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Introduction

Long-period seismic waves from moderately large earthquakes somewhere in
the world are commonly recorded daily. The study of these waves blossomed into
the normal mode theory of the Earth. At long-periods, the generation and propaga-
tion of seismic waves by an earthquake are well understood and we can synthesize
seismograms with great accuracy. The theory has been successfully used for con-
structing models of Earth’s interior and determining earthquake source mechanisms.
Daily observed long-period seismograms are usually explainable and do not violate
the ’common’ sense of seismologists.

However, the unexpected can happen on Earth. During the 1991 eruption of
Mt. Pinatubo, in the Philippines, unidentified long-period harmonic ground motions
were observed worldwide. Seismologists searched for a periodic source mechanism in
the ground and the air. Anomalously large amplitude long-period surface waves from
the 1992 Landers earthquake were observed in Southern California after they traveled
the globe many times. Geophysicists pondered on the cause of these unprecedented
amplitude anomalies.

In this thesis I tried to understand these new observations using the normal
mode theory. The origins of these waves are discussed, physical models are developed,
and the hypotheses are tested by comparing observations with predictions from the
model, namely synthetic seismograms. The validities of the hypotheses are confirmed,
and the results are reinterpreted in order to further understand the behavior of the

Earth. This thesis contributes a little to expand the common sense of seismology.
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Abstract

This thesis consists of two chapters. In the first chapter the normal mode theory
of a spherical Earth model is extended to include the atmosphere and the theory is
applied to understand the observation of air-ground acoustic coupling during volcanic
eruptions and to construct synthetic ground motions. In chapter II, the fully developed
normal mode theory of 3D Earth is applied to the nearfield amplitude anomalies of
the surface waves of the Landers rearthquake. Synthetic seismograms for the recently-
available three dimensional seismic global Earth models are constructed using the
normal mode theory and compared with observations. The horizontal scale and the
location of lateral seismic velocity variations which caused the amplitude anomalies

are examined in detail.

Part I:

Long-period harmonic Rayleigh waves were observed by‘ worldwide seismo-
graphic networks during the eruption of Mt. Pinatubo in 1991. It has been suggested
that these Rayleigh waves were excited, through atmospheric-solid Earth coupling, by
atmospheric oscillations set off by the eruption. We investigated this problem using
the Earth’s normal modes computed for a spherically symmetric Earth model with the
solid (elastic) Earth, ocean and atmosphere. These normal modes represent Rayleigh
waves in the solid Earth, tsunamis in the ocean, and Lamb waves, internal acoustic
waves and internal gravity waves in the atmosphere. Since the atmosphere has a low
sound velocity channel below the thermosphere (altitude 90 km), two characteristic
acoustic modes with periods of 230 and 270 s exist. The energy coupling between
atmospheric acoustic waves and Rayleigh waves is efficient because of the proximity
of the horizontal phase velocities of these waves. The energy distribution suggests
that a low altitude volcanic eruption would excite the 230 s mode more strongly than

the 270 s mode. This is consistent with the observation for the Pinatubo eruption. In
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contrast, the internal gravity mode has a period of 300 s. The barographic oscillation
at a period of 300 s observed for the 1980 Mt. St. Helens eruption is probably this
mode. However, because of its slow phase velocity, it would not couple to Rayleigh

waves efficiently, and cannot be detected with seismographs.

Part II-A:

The 1992 Landers earthquake (M,,=7.3) occurred in the middle of the TER-
RAscope network. Long-period Rayleigh waves recorded at TERRAscope stations
(A <3°) after travelling around the Earth show large amplitude anomalies, one order
of magnitude larger than spherical Earth predictions up to a period of about 600 s.
The ground motions over the epicentral region at and after the arrival of R4-5 are
in phase at all stations. These observations are inconsistent with the nearly vertical
strike slip mechanism of the Landers earthquake. Synthetic seismograms for a rotat-
ing, elliptic and laterally heterogeneous Earth model calculated by the variational
method agree well with the observed waveforms. Calculations for various 3D Earth
models demonstrate that the amplitudes are very sensitive to the large scale aspheri-
cal structure in the crust and the mantle. The anomalies for modes shorter than 300
s period can be explained by lateral heterogeneity shallower than the upper mantle.
Rotation of the Earth and lower mantle heterogeneity are required to explain mode
amplitudes at longer periods. Current whole mantle seismic tomographic models can
fully explain the observed amplitudes longer than 300 s. To assess the effect of the
high order lateral heterogeneity in the mantle, more precise estimate of the crustal

correction is required.

Part II-B:
We modeled the interaction of the source mechanism and the station location
with large-scale lateral heterogeneity using the splitting matrix of an isolated multiplet

and the ’source-receiver function’ whose spherical harmonic coefficients are given by
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P,; where s and t are angular and azimuthal order numbers respectively. For a short
period of time waveform perturbation is proportional to the integral of products of the
splitting function with harmonic coefficients C,; and the ’source-receiver’ function.
For the Landers earthquake and TERRAscope stations source-receiver geometry,
the ’source-receiver function’ is dominated by the low-order components, paticularly
[ = 2,m = %2 in the epicentral coordinates. This beach-ball like pattern is the
same for all the near-source stations located in different quadrants of the strike-slip
mechanism. The two maxima of the ’beach ball’ pattern coincide with the locations
of the degree 2 maxima of the splitting functions; western Pacific and east of South
America. These features explain the weak dependence of the waveforms on higher
order lateral heterogeneity and similarity of waveforms over the epicentral region. The
location and the source mechanism of the Landers earthquake relative to the large
scale lateral heterogeneity ! = 2, including the variations of the cruatal structures,
are responsible for the cause of amplitude anomalies near the epicenter. However, the
amplitude near the epicenter of an earthquake with a thrust fault type mechanism, for

example the Northridge earthquake, is explained well with a spherical Earth model.
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PART I

Near-source acoustic coupling between the atmosphere
and the solid Earth during volcanic eruptions



Abstract

Long-period harmonic Rayleigh waves were observed by worldwide seismo-
graphic networks during the eruption of Mt. Pinatubo in 1991. It has been suggested
that these Rayleigh waves were excited, through atmospheric-solid Earth coupling, by
atmospheric oscillations set off by the eruption. We investigated this problem using
the Earth’s normal modes computed for a spherically symmetric Earth model with the
solid (elastic) Earth, ocean and atmosphere. These normal modes represent Rayleigh
waves in the solid Earth, tsunamis in the ocean, and Lamb waves, internal acoustic
waves and internal gravity waves in the atmosphere. Since the atmosphere has a low
sound velocity channel below the thermosphere (altitude 90 km), two characteristic
acoustic modes with periods of 230 and 270 s exist. The energy coupling between
atmospheric acoustic waves and Rayleigh waves is efficient because of the proximity
of the horizontal phase velocities of these waves. The energy distribution suggests
that a low altitude volcanic eruption would excite the 230 s mode more strongly than
the 270 s mode. This is consistent with the observation for the Pinatubo eruption. In
contrast, the internal gravity mode has a period of 300 s. The barographic oscillation
at a period of 300 s observed for the 1980 Mt. St. Helens eruption is probably this
mode. However, because of its slow phase velocity, it would not couple to Rayleigh

waves efficiently, and cannot be detected with seismographs.



1. Introduction

A major eruption of Mt. Pinatubo (15.14°N 120.35°E) in the Philippines oc-
curred on June 15, 1991. Kanamori and Mori (1992) and Widmer and Ziirn (1992) rec-
ognized harmonic long-period ground motions associated with the eruption recorded
at many world-wide seismographic networks. They confirmed from their group and
phase velocities and the retrograde ground particle motion that the waves are funda-
mental Rayleigh waves radiated from Mt. Pinatubo. The observed wave trains have
two distinct peaks at 230 and 270 s in the amplitude spectra. Widmer and Ziirn
(1992) also reported that similar bichromatic Rayleigh waves with periods of 195 and
266 s were radiated from the 1982 April 4 El Chichén eruption.

Various mechanisms of the generation of the harmonic waves were proposed.
Widmer and Ziirn (1992) suggested that the geometry of the feeding system or pe-
riodic spatial variation of the concentration of dissolved volatiles in the volcano, a
feedback system between local atmospheric oscillations and the eruption process are
responsible for the excitation of Rayleigh waves. Kanamori and Mori (1992) inter-
preted them as the seismic Rayleigh waves, excited by atmospheric oscillations set off
by the eruption (Kanamori and Mori, 1992). If the source is the acoustic resonance of
a magma chamber as suggested by Widmer and Ziirn (1992), the size of the chamber
required to explain the observed long-period oscillations is at least several hundred
kilometers and unrealistic.

Kanamori and Mori (1992) reported that the source phase of the observed
Rayleigh waves is azimuthally independent and the oscillatory pressure change ob-
served at near Mt. Pinatubo (A=21 km) was about 3.5 mbar (1 bar = 10° Pa).
They obtained the time history of the atmospheric loading near the volcano by de-
convolving the observed Rayleigh waves with the synthetic ground motion excited by

a delta function vertical single force. The amplitude of the atmospheric loading force



is about 1.6x10'" dyn (1 N = 107 dyn). Assuming that the pressure change occurred
simultaneously over a circular area, they roughly estimated the radius of the area to
be about 40 km.

Kanamori et al. (1994) showed that a seismogram recorded during the 1980
Mt. St. Helens eruption displayed a similar oscillation with a period of about 300
s. They tried to explain these spectral peaks observed at Mt. Pinatubo and Mt. St.
Helens in terms of characteristic modes of atmospheric oscillations. They showed that
in an isothermal atmosphere two distinct modes are excited by a point source in the
atmosphere. They also showed that the two peaks, one at the acoustic cutoff frequency
and one at a frequency less than the buoyancy frequency, appear in the amplitude
spectra of near-source barograms. They suggested that the peaks of the Rayleigh wave
spectra observed for the eruption of Mt. Pinatubo and of the seismogram recorded
near the Mt. St. Helens eruption correspond to these two characteristic frequencies
in the atmosphere.

Long-period air waves in the atmosphere, with a period of about 3 ~ 30 minutes,
from various sources such as volcanic eruptions (Pekeris, 1948; Press and Harkrider,
1966; Harkrider and Press, 1967; Mikumo and Bolt, 1985), a meteorite impact
(Pekeris, 1939), ground deformation associated with a large earthquake (Mikumo
1968) and nuclear explosions in the air have been studied by many investigators (e.g.,
Georges, 1968; Pierce and Posey, 1970). These observed waves are propagating acous-
tic and gravity waves at far field from the source and none of these addressed the
energy coupling of atmospheric waves to seismic Rayleigh waves near the source.

In this thesis, I investigate the acoustic coupling between seismic Rayleigh waves
and atmospheric waves, and the excitation of Rayleigh waves by a point source in
the atmosphere using the Earth’s normal modes computed for a realistic spherically

symmetric Earth model with the solid (elastic) Earth, the ocean and the atmosphere.



The objective is to understand the excitation mechanism of the harmonic ground
motions generated during the volcanic eruptions of Mt. Pinatubo and Mt. St. Helens

and the energy coupling between the waves in the atmospheric and the solid Earth.

2. Method

We employ the normal mode method which has been widely used in seismology.
The theories have been presented by Love (1911), Alterman et al. (1956), Takeuchi
and Saito (1972), Gilbert (1980), Saito (1988), and Woodhouse (1988). Earth models
used in these studies are bounded at the surface by the ground or the ocean surface,
and the atmosphere has been neglected.

I extend the Earth model to include the atmosphere. A top boundary is placed
arbitrarily in the upper atmosphere. Three types of upper boundary conditions, stress
free, no vertical dispalacement and radiation, are considered. A volcanic eruption is

simply modeled with an isotropic point source in the atmosphere.



The following symbols are used in this section.

r,0,p spherical coordiantes

~

(7,6,%)  unit vectors

t time

x local horizonal coodinate

z altitude from ground surface

c sound velocity

A* non—dimensional buoyancy frequency defined by eq. 69
A;j coeflicient matrix element of differential eq. 1
Bi; coefficient matrix element of differential eq. 40
Cij coefficient matrix element of differential eq. 64
E modal energy d‘ensity defined by eq. 71

F energy flux vector

G gravitational constant

H, scale height defined by eq. 49

K non—-dimensional number defined by eq. 65
M, total mass inside radius r

N buoyancy frequency
Ny acoustic cutoff frequency

P pressure

Q pressure eigenfunction

R radius where top bounday is placed

U vertical displacement eigenfunction

V,W horizontal displacement eigenfunctions

Un non-dimensional number defined by eq. 50

Vq non-dimensional number defined by eq. 51



Y; eigenfunctions used in eq. 40

Z; a set of eigenfunctions modified from Y; (egs. 42-45)
X; a set of eigenfunctions modified from Z; (egs. 62-63)
r specific heat ratio defined by eq. 60

g gravity vector

kn,k;  horizontal wavenumber

k, vertical wavenumber

u displacement vector

v velocity vector of a meterial element

K bulk modulus

p density

) gravitational poteﬁtial

¢ gravity potential eigenfunction

A defined by eq. 67

vy defined by eq. 68

w angular frequency

w1 cutoff frequency bounding gravity modes
wa cutoff frequency bounding acoustic modes
o non—-dimensional frequency of w

o1 non—dimensional frequency of w,

09 non—dimensional frequency of w,

ot complex conjugate of x
|z|2 zaf

T, reference state of z

x' Eulerian perturbation of z

oz Langrangian perturbation of z



2.1 Equation of motion

We ignore the effects of rotation of the Earth such as the centrifugal force and
the Coriolis force because the period of waves we are interested in is much shorter
than 1day. We ignore the advection of the background medium such as wind in
the atmosphere and thermal diffusion and radiation processes. We consider that the
Earth is spherically symmetric.

The differential equations for the eigenfunctions Z; in a fluid commonly used in

seismology (Saito, 1988; Woodhouse, 1988) are

YA VA
A2 ) _ 5|2 1
dr | Zs Zs |’
Zg Zg
where A;;’s are given by
_1 o W04 1 10+ I(i+1) 0
r w?r? K w2 por? w?r?
2 oGo it o 090l (1
_wzpo + lgj;.lz pogo2 - 4&,?— % - (:;1)29 £ ng(,.;H) - l‘—j’fl‘ 47ero 2
—47Gp, 0 —% 4G
_(1+1) + I(I+1)pogo _lan I(I+1)p, 1
T w?r? w?r? w?r? r

These equations are a special case of the more general six simultaneous first order
differential equations for a solid model. In a fluid Z4, the eigenfuction for the shear
traction vanishes everywhere because the shear modulus is zero. Z; is expressed
explicitly as a linear combination of Z;,Z5 and Zs. By eliminating Z3, the differential
equations are reduced to egs. 1 and 2 (Takeuchi and Saito, 1972; Saito, 1988).

