure 2.4. Population-averaged response from strains with no Gal1p activity………………22

Figure 2.5. Population response from strains with altered Gal2p regulation…………………24

Figure 2.6. Population response from strains with no Gal1p activity…………………………26

Figure 2.7. Cassettes for chromosomal replacements……………………………………………...34

Table 2.1. List of yeast strains………………………………………………………………………..35

Table 2.2. List of primer sequences used in the construction of plasmids and yeast
strains……………………………………………………………………………………………………...36

Figure 3.1. The native pathway for the production of the BIA precursor (S)-norcoclaurine
synthesized from two molecules of tyrosine. ………………………………………………………….41

Figure 3.2. In vivo TYDC2 assays……………………………………………………………………..43

Figure 3.3. Alternative pathways for dopamine production from tyrosine…………………..44

Figure 3.4. LC-MS analysis of the growth media of CSY88 expressing AbPPO2 and
TYDC2………………………………………………………………………………………………………...46

Figure 3.5. Western blots of AbPPO2 constructs……………………………………………………..47

Figure 3.6. LC-MS analysis of dopamine produced in yeast…………………………………..49

Figure 3.7. Analysis of tyrosine derivatives………………………………………………………….50

Figure 3.8. Monoamine oxidase enzyme assays…………………………………………………..52
Figure 3.9. Production of norlaudanosoline from dopamine..........................54

Figure 3.10. Strains with increased norlaudanosoline accumulation..................56

Figure 3.11. Pathway for the production of 4-HPA from tyrosine using the endogenous yeast genes ARO8/9 and ARO10..57

Figure 3.12. Analysis of yeast strains overexpressing the ARO genes.................59

Figure 3.13. Changes in 4-HPA, tyrosol, and 4-hydroxyphenylacetic acid production in knockout strains overexpressing Aro9p and Aro10p..60

Figure 3.14. Pathways for norcoclaurine and norlaudanosoline production........61

Figure 3.15. Expression of NCS and production of norcoclaurine......................63

Figure 3.16. Comparison of norlaudanosoline production with NCS..................65

Figure 3.17. Norcoclaurine production in ADH and ALD knockout strains..........66

Table 3.1. Plasmids and yeast strains..70

Figure 4.1. The native BIA pathway...77

Figure 4.2. The engineered BIA pathway for the synthesis of (R, S)-reticuline from (R, S)-norlaudanosoline..78

Figure 4.3. Plasmid maps of BIA expression constructs....................................79

Figure 4.4. LC-MS/MS analysis confirms individual methyltransferase activities...80

Figure 4.5. Western blot analysis confirms expression of 6OMT, CNMT, and 4’OMT enzymes..81

Figure 4.6. Microbial production of (R, S)-reticuline..83

Figure 4.7. BIA metabolites accumulate in the growth media............................84

Figure 4.8. Effects of enzyme levels, substrate levels, and culture time on reticuline production..87
Figure 4.9. A novel strategy for tuning enzyme expression levels.................................92

Figure 4.10. Microbial production of BIA metabolites along the sanguinarine and berberine branches...95

Figure 4.11. Comparison of BBE N-terminal truncations.................................97

Figure 4.12. Comparison of synthesized (S)-tetrahydroberberine to standard........98

Figure 4.13. Chromatograms show impurities and incomplete conversion of intermediates...99

Figure 4.14. Activity of TNMT on (S)-tetrahydroberberine.................................100

Figure 4.15. (R, S)-Reticuline 7OMT reaction and expression in yeast..................101

Figure 4.16. Microbial production of morphinan alkaloids.................................105

Table 4.1. Engineered yeast strains...110

Table 4.2. Primer sequences used for qRT-PCR and to make stable integrations of enzyme constructs and GAL2 knockouts. ..113

Table 4.3. Summary of yields of benzylisoquinoline alkaloids...........................115

Table 4.4. Primers used for qRT-PCR..118

Figure 5.1. Pathway for the production of thebaine from (R)-reticuline.................122

Figure 5.2. Testing of SalR variants...125

Figure 5.3. Salutaridinol production...127

Figure 5.4. Pathways for the formation of thebaine and neodihydrothebaine.........128

Figure 5.5. LC-MS analysis of satutaridinol-7-O-acetate..................................129

Figure 5.6. Codon-optimization increases SalAT expression...............................130

Figure 5.7. Comparison of CYP2D6 and SalSyn for salutaridinol-7-O-acetate production...132
Figure 5.8. Comparison of SalSyn reductase partners and signal sequences............133

Figure 5.9. Alternative promoter and signal sequence for SalAT.........................135

Table 5.1. Engineered yeast strains and plasmids..141