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Abstract

Although carbohydrates are known to participate in many important

processes including inflammation, cancer metastasis and pathogenic infection, their

functional roles are only beginning to be understood on a molecular level.  The challenge

is that carbohydrates and glycoproteins are inherently difficult to study.  Unlike DNA and

proteins, carbohydrate structures are not template-encoded, and the modifications are

challenging to detect in vivo and manipulate for structure-function analyses.  As such,

new tools are needed to complement the traditional biochemical and genetic approaches

in order to advance our understanding of carbohydrates and their physiological roles.

Here, we seek to understand the roles of carbohydrates in regulating the structure and

function of proteins in the brain.  Our major focus will be on two carbohydrate

modifications that play important roles in neuronal communication, development and

memory storage: fucosylation (Part I) and chondroitin sulfate glycosaminoglycan

modifications (Part II).

In Part I, we describe our progress in elucidating the molecular mechanisms by

which fucosyl saccharides regulate neuronal communication in the brain.  Information

flow in the brain is regulated by synapses, which are specialized sites of contact between

neurons.  Synaptic connections involve numerous molecular recognition events among

proteins, carbohydrates, and small molecules.  One of the molecules enriched at the

synapse is the sugar L-fucose.  Previous studies have suggested that fucoseα(1-

2)galactose (Fucα(1-2)Gal) saccharides play essential roles in learning and memory.  For

instance, preventing formation of Fucα(1-2)Gal linkages has been shown to cause

reversible amnesia in animals.  Despite these intriguing observations, proteins that
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express the Fucα(1-2)Gal epitope (glycoproteins) or proteins that bind this epitope

(lectins) have not been identified.  Through the use of several chemical probes, we have

established that Fucα(1-2)Gal associated proteins participate in a novel carbohydrate-

mediated pathway for regulating neuronal growth.  Additionally, we have found that

Fucα(1-2)Gal glycoproteins are prevalent in the developing brain and that synapsin Ia/Ib

are the major Fucα(1-2)Gal glycoproteins in the adult brain.  In our attempts to identify

Fucα(1-2)Gal lectins, we have established that multivalent polymers enhance our ability

to capture and characterize such proteins.

In Part II, we describe our efforts toward understanding the role of chondroitin

sulfate glycosaminoglycans in neuronal development.  Chondroitin sulfate (CS)

glycosaminoglycans are linear, sulfated polysaccharides implicated in cell division,

neuronal growth, and spinal cord injury.  The structural complexity and heterogeneity of

CS has hampered efforts to understand its precise biological roles.  Although they exist as

a heterogeneous mix in nature, it is thought that CS activity is dictated by a sulfation code

where distinct sulfation sequences are spatially and temporally regulated and direct the

biological activity of CS glycosaminoglycans.  We have developed a chemical approach

to evaluate the structure-activity relationship of CS as it effects neuronal growth. We

generated the first synthetic library of well-defined CS oligosaccharides containing

various sulfation sequences and have demonstrated that the CS-E sulfation sequence is a

stimulatory motif that promotes the growth of several neuron types.  Moreover, we

determined that CS-E mediated stimulation of neurite outgrowth was facilitated by

activation of midkine/PTPζ and BDNF/TrkB signaling pathways.
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Part I—Chapter 1: Fucosylation in the Brain

Carbohydrates in cellular communication

The cell surface is a fluid, dynamic structure composed of many different

biomolecules, including proteins, lipids, and carbohydrates.  Most often, carbohydrates

are found on the cellular membrane covalently bound to lipids and proteins, where they

form glycolipids and glycoproteins, respectively.  These membrane-bound carbohydrates

serve as markers that distinguish individual cells and are crucial elements in cell-cell

recognition and communication.  Many glycoproteins are known to be involved in

numerous biological processes including cell differentiation, neuronal growth,

interneuronal recognition, and signal transduction.1, 2  In the brain, about 80% of

glycoproteins are found in the microsomal fraction and in synaptic membranes.3

The reorganization of synaptic membranes (synaptic remodeling) allows for the

formation of memory traces and involves changes in the synthesis of glycoproteins as

well as posttranslational modifications to existing glycoproteins.4  This synaptic

remodeling is thought to underlie information processing in the brain and leads to

memory formation.  One of the leading models for how memory traces are

mechanistically formed in the brain is long-term potentiation (LTP), a process where

high-frequency stimulation of a nerve cell causes an abrupt and sustained increase in the

efficiency of synaptic transmission of the signal.4  LTP has been found to occur in both

vertebrates and invertebrates in a variety of neural systems, ranging from the mammalian

peripheral nervous system to the arthropod neuromuscular junction to subcortical

mammalian nuclei, such as the amygdala.5
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Changes in neuronal morphology have been directly associated with LTP in

various systems.  Inducing LTP in cultured rat hippocampal slices caused new spines to

appear on post-synaptic dendrites, whereas no significant spine growth was found in

regions where LTP was blocked.6  Similar results were seen in hippocampal slices from

spatially trained rats, where a significant increase in dendritic spine density was observed

in trained rats compared to nontrained rats.7  Such synaptic remodeling could involve

glycosylation of synaptic proteins, as supported by the presence of protein glycosylation

machinery in dendrites.8  Interestingly, the presence of glycosylation machinery in

dendrites suggests that the synthesis of glycoproteins at the synapse may be dynamically

regulated.  Moreover, protein glycosylation has been shown to be necessary for

maintaining hippocampal LTP.  Treating hippocampal slices with different protein

glycosylation inhibitors (tunicamycin, brefeldin A, swainsonine) during induction of LTP

prevented maintenance of LTP and caused postsynaptic potentials to return to baseline

levels within 100 minutes after induction of LTP.9  However, postsynaptic potentials

from control slices remained elevated for more than 200 minutes following induction of

LTP.9  These findings provide a direct link between learning, LTP, synaptic remodeling,

and protein glycosylation.

Evidence for the importance of fucose α (1-2) galactose glycoproteins in the

mammalian brain

The formation of synaptic connections and synaptic remodeling involves the

recognition of different molecules present at the membrane, including various proteins,

lipids, carbohydrates, and other small molecules.  We are particularly interested in the
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Figure 1.1. The monosaccharide L-fucose

sugar L-fucose (Figure 1.1), one of the small molecules enriched in the synaptosomal

fraction.10

L-Fucose (Fuc) is one of the 9 standard carbohydrate building blocks commonly

found in mammals, and fucose-containing oligosaccharides play important roles in many

biological processes, including blood transfusion reactions, host-microbe interactions,

and cancer pathogenesis.11  Fucose is appended to various biomolecules by

fucosyltransferases, of which thirteen have been identified in the human genome.11  All

currently identified fucosyltransferases utilize guanosine diphosphatyl-fucose (GDP-

fucose) as the monosaccharide donor.  In mammalian cells, two pathways exist for the

synthesis of GDP-fucose, the de novo pathway and the salvage pathway (Figure 1.2).

The de novo pathway converts GDP-mannose to GDP-fucose via three enzymatic

reactions carried out by two enzymes.  First, GDP-mannose-4,6-dehydratase (GMD)

converts GDP-mannose to GDP-4-keto-6-deoxymannose through oxidation of the

hydroxyl group at C-4 of the mannose ring and reduction of the hydroxyl group at C-6.

Next, the dual functional epimerase-reductase enzyme known as the FX protein converts

GDP-4-keto-6-deoxymannose to GDP-fucose. In the salvage pathway, GDP-fucose is

synthesized from free fucose via a two-step process.  In the first step, free fucose derived

from extracellular or lysosomal sources is transported into the cytosol and converted to

fucose-1-phosphate via fucose kinase.  Next, GDP-fucose pyrophosphorylase catalyzes

the reversible condensation of fucose-1-phosphate with GTP to form GDP-fucose.  All
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The de novo pathway converts GDP-mannose to GDP-fucose via three enzymatic reactions carried out
by two proteins, GMD and the FX protein. The salvage pathway utilizes free fucose found in the
cytosol to synthesize GDP-fucose using the enzymes fucose kinase and GDP-fucose
pyrophosphorylase.  GDP-fucose generated by either pathway is transported into the Golgi lumen to
become available to the fucosyltransferases.

GDP-fucose, synthesized from either pathway, must then enter the Golgi apparatus to be

used for fucosylation reactions by the fucosyltranferases.

In the brain, L-Fuc is usually found as the terminal residue on carbohydrate chains

attached to proteins via N - or O-linkages to asparagine or serine/threonine residues,

respectively.12, 13  Frequently, L-Fuc is attached to the C-3 and C-6 positions of N-

acetylglucosamine (GlcNAc) or to the C-2 position of galactose (Gal) (Figure 1.3).12

Several studies support the idea that oligosaccharides containing terminal fucose α(1-2)
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galactose (Fucα(1-2)Gal) moieties contribute to information storage and processing in

the brain.

The importance of Fucα (1-2)Gal is supported by behavioral and

electrophysiological studies using the unnatural sugar analog 2-deoxy-D-galactose (2-

dGal).  In these studies, the sugar analog 2-dGal competes with Gal for incorporation into

carbohydrate chains.14  Once inserted, 2-dGal inhibits the formation of a specific 1-2

glycosidic linkage with fucose because it lacks the hydroxyl group at the C-2 position

(Figure 1.4).

Fucose incorporation into hippocampal glycoproteins was found to be

significantly reduced in trained rats injected with 2-dGal compared to saline-treated

rats.15, 16  Furthermore, treating rats with 2-dGal either 30 minutes before or 15 minutes



6

after retrieval testing caused amnesia in a passive avoidance response.17  Similar

experiments performed in trained chicks also resulted in decreased fucose incorporation

and amnesic effects in animals treated with 2-dGal.18, 19  In electrophysiological studies,

hippocampal LTP maintenance was also suppressed upon treatment with 2-dGal.20  These

studies underscore the importance of Fucα(1-2)Gal glycoproteins in long-term memory

formation.

Although many studies have looked at the amnesic effects of 2-dGal in the brain,

studies have yet to examine the impact of 2-dGal on synaptic remodeling or neuronal

structure.  However, related small molecules have been shown to elicit varying effects in

cell culture.  Incorporation of the sugar analog 2-deoxy-2-fluoro-D-galactose in cultured

rat hepatocytes inhibited N-glycosylation of membrane proteins.21, 22  However, addition

of the analog 2-deoxy-2-fluoro-D-glucose only partially inhibited N-glycosylation.22

Furthermore, neither analog affected O-glycosylation.

Additional support for the importance of fucose-expressing glycoproteins in

learning and memory can be found in studies examining the levels of fucose

incorporation following learning tasks.  When incorporation of [14C]-labeled fucose was

monitored in trained chicks, a linear increase of fucose could be seen in forebrain slices

for up to 3 hours after training.3  Furthermore, a 26% increase in tritium-labeled fucose

24 hours following learning in trained chicks, as compared to nontrained chicks, was

observed in a separate study.23  Collectively, these findings support the view that

glycoproteins expressing the Fucα(1-2)Gal epitope play a critical role in neuronal

communication.
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It is interesting to note that glycoproteins present at synapses have been

previously implicated in cellular recognition and adhesion steps during synaptic

development.  A well-studied example is the neural cell adhesion molecule (NCAM), a

member of the immunoglobulin superfamily that is glycosylated with polysialic acid

(PSA) residues.  NCAM is crucial in the development and regeneration of the nervous

system and is also involved in synaptogenesis.24, 25  Interestingly, the PSA residues

present on NCAM greatly affect these functions.  Enzymatic removal of PSA with

endoneuraminidase (endo N) inhibited LTP in the hippocampus and disrupted neuron

migration and axon outgrowth.26 -- 29  Polysialylated NCAM also helps maintain

membrane fluidity and neural plasticity by increasing intermembrane repulsion and

inhibiting cellular adhesion.30

Evidence for the existence of Fucα(1-2)Gal lectins in the mammalian brain

In addition to the role of fucose-containing glycoproteins, there is evidence that

proteins which specifically recognize fucose may also be involved in regulating neuronal

communication.  The importance of lectins (proteins that recognize carbohydrates) that

specifically recognize the Fucα(1-2)Gal moiety in memory formation has been

demonstrated in several behavioral studies using an antibody specific to the Fucα(1-

2)Gal epitope.

The monoclonal antibody A46-B/B10, which recognizes the trisaccharide

Fucα(1-2)Galβ(1-4)GlcNAc31 (Figure 1.5), was injected intrahippocampally to rats

trained on a brightness discrimination task.  Administration of the antibody both before

and after training did not interfere with learning but drastically reduced the retention of
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Figure 1.5. The trisaccharide Fucα(1-2)Galβ(1-4)GlcNAc recognized by antibody A46-B/B10

the task in relearning sessions, whereas an antibody selective for other trisaccharides had

no amnesic effect.32  Although the potential molecular mechanism(s) by which the

antibody causes amnesia has not been elucidated, one potential explanation is that the

antibody prevents the interaction between Fucα(1-2)Gal-containing glycoproteins and

lectins.  These studies support the notion that Fucα(1-2)Gal lectins may be involved in

modulating neuronal communication.

Studies using free fucosyl saccharides provide further evidence for the importance

of Fucα(1-2)Gal lectins in the brain.  Several reports have shown that free fucosyl

saccharides enhance memory retention and LTP.  For instance, rats injected with L-Fuc

or the trisaccahride L-Fucα (1-2)Galβ(1-4)Glucose (2’-Fucosyllactose) exhibited

prolonged, enhanced potentiation following induction of LTP compared to control

animals injected with saline or lactose.33  Higher potentiation following LTP induction

was also observed in rat hippocampal slices incubated with L -Fuc and 2’-

Fucosyllactose.34  Importantly, the observed effects were stereo- and regiospecific as

neither D-fucose or 3’-Fucosyllactose showed any effect on LTP or memory

consolidation.34  While these effects may also be due in part to fucosylation of
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glycoproteins, another potential explanation is that these fucosyl saccharides could be

interacting with specific Fucα(1-2)Gal lectins on the cell surface to promote LTP.

The binding of lectins to specific carbohydrate motifs is well precedented in

mediating cellular recognition events, including leukocyte adhesion, microbial

phagocytosis, and neuronal outgrowth.35 -- 37  One well-studied example is the galectin

family of lectins, which specifically recognize galactose-containing oligosaccharides.

Galectins are found on both the cell surface and the extracellular matrix, as well as in the

cytoplasm and nucleus, and are involved in cell adhesion, cell growth, and apoptosis.38

Notably, galectin-3 mediates cell adhesion in a carbohydrate-dependent manner, as

treatment of cells with either endo-β-galactosidase (a protein that cleaves the galactose

moieties from the protein) or a polyvalent carrier of terminal β-galactosides inhibited

adhesion.39

Proposed mechanisms of Fucα(1-2)Gal action

As detailed in the above studies, L-Fuc and, in particular, the Fucα(1-2)Gal

saccharide appear to be critical components for long-term information storage.  Despite

the overwhelming evidence implicating the Fucα(1-2)Gal epitope in memory formation,

relatively little is known about the proteins that display (glycoproteins) or bind (lectins)

this epitope.  One research group has reported the identification of several proteins to be

Fucα(1-2)Gal glycoproteins.40  However, the existence of a Fucα(1-2)Gal epitope on

these proteins was not rigorously proven and was only shown through antibody binding,

which can be somewhat promiscuous.  Additionally, another group has reported the

fucose-mediated binding of the proteoglycan versican to the adhesion protein tenascin-R.
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Importantly, only the C-type lectin domain of versican, expressed as a recombinant

protein, was shown to bind to insolubilized fucose.41  Aside from these two reports, no

other Fucα(1-2)Gal glycoproteins or lectins have been identified.  Moreover, the

functional significance of the Fucα(1-2)Gal epitope has not yet been investigated.

Based on literature findings and our own results, we have developed three

working models to explain the role of fucosyl saccharides in modulating neuronal

communication.  In the first model, we propose that the Fucα(1-2)Gal epitope functions

as a “recognition element” to mediate protein-protein interactions at the cell surface

(Mechanism A, Figure 1.6).  In this model, specific molecular recognition between

Fucα(1-2)Gal glycoproteins and lectins would be expected to trigger intracellular

signaling cascades that modulate neuronal communication.  In the second model, we

propose that the Fucα(1-2)Gal epitope may function as a “targeting element” to regulate

the folding, function and/or trafficking of Fucα(1-2)Gal glycoproteins to the synapse

(Mechanism B, Figure 1.6).  By directing glycoproteins to the synapse, the Fucα(1-2)Gal

epitope may position the glycoproteins to perform essential functions, as well as help

recruit proteins to the synapse during cell communication events.  Alternatively, it is

possible that fucosyl glycoproteins may act intracellularly to modulate proteins and

signaling pathways involved in synaptic plasticity (Mechanism C, Figure 1.6).

Given the complexity of the brain, it is possible that these three mechanisms are

operating in parallel to mediate neuronal communication.  Regardless of which model is

correct, it is clear that identification of Fucα(1-2)Gal lectins and glycoproteins is

necessary to understand the potential role of fucosyl saccharides in the formation and

strengthening of synaptic connections.  Furthermore, the discovery of new lectins and
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Figure 1.6. Proposed mechanisms by which the Fucα(1-2)Gal epitope acts in neurons.  Fucα(1-2)Gal
saccharides (F) may function as recognition elements to mediate protein-protein interactions between
Fucα(1-2)Gal lectins and glycoproteins (mechanism A) or as targeting elements to increase the
concentration of fucose at the synapse (mechanism B). Additionally, Fucα(1-2)Gal proteins may
operate intracellularly to modulate proteins at the synapse.

glycoproteins will enable a molecular-level understanding of the role of fucosyl

saccharides on neuronal communication and provide new insights into cell

communication and synaptic plasticity in the brain.
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Chapter 2: Fucose α(1-2) Galactose Carbohydrates Regulate Neuronal Growth∗†

Background

Carbohydrates play important roles in numerous biological processes and are key

modulators of molecular and cellular recognition.  The diverse chemical structures of

carbohydrates encode vast amounts of information and serve as critical determinants of

protein folding, trafficking, and stability.1  Carbohydrates are highly abundant in the brain

and are involved in various neural functions including learning and memory, brain

development, and spinal cord injury.2 -- 4  Despite their importance in neurobiology, the

precise molecular mechanisms by which carbohydrates influence these processes in the

brain are not well understood.

In the brain, information flow from one cell to another is regulated by synapses,

which are specialized sites of contact between neurons.  Not surprisingly, about 80% of

glycoproteins are found in the microsomal fraction and in synaptic membranes.5  One of

the molecules enriched at the synapse is the sugar L-fucose.6  L-Fucose primarily exists as

a terminal residue on N- or O-linked glycoproteins and is frequently attached to the C-3

and C-6 position of N-acetylglucosamine or the C-2 position of galactose.7  Interestingly,

the fucose α(1-2) galactose (Fucα(1-2)Gal) linkage has been implicated in cognitive

processes such as learning and memory.

                                                  
∗ Synthesis of fucose α(1-2) galactose probe 1 was done by Dr. Lori W. Lee, a former graduate student in
the Hsieh-Wilson laboratory, and Dr. Stacey A. Kalovidouris, a former postdoctoral scholar in the Hsieh-
Wilson laboratory. Treatment of neuronal cultures with multivalent polymers and known fucose lectins
were done in collaboration with Dr. Kalovidouris.

† Portions of this chapter were taken from S.A. Kalovidouris et al. (2005) J. Am. Chem. Soc. 127, 1340 –
1341.
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Several lines of evidence suggest that Fucα(1-2)Gal carbohydrates play essential

roles in modulating neuronal connections important for learning and memory.  For

instance, blocking the formation of Fucα(1-2)Gal linkages on glycan chains using 2-

deoxy-D-galactose (2-dGal) causes reversible amnesia in animals and interferes with the

maintenance of long-term potentiation (LTP).8 -- 11  Since 2-dGal specifically inhibits the

incorporation of [14C]-radiolabeled fucose into glycoproteins at the synapse8, it is possible

that Fucα(1-2)Gal glycoproteins contribute to memory storage.  Additionally, injection of

a monoclonal antibody selective for Fucα(1-2)Gal also impairs memory formation in

animals12, 13, presumably by blocking the Fucα(1-2)Gal epitope.  Furthermore, both task-

specific learning and LTP have been shown to increase fucosylation of proteins at the

synapse and addition of L-fucose or 2’-fucosyllactose was found to enhance LTP.5, 14 -- 16

Despite these intriguing observations, relatively little is known about the proteins

that express the Fucα(1-2)Gal epitope (glycoproteins) or those proteins that bind this

epitope (lectins).  Furthermore, no Fucα(1-2)Gal-associated proteins have been identified

from the brain.  We therefore sought to establish the existence of Fucα(1-2)Gal lectins

and glycoproteins in the brain.  Through the use of chemical and biochemical tools, we

have demonstrated that Fucα(1-2)Gal and its associated proteins promote the growth of

hippocampal neurons and identify a novel, carbohydrate-mediated pathway for regulating

neuronal growth and morphology.

Fucα(1-2)Gal lectins exist in neurons

The overall goal of our research project is to understand how fucosyl saccharides

are involved in cell-cell recognition in the brain and to determine how these
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Figure 2.1. Fucα(1-2)Gal-biotin probe 1 was designed to mimic endogenous glycoproteins.  The two
main structural elements are a Fucα(1-2)Gal moiety (red) for protein recognition and a biotin moiety
(green) for fluorescent labeling.

carbohydrates impact different processes such as learning and memory.  Toward this end,

we developed a chemical probe for detecting Fucα(1-2)Gal lectins in neurons.  The small

molecule probe was synthesized by Dr. Lori W. Lee and Dr. Stacey A. Kalovidouris and

was made to mimic endogenous glycoproteins containing Fucα(1-2)Gal linkages (Figure

2.1).17  This probe, 1, has two key structural elements: (1) the Fucα(1-2)Gal moiety and

(2) a biotin moiety.

The Fucα(1-2)Gal disaccharide was selected as the recognition element to

conclusively demonstrate the importance of the Fucα(1-2)Gal linkage.  We decided

against using a trisaccharide, as previous research has failed to provide conclusive

evidence about the identity or importance of the third sugar.  Moreover, L-fucose or 2’-

fucosyllactose can stimulate memory formation with approximately equal efficacy,

suggesting that Fucα(1-2)Gal may be sufficient for interaction with target lectins.  The

biotin moiety was included to enable examination of the cellular localization of Fucα(1-

2)Gal lectins by fluorescence microscopy.  Biotin binds specifically and with high

affinity to streptavidin, and a variety of streptavidin-dye conjugates are commercially

available for fluorescence staining of cells.
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With Fucα(1-2)Gal probe 1 in hand, we tested whether lectins specific for the

fucose disaccharide are present in neurons.  Using protocols similar to those of Goslin,

Asmussen and Banker18, hippocampal cultures were prepared from embryonic-day 18

(E18) rats and were maintained in culture for at least two weeks.  Over the course of two

weeks, the cells develop neurites and axons (day 1 – 2), dendrites (day 4 – 5) and,

eventually, elaborate networks of neuronal processes and synapses (day > 7).  During

each stage of development, neurons can be fixed and treated with small molecules or

antibodies for specific proteins or carbohydrates.  Thus, the expression and subcellular

localization of those carbohydrates, lectins, and glycoproteins of interest can be

monitored by fluorescence microscopy.  This allowed us to study how the expression and

distribution of Fucα(1-2)Gal lectins may change with neuronal development or external

stimuli.

Fucα(1-2)Gal probe 1 was incubated for 1 hour with neurons that had been

cultured for 14 days in vitro (DIV) and then fixed.  Following application of probe 1, the

neurons were washed and incubated with streptavidin conjugated to AlexaFluor 488 dye

(Molecular Probes) and the Fucα(1-2)Gal probe was detected using confocal

fluorescence microscopy.  As shown in Figure 2.2, probe 1 binds specifically to neurons

and labels the cell body, neuronal processes, and possibly synapses.  Several control

experiments were conducted to confirm that the observed fluorescence was due to

specific recognition of the Fucα(1-2)Gal probe.  Upon optimization of the blocking,

incubation, and wash steps, we were able to identify conditions where low background

staining was obtained, proving that the streptavidin dye conjugate was not simply

staining the neurons in the absence of the probe (Figure 2.2B).  Second, we confirmed
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Probe 1 Biotin

Figure 2.3. Fucα(1-2)Gal probe 1 binds to hippocampal neurons. Neurons were cultured for 23 DIV and
then treated with 3 mM of (A) probe 1 or (B) biotin in the presence of 10 µM PAO.  Scale bars, 45 µm

that the results were not attributable to the biotin portion of the molecule by incubating

neurons with D-biotin alone.  Once again, we obtained no significant background

fluorescence (Figure 2.2C).  Thus, our experimental data provide strong evidence that

Fucα(1-2)Gal lectins exist in hippocampal neurons.

