Understanding the Chemical Basis of Neuronal Development and Communication:

I. The Role of Fucose $\alpha(1-2)$ Galactose Carbohydrates in Neuronal Growth

II. Structure-Function Analysis of Chondroitin Sulfate in the Brain

Thesis by

Cristal Ivette Gama

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2009

(Defended 17 July 2008)

© 2009

Cristal Ivette Gama

All Rights Reserved

...for my family...

Acknowledgments

Without the help and support of many people, both scientific and personal, the work in this thesis would not have been possible. I would like to thank my advisor, Linda Hsieh-Wilson, for her advice and guidance. I would also like to thank the members of my committee, Judy Campbell, Mary Kennedy, and Paul Patterson. Without any of them, this thesis would not have come to completion. I would also like to thank Dennis Dougherty, even though he is not technically on my committee, he was like a second mentor and really helped our lab in the beginning, letting us join his group meetings and giving us much advice.

My undergraduate professors deserve special thanks as well since it is because of them that I came to graduate school. Dr. Robert Vellanoweth at Cal State LA was such a great mentor, a young professor with such an amazing mind, brilliant really. He was such an inspiration to me, being of Mexican decent, having gone to Cal State LA himself as an undergrad and then back as a professor leading his own lab and directing his own unique research. It was a wonderful learning experience and he showed me how to design my own experiments and think independently about the projects I worked on. Of course, I am indebted to Dr. Carlos Gutierrez at Cal State LA. I met Dr. Gutierrez as a senior in high school trying to decide which college to go to. He was the first academic professional I ever met, doing "lab research," which is what I wanted to do, even though at that time I wasn't even sure what exactly that meant. Dr. Gutierrez is such a wonderful human being, caring, easy going and great, I think it was because of him that I thought I could stick it out in the science field and make it through to get my Ph.D. There are many more wonderful people at Cal State LA that made me getting to Caltech possible, it's hard to mention everyone. However, I cannot go without special thanks to Vicki Kubo-Anderson. Without Vicki, nothing would be possible. Without Vicki, the biochemistry department would crumble. Without Vicki, we students would be in such a terrible state we wouldn't function either. She was like a mom, a mentor, a counselor, but most importantly, a friend.

The members of the Hsieh-Wilson lab, both past and present, have been a great group to work with. All the original members were unforgettable each in their own way, Raymond Doss, Sarah Tully, Nelly Khidekel, Katherine Poulin-Kerstien, Sherry Tsai, Nathan Lamarre-Vincent and Lori Lee. We helped each other get through some rough and tough times, learning the basics and going from there. Lori Lee was my first partner on the fucose project and, more than that, we became good friends. Sarah Tully did all the synthesis on the chondroitin sulfate project and without her this work couldn't have happened. It was really tough, her getting the synthesis to work and me trying to get those neurons to grow and behave. There were some very long nights and crazy "losing my mind" moments, it was great! Isn't that what science is really about? After the first group of students then came Heather Murrey. What can I say about Heather, other than she is the craziest, most intelligent scientist I think I have ever met. Through the years we have become wonderful friends and I will never forget all the times we've shared, both in and out of lab. Dr. Marian Bryan joined the lab and changed my life. Not only did we share time in the lab, she became my own personal doctor, counselor, therapist and everything in between. Katie Saliba is an amazing chemist and an even better being. She is, through and through, one of the most wonderful, caring people in this world. I would also like to thank everyone else that I have met and worked with. Each and

everyone of you has helped me get to this point: Maria Chiriac, Dr. Stacey Kalovidouris, Dr. Eric Shipp, Dr. Manish Rawat, Tammy Campbell, Dr. Helen Cheng, Dr. Ross Mabon, Monica Luo, Bruce Tai, Rob Moncure, Peter Clark, Claude Rogers, Dr. Mike Chang, Dr. Song-Gil Lee, Dr. Seok-Ho Yu, Dr. Jiang Xia, Jessica Rexach, Jessica Dweck, Long Phan, Gloria Sheng, Joshua Brown, and Joelle Radford. Of course I have to give special mention to some of the newest members in the lab, Young In Oh, Chithra Krishnamurthy, and Arif Wibowo. Although it hasn't been that long, I consider you close friends and I am thankful for all your support.