In the equation 2, note that the A;; do not contain the radial gradient of the
Earth model parameters and we can avoid numerical differentiations of the model
parameters. At the first sight this seems to contradict the intuition that in a fluid
the radial gradient of density should play an important role in the equation of mo-
tion as a source of buoyancy. When a parcel in a gravitationally stratified fluid is
displaced vertically, the parcel expands or contracts adiabatically according to the

ambient vertical pressure profile in the fluid and changes its density. The density



contrast between the displaced parcel and the surrounding fluid material is the origin
of buoyancy and the expression of this term supposedly includes the vertical density
gradient. However, the equations above are a set of correct equations as discussed by
Pierce (1966) and indeed the dispersion relation of an isothermal horizontally strat-
ified medium (e.g., Gill 1982) can be derived from these equations by ignoring the
gravity potential perturbation and using a flat Earth approximation for an isother-
mal atmosphere. Here we derive the differential equations for a fluid (eq. 2) from the
basic physical principles.

The basic equations that govern the inviscid, adiabatic motions of a self-
gravitating fluid are:

Momentum balance

D*u
—— =—-VP .
P e +rg 3
Equation of continuity
dp+pV-u=0. 4

The adiabatic equation of state for an ideal fluid

_(0Op __ 6P
(5p = (*a?)s(sp—— C2 . 5

The Poisson equation for gravitational potential

V3¢ = 4mp. 6
The definition of the gravity potential

g=-Vo. 7

0 denotes the Lagrangian perturbation which is defined for a given parcel of the
medium at x which was at X, at ¢ = 0. The Eulerian perturbation, denoted by ’, is
defined as a perturbation of a physical quantity at a given position x,. A physical

quantity f(x,t) and its reference state f,(x) are therefore expressed by either

F(x,1) = fo(x) + f'(x,1) 8
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f(x,t) = fo(xo) + 05 (x,1). 9

Now consider small oscillations. The Lagrangian and Eulerian perturbations and

derivatives are related to each other to the first order of u by

5f(x,t) = f'(x,t) +u- Vf,(x,t) 10
and by
X =X, + U, 11
D 0

Subtracting the reference equations such as

—VP, + pogo = 0, 13
V¢, = 4mp, 14

and
8o = — V@, = —gof, 15

where g, = (—9o,0,0), and ignoring the second order of the displacement and per-

turbations, we obtain the equation of motion of the perturbed states

po%%l- + VP + g, + p,Vd' =0, 16
dp+p,V-u=p +V-(pu) =0, 17
5p = ‘Sc_f, 18

V3¢ = 4nGyp'. 19

Because 0P = P'+u-VP, =P’ —u,p,g9, and p' = 6p— ur%f, the vertical component

of eq. 16 becomes

O(urgo + ¢')
or

O*u, P

P+ Ty =0 20

9o
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In spherical coordinates a vector spherical component (I,m) of the displacement u

can be expressed as
u=(Ur+V.V—7¢xV WYL, )", 21

where

0 1 0

vi=0 06’ sin 6 oy

22

and Y} (0, ¢) is the spherical harmonic function (e.g., Arfken, 1985). Because from
eqs. 16-19 we find that the displacement (7 x VW) does not result in any pressure,
density and potential perturbations, the (I,m) component of the displacement is

simply expressed at frequency w as

. a |14 a 1 twt
U(T,e,(p,t) - (U’VB-B-’ m%) Ym(9,(p)6 23

and the Lagrangian pressure perturbation as

6P(r,0,p,t) = QYL(8,p)e™ 24
and the Eulerian gravitational perturbation as

¢'(r,0,p,t) = ®YL(8, p)e™, 25

where U(r), V(r), Q(r) and ®(r) are functions of r. The vertical component of eq. 16

is written as

U 0Q | 9o oUg, + @)
< PVt Gp T @e TP or

) Y.L (6, p)e™ = 0. 26
By rewriting 6P = —c?p,V - u and using

_ 19(rU) 4 1 iwt
V-ou= <; ar - l(l + 1)‘;‘) Ym(é?, (,0)6 5 27

we obtain

U
0= s (242 i) .
T or T
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where £ = p,c? is the bulk modulus. The horizontal component of eq. 16 is written

as

1 .
(-—w2poV + Q@+ Upogo + po<1>)) V.Y.(8, )™ = 0. 29

From eqgs. 17 and 19 we have

V¢ = —4nG(u - Vp, + p,V - u) 30
or
0*’® 200 ® oU 2U-I1(1+1)V dpo
67‘2 +"—a—‘—l(l )ﬁ'——‘l’ﬁG (po(E‘*' )+U8r> 31

Introducing a new dependent variable defined as

0P

Ys—?)——l-(l—I—l) + 47Gp,U, 32

eq. 27 is expressed as

Y 1
E = ‘7-‘ ("'(l + 1)47TG,00U + l(l + 1)47FGPOV -+ (l - ].)Y;;) . 33

Using V from eq. 29,
V = ——(Q+ pogolU + po + &), 34

w2p,r

we can eliminate V from eqgs. 28 and 33. The results are

ou 2 (l+1)g, 1 I(1+1) (1+1)
or (_; + w?r? U +( K + w2por? )Q+ w?r? ®, 35
Y l 1 oYo () -
5‘6_4G ({+1) l(+)ﬂ9 U4G(l+1)Q4G(l+1)p<I>+(l 1)%
or r w?r? w2r? r
36
From the definition of Y,
Qg = —4nGp,U + Li——l@ + Ys. 37

or
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From eqs. 14 and 15 we find that the reference gravity and density are related by

09, 2
= 4Mgopo — — o-
or 9o 9 38
By eliminating %g, %’ir‘l and %;ig from eq. 26, we obtain
0 I(l+1 oJo I(l+1)g,
_Q: wzo_‘( )pogo +4pg U_—”__‘(+)QQ
or w?r? T w?r?
(+1) 1+1 39
+<_p09022 4 )‘I)~poYé.
w?r r

The redefined variables Y; = U, Y, = —Q, Y5 = ® and Y; are then the same variables
defined in Takeuchi and Saito (1972) except that the sign of the potential perturbation

is opposite. The four simultaneous first order differential equations (eqs. 35, 36, 37

and 39)
p Y Y,
Ya Y;
- - B
dr | Ys Y5 | 40
Ys Ye
where B;;’s are given by
o ST - B I
—wip, + K p,g,? — apete _MBlge  pesllED) b, a
—4nGp, 0 —ll:l 1
4G ( (z+1 i l(l:lz.lpzoga) e Glgzt]i) 47rG’(fj;i)2”° (1:1)

are the governing equations of eigenfunctions in a fluid region (Takeuchi and Saito,

1972). Further, we change the dependent variables from Y;’s to Z;’s by

Zy =rY, =1rU, 42
Zy=1Ye = —1rQ, 43
Zs =rYs = rd, 44
Yy 1 0¢
6_17}_5_47'(6;(8 +(l+1)<§>+porU. 45

Then the coefficient matrix in eq. 41 is transformed into the one in eq. 2. The system

of the differential equations improves its symmetry and, together with appropriate
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boundary conditions, becomes self-adjoint (Saito, 1988; Woodhouse, 1988). If we
use the Eulerian pressure perturbation, which is customary in the literature for the
oscillations of stars, the coefficient matrix of the differential equations contains the
radial gradient of stellar model parameters (Ledoux and Walraven 1958, Cox 1980,

Unno et. al. 1989) and the differential equations are not self-adjoint.

2.2 Local behavior of eigenfunctions
In the short wavelength limit, the effect of gravity on the equation of motion
can be ignored and the local behavior of an eigenfunction of sound waves eike=+*:2)

is expressed by
2

ka:z + kz2 = w_z 46
C
and
k2= 0D a7
r

For a given frequency, sound velocity, angular order number and position 7, k,% can
be negative, then waves are exponentially growing or decreasing in the z direction.
If k,% is positive, waves are propagating in the z direction. At low frequency gravity
plays an important role. For atmospheric waves, the gravity perturbation caused
by the density variation is very small compared to the reference gravity, elasticity
and buoyancy forces. We ignore the gravity potential perturbation but include the

reference gravity g, (Cowling 1941). The differential equations then become

d (7 . lltlzgo 1_ l(zl+1)2 7
—_ 1] r w?r K w?por 1) 48
i (2) = (o lin o gen £ ) (2)

The vertical variation of P, and p, define a local scale height H, given by

dr dr

o= —0mp ™~ "dhnp,

49

Through the middle and lower atmosphere, 6.4 km < H, < 8.4km at 0 < z < 86 km
and H, ~ 50 km at z ~ 300 km (Gill, 1982). In order to examine the local behavior of
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eigenfunctions from the coefficient matrix, the rapid change of the coefficient matrix
as a function of radius is not desirable. Because p,, x are the most rapidly changing
variables in eq. 48, and radial gradient of g, is much smaller, the vertical scale length
of the By2 and Bs; terms is about that of p, or k, or from eq. 49, H,. On the other
hand the vertical scale length of the eigenfunctions can be as large as ~ 100 km
thickness of the atmospheric layer.

Here we introduce non-dimensional quantities which are finite as r approaches
r = R where the boundary condition is imposed. Following Unno et al. (1989), the

non—dimensional numbers, Up,, V;, ¢, o are

_dInM, 4mwp,r*  3p,

R T TR 50
_gor  GM, r
Vo= 2 ¢&r TH,’ o1
SM p(R
1= 4 = p_( )7 92
R3M,  p(r)
GM
w2 = ___R_?:-o-z’ 53
where
M, = / po(r)4mridr, 54
0
_ M,
Mﬂ-gg, 55
GM,
9o(r) = —5 56
r
r dg, A4mprd
——— = —2=Un -2,
o dr M Un—2 57
M,
=Up—2.
Po 473 58
Here we have used the definition of the scale height
d
Hy=-—— 59

" dInP,
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_ P (OF
F_P0(6p>s' 60

G, M, R and o? are constants, and M,, U,,, ¢* and ¢; are functions of r. We can

and I is defined by

rewrite eq. 48 using the dimensionless numbers

1 41 4w RS 2 1(I+1)e
; (Zl) B L et (4 — 132) <21 61
dr \ Za ) 7 | cUnM? (—o® | W0+1) 4 1 13+1) Zo ]
dr ? 4T RS (% + 02c§1 - ?) r olerr 2

Changing the dependent variables from (Z;, Zs) to (X1, X;) which are defined by

X1 = Z1 = ’I"U, 62
Z2 47T61R6
X9 = = VA
2 pogo GUmer 63
we obtain
()= (LA ) ()
dr \ X2 —o*+ 5 -k 3+ KU\ X 64
_ Xy
-o(%)
where
d lnp, r
K = - = —,
d&r | H, 65

Now in the coefficient C;; for X; and X,, rapidly changing model parameters p, and &
disappear and only ¢;, Vg, K and U, which change slowly with r exist. Hereafter we
assume that the change of the C;; is so small compared to the change of eigenfunctions
X; and X, that the Cj;’s are locally constant. In the atmosphere ¢; is close to 1, U,
is close to zero and V, has a finite value of the order of 100 to 1000. Since f(r) = r®
is the solution of a rdf(r)/dr = af(r) type differential equation, we assume X; and

X, locally depend on radius as 7*. Then the characteristic equation for eq. 64 is

(l+1)

)\2——(2+K))\—< )(2 K+V,)—(VE~Vy(K+4)+3+K)=0 66
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and its solutions are

1
A =52+ K+/7), 67

where
I(1+1)

7:(K-21/,,+4)2+4( =

—Vg> (c* — K = V). 68

Here we have replaced c; by 1 and Uy, by 0. Using the normalized buoyancy frequency
A*

g N _(rdes  gor
9o po dr 2

= K-V,

where N is the buoyancy frequency (or Brunt Vaisild frequency), v is expressed as

69

I(1+1)
0—2

7:(A*—1/g+4)2+4( —Vg)(a?-A*). 70

Unno et al. (1989), who used the Eulerian pressure perturbation as a dependent
variable instead of the Lagrangian pressure perturbation, reached the same charac-
teristic equation. In this characteristic equation the radial gradient of model pa-
rameters is indeed included through K = r/H,. The energy density of a mode,
E = po(58) - (591 = polw[*luf?, is given by

E = po|?|([U + 10+ DIVEYG™(6, 0) Y6, )

o (1P Wi+1) 2
o< g (235 + LD, - xa) ;
o T~K~2 TZ)\i
3

If v > 0 two solutions of the growing and decreasing modal energy with altitude exist.
This type of mode is called an evanescent mode. At the top boundary the solution of
the growing modal energy is rejected and the modal energy decreases exponentially
with altitude near the top. If v < 0 the solutions associated with A, and A_ represent

waves whose vertical phase velocity is downward and upward, respectively, because
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eigenfunctions have time dependence e** and their radial dependence, near r = 7,,

can be approximated by

VT x era V7, 72

The power of the exponential form in eq. 72 is determined so that at r = 7y, two
functions have the same value and gradient. This type of mode is called a propagating
mode. For a given atmospheric model, « is a function of local model parameters and

the period and the horizontal wavelength of the mode, and can be written as

7:—4—‘(3<<02~l(l+1)>(02~K+V) (K — 2V, + 4)? 2)

02 Vg 4V, 73
4V,
= -t - o0~ o))

oy and o, are the roots of the right-hand side of eq. 73. Because ﬁl‘jg_l) > 0,

(_Ii“_?n‘%ﬁﬁ > 0 and for a stably stratified fluid

N2p

K-V,=A"=
9o

>0 74

holds, the two positive real frequencies o; and oy (01 < 02) always exist for any
subadiabatic atmospheric model. Waves are evanescent for oo > ¢ > o7 and are
propagating vertically for o, < 0 or 07 > 0. We have the following asymptotic values

of the boundaries (y = 0) between the propagating region and the evanescent region:

150, 01290, 092— A @ %t
v, 75
Il =00, 0,2 A*, 092 — l(ltl)

or
2
} () ) 2 ) () ) 2 ) 1\72 :2 1 go 2
l ) 1 ) 2 (2H3 62 R)

2
I 500, w?— N? wf-—)ﬁH—Rli)i

76

These local cutoff frequencies are the same as those of an isothermal atmosphere (e.g.,

Gill 1982) if R > H,.

2H, c? 2H,
kn — oo, w? — N2, w? =k’

2 2
kn =0, w?—0, cuz—>N2+c(1 —’2) =(c> = N, 77

where N4 is the acoustic cutoff frequency and kj, is the horizontal wavenumber.
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The rate of vertical flow of energy per unit area, F,, is given by (Gill 1982, eq.