To prevent intracellular uptake of the compounds, neurons were co-incubated

with the endocytosis inhibitor phenyl arsine oxide (PAO).19  After 23 DIV, hippocampal

neurons were treated with 10 µm PAO and either probe 1 or biotin.  After 1 hour, neurons

were washed, fixed, and stained with streptavidin-dye conjugate and examined by

fluorescence microscopy.  Again, we saw that probe 1 specifically labels the cell body

and neurite processes (Figure 2.3).17

A B C

Probe 1 Streptavidin Biotin

Figure 2.2. Fucα(1-2)Gal probe 1 binds to the cell surface of hippocampal neurons. A) Probe 1 (10
mM) binds selectively to neurons. B) Incubation of neurons with streptavidin dye conjugate produces
no background signal. C) Incubation of neurons with biotin (10 mM) also produces no background
signal. Scale bars, 20 µm
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Figure 2.4. Lipid extraction does not alter labeling with Fucα (1-2)Gal probe 1. Neurons were
delipidated with MeOH/CHCl3 prior to labeling with 3 mM of (A) probe 1 or (B) biotin in the presence
of 10 µM PAO.  Scale bars, 45 µm

To confirm that probe 1 was binding specifically to proteins rather than

interacting with the membrane lipids, neurons were delipidated following the protocol of

Yavin and Yavin.20  Briefly, after 23 DIV, cells were rinsed with PBS and exposed to a

methanol/chloroform mixture (MeOH/CHCl3; 1/2 by volume) for 15 minutes at –80 °C.

This procedure fixes the cells to the glass coverslip and extracts cellular lipids.  After

removing the MeOH/CHCl3 mixture, neurons were treated with PAO and either probe 1

or biotin.  Lipid extraction of cellular membranes prior to treatment with probe 1 did not

diminish the labeling (Figure 2.4),17 consistent with a carbohydrate-protein interaction.

After determining that the Fucα(1-2)Gal probe recognized proteins in cultured

neurons, we conducted several experiments to determine the subcellular localization of

the Fucα(1-2)Gal lectins that were being detected.  First, we simultaneously incubated

neurons with probe 1 and an antibody to tau protein.  Tau is a microtubule-binding

protein that is found in cell bodies, axons, and dendrites.21  After incubating with the

streptavidin-dye conjugate and the appropriate secondary antibody for the tau antibody,

neurons were visualized with a confocal laser microscope equipped with 488 nm and 546

Probe 1 Biotin
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A B C

Probe 1 Anti-tau Overlay

Figure 2.5. Costaining of neurons with Fucα(1-2)Gal probe 1 and an anti-tau antibody.  A) Probe 1
staining (green).  B) Tau antibody labels axons, dendrites, and cell bodies.  C) Overlay of probe 1 and
tau labeling (yellow indicates colocalization) shows that Fucα(1-2)Gal staining is distributed on the cell
body and along dendrites and axons. Scale bars, 25 µm

A B C

Probe 1 Anti-MAP2 Overlay

Figure 2.6.  Costaining of neurons with Fucα(1-2)Gal probe 1 and a MAP2 antibody.  A) Probe 1
staining (green).  B) MAP2 labeling (red) shows dendrites and cell body.  C) Overlay of probe 1 and
MAP2 labeling (yellow indicates colocalization) shows that Fucα(1-2)Gal staining is distributed on the
cell body, along dendrites and axons. Scale bars, 25 µm

nm laser lines (Figure 2.5).  Again we see that probe 1 (green) binds to the cell surface

and along both dendrites and axons and overlaps almost completely with the tau labeling

(red).

Second, we concurrently stained neurons with Fucα(1-2)Gal probe 1 and anti-

MAP2 antibodies.  MAP2 is a selective marker for dendritic processes.22  In Figure 2.6,

we see that probe 1 (green) clearly binds to dendrites labeled with the MAP2 antibody

(red).  We also see binding of Fucα(1-2)Gal probe 1 to axons and on the cell surface

(Figure 2.6A).
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A B C

Probe 1 Anti-synapsin Overlay

Figure 2.7.  Costaining of neurons with Fucα(1-2)Gal probe 1 and an anti-synapsin antibody.  A) Probe
1 staining (green).  B) Synapsin antibody (red) labels presynaptic terminals.  C) Overlay of probe 1 and
synapsin labeling (yellow indicates colocalization) shows that Fucα(1-2)Gal staining does not
completely overlap with synapsin staining. Scale bars, 25 µm

Next, we sequentially stained neurons first with Fucα(1-2)Gal probe 1, followed

by an antibody specific for synapsin.  Synapsin is a marker for synapses and is found in

pre-synaptic terminals.23  As shown in Figure 2.7, Fucα(1-2)Gal binding (green) does not

completely overlap with synapsin labeling (red).  Interestingly, many of the puncta for

the probe and the antibody are adjacent to one another, suggesting a post-synaptic

localization for the Fucα(1-2)Gal-binding proteins.

Fucα(1-2)Gal glycoproteins are present in neurons

The presence of potential lectins specific for Fucα(1-2)Gal implies the existence

of glycoproteins covalently modified by the disaccharide epitope.  To determine whether

such glycoproteins are present in neurons, we treated cells with Ulex europeaus

agglutinin I lectin (UEA-I) conjugated to fluorescein.  UEA-I has been used previously to

detect Fucα(1-2)Gal glycoproteins in cells and tissues.24, 25

Hippocampal neurons were cultured for 23 DIV before treatment with PAO and

fluorescein-conjugated UEA-I.  Following fixation and immunostaining with anti-tau

antibody, neurons were visualized by fluorescence microscopy.  As shown in Figure 2.8,
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A B C

UEA I Anti-tau Overlay

Figure 2.8.  Costaining of neurons with UEA-I lectin and an anti-tau antibody. Neurons were stained
with (A) fluorescein-conjugated UEA-I lectin and (B) an anti-tau antibody in the presence of 10 µm
PAO.  C) Overlay of both images (yellow indicates colocalization).  UEA-I lectin labels neurons on the
cell body and along axons and dendrites.  Scale bars, 45 µm

A B C

UEA I Anti-tau Overlay

Figure 2.9. Lipid extraction using MeOH/CHCl3 did not diminish UEA-I lectin labeling.  Costaining of
neurons with (A) UEA-I lectin (green) and (B) anti-tau antibody (red) in the presence of 10 µM PAO
after lipid extraction.  C) Overlay of both images (yellow indicates colocalization).  Scale bars, 45 µm

UEA-I lectin specifically labels neurons on the cell body and along axons and dendrites.17

Furthermore, UEA-I displays a punctate staining consistent with localization to synapses.

To validate that the UEA-I lectin was labeling glycoproteins rather than simply

interacting with the lipid membrane, neurons were delipidated prior to treatment with

UEA-I lectin.  Specifically, neurons cultured for 23 DIV were treated with a

MeOH/CHCl3 mixture followed by incubation with PAO and fluorescein-conjugated

UEA-I.  In Figure 2.9, we see that lipid extraction prior to treatment with UEA-I lectin

does not diminish the labeling of neurons, and we see staining of the cell body and

neurite processes.17
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Fucα(1-2)Gal carbohydrates modulate neuronal outgrowth

Once we established the presence of Fucα(1-2)Gal lectins and glycoproteins in

neurons, we sought to investigate the impact of Fucα(1-2)Gal carbohydrates on neuronal

function.  First, we examined whether the association of Fucα(1-2)Gal with potential

lectins would elicit a neuronal response.  As carbohydrates have weak binding affinities

for lectins (Kassoc =103 – 106 M)26, we used polyacrylamide polymers bearing multiple

Fucα(1-2)Gal epitopes (FucGal-PAA) to stimulate endogenous lectins and enhance the

interactions.  Treatment of hippocampal neurons with the multivalent polymers was

carried out by Dr. Kalovidouris and revealed a striking impact on neuronal morphology.17

Hippocampal neurons were cultured for 20 hours before treatment with the

polyacrylamide polymers in solution for an additional 24 hours.  Neurons were then

immunostained with anti-tau antibodies and quantified for neurite outgrowth.

Remarkably, the multivalent polymers stimulated neurite outgrowth by 50 ± 6% relative

to the untreated control (Figure 2.10).  Furthermore, the growth-inducing activity was

specific to the Fucα(1-2)Gal disaccharide, as polymers lacking the disaccharide (PAA)

had no significant effect.  Polymers containing N-acetylglucosamine (GlcNAc-PAA) or

D-galactose (Gal-PAA) failed to promote neuronal outgrowth.  Interestingly, other L-Fuc-

bearing polymers, such as L-Fuc PAA (Fuc-PAA) and Fucα(1-3)GlcNAc (FucGlcNAc-

PAA), displayed neuronal processes similar to those of untreated cells, suggesting that

the observed neuritogenic activity is specific for Fucα(1-2)Gal.
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Figure 2.10. Fucα(1-2)Gal promotes neuronal growth. Neurite outgrowth was quantified by
measuring the longest neurite per cell after treatment with 130 µM of the indicated compounds.  Error
bars represent SEM from 100 total neurons in two separate experiments.

We next examined whether Fucα(1-2)Gal glycoproteins are associated with

neuronal growth pathways.  Since previous studies have shown that lectins activate and

promote the clustering of glycoproteins at the cell surface,27 we used exogenous lectins to

stimulate the Fucα(1-2)Gal glycoproteins found in neurons.  Dr. Kalovidouris treated

hippocampal neurons cultured for 20 hours with the Fucα(1-2)Gal specific lectins UEA-I

or Lotus tetragonolobus lectin (LTL)24 and found that neurite outgrowth was stimulated

by 21 ± 6% and 20 ± 6%, respectively, relative to the untreated control (Figure 2.11)17.

Competition experiments with 400-fold excess probe 1 abolished the stimulatory activity

of UEA-I and LTL.  Additionally, lectins selective for other carbohydrates such as

glucosamine (wheat germ agglutinin, WGA) or Fucα(1-3)Gal (Anguilla anguilla

agglutinin, AAA)24 did not enhance neurite outgrowth.  Together, these results suggest

that the growth-promoting activity is specific for Fucα(1-2)Gal carbohydrates.
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Figure 2.11. Only the Fucα(1-2)Gal-selective lectins UEA I and LTL stimulate neuronal growth.
Neurite outgrowth was quantified after treatment with 3.7 µM of the indicated lectins.  Error bars
represent SEM from 100 total neurons in two separate experiments.

These intriguing observartions suggest that Fucα(1-2)Gal saccharides may play

important roles in neuronal growth.  To further investigate the effect of Fucα(1-2)Gal

saccharides on neuronal morphology and development, we treated neuronal cultures with

the unnatural sugar analog 2-dGal.  As described earlier, disruption of Fucα(1-2)Gal

linkages using 2-dGal caused amnesia in animals and prevented the maintenance of LTP.9

-- 11, 28  We first examined the effect of 2-dGal on the expression of the Fucα(1-2)Gal

epitope.  Hippocampal neurons were grown for 1 day and then treated with or without 30

mM 2-dGal.  After 4 days, cells were harvested and cell lysates were probed by Western

blotting using the anti-Fucα(1-2)Gal antibody A46-B/B10.  Consistent with earlier

studies,8, 29 treatment of neurons with 2-dGal disrupted synthesis of the Fucα(1-2)Gal

epitope on glycoproteins (Figure 2.12).17  Specifically, a significant decrease of the

Fucα(1-2)Gal signal on the two major glycoproteins detected in untreated neurons was

observed.
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Figure 2.12. Treatment with 2-dGal diminishes the expression of the Fucα(1-2)Gal epitope on
glycoproteins. Neurons were treated for 4 days with or without 30 mM 2-dGal. Protein lysates were
then analyzed by Western blotting using antibody A46-B/B10. Lane 1: Untreated neurons. Lane 2:
Neurons treated with 30 mM 2-dGal. Each lane contains 75 µg total protein.

Once we confirmed that treatment with 2-dGal was indeed disrupting the

synthesis of Fucα(1-2)Gal linkages on neuronal glycoproteins, we examined the effects

of 2-dGal on neuronal morphology.  A dose-response experiment was initially performed

to determine the minimum concentration of 2-dGal needed to elicit an effect.  Neurons

were treated with varying concentrations of 2-dGal for 2 days before immunostaining

with anti-tau antibodies.  As shown in Figure 2.13, treatment with increasing

concentrations of 2-dGal caused neurite retraction.17  Importantly, no cellular toxicity was

observed at concentrations up to 30 mM 2-dGal, as demonstrated by trypan blue staining,

adherence of the cells to the coverslip, and healthy cellular morphology.  A concentration

of 15 mM was used in subsequent experiments, as it was the minimal concentration that

produced a strong effect on neurite outgrowth.
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Figure 2.13. Hippocampal neurons treated with varying concentrations of 2-dGal exhibit increasing
defects in neuronal growth.  After 1 day in culture, neurons were treated with the specified
concentrations of 2-dGal for 2 days, followed by immunostaining with anti-tau antibodies.

To fully establish the effects of 2-dGal on neuronal morphology, hippocampal

neurons were incubated with 2-dGal and compared to those incubated with 3-deoxy-D-

galactose (3-dGal), D-galactose (D-Gal), and untreated neurons.  Neurons were treated

under four different conditions: (1) incubation with 15 mM 2-dGal for 2 days, (2)

incubation with 15 mM 3-dGal for 2 days, (3) incubation with 15 mM 2-dGal for 2 days

followed by incubation with 75 mM D-Gal for 2 days, or (4) no treatment for 2 days.

Following treatment with the various molecules, cells were fixed and immunostained

with anti-tau antibodies.  As shown in Figure 2.14, 2-dGal causes severe morphological

defects in cultured neurons.17  Compared to untreated cells that have many neuronal

processes, cells treated with 2-dGal exhibited severely stunted neurites and failed to form

synapses.  Interestingly, the effects were fully reversible: subsequent addition of D-Gal

led to regeneration of neuronal processes.  In contrast, addition of 3-dGal had no impact

Untreated 1 mM 2-dGal 5 mM 2-dGal

10 mM 2-dGal 15 mM 2-dGal 30 mM 2-dGal
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Untreated 2-dGal

2-dGal + D-Gal 3-dGal

Figure 2.14. Treatment of hippocampal neurons with 2-dGal (15 mM), but not 3-dGal (15 mM), for 2
days inhibits neuronal growth. The effects of 2-dGal can be reversed by subsequent treatment with D-
Gal (75 mM) for an additional 2 days. Neurons were immunostained with anti-tau antibodies.

on neurite outgrowth.  These results are consistent with a stimulatory role for Fucα(1-

2)Gal glycoproteins and demonstrate the striking influence of Fucα (1-2)Gal

carbohydrates in neuronal growth.

Discussion

Our studies demonstrate that Fucα(1-2)Gal carbohydrates are capable of

modulating neuronal outgrowth and morphology.  We provide strong evidence for the

presence of Fucα(1-2)Gal lectin receptors and glycoproteins in hippocampal neurons.

Specifically, we have determined that proteins binding the Fucα(1-2)Gal disaccharide

and proteins expressing this epitope are found on the cell surface, along axons and
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dendrites, and at synapses.  Furthermore, we show that preventing formation of Fucα(1-

2)Gal linkages by treatment with 2-dGal induces dramatic morphological changes and

severely stunts neurite outgrowth.  Consistent with a role for Fucα(1-2)Gal carbohydrates

in neuronal growth, stimulation of either Fucα(1-2)Gal lectins or glycoproteins with

exogenous Fucα(1-2)Gal polymers or lectins promotes neurite outgrowth.  Together,

these findings identify a novel, carbohydrate-mediated pathway for modulating neuronal

growth and development.

Manipulation of Fucα(1-2)Gal–associated proteins using small molecule and

lectin probes elicited striking effects on neuronal morphology, suggesting that Fucα(1-

2)Gal may be important for maintaining structural plasticity.  This prospect may shed

light on behavioral and electrophysiological studies implicating Fucα(1-2)Gal in long-

term memory formation.  Alterations in neuronal morphology, such as dynamic changes

in dendritic spine number and shape, occur during memory consolidation and LTP.30, 31

Additionally, protein glycosylation has been shown to be necessary for maintaining

LTP.32  Furthermore, fucose incorporation levels increase following learning tasks and

have been shown to enhance memory retention and LTP.5, 14 -- 16  One possibility is that

Fucα(1-2)Gal and its associated proteins are involved in structural remodeling events that

contribute to synaptic plasticity and are thereby impacting learning and memory

processes in the brain.

With the establishment of Fucα(1-2)Gal glycoproteins and lectins in neurons,

identification of these proteins is necessary to enable a detailed study of Fucα(1-2)Gal

saccharides and their impact on neuronal communication.  Using affinity-based and

genomics tools, we will first identify and study Fucα(1-2)Gal glycoproteins in the
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hippocampus.  With the demonstration of the use of small molecules in culture and the

development of a chemical tool in probe 1, we will also detect and seek to identify the

first Fucα(1-2)Gal lectins in neurons.
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Experimental Procedures for Chapter 2

Buffers and Reagents:

Chemicals and molecular biology reagents were purchased from Fisher (Fairlawn, NJ)

unless stated otherwise.  Protease inhibitors were purchased from Aldrich Chemicals (St.

Louis, MO) and Alexis Biochemicals (San Diego, CA).  Cell culture media was

purchased from Gibco BRL (Grand Island, NY).  German glass coverslips were

purchased from Carolina Biologicals (Burlington, NC).

Embryonic Hippocampal Dissection:   

Timed-pregnant Sprague-Dawley rats were purchased from Charles River Laboratories

(Kingston, Mass) and housed at the Caltech laboratory animal facilities.  Timed-pregnant

rats at embryonic day 18 (E18) were euthanized by carbon dioxide inhalation.  A quick

C-section was performed and the uterus placed in a 100 x 15 mm petri dish containing

ice-cold Calcium and Magnesium Free Hank’s Balanced Salt Solution (CMF-HBSS) and

transferred to the tissue culture dissecting hood.  The embryos were decapitated and the

heads placed onto the lid of a petri dish on ice.  The skin and skull were cut to expose the

brain and the brain was removed by “scooping” it out from the olfactory bulbs to the

cerebellum and placed in a new dish on ice containing CMF-HBSS.  Under a dissecting

microscope, the cerebral hemispheres were separated from the midbrain and the

cerebellum and meninges were removed.  The hippocampus was cut out with a scalpel

and placed in a separate dish with CMF-HBSS and kept on ice until all hippocampi were

removed.
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Hippocampal Neuronal Cultures:

Hippocampal neuronal cultures were prepared using a modified version of the Goslin,

Asmussen, and Banker18 protocol.  Embryos at the E18 stage were obtained from timed-

pregnant Sprague-Dawley rats.  The hippocampus from each embryo was dissected as

described above.  All the hippocampi from one prep were transferred to a 15 mL conical

containing 4.5 mL of ice-cold CMF-HBSS.  Trypsin (2.5%, no EDTA) was added to 5

mL and the tissue was digested for 15 min at 37 °C.  The trypsin solution was removed

and the tissue rinsed with 5 mL of CMF-HBSS three times.  Cells were then dissociated

from the tissue in 1 mL of CMF-HBSS by passing through a P1000 pipet tip 15 to 20

times.  The cells were counted with a hemacytometer, diluted into Minimal Eagle’s

Medium (MEM) plus 10% fetal bovine serum, and seeded on poly-DL-ornithine (15

µg/mL; Sigma)-coated 15 mm glass coverslips at a density of 75 cells/mm2 (100

µL/coverslip) for 30 min.  After this time, 500 µL of supplemented neurobasal medium

(neurobasal media without L-glutamine, 2 mM L-glutamine, 250 µg/mL penicillin / 250

µg/mL streptomycin, 1X antibiotic-antimycotic, 1X B-27 supplement, 50 mM kynurenic

acid in 1 N NaOH) was added to each coverslip. The cultures were maintained in 5% CO2

at 37 °C until specified.

Immunocytochemistry of Hippocampal Neuronal Cultures:

After specified days in culture, hippocampal neurons on coverslips were used for

immunostaining.  Cells were rinsed one time with PBS (120 mM NaCl, 2.7 mM KCl, 10

mM phosphate buffer pH 7.4), fixed in 4% paraformaldehyde for 20 min at rt, washed

twice with PBS, permeabilized in 0.3% Triton X-100 for 5 min at rt, and washed twice
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with PBS.  Non-specific binding was blocked by incubating with 3% BSA for 1 h at rt

and then rinsing once with PBS.  Cells were then incubated with anti-tau antibodies

(rabbit polyclonal, 1:600; Sigma) in 3% BSA for 2 h at rt.  Excess antibody was rinsed

away 5 times with PBS.  The secondary antibody, anti-rabbit IgG AlexaFluor 488 (1:600;

Molecular Probes), was added for 1 h at 37 °C in 3% BSA.  Excess secondary antibody

was washed off 5 times with PBS.  The coverslips were mounted onto glass slides using

Vectashield mounting medium (Vector Labs) and sealed with clear nail polish.  Cells

were then subjected to confocal laser microscopy.

Staining of Hippocampal Neurons with Probe 1 and Fluorescein-Conjugated UEA-I

Lectin:

Hippocampal neuronal cultures were prepared as described above and maintained at 37

°C, 5% CO2 in supplemented neurobasal medium.  After specified days in culture, the

medium was replaced, and neurons were treated with the endocytosis inhibitor

phenylarsine oxide19 (PAO; 4 µL in DMSO, final concentration 10 µM) and either probe

1 (24 µL in PBS, final concentration 3 mM), biotin (24 µL in PBS, final concentration 3

mM), or fluorescein-conjugated UEA I lectin (4 µL, 1:100 final dilution) in

supplemented neurobasal medium (400 µL final volume) for 1 h at 37 °C, 5% CO2.  After

1 h, neurons were rinsed twice with PBS, fixed in 4% paraformaldehyde for 20 min at rt,

washed twice with PBS, permeabilized in 0.3% Triton X-100 for 5 min at rt, and washed

another 2 times with PBS.  Non-specific binding was blocked with 3% BSA for 1 h at rt

and then rinsed once with PBS.  Anti-tau antibody (rabbit polyclonal, 1:400; Sigma),

anti-MAP2 antibody (mouse monoclonal, 1:400; Sigma), or anti-synapsin I antibody
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(rabbit polyclonal, 1:250; Sigma) was added in 3% BSA for 2 h at rt and the excess

antibody rinsed off 5 times with PBS.  Probe 1 was detected with streptavidin conjugated

to AlexaFluor 488 (1:200; Molecular Probes) while anti-tau, anti-MAP2, or anti-synapsin

I antibodies were detected with secondary antibodies conjugated to AlexaFluor 568

(1:600; Molecular Probes).  Both dye-conjugated streptavidin and secondary antibodies

were added in 3% BSA for 1 h at 37 °C and the excess reagent washed off 5 times with

PBS.  Coverslips were then mounted onto slides with Vectashield, sealed, and imaged

using confocal laser microscopy.

De-lipidation of Neurons with MeOH/CHCl3 Prior to Treatment with Probe 1 and

Fluorescein-Conjugated UEA I Lectin:

To confirm that probe 1 was binding specifically to proteins rather than interacting with

the membrane lipids, neurons were delipidated following the protocol of Yavin and

Yavin.20  Briefly, after specified days in culture, cells were rinsed once with PBS then

exposed to MeOH/CHCl3 (1/2 by vol) for 15 min at –80 °C.  After removing the

MeOH/CHCl3 mixture, coverslips were dried at rt and neurons were then stained as

described above.

