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ABSTRACT

Study of the unsteady burning of solid propellants can be
best carried out under widely varying conditions and at relatively
inexpensive cost in a simple test device known as the T-burner,
This simple configuration is used to observe the spontaneous growth
and decay of oscillations, Knowing the losses involved in the systém,
one can infer the frequency response of the burning surface within
the approximations of linearity.

A significant undertainty in the interpretation of data taken
with T-burners arises because very little has been known about
some of (;he acoustics, in particular the inﬂuence‘of. the exhaust
vent, The present investigation is a study of the influence of a sub-
sonic exhaust vent, The primary apparatus is a resonance tube
operated at room temperature with different resonance frequencies
of the first longitudinal mode of oscillation. Experiments have been
done over ranges of the average Mach number of the flow in the
resonance tube, and with vent having different sizes and shapes,

According to the one-dimensional linear stability analysis,
the attenuation constant associated with the influence of the exhaust
vent is given by the product of four times the resonance frequency
of oscillation times the average Mach number of the flow in the
resonance tube. The following major conclusions were predicted
and verified:

(1) the vent produces a gain of acoustic energy proportional

to the average Mach number of the flow in main reso-

nance tube
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(ii) the gain is proportional to the frequency of the fundamen- b
tal longitudinal mode

(iii) the gain is independent of the shape and size of the vent.

The influence of the exhaust vent, hence, cannot be neglected

in the interpretation of T-burner data.
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I. INTRODUCTION

Oscillating motions must be anticipated in every solid propellant
rocket motor. These unsteady motions are sustained by conversion
of some of the energy released in the combustion process, to mechan-
ical energy of the waves. The amount of energy required to drive
the waves is a very small fraction of the total available energy and
final characteristics of resultant combustion driven instability depend
on the internal geometry of the rocket motor and the compositioﬁ of
the propeilant used. The oscillations of chamber pressure producev
a large oscillatory force acting on the ends of the chamber and this
then is transmitted to the structures. If the driving by the propel-'
lant is sufficiently strong, it will spontaneously excite the acoustic
modes of the chamber. Loss mechanisms in a rocket motor are
generally rather weak and the cavity itself serves as‘ a narrow band
resonator. This may lead to structural vibration problems if proper
attention is not paid to studying the unsteady burning of the propel-
lant. Combustion driven acoustic instabilities have been recognized
as one of the serious problems encountered in the development of
solid propellant rocket motors. The fluid mechanics of uﬁsteady
flow in the chamber (i.e., acoustics), coupling between the wave
motions and the combustion and other energy losses involved in the
system must be understood separately for a better grasp of the
problem. References 1 and 2, for example, address the problems
of research on combustion instability and its application to solid

propellant rocket motors.
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To facilitate the study of unsteady burning of propellants under
widely varying situations and at relatively low cost, a simple device,
the T-burner, has been widely used. Figures 1.1 and 1.2 describe
the details of the typical T-burner. This test apparatus is used to
observe the spontaneous growth and decay of the oscillations. There
are two broad applications:

(i) to determine the gqualitative behavior of different
propellants; and

(ii) to measure quantitatively the response of the burning

surface to unsteady motions..

A T-burner consists of a straight tube with a central exhaust
vent. The length of the tube determines the lowest longitudinal
acoustic mode of oscillation. Propellant grains may be placed either
at the ends (end burning grains) or onv the lateral boundary (cylindri-
cal grains). ' The lower end of the exhaust vent is connected to a
surge tank. This tank and hence the T-burner are pressurized using
nitrogen gas. The propellant grain can be ignited using a pallet
ignitor paste mounted on the heated nichrome wire. References 3, 4
and 5 describe in detail other related hardware used for the evalua-
tion of combustion instability of solid propellants.

If the driving by the propellant is sufficiently strong, then an
acoustic instability occurs and it will spontaneously excite the longi-
tudinal mode of the tube. Observing the growth and decay rate of
these oscillations in this simple rocket motor (i.e., T-burner) and
knowing the other losses involved in the system, one can infer the

frequency response of the burning surface. Ideally, one would prefer
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to have the response of a burning surface to steady oscillations
having fixed amplitude and frequency. As the T-burner is presently
used and described above, these ideal situations are not realized.
The response is obtained always under the conditions when the am-
plitudes of oscillations are growing or decaying. The further as-
sumption of linearity is applied that the response is independent of
the rate of change of amplitude.

The major losses involved in the system are the viscous
and heat transfer losses at the wall of the tube; the influence of the
exhaust vent (including radiation losses through it), the flow turning
losses, and the particle damping .losses. There are no suitable theoret-
ical calculations for acoustic energy loss associated with radiation
through the vent. The viscous and heat transfer losses at the wall of the
tube can be predicted fairly well using theoretical calculations described
in Appendix A. The stability of one-dimensional motions in a rocket
motor described in Appendix A also predicts the other two losses. The
result explicitly shows that the flow-turning in unsteady flow is indeed
a dissipative inelastic process. Chapter 3 and Appendix A further de-
scribe the interactions between acoustics and turning flow. In practice,
the fluid motions near the exhaust vent for end burning grains and near
the inflow for cylindrical grains being three-dimensional, they raise a
question about the validity of one~-dimensional calculations. To reduce
the dependence of this uncertainty on the final calculations of fre-
quency response of a propellant some special devices were developed.

Reference 4 describes them in detail. Also presence of metal



powder in propellants introduces the losses associated with the
particulate damping forces, This asks for more elaborate test
procedures as summarized in references 4 and 5,

The purpose of this work is to measure the influence of the
exhaust vent and to check the validity of one-dimensional calculations
which are intended as approximations to these influences. Reference
6 describes the one-dimensional calculations. Chapter 2 and
Appendix A discuss this problem in further detail. The losses
associated with interactions between the waves in the chamber and
the average flow entering from the burning surface (the case is re-
versed for the exhaust vent) are solely described by fluid-mechanics.
In the real flow, the losses ultimately' arise due to the viscous ef-
fects and are the unsteady counterpart of the pressure losses found
for steady flow in a duct with mass addition at the boundary. These
influences, both flow turning and vent effects, appear to be imposs~
sible to determine with hot firings in a T-burner, Because the
effects in question are independent of combustion, it is adequate to
carry out the experimental evaluation of them at room temperature.
Chapters 3, 4, 5 and Appendix A describe further rationale and ex-
periments involved in coldflow (room temperature) testing, The
influence of the exhaust vent must be determined first and results
obtained must then be used in determining the flow turning losses.
This work reports only the experiments carried out to determine
the influence of the vent. Our experiments cover a wide range of
the important parameters: resonance frequency, flow Mach number,

vent size and shape, Because the indirect method was used to



determine the influence of the exhaust vent (described in chapter 4),
extreme accuracies are required to measure the other losses pre-
sent, such as net losses, wall losses, and the influence of the driving
pistons, Knowing these very accurately we may then determine the
influence of the exhaust vent. A statistical approach adopted to min-
imize the experimental errors, is described in chapter 7.

It has been found that one-dimensional approximation predicts
the influence of the exhaust vent withink reasonable accuracy. Though
the actual processes are three-dimensional, these results are en-
couraging. The major conclusions are described in chapter 9.

Two important general conclusions follow from the present
work: |

(i) Cold flow testing can be used successfuliy to deter-
mine the influence of the exhaust vent., The technique
can be made much more sophisticated to reduce the
sources of errors and hence to eventually determine
the flow turning effects more precisely.

(ii) The influence of the exhaust vent cannot be neglected
and hence proper correction must be applied in deter-
mining the response function (frequency response) of
a burning surface from data obtained with T-burner

experiments,
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II. SUMMARY DESCRIPTION OF LINEAR ANALYTICAL

TECHNIQUES IN COMBUSTION INSTABILITY

Analytical work on combustion instability in solid propellant
rocket motors provides the basic framework for treating all the ex-
perimental measurements. A complete discussion of all present
techniques is summarized in reference 5. Because the physical
situations are so complicated (e.g., general three-dimensionalitjr of
the processes involved, presence of combustion and various losses
difficult to predict from first principles) that successful treatment
of these problems requires a combination of both experimental and .
analytical techniques. |

This chapter comprises a description of the analytical apprdach
for a full scale rocket motor in general and the T-burner in partic-
ular, which is just a special kind of rocket motor. In chapter 1,
the relative merits of using the T-burner were discussed. The
simplicity involved with geometry makes it very convenient to check
certain major features of the analysis. As described earlier, use
of the T-burner is restri.cted to observing the spontaneous growth
and the decay of oscillations within its cylindrical cavity. The analysis
described here produces a formula for the growth or decay constant
a, which appears in linear analysis as a constant in the exponential
growth of the pressure amplitudeﬁ a small initial disturbance of
pressure increases in time as exp(at). The quantity a contains con-
tributions from the burning propellant; viscous and heat ‘transfer

losses; flow turning losses; and the influence of exhaust vent or
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nozzle. Knowing this o from experiments with the T-burner and
knowing other influences, the contribution from burning propellants
and hence the frequency response function, can be calculated using
this analysis. Providing the acoustic Mach number M' is much
smaller than the flow Mach number Mb’ the governing equations re-
main linear. With this and the linear combustion process, all the
disturbances due to combustion and flow addition can be treated as
perturbation to the classical acoustic modes of the tube. The central
idea is that an arbitrarir disturbance within the chamber can be rep-
resented as a superposition of its Fourier components;i.e., as a
superposition of the normal modes of the chamber. In order that
the disturbance should be stable, all of its components hence must
be stable. This is hence sufficient tov study linear stability of the

normal modes of the chamber.

2.1 One-Dimensional Linear Analysis

The most important reason for carrying out analysis of the
T-burner is to provide a formula for the growth constant a. It is
a very nice feature of this linear analysis that the formula for the
growth constant has the form of a sum of contributions from both
the losses and gains of acoustic energy. Basic assumptions involved
for linearization of equation of motions are discussed in detail in
Appendix A and reference 6,

After the conservation equations are linearized, a linear wave
equation for pressure fluctuations is constructed. The right hand

side contains perturbations representing influences of the mean flow,
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particulate matter and residual combustion. The boundary conditions
are also inhomogeneous and contain the direct effect of surface com-
bustion, the exhaust nozzle, mean flow and particulate matter. The
homogeneous equations define the classical problem for determining
the acoustical modes of the chamber. For analyzing the stability of
motions, it is sufficient to consider harmonic motions as described
earlier, Finally, the problem comes down to determining the com-
plex wave number k defined by the exponential time dependence

iaokt
P' = De (2.1)

where

k= - ia)/ao : (2.2)

It is the imaginary part a which is most useful for interpreting ex-
perimental data. A convenient interpretation of a is a fundamental
result of linear theory

a = (2.3)

[ 3V] P
&l | ]

where 8 is the time averaged acoustic energy and & is the time
average of the rate of change of acoustic energy in the chamber.
The details are summarized in Appendix A. The one-dimensional

result for a is:

- A L L ~ ~ (r)
vp v w,.p _ m
a = -—2{|p (ﬁ (r)  _b72 )S -u P —b AT dgdz
2E 3 JANN o} a 2 c b 2 — T
2 Po my, ©°
0 0

Combustion and exhaust nozzle
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2

J' -—L- ,0) dgqdz
I
0

2E2 kz

mean flow/acoustic interactions (both flow turning losses
and influence of vent)
+ contribution from particulate matter

+ contribution from residual combustion (2. 4)

Contributions from viscous stresses and heat transfer can be incor-
porated directly by adding:

. A . - a3
. 5(5{5 (u_a?_x‘”) Py, w0 Bo (x 91‘“) 5 120 L
d _' oy =0 dz a C c oy y=0 j/ Z(SEZ

L
(2.5)

to equation (2.4). For the propellant with no particulate matter, the
last two terms in equation (2.4) are dropped and a can be given by a

sum of its contributions as :
a = a +‘°’bs +aft+°‘v+°‘d (2. 6)

This form is valid for the T-burner with propellant grains placed
at the ends and on the lateral boundary. The wvarious contribu--
tions are discussed in Appendix A. For the typical T-burner with

end burning grains only, equation (2.6) simplifies to:

+av+a (2.7)

d

This shows that the total attenuation constant a comprises contribu-

tions from end burning propellant grains; influence of the exhaust
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vent (including radiation losses through it); and losses associated
with viscosity and heat transfer at the walls of the T-burner. Fur-
ther the admittance function of the burning surface is given by:

B2,

A -

= = (2.8)
b P/YP,

It can be related to %G e by:

= 4f(Ab(r)+-TZb) (2.9)

“be

Details ofkth(‘a derivations of these formulas are given in Appendix A,

In T-burner tests, a is measured from pressure record; and
ag is found from the theoretical calculations. In the absence of
suitable theoretical calculations and experimental measurements for
the centrally located exhaust vent, radiation losses are assumed to
be zero for the fundamental longitudinal mode of oscillation within
the T-burner main tube. Until fairly recently, it had been assumed
that the vent has no effect on the fundamental mode i.e., a, ~ 0.
This is because three-dimensional analysis discussed later (see
Appendix A) leads to the general expression for the decay constant

due to the vent:

-a
a = —2 [A r) , ™ ] 5 24ds (2. 10)
v 2E 3 v v N

where Av is the admittance function for the exhaust vent given by

u /a
A v “o
v

B/YP,

and -1\—/Iv is the Mach number of the flow through the exhaust vent,
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For the fundamental mode of a T-burner, f)N vanishes at the center
of the burner where the vent is located. So, a_ given by equation
(2. 10) is negligibly small for either sonic or subsonic vents. Thus
usiﬁg equations (2.7) and (2.9) together with known values of a and
ag- the combination (Ab(r) + _ﬁb) can easily be calculated.

But a formal deduction from the one-dimensional analysis, that the
vent produces a gain of acoustic energy for the fundamental mode given

by: .
a, = 4fM #0 (2.11)

conflicts with the simpler result described above which suggests that
a, ~ 0. It is important to resolve this controversy, because the
value of (Ab(r) +ﬁb) deduced from the data taken with the T-burner
depends directly on what contributions are assigned to the vent.
Neither the use of formal analysis nor the use of T-burner data has.
satisfactorily resolved thibs difficulty. Therefore, special tests have
been performed to obtain results that would assist in the selection
of correct representation. Reference 5 contains a summary of use-
ful equations, a description of the tests, a summary of results and
the conclusions reached. It is the purpose of this work to measure

the influence of the exhaust vent and hence to check the validity of

one-dimensional calculations.

2.2 Three-Dimensional Linear Analysis

The purpose of this analysis is to account the actual process
in the combustion chamber which is three-dimensional in nature and

to treat general acoustic modes. The expression procedures and
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techniques used to fihd the complex wave number are identical with
those discussed for the one-dimensional approach. The formula ob-
tained for the growth constant a is similar in form except for the
contributions to the stability of waves arising from the flow turning
at the boundary, which does not appear explicitly here. The reason for
this is that the viscous forces acting in the boundary regions are the
ultimate cause of the process called 'flow turning'; the three-dimen-
sional analysis therefore does not process that contribution. In
principle, all of the processes could be analyzed exactly if the complete
equations for three-dimensional viscoué flow are used. This is in-
deed a complicated problem. Another approach is the following.

All of the viscous effects may be added in the formula for the com-
plex wave number computed with a classical inviscid analysis. Thus,
one should include not only viscous and heat transfer effects at the
boundary, but also the flow turning effect which is known as a re-
sult of the one-dimensional analysis. Reference 7 discusses this
problem while Appendix A briefly describes it for our purpose.