4.6.4) the radial component of the real part of
1
F = (¢ + v, 78

where v = 2t ;- For a small oscillation, F, is approximated by F, = p'( ng)T

Re(F,) = Re(—iwp'u,)

oc —wp"g" (X1.x! - X, x7)

- -—z‘w”;f"(vg — 1A 7
x —Im(Ay)

o —Im(£y/7),

where the upper and lower signs correspond to the A -solution and A_-solution,
respectively. Here we have used eq. 64 to eliminate X, and the polynomial expression
of X;. Now we consider the energy leak of propagating waves. In order to be a
decaying oscillation, the square of the complex eigenfrequency s; + s»i = 02 requires
81 > s3 > 0. Going back to the definition in eq. 68, the imaginary part of v is given
by

Im(y) = 4s, <-vg+ W+, ) 80

2021
When V, > Klﬂ}A* or equivalently |w|> > LN, Im(y) = 2Re(,/7)Im(/7) is

242

negative, where L;, called the Lamb frequency in Unno et al. (1989), is defined by

le - c. 81

If Re(,/7) > 0 and Im(,/7) < 0, a A, or A_-solution has both phase velocity and
energy flux upward, or both phase velocity and energy flux downward, respectively. If
Re(\/7) < 0and Im(,/7) > 0, a A, or A_-solution has both phase velocity and energy
flux downward, or both phase velocity and energy flux upward, respecfively. In both

cases, since we reject the solution with downward energy flow, an appropriate solution
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always has an upward phase velocity. Similarly, when V, < %}A* or equivalently

lw[* < ItN, Im(vy) = 2Re(/7)Im(\/7) is positive, an appropriate solution always
has a downward phase velocity.

In summary, acoustic modes (w > wsy), which approach the sound waves in the
short horizontal wavelength limit, have an upward phase velocity and upward energy
transport. Evanescent modes (ws > w > w;) have zero upward phase velocity and no
vertical energy transport. Gravity modes (w; > w), whose eigenperiod approach the
buoyancy frequency in the short wavelength limit, have a downward phase velocity
and upward energy transport. The locally defined quantity v diagnoses the local be-
havior of waves in the vertical direction for a given period and horizontal wavelength.
In the region where + is negative, waves are trapped or propagating depending on the
boundary condition. In the region where <y is positive, waves become evanescent and
the modal energy density decays or increases exponentially in the vertical direction.
This is valid when the vertical scale length of waves is shorter than that of v. As the
vertical scale length of v approaches the vertical wavelength of atmospheric waves,

this statement becomes less accurate.
2.3 Computation of normal modes

2.3.1 Conventional upper boundary conditions

Under the Cowling approximation, the free upper boundary condition is satis-
fied by setting Z, to zero, and the non—vertical displacement boundary condition is
satisfied by setting Z; to zero. When the gravitational potential perturbation is in-
cluded, an additional boundary condition Zg = 0 must be imposed. The determinant
of the two sets of dependent solutions at the boundary is computed. The boundary

condition is satisfied when the determinant vanishes (Takeuchi and Saito, 1972).
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2.3.2 Radiation upper boundary condition

For an evanescent mode with wy > w > w;

Z
(Ci1 — A2)Z, + Cy 2 =0 82
or
VA
021Z1 -+ (022 - )\_) =0 83
PoYo

is the boundary condition. The eigenfrequency and eigenfunctions are real. For an

acoustic mode with w > ws or a gravity mode with w < wy,

Z:
(Cu - /\)Zl + 012 2 =0 84
PoYo
or
23
021Z1 -+ (022 - )\) =0 85
PoZo

is the boundary condition. The eigenfrequency and the eigenfunctions become com-
plex. We choose A = A, or A_ to satisfy the radiation boundary condition that
inhibits downward energy flow through the upper boundary. If we define /7y with
Im(,/7) > 0, from the discussion in section 1.2, A_ is the appropriate boundary con-
dition for acoustic modes, and A, is the appropriate boundary condition for gravity
modes. The boundary condition for the propagating modes is treated a little differ-
ently in Unno et al. (1989). They set the boundary condition where modal energy
density F in eq. 71 does not grow or decay locally by adjusting the value of A..
Their set of complex eigenfrequency o, complex v and complex A do not satisfy the

characteristic equation (eqs. 66, 67 and 68).

2.3.3 Lower boundary conditions
For atmospheric modes, the bottom ground surface is assumed rigid by setting

Zy to 0. For modes whose eigenfunctions start beneath the ocean or ground surface,
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such as seismic Rayleigh waves and the modes for an Earth model including the at-
mosphere, the boundary values of eigenfunctions at a starting level are obtained from
the analytic solution of an isotropic homogeneous fluid or solid body whose model
parameters are the same as those at the boundary (Pekeris and Jarosh 1958, Takeuchi
and Saito 1972). The appropriate starting level of the integration is where the ampli-
tudes of the eigenfunctions become so small that the ratio of amplitude at the starting
level relative to the maximum amplitude reaches a pre-set computational accuracy.
Such a staring level is roughly estimated by integrating the radial wavenumber of a

mode from the starting level to the turning level of the corresponding seismic ray.

2.3.4 Integration

We use a shooting method to compute the normal modes. The differential
equations for a fluid body (eq. 37) are integrated from a starting level to a boundary
level. The compound—matrix method (Takeuchi and Saito, 1972), or equivalently the
minors method (Woodhouse, 1988), is not used. In a solid the equations of motion are
reduced to six, or four if the Cowling approximation is used, simultaneous first order
differential equations. The continuation of eigenfunctions at the solid—fluid boundary
is described in Takeuchi and Saito (1972). The complex eigenfrequencies and eigen-
functions are obtained by a complex root search similar to the one used by Friedman
(1966). We employ an adaptive step size control Runge-Kutta integrator (Press et
al., 1992). Model parameters are given as a table at discrete points. Between the grid
points the model parameters are linearly interpolated. Since the program controls the
integration step size, a uniform accuracy of the eigenfunctions can be maintained eas-
ily. For an eigenfunction with the free surface boundary or rigid boundary condition,
the integration is crudely checked by the energy integrals.

When the integration is performed in a relatively thick region where 7 has large

positive values and the modal energy is decreasing in the direction of integration, the
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differential equation becomes stiff and the integration becomes numerically unstable
because the unwanted solution grows exponentially. However, the eigenvalue is accu-
rately computed for this distorted eigenfunction because this growing component is
the other solution with the same eigenvalue (Jensen et al., 1994). For gravity modes
with large angular order numbers, the modal energy is trapped sometimes locally, e.g.,
near the mesopause, and the oneway integration becomes unstable. For these cases
we integrate from the bottom boundary upward and from the top boundary down-
ward and match the two sets of eigenfunctions at a level where the modal energy
is trapped. For low order acoustic modes we can stably integrate both upward and
downward by the adaptive step size Runge-Kutta integration because |v| is relatively
small. The group velocity is obtained by numerical differentiation along the modal
branch or, if the boundary condition is free or rigid, by integral relations (Takeuchi

and Saito, 1972).

3. Normal modes in the atmosphere

Figure 1 shows the acoustic velocity profile of the atmosphere model used in
this study. The sound velocity is computed from the temperature and the pressure
by ¢* = T'P,/p,. We assume that I' is constant, 1.4, the value for ideal diatomic
molecule gas. Figure 2 shows the normal modes for the atmosphere model. The
cutoff frequencies computed at z=100 km and 200 km are plotted in Figure 3. In the
non-rotating spherically symmetric atmosphere, three types of waves exist, acoustic
waves, Lamb waves and internal gravity waves. Many references on atmospheric
acoustic waves, the Lamb waves and internal gravity waves can be found in, for
example, Beer (1974) and Georges (1968). The group velocity of a mode can be
roughly obtained from the slope of the branch in the (w — k) plot. All the computed
normal modes for the atmosphere fall into these three categories except one surface

gravity wave, or deep—water—wave-like branch in the atmosphere which is an artifact
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Atmosphere model

Sound velocity, km/sec
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Figure 1. Atmospheric model used in this study, U.S. standard atmosphere 1976. At-
mospheric density decreases quickly upward with a scale height of about 7 km. At
100 km, the density is about one millionth of the ground atmospheric density. The
exospheric temperature of U.S. 1976 standard atmosphere approaches 1000 K.
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Figure 2. Normal modes of the atmosphere model in Figure 1. The top boundary at 200
km is a stress free surface boundary and the bottom is a rigid boundary. Three
major groups of eigenmodes exist. Acoustic modes are the sound waves in the
atmosphere. Gravity modes exist for a fluid body under gravity with subadiabatic
density stratification, such as the Earth’'s atmosphere. Lamb waves are boundary
waves which travel along the ground with the speed of sound. (a) Angular order
vs. frequency plot. The boxed region is magnified in Figure 7. (b) Period vs. phase
velocity plot for comparison with early studies. The horizontal phase velocity is
computed by wr./(l + 0.5), where 7,=6371 km.
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Cutoff frequencies
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Figure 3. Cutoff frequencies wy and wy (w1 < wy) for the U.S. standard atmosphere
computed at z=100 km and 200 km. In the region where wy» > w > w;, waves
become evanescent. In the region where w > wy or w < wi, propagating waves
exist.
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of the free surface boundary (Figure 2).

In the frequency band in which the harmonic seismic surface waves were ob-
served during the eruption of Mt. Pinatubo, about 200~300 s, all three types of at-
mospheric waves can exist. They are long wavelength acoustic waves near the acoustic
cutoff frequency, Lamb waves and short wavelength gravity waves near the buoyancy
frequency, or the Brunt-Vaiisala frequency. Kanamori et al. (1994) suggested that
the acoustic modes near the acoustic cutoff frequency and the gravity modes near the
buoyancy frequency can be excited efficiently by a volcanic eruption. For the long
wavelength acoustic modes near the acoustic cutoff, the longer the wavelength, the
larger the phase velocity and the smaller the group velocity. For example, at angular
order 30 or horizontal wavelength 1300 km, the gravest three acoustic modes have a
horizontal phase velocity of about 4~5 km/s and a horizontal group velocity of about
10 m/s. Short wavelength gravity modes, for example at 1=2000, near the cutoff have
small horizontal phase velocity < 100 m/s and horizontal group velocity > 10 m/s.

The propagation and excitation of these atmospheric pressure waves from natu-
ral sources such as the Great Siberian meteorite of 1908 (Pekeris, 1939), the explosion
of the Krakatoa volcano in 1883 (Pekeris, 1948; Harkrider and Press, 1967; Press and
Harkrider, 1966), the 1964 great Alaskan earthquake (Mikumo, 1968), the 1980 erup-
tion of Mt. St. Helens (Mikumo and Bolt, 1985), from the detonations of nuclear
bombs in the atmosphere (e.g, Georges, 1968; Pierce and Posey, 1970), have been
studied. However, none of these reported harmonic oscillations of pressure.

Benioff et al. (1951) reported harmonic oscillations in microbarograph records
with a very short period of about 1 s after a natural earthquake at a regional distance.
The waveforms in the farfield barographic records were dominated by the Lamb waves,
which propagate at the speed of sound. A few branches of acoustic and gravity modes,

whose group and phase velocities are close to the sound velocity in the atmosphere,
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are required in the computation to simulate the barographic observations (Harkrider
1964).

Kanamori and Mori (1992) and Kanamori et al. (1994) reported harmonic
barographic pressure changes recorded during the eruptions of Krakatoa 1883, Mt.
St. Helens 1980 and Mt. Pinatubo 1991. Table 1 summarizes harmonic oscillations
found in barograms and seismograms during these major volcanic eruptions.

The modal energy density of long wavelength (1=30, wavelength=1300 km)
acoustic modes near the cutoff frequency is shown in Figure 4. The gravest mode
with a period of 329 s has its energy only in the thermosphere. For this period and
horizontal wavelength, a standing or propagating waves may exist in the thermosphere
and the troposphere where v is negative. To have a standing wave in a negative
'well’, we require from eq. 72

A VT_7 = nr, 86

where ¥ is the average of 7 in the negative—y region, h is the vertical extent of the
negative region and n is a positive integer. The negative v region in the troposphere
does not contain a standing wave because the vertical scale of the troposphere is too
small to have a standing wave in this region and only a propagating wave exists in the
thermosphere for this model. When we take the boundary at z=100 km, this mode
disappears.

The second gravest mode with a period of 274 s, which is close to one of the ob-
served periods (Table 1), is a trapped mode. The positive v region in the mesopause,
the low velocity channel which forms the boundary region between the thermosphere
and mesosphere, works as a wave-reflecting wall for this mode and the modal energy
is trapped below the mesopause and above the ground (Figure 1).

The third gravest mode with a period of 236 s, which is also close to one of

the observations, has a large energy concentration below the thermosphere where
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Eruption Period Observation Method Distance
1991 Pinatubo 270 s, 230 s seismograph teleseism
1982 El Chichén 195 s, 266 s seismograph teleseism
1980 Mt. St. Helens ~ 300 s seismograph worked as barograph near source
1883 Krakatoa ~ 300 s barograph near source

Table 1. Observations of harmonic atmospheric oscillations and harmonic ground motion
during major volcanic eruptions. Compiled by Kanamori et al. (1994).
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v has larger negative values than in the upper atmosphere. Because v is negative
everywhere, the modal energy can leak into the upper atmosphere. For this type
of mode a radiation boundary condition is necessary. The energy distribution of
higher frequency acoustic modes changes with altitude like a cos? standing-wave type
oscillation. This standing wave type oscillation is an artifact caused by the reflection
at the free surface boundary and the modal energy will smoothly propagate upward
or downward through the boundary if we remove the reflecting boundary at the top.
The oscillation of trapped modes represents the reverberation of sound waves in the
~ negative well and may be a source of the temporal harmonic loading on the ground.
At higher frequencies, because upward short period acoustic waves do not come down
by reflection, acoustic reverberation in the atmosphere may not exist and cannot be
a source of harmonic loading. The harmonic ground motions with periods of 270 s
and 230 s recorded on seismograms throughout the world may correspond to trapped
acoustic modes that coupled to the ground.