Treatment of Neuronal Cultures with 2-Deoxy-D-Galactose, 3-Deoxy-D-Galactose, and

D-Galactose:

Hippocampal neurons were plated on poly-DL-ornithine-coated glass coverslips as

described above.  After one day in culture, the medium was replaced with fresh medium,

and the small molecules added.  A dose-response experiment was initially performed to



37

determine the minimum concentration of 2-dGal needed to elicit an effect.  Neurons were

treated with varying concentrations of 2-dGal (1, 5, 10, 15, or 30 mM in 25 µL PBS with

475 µL of supplemented neurobasal medium) for 2 days before immunostaining with

anti-tau antibodies as described above.  A concentration of 15 mM was used in

subsequent experiments, as it produced a strong effect on neurite outgrowth.  Cells were

treated as above under 4 different conditions: (1) incubation with 15 mM 2-dGal for 2

days, (2) incubation with 15 mM 3-deoxy-D-galactose for 2 days, (3) incubation with 15

mM 2-dGal for 2 days followed by incubation with 75 mM D-galactose for 2 days, or (4)

no treatment for 2 days.  After adding the small molecules, cultures were incubated at 37

°C, 5% CO2, then washed once with PBS, and immunostained with the anti-tau antibody

as described above.

Analysis of the Fucα(1-2)Gal Epitope on Neuronal Proteins Following Treatment with 2-

Deoxy-D-Galactose:

In addition to cells plated on coverslips, hippocampal neurons were grown in 30 mm

dishes and treated with or without 30 mM 2-dGal (25 µL in PBS with 475 µL

supplemented neurobasal medium).  After 4 days, cells were harvested with 2.5% trypsin,

lysed with 1 % boiling SDS with protease inhibitors, and cell lysates probed by Western

blotting using the anti-Fucα(1-2)Gal antibody A46-B/B1013.  Protein concentrations of

the neuronal lysates were determined using the BCA Protein Assay (Pierce).  Equal

amounts of total protein were resolved by 10% SDS-PAGE, and proteins were transferred

to PVDF membrane (Millipore) in 20 mM Tris-Cl pH 8.6/ 120 mM glycine/ 20%

methanol.  Western blots were blocked for 1 h with 3% periodated BSA33 and rinsed with



38

TBST (50 mM Tris-Cl pH 7.4/ 150 mM NaCl/ 0.1% Tween-20).  Blots were incubated

with anti-Fucα(1-2)Gal antibody A46-B/B10 (0.5 µg/mL) in TBST overnight at 4 °C

with constant rocking, then rinsed and washed twice for 10 min with TBST.

Immunoreactivity was visualized by incubation with a horseradish peroxidase conjugated

goat anti-mouse antibody (1:2500; Pierce) in TBST for 1 h followed by a rinse and four

washes of 20 min with TBST.  Blots were visualized by chemiluminescence using ECL

reagents (Amersham) on X-Omat R film (Kodak).

Confocal Laser Microscopy:

All cells were imaged on a Zeiss Axiovert 100M inverted confocal laser microscope in

the Biological Imaging Center in the Beckman Institute.  The images were captured with

LSM Pascal software using a 40X plan-neofluar air objective or a 63X plan-neofluar oil

objective.  All cells were excited with 488 nm and 568 nm light.  The scan speed,

collection mode, and zoom were changed slightly, as were the gain and black levels, for

optimization of the images.  All images were then copied into and analyzed by Adobe

Photoshop.
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Chapter 3: Fucose α(1-2) Galactose-Containing Glycoproteins are Prevalent in the

Brain and Regulate Neuronal Morphology∗†

Background

Fucose α(1-2) galactose (Fucα(1-2)Gal) carbohydrates have been implicated in

modulating neuronal communication that underlies learning and memory.  For instance,

preventing formation of Fucα(1-2)Gal linkages by incorporation of 2-deoxy-D-galactose

(2-dGal) into glycan chains has been reported to cause reversible amnesia in animals.1, 2

The sugar analog 2-dGal precludes the formation of Fucα(1-2)Gal linkages because it

lacks the hydroxyl group at the C-2 position and inhibits the formation of a specific 1-2

glycosidic linkage with fucose.1  2-dGal has also been shown to interfere with the

maintenance of long-term potentiation (LTP), a leading model for memory formation in

the brain.3, 4  Additionally, injection of a monoclonal antibody selective for Fucα(1-2)Gal

also impairs memory formation in animals,5, 6 presumably by blocking the Fucα(1-2)Gal

epitope.  These intriguing results suggest important roles for Fucα(1-2)Gal-associated

proteins in regulating neuronal communication.

Interestingly, evidence suggests that protein fucosylation is regulated in response

to neuronal activity.  Both task-specific learning and LTP have been shown to induce the

fucosylation of proteins at the synapse, with linear incorporation of [14C]-labeled fucose

                                                  
∗ Identification of synapsin I was carried out by Wen I. Luo, a former graduate student in the Hsieh-Wilson
laboratory, and Heather E. Murrey, a graduate student in the Hsieh-Wilson laboratory.  Analysis of the
Fucα(1-2)Gal epitope on synapsin function was performed by Heather E. Murrey

† Portions of this chapter were taken from H.E. Murrey et al. (2006) Proc. Natl. Acad. Sci. USA 103, 21 –
26.
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up to 3 hours after training and a 26% increase in tritium-labeled fucose levels 24 hours

after the learning task.7, 8  Addition of exogenous L-fucose or 2’-fucosyllactose (but not

D-fucose, D-lactose, or 3-fucosyllactose) was also found to enhance LTP in hippocampal

slices.9  Furthermore, the activity of fucosyltransferases, enzymes involved in the transfer

of fucose to glycoproteins, has also been demonstrated to increase substantially during

synaptogenesis and passive avoidance training.10, 11  Together, these studies suggest that

protein fucosylation is likely a highly regulated process that contributes to synaptic

plasticity.

Although there is significant evidence implicating Fucα(1-2)Gal carbohydrates in

learning and memory processes, little is known about the location of this epitope or the

molecular mechanisms by which it impacts neuronal communication.  Notably, no

Fucα(1-2)Gal glycoproteins have been characterized from the brain.  As our initial data

demonstrated the presence of Fucα(1-2)Gal glycoproteins in neurons (Chapter 2), we

sought to further characterize the Fucα (1-2)Gal glycoproteins present in the

hippocampus.  We have established that Fucα(1-2)Gal carbohydrates are expressed on

several glycoproteins during neuronal development and demonstrate that synapsin Ia and

Ib are the predominant Fucα(1-2)Gal glycoproteins in the adult rat brain.

Fucα(1-2)Gal glycoproteins are enriched at synapses

We previously demonstrated the presence of potential glycoproteins specific for

the Fucα(1-2)Gal disaccharide using the Ulex europeaus agglutinin I (UEA-I) lectin.12

To allow for further characterization and identification of Fucα(1-2)Gal glycoproteins,

we obtained an antibody selective for Fucα(1-2)Gal epitopes (Figure 3.1),6 the mouse
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Figure 3.1. Trisaccharide Fucα(1-2)Galβ(1-4)GlcNAc recognized by antibody A46-B/B10

monoclonal antibody A46-B/B10, which was a generous gift from Dr. Uwe Karsten.

Importantly, antibody A46-B/B10 has been shown to induce amnesia in animals5,

suggesting that it recognizes one or more physiologically relevant epitopes.

Fucose-containing glycoproteins are known to exist in the brain, but they have not

been conclusively established to be present at synapses.  Therefore, we sought to

establish the location of Fucα(1-2)Gal glycoproteins in neurons.  Hippocampal neurons

were cultured for 14 DIV to allow for synapse formation and were subsequently fixed,

permeabilized, and coimmunostained with antibody A46-B/B10 and an antibody against

the neuronal marker tubulin.  The neurons were visualized by confocal laser microscopy

following incubation with appropriate dye-conjugated secondary antibodies. Using

antibody A46-B/B10, we found that Fucα(1-2)Gal glycoproteins are located on the

surface of neurons and are highly enriched at synapses.13  In Figure 3.2, we see that

Fucα(1-2)Gal glycoproteins (green) have remarkable punctate staining along axons and

dendrites (red) as well as some staining on the cell body surface.  As controls in every

experiment, the primary and secondary antibodies were tested individually and in various

combinations to ensure that the observed fluorescence was due to the desired antibody.

In addition, several rounds of optimization of blocking conditions, wash conditions,
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Figure 3.2. Costaining of neurons with Fucα(1-2)Gal antibody A46-B/B10 and an anti-tubulin
antibody.  A) A46-B/B10 antibody staining (green).  B) Anti-tubulin labeling shows axons, dendrites,
and cell bodies.  C) Overlay of A46-B/B10 antibody and anti-tubulin labeling (yellow indicates
colocalization) shows that Fucα(1-2)Gal staining is distributed on the cell body and along dendrites and
axons. Scale bar, 25 µm

Figure 3.3. Lipid extraction of cellular membranes does not abolish staining with antibody A46-B/B10.
Neurons were delipidated with MeOH/CHCl3 before staining with (A) antibody A46-B/B10 (green) and
(B) an anti-tau antibody (red). C) Overlay of images (yellow indicates colocalization). Scale bar, 25 µm

antibody concentrations, incubation times and temperatures were necessary to optimize

signal and minimize the non-specific background.

To confirm that the Fucα(1-2)Gal antibody was labeling glycoproteins rather than

simply interacting with the lipid membrane, neurons were delipidated14 prior to treatment

with antibody A46-B/B10.  Specifically, neurons cultured for 20 days were treated with a

methanol/chloroform (MeOH/CHCl3) mixture followed by coimmunostaining with

antibody A46-B/B10 and an anti-tau antibody.  Indeed, lipid extraction prior to

immunostaining does not diminish the labeling of neurons, and we see staining of the cell

body and neurite processes (Figure 3.3),13 confirming the labeling of glycoproteins rather

than glycolipids.

A B C

Fucα(1-2)Gal Anti-tubulin Overlay

A B C

Fucα(1-2)Gal Anti-tau Overlay
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Figure 3.4. Costaining of neurons cultured for 14 DIV with Fucα(1-2)Gal antibody A46-B/B10 and
either an anti-synapsin antibody or an anti-spinophilin antibody. A) A46-B/B10 antibody staining
(green) colocalizes with anti-synapsin staining (red), suggesting that Fucα(1-2)Gal glycoproteins are
enriched at presynaptic terminals. B) A46-B/B10 antibody staining (green) does not colocalize with
anti-spinophilin staining (red), suggesting that Fucα(1-2)Gal glycoproteins  are mostly apposed to post-
synaptic terminals. Arrows indicate colocalization in (A) and apposition in (B). Scale bars, 10 µm

The punctate staining pattern observed suggested that Fucα(1-2)Gal glycoproteins

were present at synapses.  To validate this result, we compared the subcellular

localization of the Fucα(1-2)Gal glycoproteins to that of synapsin I and spinophilin.

Synapsin I is a conventional marker for presynaptic terminals while spinophilin is found

at postsynaptic terminals.15, 16  We performed co-localization studies of antibody A46-

B/B10 with synapsin I antibodies (Figure 3.4A).13  The results confirmed the presence of

Fucα(1-2)Gal at pre-synapses, as antibody A46-B/B10 labeling (green) overlapped with

58 ± 2% of synapses labeled with anti-synapsin I (red).  Colocalization studies of

antibody A46-B/B10 with spinophilin antibodies (Figure 3.4B) revealed mostly

apposition of Fucα(1-2)Gal labeling (green) with spinophilin labeling (red).13  These

findings demonstrate that Fucα(1-2)Gal sugars are enriched on glycoproteins present at

presynaptic terminals.

A

B

Fucα(1-2)Gal Anti-spinophilin Overlay

Fucα(1-2)Gal Anti-synapsin Overlay
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Figure 3.5. Fucα (1-2)Gal is expressed on several glycoproteins in the hippocampus and is
developmentally regulated. Comparison of the Fucα(1-2)Gal glycoproteins present in E18 rat
hippocampus, embryonic hippocampal neurons cultured for the indicated times, and adult rat
hippocampus.  Cellular lysates were resolved by SDS-PAGE and probed by Western blotting with
antibody A46-B/B10.

Expression of Fucα(1-2)Gal on glycoproteins is developmentally regulated

In order to better understand the precise function(s) of the Fucα(1-2)Gal motif on

glycoproteins, it is essential to identify specific glycoproteins displaying the disaccharide

at the synapse.  Toward this end, we evaluated the expression of the Fucα(1-2)Gal

epitope on glycoproteins in the hippocampus.  Cellular lysates from adult rat

hippocampus, E18 hippocampus, and cultured embryonic hippocampal neurons were

analyzed by Western blotting with antibody A46-B/B10.  We found that the Fucα(1-

2)Gal epitope is expressed on distinct proteins during neuronal development (Figure

3.5).13

In E18 hippocampal tissue, three major glycoproteins of approximately 35, 60,

and 65 kDa are prominently observed.  Expression of Fucα(1-2)Gal on these
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glycoproteins is drastically reduced in the adult hippocampus.  Significantly, the major

Fucα(1-2)Gal glycoproteins of 73 and 75 kDa found in mature cultured neurons and adult

brain tissue are distinct from those in embryonic tissue.  Interestingly, expression of

Fucα(1-2)Gal is observed on multiple glycoproteins in developing neurons cultured for 4

and 7 DIV, periods when axons, dendrites, and functional synapses are being formed.

These results indicate that Fucα(1-2)Gal saccharides are synthesized on distinct proteins

and the expression levels of Fucα(1-2)Gal and/or the associated glycoproteins vary

dramatically with age and development.

Synapsin Ia and Ib are the major Fucα(1-2)Gal glycoproteins in the hippocampus

We next sought to identify the major Fucα(1-2)Gal glycoproteins found in the

brain.   Attempts to purify Fucα(1-2)Gal glycoproteins from extracts using antibody A46-

B/B10 were unsuccessful due to the relatively weak binding affinity of the antibody for

the carbohydrate epitope.  Therefore, potential glycoproteins were identified using a

combination of subcellular fractionation, gel electrophoresis, and matrix-assisted laser

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).13  Heather E.

Murrey took adult rat hippocampal lysates enriched in synaptic proteins and resolved the

proteins using 1D or 2D gel electrophoresis.  Proteins were then analyzed by Western

blotting with antibody A46-B/B10 or stained with Coomassie brilliant blue.  As observed

previously, two major glycoproteins of approximately 73 and 75 kDa were recognized by

antibody A46-B/B10.  The proteins of interest were identified by immunoblotting and

excised from the corresponding Coomassie-stained gel, digested with trypsin, and

identified by MALDI-TOF MS.  The predominant proteins in adult rat brain were
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Figure 3.6. Synapsins Ia and Ib are Fucα(1-2)Gal glycoproteins. Immunoprecipitated synapsin I is
detected by antibody A46-B/B10. Input, lysate used for immunoprecipitation; Control,
immunoprecipitation in the absence of antibody; Synapsin IP, immunoprecipitated synapsin. Upper
panel was immunoblotted with an anti-synapsin antibody, and Lower panel was probed with antibody
A46-B/B10. Synapsin Ia appeared in darker exposures of the blot.

identified as synapsin Ia and Ib, synaptic-vesicle-associated proteins involved in

neurotransmitter release.

To confirm the fucosylation of synapsin Ia and Ib, the proteins were

immunoprecipitated and examined by Western blotting with antibody A46-B/B10.13

Indeed, Heather E. Murrey found that the immunoprecipitated proteins were specifically

recognized by the antibody (Figure 3.6).  Furthermore, she established that only

synapsins Ia and Ib, but not the synapsin II or III isoforms, are covalently modified by the

critical Fucα(1-2)Gal epitope and that fucosylation protects synapsin from degradation

by the calcium-activated protease calpain.

Fucosylation regulates synapsin expression in neurons and neurite outgrowth

As our results indicate a critical role for fucosylation on synapsin function, we

wanted to further investigate this phenomenon in neurons.  Toward this end, the effect of

2-dGal on synapsin fucosylation in neurons was examined.  After culturing neurons for 7

DIV to allow for adequate synapsin expression, Heather E. Murrey treated the cultures

with either 2-dGal or 6-deoxy-D-Galactose (6-dGal).  Expression of synapsin was

dramatically reduced by treatment with 2-dGal, but not 6-dGal (Figure 3.7).13  Moreover,
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Figure 3.7. Expression of synapsin I was reduced by treatment with 2-dGal but not 6-dGal. Cortical
neurons were treated with 2- or 6-dGal (15 mM) for 3 days. Protein lysates were analyzed by Western
blotting for the indicated proteins.  A significant reduction in the expression of synapsin I was observed,
whereas other synaptic proteins were unaffected by the 2-dGal treatment.

the effects of 2-dGal were specific to synapsin, as the expression of other synaptic

proteins was unchanged by the 2-dGal treatment.

 Because the synapsins play important roles in neuronal development and

synaptogenesis, we investigated how 2-dGal might influence neuronal growth and

morphology.  Previously, we saw that treatment with 2-dGal severely stunted neurite

outgrowth of young, 2 DIV neurons (Chapter 2).  With the identification of synapsins

Ia/Ib as the major Fucα(1-2)Gal glycoproteins in mature cultures and adult hippocampus,

we treated older cultures with 2-dGal and also found dramatic effects on neuronal

morphology.  Hippocampal neurons were cultured for 7 DIV as above to establish

synapses and subsequently incubated for 3-5 days with 2-dGal at various concentrations

(Figure 3.8).  Treatment with 2-dGal induced retraction of neurites and collapse of

synapses, whereas 6-dGal had no effect.13  Interestingly, the inhibitory effects of 2-dGal

could be rescued by subsequent treatment with D-galactose (D-Gal).  In fact, treatment

with D -Gal caused a 2.06 ±  0.14-fold rescue of neurite length, presumably by

reestablishing the Fucα(1-2)Gal linkage.  Collectively, we have found that treatment of

cultured neurons at different developmental stages with 2-dGal impairs neurite outgrowth
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Figure 3.8. The morphology of hippocampal neurons is modulated by 2-dGal in a concentration-
dependent manner. A) C57BL/6 mice neurons were cultured for 7 DIV and treated with 2-dGal for 5
days at the concentrations indicated. Neurite retraction becomes more pronounced with increasing
concentration of 2-dGal. B) Rat neurons were cultured for 7 DIV and treated with either 2- or 6-dGal
(15 mM) for 3 days. The effects of 2-dGal were partially reversed by treatment with D-Gal.

and disrupts neuronal connections, suggesting that Fucα(1-2)Gal is important for

maintaining neuronal plasticity.

One potential mechanism by which 2-dGal might influence neuronal morphology

is by regulating the function and/or expression of synapsin in presynaptic terminals.  To

examine the relative contribution of synapsin I to the effects elicited by 2-dGal, neurons

from synapsin I-deficient or wild-type mice were cultured for 2 days, treated with or

without 2-dGal for 3 days, and then examined by fluorescence microscopy (Figure 3.9).13

We found that neurons from wild-type mice treated with 2-dGal had shorter neurites than

their wild-type counterparts (compare Fig 3.9C and A).  Interestingly, the effects of

defucosylation with 2-dGal were more pronounced than the elimination of the synapsin I

gene (compare Figure 3.9C and B). Furthermore, treatment with 2-dGal induced more

neurite retraction in wild-type relative to synapsin-deficient neurons (compare Figure

3.9C and D).  Although the length and extensive overlap of neuronal processes for

Untreated 2-dGal + D-Gal6-dGal2-dGal

2-dGal (5 mM) 2-dGal (10 mM) 2-dGal (15 mM)Untreated

A

B
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Figure 3.9. Synapsin-deficient neurons display reduced neurite retraction relative to wild-type neurons
upon treatment with 2-dGal. Neurons from synapsin I-deficient (Syn KO) or wild-type (WT) mice were
cultured for 2 days, treated in the presence (C, D) or absence (A, B) of 2-dGal (15 mM) for 3 days, and
examined by confocal fluorescence microscopy. (E) Neurons treated with 2-dGal were analyzed for
neurite length and the mean neurite length was compared by the ANOVA test.  Error bars represent the
SEM from 50 total neurons in three separate experiments (*, P < 0.03). Scale bar, 75 µm
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untreated wild-type neurons precluded a quantitative analysis of neurite length, 2-dGal

treatment led to neurite retraction and enabled quantification.  We found that synapsin-

deficient neurons displayed 1.17-fold longer neurites than wild-type neurons upon

treatment with 2-dGal (Figure 3.9E).

Discussion

Increasing evidence has linked synaptic activity with changes in the levels of

protein fucosylation in the brain.  Both task-specific learning and LTP have been shown

to enhance protein fucosylation.7, 8  Additionally, the activity of fucosyltransferases

substantially increases during synaptogenesis and upon passive avoidance training in

animals.10, 11  These studies suggest that protein fucosylation may be dynamically

regulated at the synapse.  Our findings that synapsins Ia and Ib are the major Fucα(1-
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2)Gal glycoproteins in maturing neuronal cultures and the adult rat hippocampus are the

first studies identifying synaptic proteins modified by the Fucα(1-2)Gal epitope.

The synapsins are a family of highly conserved neuron-specific proteins that are

associated with synaptic vesicles.17  The synapsins have been shown to modulate

neurotransmitter release by regulating the supply of releasable vesicles during periods of

high activity.17, 18  In addition, synapsin I has recently been found to control synaptic

vesicle dynamics in developing neurons via a cAMP-dependent pathway.19  Accordingly,

synapsin-deficient mice exhibit reduced numbers of synaptic vesicles within nerve

terminals and display significant alterations in neuronal transmitter release and synaptic

depression.17, 20  Our findings indicate that fucosylation of synapsin critically impacts its

expression and turnover in presynaptic terminals.  Moreover, fucosylation of synapsin

increases its half-life and protects against degradation by the calcium-activated protease

calpain.

Furthermore, our results demonstrate that synapsin fucosylation has a significant

impact on neuronal growth and morphology.  We used the small molecule 2-dGal, an

inhibitor of Fucα(1-2)Gal linkages, as a tool for defucosylating synapsin and for

investigating the role of the carbohydrate on synapsin function.  Treatment of neurons

with 2-dGal led to stunted neurite outgrowth and delayed synapse formation.  Moreover,

significant differences were observed between wild-type and synapsin-deficient neurons

upon treatment with 2-dGal.  The extent of neurite retraction in synapsin-deficient mice is

less pronounced, most likely because the primary target of 2-dGal, synapsin I, is missing.

Indeed, the bar graph in Figure 3.10 likely represents a lower estimate of the contribution

of synapsin, because neurites from synapsin-deficient neurons are shorter than those from
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wild-type neurons before treatment with 2-dGal.  From these results, we propose that

defucosylation may disrupt synapsin function, leading to its degradation and neurite

retraction.  Although further studies are needed to resolve whether synapsin fucosylation

stimulates or inhibits neurite outgrowth, our results strongly support the notion that

synapsin fucosylation plays a role in modulating neuronal growth and morphology.

Our findings also implicate other Fucα(1-2)Gal glycoproteins in regulating

neuronal morphology.  We have shown that Fucα(1-2)Gal carbohydrates are not limited

to synapsin but are found on additional proteins in developing neurons (Figure 3.6).

Expression of the sugar and/or these glycoproteins changes dramatically during neuronal

development.  We found that defucosylation of synapsin did not fully account for the

striking neurite retraction induced by 2-dGal, suggesting that 2-dGal may disrupt the

fucosylation of other Fucα(1-2)Gal glycoproteins that influence neuronal morphology.

Moreover, 2-dGal was still capable of inducing neurite retraction in synapsin-deficient

neurons and in young cultured neurons where synapsin expression is low.12  Thus,

Fucα(1-2)Gal sugars appear to  regulate the functions of multiple proteins involved in

neuronal morphology and exert their effects via distinct molecular mechanisms.