For most of the work with T-burners commonly used, the one-
dimensional analysis has been used and seems to work well. But it
is important to have an independent and accurate check of its validity
to predict certain losses in simple systems. Three-dimensional
analysis should yield more precise results, but at the expense of
greater effort and cost. For practical purposes, there are great

advantages gained from applying the simple one-dimensional results.
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IOI. DESCRIPTION OF INTERACTIONS BETWEEN
ACOUSTICS AND FLOW FIELDS
As described in the previous chapter, one of the sources of
energy loss is associated with interactions between the acoustic
waves in the chamber and the average flow entering from the burn-
ing surface. As a result of the approximate one-dimensional anal-

ysis this loss is expressed as a part of the decay constant by:

L P 2
_ 1 1 Py —
i Tl f r 2 <'a;')fmbdqdz G- 1)
p N
2 To L

0

See Appendix A for details. This is, however, described solely by
fluid mechanics and no combustion is required. This may be elab-
orated upon as follows.

Consider the case of longitudinal waves in a uniform port.
The fluctuating acoustic velocity is parallel to the burning surface
and the direction of flow entering the port is normal to the burning
surface. Initially the gasses departing the surface in normal direc-
tion have no unsteady motion because they come from the solid sur-
face. Eventually they must participate in the unsteady motion, ac-
quiring some acoustic energy. For doing so, the flow must turn
from the direction normal to the surface, to the direction parallel
to the surface. It is this process which is accompanied by a loss
of acoustic energy from the waves in the main port. The loss is,
in the real flow, ultimately due to viscous effects. One-dimensional
analysis provides a simple estimate of this loss. This loss essen-

tially is the counterpart in unsteady flow, of the process which has
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long been recognized in steady flow as described by reference 8,
p. 225. For one-dimensional flow with mass addition at the bound-

ary, the pressure drop can be written as:

dp _ B . g _ yM® 4 . yM® av®
p - " YM U -y -GS (3.2)

The first term is associated with the pressure drop which is a re-
sult of the gain of momentum by the injected flow at the boundary
of the ma';n tube, given by dWg (Vv - V'g). While the second term is
related to the wall shearing stress, given by fpV?/2., The third
and the last term can be related to the loss of momentum of the
mass flow of the main gas stream, given by wdV. Further details
of the physical equations and definitions can be obfained from refer;
ence 8, Figure 3.1 describes the géometry of the problem involved
in greater detail., It is the first term on the right hand side of
equation (3.2) which can be looked upon as a counterpart of the flow
turning losses in our unsteady flow problem. References 9, 10 and
Appendix A discuss in detail the calculations involved from the
standpoint of boundary viscous losses and entropy production associ-
ated with these interactions.

Though the previous formulation of energy loss was carried out
for flow entering the chamber, the same analysis may be formally
applied to the problem of the exhaust vent, i.e., for flow leaving the
chamber. This situation arises in the T-burner having a subsonic
exhaust vent on the lateral Boundary. Figure 3.2 shows a typical
T-burner configuration for end burning propellants., The sign of the

flow through the vent is negative because the flow leaves the chamber,
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/
. A\ Vg
} 1 ' Vo
p | o p+dp
D w—= | —» w+dw
\" I : V+dV
I I
1 Lt__ff,t. 7!_#4 )
- dz :

Figure 3.1 Schematic of Flow in a Constant Area
Duct with Mass Addition at Boundary
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and the analysis predicts a gain of acoustic energy for the waves in
the chamber; see equation (3.7). The approximation will be assumed

true here that a,6 may be written as:

% = (uft) m - -m * %rad (3.3)
b v

where a..d is the attenuation constant associated with radiation
through the exhaust vent with va = 0. For the geometry of interest

here, equation (3.1) can be written as:

. 2 :
a, = —-1—-—; #(Vf’z) m, ds (3. 4)
)

B 2
2 E P) pok
where dS = dqdz. For the longitudinal mode of waves within the

T-burner main tube;

p, ~ cosk,z , where k, = 1r/L» and f = ao/ZL
3

Also, (VB,) = k: at z = L/2 and Ef = S_L/2

With —r'ﬁb now replaced by -"rﬁv, equation (3.4) becomes
m_dS

v

- vent

(aft) m, - ~-m ) pOLSC (3-3)
b v

The term in brackets is the total mass flow through the vent, which
must equal ZmbSb = ZpOubS , the total average mass flow in from
the burning surfaces at the propellants. Hence, equation (3.5)

becomes:

B
= 2 (3.6)

(o¢¢) ™, - -, c

cnl wm

Also here Sb = Sc and f = ao/ZL. Thus for the case of the centrally

located wvent,
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(aft)ab_' P 4 £, (3. 7)

v

where Mb = u.b/ao. Equation (3.3) can now be written as:

av=4be+o,rad (3.8)

It must be noted here that these results are clearly a formal con-
sequence of the one-dimensional analysis, The fact that the flow
near the exhaust vent is strongly three-dimensional raises questions
about the direct application of these results. Be‘cause of the associ-
ated viscous effects (including possible separation of the flow) 6ne
must be aware that the results may, in fact, be severely limited if
not invalid. The majvor purpose of this work is to determine the
validity of these one-dimensional calculations. This point will be
further elaborated in chapter 4. Reference 5 describes the problem
of the vent in historical perspective and emphasizes the need to in-
vestigate it in detail.

Moreover, as mentioned before, there are no calculations
available for Qrad and hence it is measured experimentally as

discussed in § 7. 1.
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IV. DESCRIPTION OF EXPERIMENTS INVOLVED IN

COLD FLOW TESTING

As described in chapter 1, it is important to know the flow
turning losses and the influence of the exhaust vent, in order to ex-
tract meaningful results from the measurements taken with hot firing in
T-burners. Knowing thése, the data obtained from the firings can be
used to calculate the interaction between wave motions and the burning
surface. This interaction is conveniently expressed as a sum of the
real part of the admittance function and Mach number of the gases at
the edge of the comb'uétibn, zone. This can then be related to the
response function of the burning propellant as described later. Be-
cause the influence of the vent in particular is not known precisely,
there is a large uncertainty attached to values of the response function
of a burning propellant. It is the purpose of this study to investigate
this problem of the vent experimentally. Because the effects in
question are independent of combustion as described in chapter 3, it
is adequate to carry out the experiments at room temperature using
air as the working fluid. Such a technique is called cold flow testing.
See, for an example, reference 11 for an application of this technique
to rocket chambers. Cold flow simulation converts the actual problem
of combustion driven acoustics in rocket chambers to externally
driven acoustics at room temperature converting the self-excited
system of oscillation into a forced system of oscillation. This is
further discussed in detail in Appendix B. Two measurement tech-

niques well known in acoustics will be used: determination of the
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resonance curve of the system and measurement of the acoustic ad-
mittance of a surface using an impedance tube. The reasons for using
these methods will become more clear below.

The central item of figure 4.1 is a cold flow resonance tube
which is essentially an analogue of a T-burner, as shown in figure 4, 2.
End burning propellants driving the fundamental acoustic mode of
oscillation of a T-burner are replaced by pistons fitted with porous
plates permitting flow of air. They are driven by electromagnetic
shakers exciting the standing waves in the resonance tube at room
temperature and pressure. The flow exhausts through the center vent.
The configuration shown in figure 4.2 is used to measure the influence
of the vent. The influence of the pistons (porous plates with and with-
out flow through them) on the waves, which can be best expressed in
terms of admittance function,is measured using an impedance tube.
The arrangement is shown in figure 4. 3.

Separate flow calibration is required for both the porous plates.
The amplitude of oscillation of the pistons driving standing wavesr in
the resonance tube is determined using the output of the accelerometer
housed within the piston. The signals from the accelerometers are
used to measure the relative phase difference between them. Both
electromagnetic shakers driving the pistons are operated at the same
frequency from a single audio oscillator. The amplitudes of the
drivers are independently variable; the correct relative phase for a
standing wave pattern is maintained with a phase shifter.

The primary measurement in both the resonance tube and the

impedance tube is the oscillating pressure. For acoustical pressure
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measurements taken with the resonance tube, the resonance curve is
obtained by varying the input frequency to the driver; the relative
phase is maintained to be 180° while the amplitude of driver is held
constant. The width of the curve at the half power points is pro-
portional to the rate at which acoustic energy is dissipated within

the system. The impedance tube experiment requires measurement of
the maxima and minima of acoustic pressure and their location along
the tube. These measurements are then related to the admittance
function of the piston having flow through it.

In all the experiments with resonance tubes, the exhaust vent is
located at the center of the tube. Flow Mach numbers, ‘.fundamental
longitudinal mode frequencies, vent sizes and shapes are the major
parameters of interest. For the case of axial flow only, and with

a=a and o F s equation (2.7) simplifies to

net
o = toa, toay B (4. 1)

For this case, following is a summary of procedures:

(1) Characterize the drivers by tests in the impedance tube
without average flow to measure the admittance function
for the pistons.

(2) Measure the total losses by tests in resonance tube
without average flow and vent closed. |

(3) Results of (1) and (2) give a measure of the viscous,
heat transfer and radiation losses at the wall of the
resonance tube.

(4) Measure the total loss by test in the resonance tube



(5)

(6)

(7)
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without average flow and vent open.
The results of (2) and (4) give the radiation loss

through the exhaust vent given by @..q

Characterize the drivers by tests in the impedance tube

with average flow.

Measure the total losses by tests in the resonance tube
with average flow and vent open.

The results of (3), (6) and (7)l give the influence of the‘
vent for outflow given by a, .Z

Repeat (1) to (8) for different sizes and shapes of vents

and for different fundamental frequencies.

As described above, the influence of the exhaust vent is obtained

as a result of subtraction of large numbers. Thus grea.t care must be

exercised to measure these numbers with precision. This calls for

the highest possible accuracies of the various operating parameters.

To help reduce the uncertainties, a statistical approach was adopted

as described in chapter 7. Appendix D deals with the calibration

procedures and error estimates necessary to obtain the accuracies of

the various operating parameters.
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V. DESCRIPTION OF EXPERIMENTAL EQUIPMENT

As described earlier, cold flow testing involves acoustic pressure
measurements in a resonance tube resembling a T-burner and in an
impedance tube used to characterize the driving surfaces of the res-

onance tube.

5.1 Resonance Tubes

The central feature of figure 5.1 is the resonance tube. The tube
itself is made of brass with internal diameter of 14" and wall thickness
of 1/8". Table 5.1 lists the resonance tubes used in this work. All
of the circular vents are of length 1.4'" and are centrally located.

Each has a plug, machined so that when inserted the vent is closed by
a surface smoothly fitting the inside surface of the main resonance
tube. Resonance tubes with slots were constructed so that the annular
slots have areas, distributed on the internal periphery of the main
tube, equal to the areas of circular vents having internal diameter of
1" and 14". Plugs to close the slot vents were constructed, so that, a':‘s
described later, the absolute values of the attenuation constant associ-
ated with these two vents could not be determined. Photographs of two
of the resonance tubes are shown in figures 5.2 and 5.3. Figure 5.2
shows the resonance tube with a 1" circular vent while figure 5.3
shows the resonance tube with equivalent area slot vent and having the
same resonance frequency.

The resonance tubes are fitted at the ends with caps and teflon

inserts to provide a close fit with the pistons. The most successful
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TABLE 5.1

TYPES OF THE RESONANCE TUBE CONSTRUCTED
TO DETERMINE THE INFLUENCE OF THE VENT

Resonance
Frequency
in Hz

445

1345

2645

Diameter of

Central Cir-
cular Vent in
Inches

Ll N1 ]
[

|

[

Width of
Central Slot
in Inches

0.167
0.375
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Figure 5.2 The Resonance Tube Used to Determine
the Influence of the Circular Vent
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Figure 5.3 The Resonance Tube Used to Determine
the Influence of the Slot Vent
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of the various designs tried is shown in figure 5.4, Figure 5.5 shows
the details of the mountings. The radial clearance is about 0. 002"
and is filled with silicon oil to prevent the leakage of flow and acoustic
energy. An external quad seal also helps to prevent leakage. The
pistons are machined of aluminum with a grade '"G'" porous sintered
steel plate (Pall Western Co.) 1/8'" thick glued to the front through
which the axial flow enters. The porous material has an absolute
removal rating for gas of 1.8 microns. Both the amplitude and phase
of the pistons are measured with accelerometers mounted close to
the axis of the piston in the rear chambers. A sealing and smooth
operation of the pistons are essential for reliable data. Failure to
meet either of these two requirements will be reflected in poor re-
producibility of data. The reason associated with the soft electro-
mechanical shaker mounts is due to a shift of the average position of
the pistons, resulting in a measurable change in resonance frequency
and asymmetry of the acoustic pressure field with respect to the
center of the vent. As an additional help to solve this problem, the
Pressure was equalized between the main resonance tube and the
inside xhount of the shaker. This reduces the unbalance of forces on
the mount itself.

Both coarse and fine regulators (Moore products; nullmatic,
model 40 - 100) are used in series to provide the average axial flow at
a fairly constant supply of pressure from a reservoir tank which is
filled from the air supply in the building. Failure to regulate the
supply pressure seems to change the average position of the piston at

the end of the resonance tube, causing the difficulties described in the



BUTIUNOIN U0)S1J °Y3 JO sIe3dd %°g oinSLg

| | | aN3 3801
ONISNOH NOLSId dvD aN3 IONVNQS3Y
. , LY3SNI NOT43L “
Y313IWN0YITID0V Iv3s avno M_
31v7d SNOYOd |
: / SO\ _,
: : S i VLl
..lwnmm..- T LI IETILIIRIP
> A A (i A N -, V N
" d3IMVHS OL _m m T
— == uv - y—1] - - -—vIa
w \\ # \.Om._
— y =
i n = V777 4: {1 b _ﬁ
m._m<u |} . @ﬁ |
M3YDs aN3 LOQOEDIN 11 h |
CY) i %
dvD aN3 anlis /"
NOLsid! ONILNNOW YOS dVD  LIMSVO

Om._.<|_0m_ ._.w.._Z_ W:( ﬂx mwadd
d394VvINI ‘NOILD3IS-SS0YD IV3s ¥ ‘



35

Piston Mounting in the Resonance Tube with

Electro-Mechanical Shaker

Figure 5.5
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preceding paragraph. The supply pressure is monitored with a
Statham differential pressure gauge (range * 50 psid). Two similar
gauges (range * 10 psid) are used to measure the pressure drop
across the porous plates and therefore to maintain the desired flow
rates into the tube.

It is important to note that failure to maintain the above men-
tioned parameters within reasonable accuracies is reflected directly
in the measurements of total losses in the resonance tube. The error
bars on the final values of a, are crude cumulative estimates of
all these errors. |

The apparatus shown in figure 5.1 can be best understood by

considering the following four subsystems:

(i) air supply
(ii) the equipment required to drive the waves
(1ii) the instrumentation used to measure the amplitudes and

relative phase of the piston motions

(iv) the instrumentation used to measure the waves in the

resonance fube.

The air supply is described in appendix D. A Wavetek frequency
synthesizer, Model 171, provides the signal to drive B & K electro-
magnetic shakers, Model 4810. An amplifier, Realistic Model SA10,
is used with each of the shakers and in series is a phase shafter.

Each piston is fitted with an accelerometer, Endevco, Model
2275, isobase type; the signal is amplified by a charge ampflifier,
Unholtz-Dickie Model D-11. Both amplified signals are filtered

through a two channel unity gain tracking filter, Spectral Dynamics
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Model SD-122 (with 10 Hz bandpass filter) driven by carrier generator,
Spectral-Dynamics Model SD-120. The relative phase of the signal is
detected with a Wavetek phase meter, Model 740 and the accuracy of
the phase measurement is improved by including a phase inversion
technique.