The short wavelength gravitational modes (1=2000, wavelength=20 km) (Fig-
ure 4) have concentrated modal energy at higher altitude near z=100 km except one
mode. The mode with a period of 300 s has energy concentration in the stratosphere.
A low altitude source such as a volcanic eruption may preferentially excite this mode
and the periodic pressure change with a period of 300 s may be recorded at the ground
level. Because of its small group velocity, the pressure change associated with this
gravity mode will be observed near the volcano. The atmospheric oscillation with
a period near 300 s observed by a seismometer which worked as a barograph near
Mt. St. Helens just after the explosive eruption in 1980 may be this type of gravity
mode trapped in the stratosphere. A satellite infrared image of Mt. Pinatubo during
the 1991 eruption shows (Kanamori et al. 1994, figure 11) a concentric pattern of

temperature disturbance with wavelength of several tens of kilometers around the
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Figure 4. Modal energy density p,(|U[?> + I(I + 1)|V|*)r? of acoustic modes =30 and
gravity modes |=2000 with a period of about 230~330 s. The local characteristic
function v, eq. 68, was computed as a function of radius for the eigenperiod and
angular order of each mode. v > 0 is seen as a potential wall where modal energy
evades and the eigenfunction becomes evanescent. v < 0 is seen as a potential well
where modal energy is trapped. The modal energy for each mode is normalized to
the maximum value. + is also normalized to its maximum. The scale for v is at the
top of each plot, but the unit is arbitrary.
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volcano extending over a distance of about 400 km. If we assume that the waves in
the satellite image have the period of about 300 s, the concentric pattern is identified
to be the gravity waves excited by the volcanic eruption, because acoustic waves and
Lamb waves should have much more shorter periods at the wavelength of several tens
kilometers.

The choice of the top boundary type and its location are not important if a
mode is naturally trapped, or ducted, below the top boundary by ’wall’ layers which
have positive v. Our numerical computation confirms that the 270 s acoustic mode
always exists for any type of top boundary if placed at higher than 100 km (Figure
5). The mode always hits a natural boundary near z=100 km and its modal energy
is confined between z=0 and about 100 km.

The local atmospheric structure can deviate from the standard atmosphere
model diurnally, seasonally, geographically and latitudinally. In the thermosphere
the temperature is mainly controlled by the solar activity (CIRA 1972). These vari-
ations may result in the change of not only eigenperiod but also the energy density
distribution of modes; as a result a trapped mode may become a propagating mode
and vice versa. In table 2 we list the result of computation for an atmospheric struc-
ture close to the local model during the eruption of Mt. Pinatubo in 1991.

The local atmospheric model near Mt. Pinatubo in June has two distinct fea-
tures. Low temperature, about 10° K lower than the average at the bottom of the
stratosphere, and high thermospheric temperature, about 500° K higher. We choose
the high thermospheric temperature because the solar activity was high in 1991. The
trapped acoustic modes have little change in the eigenperiod. Two gravity modes
with energy trapped in the stratosphere exist with distinct eigenfrequencies. The
high temperature in the thermosphere results in the increase of <y, but still nega-

tive, and the modal energy density decreases more near z=200 km than those for
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Figure 5. The variation of the eigenperiod of atmospheric acoustic modes (1=30) for the
altitude change of the top boundary. (a) For free surface boundary. (b) For zero
vertical displacement surface boundary.
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Standard atmosphere Local at Mt. Pinatubo
mode type period mode type period
acoustic 274 s acoustic 272 s
acoustic 236 s acoustic 235 s
acoustic 209 s acoustic 207 s
acoustic 186 s acoustic 182 s
gravity 299 s gravity 320 s, 290 s

Table 2. Comparison of the eigenmodes of two atmospheric models. Local model near
Mt. Pinatubo atmosphere is composed of: 0 km < z < 90 km reference atmosphere
at 15° N July, 90 km < z < 110 km reference atmosphere at 10° N June and 110
km < z < 200 km exospheric temperature 1600 K. Tables are found in (Jursa ed.,
1985). The same boundary conditions used in Figure 2 is applied. Acoustic modes
with 1=30 and gravity modes with 1=2000 are computed.
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the standard atmosphere. We speculate that the observed period 195 s during the
1982 El Chichén eruption may be a trapped acoustic mode when the solar activity
was extremely high. In fact, in 1982 its cycle was near the peak (commun. National
Geophysical Data Center). However, the reason why the amplitude spectrum peak
near 230 s is missing in the seismographic observation during the 1982 El Chichén

eruption is unknown.

4. Normal modes in the Earth

We use the preliminary reference Earth model (PREM) of Dziewonski and An-
derson (1981) for the solid Earth. The normal modes of PREM are shown in Figure 6.
A notable feature in Figure 6 is the tsunami branch with a nearly constant phase ve-
locity of about 170 m/s. This mode is a surface gravity wave in the top ocean layer
of the PREM Earth model with a thickness of A = 3 km. The tsunami branch and
seismic branches are separated well in the w — k domain. For the tsunami mode a
simple long-wave approximation gives a non-dispersive phase velocity /g, (Gill,
1982) which is close to the phase velocity of the tsunami modes computed for PREM.
At very long wavelength, the phase velocity slightly decreases. For example, at =10
the phase velocity decreases by about 3% from 170 m/s. At long period the Coriolis
effect should be taken into account. At short wavelength, the dispersion relation of
water waves deviates from the shallow water approximation and approaches the deep
water approximation, and its phase velocity decreases according to \/9079; The rea-
son why the two waves, Rayleigh waves and tsunamis with similar eigenfrequencies,
do not couple is that the wavelength of the excess pressure field at the ocean bottom
caused by tsunamis is very different from the wavelength of Rayleigh waves. Two
waves having an interface between them are able to couple efficiently when both the
period and the horizontal wavelength of the two waves are the same. This compu-

tation confirms the study by Comer (1984) who showed that for a flat Earth model,
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Normal modes of PREM
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Figure 6. Spheroidal normal modes in the PREM (Dziewonski and Anderson 1981) Earth
model which has a 3 km ocean layer at the top that allows water waves. Seismic
waves and tsunami waves are almost decoupled. High angular normal modes 1>
50 and tsunami modes are computed using the Cowling approximation. The boxed
region is magnified in Figure 7.
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Rayleigh waves and tsunamis are practically uncoupled over the entire periods of seis-
mic waves, so in the propagation of tsunamis the elasticity of the Earth can be safely
ignored. This weak coupling between seismic surface waves and tsunamis explains
why the tsunamis in the ocean are never reported as an excitation source of surface
waves of the solid Earth. However, it should be noted that tsunamis are indeed ex-
cited by the local deformation at the ocean bottom associated with earthquakes. In
this case the initial disturbance of tsunami is caused by a sudden uplift or subsidence
of the ocean surface and not related to the wave coupling.

The adoption of the Cowling approximation changes the eigenperiod of the non—
radial spheroidal normal modes. The eigenperiods of the fundamental spheroidal
modes with and without the Cowling approximation for a solid Earth model are
shown in Table 3. The frequency of fundamental spheroidal modes which we are
interested in, 3-5 mHz, changes by less than 0.3%. The merit of the use of the
Cowling approximation is that we can reduce the computational time by a factor
of a few and improve the computational accuracy because we have fewer dependent

variables.

5. Coupling between the atmosphere and the solid Earth

The acoustic coupling between the atmosphere and the solid Earth has been
considered to be very small. The atmosphere is treated as a vacuum by seismologists
and the surface of the Earth is a rigid boundary for atmospheric scientists because
of the large acoustic impedance contrast; (0¢)atmosphere/(0C)crust is about the order of
10~%. The phase velocity of acoustic waves in the atmosphere differs from that of
seismic waves by one order of magnitude. However, in a few cases ground motions
induced by the atmospheric acoustic coupling have been observed on seismograms.
Seismic waves with a period of about 240 s excited by the pressure pulse near a

nuclear explosion in the air were observed by a ground tiltmeter (Ben-Menahem and
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angular order

Cowling approx.

without approx.

2 4127.43 3233.51
3 2505.96 2134.26
4 1693.90 1545.43
S 1258.02 1189.87
6 999.04 963.18
7 832.87 811.81
8 720.92 707.45
9 642.86 633.59
10 586.01 579.21
11 542.21 536.93
12 506.63 502.41
13 476.76 473.27
14 451.05 448.14
15 428.65 426.18
16 408.93 406.79
17 391.38 389.54
18 375.68 374.06
19 361.52 360.10
20 348.68 347.41
21 336.95 335.82
22 326.20 325.17
23 316.25 315.33
24 307.04 306.19
25 298.43 297.67
26 290.39 289.69
27 282.84 282.19
28 275.71 275.12
29 268.98 268.43
30 262.60 262.08
31 256.53 256.05
32 250.76 250.31
33 245.24 244.82
34 239.97 239.58
35 234.93 234.56
36 230.09 229.75
37 225.45 225.13
38 220.99 220.69
39 216.71 216.42
40 212.58 212.31
41 208.60 208.34
42 204.76 204.52
43 201.06 200.84
44 197.49 197.27
45 194.04 193.83
46 190.70 190.51
47 187.47 187.29
48 184.34 184.17
49 181.32 181.15
50 178.39 178.23
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Table 3. Eigenperiod of fundamental spheroidal modes for the PREM Earth model
(Dziewonski and Anderson 1981) in second. The left column numbers are the
eigenperiods including the effect of self-gravity. The right column is obtained us-
ing the Cowling approximation (Cowling 1941) which ignores the gravity potential
perturbation but includes the reference gravity. The physical dispersion is included
in both cases.
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Singh, 1980) at a teleseismic distance. Harkrider et al. (1974) computed theoretical
seismograms from atmospheric point sources for the fundamental Rayleigh waves with
a period of less than 60 s at teleseismic distances. Long-period harmonic Rayleigh
wave motion associated with the 1991 eruption of Mt. Pinatubo (15.14° N 120.35°E)
in the Philippines, were reported by Kanamori and Mori (1992) and Widmer and
Ziirn (1992), and with the 1982 El Chichén eruption by Widmer and Ziirn (1992)
(Table 1).

5.1 Coupling mechanism

We can expect efficient coupling between the solid Earth and the atmosphere if
seismic modes and the atmospheric modes fall into the same region of the frequency
wavenumber (w — k) domain. In fact, a common region of atmospheric modes and
seismic modes exists near the period of about 200~300 s (Figure 7), the period of
the observed Rayleigh wave. As discussed earlier, an atmospheric acoustic mode near
the period 200~300 s with a small angular order has a small group velocity and the
modal energy density is trapped in the atmosphere below the thermosphere. Once a
long—wavelength atmospheric acoustic mode is excited by a point source in the air, the
modal energy is confined in the atmosphere horizontally and vertically. The trapped
acoustic mode can efficiently excite a Rayleigh wave that has the same eigenfrequency

and horizontal wavelength to those of the acoustic mode.

5.2 Comparison of synthetic ground motion with observations

Since the observed surface waves are fundamental mode Rayleigh waves
(Kanamori and Mori, 1992; Widmer and Ziirn, 1992), we compute the normal modes
near the fundamental spheroidal mode branch (Figure 8) for a spherically symmet-
ric Earth model including the ocean and atmosphere. These waves represent seismic
Rayleigh waves and acoustic waves in the atmosphere. The normal modes of a coupled

system using a combined Earth model automatically takes into account the mechan-
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Overlay of two sets of eigenmodes
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Figure 7. Overlay of atmospheric modes (box in Figure 2) and seismic modes (box in
Figure 6). Solid triangles and open circles are fundamental and higher spheroidal
modes and atmospheric acoustic modes, respectively. Strong coupling between the
Rayleigh waves and the atmospheric acoustic waves is expected because of the
proximity of the horizontal phase velocities.
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Normal modes of ’PREM + atmosphere’ Earth model
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Figure 8. Normal modes of the combined PREM Earth model and U.S. Standard At-
mosphere 1976. Only modes inside the polygon are used in the computation of
synthetic spectrum in Figure 11.
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Figure 9. Modal energy density distribution of the fundamental spheroidal modes near the
trapped atmospheric acoustic mode branch for the combined Earth model. Energy
density in the atmosphere is magnified by 100. Amplitude of energy density of each
mode is normalized by its maximum value and scale is linear.
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ical coupling between atmosphere, ocean and solid Earth. The computed eigenfre-
quencies for the combined model deviates little from the uncoupled eigenfrequencies
except when two modes with the same angular order have very close eigenfrequencies.

The modal energy density of the fundamental spheroidal modes for the com-
bined Earth model is shown in Figure 9. Note that the plotted energy density in
the atmosphere is magnified by 100. The atmospheric part of the energy density
of Rayleigh waves is generally very small, far less than 1% of the maximum energy
density in the solid Earth. Conversely the acoustic modes also have little energy
penetration in the solid Earth.. For a few exceptional seismic spheroidal modes with
a period close to the trapped atmospheric acoustic modes, the peak amplitude of
the energy density in the atmosphere is as large as 1% of the peak density ampli-
tude in the solid Earth. The small but substantial modal energy distribution of 272
s and 237 s spheroidal modes in the atmosphere suggests that the 272 s and 237 s
modes are preferentially excited by a source in the lower atmosphere compared to
other spheroidal modes because the excitation amplitude of an eigenmode by a point
source is roughly proportional to the energy density amplitude at the location of the
source.

The amplitude in the air of a seismic spheroidal mode can be large because of
very small density in the upper atmosphere. From the ratio of the amplitude peaks
of the energy density in the air and the solid Earth, ~ 1%, and the ratio of material
density at the peaks, ~ 107'% we get Uat ;—100km/Uat z=—50km ~ 10%. When the mode
has amplitude 1 pum at the ground, the amplitude of this mode at z=100 km is about
1 cm and much smaller than the wavelength of this mode. The linear amplitude
theory of small oscillations is still valid.

We compute the synthetic seismograms using the eigenfunctions for the com-

bined Earth model for the subset of modes shown in Figure 8. The excitation source
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Figure 10. Top) Observed harmonic signals in vertical VLP channel data at MAJO
(A=26°) Matsushiro, Japan. The record starts at 1991/06/15 00:00 GMT. The
large signals in the first five hours are from teleseismic events, a Ms 6.5 in the
Caucasus and a Ms 6.5 in the South Sandwich Is. The peak to peak amplitude is
about 6 micron—-meters after removing the very long—period tidal signals. Bottom)
Amplitude spectra of the magnified part of the seismogram. The peaks at 4.4 mHz
(230 s) and 3.7 mHz (270 s) are observed at many seismographic stations. The
vertical scale is linear.
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is modeled by an isotropic point source with a moment M,, three mutually perpen-
dicular ”dipoles without moment,” which is located at (r,,0,0) and varies as a step
function in time.