Collectively, our studies provide new molecular-level insights into the role of

Fucα(1-2)Gal in mediating the communication between neurons.  The finding that

synapsin Ia and Ib are fucose-containing glycoproteins is significant because it suggests

that fucosyl saccharides may be involved in regulating neurotransmitter release and/or

synaptogenesis.  The modification of synapsin with Fucα(1-2)Gal fits accordingly with

our model of fucosyl saccharides serving as a targeting element for proteins.  Although

further experiments are needed to show that the Fucα(1-2)Gal epitope directs the
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targeting of synapsin to the synapse, it is clear that fucosylation directly affects synapsin

stability and, thus, its functions at the synapse.
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Experimental Procedures for Chapter 3

Buffers and Reagents:

Chemicals and molecular biology reagents were purchased from Fisher (Fairlawn, NJ)

unless stated otherwise.  Protease inhibitors were purchased from Aldrich Chemicals (St.

Louis, MO) and Alexis Biochemicals (San Diego, CA).  Cell culture media was

purchased from Gibco BRL (Grand Island, NY).  German glass coverslips were

purchased from Carolina Biologicals (Burlington, NC).

Embryonic Hippocampal Dissection:   

Embryonic tissue was dissected as described in Chapter 2.

Neuronal Cultures and Immunocytochemistry:

Hippocampal neurons were cultured and immunostained as described in Chapter 2.

Synapsin I knockout mice21 were generously provided by H. T. Kao and P. Greengard

(The Rockefeller University, New York).  Antibody A46-B/B106 was a generous gift

from U. Karsten (Max-Delbrick Centre for Molecular Medicine, Berlin-Buch, Germany)

and was incubated in 3% BSA (2.5 µg/mL) overnight at 4 °C.  The anti-tubulin (1:500;

Sigma), anti-synapsin (1:5,000; Molecular Probes), and anti-spinophilin [1:10,000 (14)]

antibodies were added in 3% BSA for 2 h at 37 °C.  Goat anti-mouse IgM AlexaFluor

488 or goat anti-rabbit IgG AlexaFluor 568 (1:250; Molecular Probes) were added for 1 h

at 37 °C in 3% BSA.
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De-lipidation of Neurons with MeOH/CHCl3 Prior to Immunostaining with Antibody

A46-B/B10:

Delipidation of neurons with MeOH/CHCl3 was performed as described in Chapter 2.

Antibody A46-B/B10 (2.5 µg/mL) was added in 3% BSA overnight at 4 °C.  Anti-tau

antibodies (1:500; Sigma) were added in 3% BSA for 2 h at 37 °C.  Goat anti-mouse IgM

AlexaFluor 488 or goat anti-rabbit IgG AlexaFluor 568 (1:250; Molecular Probes) were

added for 1 h at 37 °C in 3% BSA.

Adult Hippocampal Dissection and Lysis:

100 g male Sprague-Dawley rats were purchased from Charles River Laboratories

(Kingston, Mass) and housed at the Caltech laboratory animal facilities.  Rats were

anesthetized with carbon dioxide for 2 min and immediately euthanized by decapitation

with a guillotine (Kent Scientific Co.).  The brain was promptly removed and placed on

ice.  The hippocampus was quickly dissected and homogenized in 50 mM Tris-HCl pH

8.0/ 150 mM NaCl/ 0.2% sodium deoxycholate/ 1% Nonidet P-40 supplemented with

protease inhibitors with a glass Dounce homogenizer and sonicated briefly.  Supernatants

were clarified by centrifugation at 12,000 x g for 10 min, and protein concentrations were

determined by using the BCA protein assay (Pierce).

Western Blotting:

Protein concentration of hippocampal lysates was determined using the BCA protein

assay (Pierce).  Lysates were resolved on 10% acrylamide-SDS gels.  Proteins were

transferred to polyvinylidene difluoride (PVDF) membrane (Millipore) for at least 12 h in
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20 mM Tris-Cl pH 8.6/ 120 mM glycine/ 20% methanol.  Western blots were blocked for

1 h with HIO4-BSA and rinsed with TBST (50 mM Tris-Cl pH 7.4/ 150 mM NaCl/ 0.1%

Tween-20).  Blots were incubated with 0.5 mg/mL antibody A46-B/B10 in TBST

overnight at 4 °C with constant rocking, then rinsed and washed twice for 10 min with

TBST.  Immunoreactivity was visualized by incubation with a horse-radish peroxidase

conjugated goat anti-mouse antibody (1:2500; Pierce) in TBST for 1 h followed by a

rinse and four washes of 20 min in TBST.  Blots were visualized by chemiluminescence

using Pico Chemiluminescent Substrate (Pierce).

Treatment of Cells with Deoxy-Galactose Analogues:

Rat neuronal cultures were treated after 7 days in culture as described in Chapter 2.

Neurons from C57BL/6 and synapsin I knockout postnatal day 0 mice were cultured for 2

days and then treated for 3 days with 15 mM 2-dGal.

Morphometric Analysis:

For quantitative analysis of neurite length, 50 cells were analyzed per experimental

condition for three separate experiments.  Only cells with neurites longer than one cell

body diameter were measured.  The length of the longest neurite was measured using

NIH Image 1.62 software, and mean neurite lengths were compared by the ANOVA test

using the statistical analysis program Statview 4.0.
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Chapter 4:  Discovery of Fucα(1-2)Gal-Specific Lectins in the Developing Brain∗

Background

L-Fucose is a monosaccharide enriched at synapses that exists primarily as a

terminal modification to glycan chains.  A majority of the fucose-containing

carbohydrates are complex N-linked sugars containing two or more peripheral branches

or, less often, hybrid structures.1, 2  Fucose is frequently linked to the C-3 and C-6

positions of N-acetylglucosamine or to the C-2 position of galactose.3  We are

particularly interested in the fucoseα(1-2)galactose (Fucα(1-2)Gal) disaccharide, as

several studies have implicated this disaccharide in learning and memory processes.

Preventing the formation of Fucα(1-2)Gal linkages on glycan chains using 2-deoxy-D-

galactose (2-dGal) causes reversible amnesia in animals.4 -- 6  As 2-dGal specifically

inhibits the incorporation of fucose into glycoproteins,4, 7, 8 it is likely that Fucα(1-2)Gal

glycoproteins contribute to memory storage.  Moreover, protein fucosylation has been

shown to increase in response to neuronal activity, with fucose incorporation and

fucosyltransferase activity increasing in direct response to learning and long-term

potentiation (LTP).9 -- 11  These remarkable results suggest critical roles for Fucα(1-2)Gal

glycoproteins in regulating the neuronal communication underlying learning and

memory.

With such considerable evidence supporting a significant role for Fucα(1-2)Gal

glycoproteins in cell-cell communication, it is likely that Fucα(1-2)Gal lectins are also
                                                  
∗ Synthesis of capture probe 2 and control molecule 3 was carried out by Dr. Lori W. Lee, a former
graduate student in the Hsieh-Wilson laboratory, and Dr. Stacey A. Kalovidouris, a former postdoctoral
scholar in the Hsieh-Wilson laboratory. Synthesis of polymer 5 is being carried out by Arif Wibowo, a
graduate student in the Hsieh-Wilson laboratory.
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involved in regulating neuronal communication.  Indeed, several studies have

demonstrated the importance of Fucα(1-2)Gal lectins in information processing and

memory formation.  Injection of a monoclonal antibody specific for the Fucα(1-2)Gal

epitope drastically reduced retention of a learned task and had an amnesic effect in both

chicks and rats.12, 13  Presumably, the amnesic effect is a result of the antibody preventing

the interaction between fucosylated glycoproteins and lectins.  Additionally, treatment

with exogenous fucosyl saccharides in both in vivo and in vitro models was found to

enhance LTP.14, 15  Together, these studies provide considerable evidence supporting a

role for Fucα(1-2)Gal lectins in modulating neuronal communication.

The binding of lectins to carbohydrate motifs is an important phenomenon crucial

to many cellular functions, including pathogen recognition, cellular adhesion, and

lymphocyte trafficking.16 -- 18  Although no Fucα(1-2)Gal-specific lectins have been

characterized from animals, the total number of animal lectins identified is ever

increasing.  Most animal lectins identified can be classified into five major groups: C-

type or Ca2+-dependent lectins, galactose-binding galectins, P-type phospohorylated

mannose receptors, I-type immunoglobulin-like sugar-binding proteins, and L-type

lectins related to leguminous plant lectins.19  Despite the enormous diversity among

lectins, the sugar-binding activity can be attributed to the carbohydrate-recognition

domain (CRD), typically a globular region of less than 200 amino acids.18  The CRD

among the individual groups of lectins are related to each other in amino acid sequence,

thus enabling classification into the separate groups.

While there are increasing numbers of animal lectins being identified each year,

there have been no Fucα(1-2)Gal-specific lectins reported to date.  As such, we had to
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first determine whether Fucα(1-2)Gal lectins exist in the brain.  Indeed, we have

demonstrated that Fucα(1-2)Gal lectins are present in the mammalian brain and are found

on the cell body and neurites of hippocampal neurons (Chapter 2).  Furthermore, we

found that stimulation of the lectins with Fucα(1-2)Gal dramatically promotes neurite

outgrowth.  Our studies are the first report of Fucα(1-2)Gal lectins in the brain and

identify a novel carbohydrate-mediated pathway for neuronal growth.  Through the use of

various chemical probes, we now seek to identify Fucα(1-2)Gal lectins from the brain in

order to gain a molecular-level understanding of the impact of fucosyl saccharides on

neuronal function.

Design of Fucα(1-2)Gal capture probe 2

Recent studies in our laboratory have established that Fucα(1-2)Gal lectins exist

in the mammalian brain and are involved in a novel pathway that promotes neuronal

growth.  To facilitate isolation and identification of these lectins from the brain, our

laboratory has synthesized chemical probe 2 (Figure 4.1).  Chemical probe 2 was

synthesized by Dr. Lori W. Lee and Dr. Stacey A. Kalovidouris and contains the Fucα(1-

2)Gal moiety as the critical molecular recognition element as well as the biotin moiety for

detection, as was found in probe 1 (Chapter 2).  Importantly, probe 2 also contains a

trifluoromethylphenyldiazirine (diazirine) moiety, which enables the capture of target

lectins via photoactivated crosslinking.  By forming a covalent linkage to the proteins of

interest, the protein-probe complex can withstand rigorous washing in the purification

process.  Additionally, control molecule 3 was synthesized to test the specificity of probe
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2, as it lacks the Fucα(1-2)Gal disaccharide while still carrying the diazirine and biotin

moieties.

Photoaffinity labeling is a well-established technique to elucidate ligand-

biomolecule interactions.  This technique has been used to successfully label enzymes,

protein structures, and RNA/DNA structures.20 -- 23 Typically, the substrate is modified to

bear the photoreactive element and radiolabels are incorporated to allow for the

identification of the binding site.  The covalently labeled protein can also be visualized

with a variety of other techniques, such as spectroscopic analysis and fluorophore

methods.22

Combining the power of photoaffinity labeling with the advantages of

biotinylating substrates creates a chemical probe that allows for a covalent bond to be

formed between the protein of interest and the probe and provides a sturdy handle to

isolate the complex with the use of immobilized avidin.  The biotin moiety also provides

the advantage of sensitive, non-radioactive detection of labeled protein using

Figure 4.1. Monovalent capture probe 2 and control molecule 3.  The three main features of probe 2 are
the Fucα(1-2)Gal disaccharide (red) for protein binding, the photoreactive diazirine moiety (blue) for
crosslinking to bound proteins, and the biotin handle (green) for affinity column purification.  Control
molecule 3 acts as a specificity marker because it lacks the Fucα(1-2)Gal disaccharide while still
bearing the diazirine moiety (blue) and biotin handle (green).
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streptavidin-conjugated-horseradish peroxidase (HRP).  The photoreactive, covalent

crosslinking element is thought to overcome the weak binding affinities often observed of

lectins for their carbohydrate ligands.24  A variety of biotinylated photoreactive probes

have been synthesized and successfully used to study and isolate protein-substrate

complexes, ranging from γ-secretase inhibitors to glucose transporter ligands.25, 26

Fucα(1-2)Gal capture probe 2 labels known fucose-binding lectins AAA and UEA-I

With probe 2 in hand, we first validated the design of the capture probe and tried

to label known fucose-binding lectins.  Purified samples of the known fucose-binding

lectins AAA from Anguilla anguilla and UEA-I from Ulex europaeus27, 28 were incubated

with or without probe 2 and control molecule 3, irradiated with UV light, and analyzed

by Western blotting using streptavidin-HRP.  Notably, AAA and UEA-I lectins were

detected by streptavidin-HRP only after treatment with probe 2 and UV irradiation

(Figure 4.2A).  No signal was observed when either lectin was incubated with control

molecule 3 or when UV irradiation was omitted.  The lectins were also analyzed by

Coomassie stain (Figure 4.2B) to confirm that equivalent amounts of protein were present

in each sample.  From these results, we were confident that probe 2 was capable of

specifically labeling fucose-binding lectins and proceeded to label Fucα(1-2)Gal lectins

in embryonic neurons.
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Capture of Fucα(1-2)Gal lectins from dissociated neurons

Once we established the labeling of known fucose-binding lectins, we proceeded

to use probe 2 for the capture of Fucα(1-2)Gal lectins.  Dissociated neurons prepared

from E18 rats were incubated with probe 2 in neurobasal medium.  We initially chose to

label dissociated neurons because cellular staining with probe 1 (Chapter 1) gave

significant signal and thus we reasoned that Fucα(1-2)Gal lectins would be amenable to

labeling with probe 2 on the cell surface, as the probe probably does not cross the cell

membranes.  Following incubation, the cells were irradiated on ice with UV light (365

nm).  The optimal time for crosslinking proteins to the probe without damaging the cells

was determined to be 2 h.  Cells were then lysed with boiling 1% SDS to solubilize all

proteins.  The proteins were resolved by SDS-PAGE and probed by Western blotting

using streptavidin-HRP. As shown in Figure 4.3, probe 2 indeed captured proteins from

embryonic neurons.  At least two major proteins at approximately 55 and 40 kDa, and

several minor proteins, were captured by probe 2 (Figure 4.3, lane 1 vs. 2 and 3).

Figure 4.2. Capture probe 2 specifically labels the fucose-binding lectins AAA and UEA-I.  A) Purified
samples of AAA and UEA-I were treated with probe 2 and control molecule 3 and analyzed for specific
labeling by streptavidin-HRP. B) Samples were also analyzed by Coomassie stain for total protein content.
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Investigations into the specificity of the target lectins

To confirm that probe 2 is binding selectively through the Fucα (1-2)Gal

disaccharide, we performed competition experiments with several sugars. Several

alternative sugars were synthesized by Dr. Kalovidouris that vary in the configuration of

the fucose saccharide in the model Fucα(1-2)Gal disaccharide (Figure 4.4A).

Dissociated forebrain cells were first incubated with Fucα(1-2)Gal-OEt disaccharide, L-

FucαOEt, or D-FucαOEt (each at 150 mM) for 2 h and then with probe 2 (0.3 mM) for

an additional 2 h.  Cells were irradiated and lysed as described above and the proteins

were resolved and detected as above by Western blotting (Figure 4.4B).  The proteins

captured by probe 2 (lane 1) are no longer detected upon treatment with the Fucα(1-

2)Gal-OEt competitor (lane 2).  Treatment with L-FucαOEt or D-FucαOEt reduced the

concentrations of proteins captured, however the reduction was incomplete (lanes 3 and

4).  These studies demonstrate that the lectins are recognizing the probe specifically via

the sugar moiety.  Moreover, comparison of the L-FucαOEt or D-FucαOEt

Figure 4.3. Capture probe 2 labels distinct proteins in dissociated neurons.  Lane 1: Proteins from
dissociated cells captured by probe 2. Lane 2: Proteins captured by control molecule 3. Lane 3: Proteins
non-specifically detected by streptavidin-HRP in untreated cells
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monosaccharides with the disaccharide competitor suggests that recognition of the

galactose moiety by the target lectins is an important factor.

Purification of Fucα(1-2)Gal lectins from dissociated neurons

To identify the target proteins, probe 2 was used to isolate Fucα(1-2)Gal lectins

from embryonic brain.  Dissociated cells were incubated with probe 2, irradiated, and

lysed as described above.  After lysis, the proteins were first pre-cleared with agarose

beads and then captured with streptavidin-agarose beads.  Eluted proteins were resolved

by SDS-PAGE and probed by Western blotting using streptavidin-HRP.  As shown in

Figure 4.5, the major Fucα(1-2)Gal lectins were the same as those observed in the

capture experiment in Figure 4.3.  Furthermore, control molecule 3 failed to capture any

Fucα(1-2)Gal lectins.
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Figure 4.4.  Probe 2 specifically labels Fucα(1-2)Gal lectins in dissociated neurons.  A) Compounds
synthesized for competition experiments with probe 2.  B) Competition binding with specified
molecules shows that probe 2 is specifically labeling Fucα(1-2)Gal lectins.  Lane  1: Cells treated with
probe 2 alone (0.3 mM).  Lane 2: Cells treated first with Fucα(1-2)GalOEt (150 mM) followed by
probe 2 (0.3 mM).  Lane 3: Cells treated with L-FucαOEt (150 mM) followed by probe 2 (0.3 mM).
Lane 4: Cells treated with D-FucαOEt (150 mM) followed by treatment with probe 2 (0.3 mM)
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With such promising capture of Fucα(1-2)Gal-specific lectins by probe 2, we

thought identification of these proteins would follow accordingly.  Dissociated neurons

were labeled with probe 2 and captured proteins were isolated on streptavidin beads as

described above.  Eluted proteins were resolved by SDS-PAGE and visualized by

Coomassie staining to allow for subsequent identification by mass spectrometry (MS).

As shown in Figure 4.6, very little protein was detected by Coomassie staining.  More

importantly, there were no differences observed between samples labeled with probe 2 or

control molecule 3.  Furthermore, none of the proteins observed by Coomassie staining

corresponded to proteins detected by streptavidin-HRP, which visualizes lectins

crosslinked to probe 2.  Subsequently, we performed these experiments on a larger scale

to try to enhance the total amount of proteins isolated.  However, efforts to isolate the

lectins in sufficient quantity to be visualized by Coomassie staining and for subsequent

MS analysis were unsuccessful.

Figure 4.5.  Fucα(1-2)Gal lectins were specifically captured by probe 2 and isolated on a streptavidin
column.  Dissociated cells were incubated with probe 2 (lane 1) or control molecule 3  (lane 2),
crosslinked with UV light, and then lysed for protein purification. Eluents from the streptavidin
columns were resolved and analyzed by Western blotting with streptavidin-HRP.

105

75

50

35

1 2
(kDa)



70

In an effort to enrich the target lectins before MS analysis, we performed

subcellular fractionation experiments with labeled neurons before isolating over

streptavidin beads.  Dissociated neurons were labeled with probe 2 as described above

and lysed in 0.32 M sucrose by homogenization.  Cell lysates were separated into soluble

S2 and membrane P2 fractions.  The S2 fractions were further separated by anion

exchange chromatography on a Q-sepharose column.  The fractions with the highest

absorbance at 280 nm were resolved by SDS-PAGE and analyzed by Western blotting

with streptavidin-HRP. As shown in Figure 4.7A, several proteins labeled with probe 2

were divided into different fractions and were separated from proteins labeled with

control molecule 3.  The separation of labeled proteins by anion exchange was promising

for the enrichment of target lectins.  However, when the fractions were analyzed by

Coomassie staining, very little to no protein was detected (Figure 4.7B).

Figure 4.6.  Coomassie stain analysis of total protein captured on streptavidin column after probe 2
labeling.  Lane 1: Protein labeled with probe 2;  Lane 2: Protein labeled with control molecule 3
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Our studies indicate quantitative capture of the lectins using streptavidin beads.

However, the crosslinking step seems to be inefficient and we estimate that less than 1%

of the total protein in the cells is being crosslinked to the probe.  These results suggest

that the probe has weak binding affinity for the lectins and/or the lectins are present in

very low cellular abundance.  These challenging obstacles have made it quite difficult to

capture sufficient quantities of the Fucα(1-2)Gal lectins for MS analysis from embryonic

tissue.  As a result, we proceeded to isolate target lectins from protein lysates generated

from rat pup brain, as older animals will presumably contain larger quantities of protein.

Identification of Fucα(1-2)Gal lectins from rat brain lysate

In trying to identify Fucα(1-2)Gal lectins from embryonic tissue, we encountered

several complications.  Mainly, we were unable to isolate sufficient quantities of target

Figure 4.7. Subcellular fractionation of protein lysates labeled with probe 2 and control molecule 3.  A)
Streptavidin-HRP Western blot of subcellular fractions further separated by anion exchange
chromatography.  Lanes 1 – 3: S2 fractions labeled with probe 2.  Lanes 4 – 5: S2 fractions labeled with
control molecule 3.  Lane 6: P2 fraction labeled with probe 2.  Lane 7: P2 fraction labeled with control
molecule 3.  B) Coomassie stain analysis of the same subcellular fractions as in A)
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lectins for MS analysis.  Therefore, we decided to move towards using rat pup protein

lysate for identifying Fucα(1-2)Gal lectins (Figure 4.8).

Whole cortices from rat pups were lysed by sonication before incubating over

agarose beads to eliminate any endogenous, agarose-binding proteins.  Lysates were then

labeled with probe 2 or control molecule 3 and then captured over streptavidin-agarose

beads.  Target lectins were eluted off the streptavidin column, resolved by SDS-PAGE,

and analyzed by Western blotting and silver staining.  As shown in Figure 4.9A, several

proteins were enriched with probe 2 labeling as compared to control molecule 3 labeling.

Importantly, the silver stain analysis of these samples also showed enrichment of proteins

labeled with probe 2, indicating capture of potential Fucα(1-2)Gal lectins (Figure 4.9B).

Although weak binding was observed, protein bands from both lanes of the silver

stain were excised, digested with trypsin, and compared by MS analysis.  From this

Figure 4.8.  Scheme depicting the strategy by which probe 2 is used to label and identify Fucα(1-2)Gal
lectins from neuronal protein lysate
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analysis, we identified the first potential Fucα(1-2)Gal lectins: Na+/K+ ATPase and

importin β.  Despite low signal from the MS data, we were able to duplicate the

identification of these two proteins from two separate labeling experiments.  These

putative protein hits were quite exciting, as both of these proteins have crucial roles in

cellular function.  The Na+/K+ ATPase is essential in generating the electrochemical

gradient necessary to maintain cellular potential.29  Importin β  is a major transport

receptor crucial to the import of proteins into the nucleus.30

To confirm that these proteins are Fucα(1-2)Gal lectins, lysates labeled with

probe 2 were resolved by SDS-PAGE and then analyzed by Western blotting using either

Na+/K+ ATPase or importin β antibodies.  Unfortunately, we did not detect any signal at

the predicted molecular weights of either protein (Figure 4.10).  Moreover, further

attempts at confirming these results with more labeling experiments using probe 2 were

not possible.  Limited quantities of probe 2 were generated in the laboratory and after

Figure 4.9.  Distinct proteins from rat pup lysate were captured and isolated by probe 2.  A) Western
blot analysis of rat pup lysate labeled with probe 2 (lane 1) and control molecule 3 (lane 2).  B) Silver
stain analysis of proteins labeled with either probe 2 (lane 1) or control molecule 3 (lane 2)
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many rounds of optimization and experimental trials, we had exhausted all stocks

synthesized.

Capture of Fucα(1-2)Gal lectins using multivalent polymers

Although we have used probe 2 to label several potential Fucα(1-2)Gal lectins in

embryonic brain, efforts to capture and isolate sufficient quantities of target lectins for

MS analysis were only mildly successful.  Therefore, we proceeded to use multivalent

probes to enhance our ability to capture larger quantities of lectins.  As carbohydrates

have weak binding affinities for lectins (Kassoc = 103 – 106 M), multivalent probes greatly

enhance the binding affinity and cluster of lectins to their targets.24, 31  Remarkably, we

found that polyacrylamide polymers displaying multiple Fucα(1-2)Gal epitopes

stimulated neurite outgrowth by 50 ± 6% (Chapter 2).  To establish whether the polymers

would function to isolate target lectins, we first determined if these polyacrylamide

Figure 4.10.  Protein lysate labeled with probe 2 did not confirm identification of potential Fucα(1-
2)Gal lectins.  Lane 1: Labeled lysate probed with Na+/K+ ATPase antibody (predicted molecular
weight is 112 kDa); Lane 2: Labeled lysate probed with importin β antibody (predicted molecular
weight is 97 kDa)
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polymers displaying multiple Fucα(1-2)Gal epitopes (polymer 4, Glycotech Corporation,

Figure 4.11) could label target lectins.