There are many more people outside of lab who have supported me and helped me survive. First and foremost, I would like to thank my parents, Bonifacia and Guadalupe. It is because of them that I am who I am today and it is for them that I have moved forward and continued my education to this point. My sister Marisol and brother Eric have always provided undying support, ever since my first day in elementary to my last day in graduate school. I know they have thought I was crazy for being in school this long, but they have always been there for me in every way. To all of my nephews and nieces, those here and those to come, this is for you. My dear friend Xiomara Padilla has been wonderful ever since we met. We have grown up together, cried through Quant, made it through graduation and now share our lives over Thai food, Shabu Shabu, chili cheese fries and, of course, Roscoe's. I have to thank Callie Bryan again. She has been the most wonderful friend, helping me get through these last years, pushing me forward, and buying me coffee, or anything else. I also have to thank one of my best friends, Wilbert Preyer. He has supported and believed in me every moment. Thank you all soo much from the bottom of my heart, we did it!

Abstract

Although carbohydrates are known to participate in many important processes including inflammation, cancer metastasis and pathogenic infection, their functional roles are only beginning to be understood on a molecular level. The challenge is that carbohydrates and glycoproteins are inherently difficult to study. Unlike DNA and proteins, carbohydrate structures are not template-encoded, and the modifications are challenging to detect *in vivo* and manipulate for structure-function analyses. As such, new tools are needed to complement the traditional biochemical and genetic approaches in order to advance our understanding of carbohydrates and their physiological roles. Here, we seek to understand the roles of carbohydrates in regulating the structure and function of proteins in the brain. Our major focus will be on two carbohydrate modifications that play important roles in neuronal communication, development and memory storage: fucosylation (Part I) and chondroitin sulfate glycosaminoglycan modifications (Part II).

In Part I, we describe our progress in elucidating the molecular mechanisms by which fucosyl saccharides regulate neuronal communication in the brain. Information flow in the brain is regulated by synapses, which are specialized sites of contact between neurons. Synaptic connections involve numerous molecular recognition events among proteins, carbohydrates, and small molecules. One of the molecules enriched at the synapse is the sugar L-fucose. Previous studies have suggested that fucose α (1-2)galactose (Fuc α (1-2)Gal) saccharides play essential roles in learning and memory. For instance, preventing formation of Fuc α (1-2)Gal linkages has been shown to cause reversible amnesia in animals. Despite these intriguing observations, proteins that express the Fuc $\alpha(1-2)$ Gal epitope (glycoproteins) or proteins that bind this epitope (lectins) have not been identified. Through the use of several chemical probes, we have established that Fuc $\alpha(1-2)$ Gal associated proteins participate in a novel carbohydrate-mediated pathway for regulating neuronal growth. Additionally, we have found that Fuc $\alpha(1-2)$ Gal glycoproteins are prevalent in the developing brain and that synapsin Ia/Ib are the major Fuc $\alpha(1-2)$ Gal glycoproteins in the adult brain. In our attempts to identify Fuc $\alpha(1-2)$ Gal lectins, we have established that multivalent polymers enhance our ability to capture and characterize such proteins.

In Part II, we describe our efforts toward understanding the role of chondroitin sulfate glycosaminoglycans in neuronal development. Chondroitin sulfate (CS) glycosaminoglycans are linear, sulfated polysaccharides implicated in cell division, neuronal growth, and spinal cord injury. The structural complexity and heterogeneity of CS has hampered efforts to understand its precise biological roles. Although they exist as a heterogeneous mix in nature, it is thought that CS activity is dictated by a sulfation code where distinct sulfation sequences are spatially and temporally regulated and direct the biological activity of CS glycosaminoglycans. We have developed a chemical approach to evaluate the structure-activity relationship of CS as it effects neuronal growth. We generated the first synthetic library of well-defined CS oligosaccharides containing various sulfation sequences and have demonstrated that the CS-E sulfation sequence is a stimulatory motif that promotes the growth of several neuron types. Moreover, we determined that CS-E mediated stimulation of neurite outgrowth was facilitated by activation of midkine/PTP5 and BDNF/TrkB signaling pathways.