The displacement at (7,6, ¢) is given by (Woodhouse and Girnius 1982)

(r,0, 0,1) Zcon(r 09, ) Sye™*t,

ug(r, 0, 0, t) = chVk (M(=Y°(8, ) + Y, 71%(8, 0)) Spe™*t, 87
<P(T79’ (P>t) - 07
where
r+1

S — el (aUk(rs) Wi(r,) UL+ )Vk(rs)) | .

or, Ts T,

20+1
Cy = ir 89
1 j@er+1)I+1)l

“a= 5\/ 4r 90

and YV ™(6, ¢) is the generalized spherical harmonics defined in Phinney and Burridge
(1973) and k denotes a multiplet mode. The eigenfunctions used here are computed
with the free or zero radial displacement surface boundary condition and normalized
by
R
/ WP (U2 + 11+ DVH)r? = 1. 91
0

The original broadband seismogram recorded in the day of the Pinatubo eruption
is shown in Figure 10. The amplitude spectrum of the synthetic ground motion is
plotted in Figure 11. As we expected, the spheroidal modes near 270 s and 230 s are
preferentially excited and the observed amplitude ratio of the two peaks near 230 s
and 270 s is reproduced in the synthetic. We did not include the modes with periods
shorter than 200 s because in the real Earth, the atmospheric eigenfunction becomes

a propagating acoustic wave (section 3) and the excitation of the mode by a source
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in the propagating region will be small compared to the excitation by a source in the
standing wave region.

A higher altitude source yields larger ground motion because the energy den-
sity of the strongly coupled modes increases with altitude in the troposphere and
the stratosphere and these modes are excited more efficiently by a source at higher
altitude. The amplitude of the ground motion by a source located at 1, 2, 4 and 8
km in the air relative to the amplitude by a source at 0.5 km are 1.1, 1.2, 1.5 and
2.2, respectively. The waveforms of harmonic oscillations have little dependence on
the source altitude.

Seismic moment has been used to express the magnitude of earthquakes in
seismology; however, the source description in terms of energy is more appropriate
for volcanic eruptions. We follow Ingersoll and Kanamori (written communication,
1995) to relate the dipole moment source to an energy source. For an elastic medium
the permanent displacement u, at distance r from an isotropic dipole moment M,
is M,/(4nr*(k + 4p1/3)), where p is the rigidity. For a fluid we simply take p=0.
Static increase of the radius of a small cavity in a fluid from € to € + e displaces the
material at r by (e/7)? de. The energy E, worked against the ambient pressure P, by
the increase of the volume of the cavity is P,4me? de. Using k = I'P, and requiring F,
and M, produce the same static displacement, we obtain E, = M,/I". Kanamori and
Mori (1992) observed that the source duration is at least two hours. If we take the
two hours as the source duration, the dipole moment 10*® Nm is required to explain
the Rayleigh wave amplitude. Based on the conversion from isotropic moment to
energy, we can roughly estimate the energy release from Mt. Pinatubo during the
major eruption in 1991/06/15, about 10*° J. Using the relationship between the size
of a nuclear explosion and its energy release, 1 ton nuclear explosion = 10° calories

= 4.189e109 joules (personal comm. Harkrider, 1995), the energy release during the
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Figure 11. Fourier spectrum of the synthetic ground motion at MAJO for a point source
located 1 km high in the atmosphere. The ground motion is computed using the
normal mode method by summing up the modes in Figure 7. A seismic moment
of 10 1° Nm is required to explain the observed ground motion for a 2—hour-long
source duration. The amplitude spectra is computed for a 4.4~hour—long synthetic
seismogram starting at 45 minutes after the origin time. The vertical scale is linear.
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1991 Mt. Pinatubo eruption corresponds to a 2000 Mton size nuclear explosion For
more precise estimate we need to model the physical mechanism of volcanic eruptions,
and its excess thermal and mass input should appear in the equation of motion as

excitation terms (Pierce, 1968).

6. Discussion

The air-sea coupling, instead of the air—ground coupling of our study, was
studied by Press and Harkrider (1966) and Harkrider Press (1967). They discussed
the coupling between the ocean waves and the atmospheric internal gravity waves
excited by the 1883 Krakatoa eruption. They showed that in the synthetic marigram
computed for a source in the air, three distinct signals corresponding to the Lamb
wave branch, an internal gravity branch and the tsunami branch exist; however, in
the synthetic barograph only two signals corresponding to the first two air waves
appear and no substantial signal exists at the arrival time of the tsunami wave. If
we consider only the static pressure response of the ocean surface for the surface
atmospheric pressure loading and unloading originating from a source in the air,
the missing atmospheric pressure disturbance corresponding to the tsunami is not
explained. In Figure 2b, we can draw a dispersion line of long-waves in the ocean,
tsunami, with a constant phase velocity of about 170 m/s. The tsunami branch
crosses the internal gravity mode branches of the atmosphere. The ocean dynamic
response for an atmospheric pressure disturbance is frequency dependent and becomes
very sensitive to a wave in the atmosphere which has the same wavelength and period
as that of tsunami. Those atmospheric waves can couple to the ocean and produce
tsunami, in spite of the very small atmospheric pressure variation.

The mechanism of the coupling of the atmospheric acoustic modes to the solid
Earth we discussed is similar to this case. In both cases, two media, one overlaying the

other, can sustain waves with the same wavelength and frequency along the boundary.
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The coupling can sometimes become so strong that we only come to observe the waves
in the layer which does not contain the source but excited through coupling to the
waves in the other layer. For the 1883 Krakatoa eruptions, the source is in the air and
atmospheric waves were excited. The waves in the ocean layer, tsunami, were excited
through the air-sea coupling. For the 1991 Pinatubo eruption the source is also in
the air and atmospheric waves are excited. The waves in the solid Earth, Rayleigh
waves, were excited through the air—ground coupling.

Below z=100 km the kinetic eddy viscosity has about constant value ~ 100
m?/s and the molecular viscosity is several orders of magnitude smaller. At z=200
km the atmospheric density decreases further to about 1071? of the surface air density,
or 1073 of the air density at z=100 km. Above z=100 km the molecular diffusion is
the dominant factor in the dissipation of atmospheric waves, and its value increases
with altitude (U.S. standard atmosphere). The distinction of eigenfunctions below
the highly viscous region for different types of the upper boundary condition will
be small and the boundary condition becomes less important (Francis 1973). The
dissipation of a seismic spheroidal mode resulting from the wave disspation in the
atmosphere is negligible compared to the intrinsic Q in the solid Earth because the
total energy in the atmosphere is only a very small fraction of the total modal energy

of the spheroidal mode.

7. Conclusion

The two peaks at about 230 and 270 s of the amplitude spectra of the ground
motion observed for the 1991 Mt. Pinatubo eruption correspond to the resonant
period of very long wavelength standing acoustic modes in the atmosphere. For a
standard atmosphere and solid Earth model, a few atmospheric acoustic modes at
low angular order numbers become a standing wave in the atmosphere and have

the same eigenperiod as some spheroidal modes of the solid Earth with the same
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horizontal wavelength. These acoustic modes in the air set off by the volcanic eruption
can couple to Rayleigh waves efficiently. The oscillation of standing wave results in
periodic loading and unloading on the ground and can be detected with seismographs
at teleseismic distances. On the other hand, the gravity mode with a period of 300
s was recorded as a barographic pressure change near a volcanic source such as the
1980 Mt. St. Helens eruption, but was not detected by seismographs. Because of its
slow phase velocity of about 100 m/s, the gravity wave does not couple to Rayleigh
waves efficiently.

From the energy density distribution and the local behavior analysis of the
normal modes of the atmosphere, we found that the atmospheric structure near the
mesopause and the thermosphere results in a standing acoustic wave with long wave-
length confined between the ground and the thermosphere. The mode with a period
of 270 s is the gravest mode for this structure and the mode with a period of 230 s
is the first overtone. Higher overtones become vertically propagating waves and will
not be a source of harmonic loading on the surface. The gravity mode with a period
of 300 s is a trapped mode in the stratosphere. A regional or temporal variation of
the atmospheric structure, such as lower temperature in the stratosphere in tropics
and higher thermospheric temperature caused by the high sclar activity, may result
in variations of the period of the barographic oscillations because of the change of
the eigenperiod of the gravity mode trapped in the stratosphere, and the addition of
one more frequency in the harmonic ground motion because of the appearance of the
second standing overtone.

To simulate the coupling effect between the atmosphere and the solid Earth
during the volcanic eruption of Mt. Pinatubo, synthetic ground motion is computed
with the normal mode method. The observed amplitude spectral peaks of long—period

Rayleigh waves at 230 s and 270 s are seen in the synthetic amplitude spectrum and
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the amplitude ratio of the two peaks is reproduced in the simulation.

The observed absolute amplitude is explained by an isotropic point source with
a moment 10'® Nm for a two-hour—long source duration. Using the conversion from
a moment source to a energy source, the amount of energy, which contributed to
the excitation of atmospheric waves, released from the 1991/06/15 Mt. Pinatubo

eruption is estimated about 10%° J.
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PART II-A

An analysis of nearfield normal mode amplitude
anomalies of the Landers earthquake
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Abstract

The 1992 Landers earthquake (M,,=7.3) occurred in the middle of the TER-
RAscope network. Long-period Rayleigh waves recorded at TERRAscope stations
(A <3°) after travelling around the Earth show large amplitude anomalies, one order
of magnitude larger than spherical Earth predictions up to a period of about 600 s.
The ground motions over the epicentral region at and after the arrival of R4-5 are
in phase at all stations. These observations are inconsistent with the nearly vertical
strike slip mechanism of the Landers earthquake. Synthetic seismograms for a rotat-
ing, elliptic and laterally heterogeneous Earth model calculated by the variational
method agree well with the observed waveforms. Calculations for various 3D Earth
models demonstrate that the amplitudes are very sensitive to the large scale aspheri-
cal structure in the crust and the mantle. The anomalies for modes shorter than 300
s period can be explained by lateral heterogeneity shallower than the upper mantle.
Rotation of the Earth and lower mantle heterogeneity are required to explain mode
amplitudes at longer periods. Current whole mantle seismic tomographic models can
fully explain the observed amplitudes longer than 300 s. To assess the effect of the
high order lateral heterogeneity in the mantle, more precise estimate of the crustal

correction is required.
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1. Introduction

The 1992 Landers Earthquake (6/28/1992 M,,=7.3) occurred in the middle of
the Caltech/USGS TERRAscope network. Figure 1 shows the epicenter, the source
mechanism determined from teleseismic surface waves (Kanamori et al., 1992) and
nearby broadband stations in California. Since the mechanism is a nearly vertical
strike slip, we expect long—period Rayleigh waves, or spheroidal modes, to be nodal
near the epicenter and antipode for a spherical non-rotating laterally homogeneous
Earth model. However, the amplitudes of the Rayleigh waves observed at the TER-
RAscope stations are much larger than expected for a spherical Earth model. Figure
2 compares the observed long-period vertical component seismograms at one tele-
seismic station and four nearby stations with synthetic seismograms computed for a
spherically symmetric non-rotating Earth model. Surface waves with frequency be-
tween 3 and 4 mHz dominate in these records. A spherical Earth model explains
Rayleigh wave amplitudes at MAJO (distance A=81°) and BKS (A=6°) but not at
TERRAscope stations (A <3°) where observed amplitudes are an order of magnitude

larger than the spherical Earth predictions.

2. Observations

We take the Fourier spectra of the observed and synthetic seismograms for a
spherical non-rotating Earth model at MAJO, BKS and PAS (Figure 3). At PAS
the discrepancy of the amplitudes of the fundamental spheroidal modes is very large
up to a period of about 600 s, or mode 4S;9. At BKS anomalous amplitudes are
found around (S;; and ¢S;9. At large epicentral distances (e.g., MAJO) no amplitude
anomalies are observed. All TERR Ascope stations are located within 300 km of the
epicenter and show similar large amplitude spectra. We also observed that the ground
motion at long periods, several hours after the origin time, becomes in phase over the

entire epicentral region (Figure 4 top). This is not expected from the surface wave
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Longitude

Figure 1. The location of the Landers earthquake (M,,=7.3, June 28, 1992, 11h57m34s
GMT, 34.20°N, 116.44°W) and the five broadband stations in California used in this

study. The source mechanism (dip=74°, rake=-176°, strike=340°) is nearly vertical
strike slip. '
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Figure 2. VLP vertical channel records (upper traces) filtered between 1 and 4 mHz and
synthetic (PREM model) seismograms (lower traces) of the Landers earthquake at
one teleseismic station, MAJO, and four nearby stations, BKS, ISA, PAS and PFO.
At all nearby stations the initial part of the records up to R1 was clipped. R2 and
R3 were also clipped by the signals from the Big Bear earthquake (M, = 6.4)
which occurred about three hours after the Landers earthquake and are not shown

here. BKS records are multiplied by a factor of four to make the response similar
to TERRAscope stations.
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Figure 3. The Fourier spectra of Hanning—tapered VLP vertical channel records (solid
line) and spherical Earth synthetic seismograms (dashed line) at MAJO, BKS and
PAS. Records start at 15000 s and end at 65000 s after the origin time. Vertical
axes are linear and on the same scale for all the stations. BKS records are multiplied
by a factor of four.



68

radiation pattern of the nearly vertical strike slip mechanism. The initial part of
the long-period R2,3 packet recorded at TERRAscope stations (not shown here) is
as large as R4,5 packet. Horizontal component records are too noisy to be used for

determination of the modal peaks in the Fourier spectra.

3. The cause of the anomalies

The non-spherical nature of the Earth such as the rotation, ellipticity and
aspherical structure could cause the anomalies. Since the small amplitude of the
spheroidal oscillations from a strike—slip source near the origin results from the de-
structive interference of waves radiating in the orthogonal directions from the source,
the non-spherical nature of the Earth could reduce the degree of destructive interfer-
ence, thereby increasing amplitudes at the origin. Several hours after the event, the

long—period waves may be disturbed enough to make the source region non-nodal.

4. Synthetic test

To test the asphericity hypothesis, we compare long—period synthetic seismo-
grams for a realistic Earth model with data. The epicentral and antipodal regions
are the major caustics of seismic waves of a sphere. The raypath between the earth-
quake and seismic stations cannot be defined and conventional raypath approaches
break down. We use the variational method (Park et al., 1986, Tsuboi, 1992) which
calculates synthetic seismograms from the eigenfunctions and eigenfrequencies of a
rotating, elliptic Earth model with a three dimensional structure. The eigenfunc-
tions and eigenfrequencies of non—spherical Earth are obtained by solving generalized

eigenvalue problems of the form,
(V - w?T)x = 0,
where V and T are the potential and kinetic energy matrices respectively. w is the

eigenfrequency of a 3D eigenfunction x. The rotational energy matrix W is included
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Figure 4. Top) Vertical component seismograms at TERRAscope stations. Bottom) Syn-
thetic seismograms for rotating, elliptic and 3D earth model SH8U4L8 (Dziewonski
and Woodward, 1992) at the TERRAscope stations. Both filtered between 1 and 4
mHz.
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in V' (Masters et al., 1983). We use equivalent isotropic PREM (Dziewonski and
Anderson, 1981) as a reference Earth model. Matrix elements of V, W and T are given
in Woodhouse (1980) and Shibata et al. (1990). We include the crustal correction as
velocity perturbations in the crust and boundary undulations based on the ocean
function expanded up to the same order as that used for to the mantle (appendix
of Woodhouse and Dziewonski, 1984). The PREM spherical attenuation structure is
included in V. Five nearby spheroidal and five toroidal fundamental mode multiplets
are used as a basis set to calculate a hybrid eigenfunction and eigenfrequency up to 4
mHz to take into account the effects of self coupling, fundamental mode along—branch
coupling and spheroidal-toroidal (S-T') coupling. Synthetic seismograms for a whole
mantle model SH8U4L8 (up to degree | = 8, Dziewonski and Woodward, 1992) are
in good agreement with the observed records (Figure 4) and seem to explain the

amplitude anomalies over a frequency range of 1.6 to at least 4 mHz (Figure 5a).