All data for acoustic pressure are taken with a B & K, %' micro-
phone, Model 4136. The desired signal is extracted from the noise,
generated by the mean flow, using a Princeton Applied Research Lock-
in Amplifier, Model 124 A. This technique is in fact effective up to
the largeét possible flow speed of 4 ft/sec*. The output of the lock-in
amplifier and all other d.c. outputs used for monitoring various
parameters are measured with a 5% digit Data Precision Voltmeter,
Model 3500.

To minimize the interference from airborne noise and local
reflections within the room, the resonahce tube with hecessary equip-
ment were placed in an anechoic chamber; see figures 5.6 and 5. 7.
Reference 12 gives the constructional details and data for qualitative
performance of this anechoic chamber. The air supply and instrumen-
tation were located outside the chamber. Though the chamber was
mounted on vibration isolating pads, it was found that the setup was
not completely isolated from the building vibrations, Typical building
vibrations were found sufficient to alter the relative phase and ampli-

tudes of oscillation of pistons. To minimize the influence of this on

*
The highest speed for data included here is 2.5 ft/sec, The sole

reason to restrict ourselves to this speed is the fact that at higher
speeds, in flow jet impingement on the side walls of the pistons causes
abrupt imbalance of forces on the pistons causing sudden fluctuations
in both phase and amplitude of oscillation of pistons.
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final results, most of the data were taken on relatively quiet days.

5.2 Impedance Tube

The impedance tube used to measure the influence of the pistons
on the waves is a modified B & K standing wave apparatus, Model 4002.
The test section is a brass tube about 40" long having an internal
diameter of 11" and wall thickness of 1/8". At one end, the piston is
rigidly mounted using a clamp type of holder, while at the other end an
exhaust vent is mounted close to the speaker. The tube and ancillary
apparatus are shown in figures 5:8 and 5.9, A major advantage of this
arrangement with the microphone probe passed through the speaker is
the accuracy with which the acoustic pressure miﬁima can be located.
A 3" B & K microphone, Model 4133, is mounted on elastic supports
within the microphone trolley. The trolley is filled with cotton balls
to aid insulation against both external airborne noise é,nd structural
vibrations. |

In addition to the air supply, the apparatus shown in figure 5,8
can be divided into two subsystems:

(i) the equipment required to drive the waves in the tube

(ii) instrumentation for measuring the waves in the tube .

The same Wavetek frequency synthesizer, Model 171, together
with a Raymer amplifier, Model 790-6 are used to excite the speaker.
Pressure signals from the tube are picked up by a 3'' B & K micro-
phone, Model 4133, supported at the end of a 40" long probe. A
track scale is used to measure the distance of pressure maxima and

minima from the piston face. The pressure signal is first fed to a
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B & K measuring amplifier, Model 2607. The amplified signal is
filtered through a single channel of tracking filter as described
earlier. The output of the tracking filter is fed back to the B & K
measuring amplifier and is attenuated and then measured on percent
absorption coefficient scale to locate approximate pressure maxima
and minima. The final output is also displayed on the dual beam
oscilloscope; Tektronix, Model 551. At maxima and minima, rms
pressure signals are then measured directly using the Princeton
Applied Research lock-in amplifier as described earlier. The rigidity
of the clamp holding device is monitored by measuring its response
with an accelerometer, charge amplifier and tracking filter as des-
cribed earlier. It is desirable to keep the excitation of the speaker é,s
low as possible to reduce motions of the pistons but this is ultimately

limited by signal/noise problem. Details are described in appendix

D.
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VI. TEST DATA

As described by equation (4.1), a

ot % and @, are the losses

of acoustic energy and are therefore negative numbers, While .,
as given by equation (3.8), is a gain of acoustic energy and hence is
a positive number, From this point onward, for corivenience in
typing and plotting, it was decided nof to carry these negative signs
for %et’ % and %3 The sign conventions were hence reversed, i,e.,
positive values of %ot? % and ay correspbnd to energy losses and
negative values of a, correspond to energy gains, These sign con-

ventions, however, are not consistant with the current literature,

e.g., reference 6,

6.1 Measurements of the Admittance Function for thé Porous Plates'

To achieve effective acoustic isolation of the air supply
system from the flow in the resonance tube, it is necessary to use
porous plates having very high acoustic impedance., This means that
the acoustic admittance, in particular the real part, is very small._
As mentioned before, see equation (2.9), this number is to be multi-
plied by a factor of four times frequency, leading to a substantial
contribution, Thus, if this small number is not measured very
accurately, the indirect method of measurement described in chapter
4 leads to quite a large uncertainty, which should be avoided. This
is why it has been necessary to achieve high accuracies (described
in Appendix D) and to treat the data statistically (described in
chapter 7).

Tables 6.1 and 6.2 contain the values of the real part of the

admittance function, found for two porous plates in the three series
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of tests, average values, and the standard deviation, all at 442,70 Hz,
Tables 6.3 and 6.4, and 6.5 and 6,6 contain corresponding results at
1345 Hz and 2645 Hz, respectively.

Computer programs were developed to determine and statisti-
cally treat the data obtained for the real part of the admittance
function of both porous plates. These programs (discussed in detail
in Appendix E) are based on the theories discussed in Appendix C
and chapter 7,

Figures 6.1, 6,2 and 6,3 show the variations of average
values of the real part of the admittance function of porous plafes as
functions of flow Mach numbers in the 1%'' diameter tube at the fre-
quency of 442,70 Hz, 1345 Hz and 2645 .Hz. The solid lines represent
least squares fit to the data, assuming a linear variation of -Xb(r)
with M.

6.2 Measurements of the Net Acoustic Lésses in the Resonance Tubes

% ot is a measure of total losses within the resonance tube,
As discussed in Appendix B, 2 @ ot equals the width of the resonance
curve at the half power points (-3db down bandwidth AW), According
to convention, et (losses) is a positive number and is the sum of
contributions from various sources of loss: porous piston surface;
viscous and heat transfer losses; radiation losses through the wall of
the resonance tube; and the influence of the exhaust vent,

Tables 6.7 - 6.11 contain data taken for three series of tests
performed at each Mach number for the five vents at 442.70 Hz.

Tables 6.12 and 6.13 contain data for only the %' diameter circular

vent tested at 1345 Hz and 2645 Hz, respectively, The average
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values and standard deviations of both net attenuation constant and

resonance frequency are also given., Note that for all the circular
vents, two series of tests have been carried out with no flow: one
series with the vent open and the other series with the vent closed.
The difference between these two cases should represent the losses
due to radiation through the vent,

Figures 6.4 - 6.8 show variations of the average values of
the net attenuation coefficient with respect to Mach number of aver-
age flow at resonance frequency near 445 Hz, for experiments with
different vent sizes and shapes. Figures 6.9 and 6,10 show similar
variation for the tests with circular vent with " diameter, near the
resonance frequency of 1345 Hz and 2645 Hz. Again solid lines in
the figures represent least squares fits, assuming that A varies

linearly with the average Mach number. Details of the computer

program developed for this purpose are given in Appendix E.
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TABLE 6.1

DATA TAKEN WITH IMPEDANCE TUBE,
POROUS PLATE (1), FREQUENCY 442.70 Hz

™M x 10* -Ab(r)x 10° -Kb(r)xwg o x 10°

1.3752
0 1.3948 .1.3882 92
- 1.3947

1.3570
4.43 1.3948 1.3843 194
1.4010

1.3826
8. 86 1.3890 1.3892 55

1.3960

1.3837
13.29 1.3800 1.3867 71

1.3965

: 1.3470
17.72 1.3435 1.3591 196
1.3868 '

1.3494
22.15 1.3400 1.3539 135

1.3722
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TABLE 6.2

DATA TAKEN WITH IMPEDANCE TUBE,
POROUS PLATE (2), FREQUENCY 442.70 Hz

™M x 10* -Ab(r)x 10° -Kb (r)y 107 ox10°

1.6879
0 1.6999 1.6987 84
1.7084

1.6914
4.43 1.7344 1.7156 180
1.7210

1.7050
8. 86 1.6814 : 1.6993 130
1.7116

1.6227
13.29 1.6528 1. 6454 164
1.6608

1.5961
17.72 1.6270 1.6245 223
1.6505

1.5893
22.15 1.6025 1.6022 104
1.6147
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TABLE 6.3

DATA TAKEN WITH IMPEDANCE TUBE,
POROUS PLATE (1), FREQUENCY 1345 Hz

M x 10* -Ab(r)x 10° -Kb (r)x 10° o x 10°

1.4949
0 1.4744 1.4772 135
1.4623

1.5005
4.43 1.4989 1.4881 165
' 1.4648

1.5742
8. 86 1.5584 1.5647 69
1.5614 ~

1.5133
13.29 1.5133 1.4996 194
1.4723

1.5080
17.72 : 1.5311 1.5139 123
1.5027

1.4974
22.15 1.4922 1.4904 65
1.4817 :
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TABLE 6.4

DATA TAKEN WITH IMPEDANCE TUBE,
POROUS PLATE (2), FREQUENCY 1345 Hz

M x 10° -Ab(r)x 10° A, )y 102 o x10°

0 1.6719 1.6506 | 157
4.43 1.6948 1.6978 22
8.86 1.7255 1.7031 176
13,29 1.6997 | 1.7001 108
17.72 1.6401 1.6539 144

22.15 1.6331 1.6213 143



Mx10*

4.43

8. 86

13.29

17,72

22.15

TABLE 6.5

-Ab(r)x 10°

2.4508
2.4326
2.4204

2.4584
2.5066
2.4928

2.5097
2.5461
2.4859

2.4301
2.4388
2.4486

2.4041
2.3933
2.4289

2.4062
2.4105
2,4083

DATA TAKEN WITH IMPEDANCE TUBE,
POROUS PLATE (1), FREQUENCY 2645 Hz

-A (r)x 10°

b

2.4346

2.4859

2.5139

2.4392

2.4088

2.4083

o x10°

125

203

248

76

149

18
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TABLE 6.6

DATA TAKEN WITH IMPEDANCE TUBE,
POROUS PLATE (2), FREQUENCY 2645 Hz

M x 10 -Ab‘r)xlo2 A (F)g10? o x 10°

2.9892
0 2.9575 2.9660 166
2.9512

2.9705
4.43 2.9467 ' 2.9502 ' 154
2,.9333

2.9183
8.86 2.9019 2.9070 80
2.9009

: 2.8892
13.29 2.8938
2.8810

. 8880 53

o

2.8564
17.72 2.8245
2.8255

. 8355 148

N

2.8316
22.15 2.8007
2.7994

.8106 149

™
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FREQUENCY 2645 Hz

3.0 — POROUS PLATE (2)

—(r) —
~Ap,= ~0.704307 M+0.029755

' O
2-5 [ O
<) / 0. — ,
2.4 o Y
PORQUS PLATE (1) - '
2.3 —~(r) o T :
~Ap, = -0.247779 M+0.024636
o{ | | | I |
O 4.43 8.86 13.29 17.72 22.15

MACH NUMBER OF AVERAGE FLOW, Mx10%

Figure 6.3 Measured Admittance Function at Frequency 2645 Hz
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TABLE 6.7

. DATA TAKEN WITH RESONANCE TUBE,
2" CIRCULAR VENT, FREQUENCY 442.70 Hz

a
net

(sec-l )

41.94
41.55
41.82

41.88
42.21
41.98

42, 06

42.55
42.57

42,26
41.48
42.56

41.87
41,46
41.28

41.20
41.52
41.27

41.43
41.97
41.73

f
(Hz)

444.10
443.50
443.90

442. 00
441.90
443. 40

442.50
442.30
442.90

442.50
442.40
442.30

442.60
442.10
442,40

442.50
443,10
441.50

443.20
443.00
443. 00

angt
(sec 1)

41.77

42,02

42.39

42.43

41.54

41.33

41.71

(+)
o

(sec™t)

0.16

0.14

0.24

0.25

0.14

0.22

f

(Hz)

443.

442.

442,

442.

442.

442.

443.

83

57

40

37

70

07

(Hz)

0.25

0.68

0.25

0.08

0.21

0.28

0. 09
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TABLE 6.8

DATA TAKEN WITH RESONANCE TUBE,
1" CIRCULAR VENT, FREQUENCY 444.79 Hz

o
net

(sec™t)

40.85
39.86
40.64

40. 86
40.56
40.88

40.71
40.49
40.42

40.75
40.50
40' 66

40. 39
40.13
39.87

40.61
41. 02
40.48

40. 03
39.69
39.91

£
(Hz)

446,50
443.00
445.00

445.10
443.90
442. 90

446,20
444.50
443.50

446,30
444.50
444.50

445.50
442.90
444.90

446,00
443. 90
446.10

444.50
444.60
443, 00

o
ngt
(sec l)

40. 45

40.77

40.54

40, 64

40.13

40.70

39.88

(2]
o

(sec—l)

0.43

f
(Hz)

444.
444.
444.
445,
444.
445,

442.

83
30
73
10
43
33

70

o
(Hz)

1.43

1.34

1.11

0.85

1.11

1. 01

1.61
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TABLE 6.9

DATA TAKEN WITH RESONANCE TUBE,
13" CIRCULAR VENT, FREQUENCY 451. 61 Hz

o
net

(sec™)

43. 02
42.36
41.78

42.74
42.34
41.52

42.31
42. 07
41.19

41.86
42.00
41.50

41.72
42.27
41.27

41.47
41.26
40.84

41.24
41.37
41.42

f
(Hz)

452.30
450.10
455,10

450. 80
449.50
454,60

451.20
450. 00
452.00

451.60
450, 00
452. 00

450.90
450.20
452.90

451.40
451. 00
453. 40

444. 00
444. 00
444. 00

o

net

(sec™)

42

42.

41.

41.

41.

41.

.39

20

86

79

75

.19

34

(s)
o

(sec™)

0.51

0.51

f

(Hz)

452.

451,

451,

451.

451.

451,

444,

50

63

07

20

33

93

00

O

(Hz)

0. 82

0.86

1.14

1.05

0.00



59
TABLE 6.10

DATA TAKEN WITH RESONANCE TUBE,
SLOT VENT WIDTH 0.167", FREQUENCY 446.72 Hz

— 4
Mx 10 X ot f @ ot O'a_ f
(sec™?) (Hz) (sec™t) (sec™t) (Hz)
41. 44 444,80
0 41. 05 447,90 41.24 0.16 447,07
41.24 448.50
41,37 445,30
4.43 41.33 446,50 41. 34 0. 02 446.33
41,31 447,20
41.45 445.50 |
8.86 40,90 446.50 41.23 - 0.24 446.40
41.34  447.20
40,95 446.90 ' :
13.29 41.15 447,60 41,17 0.19 447,20
41.42 447,10
41.50 445,50
17.72 41,56 448. 00 41.43 0.14 446.60
41.23 446.30
41, 06 446,70
22.15 41.45 447, 00 41.25 0.16 446,70

41,23 446.40

(Hz)

1. 62

0.78

0.70

0.29

1. 04

0.24
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TABLE 6,11

DATA TAKEN WITH RESONANCE TUBE,
SLOT VENT WIDTH 0.375", FREQUENCY 446.00 Hz

M x 10* o f @ o f
net net a_
(sec 1) (Hz) (sec 1) (sec 1) (Hz)
39.46 447,80
0 39.54 447,80 39.70 0.28 447,20
40. 09 446.00
39.69 447.30
4.43 39.40 444,50 39.63 0.17 445.77
39.80 445.50
39.63 447.70 '
8.86 39.38 445, 00 39.52 0.10 446. 00
39.54 445,50
39,47 447,70
13.29 39.26 445,50 39.43 0.13 446.27
39,57 445,60
39.26 446.20
17.72 30.18 446,30 39.13 0.14 445, 83
38.94 445, 00

38.99 444.90
22.15 39.24 446,50 39.95 0.25 445. 47
38.63 445, 00

(Hz)

0.85

1.16

1.08

1.01

0.59

0.73



M x 10%

4.43

8.86

13.29

17.72

22.15

0
(vent
closed)
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TABLE 6.12

DATA TAKEN WITH RESONANCE TUBE,
3" CIRCULAR VENT, FREQUENCY 1340. 88 Hz

a
het

1)

124,13
124.16
124.41

124.31
124.10

124.22

0123, 81

123.89

124. 05
123. 88
123.98

123.98
124.41
124. 49

125. 84
126. 00
126.29

123.60
124.29
124. 00

f
(Hz)

1341. 00
1341.10
1341.10

1343.50
1343, 60
1343. 70

1341.60
1341.60
1341.70

1342.10
1342.10
1342. 00

1337.40
1337.40
1337.40

1339.50
1339.50
1339.50

1340. 10
1340.50
1340.90

o

net

(sec”

124,

124.