Dissociated neurons from embryonic rat brains were lysed, and proteins were

fractionated into S2 and P2 fractions, resolved by SDS-PAGE, and transferred to

polyvinylidene fluoride (PVDF) membranes.  The lectins were visualized by Far-Western

analysis where the blot was probed with polymer 4, followed by incubation with

streptavidin-HRP.  Importantly, we found that polymer 4 labeled similar lectins to those

labeled with monovalent probe 2 (Figure 4.12).  Comparing lane 2 versus lane 3, we see
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many of the same protein bands detected with multivalent polymer 4 as were labeled with

monovalent probe 2, respectively.

As the polyacrylamide polymers successfully labeled target lectins, we proceeded

to capture the lectins using polymer 4.  In combination with streptavidin beads, polymer 4

was used to generate a Fucα(1-2)Gal affinity column for the isolation of desired lectins

(Figure 4.13).

Figure 4.12. Labeling of proteins from dissociated embryonic neurons using the multivalent or
monovalent probe.  Proteins from the S2 (lane 1) or P2 (lane 2) fractions were labeled on blot with
multivalent polymer 4. Lane 3: Intact cells were labeled with the monovalent probe 2 and lysed.

Figure 4.13.  Strategy for identification of Fucα(1-2)Gal lectins from neuronal protein lysate using
multivalent polymer 4
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First, we used the known fucose-binding lectin UEA-I to optimize binding and

capture conditions.   The Fucα(1-2)Gal affinity column was generated by incubating

polymer 4 with streptavidin beads.  After unbound polymer was removed, UEA-I lectin

was bound on the column and then eluted with binding buffer containing 200 mM L-

fucose.  This procedure enabled specific capture of the UEA-I lectin by the Fucα(1-2)Gal

affinity column compared to the control streptavidin column (Figure 4.14).

With successful isolation of the UEA-I lectin by the Fucα(1-2)Gal affinity

column, we proceeded to capture the fucose-specific lectins from rat pup protein lysate.

Rat pup cortical tissue was lysed by sonication with ice-cold binding buffer before

incubating with the Fucα(1-2)Gal affinity column.  As a positive control, we added UEA-

I lectin to the lysate mixture before incubating with the affinity column.  Again, we were

able to specifically capture the UEA-I lectin (Figure 4.15).  However, the efficiency of

lectin capture from the lysate was not very high and resulted in smeared protein bands

visualized in the silver staining.

Figure 4.14. Capture of purified UEA-I lectin using the multivalent Fucα(1-2)Gal polymer 4.  Equal
amounts of UEA-I lectin (10 µg) were bound on the Fucα(1-2)Gal affinity column and streptavidin
control column. Lane 1: Eluent from Fucα(1-2)Gal affinity column; Lane 2: Eluent from streptavidin
column
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To enhance the efficiency of the Fucα(1-2)Gal affinity column, we optimized the

lysis and binding conditions to facilitate the capture of Fucα(1-2)Gal lectins.  Rat pup

cortical tissue was lysed in ice-cold binding buffer that contained no detergent, and non-

specific proteins were reduced by pre-clearing the lysate over a streptavidin column for 1

h at room temperature prior to incubation with the Fucα(1-2)Gal affinity column for 4 h

at room temperature.  Again, we added UEA-I to the lysate prior to incubating with either

affinity column as a positive control.  Furthermore, we added a competition affinity

column where L-fucose (1000-fold excess) was added to the lysate during incubation

with the Fucα(1-2)Gal affinity column.  The competition column would better indicate

which captured proteins are fucose-specific lectins and will allow us to eliminate false

positives that might arise from non-specific crosslinking to proteins or non-specific

Figure 4.15. Capture of UEA-I and Fucα(1-2)Gal lectins from rat pup lysate.  UEA-I lectin was
specifically captured by the affinity column (Lane 1).  Other Fucα(1-2)Gal lectins were also captured,
albeit to a lesser extent, exhibited by the smear of protein bands in Lane 1.  Lane 1: Eluent from
Fucα(1-2)Gal affinity column; Lane 2: Eluent from streptavidin column
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binding of proteins to the polyacrylamide backbone or streptavidin beads.  As shown in

Figure 4.16, several proteins were enriched on the Fucα(1-2)Gal affinity column relative

to the control column where lectin binding was competitively inhibited by L-fucose

(arrows).  Moreover, the Fucα(1-2)Gal affinity column captured the positive control

lectin UEA-I (arrowhead).  The bands from the affinity and control columns were

excised, digested with trypsin, and compared by MS analysis.  Although specific proteins

were visualized by silver staining, the total amount of protein isolated from each band

was too low and MS signal strength was weak and inconclusive.

Design of new multivalent Fucα(1-2)Gal probes for isolating neuronal lectins

As described in Chapter 2 and above, our studies demonstrate that Fucα(1-2)Gal

lectins exist in the mammalian brain and are involved in a novel pathway for neuronal

growth.  Using polyacrylamide polymers displaying multiple disaccharide and biotin

Figure 4.16. Capture of Fucα(1-2)Gal  lectins from rat pup lysate using the Fucα(-2)Gal affinity
column. Proteins at ~ 65, 80, 140, and 300 kDa (arrows) were selectively captured by the Fucα(1-2)Gal
affinity column (Lane 1).  UEA-I lectin was also specifically captured (arrowhead, Lane 1). Lane 1:
Eluent from Fucα(1-2)Gal affinity column; Lane 2: Eluent from L-fucose competition column
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moieties, we created an affinity column to capture the target lectins.  While this approach

has enhanced the binding of desired lectins to the Fucα(1-2)Gal affinity column, we were

still unable to isolate sufficient quantities of proteins for MS analysis.  Therefore, we feel

that we can significantly improve our ability to capture the lectins by generating a

multivalent, biotinylated glycopolymer containing photoreactive crosslinking groups.

Arif Wibowo will synthesize polymer 5, which has Fucα(1-2)Gal recognition elements,

photoreactive phenyl azide groups, and is end-labeled with biotin (Figure 14.17).

The presence of multiple Fucα(1-2)Gal sugars on a polyacrylamide backbone

ensures the binding of polymer 5 to the target lectins and the biotin group provides a

convenient handle for capturing the lectins by affinity chromatography.  The

photoreactive phenyl azide moieties should allow more efficient lectin capture by

forming a covalent linkage to the target proteins.  Importantly, the addition of a covalent

linkage between the polymer and protein of interest allows for vigorous washing to

reduce non-specifically bound proteins.  Phenyl azides were chosen as a starting point

Figure 4.17.  Design of multivalent capture polymer 5 .  Polymer 5 will have a polyacrylamide
backbone, multiple Fucα(1-2)Gal epitopes (red), photoreactive phenyl azide groups (blue), and will be
end-labled with biotin (green).
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because they are well precedented and can be readily synthesized from commercially

available starting materials.  Other photoactivatable groups such as

trifluorometylphenyldiazirines (as in probe 2) and benzophenone are also possible.

Discussion

Our overall goal is to understand the molecular mechanisms by which fucose-

containing carbohydrates regulate neuronal communication and function.  As fucose-

associated lectins and glycoproteins from the brain have not been identified previously,

we developed new methods to identify and characterize these proteins.  Our studies have

revealed that such proteins do indeed exist in the mammalian brain and play a key role in

the regulation of synaptic proteins and neuronal morphology.

We have established that Fucα(1-2)Gal-associated proteins participate in a novel

carbohydrate-mediated pathway for regulating neuronal growth (Chapter 2).32

Specifically, we developed a chemical probe for detecting Fucα(1-2)Gal lectins in

neurons and found that the probe bound to the cell body and neurites of hippocampal

neurons.  Furthermore, we discovered that association of the fucose disaccharide with

these lectins dramatically promotes neurite outgrowth.  Additionally, we have found that

Fucα(1-2)Gal glycoproteins are prevalent in the developing brain and that synapsin Ia

and Ib are the major Fucα(1-2)Gal glycoproteins in the adult rat brain (Chapter 3).33

Notably, fucosylation protects the synapsins from rapid degradation, while inhibition of

fucosylation drastically impairs the outgrowth of neurons and delays synapse formation.

Together, our studies suggest that Fucα(1-2)Gal carbohydrates play a significant role in

regulating neuronal growth and communication.
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Once we established the existence of Fucα(1-2)Gal lectins in neurons, we sought

to identify and characterize these proteins.  As no Fucα(1-2)Gal lectins have been

previously reported and no methods existed to isolate such proteins, we designed a

chemical probe (probe 2) and developed a strategy for the capture and identification of

the target lectins from the brain.  The probe includes 3 key features: 1) a Fucα(1-2)Gal

recognition element for binding to lectins, 2) a photoactivatable group to covalently

crosslink the probe to target lectins, and 3) a biotin handle for affinity capture.  Efforts to

isolate lectins from embryonic tissue in sufficient quantity for MS analysis were

unsuccessful. Attempts to enrich the captured lectins using subcellular fractionation were

also unsuccessful.  Based on our experimental results, we estimated that less than 1% of

the total protein in the cells is being crosslinked to the probe.  This suggests that the

probe has a weak binding affinity for the target lectins and/or that the target lectins are of

very low abundance in the embryonic cell.

Unable to characterize Fucα(1-2)Gal lectins from embryonic neurons, we

proceeded to isolate target lectins from juvenile rats in an attempt to obtain sufficient

quantities of protein for MS analysis.  This strategy was a move in the right direction and

provided the identity of the first potential Fucα(1-2)Gal lectins, the Na+/K+ ATPase and

importin β.  Despite such promising results, we were unable to confirm the identity of

these putative lectins by Western blotting and further attempts to isolate more proteins

using probe 2 were not possible.  As such, our efforts then focused on using multivalent

probes to capture the target lectins.

Carbohydrates typically have weak binding affinities for lectins,24 making it quite

difficult to study and identify specific lectin targets.  Multivalent probes can help
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overcome these challenges by enhancing the binding affinity between the carbohydrate

and lectin of interest.31  We used a biotinylated polyacrylamide polymer containing

multiple Fucα(1-2)Gal epitopes and generated a lectin affinity column using streptavidin

beads.  Although weak binding was observed, we found that we could successfully

capture Fucα(1-2)Gal-specific lectins from neuronal lysates.  Importantly, the affinity

column captured the protein UEA-I, a Fucα(1-2)Gal-specific plant lectin27, 28 which was

added to the lysates as a positive control.  After many rounds of optimization of

experimental conditions, several proteins were enriched relative to a control column in

which lectin binding was competitively inhibited with L-fucose (Figure 4.16).  Despite

such distinct protein staining, the efficiency of capture was not enhanced relative to that

of the first probe (probe 2), which was monovalent but contained a photoactivatable

crosslinking group.  Based on these results, we have reasoned that adding photo-

crosslinking groups to multivalent polymers should solve these technical issues,

combining enhanced lectin binding with efficient covalent capture.  Efforts in the lab

have now focused on generating multivalent polymers that will enable control over

carbohydrate density, type, and number of photo-crosslinking groups, and allow for the

addition of biotin or other moieties for affinity chromatography.

Although we were unable to conclusively identify any Fucα(1-2)Gal lectins from

neurons, the possibility that the Na+/K+ ATPase and importin β are fucose-specific lectins

leads to significant implications.  First, the Na+/K+ ATPase is an essential protein crucial

to cellular function.  It creates an electrochemical gradient across the cell membrane by

exchanging cytoplasmic Na+ for extracellular K+ in a 3:2 ratio.29  This gradient plays a

role in maintaining cell volume and pH, in keeping the cell resting membrane potential,
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and in providing the energy necessary for the secondary transport of other ions, solutes

and water across the cell membrane.  The Na+/K+ ATPase is made up of two main

subunits, α and β, both of which exist in different isoforms.  Interestingly, the β subunit

is known to be glycosylated, and the glycoproteins have been shown to contain fucose

carbohydrates.29, 34, 35  Although glycosylation is not essential to formation, cell

trafficking, or activity of the Na+/K+ ATPase, glycosylation aids in the structural stability

of β subunits and also specifies the assembly of distinct α and β subunits.29  As such, one

possibility is that the α  subunit may serve as a lectin receptor, binding to the

carbohydrate expressed on the β subunit.  Upon binding, correct αβ  heterodimer

assembly can occur and thus allow delivery of an active Na+/K+ ATPase to the cell

membrane.  In this instance, fucosylation of the Na+/K+ ATPase would be acting as an

intracellular signal modulating the assembly of different αβ heterodimers, generating

separate Na+/K+ ATPase isozymes with distinct functions.

The possibility that importin β  is also a fucose-specific lectin has significant

implications for nuclear transport and neuronal communication.  Importin β is a key

protein essential to nuclear transport in most mammalian cells and can bind

macromolecular cargo indirectly via the adaptor protein importin α.30  Importin α must

first bind importin β before binding to any cargo in the cytoplasm via a nuclear

localization sequence.  Although the classical mode of nuclear import incorporates the

binding of importin β to importin α, it is also possible for importin β to bind directly to

cargo.30, 36  As fucose levels have been shown to increase during learning and memory

processes, it is possible that importin β may bind to and translocate newly fucosylated

glycoproteins into the nucleus to initiate the cellular response needed for learning.  In this
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manner, fucosylation would act as a recognition element enabling the binding of

fucosylated glycoproteins to importin β, which in turn would transport these proteins into

the nucleus.  Moreover, the transport of newly fucosylated proteins would provide direct

communication of synaptic activity to the nucleus.

In all, our studies provide new molecular-level insights into the function of L-

fucose in the mammalian brain.  We have shown that fucose-specific lectins are found in

hippocampal neurons and have made progress in identifying these specific proteins.  In

addition, we have determined that synapsin Ia and Ib are fucose-containing glycoproteins.

Taken together, our studies provide compelling evidence for an important physiological

role for fucosyl sugars in the brain.  By understanding the molecular underpinnings of

communication in the brain, we hope to ultimately provide new targets for therapeutic

intervention when learning and memory become impaired.
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Experimental Procedures for Chapter 4

Buffers and Reagents:

Chemicals and molecular biology reagents were purchased from Fisher (Fairlawn, NJ)

unless stated otherwise.  Protease inhibitors were purchased from Aldrich Chemicals (St.

Louis, MO) and Alexis Biochemicals (San Diego, CA).  Cell media was purchased from

Gibco BRL (Grand Island, NY).

Labeling of Known Fucose-Binding Lectins AAA and UEA I with Probe 2:

Purified lectins were purchased from EY Laboratories (San Mateo, CA) and used to make

1 mg/mL stocks in water.  10 µg of each lectin was incubated with or without probe 2 (1

mM) or control molecule 3 (1 mM) for 1 h at 37 °C with gentle mixing in neurobasal

media in the dark.  Samples were then irradiated on ice with UV light (365 nm) for 1 h

before resolving proteins by SDS-PAGE and analyzing by streptavidin-HRP Western

blotting and Coomassie staining.

Capture of Fucα(1-2)Gal Lectins from Dissociated Embryonic Neurons:

Embryonic brain was dissected and neurons were dissociated as described in Chapter 2.

Dissociated neurons were spun briefly (1,000 rpm, 5 min), pelleted, resuspended in

neurobasal media and incubated with probe 2 (1 mM) or molecule 3 (1 mM) for 4 h at 37

°C with gentle mixing in the dark.  Neurons were pelleted (3,000 rpm, 5 min) and washed

twice with PBS in the dark to remove any unbound probe.  Cells were resuspended in

PBS and irradiated on ice with UV light (365 nm) for 2 h.  After a brief spin (3,000 rpm,
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5 min), cells were lysed with boiling 1% SDS-containing protease inhibitors to solubilize

all proteins.  Proteins were resolved by SDS-PAGE and analyzed by streptavidin-HRP

Western blotting.

Competition Experiments Investigating Specificity of Probe 2 Labeling:

Dissociated embryonic neurons were first incubated with the competitor molecules

Fucα(1-2)Gal-OEt disaccharide, L-FucαOEt, or D-FucαOEt (each at 150 mM) for 2 h at

37 °C with gentle mixing in neurobasal media.  Probe 2 (0.3 mM) was then added and

cells were incubated for an additional 2 h in the dark at 37 °C with gentle mixing.  After

washing away unbound probe, cells were irradiated and lysed as above.  Proteins were

then resolved and analyzed by streptavidin-HRP Western blotting.

Purification of Labeled Proteins from Dissociated Embryonic Neurons:

Dissociated embryonic neurons were incubated with probe 2, irradiated and lysed as

described above. After lysis, the proteins were pre-cleared with agarose beads (Sigma)

for 1 h at room temperature to deplete agarose-binding proteins.  After a brief spin to

pellet the beads, the protein lysates were removed and incubated for 2 h at room

temperature with streptavidin-agarose beads (Pierce) in 0.2% SDS/PBS.  The streptavidin

beads were washed three times with 0.2% SDS/PBS, once with PBS, and bound protein

was eluted with 2X SDS-PAGE loading buffer containing 1000-fold excess free biotin.

Eluted proteins were resolved and probed by Western blotting as above.
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Subcellular Fractionation and Separation by Anion Exchange Chromatography of

Dissociated Neurons Labeled with Probe 2:

Dissociated neurons were labeled with probe 2 as described above.  Cells were lysed in 5

volumes of 0.32 M sucrose/ 5 mM Tris pH 8.0 by passing through a 22-gauge needle 5

times.  The sample was diluted to 1.5 mL with sucrose buffer and passed through the

needle again another 5 times.  The cell lysate was spun at 800 x g for 10 min, supernatant

was transferred to a new tube and spun again at 16,000 x g for 15 min.  The supernatant

was saved as S2 and the pellet was saved as P2 and later lysed with boiling 1% SDS

before analysis.  The S2 fractions were measured for protein concentration using the

BCA protein assay (Pierce) and then desalted on a PD-10 column (Amersham).  The PD-

10 column was first washed with 20 mL of 50 mM Tris pH 8.0/ 0.1% Triton X-100

before adding S2 sample onto the column in a total volume of 2.5 mL.  The void volume

was discarded and protein was eluted in 3.5 mL of loading buffer.  Protein concentration

was measured again before loading desalted S2 sample onto a Q-sepharose anion

exchange column (1 mL HiTrap Q HP column; Amersham).  The Q-sepharose column

was run at a flow rate of 0.5 mL/min and was washed first with 5 column volumes of 50

mM Tris pH 8.0, then with 5 column volumes of 50 mM Tris pH 8.0/ 1 M NaCl, and then

equilibrated with 10 column volumes of 50 mM Tris pH 8.0.  The S2 sample was loaded

onto the column, washed with 5 column volumes of 50 mM Tris pH 8.0, and then

proteins were eluted with a gradient of 0 – 1 M NaCl for 20 column volumes.  Samples

were combined based on absorbance at 280 nm, concentrated and dialyzed with

Centricon filters (Millipore), and then analyzed by Western blotting and Coomassie
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staining.  Separate columns were used for cells labeled with control molecule 3 and

treated as above.

Purification of Fucα(1-2)Gal Lectins from Rat Pup Brain:

Whole cortices from rat pups were dissected as described in Chapter 3 and lysed by

sonication in ice cold binding buffer I (100 mM Tris pH 7.5, 150 mM NaCl, 1 mM CaCl2,

1 mM MgCl2, 0.5 % NP-40, 0.2% sodium deoxycholate) plus protease inhibitors and pre-

cleared over agarose beads for 1 h.  Lysates were then incubated with probe 2 or control

molecule 3 for 4 h in the dark at room temperature, followed by irradiation with UV light

for 2 h at 4 °C.  After a couple washes in binding buffer I, lysates were incubated with

streptavidin beads equilibrated in binding buffer for 2 h at room temperature.  The bead-

lysate mixture was packed into a 1 mL spin column and washed as follows: 3 column

volumes of binding buffer I, 3 column volumes of high salt binding buffer I (300 mM

NaCl), and 3 column volumes of binding buffer I without detergent.  Target lectins were

eluted with 3 column volumes of 2X SDS-PAGE loading buffer containing 1000-fold

excess free biotin, concentrated with Microcon filters (Millipore), then resolved by SDS-

PAGE and analyzed by Western blotting and silver stain.

Trypsin Digestion and MS Analysis:

Bands were excised from Coomassie-stained gels and treated essentially as described by

Shevchenko et al.37  Briefly, excised bands were destained overnight in 50% methanol/

5% acetic acid.  Destained bands were dehydrated in acetonitrile (CH3N), dried by

vacuum, and rehydrated in 10 mM DTT.  After 30 min reduction at room temperature,



90

excess DTT was removed, and proteins were alkylated in 50 mM iodoacetamide for 30

min at room temperature in the dark.  After alkylation, excess iodoacetamide was

removed and protein bands were washed in 100 mM ammonium bicarbonate (NH4HCO3;

pH 8.0) for 10 min, followed by two successive dehydrations in CH3N.  Wash and

dehydration steps were repeated once more, and excess CH3N was removed under

vacuum.  Protein bands were rehydrated in 15 ng/µL trypsin (Promega) in 50 mM

NH4HCO3.  Excess trypsin solution was removed after rehydration, and 20 – 30 µL of 50

mM NH4HCO3 was then added to cover the gel slices.  Proteins were digested overnight

at 37 °C.  Following digestion, peptides were extracted with successive washes of water

followed by 50% CH3N/ 5% formic acid in water, and dried by vacuum centrifugation.

Eluted peptides were sent to our collaboraters at the Genomics Institute of the Novartis

Research Foundation (San Diego, CA) and analyzed by matrix-assisted laser

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).

Capture of UEA-I Using Multivalent Polymer 4 Affinity Column:

The known fucose-binding lectin UEA-I was used to optimize binding and capture

conditions. The Fucα(1-2)Gal affinity column was generated by incubating polymer 4 (3

mg; Glycotech Corporation) with streptavidin-agarose beads (1 mL) for 30 min at room

temperature in binding buffer I.  Unbound polymer was removed by washing with 20

column volumes of binding buffer I.  UEA-I (10 µg) was bound on the affinity column

for 4 h at room temperature followed by several wash steps (3 column volumes of

binding buffer I; 3 column volumes of high salt binding buffer I, 300 mM NaCl; and 3

column volumes of binding buffer I without detergent) and then eluting with binding
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buffer I containing 200 mM L-fucose.  Eluted samples were analyzed by SDS-PAGE and

silver staining.  UEA-I was also bound over a streptavidin column, generated as above

without polymer 4, as a control.

Capture and Purification of Fucα(1-2)Gal Lectins Using Multivalent Polymer 4:

The Fucα(1-2)Gal affinity column was generated as described above. After incubating

the samples on the column for 4 h at room temperature, the column was washed with 3

column volumes of binding buffer I, 3 column volumes of high salt binding buffer I (300

mM NaCl), and 3 column volumes of binding buffer I without detergent.  Proteins were

eluted with 3 column volumes of binding buffer I containing 200 mM L-fucose,

concentrated with Microcon filters (Millipore), then separated on Tris-acetate gels and

visualized by silver staining.  For the competition affinity column, L-fucose (1000-fold

excess) was added at the same time the sample was added to the Fucα(1-2)Gal affinity

column.

Western Blotting:

Protein concentration of samples was determined using the BCA protein assay (Pierce).

Lysates were resolved on 10% acrylamide-SDS gels.  Proteins were transferred to

polyvinylidene difluoride (PVDF) membrane (Millipore) for at least 12 h in 20 mM Tris-

Cl pH 8.6/ 120 mM glycine/ 20% methanol.  Western blots were blocked for 1 h with 3%

BSA and rinsed with TBST (50 mM Tris-Cl pH 7.4/ 150 mM NaCl/ 0.1% Tween-20).

Blots were incubated with streptavidin-HRP (1:500; Pierce) for 1 h at room temperature

with constant rocking, then rinsed and washed 4 times for 20 min with TBST.
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Immunoreactivity visualized by chemiluminescence using Pico Chemiluminescent

Substrate (Pierce).  For blots probed with Na/K ATPase and importin β antibodies, blots

were blocked in 3% BSA followed by incubation with either Na/K ATPase antibody

(1:500; Abcam) or importin β antibody (1:500; Abcam) for 2 h at room temperature.