5. Sensitivity to 3D Earth models

To see the effects of the lateral heterogeneity in the mantle on the nearfield
normal modes amplitudes, we also calculated non-spherical Earth synthetics for 1)
rotation + ellipticity only, 2) M84A (upper mantle [ <8) (Woodhouse and Dziewon-
ski, 1984) + rotation + ellipticity, 3) MDLSH (whole mantle ! <6) (Tanimoto, 1990)
+ rotation + ellipticity, 4) upper mantle part of SH8U4L8 + rotation + ellipticity,
5) SH8U4LS + one-tenth of real rotation rate + ellipticity, 6) self coupling SH8U4L8
+ rotation + ellipticity, 7) SH8U4L8 + rotation + ellipticity without crustal cor-
rection (Figure 5). All 3D Earth models include S velocity, P velocity and density
perturbations scaled according to dInwv,/dInv,=0.8, dlnp/dlnv,=0.4.

Rotation and ellipticity alone cannot explain the amplitude anomalies (Figure
5b). The crustal correction has a large effect up to about 600 s (Figure 5h). Other than

the crustal structure, the upper mantle heterogeneity is mainly responsible for the
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large amplitude anomalies above 3 mHz (Figure 5e). As the frequency decreases the
mode energy penetrates to the lower mantle whose aspherical structure can change
the amplitude by a factor of two around ¢S;4 (Figure 5e). Although self coupling
explains most of the anomalies in the synthetics (Figure 5g), holes in the observed
spectra around ¢S;; and ¢S;9 (Figure 3 bottom) are probably caused by strong S-T
coupling (Figure 5f). We also calculated normal mode amplitude anomalies for other
global seismic models, M84C (upper mantle [ <8) (Woodhouse and Dziewonski, 1984),
SH8WM13 (whole mantle [ <8) (Dziewonski and Woodward, 1992) and SH12WM13
(whole mantle [ <12) ( Su et al., 1992). M84C and both SH8WM13 and SH12WM13
predict synthetics similar to M84A and SH8U4LS, respectively. Amplitudes predicted
by SH12WM13 are not larger than those by SH8U4LS.

6. Discussion

The comparable amplitudes of the initial part of R2,3 (not shown) and R4,5
observed at the TERR Ascope stations indicate that long—period surface waves, longer
than 250 s, are already disturbed after the wave travelled around the Earth once.

The change in the normal-mode amplitude with and without the crustal correc-
tion is about as large as that caused by the lateral heterogeneity in the mantle (Figure
5a, b and h) suggesting that the mantle structures in tomographic models without
crustal correction are seriously contaminated by the crustal structure (e.g., M84A
and MDLSH). Models with higher order lateral heterogeneity do not necessarily give
better fits to the observed amplitude anomalies and phase. Synthetic test shows that
observed anomalies are not sensitive to the truncation of spherical harmonics (e.g.,
SH8U4L8 and SHSWM13 extend to ! = 8, SHI2WM13 extends to [ = 12) and pa-
rameterizations of Earth models (e.g., in SH8U4L8 the upper and lower mantles are
parameterized separately; in SH8WM13 and SH12WM13 no boundary is pre-assumed

in the mantle) indicating that short wave length heterogeneity (12 >1! >8) has little
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Figure 5. Synthetic spectra at PAS for various non—spherical Earth models. The Fourier
spectra are taken for Hanning—tapered records starting at 15000 s ending at 65000
s after the origin time. a) is the same case as Figure 4. b)-h) are the spectra for
the cases 1)-7) in the text respectively. Vertical axes indicate the linear amplitude

on the same scale.
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effects on this observation. The amplitude deficit in the synthetics compared to the
observation around 3-4 mHz (Figure 5a) may be explained by the lateral heterogene-
ity higher than [=13 or by more realistic large scale crustal lateral heterogeneity.
Synthetic calculations (not shown) demonstrate that the amplitude anomalies
observed at BKS are explained by strong rotational S-T coupling (Masters et al.,

1983).

7. Conclusion

Anomalously large long—period Rayleigh waves observed at the TERRAscope
stations of the Landers earthquake can be explained by the non—spherical nature of the
Earth, such as rotation, ellipticity and large scale lateral heterogeneity. The observed
long—period spheroidal mode amplitudes are very sensitive to the large scale structure
in the crust and the mantle structure. Below 3 mHz the lower mantle structure and
the rotation of the Earth can also change the amplitudes by a factor of two or more. To
assess the effect of higher order lateral heterogeneity on the amplitude anomalies near

the epicenter, more precise knowledge of the large scale crustal structure is required.

8. Acknowledgements

I thank H. Kanamori, D. L. Anderson, T. Tanimoto and S. Tsuboi for useful
discussions. I also thank W.-j. Su and R. L. Woodward for providing us with their
whole mantle seismic models, A. Dziewonski for bringing the importance of the crustal
correction to our attention, and an anonymous reviewer for valuable comments. A part
of computations was supported by the JPL/Caltech supercomputing project. This
research was partially supported by the U. S. Geological Survey Grant 1434-93-G—
2287. This research was conducted under the TERR Ascope project supported by the
L. K. Whittier and Arco foundations. Contribution No. 5295 Division of Geological

and Planetary Sciences, California Institute of Technology.



75

References

Dziewonski, A. M. and D. L. Anderson, 1981, Preliminary reference Earth model,
Phys. Earth Planet. Inter., 25, 297-356.

Dziewonski, A. M. and R. L. Woodward, 1992, Acoustic imaging at the planetary
scale, Acoustical Imaging, 19, 785-797,

Kanamori, H., H.-K. Thio, D. Dreger, E. Hauksson and T. Heaton, 1992, Initial
investigation of the Landers, California, earthquake of June 28, 1992 using TER-
RAscope. Geophys. Res. Lett., 19, 2267-2270.

Masters, G., J. Park and F. Gilbert, 1983, Observation of coupled spheroidal and
toroidal modes, J. Geophys. Res., 88, 10285-10298.

Park, J. and F. Gilbert, 1986, Coupled free oscillations of an aspherical, dissipative,
rotating Earth: Galerkin theory, J. Geophys. Res., 91, 7241-7260.

Shibata, N., N. Suda and Y. Fukao, 1990, The matrix element for a transversely
isotropic earth model Geophys. J. Int., 100, 315-318.

Su, W.-J., R. L. Woodward and A. M. Dziewonski, 1992, Joint inversions of travel—
time and waveform data for the 3-D models of the Earth up to degree 12, EOS.
Trans. Am. Geophys. Un., 73, 201.

Tanimoto, T., 1990, Long-wavelength S—wave structure throughout the mantle, Geo-
phys. J. Int., 100, 327-336.

Tsuboi, S., 1992, Amplitude anomalies of surface waves from the July 16, 1990, Philip-
pine Island earthquake, Geophys. Res. Lett., 19, 341-344.

Woodhouse, J. H., 1980, The coupling and attenuation of nearly resonant multiplet
in the Earth’s free oscillation spectrum Geophys. J. Astron. Soc., 61, 261-283.

Woodhouse, J. H. and A. M. Dziewonski, 1984, Mapping the upper mantle: Three

dimensional modeling of Earth structure by inversion of seismic waveforms, J.



76

Geophys. Res., 89, 5953-5986.

Woodward, R. L., A. M. Forte, W.-J. Su and A. M. Dziewonski, 1993, Constraints
on the large—scale structure of the Earth’s mantle, in Evolution of the Earth and
Planets, E. Takahashi, R. Jeanloz and D. Rubie eds., Geophys. Mono. 74, Am.
Geophys. Un., 89-109.



77

PART II-B

The cause of nearfield normal mode amplitude
anomalies of the Landers earthquake
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Abstract

We modeled the interaction of the source mechanism and the station location
with large-scale lateral heterogeneity using the splitting matrix of an isolated multiplet
and the ’source-receiver function’ whose spherical harmonic coefficients are given by
P, where s and ¢ are angular and azimuthal order numbers respectively. For a short
period of time waveform perturbation is proportional to the integral of products of
the splitting function with harmonic coefficients C,; and the ’source-receiver’ function.
For the Landers earthquake and TERR Ascope stations source-receiver geometry, the
’source-receiver function’ is dominated by the low-order components, particularly I=2,
m==2 in the epicentral coordinates. This beach-ball like pattern is the same for all
the near—source stations located in different quadrants of the strike-slip mechanism.
The two maxima of the 'beach ball’ pattern coincide with the locations of the degree
2 maxima of the splitting functions; the western Pacific and east of South America.
These features explain the weak dependence of the waveforms on higher order lateral
heterogeneity and similarity of waveforms over the epicentral region. The location
and the source mechanism of the Landers earthquake relative to the large scale lateral
heterogeneity /=2, including the variations of the cruatal structures, are responsible
for the cause of amplitude anomalies near the epicenter. However, the amplitude near
the epicenter of an earthquake with a thrust fault type mechanism, for example the

Northridge earthquake, is explained well with a spherical Earth model.
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1. Introduction

After several hours after the 1992 landers earthquake, large spheroidal mode
amplitude anomalies near the epicentral region (A < 3°) of the earthquake (dip=74°,
rake=-176°, strike 340°, Kanamori et al., 1992), California, at periods up to about
600 s were observed. The amplitude anomalies can be explained by the currently
available large scale three dimensional seismic tomographic models (Watada et al.,
1993; Tsuboi and Um, 1993; Hara and Geller, 1994). For a point source with a vertical
strike slip source mechanism Rayleigh wave amplitude is expected to be small near
the epicenter and its antipode if we assume that the Earth is spherically symmetric,
because the epicenter is on the excitation node of the spheroidal mode for this source
mechanism. The variations of average surface wave phase velocity along the great
circles containing the epicenter result in the incomplete cancellation of surface waves
converging from all directions near the epicenter after the waves travel around the
Earth once or more. The spatial concentration of surface wave energy in the epicentral
area causes large amplitude anomalies of the surface waves.

In this paper we develop a model to understand the interaction of the source
mechanism and the station location with large-scale lateral heterogeneity, and its
effect on the amplitude near the source. Hara and Geller (1994) performed numerical
experiments and showed that a large scale lateral variation of seismic velocity, an-
gular order [ =2 and azimuthal order m+2 in the epicentral coordinates, can cause
amplitude anomalies near the epicenter for a vertical strike slip. Watada et al. (1993)
reported the results of computations for various 3D Earth models. They showed that
amplitude anomalies are insensitive to the short wavelength (I >8) lateral hetero-
geneity and very sensitive to the crustal structure.

Using the model developed here we isolate the aspherical structure of the Earth

which caused the surface wave amplitude anomalies of the Landers earthquake. Syn-



80

thetic seismograms are computed for the structure which is responsible for the anoma-

lies, and are compared with the observation.

2. Model

Watada et al. (1993) compared the spectral amplitude of synthetic seismograms
with and without multiplet coupling, elliptic shape and rotation of the Earth. They
showed that self coupling is the largest contribution to the amplitude anomalies near
the epicenter of the Landers Earthquake and none of multiplet coupling, ellipticity
and rotation of the Earth changes the amplitude significantly at frequences higher
than 3 mHz. In the following discussion we assume that multiplets are isolated, and
ignore the multiplet coupling, ellipticity and rotation of the Earth.

The contribution of a particular isolated multiplet with angular order ! to an
observed seismogram can be written as a function of time ¢t (Woodhouse and Girnius,

1982; Giardini et al., 1988)
u(t) = Re(exp(iw,t) r exp(iHt) s), 1

where w, is the reference frequency of the multiplet, r is the receiver vector, s is the
source vector. Both r and s are 2/+1 dimension complex vectors whose m-th element

(—=1 < m <) are given by,

1
'm = Z RNY;Nm(era(Pr) 2
N=-1
and
2
Sm = Z SNY;Nm(HSa(Ps), 3
N=-2

where YN ™(8,, ¢,) is the generalized spherical harmonics of Phinney and Burridge
(1973), (6,, ¢r) and (s, @) are the spherical coordinates of the receiver and the source,

respectively. Ry and Sy are given explicitly in Woodhouse and Girnius (1982). s
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depends on the source moment tensor and r depends on the instrument orientation
and incorporates the instrument response.

The splitting matrix H is a square matrix with dimension 2/+1 which can be

written as
2l ]
§ : § : mm't
Hmm’ = Wo Yis Cst 4
s=0,even t—=—s
and

' 2s+1 (71 1| s l l s
mm't __ —~1\ym
W= @2+ Dy <0 ; 0)( 1) (__m o t). 5

The quantity in a pair of large parentheses is the Wigner 3-7 symbol defined, for
example, in Edmonds (1960).
The coefficient ¢, in eq. 4 depends linearly on the Earth’s internal heterogeneity

of spherical harmonic degree s and order ¢, through the expression of the form
Cot = / omy(r) - My(r)dr + Z She.H? 6
0 d

where M,(r), H¢ are the kernels for a spherical harmonic component of the lateral
heterogeneity. dmy; is the volumetric perturbations of P- and S-wave velocities and
density, and dhY, is the topography at the dth discontinuity. The formula for M ,(r) and
H, are found in Woodhouse and Dahlen (1978). Giardini et al. (1988) introduced a
visual representation of the splitting coefficients. A splitting function, which is defined

by

8

21
nB,0)= > > ca¥™(6,9), 7

s=0,even t=—s

where Y;™*(8, ¢) is the completely normalized spherical harmonics defined in Edmonds
(1960), is seen as a projected lateral heterogeneity of the interior onto the Earth’s sur-
face with weighting M,(r) and H,. Figure 1 shows the splitting function of a spheroidal
mode, S3, for a three dimensional tomographic model, SH8U4L8 of Dziewonski and

Woodward (1992).
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splitting function SH8U4LS8 S,

0 60° 120° 180° 240° 300°

Figure 1. The splitting function of mode oS3y computed for a whole mantle 3D tomo-
graphic model, SH8U4L8 (Dziewonski and Woodward, 1992). The spherical har-
monic components of the splitting function have only even angular orders up to
[ =8. Crustal correction is included.
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For a short period of time eq. 1 is approximately
u(t) ~ Re(exp(iwot) r (I + iHt) s)
= Re(exp(iwot)r s + it exp(iw,t)rHs),
where I denotes the unit matrix with dimension 2/41. The first term is the contri-
bution of the spherical Earth and the second term expresses the contribution from
the lateral heterogeneity. In most cases, the magnitude of the second term relative to
that of the first term, determinant of H, is of the order of lateral perturbation of the
Earth, about 1072-1073. Therefore, in many cases, the use of a spherical Earth model
is a good approximation in the computation of synthetic seismograms. In special cases
when r and s are nearly orthogonal, the second term becomes important.
The generalized spherical harmonics ;¥ ™(6, ¢) is a matrix element of the finite

rotation D of angular momentum with angular order [

Yle(e’ (P) = D]if m(O’ g, 90)

9
= dy m(8) exp(imp),
where d};,,(0) is expressed by (eq. 4.1.15 in Edmonds, 1960)
I+ N)I(I - N)!
dl — ( .
v m(6) \/(l+m)!(l~m)!
l+m l—m N 9 20+N+m 9 2l-20—-N—m
-1 o - — .
;(l—N—«)( ” )( ) (cos2 sin o
10
From the binomial coeflicients in eq. 10, o should be in the range of
~N-m<o<l—m. 11
Then the power of sing should be in the range of
m—-N<21—-20—-N-m<2l+N+m. 12

As 6 approaches zero, the dominant term in eq. 10 is the one that has the least power

G)m—N.