123.

123.

124.

126.

123,

Y

23

07

97

97

29

04

96

o)
a

(sec™)

0.13

0.21

0.18

0. 07

0.22

0.19

0.28

f
(Hz)

1341.

1343,

1341.

1342.

1337.

1339.

1340.

07

60

63

07

40

50

50

e

(Hz)

0.05

0.08

0.05

0.05

0. 00

0.00

0.33
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TABLE 6.13

DATA TAKEN WITH RESONANCE TUBE,
3" CIRCULAR VENT, FREQUENCY 2651.78 Hz

Mx 10 anq_t f ane_t O'Q f Uf
(sec™t) (Hz) (sec™t) (sec™t) (Hz) (Hz)

343.69 2659
0 343.69 2653 343.45 0.33 2656.33 2.49
342.98 2657

344,67 2651
4,43 344, 33 2653 344,58 0.18 2652, 00 0.82

344.73 2652

345,72 2658 :
8.86 343.44 2652 344.24 1.05 2655, 00 2.45

343.55 2655

340.02 2645
13.29 339.03 2649 339.22 0.59 2647.33 1.70
338.60 2648 :

339, 87 2550
17.72 339, 32 2651 339.93 0.52 2651.00 0.82
340,60 2652

335.59 26 49 '
22.15 336.30 2648 337.46 2.16 2649. 00 0.82
340.48 2650

345,19 2637
0 344.81 26 41 345,15 0.26 2638.67 1.70
(vent 345,45 2638
closed)
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VII. STATISTICAL TREATMENT OF DATA AND
ANALYSIS OF RESULTS

Because of the indirect method of determining the influence of
the exhaust vent described earlier, and pl;actical difficulties involved
in measuring small quantities, a statistical approach was adopted to
reduce some of the random errors. This chapter covers calcula-
tions of radiation losses through the vent; viscous and heat transfer
losses at the tube wall together with internal consistency of data;
and finally, the influence of the exhaust vent. Once again, rewrit-
- ing the basic equation (4.1) for our cold flow resonance tube with

axial flow only (see figure 4.2), we have:

Qet = ab+uv+ad (7.1)
where
O et net measured attenuation.'?:onstant
ay attenuation constant associated with admittance
function Ab for porous plates on the face of
pistons
a, attenuation constant associated with the influence
of the vent, to be determined
ay attenuation constant associated with acoustic

radiation losses and viscous and heat transfer

losses along the lateral boundary.

According to sign convention used here, a negative value of
the attenuation coefficient corresponds to a gain of acoustic energy and

vice-versa. The average Mach number of the flow in each of the
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branches of the cold flow resonance tube is denoted by M here.

7.1 Determination of Radiation Losses Through the Vent

For this case, and when there is no flow, flow Mach number
M = 0. There are two cases for which data have been taken: one
for the vent closed and the second for the vent open. It should be
recalled that the vent is closed with a plug machined to match
smoothly with the internal boundary of the resonance tube. The
value of ay remains the same for the two cases, but the values of
ay differ by an amount.due to radiation loss through the open vent
given by @..q (a positive number now). Hence,

( ) - (

%net’ open %et) closed = (o‘d)open - (ag) closed

= %rad (7.2)

The average values and standard deviations for three series of tests

can be calculated for any measured number x using the formulas:

;C- = -;‘ (x1 + X + xa) (7.3)
and
i=3 R 1/2
o = {31- E (x, - %) , = Ax (7. 4)
=1

For this case:

2 _ - 2
% rad T (®raq " %pad)
i=3
= 0° + 02 _2 Z (a -a Na -a )
open closed 3 open open’ closed “closed
i=1

(7.5)
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Note that () here indicates the average of measured numbers.
These results are given in table 7.1. As mentioned earlier, it was
not possible to plug the slot vents easily and hence correspondingv
data cannot be deduced. At higher resonance frequencies of 1345 Hz
and 2645 Hz, plugging of the vent seems to change the average
resonating length between the pistons a great deal because the lengths
of the resonance tubes are fairly small; this change seems to alter
the subsequent resonance frequency. It was found that Qo et is also
affected by a small amount by this change. Hence it is very diffi-
cult to extract any meaningful data for these radiation losses. How-
ever, the experiments were conducted with great care. For the
sake of comparison, the influences described above were neglected
and data obtained were reduced and included in table 7. 1.

7.2 Internal Consistency of the Data and Losses Through the
Lateral Boundary

Consider the case of no average flow with the vent closed,

Equation (7.1) becomes:

et = % + ay (7.6)

Internal consistancy can be obtained by checking whether or not equation
(7.6) can be satisfied experimentally. From the data taken with the
impedance tube and no flow, a, can be calculated using the equation

(2.9):

= (r)
ay = 4 f Ab (7.7)

Equation (7.6) can be written with average values and standard

deviation as:
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TABLE 7.1

ATTENUATION CONSTANTS DUE TO RADIATION OF ACOUSTIC
ENERGY FROM CIRCULAR EXHAUST VENTS

f -Af /AL Diameter argd cragl
(Hz) (Hz/Inch) (Inches) (sec™t) (sec™)

1/2 0. 06 0.38

445 29.25 1 0.57 0.29

11/2 1.05 0.58

1345 267.17 1/2 0.27 0.29

2645 1033.21 1/2 -1.70 0.57
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3, +ha, = (a ) - 4 TE T+ 04 ) (7. 8)

+
net — AO‘net

Here f is the frequency at which the data were taken with the im-
pedance tube experiments. As discussed in Appendix D, both Af
and contributions arising from it are relatively small and hence are
neglected. In practice, the resonance frequency for each of the ex-
periments performed with the resonance tube was found little differ-
ent from the corresponding frequency at which the data were taken
with the impedance tube. This is mainly due to building vibrations
(and flow through the pistons, as discussed later). Moreover,
electro-mechanical shakers have weak flexure (flexure stiffness

12 1b/inch) which seems to facilitate these changes. These errors
and the associated changes in the end conditions at the pistons are
unavoidable and great care was taken to reduce them. See Appendix
D for further details. For the purpose of data reduction here; the

following assumptions were made:

(i) The real part of the admittance function of the porous
plates measured with experiments in the impedance
tube is not affected by these small changes in the

frequency.

(ii) The resonance curve wanders around thev center
resonance frequency (as determined by the average
resonating length between the two pistons) without
letting the total losses in the system be affected

by it.

No special efforts were carried out to justify the first assumption,
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but small values of Ao‘net found for all the experiments seem to
justify the second assumption. For Kb(r) and AAb(r), averages of
the values for the two porous plates are used.

The equation (7.8) can now be used to determine the losses
represented by ay mainly viscous and heat transfer losses at the
boundary and other losses at joints in the hardware and radiation
through the tube wall, There have been doubts concerning the ac-
curacy of the classical results discussed in Appendix €, equation
(C-5). Experimental results given by reference 13 have usually
been larger by roughly 10% than those predicted by the formula
given by equation (C.5). However, recently very careful work re-
ported in reference 14 has produced measured results within less
than 14 of the theoretical values. Thus, we are justified in ignof-
ing any errors associated with calculating the losses in the acoustic

boundary layer. Assuming linearity, equation (7.8) becomes:

- = (= 7 (x () (r)
(o’diAa’d)other - (anetiAanet) - 4t (Ab —tAAb )

losses
- K a, - (7.9)
Table 7.2 summarizes the numerical values for all the reso-
nance tubes with circular vents. As mentioned earlier, because
of no provision for closing the slot vents, data for the slot cannot
be treated similarly.
It is obvious from table 7.2 that "'other losses' constitute
approximately 4% to 174 of the total losses in the system, Larger

values of 'other losses' at higher frequencies tends to support the

conjecture that the losses associated with the pistons fitting in the
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TABLE 7.2

VERIFICATION OF THE DATA FOR CIRCULAR VENTS
WITH NO FLOW, VENT CLOSED CASE

Description T = 442.70 f=1345 T=2645
(Hz) (Hz) (Hz)
Diameter
(inches) 1/2 1 11/2 1/2 1/2
'&net(sec_l) 41.71 39.88 41.34  123.96 345,15
-1
e, (sec™) 0.22 0.14 0.08 0.28 0.26
Kb(”x 10° 1.5435 1.5435 1.54345 1.5639 2.7003
AAb(r)x 10° 88 88 88 146 145.50
K.ao(sec‘l) 11,17 11.17 11.17 19. 47 27.30
_— -1
(ad)other (sec ) 3.21 1.38 2.84 20.35 32.16
losses

(A 0.38 0.30 0.24 1.07 . 1.80

-1
d)other (sec ™)
losses
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teflon inserts at the ends of the resonance tube increases approxi-
mately linearly. The data taken were with the best efforts to mini-
mize these numbers, using larger amounts of silicon oil to fill the
cracks, and tightening the end quad seal to the face of the end cap
as much as the smooth functioning of the pistons allows. See figure
5.4 for details. The influence of the '"other losses'" does not seem

to affect the overall conclusion for o, 28 discussed later.

7.3 Determination of the Influence of the Exhaust Vents

The 1_'esu1ts for the influence of the exhaust vents will be dis-

cussed in two ways:

(i) data for Ev as a function of Mach number M
da

(ii)  calculation of the slope —— from data.
dM

As discussed in Appendix D, M is treated as an independent
parameter precisely known (i.e., AM = 0), and equation (7.1) can

be written as:

(@, * ba ) = (E

+ l(x (1) (r) Vi
neti AC"net) - 4t (Ab X AAb )+ M}

- (ag * Bay) (7. 10)

As discussed earlier, f is the frequency at which the data were
taken with the impedance tube and Af = 0. For Kb(r) and AAb(r),
averages of the values for the two porous plates are used.

All the necessary data on the right hand side of equation (7.10)

are known now from the experimental results and Ev + Aav can be

calculated. Table 7.3 gives the values of the attenuation coefficient
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TABLE 7.3

VALUES OF THE AVERAGE ATTENUATION COEFFICIENT
AND STANDARD DEVIATION FOR CIRCULAR VENTS,
FREQUENCY 442.70 Hz

Diameter
(inches) 1/2 1 11/2

— N -
Mx 10 a AozV a Aozv o Aav

(sec™) (sec™!) (sec™) (sec™) (sec”') (sec!)

0 +0. 06 0.70 +0. 57 0.89 +1.05 0.91
4.43 -0.59 0.85 -0.01 ' 0.78 -0.04 1.08
8.86 -0.90 0.78 -0. 92 0.58 -1.06 0.88

13.29 -1.15 0.72 -1. 11 0.61 -1.35 0.93
17,72 -2.39 1.00 -1.97 0.88 -1.77 0.82

22.15 -3,15 0.73  -1.95  0.74  -2.36 0. 86
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and standard deviation for circular vents, sizes 1/2', 1" and
1-1/2" at the frequency of 442.70 Hz. Table 7.4 gives similar
data for the circular vent, size 1/2'" and at the frequencies of
1345 Hz and 2645 Hz. The results are plotted in figures 7.1 -
7.5

The dotted straight lines in figures 7.1 - 7.5 represent the

theoretical variation of @, given by:

a = -4fM (7.11)
A\

Equation (7.11) was obtained by rewriting equation (3.8) for
our case with the sign convention adoped in chapter 6. Here, in
the absence of suitable theoretical calculations for acoustic energy
losses associated with radiation through the centrally located vent,

@ was assumed to be zero for the fundamental longitudinal

rad
mode of oscillation of the tube because of the presence of the node

at the vent. The solid straight lines in figures 7.1-7.5 represent

the equation:

- = = de.
a, = @ad + M _:r (7.12)
dM
da
The slope — can be computed by taking the derivative of
dM

equation (7.10) and it can be written as:

da da da do

—v £ A _\-r ~ _rft + A net
dM dM dM dM

- 41 = A | ——— + 1.0 (7.13)
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TABLE 7.4

VALUES OF THE AVERAGE ATTENUATION COEFFICIENT
AND STANDARD DEVIATION FOR CIRCULAR VENT SIZE 1/2"

T (Hz) 1345 : 2645

— " - -
M x‘10 ozy_ Aon- av_ Aav

(sec™t) (sec™t) (sec™t) (sec™)
0 +0.27 1.99 ~-1.70 3.67
4.43 -3.83 1.78 -7.14 3.87
8.86 -8.52 1.91 -11.36 4.59
13.29 -9.07 1.95 -16.04 : 3.07
17.72 -10.28 2.01 -15.71 3.89

22.15 -9.40 1.82 -21.52 4.84
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| MACH NUMBER OF AVERAGE FLOW, Mx10*

443 8.86 13.29 17.72 22.15
| | 1 L )

VENT SIZE, 1/2 INCH
a, = -8347.90 M-1.70

AV.FREQ. 2645.00 Hz

N |
N
N 0
_/ N
a,=-10580.00 M

Figure 7.5 Attenuation Constant for 1/2" Circular
Vent, Frequency 2645.00 Hz



86
Assume %y is independent of M. Standard deviations on the
slope are calculated according to the technique discussed in

reference 15. For

dz, (%)  faa @
—2— e A | —2—),
dM dM

averages of the values for the two porous plates are taken. Fre-
quency f, once again is taken as the frequency at which the data
were taken with the impedance tube. arad here corresponds to
radiation losses through the vent for the case of no flow as
measured e};perimentally. See §7.1 for further‘d'etails. Table
7.5 lists the slope and variation on the slope for Ev with respect
to the Mach number for all five different vents tésted at the
frequency of 442. 70 Hz. Table 7.6 gives similar results for the

1/2" circular vent tested at the frequencies of 1345 Hz and

2645 Hz.
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TABLE 7.5

SLOPES AND STANDARD DEVIATION OF THE ATTENUATION
CONSTANT FOR FIVE DIFFERENT EXHAUST VENTS,
FREQUENCY 442.70 Hz

d5§ (sec™)

dM dM
Circular Vent
Diameter (inches)

1/2 : -1474.56 333,02

1 -1369.31 252.03

11/2 -1785.91 196,57
Slot Vent

Width (inches)

0.167 -1272.57 184. 97

0.375 -1619.67 171.95



88
TABLE 7.6

SLOPES AND STANDARD DEVIATION OF THE ATTENUATION
CONSTANTS FOR TWO CIRCULAR EXHAUST VENTS

SIZE 1/2"
f (Hz) d;v (sec™t) A ( dozV ) (sec™t)
dM dM
1345 -3875.08 1309.10

2645 -8347.90 2057.76
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VIII. THEORETICAL CALCULATIONS AND THEIR
COMPARISON WITH EXPERIMENTAL RESULTS

8.1 Calculated Values Using the One-Dimensional Approximations

Rewriting equation (3. 8) for our cold flow resonance tube with

the sign convention adopted in chapter 6,

a, = 4fM + « (8.1)

rad

As discussed earlier in section 7.3, theoretical value of @..q Was
assumed to be zero for our case and equation (8.1) hence can be

written as

o = -4fM (8.2)
v

also,
dafv
— = -4f (8.3)
dM

Further (ozv/f) can be regarded as a reduced attenuation coefficient
for the vent, and its relation with the average Mach number of the

flow can be given by
(av/f) = -4 M (8.4)

These are the simple results we wish to check. The three
major features of the above equations are:
(i) The vent produces a gain a s proportional to the
average Mach number of the flow in the main chamber.