Blots were rinsed and washed twice with TBST, followed by incubation with IRDYE680

goat anti-mouse antibody (1:5000; Rockland Immunochemicals) in TBST/0.2% SDS for

1 h at room temperature in the dark.  After 4 washes of 20 min in TBST,

immunoreactivity was visualized using the Odyssey infrared imaging system (LICOR).

Coomassie Staining:

After the proteins were resolved by SDS-PAGE, the gel was immersed in 0.1%

Coomassie/ 50% methanol/ 10% acetic acid for 30 min to 1 h at room temperature.  The

gel was then de-stained with 50% methanol/ 10% acetic acid at room temperature until

the desired contrast was obtained.

Silver Staining:

Resolved gels were fixed in 50% methanol/ 10% acetic acid for 10 min, fixed in 5%

methanol/ 1% acetic acid an additional 15 min, rinsed briefly in 50% methanol, then

washed in double distilled water (ddH2O) 3 times for 10 min each or overnight.  The gels

were then sensitized in freshly prepared sodium thiosulfite (0.02% in ddH2O) for 90

seconds exactly and rinsed in ddH2O 3 times for 30 sec each, before silver staining in

freshly prepared 0.2% silver nitrate for 30 min at room temperature or overnight at 4 °C.
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After rinsing 3 times for 60 sec each in ddH2O, the stain was developed in freshly made

6% sodium carbonate/ 0.018% formaldehyde/ 0.0004% sodium thiosulfite for up to 10

min at room temperature with constant shaking until the desired contrast was attained.

Developing was stopped in 6% acetic acid for 10 min and the gel was stored in ddH2O.

Far-Western Analysis:

Proteins were resolved by SDS-PAGE and transferred to PVDF membrane.  The blot was

blocked for 1 h at room temperature with 3% BSA in TBST.  After a few washes in

TBST, the blot was incubated with polymer 4 (13 µM in TBST) overnight at 4 °C with

gentle shaking.  After two washes of 10 min each in TBST, streptavidin-HRP (1:5000)

was added in TBST for 1 h at room temperature.  Following 4 washes of 10 min each in

TBST, immunoreactivity was visualized using Pico Chemiluminescent substrate.



94

References

1. Stanojev, D. & Gurd, J.W. Characterization of fucosyl oligosaccharides
associated with synaptic membrane and synaptic junctional glycoproteins. J.
Neurochem. 48, 1604 – 1611 (1987).

2. Taniguchi, T., Adler, A.J., Mizuochi, T., Kochibe, N. & Kobata, A. The structures
of the asparagine-linked sugar chains of bovine interphotoreceptor retinol-binding
protein—Occurrence  of fucosylated hybrid-type oligosaccharides. J. Biol. Chem.
261, 1730 – 1736 (1986).

3. Krusius, T. & Finne, J. Structural features of tissue glycoproteins. Fractionation
and methylation analysis of glycopeptides derived from rat brain, kidney and
liver. Eur. J. Neurosci. 78, 369 – 379 (1977).

4. Bullock, S., Potter, J. & Rose, S.P.R. Effects of the amnesic agent 2-
deoxygalactose on incorporation of fucose into chick brain glycoproteins. J.
Neurochem. 54, 135 – 142 (1990).

5. Lorenzini, C.G.A., Baldi, E., Bucherelli, C., Sacchetti, B. & Tassoni, G. 2-deoxy-
D-galactose effects on passive avoidance memorization in the rat. Neurobiol.
Learn. Mem. 68, 317 – 324 (1997).

6. Rose, S.P.R. & Jork, R. Long-term memory formation in chicks is blocked by 2-
deoxygalactose, a fucose analog. Behav. Neural Biol. 48, 246 – 25 (1987).

7. Jork, R., et al. Identification of rat hippocampal glycoproteins showing changed
fucosylation following 2-deoxy-D-galactose-induced amnesia in a brightness
discrimination task. Neurosci. Res. Commun. 5, 105 – 110 (1989).

8. Jork, R., et al. Deoxy-galactose mediated amnesia is related to an inhibition of
training-induced increase in rat hippocampal glycoprotein fucosylation. Neurosci.
Res. Commun. 5, 3 – 8 (1989).

9. McCabe, N.R. & Rose, S.P.R. Passive-avoidance training increases fucose
incorporation into glycoproteins in chick forebrain slices in vitro. Neurochem.
Res. 10, 1083 – 1095 (1985).

10. Pohle, W., Acosta, L., Ruthrich, H., Krug, M. & Matthies, H. Incorporation of
[3H]fucose in rat hippocampal structures after conditioning by perforant path
stimulation and after LTP-producing tetanization. Brain Res. 410, 245 – 256
(1987).



95

11. Popov, N., et al. Changes in activities of fucokinase and fucosyl-transferase in rat
hippocampus after acquisition of a brightness- discrimination reaction.
Pharmacol. Biochem. Behav. 19, 43 – 47 (1983).

12. Jork, R., et al. Monoclonal antibody specific for histo-blood group antigens H
(types 2 and 4) interferes with long-term memory formation in rats. Neurosci.
Res. Commun. 8, 21 – 27 (1991).

13. Karsten, U., et al. A new monoclonal antibody (A46-B/B10) highly specific for
the blood group H type 2 epitope: Generation, epitope analysis, serological and
histological evaluation. Br. J. Cancer 58, 176 – 181 (1988).

14. Krug, M., Wagner, M., Staak, S. & Smalla, K.H. Fucose and fucose-containing
sugar epitopes enhance hippocampal long-term potentiation in the freely moving
rat. Brain Res. 643, 130 – 135 (1994).

15. Matthies, H., Staak, S. & Krug, M. Fucose and fucosyllactose enhance in-vitro
hippocampal long-term potentiation. Brain Res. 725, 276 – 280 (1996).

16. Lis, H. & Sharon, N. Lectins: Carbohydrate-specific proteins that mediate cellular
recognition. Chem. Rev. 98, 637 – 674 (1998).

17. Rudd, P.M., Elliott, T., Cresswell, P., Wilson, I.A. & Dwek, R.A. Glycosylation
and the immune system. Science 291, 2370 – 2376 (2001).

18. Weis, W.I. & Drickamer, K. Structural basis of lectin-carbohydrate recognition.
Annu. Rev. Biochem. 65, 441 – 473 (1996).

19. Drickamer, K. Increasing diversity of animal lectin structures. Curr. Opin. Struct.
Biol. 5, 612 – 616 (1995).

20. Evans, R.K. & Haley, B.E. Synthesis and biological properties of 5-azido-2'-
deoxyuridine 5'-triphosphate, a photoactive nucleotide suitable for making light-
sensitive DNA. Biochemistry 26, 269 – 276 (1987).

21. Fabry, M., et al. Detection of a new hormone contact site within the insulin
receptor ectodomain by the use of a novel photoreactive insulin. J. Biol. Chem.
267, 8950 – 8956 (1992).

22. Fleming, S.A. Chemical reagents in photoaffinity labeling. Tetrahedron 51, 12479
– 12520 (1995).

23. Hashimoto, M. & Hatanaka, Y. Identification of photolabeled peptides for the
acceptor substrate binding domain of beta 1,4-galactosyltransferase. Chem.
Pharm. Bull. 47, 667 – 671 (1999).



96

24. Sears, P. & Wong, C.H. Carbohydrate mimetics: A new strategy for tackling the
problem of carbohydrate-mediated biological recognition. Angew. Chem. Int. Ed.
38, 2300 – 2324 (1999).

25. Koumanov, F., Yang, J., Jones, A.E., Hatanaka, Y. & Holman, G.D. Cell-surface
biotinylation of GLUT4 using bis-mannose photolabels. Biochem. J. 330, 1209 –
1215 (1998).

26. Li, Y.M., et al. Photoactivated gamma-secretase inhibitors directed to the active
site covalently label presenilin 1. Nature 405, 689 – 694 (2000).

27. Alonso, E., Saez, F.J., Madrid, J.F. & Hernandez, F. Lectin histochemistry shows
fucosylated glycoconjugates in the primordial germ cells of Xenopus embryos. J.
Histochem. Cytochem. 51, 239 – 243 (2003).

28. Wei, A., Boy, K.M. & Kishi, Y. Biological evaluation of rationally modified
analogs of the H-type-II blood group trisaccharide. A correlation between solution
conformation and binding affinity. J. Am. Chem. Soc. 117, 9432 – 9436 (1995).

29. Blanco, G. The Na/K-ATPase and its isozymes: what we have learned using the
baculovirus expression system. Front. Biosci. 10, 2397 – 2411 (2005).

30. Cook, A., Bono, F., Jinek, M. & Conti, E. Structural biology of
nucleocytoplasmic transport. Annu. Rev. Biochem. 76, 647 – 671 (2007).

31. Sacchettini, J.C., Baum, L.G. & Brewer, C.F. Multivalent protein-carbohydrate
interactions. A new paradigm for supermolecular assembly and signal
transduction. Biochemistry 40, 3009 – 3015 (2001).

32. Kalovidouris, S.A., Gama, C.I., Lee, L.W. & Hsieh-Wilson, L.C. A role for
fucose alpha(1-2) galactose carbohydrates in neuronal growth. J. Am. Chem. Soc.
127, 1340 – 1341 (2005).

33. Murrey, H.E., et al. Protein fucosylation regulates synapsin Ia/Ib expression and
neuronal morphology in primary hippocampal neurons. Proc. Natl. Acad. Sci.
USA 103, 21 – 26 (2006).

34. Horisberger, J.D., et al. The H,K-ATPase beta-subunit can act as a surrogate for
the beta-subunit of Na,K-pumps. J. Biol. Chem. 266, 19131 – 19134 (1991).

35. Perrone, J.R., Hackney, J.F., Dixon, J.F. & Hokin, L.E. Molecular properties of
purified (sodium + potassium)-activated adenosine triphosphatases and their
subunits from the rectal gland of Squalus acanthias and the electric organ of
Electrophorus electricus. J. Biol. Chem. 250, 4178 – 4184 (1975).



97

36. Riddick, G. & Macara, I.G. A systems analysis of importin-alpha-beta mediated
nuclear protein import. J. Cell Biol. 168, 1027 – 1038 (2005).

37. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric
sequencing of proteins silver-stained polyacrylamide gels. Anal. Biochem. 68, 850
– 858 (1996).



98

Part II—Chapter 5:  The Biological Activity of Chondroitin Sulfate

Glycosaminoglycans ∗

General functions of glycosaminoglycans

Proteoglycans are a diverse class of proteins that carry long chains of

carbohydrate polymers termed glycosaminoglycans.1, 2  Glycosaminoglycans (GAGs) are

chains of repeating disaccharide units that show tremendous structural diversity with

complex patterns of deacetylation, sulfation, length, and epimerization.3, 4  The GAG

chains are covalently bound to proteins via the hydroxyl group of specific serine residues

found in the protein core.5, 6  Proteoglycans are found in the extracellular matrix of all

tissues, including cartilage, basement membranes, and connective tissue, as well as on the

surface of most cells.  The diversity seen among the different proteoglycan families arises

from the variety of protein cores available as well as from variations in the length and

type of attached GAG chains.  Proteoglycans found in the brain are expressed under strict

control throughout nervous system development, and they act as regulators of axonal

pathfinding, cell migration, and synaptogenesis.1, 7 -- 9

Proteoglycans act as scaffold structures constructed to interact with other proteins

through noncovalent binding to their GAG chains.  In the brain, a variety of proteoglycan

families are involved in binding growth factors, cell adhesion molecules, enzymes, and

enzyme inhibitors.1  Both the syndecan and glypican proteoglycan families bind to the

neural cell adhesion molecule (NCAM), slit-1 and slit-2, which are involved in the

development of midline glia and axon pathways, different members of the fibroblast
                                                  
∗ Portions of this chapter were taken from C. I. Gama and L. C. Hsieh-Wilson (2005) Curr. Opin. Chem.
Biol. 9, 609 – 619.
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growth factor (FGF) family, and members of the Hedgehog families.2  These interactions

between the syndecan and glypican proteoglycans with their ligands are established

through the GAG bound to the protein core.

GAG chains are a family of sulfated polysaccharides involved in diverse

biological processes such as neuronal development, tumor growth and metastasis, viral

invasion, and spinal cord injury.10 -- 12  For instance, GAGs modulate key signaling

pathways essential for proper cell growth and angiogenesis.11, 12  They are also important

for axon pathfinding in the developing brain and have been linked to the pathology of

Alzheimer’s disease.13, 14  Potentially, GAGs and their associated protein cores can recruit

protein ligands to the cell surface and mediate the binding of ligands to their

corresponding receptors (Figure 5.1).15, 16  The remarkable ability of GAGs to regulate

various processes is only beginning to be understood at a molecular level.  Increasing

evidence suggests that GAGs encode information in the form of a ‘sulfation code.’

Namely, discrete sulfation motifs along the carbohydrate backbone carry instructions to

direct proteins and regulate complex processes such as neuronal wiring.  Deciphering this

code and the mechanisms by which it coordinates biological events is critical for

understanding diverse aspects of biology and may reveal new therapeutic opportunities.

Figure 5.1.  One proposed mechanism of GAG function at the cell
surface
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Structural diversity of glycosaminoglycans

GAGs are composed of repeating disaccharide subunits that are assembled into

linear polysaccharide chains (Figure 5.2).  These polysaccharides are often covalently

attached to proteins (proteoglycans) at the cell surface or in the extracellular matrix.

There are several major classes of GAGs, including heparan sulfate/heparin, chondroitin

sulfate, dermatan sulfate, and keratan sulfate, which differ in their core disaccharide

subunit.  Heparan sulfate (HS) and heparin contain D-glucosamine (GlcN) and either D-

glucuronic acid (GlcA) or L-iduronic acid (IdoA) subunits joined via α(1,4) and β(1,4)

linkages.  Chondroitin sulfate (CS) has N-acetylgalactosamine (GalNAc) and GlcA

subunits and alternating β(1,3) and β(1,4) linkages.

Figure 5.2. Structures of representative classes of GAGs
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The biosynthesis of HS and CS occurs in the Golgi apparatus and starts with the

generation of the tetrasaccharide linkage region, GlcA-β(1,2)-galactose-β(1,2)-galactose

β(1,4)-xylose β-1-O-Ser (Figure 5.3).  Xylose is first linked to select proteoglycan core

protein serines, followed by the addition of two galactose residues and a GlcA moiety.17,

18  The next residue added determines whether the GAG will be either HS/heparin or CS.

Addition of N-acetylglucosamine (GlcNAc) commits the biosynthesis to HS/heparin

while addition of N-acetylgalactosamine (GalNAc) gives rise to CS.  The HS/heparin

chain is elongated by the EXT1 and 2 polymerases, which add alternating GlcA and

GlcNAc residues joined by alternating α(1,4) and β(1,4) linkages.18    The CS chain,

elongated by the CS polymerases, consists of alternating units of GlcA and GalNAc

linked through β(1,3) and β(1,4) bonds.19, 20

Diverse sulfation patterns are generated in vivo through extensive modification of

the growing GAG chains (polysaccharides).10  The polysaccharides are modified in the

Golgi apparatus by sulfotransferases, deacetylases, and epimerases.2  The precise

mechanisms for generating such diverse sulfation patterns is not known.  However, it is

thought that the enzymes may form complexes in the Golgi apparatus and influence each

others’ activity.  The sulfotransferases add sulfate groups from 3’ phosphoadenosine-5’

phosphosulfate (PAPS).  There have been fifteen HS/heparin sulfotransferases identified

from mice and humans and the first sulfotransferase to modify HS/heparin chains is N-

deacetylase-N-sulfotransferase (NDST), a bifunctional enzyme which deacetylates and

subsequently sulfates the C2 amine of GlcNAc.4, 21, 22  Following N-sulfation, some of the

GlcA residues in the HS/heparin chains can be converted to IdoA by the C-5 epimerase.

Sulfation can then occur at the C2 hydroxyl of IdoA and GlcA, the C3 hydroxyl of GlcN,
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and the C6 hydroxyl of GlcN.23 -- 29  Although HS and heparin are structurally related, HS

has greater overall chemical complexity, exhibiting more varied sulfation patterns, lower

IdoA content, and longer polysaccharide chains.3, 10  Furthermore, HS is ubiquitously
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Figure 5.3.  Biosynthesis of HS/heparin and CS GAGs takes place in the Golgi apparatus.
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expressed in vivo and has a broader range of physiological targets than heparin, which is

primarily localized to specialized granule cells.

Diverse sulfation motifs are also found on CS, with sulfation occurring at each of

the free hydroxyls.30  The CS sulfotransferases can be categorized into three major

groups: 1) those which add sulfate groups to the C4 hydroxyl of GalNAc, 2) those adding

sulfate groups to the C6 hydroxyls of GalNAc, and 3) those adding sulfate groups to the

C2 hydroxyl of GlcA.4  To date, there have been seven CS sulfotransferases identified.

Sulfation of the C4 hydroxyl on GalNAc generates the CS-A pattern while sulfation of

the C6 hydroxyl on GalNAc affords the CS-C pattern, the two most common motifs

found in vivo.31  These two motifs can be further sulfated at the C6 hydroxyl of GalNAc

and the C2 hydroxyl of GlcA to generate the CS-E and CS-D pattern, respectively

(Figure 5.4).

The variety of sulfotransferases found in vivo produces multiple sulfation motifs

and patterns, generating the extraordinary amount of structural complexity observed in

HS and CS GAGs.  A simple tetrasaccharide of CS has the potential to encode 256

sulfation sequences, while an HS tetrasaccharide, which has greater complexity due to the

Figure 5.4. Structures of the most common CS sulfation motifs found in vivo
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presence of IdoA and N-sulfation, can display over 2000 sulfation motifs.  Although it

remains to be seen whether all of these possible sulfation patterns occur in vivo, a large

number of distinct sulfated structures have been identified to date.10, 30

 On a macromolecular level, HS and CS polysaccharides exhibit various chain

lengths (~ 10 to 100 disaccharide units) and clustered regions of high or low sulfation

(Figure 5.5).10  Structural studies have shown that GAGs adopt helical structures whose

pitch may vary with the associated counterion.32, 33  Moreover, the conformational

flexibility of the pyranose ring of IdoA, which exists in equilibrium between different

chair and skew-boat conformations when sulfated at the C2 position, has been postulated

to enhance the specificity of HS for its protein targets.10  Thus, the combination of

sequence, charge distribution, sugar conformation, and three-dimensional structure

endows GAGs with rich structural diversity.

Figure 5.5. Heterogeneous GAG polysaccharides exhibit areas of low and high sulfation.
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The potential sulfation code of HS and CS glycosaminoglycans

Evidence suggests that the chemical diversity of GAGs serves essential functions

in vivo. Genetic studies have established the importance of GAGs and the various

sulfotransferases that decorate the carbohydrate backbone.  For instance, conditional

knock-out mutants of the HS polymerizing enzyme EXT1 display severe CNS defects

with a complete loss of olfactory bulbs, abnormally small cerebral cortices, and an

absence of major commissural tracts.34  Similarly, reducing the levels of the CS

polymerizing enzyme in C. elegans resulted in decreased levels of cell surface CS and

caused a reversion of cytokinesis, where cells were unable to divide and eventually

died.35  Deletion of 2-O-sulfotransferase activity in worms caused cell migration defects36

while 2-O-sulfotransferase-deficient mice displayed a significant decrease in cell

proliferation in the developing cerebral cortex37.  Furthermore, mutation of the N-

deacetylase/N-sulfotransferase gene in Drosophila inhibited growth factor signaling and

disrupted embryonic development.38  Together, these studies indicate an essential

requirement for GAGs and their modifying enzymes during development.

Consistent with their essential roles, the sulfation patterns of GAGs are tightly

regulated in vivo.  Distinct sulfated forms are associated with particular tissues,

developmental stages, and disease states.  For instance, 2-O-sulfotransferase null mice

present complete failure of kidney development24, 39 while 6-O-sulfotransferase deficient

flies exhibit embryonic lethality and disruption in initial branching of the tracheal

system.40  Additionally, differentially sulfated CS motifs are localized to specific brain

regions and found along axonal growth tracts.41, 42  The sulfation patterns of HS and CS

are also altered during embryonic brain development, as are specific sulfotransferase
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activities.43, 44  Moreover, distinct HS motifs have been linked to the development of

several diseases, including the pathology of Alzheimer’s disease and cancer metastasis.12,

14

The molecular mechanisms by which GAGs contribute to these biological events

are only beginning to be understood.  However, many studies suggest that GAGs

coordinate complex processes by regulating the activities of growth factors and other

target proteins.  The four main HS proteoglycan core proteins found in the nervous

system are syndecans, glypicans, perlecan, and agrin.1  In addition to modifying the

above proteins, HS can bind a large variety of proteins found on the cell surface and in

the extracellular matrix as well as potentiate the activity of secreted proteins.

One of the most studied examples is the binding of HS to the fibroblast growth

factors (FGFs).  The FGFs comprise a large family of growth factors (23 members to

date) and have been shown to play critical roles in morphogenesis, development,

angiogenesis and wound healing.45  They activate signaling pathways by inducing the

dimerization of tyrosine kinase receptors (FGFRs).  Two distinct models have been

proposed to explain the essential contribution of HS to FGF-FGFR signaling.  A crystal

structure of the HS-FGF2-FGFR1 complex obtained by Schlessinger, Mohammadi, and

co-workers suggests that two ternary complexes of HS-FGF-FGFR come together with

the non-reducing ends of each sugar chain facing one another upon activation (Figure

5.6A).33  In contrast, the HS-FGF1-FGFR2 structure of Pellegrini, Blundell, and co-

workers suggests that a single HS chain initiates the assembly of two FGF-FGFR

complexes (Figure 5.6B).46  Although these models propose distinct roles for HS in
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coordinating receptor dimerization, both agree on the formation of an activated FGF-

FGFR-HS complex.

Importantly, the specific sulfation pattern of HS appears to be critical for binding

to FGF and assembly of the complex.  Structural analyses have shown that many of the

interactions between HS/heparin and the FGFs involve salt bridges and hydrogen-

bonding contacts between the sulfate and carboxylate groups of the oligosaccharide with

polar residues on FGF.47  Optimal van der Waals contacts and the flexibility of HS chains

may further enhance the interaction.48  Interestingly, none of the residues in the heparin-

binding region, including the polar side chains, are completely conserved throughout the

FGF family.47  This raises the intriguing possibility that variations in HS sequence or

sulfation pattern might specify the binding of particular FGFs, allowing for the selective

activation of signaling pathways.  Consistent with this view, biochemical studies have

shown that FGF-2 requires 2-O-sulfation, but not 6-O-sulfation, for HS binding, whereas

FGF-10 has the reverse preference, and FGF-1 requires both 2-O-sulfation and 6-O-

sulfation.49  Distinct sulfation preferences are also exhibited by the FGFRs; for instance,

Figure 5.6.  Crystallographic models of the FGF-FGFR-HS complex. A) The crystal structure of an
FGF2-FGFR1-heparin complex has a 2:2:2 stoichiometry with two chains enabling complex formation.
B) The crystal structure of an FGF1-FGFR2-heparin complex has a 2:2:1 stoichiometry with a single
chain initiating complex formation.
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6-O-sulfation was required for FGFR2 IIIb but not FGFR1 activation.50  Unfortunately,

the heterogeneity of biochemical HS preparations has made it difficult to examine

specific sulfation sequences.  It is anticipated that homogeneous oligosaccharide libraries

of defined sequence will provide additional insights into the importance of the sulfation

code.  Resolution of the code and precise activation mechanism will be critical for

understanding growth-factor signaling and may reveal common mechanistic themes

utilized by both HS and CS GAGs.

Recent studies have also revealed striking roles for GAGs and their sulfation

patterns during neuronal development.  Axons are guided to their target locations by

diffusible and cell-surface-bound cues that either attract or repel the growing tip of the

axon. One such cue is the cheomotropic axon guidance molecule Slit.  Slit proteins can

bind several different receptors and act as a chemorepellent signal for appropriate axon

growth.  Several studies have shown that HS is essential for Slit binding to its receptors.