) .
of sin 5, namely (sin §
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For a vertical strike slip source, the source vector s has non-vanishing values
only for the components m = +2 in the epicentral coordinates. Because the receiver
vector of a vertical component sensor has only N = 0 term in eq. 2, in the epicentral
coordinates the receiver vector r of the vertical component of a station close to the
epicenter has non-vanishing value only for the component m = 0. Thus the spherical
Earth contribution, which is proportional to r s, vanishes for a vertical strike slip
source and the vertical component of a station located near the epicenter. In this case
the contribution from the aspherical structure becomes important.

The contribution from the aspherical structure is proportional to

Z ’I‘mHmml Sm/- 13

——"
Again, in the epicentral coordinates for a vertical strike slip source and vertical com-
ponent seismograms near the epicenter, r,,, m=0, and s,,,, m' = £2 components have
non—zero value. From eqs.4 and 5 and the selection rule of the Wigner 3-j symbol,
namely —m+m'+t =0 and s = even, eq. 13 has non-zero value only when s = even
and t = —m/. That is, only a part of the lateral heterogeneity, which has even angu-
lar order s and azimuthal order m = £2 components, contributes to the amplitude
anomalies near the epicenter. Hara and Geller (1994) investigated the Born approxi-
mation expression of the excitation of singlets by a strike—-slip source in a similar way,
and reached the same statement.

We extend the evaluation of eq. 13 for both nearfield and farfield stations and
for general earthquake source mechanisms. We rearrange eq. 13 as

E — § E mm/'t
rmHmm’ Sm = Tm’Yls CstSm/

mm/ st mm'

= Zpst*cst 14
st

- [e6.0)n6.00 15
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where * denotes complex conjugate and the surface integral covers the whole surface
of the Earth. We have introduced in the expression above a new function £(6, ¢), we

call the source-receiver function, which is defined by

£0,0) =D paY™(6,9), 16
st

and pg;, we call the source-receiver coefficient, are given by

!
P = 3t s 17
mm/
. / —-m —m' -
Because of the symmetries of 4P t=y, ™ =™ = r,=(—1)"r*, and sy=(-1)"s* ,,

the source-receiver coefficient has a symmetry of p, ;=(—1)'p}, and therefore the
source-receiver function £(8, ¢) is real everywhere. The amplitude anomalies can be
modeled by two functions defined on the surface of the Earth; one is the 3D structure
of the Earth, which is expressed by the splitting function 7(6, ), and the other
is the configuration of a station and an earthquake including their locations and
the sensor component and the source mechanism, which is expressed by the source—
receiver function £(8, ). For a short period of time after the earthquake the amplitude
perturbation is proportional to the surface integrals of the product of the splitting

function and the source-receiver function.

3. Application

The source-receiver function of the (S39 mode shown in Figure 2 is computed for
the Landers earthquake source and the vertical component at the Pasadena station at
angular order 30. In the power spectrum of this source-receiver function, two sharp
peaks exist at /=2 and 60 (Figure 3). The peak at (=2 for the Landers earthquake
and the vertical component PAS geometry agrees with the qualitative discussion in

section 1. The peak at /=60 indicates that the vertical component amplitude near
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the epicenter of the Landers earthquake is also sensitive to the lateral heterogeneity,
with a horizontal scale of half the wavelength of the mode.

The heterogeneity of the Earth’s interior is dominated by long-wavelength fea-
tures; the power of the large scale seismic heterogeneity of the Earth decreases with
angular order. Tanimoto (1991) showed that the power spectrum of surface wave
phase velocity maps has a secondary peak at I=>5, 6 and decreases with /™! at higher
orders. Su and Dziewonski (1992) displayed that the power of a body wave travel time
residual map decays more quickly at [ higher than [=6~8. Because the amplitude per-
turbation is the product of the source-receiver function and the splitting function (eq.
15), we assume that the contribution from the peak at (=60 is small and negligible. In
Figure 4 we plot the low—pass filtered (I<9) source-receiver functions for the vertical
component at PAS and the Landers earthquake configuration, and the vertical com-
ponent at MAJO and the Landers earthquake configuration. Their power spectra are
shown in Figure 5. The [=2, m= 42 components of the source-receiver function in the
epicentral coordinates are dominant for the vertical component at PAS and the Lan-
ders earthquake. The orientation of the m = £2 term, the ’beach ball’-like pattern in
the source—receiver function, is controlled by the source mechanism. The zero-line of
the source-receiver function is parallel to the strike of the vertical slip source mech-
anism. For all the nearfield stations located in different quadrants of the strike-slip
source mechanism of the Landers earthquake, the source-receiver functions show a
very similar pattern but with different magnitude. This feature explains the observa-
tion of Watada et al. (1993) that the waveforms of long—period Rayleigh waves from
the Landers earthquake observed at the nearfield stations within a different quadrant
of the source mechanism are very similar with each other.

For farfield stations, the source-receiver function shows broad ridge-like and

trough-like patterns along the great circle passing through the earthquake and station
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Figure 2. The source-receiver function for the vertical component of PAS and the Landers
earthquake location with its source mechanism. The vertical scale is linear and its
scale is arbitrary.
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power spectrum of source-receiver function (gS3q)
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Figure 3. The power spectrum of the source-receiver function plotted in Figure 2. The
power at angular order s is computed by >, p,:* ps: . The vertical scale is linear
and its unit is arbitrary.



89

%
QRO
o T o
o BSOSl o
LRI el
RN 2 O
"‘"'I“‘.‘.’.‘.&o"‘ O .:r,""'lp",\‘li
RS SRR, L
X SRSSAEICN s
K ..~'.«::~:~:"~‘ ..'.':'z':':
: "4":’..:‘ R
X st
SR R
o P """
e A
S 3 2
2228 12
o SN
SRR, 3 v
e & s -
e S8 P
= 33 P s
X5 . 5%
= T
S s A R
A A 3R a,za"*"'
=2 28N IR .":o."o"."‘":‘
R T8 g
IT S PR ¥ A G
o ;:#42<.<».21 CE
{Ssasee = e
..‘&::’.h..‘;’ : .::mgx\\
AT S PR =
3 DRI i \
AR X % :
s RN 222
AR e A
R i .'/
DRGNS e
% to:...c,.:..'" Ly == :
SRS R }""o".""
RIS = :
S :
oty
oSt e s
et
LB
NS
oo o
el

>
&3
X

L
o

ot

:
>
>
e
&

Poriscer

R

R
R

:
3, o
o e
iy g
o > DR
IR R
DRI L AERRIAY
e, o
AKX S s
i
s s
‘! v.',-l""“"" o0
,:4,,,4,,,:,,,?,,.;.:::":’:
S
e e
RN SR
R IS
s

%

R,

S,

RAOAS,
K

g

%

RS
"

A
A ¥ 3 3
SRR
BRI
%




90

Figure 4. The low—pass filtered I <9 source-receiver functions for the Landers earthquake
and; left, for the vertical component of the MAJO station (36.5°N, 138.2°E), Japan.
right, for the vertical component of the PAS station (34.1°N, 118.2°W), USA. While
triangles and diamonds indicate station and earthquake locations, respectively. Both
plots are in the same linear scale and its unit is arbitrary.
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Figure 5. The power spectrum of the source—receiver functions for the vertical component
at PAS and MAJO and for the Landers earthquake. The spectrum for PAS is the
same as in Figure 3. Both plots are in the same linear scale and its unit is arbitrary.
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locations (Figure 5). This is consistent with the picture that the structure along the
great circle connecting the station and the earthquake affects the frequency of the
normal modes (Jordan, 1978). What Woodhouse and Girnius (1982) called kernel in
their study is very similar to the source-receiver function we introduced here.

Since both the splitting function and the source-receiver function have a peak
in the power spectrum at [=2, if the patterns of the = 2 component of each function
are similar, or in other words the coefficients of two functions are ’parallel’ in the sense
of the vector operation in eq. 14, we expect large amplitude anomalies at the nearfield
stations of the Landers earthquake. Figure 6 plots the source-receiver function for the
vertical ground motion at PAS of the Landers earthquake and the splitting function
for the SH8U4L8 tomographic model. Only the [=2 components are used in these
plots. The two maximum regions in each [=2 pattern coincide; both have one peak

in the western Pacific and another peak east of South America.

4. Synthetic test

We computed synthetic seismograms to confirm whether the [=2 pattern is
responsible for the cause of the amplitude anomalies. The long-period seismogram
for a 3D Earth model including only self coupling contribution from the =2 lateral
heterogeneity component, and one including all coupling effects from all lateral het-
erogeneity [<9, are compared with observation (Figure 7). The waveforms of R4,5 and
R6,7 packet are well reproduced in both synthetic seismograms, indicating that self
coupling caused by the very large scale structure (/=2) is the origin of the nearfield
amplitude anomalies of the Landers earthquake.

Because the source-receiver function includes the information of the earthquake
source mechanism, the nearfield amplitude of the spheroidal mode will change for an
earthquake at the same location but with a different source mechanism. If the orien-

tation of the vertical strike slip of the Landers earthquake differs by 45 degrees, the
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(2)

(b)

Figure 6. (a) [=2 component of the source receiver function in Figure 3 and 5. (b) (=2
component of the splitting function in Figure 1.
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Figure 7. Vertical component seismograms at PAS for the Landers earthquake. Top)
self coupling synthetic seismogram using only the [=2 component of lateral het-
erogeneity of the SH8U4L8 model. Middle) Synthetic seismogram computed by
the variational method which takes into account self coupling, multiplet coupling
effects. The SH8U4L8 tomographic model is used. Bottom) filtered VLP channel
data recorded at PAS. All traces are filtered between 1-4 mHz.



95

two patterns of the =2 component of (8, ¢) and £(6, ¢) become nearly ’orthogonal’
and the amplitude would be small. We performed synthetic tests of the rotated strike
slip mechanisms for a tomographic 3D model (Figure 8).

The amplitude anomaly in the synthetic seismograms for pure strike—slip source
mechanisms reaches its maximum at two strike angles. The orientations of the strike
of these two mechanisms are 90 degrees apart and the polarity of waveforms is flipped.
The strike of the Landers earthquake is 340 degrees, near the maximum. If we have
a large strike slip earthquake with a strike angle of about 110 degrees along the San
Andreas fault in Southern California, we will observe smaller amplitude anomalies
near the epicenter, a few times larger than the spherical Earth predictions, instead of
ten times as we have seen for the Landers earthquake.

In Figure 8 the amplitude of the surface waves one hour before the arrival of the
R4,5 packet reaches its minimum when the amplitude of the R4,5 packet reaches max-
imum, and vice versa. The time one hour before R4,5 corresponds to the arrival time
of the G4,5 packet in the horizontal component. These waves showed up on the arrival
of the G packet are the Love waves appeared in the vertical component. For a strike—
slip source mechanism, the directions of the maximum Rayleigh wave radiation are
at the minima of Love wave radiation and vice versa, therefore Love wave amplitude
anomaly reaches its maximum in the horizontal component when Rayleigh wave am-
plitude is minimum and larger Love waves appear on the vertical component through
spheroidal-toroidal coupling. Similar waveforms, G6,7 in the vertical component, were
displayed in the fully coupled synthetic seismogram and the observed waveforms in
Figure 7 about 7.6hours after the origin time. When we take into account self cou-
pling, spheroidal-spheroidal multiplet coupling but not spheroidal-toroidal coupling,
these Love waves in the vertical component disappear.

For a strike—slip source, the aspherical Earth is responsible for the nearfield
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Figure 8. Synthetic seismograms of PAS vertical component for purely vertical strike—
slip sources located at the epicenter of the Landers earthquake. Seismograms are
filtered between 1-4 mHz. Seismograms are computed by the variational method
which takes into account self coupling, multiplet coupling effects. The SH8U4L8

tomographic model is used
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amplitude anomalies and the spherical Earth does not contributes to the anomalies.
For a thrust or normal fault type source mechanism, on the other hand, the con-
tribution from the spherical Earth, the first term in eq. 8, is much larger than the
contribution from the aspherical Earth, the second term in eq. 8, therefore we expect
little amplitude anomalies near the epicenter of an earthquake with these types of
source mechanisms. The 1994 Northridge earthquake occurred in Southern California
with a thrust fault type source mechanism (Figure 9). Lateral heterogeneity has little
effect on the amplitude of synthetic seismograms of Rayleigh wave packets near the
epicenter and the observed waveforms are explained well with the 1D Earth model

(Figure 10).

5. Crustal effect

We have shown that very large scale lateral heterogeneity is responsible for the
nearfield amplitude anomalies, although, the vertical extent of the lateral heterogene-
ity is not addressed yet. Watada et al. (1993) reported that the synthetic seismograms
of the nearfield of the Landers earthquake change their amplitude by about a factor
of two with and without crustal correction. The amount of amplitude change is as
large as the one caused by the heterogeneity of the whole mantle.

Because the Landers earthquake may be a special case in which the crustal
correction effect is enhanced and results in the amplitude anomalies, we cannot argue
that the crustal correction is also as important as the whole mantle heterogeneity for
other combinations of stations and earthquakes. To see whether the crustal structure
1s as important as the mantle structure in general, we plot the splitting width of fund-
mental spheroidal mode multiplets for various 3D models with and without crustal
correction (Figures 11 and 12).