(i1) The gain is proportional to the frequency of the funda-
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mental longitudinal mode .,

(iii) The gain is independent of the size and shape of the

vent.

Theoretical calculations can be carried out using the equations
(8.2), (8.3) and (8.4). Table 8.1 giveé typical numbers for the
absolute values of a, as a function of both fundamental frequency f
and flow Mach number M. Table 8.2 gives typical values of the‘
slope representing the variation of a, with flow Mach number M.
Table 8. 3. gives results for the reduced attenuation coefficient for
the exhaust vent as a function of the average Mach number of the
flow.

8.2 Comparison of Theoretical Calculations with Experimental
Results

Chapter 7 describes the experimental results obtained for the
influence of the exhaust vent for various different operating param-
eters including the resonance frequency of the tube; flow Mach
number, and different sizes and shapes of the circular vents.

Let us look more closely at the results given in tables 7.1 -
7.6 and tables 8.1 and 8.2. Comparing the results at the frequency
near 445 Hz reveals the fact that for the case of no flow, one-
dimensional calculations fail to estimate the radiation of acoustic
energy from the exhaust vents. Experiments show that (see table
7.1) for circular vents, this radiation loss represented by a..d°
increases with the diameter of the vent, which is obvious. There
is no suitable theoretical calculation to determine the radiation

loss. The large uncertainty observed in obtaining these numbers
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TABLE 8.1

VARIATION OF ABSOLUTE VALUES OF @, AS A FUNCTION
OF BOTH FREQUENCY f AND FLOW MACH NUMBER ™M

Frequency Flow Mach o
Number v
(Hz) M x 10* (sec™t)
0 0
4.43 - 0.79
8.86 - 1.58
445 13.29 - 2.37
17.72 - 3.15
22.15 - 3.94
0 . 0
4.43 - 2.38
8.86 - 4,77
1345 13.29 - 7.15
17.72 - 9.53
22,15 -11.92
0 0
4.43 - 4.69
8.86 - 9.37
2645 13.29 -14.06
17.72 -18.75

22.15 -23.43
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TABLE 8.2

VALUES OF THE SLOPE REPRESENTING
VARIATION OF @, WITH M

Frequency da -
— (sec )
dM
442.70 - 1770.80
1345 - 5380.00

2645 -10580. 00
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TABLE 8.3

VALUES OF (a'v/f) AS A FUNCTION OF THE AVERAGE
MACH NUMBER OF THE FLOW USING EQUATION (8. 4)

M x 10* (afv/f) x 10*
0 0
4.43 -17.72
8.86 -35.44
13.29 -53.16
17,72 , -70.88

22.15 ' -88. 60
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experimentally was due to the fact that the alignment of the whole
resonance tube system was affected by the weight of the vent plug
used to plug the vent itself. This leads to some changes in the end
conditions at the quad seals at the end of the tube (see figure 5.4
for detail) producing changes both in the resonance frequency and in

the values of a In spite of this unavoidable difficulty, the trend

net’
of the results is reasonable. These results could not be obtained
for the slot vents because of the practical difficulty in plugging‘the
slot vents.‘ For the resonance frequency of 1345 Hz, Crad is more,
as expected. For the resonance frequency of 2645 Hz, a..q was
measured to be a gain. This experimental error is extremely dif-
ficult to avoid just because - Af/AL is around 1000 for this case.
Also, any vibrational disturbances and plugging of the vent cause a
substantial change in both the resonance frequency and in the end
conditions at the pistons, making measurement of a..q very diffi-
cult,

Table 7.2 gives values of ( d)other . These are indicative of
losses

the inherent errors due to losses associated with the piston fitting

in the teflon insert at the end of the resonance tube. All the results
reported here were obtained after minimizing these losses. These
losses increase approximately linearly with the resonance frequency.
Assuming that these losses are not affected by the flow through the
pistons, their influence does not seem to affect the overall con-
clusions discussed below.

Comparison of the absolute values of a, at various resonance
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frequencies shows that (see tables 7.3, 7.4 and 8.1) the one-dimen-
sional formula predicts these numbers fairly well. The actual pro-
cess involved in the flow turning at the exhaust vent is three-dimen-
sional and the one-dimensional results can be accepted as a reason-
ably good first approximation. Table 7.3 shows that the values of
a, are approximately independent of the size of the circular vent at
a given resonance frequency, which is also a characteristic of the
one-dimensional results.

Another interesting number to be compared with the one-dimen-
da

sional prediction is the slope, representing the variation of

a, with flow Mach number. The experimental data in tables 7.5,
7.6 and 8.2 show that for a given frequency and size of vent, values
da

of -—_-_—‘_’ found from experiments are within 30% of the value predicted
dM

by the one-dimensional analysis. The slope is also found to be in-
dependent of size and shape of the vent at a given frequency as im-
plied by the one-dimensional formula. This slope also scales with
increase in resonance frequency within 30% of the prédiction.

From the results described in tables 7.3 and 7.4, reduced at-
tenuation coefficient for the vent can be computed. Table 8.4 gives
these computed values of the reduced attenuation coefficients for
different circular vents and frequencies as a function of the average
Mach number of the flow. A graph is then plotted for the reduced
attenuation constant (Ev/f) vs., average Mach number of the flow for
all of the circular vents. Figure 8.1 shows such a plot. The

solid line represents the results obtained from the one-dimensional
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TABLE 8.4

VALUES OF (Ev /t) AS A FUNCTION OF THE AVERAGE

MACH NUMBER OF THE FLOW AS OBTAINED FROM
THE EXPERIMENTS WITH CIRCULAR VENTS

Frequency
Hz

442. 7

1345

2645

M x 10*

0

.43
. 86
13.
17.
22.

29
72
15

.43
. 86
13.:
17.
22.

72
15

.43
. 86
13.
17.
22.

29
72
15

Dia.l/2"

+ 1.
-13.
-20.
-25.
-53.
-71.

+ 2.
-28.
-63.
-67.
-76.
-69.

- 6.
-26.
-42.
-60.
-59.
-81.

36
33
33
28
99
15

01
98
35
43
43
89

43
99
95
64
40
36

(ay/T) x 10*

Dia.

+12.
- 0.
-20.
-25.
-44.
-44.

1”

88
23
78
07
50
05

Dia.1l-1/2"

+23. 72
- 0.90
-23.94
-30. 49
-39.98
-53.31
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formula as described by equation (8.4). The approximate agreement of
experimental data with the one-dimensional calculation given by equa-
tion (8.4) is obvious from this plot. Much better agreement can be
obtained if the correction corresponding to the reduced attenuation
constant due to @4 is applied to that due to a_ . But, because of

the uncertainties mentioned earlier in the measurements of @ .4’

and the uncertainty of the approximation used in equation (3.3), this

was not attempted here.
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IX. CONCLUSIONS

The most significant conclusion of this work is the experimental
demonstration that a subsonic exhaust vent in the lateral boundary of a
cold flow resonance tube provides a gain of acoustic energy for the
fundamental mode within the resonance tube. For all the cases tested,
the gain of acoustic energy increases approximately linearly with the
Mach number, as predicted by the one-dimensional analysis. The
one-dimensional results give the values for the slope representing the
variation of the attenuation coefficient of the exhaust vent with respect
to the average Mach number of the flow within roughly'_30% of those
measured. Three main features of the theoretical behavior have been
verified: the subsonic vent produces a gain proportional to the average
Mach number; proportional to the frequency; and independent of the
shape. The major uncertainties on the experimental results for a,
are mainly due to the limitations of the present apparatus. Much
better results and accuracies can be obtained with the following
modifications:

(i) complete vibration isolation of the anechoic chamber

from its surroundings

(ii) improved alignment techniques and

(iii) stiffer electro-mechanical shakers.

The fundamental purpose of these experiments with acoustics at
ambient temperature is to establish the validity of theoretical results
which are purely acoustical. Then when tests involving combustions

are carried out on the T-burners, the acoustical aspect of the prob-
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lem is known well. Truly unknown contributions associated with the
combustion processes can then be concentrated upon. In particular,
the influence of the exhaust vent has been a serious source of un-
certainty in the interpretation of data taken with T-burners. It appears
now that that part of the problem has been clarified, and that data
taken with T-burners should be treated accordingly.

The values for a, found here (say near the frequency of 445 Hz)
are quite small, less than 5 sec t , because we have used rather small
total mass flow. For the T-burners commonly used in practice, the
total mass flux may be 5~ 10 times larger than the values used here.
Consequently, according to equation (8.»1), the values of @, may be
5- 10 times larger, around 25 - 50 sec”'. But the net values of the
growth constant observed in T-burner testing are commonly in this
range. The contribution of the vent is therefore obviously an import-

ant consideration and hence cannot be neglected.
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LIST OF SYMBOLS

speed of sound
defined by equation (C. 4)

admittance function of burning propellant or porous
plate

defined by equation (C. 4)

specific heat of gases

diameter of the resonance or impedance tube
damping constant defined by equation (B. 16)
stagnation internal energy of gases

value of e, at the edge of the combustion zone
acoustic energy density.

E? = [y 2av

constant appearing in equation (B. 16)
resonance frequency, also right hand side of equations
(A.12) and (B.2), also coefficient of friction as
described in equation (3. 2)

forcing function defined by equation (B. 7)
function defined by equation (B.22)

right hand side of equations (A. 10) and (B. 1)
stagnation enthalpy of the gases in the chamber
value of ho at the edge of the combustion zone
complex number defined by V-1

complex wave number defined by equation (2. 2), also
see equation (C. 2)

wave number for the Ath normal mode given by
Am/L

length of the resonance tube
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displacement of a cylindrical grain, see figure A.3

length of grain along the lateral boundary, see fig-
ure A.3

mass flux of gases inward at the burning surface
mass flux through vent
average Mach number of the flow in resonance tube

Mach number of the _gases at the edges of the com-

bustion zone, M'b = ub/ac
unit normal vector outward at a boundary

spatial mode shape of pressure for the £th longi-
tudinal mode

spatial mode shape of pressure for the Nth three-
dimensional mode

stagnation pressure

static pressure, see equation (3.2)
function defined by equation (A.9)

Prandtl number for the gases in the chamber
perimeter of the chamber cross section
heat released in homogeneous reaction
space vector

radius of the resonance or impedance tube
response function of the propellant

mass averaged gas constant

ratio defined by equation (C. 18)

entropy of the gases in the chamber

area of the burning surface in one half of a T-burner
or resonance tube

area of burning surface on the lateral boundary in
one half of a T-burner, see figure A.3
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cross section area of the resonance tube

time

temperature of gases in the chamber
temperature of gases at the burning surface
T - Ts

axial speed of gases

acoustic velocity

speed of gases entering at the burning surface
axial speed of gases at the burning surface

velocity of piston

volume of the chamber, also velocity of gas de-
scribed in equation (3.2)

mass rate of flow of gas stream as described in
equation (3.2)

injected gas as described in equation .(3.2)
Vg'/V as described in equation (3. 2)

coordinate parallel to the axis of a T-burner (or
resonance tube), z = 0 at the left hand side

attenuation constant
attenuation constant associated with porous plate

attenuation constant associated with end burning
propellant

attenuation constant associated with the burning
surface on the lateral boundaries of the combustion
chamber

attenuation constant for radiation and viscous losses

attenuation constant associated with the flow turning
losses

net measured attenuation constant as defined by
equation (4. 1)
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a defined by equation (C. 8)

attenuation constant associated_yg_ith radiation losses
through the exhaust vent with m_ = 0 as defined

by equation (3. 3)

o attenuation constant for the exhaust vent, see Chapter 6
v for sign convention, also see equation (3.3)

Bo defined by equation (C. 8)

Y ratio of specific heats of gas

wave length of oscillation

Xc coefficient of heat transfer of gas

M, amplitude of nth mode of oscillation

K defined by equation (C. 5)

o standard deviation

) mode shape, also see equation (C. 8)

I coefficient of viscosity

w angular frequency of longitudinal mode

w defined by equation (A. 16), also see equation (B.20)
for modal description

v kinematic viscosity

P density of gas

Po stagnation density of gas

Subscripts and Superscripts

() time average for theoretical work, also statistical
average for the purpose of data reduction

(") time derivative
) vector quantity
") amplitude ¢' = ée 1wt

() fluctuation
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real part

imaginary part

complex conjugate

value for the ith longitudinal mode

value for the 4 th longitudinal’ mode

value for the nth longitudinal mode

value for the N th three-dimensional mode
standard deviation of

gradient of

absolute value

element of
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APPENDIX A, LINEAR STABILITY ANALYSIS

Chapter 2 is a brief summary of linear analytical techniques
for combustion instability problems related to solid propellant rocket
motors, including T-burners. Here we treat in greater detail both
one-dimensional and three-dimensional approaches to the problem.

The primary sources for this discussion are references 5, 6 and 7.

A.1 One-Dimensional Stability Analysis

Figures (A.1), (A.2) and (A.3) show typical combustion cham-
bers. Though the simplest geometry is selected here, analytical
procedures discussed below may be applied to any practical geom-
etry.

The basic assumptions used are:

(1) The gases are treated as a single component

"average gas'' having constant specific heat
and obeying the law of perfect gas.

(2) Viscous forces and heat transfer within the gas

are ignored.

(3) Particulate matter is treated in an average way

as a fluid.

(4) The average Mach number of the flow is assumed

to be small and the acoustic Mach number is
assumed to be smaller yet. The limit M' /-ﬁb -0

defines the problem of linear stability.

With these assumptions, the central idea of linear analysis
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(a) End Burning Propellant Grain
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(b) Tubular Burning P'ropellant Grain

Figure A.1 Sketches of Typical Solid Propellant Rocket Motors
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Figure A.2 Sketch of Typical T-Burner with Disc
Type of End Burning Propellant Grain
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Figure A.3 Sketch of Typical T-Burner with Cylindrical
and Disc Type of Propellant Grains
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boils down to treating the influence of combustion and flow as per-
turbations of an acoustic problem in a closed chamber. The sim-
plest unperturbed problem is of pure longitudinal acoustic waves in
a uniform tube. Then the perturbations to this problem include the
- mean flow; the combustion at the burning surface of the propellant;
residual combustion within the volume of the chamber; the influence
of condensed material in the gas; and the exhaust nozzle. Here we
will treat the most simple problem leading to flow turning losses in
general and influence of the exhaust vent in particular. We will re-
strict ourselves to a constant area duct of cross section Sc and
much simpler propellant grains without. particulate matter,

With these assumptions, governing conservation equations are
(see reference 6):

Conservation of mass

S, 3 () + 5_ 2= (pu) = [mbdq (a.1)
where z is an axial coordinate and velocity u is in z direction. m,
is the normal mass flux of the gases inward at the burning surface
and q is the perifery,

Conservation of momentum

2 B % -
SC 5t (pu) + Sc 52 (pu”) + Sc e 0 (A.2)

Because the flow is normal to the surface, its axial momentum is

zZero.
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Conservation of energy

9

S, o (pe) + 5_ & [(pueo) ]<+ S, = (pu)

= fhos m, dq + Q S_ (A.3)

where Q is the heat released in homogenous reaction in gas phase

(energy/vol. sec).