Removal of HS by heparinase treatment abolished Slit binding to glypican-1 and Robo.51,

52 Absence of cell surface HS also altered Slit activity and prevented repulsion of

migrating olfactory neurons and growing olfactory bulb axons.51  Further evidence for the

importance of HS in axonal guidance comes from mutants completely lacking HS in the

developing brain.  Conditional knock-out mutants of the HS polymerizing enzyme EXT1

displayed severe CNS defects.34  Similar mutants in C. elegans also display severe

developmental defects.53

In related studies, Bülow and Hobert used genetic approaches to probe the role of

HS sulfation in axon guidance.13  Abolishing the activity of three HS modifying enzymes,

C-5 epimerase, 2-O-sulfotransferase, and 6-O-sulfotransferase, in C. elegans revealed



109

that particular neuron types require specific HS motifs for normal growth.  Some axons

required all three modifying enzymes, others required either C-5 epimerase or 2-O-

sulfotransferase activity, and still other neuron types did not require any of the enzymes.

These studies support the idea that distinct modifications to HS structure are essential for

neuronal development and may encode instructions that guide neurons to their proper

targets in vivo.

Along with HS, CS has been shown to be an important factor for neuronal

development and axon guidance.  Reducing levels of the CS polymerizing enzyme in C.

elegans resulted in decreased levels of cell surface CS and caused a reversion of

cytokinesis, where cells were unable to divide and eventually died.35  Treatment of

normal embryonic cells with chondroitinase ABC also caused incomplete cytokinesis,

thus indicating a crucial role for CS in embryonic development.54

In the central nervous system, CS mainly acts as a barrier-forming molecule and

there are many examples of such boundaries to growing axons. In the notochord, there

are high levels of CS preventing axon extension.55  Removal of CS with chondroitinase

leads to misguided growth of embryonic motor nerves and dorsal root ganglion axons.  In

the optic pathway, CS prevents retinal axons from growing to the outer parts of the retina

and guides them directly towards the optic nerve.56   Retinal axons will grow randomly,

however, upon treatment with chondroitinase.  High levels of CS are also found in glial

scars formed after injury to the CNS and are one of the main obstructions to axon

regeneration.  As detailed in the above studies, removal of CS abolishes the axon-growth

barrier and thus can be a useful strategy to treat axon growth inhibition following CNS

injury in vivo.  Indeed, several studies have used chondroitinase treatment to regenerate
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growth of dopaminergic neurons following nigrostriatal tract lesion as well as regrowth

of sensory and motor axons after dorsal column lesions.57, 58

Despite the studies demonstrating inhibitory roles of CS on axon growth, there are

contrasting studies showing stimulatory roles of CS on neurite growth.  CS molecules

with particular oversulfated structures (E and D motifs) enhance the outgrowth of

hippocampal neurons as well as enable binding of particular growth-promoting receptors

to their ligands (PTPζ  or phosphacan to midkine and pleitrophin).59 -- 62  CS

polysaccharides enriched in the CS-C and CS-D motif have also been shown to promote

the growth of mesencephalic dopaminergic neurons.59, 63, 64  Moreover, CS has been

associated with axonal growth tracts in the developing brain and thalamic neurons.41, 65, 66

In all, the above studies underscore the importance of GAG structure in regulating

critical biological processes. The molecular diversity of GAGs may provide a powerful

means to influence complex signaling pathways in vivo.  The spatial and temporal

regulation of HS and CS modifications could facilitate or inhibit ligand-receptor

interactions in a highly localized manner.  With the considerable diversity that exists in

HS and CS chains, the sulfation code would represent an elegant means of molecular

level control.  It will be exciting to discover the extent to which Nature utilizes this

potential.

Deciphering the sulfation code using chemistry

Deciphering the sulfation code will require the development of new strategies for

manipulating and evaluating specific GAG structures.  At present, there are no methods

for the rapid identification of biologically active sulfation motifs.  Genetic and



111

biochemical approaches have established critical roles for GAGs in particular biological

contexts.  However, deletion of a sulfotransferase gene leads to global changes

throughout the carbohydrate chain, making it difficult to pinpoint the impact of a specific

structural motif.  GAGs have also been isolated from natural sources, but their structural

complexity and heterogeneity are a significant limitation.  The presence of multiple

sulfation motifs in biochemical preparations complicates efforts to attribute a biological

function to a specific sulfation motif.  Moreover, studies with purified natural GAGs are

biased toward abundant, readily isolable sequences.  As such, it can be difficult to study

physiologically important sulfation patterns that are present in low cellular abundance.

Chemical approaches provide a powerful solution to these challenges.  Virtually

any desired GAG structure can be generated using synthetic chemistry, with exquisite

control over stereochemistry, length, and pattern of sulfation.  Access to homogeneous,

well-characterized structures facilitates the identification of biologically active sequences

and enables systematic investigations into structure-activity relationships.  As such, our

research combines synthetic chemistry with neurobiology to enable the elucidation of the

sulfation code of CS in the brain.  We seek to generate the first synthetic library of well-

defined CS oligosaccharides containing various sulfation sequences in order to evaluate

and assign specific functions to distinct CS motifs.  The ability to obtain defined GAG

structures and related analogues should also accelerate investigations into the therapeutic

potential of GAGs, in areas such as cancer biology, neurobiology, and virology.
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Chapter 6: Investigations into the Sulfation Code of Chondroitin Sulfate

Glycosaminoglycans ∗†

Background

Chondroitin sulfate glycosaminoglycans are sulfated polysaccharides implicated

in cell division, neuronal development, and spinal cord injury.1 -- 3 While considerable

attention has been focused on heparan sulfate (HS) glycosaminoglycans, much less is

known about the chondroitin sulfate (CS) class.  As with all glycosaminoglycans

(GAGs), the complexity and heterogeneity of CS has hampered efforts to understand its

precise biological roles.  For instance, CS has been shown to prevent the growth of

axons; yet it is also found in developing, growth-permissive regions.1, 4 Synthetic access

to CS molecules of defined length and sulfation pattern, in combination with biological

studies, should enable a systematic examination of structure-activity relationships.

Although GAGs exist as a heterogeneous mix in nature, several studies have

shown that specific sulfation sequences direct the activity of both HS and

CS.  In fact, it is now thought that GAG activity is dictated by a sulfation code where

distinct sulfation patterns are spatially and temporally regulated and direct the biological

activity of HS and CS GAGs.  For example, mutational deletion of HS 2-O -

sulfotransferase activity disrupted development of both the kidney and cerebral cortex,5 -- 7

                                                  
∗ Synthesis of all of the chondroitin sulfate oligosaccharides was carried out by Dr. Sarah E. Tully, Dr.
Sherry Tsai, Dr. Ross Mabon, and Dr. Manish Rawat, former graduate students and postdoctoral scholars in
the Hsieh-Wilson laboratory.  Biological studies using dopaminergic neurons were carried out by Naoki
Sotogaku, a graduate student in Akinori Nishi’s laboratory in the Department of Pharmacology at the
Kurume University School of Medicine, Kurume, Fukuoka, Japan.

† Portions of this chapter were taken from S. E. Tully et al. (2004) J. Am. Chem. Soc. 126, 7736 – 7737 and
C. I. Gama et al. (2006) Nat. Chem. Biol. 2, 467 – 473.
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while 6-O-sulfotransferase activity was necessary for muscle differentiation and proper

tracheal development.8, 9  Growth factors also display preferential binding to distinct

sulfation sequences; for instance, FGF-2 requires 2-O-sulfation but not 6-O-sulfation of

HS and both pleiotrophin and midkine were shown to preferentially bind CS enriched in

the disulfated CS-E motif.10, 11  Distinct sulfation patterns of CS have also been shown to

influence neuronal growth, as both a stimulatory and inhibitory cue.1, 12, 13

Advancing a molecular-level understanding of GAGs will require new tools for

studying their structure-function relationships.  Although several strategies have been

developed, there are currently no methods to systematically explore the role of specific

sulfation sequences.  For instance, genetic approaches that target a particular

sulfotransferase gene perturb many sulfation patterns throughout the polysaccharide

chain and therefore cannot be used to study the impact of a single structural motif.14, 15

Biochemical methods afford a mixture of heterogeneously sulfated compounds of poorly

defined linear sequence,16 thereby complicating efforts to relate a biological function to a

particular sulfation sequence.

We have developed a chemical approach to evaluate the structure-activity

relationship of CS as it effects neuronal growth.  Through the synthesis of

oligosaccharides of defined length and sulfation pattern, we have demonstrated that the

CS-E sulfation sequence is a stimulatory motif that promotes the growth of hippocampal,

dorsal root ganglion, and dopaminergic neurons.
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CS-E sulfated tetrasaccharide enhances neurite outgrowth

CS polysaccharides have been shown to both stimulate and attenuate the growth

of cultured neurons.17 -- 19  Notably, the molecules used in those studies were ~ 200

saccharides in length, poorly defined, and heterogeneously sulfated, features that might

account for the contradictory observations.  Therefore, we sought to investigate the

biological properties of CS-E and establish the minimal structural determinants needed

for activity.  Toward this end, di- and tetrasaccharides bearing the CS-E sulfation pattern

were first synthesized by Dr. Sarah E. Tully, Dr. Sherry Tsai, Dr. Ross Mabon, and Dr.

Manish Rawat (Figure 6.1).20

To explore the ability of compounds 6 – 8 to modulate neuronal growth, we

cultured primary hippocampal neurons with or without each compound.  After a 48 h

treatment, the neurons were fixed, immunostained with anti-tau antibodies, and examined

Figure 6.1. Structures of the initial synthetic CS oligosaccharides
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by fluorescence microscopy.  Sulfated tetrasaccharide 8 exhibited striking effects on

neuronal morphology and growth (Figure 6.2).20  The growth of the major neurite

extension was dramatically stimulated by 39.3 ±  3.6% relative to the untreated,

polyornithine control.  In contrast, sulfated disaccharide 6 and unsulfated tetrasaccharide

7 had no significant effect on neuronal outgrowth.

These results indicate that a tetrasaccharide represents a minimum structural motif

with biological activity and that sulfation is necessary for function.  Moreover, these

studies are the first, direct investigations into the structure-activity relationships of CS

Figure 6.2.  CS-E tetrasaccharide 8  stimulates the outgrowth of hippocampal neurons. A)
Immunofluorescence images of neurons 48 h after treatment with the indicated compound. B) Statistical
analysis of neurite length.  P value is relative to poly-ornithine control.  Scale bars represent 45 µm.
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using homogeneous, synthetic molecules.  The ability of CS small molecules to

recapitulate the activity of larger, natural polysaccharides provides a new chemical

approach to understand and manipulate neuronal growth and regeneration.

The CS-E sulfation pattern is a stimulatory motif that enhances neurite outgrowth

Once we established that a tetrasaccharide was a minimum structural determinant

displaying biological activity, we proceeded to evaluate the sulfation code hypothesis for

CS function.  Several tetrasaccharides representing three important subclasses of CS

found in vivo were then synthesized by Dr. Sarah E. Tully, Dr. Ross Mabon, and Dr.

Manish Rawat (Figure 6.3).21  Tetrasulfated molecule 8 contains the CS-E sulfation

sequence.  Disulfated molecules 9 and 10 represent the most abundant sulfation patterns

found in vivo, CS-A and CS-C, respectively.22  For comparison, we also generated two

unnatural CS molecules, tetrasulfated molecule 11, denoted CS-R, and a dimer of CS-E

disaccharides (molecule 12).  These two molecules have not yet been isolated from

natural sources, however they represent important controls because they possess the same

overall negative charge as CS-E tetrasaccharide 8, unlike molecules 9 and 10, which are

only disulfated, not tetrasulfated.  Moreover, these control molecules display the negative

charge in a different manner and will further elucidate whether the specific placement of

the sulfate groups, and not just the overall charge, is crucial for biological activity of the

CS molecules.
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To compare the neuritogenic activity of the differentially sulfated

tetrasaccharides, we cultured hippocampal neurons on coverslips coated with

polyornithine and each compound.  After 48 h, the neurons were fixed, immunostained

with antibodies to tubulin, and then examined by fluorescence microscopy.  A specific

sulfation pattern was required for the growth-promoting activity of CS.  As shown in

Figure 6.4, the CS-E tetrasaccharide was the only molecule that stimulated neurite

outgrowth.21  Following quantitation of neuronal growth and comparison to untreated

controls, we found that the CS-E tetrasaccharide stimulated neurite outgrowth by 48.6 ±

2.3%, while tetrasaccharides representing CS-A and CS-C motifs had no appreciable

activity (Figure 6.4).  Importantly, CS-R and the dimer had no effect on neurite

outgrowth, despite having the same overall negative charge as CS-E.  These results are

consistent with previous studies reporting that CS polysaccharides enriched in the CS-E

sulfation pattern posses neuritogenic activity.16  However, it is important to note that in
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those studies the CS polysaccharides used were heterogeneous and contain variations in

size and, significantly, in the sulfation patterns present.  It is therefore possible that other

sulfation patterns present could have contributed to the reported effects.  Our results

further extend those findings and establish conclusively for the first time that it is the

precise placement and orientation of the sulfate groups that determines the biological

activity of CS.  Moreover, our studies indicate that the CS-E sulfation motif is

responsible for the growth-promoting effects observed.

We next investigated whether the effects of the CS-E motif are unique to specific

cell types.  Paradoxically, CS has been reported both to stimulate and inhibit neuronal

Figure 6.4.  The sulfation pattern directs the neuritogenic activity of CS. A) Representative
immunofluorescence images of neurons cultured on a substratum of polyornithine and the synthetic
molecules. B) Quantification of neurite length, expressed as percentage growth relative to polyornithine
control. *P < 0.0001, relative to polyornithine control.
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growth, depending on the cellular context. For example, CS proteoglycans can repel

migrating neurons or extending axons during brain development or after injury.1, 13

However, CS staining was also found to coincide with developing axon pathways, and

tissues expressing CS do not always exclude axon entry.23  To examine whether sulfation

is important for the growth of other neuron types, we cultured dorsal root ganglion

(DRG) neurons from rat embryos on a substratum of each tetrasaccharide.  DRG neurons

are a good model for investigations into the effects of CS on spinal cord neuron growth.

We found that the CS-E tetrasaccharide had a similar activity toward both DRG and

hippocampal neurons, where the outgrowth of DRG neurons was stimulated by 32.5 ±

2.9% (Figure 6.5A).21  In contrast, the CS-C, CS-A, CS-R, and dimer motifs showed no

appreciable activity.  In a similar manner, our collaborator Naoki Sotogaku found that

dopaminergic neurons were stimulated by the CS-E tetrasaccharide but not the other

sulfation patterns (Figure 6.5B).21  Dopaminergic neurons are derived from the

mesencephalon and are the neurons affected in Parkinson’s disease, schizophrenia and

attention deficit/hyperactivity disorder.24  The ability of the CS-E sulfation motif to elicit

a response in various cell types suggests that protein receptors, which can be shared by

many cell types, are likely present to engage the carbohydrate.  These results indicate that

the molecular structure of CS GAGs is critical for the function of CS, largely independent

of neuron type.
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Discussion

Together, our studies provide compelling support for the existence of a sulfation

code, whereby the precise position of sulfate groups along the carbohydrate backbone

permits GAGs to encode information in a sequence-specific manner.  Using well-defined

oligosaccharides, we have directly shown that distinct CS sulfation sequences stimulate

neuronal outgrowth.  Moreover, the activity of CS-E relative to other CS subclasses, CS-

R and the dimer, as well as the preservation of activity across different cell types,

suggests the importance of specific molecular interactions rather than nonspecific,

electrostatic effects.  HS has also been proposed to operate through a sulfation code,15 and

the concept of a sulfation code finds precedent in the sequence-specific manner in which

other biopolymers (DNA, RNA and proteins) interact with their molecular targets.

According to the sulfation code hypothesis, chemical modifications to the

polysaccharide backbone may be introduced in a time- or region-specific manner, such as

during development or in response to injury.  Precise modifications to GAGs could

facilitate or inhibit ligand-receptor interactions in a highly localized fashion, providing an

Figure 6.5. The CS-E sulfation motif stimulates the outgrowth of DRG (A) and dopaminergic neurons
(B). Neurons were cultured for 2 – 5 days on coverslips coated with polyornithine and the
tetrasaccharides at the indicated concentrations. Neurite length is expressed as percentage of growth
relative to polyornithine control. *P < 0.0001, relative to polyornithine control.
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exquisite means for regulatory control.  Specific sulfation motifs could control the

diffusion and efficient signaling of growth factors, establishing concentration gradients

and boundaries.  Indeed, support for this view can be seen in Drosophila melanogaster

mutants where HS biosynthesis was shown to be essential for Hedgehog signaling during

embryonic patterning.25  Furthermore, specific CS sulfation motifs are upregulated during

neuronal development and are enriched along axon growth tracts.26

The ability of the CS-E tetrasaccharide to stimulate neuronal outgrowth of various

cell types suggests that CS GAGs are involved in directing neuronal growth during

nervous system development. Indeed, our findings support previous studies implicating

the CS-E motif in the growth and development of neurons.  For instance, CS-E is found

on the protein appican, an isoform of the amyloid precursor protein that exhibits

neurotrophic activity.27  Moreover, the CS-E motif has been shown to be enriched in the

developing brain and is crucial for axonal guidance of growing neurons.13, 22, 23, 28  With

the finding that distinct sulfation patterns display biological activity, it is now necessary

to examine how these motifs elicit such responses in neurons.  As such, we proceeded to

investigate the mechanism by which the CS-E motif induces neuronal outgrowth and to

examine which proteins are being recruited and activated by the carbohydrate.
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Experimental Procedures for Chapter 6

Buffers and Reagents:

Chemicals and molecular biology reagents were purchased from Fisher (Fairlawn, NJ)

unless stated otherwise.  Cell culture media was purchased from Gibco BRL (Grand

Island, NY).  German glass coverslips were purchased from Carolina Biologicals

(Burlington, NC).

Neuronal Cultures:

Hippocampal neuronal cultures were prepared from embryonic rats as described in

Chapter 2.  DRG cultures were prepared from the spinal cord of E18 embryos of

Sprague-Dawley rats.  We dissected ganglia in Calcium- and Magnesium-Free Hank’s

Balanced Salt Solution (CMF-HBSS; Gibco), digested them with 0.25% trypsin (Gibco)

for 20 min at 37 °C and dissociated the resulting fragments in culture medium consisting

of DMEM-F12, 10% horse serum, N2 supplement, and nerve growth factor (50 ng/mL).

We plated DRG neurons at 100 cells/mm2 on coverslips coated with polyornithine and

the tetrasaccharides.

Preparation of Coverslips:

German glass coverslips (15 mm) were first sterilized by successive washes in ethanol

and water.  Specifically, coverslips were dropped one at a time into 95% ethanol, swirled

around, then washed twice with double-distilled H2O.  A final rinse with 100% ethanol

was added before allowing the coverslips to dry in the sterile tissue culture hood.

Coverslips were then coated as described by Clement et al.12  Briefly: coverslips were
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precoated with 0.015 mg/mL poly-DL-ornithine (in 10 mM Borate buffer pH 8.1; Sigma)

for 1 h at 37 °C/ 5% CO2, washed three times with double-distilled H2O, and coated with

0.05 to 0.5 mg/mL of compounds 6 – 11 in PBS (100 µL) overnight at 37 °C/ 5% CO2.

The coverslips were then washed three times with PBS and flooded with culture media

until neurons were ready to be plated.  Notably, the use of adhered compounds to glass

coverslips has been reported to simulate the extracellular matrix, and the procedure by

Clement et al. was used previously to implicate heterogeneous polysaccharides

containing the CS-E motif in neuronal growth.

Calibration of CS Molecules:

The relative concentrations of the CS oligosaccharides were calibrated to one another

using the carbazole assay for uronic acid residues.29  Briefly, the acid borate reagent (1.5

mL of a solution of 0.80 g sodium tetraborate, 16.6 mL H2O, and 83.3 mL sulfuric acid)

was added to glass vials.  The oligosaccharides were added (50 µL of a 10 mg/mL stock

in H2O) and the solution placed in a boiling H2O bath for 10 min.  Following addition of

the carbazole reagent (50 µL of 0.1% w/v carbazole in 100% ethanol), the solution was

boiled for 15 min.  The absorbance was read at 530 nm and compared to a D-

glucuronolactone standard in H2O.

Immunocytochemistry of Neuronal Cultures:

After 48 h in culture, neurons on coverslips were fixed and treated for immunostaining as

described in Chapter 2.  Neurons were immunostained with anti-tau antibodies (rabbit
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polyclonal, 1:600; Sigma) or anti-β-tubulin III antibodies (mouse monoclonal, 1:500;

Sigma) and were examined by confocal fluorescence microscopy.

Confocal Fluorescence Microscopy:

All cells were imaged on a Zeiss Axiovert 100M inverted confocal laser microscope in

the Biological Imaging Center in the Beckman Institute at Caltech.  The images were

captured with LSM Pascal software using a 40X plan-neofluar oil objective.  Cells were

excited with 488 nm light.

Morphometric analysis:

For quantitative analysis, 50 cells were analyzed per coverslip and each treatment was

performed in triplicate.  The neurite length is expressed as the total length of the neurite

from the perikarya, and only cells with neurites longer than one cell body diameter were

counted, as per standard protocol.  The length of the longest neurite was measured using

NIH Image 1.62 software.  The mean neurite lengths were compared among the different

substrate conditions with the ANOVA test followed by the Scheffe test using the

statistical analysis program StatView (SAS Institute Inc.) and Kaleidograph (Synergy

Software).
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Chapter 7: Elucidating the Mechanism of CS-E Mediated Neuronal Outgrowth ∗†

Background

Glycosaminoglycans (GAGs) have an inherent capacity to encode functional

information that rivals DNA, RNA, and proteins.  Specifically, these polysaccharides

display diverse patterns of sulfation that are tightly regulated in vivo.1, 2  Over the past

several decades, genetic and biochemical studies have established the importance of

GAGs in regulating many physiological processes, including morphogenesis and

development, viral invasion, cancer metastasis and spinal cord injury.3 -- 6  However, a key

unresolved question is whether GAGs utilize specific sulfation sequences to modulate

biological processes.

Chondroitin sulfate (CS) GAGs have been shown to play critical roles in various

physiological processes, ranging from cell division to spinal cord injury.6, 7  The

complexity of these polysaccharides has hindered efforts to relate structure to function

and to generate defined molecular tools for manipulating CS activity.  Comprising 40 –

200 sulfated disaccharide units, CS is thought to contain “blocks” of high and low

sulfation, with highly sulfated regions serving as binding sites for growth factors,

cytokines, and other proteins.8 -- 11  For instance, several growth factors, including

midkine, pleiotrophin, and FGF-16, exhibit preferential binding to highly sulfated CS

                                                  
∗ Synthesis of all of the chondroitin sulfate oligosaccharides was carried out by Dr. Sarah E. Tully, Dr.
Sherry Tsai, Dr. Ross Mabon, and Dr. Manish Rawat, former graduate students and postdoctoral scholars in
the Hsieh-Wilson laboratory.  The CS-E glycopolymers were synthesized by Dr. Manish Rawat.
Computational modeling studies were performed by Peter M. Clark, a graduate student in the Hsieh-Wilson
laboratory.

† Portions of this chapter were taken from C. I. Gama et al. (2006) Nat. Chem. Biol. 2, 467 – 473 and M.
Rawat et al. (2008) J. Am. Chem. Soc. 130, 2959 – 2961.
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polysaccharides containing either CS-E or CS-D sulfation patterns.12, 13  Furthermore, the

highly sulfated CS-E polysaccharide has been shown to antagonize the activity of the

proinflammatory cytokine TNFα  as well as activate phospholipase C signaling in

dopaminergic neurons.14, 15

Although GAGs contribute to diverse physiological processes, an understanding

of their molecular mechanisms has been hampered by the inability to access

homogeneous GAG structures.  As described in Chapter 6, we assembled well-defined

CS oligosaccharides with sulfate groups installed at precise positions along the

carbohydrate backbone.  Using these defined structures, we demonstrated that distinct

sulfation patterns modulate neuronal growth.  Specifically, we have shown that the CS-E

motif enhances neuronal outgrowth of hippocampal, dorsal root ganglion, and

dopaminergic neurons.9, 16  Here, we extend these studies to examine how specific

sulfation motifs function as molecular recognition elements for growth factors and

investigate the mechanism by which the CS-E sulfation pattern stimulates neuronal

outgrowth.