Table of Contents

Acknowledgm	ents	iv
Abstract		vii
Table of Conte	nts	ix
List of Figures		X
List of Abbrev	iations	xiv
Part I : Chapter 1	Fucosylation in the Brain	1
Chapter 2	Fucose α(1-2) Galactose Carbohydrates Regulate Neuronal Growth	16
Chapter 3	Fucose $\alpha(1-2)$ Galactose-Containing Glycoproteins are Prevalent in the Brain and Regulate Neuronal Morphology	42
Chapter 4	Discovery of Fucose $\alpha(1-2)$ Galactose-Specific Lectins in the Developing Brain	61
Part II : Chapter 5	The Biological Activity of Chondroitin Sulfate Glycosaminoglycans	98
Chapter 6	Investigations into the Sulfation Code of Chondroitin Sulfate Glycosaminoglycans	118
Chapter 7	Elucidating the Mechanism of CS-E Mediated Neuronal Outgrowth	134

List of Figures

Chapter 1		Page
Figure 1.1	The monosaccharide L-fucose	3
Figure 1.2	In mammalian cells, the biosynthesis of GDP-fucose occurs through two distinct pathways	4
Figure 1.3	Common fucose-galactose linkages found on the terminal ends of carbohydrate chains	5
Figure 1.4	Incorporation of 2-deoxy-D-Galactose (2-dGal) inhibits formation of Fuc α (1-2)Gal linkages.	5
Figure 1.5	The trisaccharide Fuc α (1-2)Gal β (1-4)GlcNAc recognized by antibody A46-B/B10	8
Figure 1.6	Proposed mechanisms by which the Fuc α (1-2)Gal epitope acts in neurons	11

Figure 2.1	Fuc α (1-2)Gal-biotin probe 1 was designed to mimic endogenous glycoproteins	18
Figure 2.2	Fuc α (1-2)Gal probe 1 binds to the cell surface of hippocampal neurons	20
Figure 2.3	Fuc $\alpha(1-2)$ Gal probe 1 binds to hippocampal neurons	20
Figure 2.4	Lipid extraction does not alter labeling with $Fuc\alpha(1-2)Gal$ probe 1	21
Figure 2.5	Costaining of neurons with $Fuc\alpha(1-2)Gal$ probe 1 and an anti- tau antibody.	22
Figure 2.6	Costaining of neurons with $Fuca(1-2)Gal$ probe 1 and a MAP2 antibody	22
Figure 2.7	Costaining of neurons with $Fuca(1-2)Gal$ probe 1 and an anti- synapsin antibody	23
Figure 2.8	Costaining of neurons with UEA-I lectin and an anti-tau antibody	24
Figure 2.9	Lipid extraction using MeOH/CHCl ₃ did not diminish UEA-I lectin labeling	24
Figure 2.10	Fuc α (1-2)Gal promotes neuronal growth	26
Figure 2.11	Only the Fuc α (1-2)Gal-selective lectins UEA-I and LTL stimulate neuronal growth	27
Figure 2.12	Treatment with 2-dGal diminishes the expression of the Fuc $\alpha(1-2)$ Gal epitope on glycoproteins	28
Figure 2.13	Hippocampal neurons treated with varying concentrations of 2- dGal exhibit increasing defects in neuronal growth.	29

Figure 2.14	Treatment of hippocampal neurons with 2-dGal (15 mM), but	30	
	not 3-dGal (15 mM), for 2 days inhibits neuronal growth		

Chapter 3

Figure 3.1	Trisaccharide Fuc α (1-2)Gal β (1-4)GlcNAc recognized by antibody A46-B/B10	44
Figure 3.2	Costaining of neurons with $Fuc\alpha(1-2)$ Gal antibody A46-B/B10 and an anti-tubulin antibody	45
Figure 3.3	Lipid extraction of cellular membranes does not abolish staining with antibody A46-B/B10	45
Figure 3.4	Costaining of neurons cultured for 14 DIV with $Fuc\alpha(1-2)Gal$ antibody A46-B/B10 and either an anti-synapsin antibody or an anti-spinophilin antibody	46
Figure 3.5	Fuca $(1-2)$ Gal is expressed on several glycoproteins in the hippocampus and is developmentally regulated	47
Figure 3.6	Synapsins Ia and Ib are Fuc α (1-2)Gal glycoproteins	49
Figure 3.7	Expression of synapsin I was reduced by treatment with 2-dGal but not 6-dGal	50
Figure 3.8	The morphology of hippocampal neurons is modulated by 2- dGal in a concentration-dependent manner	51
Figure 3.9	Synapsin-deficient neurons display reduced neurite retraction relative to wild-type neurons upon treatment with 2-dGal	52