Using equation (A. 1), equation (A.2) can be rewritten as:
ou ou 0 u
Pﬁ'*Pu'&'*sEhé—fmbdq (A.4)
c .

An equation for the pressure is formed by combining the con-
tinuity, momentum and energy equations, with appropriate use of
the equation of state for a perfect gas. First, by subtracting u
times (A.4) from equation (A.3), the energy equation for tempera-

ture can be written with de = CVdT as:

Odu
C, [ (pT) + 5~ (puT) J tp5,

CT
= [m dq+ fmb (h - eo)dq
+u2f dq + Q (4.5)
a—— q .
s, J ™

Now adding CVT times continuity equation (A. 1) to equation (A.5)

we get:



op , . 0p su _ Ro 1
8t+u8 ypazz_C-;—S:[[hos-e-*.CT]mbdq
RO 1 2
+-CTV--S:u‘/rnbdq+Q (A.6)

The expansion procedure is now applied to both equations (A. 4)
and (A.6). To first order in both amplitude of unsteady motions

and Mach number of the mean flow, we have (see reference 6):

du' . 9p' _ 9 = w =

ot T oz = "Poz (2%~ 5] /mbdq (A.7)
1 a' — 1 —

Bt yp, B = W - yp g (W) By (&.8)

Where P,' is the fluctuation of:

R
P, =/[ a® + 7ROAT + E—CQ_ (ubz - uz)]mbdq
v .

R

R 2 ’

o u O

YT S fmbdq te, ® (A.9)
v C v

The temperature of the gas leaving the surface should in general be
allowed to be different from that in the gas. This possibility is
accounted for by writing T, = T + AT. The fluctuation i‘s has been
replaced by ’i‘ + Ai‘ and 'i‘ is given by the relation for isentropic
acoustical motions, 'f‘/To = (y - l)fJ/‘ypo. Hence AT represents the
non-isentropic part of the temperature fluctuation.

Equations (A.7) and (A.8) are used to form the wave equation,
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2 1 2
o p L &p'_y (A. 10)
9z a® ot
o
with
- 0° Y 1 i. o
h---poaz(u,u)-s 8z[u'/mbqu
z c )
— — oP,!
s 2 Zp  y 8 Bu 1 (A.11)
2 Otdz 2 0ot 0z 2 ot
a a a
o o o

The boundary condition on p', to be applied at the ends can be ob-

tained using equation (A.7) as:

!
8. . _¢ at z =0, L (A. 12)
0z
with
=0 2 (3 ful L uw =
f = Po B2 (uu') + Po B¢ + SC/mbdq (A. 13)

With this formulation we will proceed to get the solution for

complex wave number k defined by:
k = (w- iu)/ao (A.14)

where o is growth or decay constant. For harmonic motions, all

fluctuations can be written as:

P' = P exp (iwt) (A. 15)
where
w = aok (A. 16)
Then equation (A.10) becomes:

3 A ~
L2 4 ep = b (A.17)
dz
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and boundary condition (A. 12) can be written as:

Sles
I
h >

at =z =0, L (A.18)

The solution for k® is readily found by using the solution of

the problem defined by the classical unperturbed case, for which

the governing equations are:

&®p
2 2a
o tk,p, =0 (A.19)
z
_d'?':O ‘ at z =0, L
-dz

s (A.20)

Multiply equation (A.17) by f)z and subtract from it p times equation
(A. 19).

Integrating the results over the volume of the chamber

gives: L L
2 - 2 1 f AA PN
k* = k}, + ——E - { hpzscdz + [ f p}I,Sc] } (A.21)
4 0 0
where L L
Ef = | $8,5 dz ~ | Bs (A.22)
0 0

~ ~

Now the task remains to integrate the right hand side of the equa-
tion (A.21) since h and f are known,

This gives:
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N up,
1pQa’okx’, [(u+ 2 2 )stc ]
Po%o 0
L
k,S —
. Z f A2 du
+ 1(‘}'- 1) 2 2 -CEdZ
0
i - dfa!; ° —
ci (Y [ 5 s
p ak dz b
oo & 0
ik, S L
L7¢c ™A )
-3 f Plpzdz (A.23)
© 0

After some calculations, the integral over P, can be calculated as:

ik,S_ s L
- 2 [ P;pzdz = lpoaok,(’, f
0 0
-y -
xf[ by A% —r_n-b:ldqdz
Po Po "o
k.% L 3 —
S T
0
k[: RO > A .
- 1-3-;-— -C— f pZQSch (A.24)
o v o9

Combining equations (A.23) and (A.24) and using the continuity

equation for steady state we finally get (see reference 6):



— L
up
3 3 2 _ a [a 2
(i -k ) E, —1poaokl&{[pf,(u+ aQ)SC ]
Poo 0
L.\ o omy
_[pﬂf[p +p T]dqdz
o o o

combustion and exhaust nozzle

2
A

X L
vt | @) SRl

o 2
o OOkL

mean flow/acoustics surface interactions
ik, R_ [
el o [ sz Sc dz
o v oo

residual combustion (A. 25)
Using equation (A.14), growth constant a can now be calculated from

the imaginary part of equation (A.25). For a << @ = aok and

L’

with residual combustion ignored, we have:

2 —a 1,
_ Po?o [a a(r) 4Py
a = - P u + —— ]S
E 2 2 0 a 2 c
§ o o 0
end surfaces
L m . (r)
- — b AT
-/ sz“b[: ¥ T]dqu}
0 my, °

lateral surfaces

combustion and exhaust nozzle
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L . 2
dp
1 [ 1 ) f—-—
- --——-—2E2 _—ka (———dz) m.bdqdz
2 Po o0 L

mean flow/acoustics (flow turning)

interactions (A. 26)

Viscous and heat transfer at the boundary may be incorporated

directly now with:

. ~ N 2
ot (t) by,  w Bo otk 13, 95
“d='#[(“’a“ dz * 2 C_ (Xc-a— ) Pz] 2
Y A=0 a, v Y /y=0 2wE
(A.27)

Further details relating to equation (A.27) are given in references
5 and 9.

Equations (A.26) ahd (A.27), when applied to thé T-burners
shown in figures (A.2) and (A.3), produce a si;nple relation which
is the base for interpreting all the data obtained from the hot
firings of T-burners. There are two functions commonly used to
describe the effect of small amplitude harmonic pressure fluctuations
on the burning of a propellant; the response function R_b and the

admittance function Ab:

_ th /m

R'b = y (A.28)
B/p,
A - ﬁb/ao
® piyp, (A.29)

Also,

-n_lb = Po% (A.30)
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with these, one may easily show that:

N —ﬁ o _ o
ub+ubf&2=_m_‘2+ub_%l (A.31)
Poo Po o

Combining equations (A.28) through (A.31) we get:

o, ,. 9P —
__aog( +p:a02)=Ab+Mb
yp ~ — Ari-’
T (e 4
T
=yﬁb(Rb+%§2) (A.32)

Because of the potential dependence of the response function on the
position of the surface, and because it is the real part which ap-

pears in equation (A.26), it is convenient to use the notation:

B, = Ab(r) + M, end surface (A.33)

Bs = Ab(r) + _I\-/fb side (lateral) surface (A.34)

With the assumption that p ~f)zz cos kzz, the first two terms of
the right hand side of the equation (A.26) can now be simplified

with simple integration to:

Qe = 4f{B_ contribution from end surfaces (A.35)
and L/2
’ SbS 1 A2
e = 4By 51T [ P, dz
c b 0

contribution from lateral surfaces (A.36)
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where f = ao/ZL is the frequency of the fundamental mode of longi-
tudinal oscillations in the tube and sbs = qu is the total area for
lateral inflow (see figure A.3 for details).

The third term on the right hand side of equation (A.26),
(i. e., mean flow/acoustic interactions) also provides two contribu-
tions, First, over the lateral burning surface only, given by Qpys
and a second, arises formally from the center vent, given by a;k.

Thus, the result for the general T-burner configuration shown
in figure A.3 is the formula for the growth constant:

a=ay ta_ +a,ta *ay (A.37)

For the T-burner configuration shown in figure A.2, used in this
work, equation (A.37) reduces to:

+a +a (A.38)
v

“be d
Note that the geometry of the T-burner shown in figure 3.2 resem-
bles figure (A.2) and our cold flow simulated resonance tube shown
in figure 4.2. Chapter 2 describes in further detail the use and the
limitations of equation (A.38) to calculate Be using data obtained
from T-burner firings. It is an implicit assumption that the dy-
namical behavior of burning propellants can best be characterized
by a response function R’b’ which is essentially a property of the
propellant. With a simple assumption of AT = 0, and using equa-
tion (A.32), one can obtain Rb in principle. But with the wvalidity
of this assumption in serious doubt, the only other alternative is to

measure Rb directly. Experimental techniques are not presently

available for realizing this alternative.

% . .
; In particular, see the first term in equation (3. 3).
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Further, the production of entropy associated with the inter-
actions between the incoming flow at the lateral burning surface and
the oscillatory flow in the main chamber can also be given by (see

references 9 and 10 for further details):

g [
d

0
1 /"1(@“’01%“ WL
Zpaa K 2 adz - 37 (uus uus)
oo O £ 0
[y dadz | (A.39)

The second term is a correction term"if the flow entering at the
boundary has a fluctuation of velocity in the direction of axial
fluctuation in the main chamber.

The result described above is essentially the counterpart for
unsfeady flow, of processes which have long been recognized in
steady flow in a constant area duct with mass addition at the bound-
ary (see reference 8, p. 225). The flow turning in unsteady flow
is indeed a‘ dissipative process (mainly due to viscous interactions)
accompanied by an increase in the entropy of gas within the main

chamber.

A.2 Three-Dimensional Stability Analysis

The stability of three-dimensional motions can be analyzed in
two different ways: by constructing the integral balance for energy

in a combustion chamber; and computation of the complex wave
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numbers of the normal modes, by using the differential equations of
motion. References 5 and 7 discuss both these abpproaches in de-
tail. The calculation of the balance of acoustic energy eventually
gives the formula for a which can be put in the form:
a® a2
a = -"’2’9_ #[foﬁ(rhi‘z_; +po(ﬁ.ﬁ)f§ ].ﬁds (A. 40)

3
ZEN Polo

On a closer look, it can be found that the first two terms are pre-
cisely those encountered in the formula for o as obtained using com-
plex wave number approach. Equation (A.40) can hence be written

as:

a, (r) — (ool cc 25 5
a =-—2— # 24, + M )as - =2 P @uuads  (a.41)
2Ey . 2E,

where the first contribution is from all burning surfaces and exhaust
vents and nozzles,

It is interesting to note that both the formulas produced for
the growth constant a are identical in most respects, but neither
analysis contains contributions from ''flow turning' effects which are
found in one-dimensional analysis as discussed earlier. The reason
for this is that the 'flow turning' is a process which in real flow
occurs in a boundary region and necessarily involves viscous forces;
a mechanism for attenuating acoustic energy. The one-dimensional
analysis provides an approximate means of computing these losses.
Only if viscous effects are taken into account will a three-dimension-
al analysis contain this contribution from the flow turning process.

No solutions for three-dimensional viscous flows are available for
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the problem of our interest here. For an alternative approach,
both the flow turning effects and loss due to heat transfer and
viscous stresses acting in the acoustic boundary layer on the wall
of the tube may be added to the formula for o as obtained from a
classical three-dimensional inviscid analysis. Then equation (A. 46)

[and hence equation (A.41)] can be written as:

Po?o aS(r), up’ =55
a = - P + at p (u.u)u |.ndS
2 p a o
ZEN oo

+ a +arv + o (A. 42)

ft d
As described earlier in chapter 2, for most of the work with
T-burners, the one-dimensional analysis has been used and seems

to work well.
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APPENDIX B. ANALYSIS OF APPARATUS FOR
ACOUSTIC TESTS

The apparatus used for acoustic tests consists of a tube driven
by the oscillating pistons at both ends generating the fundamental
acoustic mode of oscillation within the tube. When the frequency of
the driver is swept through the resonance frequency of the tube,
the amplitude of the acoustic pressure oscillation varies very much
like that of the resonance curve for a simple spring/mass/dashpot
system. The analysis described here helps one to draw a compara-
tive picture. In particular, it throws light on our need to relate
the 3 db down band width of the resonance curve to. the net losses
in the system. Though analysis is directed specifically to the con-
figuration modelling the T-burner, it can be modified for any geom-
etry with li‘ttle effort. References 16 and 17 describe the necessary
background for this analysis.

From the conservation equations, after suitable combination
and expansion, a linear inhomogenous wave equation can be con-
structed for the pressure oscillations:

vp - L &p _ (B. 1)
a.oa ot®

with the boundary condition:
o, vp' = -f (B.2)
The explicit forms of h and f are not important at this stage; a

complete discussion can be found in references 16 and 17. To de-

scribe this continuous system (the gas in the chamber) as a
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'ilumped” system one can write the pressure field as a synthesis of
normal modes with time varying amplitudes,
- bl
P' = Py ) Ny (Y, (7) (B.3)
where the mode shapes \yn(?) satisfy the homogeneous scalar wave
equation and the boundary condition that the normal component of

gradient vanishes:

vaq/n + knz\yn = 0 (B. 4)

n. vy =0 (B.5)

n
The procedure for computing the amplitudes Ny (t) is given in refer-
ences 16 and 17. First multiply (B. 1) by \]/n and sﬁbtract (B. 4)
multiplied by p' and integrate over the volume of the chamber.
Then introduce the expansion (B.3) and the boundary conditions
(B.2) and (B.5). A little mathematics finally leads to the equation
for n,:

dann .2
+w " n =F (B. 6)

da

with the 'force! Fn:

a2
F = -« —2>——— {/\y hdV +#\y fds} (B.7)
n po‘[‘ynadv n n

These equations are basic to all analysis of combustion instability
problems and may be used to describe the behavior of the problems
of interest here.

The important difference betweeﬁ the analysis of combustion
instability - a phenomenon occurring in a self-excited system - and

the situation of our interest,i.e., the cold flow resonance tube, is
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that the 'force' Fn now cdntains a part representing the influence of
an external agent, the 'driver'. In the test apparatus used here
there is a net flow of mass, momentum and energy through the
piston boundary exciting the standing waves in the tube. Over and
ébove this, the primary driving of the waves is the force exerted
on the acoustic field within a tube by moﬁon of a portion of the

boundary. This is represented in the function Fn as a part of the

term arising in the boundary condition:

1
fl.Vp':-pO%—;l——'ﬁ-l-.... (B. 8)

To understand this contribution let us first discuss figure B. 1.

In the cold flow resonance tube apparatus, movable pistons
are fitted at the ends of the tube. These have porous surfaces
through which the average flow is introduced. The entire piston is
oscillated using the electromagnetic shaker with velocity G"p. In
addition to this, the velocity of the gas passing through the porous
surface fluctuates in response to the acoustic field. Hence, the
approximation will be assumed true that the unsteady velocity of the
gases just downstream of the piston may be written as:

' = G'p + G'a (B.9)

—p
where u'a is the acoustic velocity for the harmonic motions.