The splitting width is purely determined by the 3D Earth model and indepen-

dent of the source mechanism. The source mechanism determines the excitation of
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Figure 9. Top: the Northridge earthquake (1994/01/17 12:31:2.1 GMT, 34.56°N,
118.76°W, M,,=6.6) occurred also in Southern California. The source mechanism
is thrust (strike =126°, dip=50°, slip=108°). Bottom: five broadband stations in
North America appeared in Figure 10.
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(c)
Spherical Earth synthetic seismograms
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Figure 10. Vertical component VLP channel records in North America (a) filtered be-
tween 1 and 4 mHz and synthetic seismograms; (b) for 3D Earth model SH8U4L8
(Dziewonski and Woodward, 1992) and (c) for 1D Earth model PREM (Dziewonski
and Anderson, 1981). The spike at 2hours after the origin time in SBC data is

due to an aftershock glitch. In the computation of 1D Earth synthetic seismograms
overtones are included.
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singlets within a multiplet. The larger splitting width indicates larger lateral seismic
velocity variations in the 3D Earth model. Many 3D seismic velocity mantle models
were obtained by the inversion after the crustal effects were modeled and subtracted
from the waveform residuals. These mantle models, if the corrected crustal structure
is not included in the splitting width computation, predict erroneously large split-
ting (Figures 11 and 12). For example, a fundamental spheroidal mode with /=43 or
T~200 s without the crustal correction splits about 40 % wider than the one with
the correction (Figure 11). The splitting width difference for a mantle model with
and without the crustal correction grows as the wavelength of the spheroidal mode
becomes shorter because a mode with large [ is more sensitive to the shallower struc-
ture, 7.e., lateral heterogeneity in the crust. However, even for low—order spheroidal
modes, for example [=10 (T~ 600 s), the crustal correction can change the splitting
width by about 20 %.

The variation of the splitting width for various 3D models is much smaller than
the change of the splitting width with and without including the crustal correction
for a mantle 3D model. In Figure 11, the splitting width of fundamental spheroidal
modes for two tomographic models, whole mantle model SH12WM13 of Su et al.
(1994) and upper mantle model M84A of Woodhouse and Dziewonski (1984), are
compared. The splitting width predicted by M84C differs several percent at { > 10
from the one by SH12WM13. For low angular order ! <10 the difference increases
because the low—order modes are sensitive the deeper mantle structure. But at very
low angular order the difference decreases because the rotational splitting becomes
dominant.

This large crustal effect on the splitting width is consistent with the non—
negligible crustal corrections, such as surface topography and the variations of Mcho

depth, for the phase velocity measurements of long—period surface waves. It has been
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Figure 11. Splitting width of fundamental spheroidal mode multiplets computed for vari-
ous mantle models with and without crustal correction. Splitting width is defined by
the real part of the difference between the maximum and minimum eigenfrequencies
within the multiplet. Symbols indicate; cross, upper mantle model M84A (Wood-
house and Dziewonski, 1984) in which crustal correction is not considered in the
inversion; circle, upper mantle model M84C (Woodhouse and Dziewonski, 1984) in
which crustal effect is subtracted before the inversion; square, whole mantle model
SH12WM13 (Su et al. 1994) in which crustal effect is subtracted before the inver-
sion. Black symbols indicate that for which we did not include the crustal structure
in the calculation of the splitting width. In the calculation the effects of rotation, el-
lipticity, spheroidal-toroidal coupling and fundamental mode along-branch coupling
are included.
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Figure 12. Splitting width of fundamental spheroidal mode multiplets computed for a
whole mantle model, SH12WM13 of Su et al. (1994). Black circles indicate that
Earth rotation, ellipticity and the mantle model with crustal correction are included
in the computation. White circles indicate same as black circles except the mantle
model without crustal correction. White triangles indicate same as black circles
except that rotation and ellipticity are not included. In the calculation coupling with
other multiplets is ignored.
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known that in the analysis of surface wave propagation including the effect of the lat-
eral variation of seismic velocities, the crustal structure as well as the mantle structure
should be take into account. Nataf et al. (1986) noticed that the contribution from
the crustal thickness variation is a dominant factor in the phase velocity variations
of long—period surface waves; the effect is quite important even for 300 s Rayleigh

waves.

6. Discussion and conclusion

The nearfield spheroidal mode amplitude anomalies of the Landers earthquake
are caused by the very large scale lateral heterogeneity of the Earth, in terms of
spherical harmonics, [=2 and m+2 components in the epicentral coordinates.

The orientation of the strike—slip source mechanism of the Landers earthquake
controls the [=2 pattern which describes where the surface waves, recorded near the
epicenter after traveling around the Earth, are sensitive to the lateral heterogeneity.
The lateral heterogeneity filtered by the pattern determines the amplitude near the
source. For the location and the source mechanism of the Landers earthquake, the
'beach ball’ pattern has two peaks; one in the western Pacific and the other east
of South America. The lateral heterogeneity of the Earth also has peaks at these
geographical regions and thus contributes to the large amplitude anomalies near the
epicenter. This amplitude anomaly is probably the first direct observation of [=2,
m=£=2 components of the lateral seismic velocity variation. A good agreement of
synthetic seismograms using only l=2 component with observation suggests that =2
m=+2 components are successfully constructed in the current seismic tomographic
models. ”

The fault ruptured unilaterally from south to east during the Landers earth-
quake over a fault length 65 km with an average rupture velocity 2.7 km/s (Wald and

Heaton, 1994). Because the fault length is much smaller than the wavelength of the
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long-period (1-4 mHz) surface waves > 1000 km, we ignored the fault size finiteness
and the rupture directivity effect in this study. The method to compute synthetic seis-
mograms for a unilateral horizontally laying line source outlined in Woodhouse (1983)
can be incorporated in the variational method to simulate the long-period ground mo-
tions in Southern California during the Landers earthquake with a line source for an
aspherical Earth model. The confirmation of the validity of our negligence of the fault
finiteness is a future research topic.

The Northridge earthquake showed no evidence of any amplitude anomalies.
This observation is explained by the thrust—fault type source mechanism. For a strike—
slip mechanism, the Rayleigh amplitude for a spherical Earth vanishes at the epicenter
and a small aspherical Earth perturbation results in the large amplitude near the
epicenter because of the imperfect cancellation of surface waves. For a thrust or normal
fault type mechanism, the Rayleigh wave amplitude reaches its maximum near the
epicenter and the antipode for a spherical Earth. An aspherical Earth structure can
cause a small phase perturbation of the large amplitude surface waves but not results
in the substantial amplitude change.

Large—scale variations of the crustal structures also contribute to the nearfield
amplitude anomalies. The change of the splitting of the fundamental spheroidal modes
when we incorrectly include the crustal structure is much larger than the splitting
width variations for different tomographic 3D Earth models, even at 300 s. Therefore
we need to carefully subtract the crustal effect in long—peri/od surface waves when we

determine the structure in the mantle from surface wave data.
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APPENDIX A

Synthetic seismogram for an aspherical Earth model
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In this appendix we show how synthetic seismograms for an aspherical Earth
model are computed. The governing equation of elasto-gravitational oscillations of a

non-rotating elastic body is formally expressed as (Woodhouse, 1983)

(’H + p§—§2> u(x, t) = F(x,t), 1
where
H:  integro-differential operator acting on the spacial domain of the Earth
p density distribution
u displacement vector field

F external body force.

H includes the effect of elastic force and gravitational force. The expression of H
for a slightly aspherical Earth model is found, for example, Woodhouse and Dahlen
(1978). We take v;(x) as a complete set of spatial functions, but not necessarily
orthogonal. By expanding eq. 1 with this basis set and integrating over the Earth with

f v;1(x) dV , ! denotes transpose and complex conjugate, we obtain an equation

2

Z << JIH| i > + < jlpli > %) ci(t) = Fj(¢), 2

i

where C;(t) is the expansion coefficients of u(z,t);

u(x,t) = z e () vi(x),
F;(t) is defined by
Fi(t) = /ij]:(x,t) av

and symbol < j|A|i > means

Or a matrix form

<H + T%) c(t) = F(t), 3
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where
Hy; =<i|H|j >,
Tij =<ilplj > .

Woodhouse (1983) solved eq. 3 in the time domain. We solve eq. 3 by the Laplace
transform method. The Laplace transform, £, of eq. 3 is obtained by integrating with

) fooo e~ %' dt. The result is expressed formally as

(H + 8°T) &(s) = F(s), 4.

where

é@):ﬁ{qﬂ}:iéwe*%uﬂm
F@):L{Fﬁﬂziéwd“F@Mt

In order to get solution &(s) in s domain, we have to solve (H + s2T') . We define a
generalized eigenvalue problem
HA = A’TA,

B'H = A’B'T,
where the columns of A are the right eigenvectors of a generalized eigenvalue problem
of the form (H—X;*T)a; = 0 and columns of B are the left eigenvectors of a generalized
eigenvalue problem of the form b;'(H — );?T) = 0 and A%; = Ai?8;5. For a given
eigenvalue there are left and right eigenvectors (Golub and Van Loan, 1989). We find
that

(A2 = A*)(b,'Ta;) = 0

because

bjTHa,- = )\izbjTTa,- = /\jzbjTTai.

If we assume that there is no degeneracy in the eigenvalues, the kinetic energy po-

tential T' and the potential energy matrix H can be simultaneously diagonalized with
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the left and right eigenvectors;
BiTA = J, 6
B'HA = BITAA? = A?J, 7
where J is the diagonal matrix defined by the above equations, not the unit matrix

I. When H and T are hermitian, A = B and A'TA = J. From egs. 6 and 7 we can

express (H + s*T) ™" by

(H+sT) " = A(A2+521) 7 Air?
A

8
=A (A +s1) 7 JB
Using
1 1
-1 _ .
L {m} = ;\' Sin At,
we can invert ¢(s) for c(¢)
t O
c(t) = / AAT! sin Ao (¢ — ) ATI'TIR(t) dt.
0 .
O .
By integrating by parts we obtain
t O .
c(t) = / AN 1—cos\(t—t) ATITTIR() dt, 9
0 0 .
where F = %. For a step time-function earthquake source
F(t) = 6(t)F,
eq. 9 becomes
0
c(t) = AA™? 1 —cos A\t ATITIF L0
o :

= —Re (AA2e"MATITTIF) .
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In the last equation we have neglected the static deformation. The acceleration is
given by '
é(t) = Re(Ae™MATITIF)  or
11
= Re(AeJ'BIF).

The choice of a set of complete spatial functionals v;(x) is arbitrary. In the real
computation we cannot sum infinite number of v; and we truncate the dimension of
the basis set. If we take spatial grid points as a basis set, this approach is a finite ele-
ment method. For the long-period oscillation of the Earth, we take the eigenfunctions
of a spherical Earth model as a basis set because in order to have the same accuracy
in eq. 3 we need fewer number of basis for the eigenfunctions of a spherical Earth
model than we need for other complete sets. Hereafter we use vy ,,(x) to specify a
singlet of the spherical Earth model in terms of multiplet index k, which incorporates
spheroidal or toroidal mode type and overtone number n and angular order [, and
azimuthal order m.

Synthetic seismogram u(t) at x, excited by an earthquake at x, is given by

u(t) = Re(R(x,)u(x,t))

= —Re(R(x,)AA2eM 1 BIS(x,)) 19
RAeMBtS
A2BITA

Receiver vector R(x,) incorporates the sensor orientation and the response of the

= —Re

seismometer at x, including the effect of the free air gravity change by the vertical
displacement and the gravity potential perturbation (Gilbert, 1980), and earthquake
source vector S(x,)(= F) incorporates the source mechanism at x,. The vector ele-
ments of Ry, S for a multiplet are given in Woodhouse and Girnius (1982). In the
variational method (Park and Gilbert, 1986) R and S are extended to include a set of
multiplets near the target multiplet in the frequency domain. In our computation five
fundamental spheroidal modes and five fundamental toroidal modes are used. The

matrix elements of H and T for an elliptic rotating aspherical Earth are constructed
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from the expression of Z in eq. 16 of Woodhouse (1980) as
H - A02 + H1
T=I1+T1,

where H; and T} are obtained from the decomposition of Z
Z = H1 - UJole

and A,” is a diagonal matrix whose elements are the square of the degenerate eigen-
frequencies. In the computation of matrix elements, we take into account the effects of
self coupling, fundamental mode along-branch coupling and spheroidal and toroidal
mode coupling caused by rotation, ellipticity and lateral heterogeneity of the Earth.
The density, S-wave and P-wave velocity perturbations are included but the potential
perturbation is not.

Often tomographic mantle models are obtained by the inversion after the shal-
low layer correction, i.e., crustal correction, in the raw data, such as travel times and
waveforms, are modeled and subtracted. If a tomographic model is provided with
a crustal model, for example all Harvard models except M84A of Woodhouse and
Dziewonski (1984), we include the effect of lateral variation of surface topography, P,
S velocity perturbations in the crust and the Moho and mid-crust boundary undula-
tions. Woodhouse and Dziewonski (1984) describes a model of these corrections based
on the ocean function expanded up to the same order as that used for the mantle.

The spherically symmetric PREM Q model is also included in H. When Q is
included, the eigenvalue problem (eq. 5) becomes non-hermitian. Complex eigenvalues
A? and left and right eigenvectors A, B are computed by CRAY YMP at JPL using the
LAPACK (Anderson et al., 1992) numerical package. The largest eigenvalue problem
used to compute synthetics in this thesis is for target multiplets (T4 and (S43 (upto
200 s). In this case ¢S;, [=41-35 and T}, [=38-42 are the basis set and the total

dimension of the eigenvalue problem is 840. Recently we extended the computation
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to a higher frequency and with more multipets in a basis set. Barbara (1994) used the
eigenfunctions with a period down to 125 s, target mulitiplets ¢Te7 and (S5, with a
basis set composed of ¢ T}, [=64-70 and ¢S;, [=72-78, total dimension 2002, computed
by the same algorithm.

For each multiplet £ we solve the eigenvalue problem and only store the eigenfre-
quencies and hybrid eigenfunctions which have the largest component in the subspace
spanned by the multiplet k. Usually we find 2/ +1 hybrid eigenfunctions except a few
cases of strong Coriolis spheroidal-toroidal coupling. In a strongly Coriolis coupling
case between S;-o Ty, we find 2(I+1')+2 singlets which have the largest component in
the subspace spanned by either ¢S; or ¢Ty. Once we build a set of eigenfunctions for
a 3D earth model, band-pass synthetic seismograms are computed by eq. 12 using all
eigenfunctions (a;, b;/j;) and the complex eigenfrequencies (\;) within the frequency

band.
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