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Abstract

Although carbohydrates are known to participate in many important

processes including inflammation, cancer metastasis and pathogenic infection, their

functional roles are only beginning to be understood on a molecular level.  The challenge

is that carbohydrates and glycoproteins are inherently difficult to study.  Unlike DNA and

proteins, carbohydrate structures are not template-encoded, and the modifications are

challenging to detect in vivo and manipulate for structure-function analyses.  As such,

new tools are needed to complement the traditional biochemical and genetic approaches

in order to advance our understanding of carbohydrates and their physiological roles.

Here, we seek to understand the roles of carbohydrates in regulating the structure and

function of proteins in the brain.  Our major focus will be on two carbohydrate

modifications that play important roles in neuronal communication, development and

memory storage: fucosylation (Part I) and chondroitin sulfate glycosaminoglycan

modifications (Part II).

In Part I, we describe our progress in elucidating the molecular mechanisms by

which fucosyl saccharides regulate neuronal communication in the brain.  Information

flow in the brain is regulated by synapses, which are specialized sites of contact between

neurons.  Synaptic connections involve numerous molecular recognition events among

proteins, carbohydrates, and small molecules.  One of the molecules enriched at the

synapse is the sugar L-fucose.  Previous studies have suggested that fucoseα(1-

2)galactose (Fucα(1-2)Gal) saccharides play essential roles in learning and memory.  For

instance, preventing formation of Fucα(1-2)Gal linkages has been shown to cause

reversible amnesia in animals.  Despite these intriguing observations, proteins that
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express the Fucα(1-2)Gal epitope (glycoproteins) or proteins that bind this epitope

(lectins) have not been identified.  Through the use of several chemical probes, we have

established that Fucα(1-2)Gal associated proteins participate in a novel carbohydrate-

mediated pathway for regulating neuronal growth.  Additionally, we have found that

Fucα(1-2)Gal glycoproteins are prevalent in the developing brain and that synapsin Ia/Ib

are the major Fucα(1-2)Gal glycoproteins in the adult brain.  In our attempts to identify

Fucα(1-2)Gal lectins, we have established that multivalent polymers enhance our ability

to capture and characterize such proteins.

In Part II, we describe our efforts toward understanding the role of chondroitin

sulfate glycosaminoglycans in neuronal development.  Chondroitin sulfate (CS)

glycosaminoglycans are linear, sulfated polysaccharides implicated in cell division,

neuronal growth, and spinal cord injury.  The structural complexity and heterogeneity of

CS has hampered efforts to understand its precise biological roles.  Although they exist as

a heterogeneous mix in nature, it is thought that CS activity is dictated by a sulfation code

where distinct sulfation sequences are spatially and temporally regulated and direct the

biological activity of CS glycosaminoglycans.  We have developed a chemical approach

to evaluate the structure-activity relationship of CS as it effects neuronal growth. We

generated the first synthetic library of well-defined CS oligosaccharides containing

various sulfation sequences and have demonstrated that the CS-E sulfation sequence is a

stimulatory motif that promotes the growth of several neuron types.  Moreover, we

determined that CS-E mediated stimulation of neurite outgrowth was facilitated by

activation of midkine/PTPζ and BDNF/TrkB signaling pathways.
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