T8

a
» [e) ~
*n=A |— B. 10
where Abis the admittance function to be measured with the imped-

ance tube apparatus. Now because the admittance function is a

complex number:
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Figure B.1 Sketch of a Movable Piston with Average Flow Inward
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A, = Ab(r) + i Ab(i) (B. 11)

and for motions which are not precisely harmonic, equation (B.10)

can be written as:

a 7P,
. |
~ —2 (r) L 1 A ()2
~ oo (Ab + w A, 8t) p (B. 12)

with equations (B.9) and (B.12), equation (B.8) can be rewritten as:

8;1" . 2
~ _ p =~ _ 1 (r) ap' 1 (i) &p'
nVP' = oho Bp R T a] (Ab ot " w_ b o

(B.13)
According to equations (B.2) and (B.7), this leads to a part of Fn:

2 —.l
-y O PSP Ab<r>.@g.'+_1.Ab<i>fﬁ> as
n ]\Vnzdv n o t ao t wn 81:2

(B. 14)
Now substituting equation (B.3) in the last terms of equation (B. 14)

and because the perturbed mode is not very different from the

normal mode, use the approximation nl = - wizni to find:
(») y By %o (r), (1)
Fao %_[W 3 4V Yn Bt 'ndS—Tz—CR;(Ab L s U ™
n ¥n
i#n 2
a W, .
33§_—9 z (r)y, 71 , @)
#"’nd f"’nadv ﬁ*n‘l’i [Ab MR A,y |ds

(B. 15)
For linear behavior, the remaining part of Fn given by equation
(B.7) can all be expressed as a sum of contributions proportional

to ﬁi and those proportional to n,- Consequently, Fn can be written
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as:

F o= -—2 dy %I%P-.ﬁds-——i"——— <A (T _w_a Gk )ﬁ
n f\ynadv n [‘I’nzdv b n nb n

a e (r) w,? (i)
Ak prred)) #“’n‘yi [Abr - Ay ]ds
f\yn dV wn
i#n
- Dnnﬁn - Enn'l’]n - 2 [Dn1ﬁ1 + Enln]_] (B. 16)

Equation (B. 6) can now be written more explicitly as:

&n 2a A (r) dn
—2 ., |lp 4+ 2P o |_n,
ar® nn f\ynadv cl at

2a w Ab(i) o’
w?-=28b g}, ¥ M, P ads (B.17)
n 2 c n 3qv n ot

[y, av fv;

In the above equation, linear coupling terms are dropped out (i.e.,
the terms for i#n), the main reason being the absence of the
physical process (combustion in particular) giving significant linear
coupling. See references 16 and 17 for further details. Moreover,
these terms should not arise in the usual linear stability analysis of
interest here because of the restriction enforced from the beginning
(see chapter 2) that it is sufficient to study linear stability of the
normal mode of the chamber and hence the motion consists only of
a wave having a single frequency. Moreover, it is also important
to point out that the right hand side is dominated by the term rep-
resenting the pistons driven by electromagnetic force. This force

is at the same frequency as the fundamental frequency of the device.
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Equation (B. 17) is the formal justification for treating a con-
tinuous system as a driven oscillator whose displacement amplitude

is ye For a harmonically forced piston:
o = u et (B. 18)

and with n, = ﬁn exp (iwt), equation (B.17) leads to the frequency

response given by:

. -iwG
iy = = 1“’2 - (B. 19)
(wn - W) + i (2aw)
where .
5 2a w A s
wna - wnz +E_ - o na c (B. 20)
y “av :
J v
2a Ab(r)S
20 ED +—22__ ¢ . (B.21)

nn ] ‘l/nde

~

G=—2Y— y.u_.hds (B. 22)
f\yngdv np

The frequency an is measured in experiments and it differs
by only a small amount. The frequency response, equation (B. 19)
is shown in figure B.2. For a/w <<1, it has half power width of
2a. This is the basis for the experimental technique used: the
frequencies an’ w, and w_ are measured and Aw Fw, - w_= 2a
is calculated from that.

Owing to the assumption on which the linear split of perturba-

tion velocity is made according to equation (B.9), one finds eventually
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2a

! Aw = w, - w_=
2./2 al. +

N

Figure B.2 Frequency Response According to Equation (B. 19)

2a
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that for the use of equation (B. 19), the admittance function for the
stationary piston must be measured. It is Ab defined by equation
(B. 10), for the fluctuation of gas relative to the face of the piston
which appears in "En and especially in a. For this very reason, a
rigid piston mounting of the piston at the end of the impedance tube

was used in the impedance tube experiments.
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APPENDIX C. ANALYSIS OF THE IMPEDANCE TUBE

The impedance tube,or standing wave apparatus as it is widely
called, is commonly used for easy and quick determination of imped-
ance and hence admittance function of acoustic materials. The
standing wave tube method of measuring acoustic admittance of .
sample of interest is illustrated in figure C.1l. A sample of the
surface to be tested is placed at one end of the circular tube and a
suitable driver is placed at the other end. Both incident and reflecting
acoustic waves from the sample front form a standing Wéve system
within the tube. This standing wave system is sustained within the
tube because the power input by the sound source precisely compensates
the energy losses in the tube.

Many discussions of the standing wave apparatus are readily
available; for example, reference 18 is the most typical. The brief
summary described here closely follows this reference. Some of the
nomenclature is defined in figure C. 1.

For very low Mach numbers encountered in our tests
(M < 3 x 10°%), Doppler effect is neglected and it is sufficient to
assume that the pressure fluctuations satisfy the one-dimensional
wave equation:

?p! . L &p! _ (C.1)

2 2 2
9z a, 9t

For harmonic waves with real frequency w , set p' = p(z)exp(-iwt).

With this equation (C. 1) now becomes

2 AN
id—Eg + k% = 0 (C.2)
zZ
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Sketch of the Impedance Tube
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where k = w/a.o is the real wave number. Solution to equation (C. 2)

may be written in the form

P=D, +D , us=43a, +7 (C.3)
with
~ -Kz + ikz ~ _ B -Kz + ikz
P Be , = e
+ + p.a
o o
(C.4)
~ - .A. +KZ - ikZ ~ A +KZ - ikz
p_ e R u_ =—p 2 e

The attenuation coefficient K is introduced to represent distributed
losses along the tube wall. These are entirely due to viscous losses
and heat transfer within the acoustic boundary layer at the tube wall.
For this case K is given by the classical formula

i

2

K = zmv)% [1+X-'-1-]-f- (m™) (C.5)
/Pr 'Dao

After numerical values have been substituted for the material prop-

erties

(=

2

K = 2.94x10°° (C.6)

£
R
at 21.11°C and 1.033 x 10* kgf/m2 pressure, where R is the
radius of the tube in meters.

It is a matter of convenience to write the relation between B and

A, defining the complex quantity ¥,
B = -Ae?¥ (C.7)

Also define ¢ , B :
[e] 0

Yy = Mg

, + imB, (C.8)
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The pressure and velocity fluctuations, equations (C.3) and (C. 4)

hence can be written as

5 = A[eKz-ikz . e-Kz+1kz+th] (C.9)
4 = -;: [eKz—1kz N e-Kz + ikz + 2P ] (C.10)
Pr% L
Alternatively, using the definitions of the hyperbolic functions,
equations (C.9) and (C. 10) can be rewritten as
P = -ZAed’sinh(zb - Kz + ikz) ' (C.11)
a = z2& e¢cosh(¢) - Kz + ikz) (C.12)
p a .
o o
Now define o, B :
a = a -Kz
° (C. 13)
_ 2z
8= 5+
So, equation (C.11) can be rewritten as
p = -24eM% T18) o hmis + ig) (C. 14)

The absolute value of acoustic pressure hence is
; 1
Al Tag 2 Kz 2 22,2
[3] = 24e"® [cosk®m(a - ==) - cos®m(e +3%)1°  (C.15)

Because the hyperbolic cosine is monotonic, but the cosine oscillates,
|| exhibits maxima and minima as B = B, t 2z/\ changes with z.

The values of B and the corresponding values of the lf)] are given
by

B = H/2,£3/2..... =2Aena0lcoshﬂ(ao -5&5)1 (C.16)

lﬁ' max
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B =+, 22..... |B] . =24¢"% | sinhn(a - £2) (C. 17)

min
For small values of Kz/mr, the usual case in practice, the values of
acoustic pressure maxima are almost constant and for the values of
[f) ’mi increase linearly with the position away from the sample.
Let z and z _ . denote the first maximum and first
max min
minimum, measured from the face of the sample being tested. Then

the most convenient experimentally measured ratio is given by

o . 1Plhimay | coshine, -k ) (C.18)

sinh (Trao - Kz, rnih)

131 min

From equation (C. 18), the constant a is

- R sinh (Kz, roin)

1 B cosh (Kﬁz1 max) n
o = =tan : (C.19)
0 m X cosh(Kzlmin)+ mnh(Kzlmax)
A second constant Bo ,» is given as
“ min
B, = 1-2—22 (C.20)

Finally, the admittance function of the surface may be related to a
and Bo as follows:

A = -gﬁ’ﬂ— = -cot:hTT(ar0 +iBo) (C.21)

B/Yp, .
Z =

From this formula, the real and imaginary parts of the admittance
function can be calculated. As defined here, the real part of Ab is
negative for absorption of acoustic energy.

The real part of equation (C.21) is
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_a () _ coth(may)(1 + cot® (mB,)]
b coth® (ma) + cot® (W8, )

(C.22)

It is this number which is calculated using a small computer program
as described in Appendix E. Also it is interesting to note that for very
small values of @, i.e., for rigid surfaces, the first minimum occurs
in the tube very close to z = A /4 for which equation (C.20) gives

B, = 1/2. The distributed losses are relatively small and if

Kz min is dropped from equation (C. 19) and using equations (C. 18)

and (C.22)

-A (r) o~ 'ﬁ’l min

b (C.23)

li\)llma.x

which is used as a quick measure of admittance function of the acoustic-

ally hard materials.
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APPENDIX D. CALIBRATION PROCEDURES AND ESTIMATES OF
ERRORS

The quantities to be determined, the real part of admittance
function of porous plate and decay constants, are relatively small and
their variation with respect to flow Mach numbers is also relatively
slow. Moreover, the decay or growth constant associated with the
exhaust vent is to be determined by subtraction of relatively large
decay constants. Thus the indirect method of measurement adopted
here and described in chapter 4, requires considerable care and good
instrumentation to obtain the highest possible accuracy. Considerable

effort has been devoted to achieve the necessary level of accuracy.

D.1 Calibration of the Air Supply System

As a part of this calibration, Brooks full view rotometer type of
flow meter (0 - 3.22 SCFM, linear scale) had been separately cal-
ibrated using Precision wet test meter (0 - 100 SCFH air flow). The
flow circuit for calibration of the flow meter is shown in figure D. 1.
For better accuracies, a vapor correction was applied to the data
obtained. The flow circuit for the calibration of porous plate is
schematically shown in figure D.2. The same circuit is used to
provide the axial flow in the resonance tube tests. The supply
pressure and flow rate are controlled and maintained constant by a
series of coarse and fine regulators and a fine metering needle valve.
The supply pressure is monitored with Statham differential pressure
gauge (0 - 50 psid). The pressure drop across the porous plate is
measured with similar pressure gauge (0 - 10 psid). The calibration

of the wet test meter was provided by Precision Scientific Company,
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while the pi'essure gauges have been calibrated at the Standards and
Calibration Laboratory of the Jet Propulsion Laboratory.

The results for flow rates vs. pressure drop across the two
porous plates are given in figure D.3. These porous plates were
chosen to provide very high acoustic impedance, which implies a
relatively large pressure drop for a given flow rate. The data ob-
tained are within the tolerances (% 30%) quoted by the manufacturer.

All of the calibrations were checked periodically.

D.2 Calibration of the Accelerometers and Charge Amplifiers

To drive the fundamental mode of acoustic oscillation of the cold
flow resonance tube, the driver pistons at both ends of the resonance
tube should oscillate with the same amplitude of oscillation and 180
degree phase difference between them (this is obvious from the pres-
sure distribution for the fundamental mode of the tube here }»  The
amplitude part of our requirements is assured by calibrating both the
charge amplifiers (Unholtz-Dickie, Model D-11 Series) and the accel-
erometers (Endevco, Model 2275 isobase ty'pe with low noise microdot
cables) at the Environmental and Testing Laboratory of the Jet
Propulsion Laboratory. Figure D.4 is a schematic diagram of the
apparatus used for calibration. Calibration charts (essentially a
frequency response curve at 0 to 0.25 g (peak) level of excitation and
frequency range of 25 - 4000 Hz) were prepared for both the sets of
charge amplifiers and accelerometers. Figure D.5 represents -
typical frequency response curve for the charge amplifiers and
accelerometers used in the experiments. Settings of éharge amp-

lifiers were then adjusted to obtain the necessary voltage output of
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Figure D.4 Schematic Diagram of Apparatus for Calibrating
Accelerometers and Charge Amplifiers
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2.5 V rms for the crossover frequency of 100 Hz at the excitation
level of 0 to 0.25 g (peak). With the help of the frequency response
curve, then the necessary output of the charge amplifier and acceler-

ometer system can easily be calculated at any frequency of interest.

D.3 Calibration of Microphones

The values of the sensitivities and the frequency response curves
are provided by the manufacturer. Periodic verifications have been
made on the sensitivity check using B & K pistonphone microphone
calibrator, Model 4220,used together with B & K measuring amplifier,

Model 2607.

D.4 Calibration of Related Instruments

Princeton Applied Research lock-in amplifier Model 1244,
Wavetek synthesizer Model 171, Wavetek phase meter Model 740 and
the Data Precision digital ‘voltmeter Model 3500 were sent periodically
to the calibration laboratory of the respective manufacturers for
calibration. The Spectral Dynamics tracking filter Model SD-122 and
carrier generator Model SD-120 were calibrated only once at the
calibration laboratory of the manufacturer. The Tektronix dual beam
oscilloscope type 551, with type D and type 53/54 C plug in units,
were calibrated periodically at the calibration facilities available

at the electronics shop in the Department of Aeronautics at Caltech.

D.5 Sources and Estimates of Errors

Estimates of errors were carried out with the best available
information and some laboratory experiments. The complexities

involved with the determination of estimation of errors associated
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with the primary sources of calibration, limited us to estimates of

errors determined with respect to the secondary sources of calibration

and to occasionally accept the estimates provided by manufacturers
for some of the instruments where such secondary sources of calibra-
tion were not available. Also it is worthwhile to mention here that the
error estimates provided by the manufacturers were often found to be
conservative. Figure D.6 describes the usual hierarchical structure
involved in the calibration procedures. Because of the large number
of variables involved, it was thought wise to describe the estimates of
errors in two sections,

D.5.1 Resonance Tube Experiments

(i) acceleration of the pistons: % 0. 08% of the
secondary calibration done at the Ehvironmental
and Testing Laboratory at the Jet Propulsion
Laboratory. 1% of the primary calibration done
at the National Bureau of Standards

(ii) relative phase of pistons: * 0.6(0°. This error
estimate was provided by the manufacturer
(Wavetek)

(iii) frequency: #* 0,002% of the setting: as measured
by the primary source of calibration provided by
the Jet Propulsion Laboratory. # 0.005% of the
setting; as provided by the manufacturer (Wavetek)

(iv) flow rates: * 0.05% of the overall secondary cal-
ibration done at Spalding Laboratory at Caltech,

Standards and Calibration Laboratory at the Jet
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Propulsion Laboratory and Daniel and Florence
Guggenheim Jet Propulsion Center at Caltech.