Figure 4.1	Monovalent capture probe 2 and control molecule 3	64
Figure 4.2	Capture probe 2 specifically labels the fucose-binding lectins AAA and UEA-I	66
Figure 4.3	Capture probe 2 labels distinct proteins in dissociated neurons	67
Figure 4.4	Probe 2 specifically labels $Fuc\alpha(1-2)Gal$ lectins in dissociated neurons	68
Figure 4.5	Fuc α (1-2)Gal lectins were specifically captured by probe 2 and isolated on a streptavidin column	69
Figure 4.6	Coomassie stain analysis of total protein captured on streptavidin column after probe 2 labeling	70
Figure 4.7	Subcellular fractionation of protein lysates labeled with probe 2 and control molecule 3	71
Figure 4.8	Scheme depicting the strategy by which probe 2 is used to label and identify $Fuc\alpha(1-2)Gal$ lectins from neuronal protein lysate	72
Figure 4.9	Distinct proteins from rat pup lysate were captured and isolated	73

	by probe 2	
Figure 4.10	Protein lysate labeled with probe 2 did not confirm	74
	identification of potential Fuc α (1-2)Gal lectins	
Figure 4.11	Multivalent polymer 4 displays multiple $Fuc\alpha(1-2)Gal$ epitopes	75
	(red) and multiple biotin moieties (green)	
Figure 4.12	Labeling of proteins from dissociated embryonic neurons using	76
	the multivalent or monovalent probe	
Figure 4.13	Strategy for identification of Fuc α (1-2)Gal lectins from	76
	neuronal protein lysate using multivalent polymer 4	
Figure 4.14	Capture of purified UEA-I lectin using the multivalent Fuc α (1-	77
	2)Gal polymer 4	
Figure 4.15	Capture of UEA-I and Fuc α (1-2)Gal lectins from rat pup lysate	78
Figure 4.16	Capture of Fuc α (1-2)Gal lectins from rat pup lysate using the	79
8	Fuc α (1-2)Gal affinity column	
Figure 4.17	Design of multivalent capture polymer 5	80
0		

Chapter 5

Figure 5.1	Proposed mechanism of GAG function at the cell surface	99
Figure 5.2	Structures of representative classes of GAGs	100
Figure 5.3	Biosynthesis of HS/heparin and CS GAGs takes place in the Golgi apparatus	102
Figure 5.4	Structures of the most common CS motifs found <i>in vivo</i>	103
Figure 5.5	Heterogeneous GAG polysaccharides exhibit areas of low and high sulfation	104
Figure 5.6	Crystallographic models of the FGF-FGFR-HS complex	107

Figure 6.1	Structures of the initial synthetic CS oligosaccharides	120
Figure 6.2	CS-E tetrasaccharide 8 stimulates the outgrowth of hippocampal neurons	121
Figure 6.3	Structures of synthetic CS oligosaccharides containing distinct sulfation patterns	123
Figure 6.4	The sulfation pattern directs the neuritogenic activity of CS	124
Figure 6.5	The CS-E sulfation motif stimulates the outgrowth of DRG (A)	126

and dopaminergic neurons (B)

Figure 7.1	A substratum of CS-E polysaccharide stimulates the outgrowth of hippocampal neurons	136
Figure 7.2	CS-E polysaccharide added in solution inhibits the outgrowth of hippocampal neurons	137
Figure 7.3	Schematic representation of (A) natural CS and (B) CS glycopolymers	138
Figure 7.4	CS-E glycopolymers inhibit the outgrowth of hippocampal neurons	139
Figure 7.5	CS-E tetrasaccharide glycopolymer inhibits hippocampal neurite outgrowth	140
Figure 7.6	Comparison of the inhibitory potencies of CS glycoplymer 15 and the natural polysaccharide at various concentrations	141
Figure 7.7	Each sulfation pattern exhibits a distinct structural conformation	143
Figure 7.8	A specific sulfation pattern promotes the interaction of CS with neuronal growth factors	144
Figure 7.9	The CS-E sulfation motif stimulates neuronal growth through activation of the midkine-PTPζ and BDNF-TrkB signaling pathways	146
Figure 7.10	Function-blocking antibodies against BDNF and TrkB, but not class-matched control antibodies, disrupt the neuritogenic activity of CS-E	147