The CS-E sulfation motif regulates neuronal outgrowth

CS GAGs have been shown to influence neuronal growth as both a stimulatory

and inhibitory cue.6, 17, 18  These conflicting effects are most likely due to the

heterogeneity of the polysaccharides employed in these studies.  However, it is also

possible that inconsistent experimental designs and the examination of differing cell

types may contribute to the opposing effects observed.  Our initial studies demonstrated

that the CS-E motif specifically stimulates neuronal growth across various neuron types
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(Chapter 6).  In an attempt to resolve the paradoxical nature of CS, we used CS-E-

enriched polysaccharides to modulate the growth of hippocampal neurons.  First, we

grew hippocampal neurons on a substratum of polyornithine in the presence or absence of

CS-E polysaccharide.  Consistent with previous studies,19 we saw that neuronal

outgrowth was dramatically stimulated by treatment with CS-E polysaccharide (Figure

7.1).  Importantly, the enhanced neuronal outgrowth was specific to the polysaccharide,

as treatment with chondroitinase ABC, an enzyme that digests CS, abolished the

stimulatory effects observed.  These results suggest that CS-E polysaccharide present on

the surface is presumably interacting with growth factors in the culture media and thus

enabling activation of neuronal growth pathways.

To systematically examine the mechanism of CS-E-mediated neuronal growth, we

then presented the polysaccharide to the cells in solution.  Interestingly, soluble CS-E

polysaccharide caused dramatic inhibition of neurite outgrowth (Figure 7.2).  Although

these results appear contradictory to the substratum effects of CS-E, they are consistent

with the model that CS-E, present on cell-surface proteoglycans or coated on a

substratum, recruits growth factors to the cell surface, thereby stimulating downstream

A B C

Polyornithine CS-E polysaccharide
CS-E polysaccharide 
+ Chondroitinase ABC

Figure 7.1.  A substratum of CS-E polysaccharide stimulates the outgrowth of hippocampal neurons.
A) Neurons grown on polyornithine-coated coverslips. B) Neurons grown on coverslips coated with
CS-E polysaccharide (16 µg/mL) have longer neurites than control neurons. C) Neurons grown on
coverslips coated with CS-E polysaccharide (16 µg/mL) previously digested with chondroitinase ABC
(10 mU/mL) do not have longer neurites and are similar to control neurons.
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signaling pathways involved in neuronal growth.9, 15  By adding CS-E in solution to

neurons, growth factors are presumably sequestered away from the cell surface, resulting

in neurite inhibition.

Although we observed such striking effects on neuronal growth using CS-E-

enriched polysaccharides, it is possible that there are other sulfation sequences present in

the polysaccaharide that may be contributing to the observed effects.  Therefore, we

proceeded to develop CS glycopolymers that would retain key properties of CS

polysaccharides but would be of a defined, homogeneous sulfation sequence.  Dr. Manish

Rawat developed a new methodology to generate various glycopolymers made up of CS-

E disaccharide, CS-E tetrasaccharide, and unsulfated tetrasaccharide building blocks

(Figure 7.3).20

We evaluated the biological activity of the glycopolymers by measuring their

ability to modulate the outgrowth of hippocampal neurons.  Attempts to evaluate the

activity of the glycopolymers in a substratum-based system proved to be inconclusive;

when the glycopolymers were coated on coverslips neither stimulatory nor inhibitory

effects were observed in this system.  Therefore, we proceeded to evaluate the

A B

Polyornithine CS-E polysaccharide

Figure 7.2. CS-E polysaccharide added in solution inhibits the outgrowth of hippocampal neurons. A)
Neurons grown on polyornithine-coated coverslips. B) Neurons grown on coverslips coated with
polyornithine and treated CS-E polysaccharide (0.1 µg/mL) added in solution have shorter neurites than
control neurons.



138

glycopolymers using a solution-based assay where neurons were cultured on

polyornithine coated coverslips and each glycopolymer was added in solution.  Solution

studies were chosen to evaluate the glycopolymers in order to study the importance of

multivalency and macromolecular structure of CS in directing its activity.  Furthermore,

adding the glycopolymers in solution avoids any potential confound multivalency effects

naturally imparted by immobilization of the compounds on surfaces.

Remarkably, CS-E disaccharide glycopolymer 13 mimicked the activity of the

natural polysaccharide (Figure 7.4).  While the isolated CS-E disaccharide was

insufficient for biological activity, incorporation of the disaccharide into a polymeric

framework endowed it with the ability to inhibit neuronal growth.  Moreover, the potency

of the glycopolymers was valence-dependent: polymers with 25 disaccharide units
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exhibited moderate activity (40.9 ± 5.5% inhibition), while those with 80 disaccharide

units showed significantly enhanced activity (86.0 ± 5.8% inhibition) at the same

glucuronic acid concentration.  These findings highlight the importance of multivalency

in modulating the activity of CS.  In addition, the unsulfated glycopolymer 14 had little

effect on neurite outgrowth (5.9 ± 5.6% inhibition), confirming earlier observations that

sulfation is a prerequisite for activity16 and highlighting the ability of these

glycopolymers to recapitulate features of natural CS polysaccharides.
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Figure 7.4.  CS-E glycopolymers inhibit the outgrowth of hippocampal neurons. A)
Immunofluorescence images of neurons 48 h after treatment with the indicated compound. B) Statistical
analysis of neurite length.  P values are relative to the untreated neurons. DP, degree of polymerization,
equals the number of repeating subunits.
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We have previously shown that a tetrasaccharide represents a minimum functional

domain for protein recognition and neuronal growth-promoting activity when adhered to

a substratum.9, 14, 16  In this solution-based assay, a monovalent tetrasaccharide at 0.5

µg/mL glucuronic acid concentration had minimal activity (Figure 7.5).  In contrast, CS-

E tetrasaccharide glycopolymer 15 at the same glucuronic acid concentration exhibited

maximal activity, inducing neurite inhibition to the same extent as the natural

polysaccharide (Figure 7.4).

To compare the relative potencies of glycopolymer 15  and the natural

polysaccharide, we measured their inhibition values at various concentrations (Figure

7.6).  We were excited to find that the inhibitory potency of 15 was comparable to that of

the natural polysaccharide (IC50 values of 1.3 ± 0.1 and 1.2 ± 0.1 nM, respectively),

despite considerable changes to the macromolecular structure.  Given the challenges

inherent in the synthesis of large polysaccharides, our approach greatly simplifies the

synthesis of complex glycosaminoglycans, providing synthetically accessible, bioactive

structures of programmable sulfation sequence.  The ability to control the sulfation

pattern within the glycopolymer is significant as it should allow for the generation of CS

A B C

Polyornithine CS-E tetrasaccharide CS-E tetrasaccharide polymer

Figure 7.5.  CS-E tetrasaccharide glycopolymer inhibits hippocampal neurite outgrowth.  A) Untreated
neurons.  B) Neurons treated with CS-E tetrasaccharide (0.5 µg/mL).  C) Neurons treated with CS-E
tetrasaccharide polymer 15.  Monovalent CS-E tetrasaccharide displays no inhibitory activity whereas
CS-E tetra glycopolymer completely inhibits neurite outgrowth.
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type-specific polymers (e.g. CS-E, CS-A, CS-C) with distinct functions.  We anticipate

that these glycopolymers will be powerful tools for further exploring how the

macromolecular structure of CS directs its activity and for manipulating the functions of

CS in vivo.  In all, these studies demonstrate that the CS-E motif is particularly associated

with modulating growth in the brain.  As such, we proceeded to investigate the

mechanism of CS-E stimulated outgrowth and determine which growth factors are

specifically involved and interacting with the CS-E motif.

Molecular dynamic simulations of CS oligosaccharides reveal distinct structures for

each sulfation sequence

With the ability to access well-defined CS sequences, we embarked on systematic

investigations into the role of sulfation.  HS and CS GAGs play critical roles in cell

growth and development by regulating various growth factors, including FGFs,

Hedgehog, Wingless, and semaphorins.3, 18, 21  Peter M. Clark first investigated

computationally whether subtle variations in the sulfation pattern would favor distinct
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Figure 7.6.  Comparison of the inhibitory potencies of CS glycopolymer 15 and the natural
polysaccharide at various concentrations.  IC50 values are based on the molar concentration of
compound required to inhibit neurite outgrowth by 50% relative to untreated neurons.
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structural conformations of glycosaminoglycans.  He used the Dreiding force field22

(modified slightly using quantum mechanics) with charges from the charge equilibrium23

(QEq) method and carried out Boltzmann jump simulations24 on tetrasaccharides 8 – 11

to obtain the lowest-energy CS conformations.  These conformations were then used to

perform molecular dynamics simulations24 in explicit water to predict the optimum

conformation in solution.  Interestingly, we found that each CS tetrasaccharide favors a

distinct set of torsion angles and presents a unique electrostatic and van der Waals surface

for interaction with proteins (Figure 7.7).9  Whereas the negatively charged sulfate and

carboxylate groups on CS-C point toward either the top or bottom of the face of the

molecule, as oriented in Figure 7.7, the same charges on CS-A point in several different

directions.  Similarly, although CS-E and CS-R have the same number of sulfate groups,

the relative orientation of these groups along the carbohydrate backbone leads to

distinctly different predicted solution structures.  Whereas the CS-R tetrasaccharide has

the sulfate groups distributed along several faces of the molecule, the CS-E tetrasccharide

presents all four sulfate groups along a single face.  This architecture may position the

sulfate groups to interact with basic amino acid residues characteristic of GAG binding

sites found on proteins.4
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Carbohydrate microarrays reveal distinctive binding of CS sulfation motifs to

neuronal growth factors

To explore the functional consequences of sulfation on growth factor binding, we

generated carbohydrate microarrays using the CS tetrasaccharides. Carbohydrate

microarrays have proven to be powerful tools for investigating the interactions of various

glycans with proteins, viruses, and bacteria.25 -- 27  However they have not been

extensively exploited for detailed structure-function analyses of GAGs, which pose the

unique challenge of presenting carbohydrate structures closely related in stereochemistry

and sulfation sequence.  Dr. Sarah E. Tully developed and validated the microarray

methodology and proceeded to investigate the effects of sulfation on the binding of CS to

the growth factor midkine (Figure 7.8).9  Midkine participates in the development and

Figure 7.7.  Each sulfation pattern exhibits a distinct structural conformation.  A) Average structures
from molecular dynamics simulations of the CS tetrasaccharides in water. B) Chemical structures of the
CS tetrasaccharides.  The sulfation pattern influences the structure of CS, allowing it to present distinct
electrosatic and van der Waals surfaces to proteins.  The CS ball-and-stick figures were created in
PyMol and the electrostatic maps were created using GRASP.
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repair of neural and other tissues and binds with nanomolar affinity to heterogeneous

polysaccharides enriched in the CS-E motif.28, 29  We observed selective binding of

midkine to the CS-E tetrasaccharide at CS concentrations within the physiological

range.30  Notably, the midkine interaction was highly sensitive to the position of the

sulfate groups along the carbohydrate backbone (Figure 7.8B).  The interaction of

midkine with CS-A and CS-C was significantly weaker than that with CS-E.  Midkine

did not interact as strongly with CS-R as with CS-E, indicating that the midkine-CS

association requires a specific arrangement of sulfate groups and is not dictated by

nonspecific, electrostatic interactions.
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Figure 7.8.  A specific sulfation pattern promotes the interaction of CS with neuronal growth factors.
A) Overall scheme to detect CS-protein interactions using carbohydrate microarrays. The CS-E
tetrasaccharide interacts with the growth factors midkine B) and BDNF C).  D) None of the CS
tetrasaccharides interact with FGF-1.  *P < 0.0001, relative to CS-E tetrasaccharide for a given
concentration. **P ≤ 0.001, relative to CS-E tetrasaccharide for a given concentration.
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Access to defined sulfation sequences coupled with microarray technologies

provides a powerful, rapid means to identify novel GAG-protein interactions and to gain

insight into the functions of specific sulfation sequences.  In addition to midkine, we

discovered that brain-derived neurotrophic factor (BDNF) selectively binds to the CS-E

sulfation sequence.9  The neurotrophin BDNF controls many aspects of mammalian

nervous system development and contributes to synaptic plasticity, neurotransmission

and neurodegenerative disease.31  We found that BDNF exhibited a 20-fold preference for

the CS-E motif relative to CS-C, CS-A, and CS-R at 5 µM CS concentration, which

approximates the estimated concentration of CS-E present in physiological samples

(Figure 7.8C).29, 30, 32 As a control, we demonstrated that none of the tetrasaccharides

interacted strongly with FGF-1 (Figure 7.8D), consistent with studies indicating that

FGF-1 is regulated by HS but not CS GAGs.19, 21

Midkine and BDNF signaling pathways are activated by CS-E interaction

The ability of the CS-E sulfation sequence to interact with growth factors and

modulate neuronal growth suggests that CS may recruit specific growth factors to the cell

surface, thereby activating downstream signaling pathways.  To investigate this potential

mechanism, we cultured hippocampal neurons on a CS-E tetrasaccharide or polyornithine

substratum in the presence or absence of antibodies selective for midkine or BDNF.33, 34

The antibodies were expected to block the interaction of the endogenous growth factors

with the CS-E substratum and thereby abolish the neuritogenic effects.  The effective

concentration of each antibody was first determined by treating neurons grown on

polyornithine with varying antibody concentrations from 0.5 µg/mL to 20 µg/mL.  Only
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those concentrations of antibodies that did not affect neuronal growth were then used in

the presence of the CS-E tetrasaccharide.  The effective concentration of each antibody

was determined to be the highest concentration of antibody that elicited the greatest effect

in the presence of the tetrasaccharide without eliciting any effect in untreated neurons.

Antibodies to midkine or BDNF had no effect on neurite outgrowth in the absence of the

tetrasaccharide (Figure 7.9A and 7.10).9  Importantly, addition of either antibody blocked

the neurite outgrowth induced by CS-E.  In contrast, neither a control antibody selective

for FGF-1 nor class-matched control antibodies were able to abolish the growth-

promoting effects of CS-E (Figure 7.9A and 7.10).

To further confirm the activation of midkine and BDNF signaling pathways by

CS-E, we used antibodies that recognize the extracellular domains of the cell surface

receptors protein tyrosine phosphatase ζ (PTPζ) and tyrosine kinase B receptor (TrkB).

Figure 7.9.  The CS-E sulfation motif stimulates neuronal growth through activation of the midkine-
PTPζ and BDNF-TrkB signaling pathways.  A) Antibodies (Ab) selective for midkine (4 µg/mL) or
BDNF (1 µg/mL), but not FGF-1 (4 µg/mL), block the neurite outgrowth induced by CS-E.  B)
Antibodies against the receptors PTPζ (2 µg/mL) or TrkB (1 µg/mL), but not TrkA (4 µg/mL), abolish
the growth-promoting effects of CS-E.  *P < 0.0001, relative to the no CS-E, no antibody control.
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Binding of midkine and BDNF to PTPζ and TrkB, respectively, has been shown to

promote neuronal outgrowth and survival in various systems by activating intracellular

pathways such as the mitogen-associated protein kinase (MAPK) and

phosphatidylinositol 3-kinase (PI3-K) pathways.28, 31  Notably, antibodies against either

PTPζ or TrkB blocked the neuritogenic activity of CS-E (Figure 7.9B and 7.10).9  In

contrast, neither antibody alone had an effect on neurite outgrowth in the absence of CS-

E.  To demonstrate the specificity of the effects, we showed that function-blocking TrkA

and class-matched control antibodies do not influence CS-E mediated neurite outgrowth

(Figure 7.9B and 7.10).  These results indicate that the CS-E sulfation motif stimulates

neuronal growth in vitro through selective activation of midkine-PTPζ and BDNF-TrkB

signaling pathways.

Figure 7.10. Function-blocking antibodies against BDNF and TrkB, but not class-matched control
antibodies, disrupt the neuritogenic activity of CS-E. A) The BDNF (10 µg/mL), TrkB (0.5 µg/mL), and
TrkA (0.5 µg/mL) antibodies have been shown previously to block endogenous neurotrophin and
receptor function. Chicken IgY (10 µg/mL) was the control for the BDNF antibody.  B) Goat IgG (4
µg/mL) was the control for the midkine, TrkB, and TrkA antibodies. C) Rabbit IgG (2 µg/mL) was the
control for the BDNF, PTPζ, and function-blocking TrkA antibodies; and mouse IgG (4 µg/mL) was
the control for the FGF-1 and function-blocking TrkB antibodies. *P < 0.0001, relative to the no CS-E,
no antibody control
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Discussion

The structural diversity of GAGs in vivo has led to the hypothesis that specific

sulfated structures may modulate the binding and activity of growth factors.  However,

the complexity and heterogeneity of GAGs has hindered efforts to establish whether

growth factors recognize unique sulfation sequences.  The overall goal of our research

project was to develop a systematic method to investigate the structure-activity

relationships of CS carbohydrates.  Toward this end, we devised a chemical approach

where CS oligosaccharides of defined length and sulfation pattern were synthesized to

evaluate the biological activities associated with distinct sulfation sequences.9, 16

Evaluation of the synthesized molecules revealed that the CS-E sulfation motif was

uniquely capable of interacting with neuron growth factors and stimulated the outgrowth

of various neuron types.  Moreover, we determined that CS-E-mediated stimulation of

neurite outgrowth was facilitated by activation of midkine/PTPζ and BDNF/TrkB

pathways.

Understanding the many roles of GAGs will require new approaches and reagents

to probe and manipulate their structures.  We have shown that synthetic chemical

approaches are particularly valuable in this regard, enabling the identification of

biologically active sulfation motifs, systematic structure-function studies, and the

analysis of glycosaminoglycan-protein interactions.  While GAGs cannot yet be

assembled with the same ease as nucleic acids or proteins, rapid advances in their

synthesis and characterization are enabling the first molecular-level investigations of this

important class of biopolymers.  We anticipate that our approach to systematically

explore the role of sulfation sequences will open numerous opportunities for structural
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and biophysical studies, as well as facilitate exploration of the roles of GAGs across

various proteins and biological contexts.
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Experimental Procedures for Chapter 7

Buffers and Reagents:

Chemicals and molecular biology reagents were purchased from Fisher (Fairlawn, NJ)

unless stated otherwise.  Cell culture media was purchased from Gibco BRL (Grand

Island, NY).  German glass coverslips were purchased from Carolina Biologicals

(Burlington, NC).

Neuronal Cultures:

Hippocampal neuronal cultures were prepared from embryonic rats as described in

Chapter 2.

Preparation of Coverslips:

Glass coverslips were coated as described in Chapter 6.

Calibration of CS Molecules:

The relative concentrations of the CS-E polysaccharide and CS-E oligosaccharides were

calibrated to one another using the carbazole assay as described in Chapter 6.

Treatment of Hippocampal Neurons with the CS-E Polysaccharide and CS

Glycopolymers:

Hippocampal neuronal cultures were incubated in 5% CO2 at 37 °C for 24 h.  The media

was then removed, and a 1.25 µL solution of CS-E polysaccharide (Seikagaku; ~ 60% of

the polysaccharide is estimated to contain the CS-E motif) or glycopolymer in 3.5 M aq.
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NaCl was added to supplemented Neurobasal medium (498.75 µL) on each coverslip.  A

fixed uronic acid concentration of 0.5 µg/mL was used in each case to compare the

effects of multivalency.  This concentration corresponded to molar concentrations of 14.3

nM for the natural CS-E polysaccharide and 53 nM, 33.2 nM, 2.9 nM, and 16.6 nM for

glycopolymer 13 with degree of polymerization (DP) values of 25, 40, 58, and 80,

respectively.  The molar concentrations of glycopolymers 14 and 15 were 43.2 nM and

12.1 nM, respectively.  Importantly, no cellular toxicity was observed at the

concentrations used for each compound, as demonstrated by adherence of the cells to the

coverslip and healthy cellular morphology.  The cultures were incubated for an additional

24 h in 5% CO2 at 37 °C and analyzed by immunocytochemistry.

Determining the Relative Potencies of the Natural Polysaccharide and Glycopolymer 15:

Hippocampal neurons were grown for 24 h before medium was replaced with fresh

supplemented Neurobasal medium.  Compounds were added at various uronic acid

concentrations ranging from 0.01 to 0.5 µg/mL.  Neurons were incubated with the

compounds for 24 h and then analyzed for neuronal outgrowth as described.  To

determine the IC50 values, the concentrations of the CS-E polysaccharide were calculated

based on an average molecular weight of 70,000 g/mol, as provided by the manufacturer.

For glycopolymer 15, a molecular weight of 84,096 g/mol, as determined by GPC, was

used.  The concentration values were plotted against the % inhibition of neurite

outgrowth relative to untreated neurons, and the IC50 values represent molar

concentrations of compound needed for 50% inhibition of neurite outgrowth.  IC50 values

of 1.2 ± 0.1 nM and 1.3 ± 0.1 nM were determined for the natural polysaccharide and
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glycopolymer 15, respectively (1.2 ± 0.1 nM and 1.6 ± 0.1 nM if calculated based on the

saccharide content of each molecule).

Antibody Treatment of Neuronal Cultures:

For the antibody treatments, we cultured hippocampal neurons on a substratum of poly-

DL-ornithine in the presence or absence of CS-E tetrasaccharide (100 µL of a 500 µg/mL

solution).  After 24 h, we added to the medium (final volume of 500 µL) antibodies

selective for midkine (Santa Cruz; goat IgG raised against the C terminus of the protein;

final concentration of 4 µg/mL), BDNF (Santa Cruz; rabbit IgG raised against residues

130 – 247; final concentration of 1 µg/mL; and Promega; chicken IgY raised against

human recombinant protein; final concentration of 10 µg/mL), FGF-1 (R & D Systems;

mouse IgG raised against recombinant human protein; final concentration of 4 µg/mL),

PTPζ (Santa Cruz; rabbit IgG raised against extracellular domain residues 141 – 440;

final concentration of 2 µg/mL), TrkB (Santa Cruz; goat IgG raised against the

extracellular domain; final concentration of 1 µg/mL; and BD Transduction Laboratories;

mouse IgG raised against extracellular residues 156 – 322; final concentration of 0.5

µg/mL), or TrkA (Santa Cruz; goat IgG raised against the extracellular domain; final

concentration of 4 µg/mL; and Abcam; rabbit IgG raised against extracellular residues 1

– 416; final concentration of 0.5 µg/mL).  As controls for specificity, we used the

corresponding class-matched antibodies (goat IgG, Pierce; rabbit IgG, Pierce; mouse IgG,

Pierce; or chicken IgY, Promega) for comparison.  The class-matched controls for the

midkine, TrkB, and TrkA antibodies were the goat IgG (4 µg/mL), mouse IgG (4

µg/mL), and rabbit IgG (2 µg/mL).  The class-matched controls for the BDNF and PTPζ
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antibodies were the rabbit IgG and chicken IgY, used at 2 µg/mL and 10 µg/mL,

respectively.  The class-matched control for the FGF-1 antibody was the mouse IgG, used

at 4 µg/mL.  We cultured neurons for an additional 24 h before immunostaining them

with an antibody to tubulin (Sigma; 1:500) and analyzing them by microscopy.

Immunocytochemistry of Neuronal Cultures:

After 48 h in culture, neurons were treated for immunostaining as described in Chapter 6.

Confocal Laser Microscopy and Morphometric Analysis:

Cells were evaluated by confocal microscopy and quantified for neurite length as

described in Chapter 6.  Additionally, cells were imaged on a Nikon Eclipse TE2000-S

inverted microscope.  The images were captured with MetaMorph 6.1 software using a

40x plan fluor oil objective.
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