List of Abbreviations

1D	one-dimensional
2D	two-dimensional
2-dGal	2-deoxy-D-galactose
2-fucosyllactose	L-fucose $\alpha(1-2)$ galactose $\beta(1-4)$ glucose
3-dGal	3-deoxy-D-galactose
6-dGal	6-deoxy-D-Galactose
AAA	Anguilla anguilla agglutinin
Ab	antibody
Ac	acetyl, acetate
aq	aqeous
BCA	bicinchoninic acid
BDNF	brain derived neurotrophic factor
BSA	bovine serum albumin
°C	degree Celsius
CaCl ₂	calcium chloride
cAMP	cyclic adenosine monophosphate
CH ₃ N	acetonitrile
CHCl ₃	chloroform
CMF-HBSS	Calcium and Magnesium Free Hank's Balanced Salt Solution
CNS	central nervous system
CO_2	carbon dioxide
CRD	carbohydrate recognition domain
CS	chondroitin sulfate
ddH ₂ O	double distilled water
D-Gal	D-galactose
diazirine	trifluoromethylphenyldiazirine
DIV	days in vitro
DMEM	Dulbecco's Minimal Eagle's medium
DMSO	dimethylsulfoxide
DNA	deoxyribonucleic acid
DP	degree of polymerization
DRG	dorsal root ganglion
DTT	dithiothreitol
E18	embryonic day 18
ECL	enhance chemiluminescence
EDTA	ethylenediaminetetraacetic acid
endo N	endoneuraminidase
EXT1 and 2	exostoses enzymes 1 and 2
FGF	fibroblast growth factor
FGFR	fibroblast growth factor receptor, tyrosine kinase receptor
Fuc	L-fucose
Fuca(1-2)Gal	fucose $\alpha(1-2)$ galactose
FX	epimerase-reductase enzyme

g	gram, gravitational force
GAG	glycosaminoglycan
Gal	galactose
GalNAc	<i>N</i> -acetylgalactosamine
GDP-fucose	guanosine diphosphatyl-fucose
GlcA	D-glucuronic acid
GlcN	D-glucosamine
GlcNAc	<i>N</i> -acetylglucosamine
Gluc	glucose
GluR1	glutamate receptor 1
GMD	GDP-mannose-4,6-dehydratase
GPC	gas phase chromatography
GTP	guanosine triphosphate
h	hour
HIO ₄	periodate
HRP	horse-radish peroxidase
HS	heparan sulfate
IC ₅₀	inhibition concentration at 50%
IdoA	L-iduronic acid
IgG	immunoglobulin
IP	immunoprecipitated
K^+	potassium ion
Kassoc	association constant
KCl	potassium chloride
kDa	kilodalton
L	liter
LTL	Lotus tetragonolobus lectin
LTP	long-term potentiation
M	molar
MALDI-TOF	matrix-assisted laser desorption/ionization time-of-flight
MAP2	microtubule associated protein 2
MAPK	mitogen-associated protein kinase
MEM	Minimal Eagle's Medium
МеОН	methanol
μg	microgram
MgCl ₂	magnesium chloride
min	minutes
m	milli or meter
μ	micro
mol	mole
MS	mass spectrometry
n	nano
Ν	normal
Na ⁺	sodium ion
NaCl	sodium chloride
NaOH	sodium hydroxide

NCAM	neural cell adhesion molecule
NDST	N-deacetylase-N-sulfotransferase
NH ₄ HCO ₃	ammonium bicarbonate
NP-40	nonidet P-40 detergent
NSF	<i>N</i> -ethylmaleimide sensitive factor
OEt	<i>O</i> -ethyl
P2	insoluble fraction 2
PAA	polyacrylamide polymer lacking saccharide
PAGE	polyacrylamide gel electrophoresis
PAO	phenyl arsine oxide
PAPS	3'phosphoadenosine 5'phosphosulfate
PBS	phosphate buffered saline
PI3-K	phosphatidylinositol 3-kinase
PSA	polysialic acid
PSD-95	post synaptic density protein 95
ΡΤΡζ	protein tyrosine phosphatase zeta
PVDF	polyvinylidene difluoride
Qeq	charge equilibrium
RNA	ribonucleic acid
rpm	revolutions per minute
rt	room temperature
S2	soluble fraction 2
SDS	sodium dodecyl sulfate
SEM	standard error of the mean
Syn KO	synapsin knockout
TBST	tris buffered saline with Tween-20
TNFα	tumor necrosis factor alpha
Tris-Cl	tris chloride
TrkA	tyrosine kinase A receptor
TrkB	tyrosine kinase B receptor
U	unit
UEA I	Ulex europeaus agglutinin I
UV	ultraviolet
vol	volume
W/V	weight per volume
WGA	wheat germ agglutinin
WT	wild type