+ %% of the setting, error estimate provided by the
manufacturer of the wet test meter (Precision
Scientific Company). There is, however, a small
uncertainty in M arising from the overall calibra-
tion effort as discussed above; indeed, this has a
small effect on the final results for Ev' For
example, suppose AM #* 1% (a value much larger
than actually occurs). Several check calculations
have been carried out to estimate the extent to
which this error affects the uncertainty in the |
attenuation constant for the vent. Over the range
of conditions covered by these data, the uncertainties
in a, is increased by a factor of 1.01 to 1. 07.
Thus, the error bars shown in the final results are
only slightly increased and the qualitative con-
clusions in respect to the influence of the vent are
unaffected. It should be noted that the average
Mach number will be treated as the precisely known
independent variable with these uncertainties in
mind.

acoustic pressure signal: * 0.10% of the reading.
The absolute values shift the resonance curve
vertically if that error is independent of frequency

and amplitude for the range covered. For further
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remarks, see item (iv) for the error estimates in
the impedance tube experiments.

(vi) The greatest uncertainties and sources of errors
are associated with the end conditions at the pistons.
These are mainly due to the flow through the
pistons and building vibrations, both of which may
produce abrupt fluctuations in the relative phase
and occasional shifts in the average position of the
piston. The latter can also be affected by the
pressure difference between the inside structure of
the shakers and resonance tube, which is a function
of flow rates through pistons and this amounts to
be of the order of a couple of mm's of mercury.
Fluctuations in supply air pressure may contribute
to the same. A very small change in the align-
ment -- the axis of the piston may not be precisely
aligned with the axis of the tube -- can also be
troublesome because the leakage spaces created
provide sources for acoustic energy losses which
are difficult to account for. Lubrication with
silicon oil, the external '"quad-seal'', pressure
equalization and fine regulation of the supply air
pressure (x 0.15% per hour of the setting) helped
alleviate this problem. It is interesting to note
that without these improvements, we encountered

serious difficulties with large test to test varia-
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tions of the resonance frequency accompanied also
by changes in the pressure amplitude for the same
piston motion. The initial setting was done to
obtain the maximum acoustic pressure amplitude,
suggesting the lowest value of the losses des-
cribed above. These also account partly for the

mismatch described in chapter 7.

D.5.2 Impedance Tube Experiments

(i)

(ii)

acceleration of the piston mounting: * 0.0010 g

(0 to peak). For correct results, the piston and its
mounting should be absolutely rigid and hence sta-
tionary. Best results were obtained after a sturdy
clamp was installed to anchor the piston to the end
of the impedance tube. Excitation of the loud speaker
was kept as low as possible to facilitate this.
Determination of the acoustic pressure minima is
affected by the flexibility and mounting of the long
probe. Spurious room noise also has some in-
fluence. Neither of these errors is known.
Ultimately, the major limitation is set by signal/
noise ratio, primarily due to flow noise generated
by flow through porous plate. Phase quadrature
technique of measurement with lock in ampli-
fier together with the fact described in

Appendix C that there is a A/4 and hence 90°

phase difference between maxima and minima of
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(iv)
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acoustic pressure signals when acoustically hard
material is tested in the impedance tube. Also

the use of B & K measuring amplifier with absorp-
tion coefficient scale helps one to determine the
approximate pressure minima quickly and fairly
accurately.

special resolution of pressure minima: % 0.50 mm
Unlike the acoustic pressure measurements taken
with the resonance tube, it is necessary for the
experiments with the impedance tube to know the
absolute values of the acoustic pressure amplitude.
The amplitude linearity of the lock in amplifier
enters in determining the absolute values of the
signals. Here, the internal calibrator of the
instrument was used to estimate this error. ‘A
practical difficulty arises because we need to
measure signals ranging from 1% to 80% of the full
scale sensitivity on a single sensitivity of the lock
in amplifier. When the signal was only 1% of the
full scale sensitivity setting, the error in amplitude
was determined to be % 0. 10% (due to the amplitude
nonlinearity of the scale) and for signals greater
than 30% of the full scale it was almost impossible
to detect the very small error. Measurements of
pPressure minima in the impedance tube are nec-

essarily made at the lower end of the full scale
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while the measurements of pressure maxima and

all data for the resonance tube are taken at the
higher end of the scale. We estiméte that the error
due to amplitude nonlinearity of the lock in amplifier
scale produces an additional error amounting to
roughly 5% of the existing error bars shown in the
final results for '&V.

Finally, it may be noted that day to day changes in temperatures
are ignored. The eventual effect on the attenuation constant is roughly
+ 0.5%, arising from the influence on K é,nd speed of sound. Also,
lateral oscillations of the resonance tube on its mounts seem to
affect ¥, Our estimate shows that K increases by approximately
1.50 % or sé. Bothof these eventually lead to minor corrections on
EV which were not carried out because of the uncertainti.es in their
determination and the nature of the experiments performed to

determine them.
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APPENDIX E. COMPUTER PROGRAMS

Three computer programs were developed as a part of this work.
The first of the programs calculates the negative real part of the
admittance function of a porous plate using data obtained from the
impedance tube experiments., The second program takes the results
of the three trials of the impedance tube experiments and does simple
statistics with it, calculating the mean and standard deviation of these
three sets of numbers. It also does the least squares fitting to a
straight line of these mean numbers and gives us the equation of the
straight line, showing variation of the negative real part of the ad-
" mittance func.tion with average Mach number of the flow. The third
program treats the data obtained from the experiments with the res-
onance tube. It takes the results of the three trials of the resonance
tube experiments. After statistical treatment of the data, it gives us
the equation of the straight line showing variation of the mean value of
the net loss coefficient in the resonance tube with average Mach number
of the flow, using the least squares fitting technique. Reference 15

has been used as the basis for the statistical treatment of our data.
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Program to Calculate the Negative Real Part
of the Admittance Function of a Porous Plate
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~MCe FUNCTIAOM OF PUORCUS PLATE

T GETERMINE THE ADMITT
E TUBE MIDIFIZD WITH 1/2 INCH

USING B&K IMPEDA NC
MICRIPHCHE

PSS GRAQGE G WITH THICKNESS 1/8 INCH IS USED

PHS POROUS PLATZ(1) IS TREATED FIRST

FROM EXPERIMENT FIRST MAXIMA & MIMIMA QF ACOUSTIC
PRZSSURE ARE TAKEM

ALLL PRESSURES ARE IM MV Q“b

MCS SYSTEM IS USEN THROUGHT

FREQUENCY HAS A UNIT OF FERTLZLS

VELOZITY CF SGUND 1S CALCULATED AT 1 ATA PRESSURE &
2111 DEGRE= CEMTIGRADE TEMPERATURE

RADIATICM OF ACQUSTIC ENERGY THROUGH TUBE WALL IS MNOT
ACCOUNTED FNPR

RZCAUSE THE MACH MCS ARE TUO SMALL THEIR INrLUSICN N
I'MPEDANCE TUSE THEOPY IS AVAIDED

FNR DATA SEE FINAL DATA FILE NO. 2 DATE ll/ZﬂIT? WORK
TRIAL 1 '

COMPLEX YLl,Y2,ADMN

DIMENSTION VELO(S5),,PMAX(6),PMIN(6), XMAX(6), XMIN(6)
NDIMENSICN XMAXA(6) XM INA(6)
READ(S,L)(VELO[(I)yI=1,6)

READ(S5,L)(PAAX{J) yd=1,06)

READIS,1)IPMIN(K) K=1,6)

READ(S,1)(XMAX{L])sL=1,6)

READ(S, LI IXMIMN(M)Y 1=1,6)

FIPMAT(oF12.5)

RAD=(1,500%2.54=0.50)/103,.0

FREQ=2645.00

VSQUMD=343.9745

ALAMOCA=VSIQUND/FREQ
AKLOSS={2.94%0.00001=5QRT(FREQ) )/RAD

XZERD=0.00175

DO 125 N=1,6

FLVELO=VELO(N)*0,3048

AMACH=FLVELO/VSOUND

XMAXA{NI=XMAXIN) +XZERN

XMIMA(N)I=XMIMIN)+XZERD

R=PMAXINI/PMININ)

A= AKLISSAXMAXA(N)

B=AKLOSS*XMINA{N)

C=CO3H({A)

N=STYH(A)

E=CQOSH(R)

F=SI{HIB)

PA={C—{R*F) )/ {(R*r)+D)

IF {(PA.GE.1.0) GN T2 100

21=0,50%(ALG(L.0rPA))

22=0.50={ALUG(L.0—-PA))

I=21-22

PI=22.0/17.0
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ALPHAC=Z/°1 :
PETAD=1e0-(20%XMINA(N)}/ALAMDA)
YL=CMPLXIPTCALPHAN,PT =3EcTAJd)

Y2=-Y1

AJMITTANCE FUNCTION IS NEGATIVE BY DEFINATICN
ADMN=(CZXPLYL)+CEXP(Y2) I /(CEXP{YL)=-CEXP(Y2))
RADHMN=REAL (AOMN)

ATACMN=ATMAS (ADMN)

ALPHA DUE T3 PISTON IS NEGETIVE BY DECFINATICN
MOTE THAT THIS ALPHA [3 THE RESPONSE JF THE WHILE
FLOW SYSTEM TNCLUDING THE PORPIUS PLATE ITSELF
SYSTEM INCLUDING THE PCROUS PLATE ITSELF
ALPHAP=4,0*FREQ*{R ANMN+AMACH)

WRITE(H,10) .
FORMAT(LIX,'FREQ HZ MACH NJ . —VE EAL PART OF
2AOMITTANCE") :
WRITE(Hy15) FREQAMACH , RADMN

FORMATI(3F12.6)

WRITE(S6,20) . '
FORMAT(LX,'-VE IMAGINARY PART MF ADMITTANCE')
WRITE(6,25)ATADUN

FORMAT({F10.6)

WRITZ(6,30)

FORMAT(LX, *ALAPHAZERN  BETAZERD?Y)
WRITE{6,351ALPHAN,BETAD

FORMAT(2F10.6)

WRITE(6,40)

FORMAT (1X,'THEDRETICAL VALUE OF KAPPATY)
WRITE(6445)AKLISS '
FORMAT(F1046)

WRITE(6,50) :
FORMAT{1X, *ALPHA DURE TG PDROUS PLATE(L) *UMITS 1/SEC
?wr) .
WRITE(6,55) ALPHAP

FORMAT{F11.6)}

G2 TJd 115

WRITE(64+105)

FORMAT (1X, *ERROR ~ VALUE OF TANH(PI®*ALPHAQC) IS?')
WRITE(6,110)PA _ :
FORMAT(F10.6)

CONTIMUE

WRITE(6,120)

FORMAT (/8 =0k om e e dete ve xone % ok & w3 s ieobe etz ke ste e waoke desk v o 6 o medesie
Prehokik ke [

CONTINUE

sTae

END

//7EATA Do

c

("
/7

* .
FOR DATA SEZ FINAL DATA FILE NO.2 DATE 11/23/717 WORK
TRIAL 1 :
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Program to Statistically Treat and to Fit the Data
for the Negative Real Part of the Admittance
Function of a Porous Plate Using the Least
Squares Fitting Technique



sl oNeEnNeNel

95

14

80

98

999

161

TJ DETERMINI TAS VARTATION OF —VE REAL PART 0OF THE
ADMITTANCE FUNCTION OF NIN OSCILLATING POROUS PLATE
WITH FLIW MACH NO

PORTIS PLATE (1) IS TREATED FIAST

NUMHER SETS OF EXPERIMENTS DUNE ARE THREE

FOR DATA SEZ FINAL DATA FILE NO 2 DATE 11/28/77 WIRK
DATA IS TAKEM WITH EXCITATION FREQUENCY OF 2645.00 HZ
DIMENSIGN DATA(3,9),X(9),Y(9),Al2),AB%(3)

DOUBLE PRECISICN STCR(2,7)

At1)=0.

A{2)=0,

N=6

READ(5,S5) (BATA(LyJd),J=1,N)

FORMAT(6(F19.6))

DO 12 K=1,N

READ(5,14) ABR

FORMAT(3(FL0N,6))
DATA(2,K)=( ABP (1) +ABR{2)+ABR(3))/3.
DATA(3,K)=SQRT(({ABPI 1) =DATA{2,4)) =52+ (ABR{2)—DATA(2,
PK) )42+ (ABR(3)=DATA(2,K)1%%2)/3,)

X(K)=DATA(L,K)

Y(K)=DATA(2,K)

CONT INUE

CALL LSQUAR{DATA,M,2,A,CHIS0,STIR)

KRITE(6,80) |
FARMAT (LX, ' IMPEDANCE TURE RESULTS FOR POROUS PLATE
2(1) AT FREQUENCY OF 2€45.00 H2',//)

WRITS(6,98) IX{I),Y(I),DATA(3,1),I=1,N) |
FORMAT (1X, *MACH NJMBER' ,4X,'=VE REAL PART OF ADMITTA
PNCE FUNCTION' 94X, STANCARD DEVATION® ,/,6(/,2X,F8.6,
?220X,F3.64+23X,F8.6)) -

SUMX5Q=0.

SUMX=0.

SUM=0.

DI 5 I=1,N ‘
SUM=3SUM#{A(2) =X (T)+A(1)=Y{[))==2
SUMXSQ=SUMXSG+X({[)*¥*2

SUMX=SUMX+X (T )

CONT INUE

SI1GSQ=SUM/N

DELTA= N SUMXSQ-SUMX %2

SI1GA2=SQRT(N%SIGSI/NELTA)
SIGAL=SQRT(SIGSQ#SUMX3G/DELTA)

WRITE(6.,999) A(2),S1GA2,A(L),SIGAL

FORMAT (/,1X ' NABR = ¢ ,£13.64' += ',E13.6, ' TIMES
PMACH NUMBER' , 1X,'PLUS ',Fl0.6,' += ?',513.6)

STOP

END

//DATA DN *

c
/7

FAr NATA SEZ FIMAL DATS FILE NGO 2 DATE 11/28/77 #WORK
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Program to Statistically Treat and to Fit the Data
for Total Losses in the Resonance Tube Using the
Least Squares Fitting Technique



REAS A EREa NN S

95

12

L6

24

26
25

30

G8

59

163

THIS 1S A PRUGRAM Tn FIT LIMZARLY WITH LEAST SCUARES
RELATION BETWERM MACH MUMBRER AND ALPHA NET FROM
EZSTINAMCFE TYBE EXPERTMEANTS

VEMT STZE IS 1/2 INCH AMND IT IS ULJCATED AT THE CENTER
nE THE RESONANCE TURE

PGS IMNANCE FREGUEMCY IS5 NTZAR 28645.90 HZ

NJMBEP SETS OF EXPERIMENTS DONE ARE THREE

DIMENSICN DATA(3,9),X1{S),Y{9),Al2),ABR(3)
?2+FREQI3,0),AVGFPE(E),SDFREQ( )

NDIBLE PRECISIION STOR(2,T)

A{1)=0.

AlL2)1=0,

M=6

REAND(5,S5)}(DATA(L,d),Jd=1,N)

FORMAT(6(FLO,6))

DD 12 K=1,N

READ(S,14) ABR

FORMAT(3(FLD.2))

DATA{Z2,K)={ABR{1L)+ABP(2)+ABR(3))/3.

DATA(3,,K)=SORT(( (ABR(L)-DATA{2,K} ) &*2+{ ABR{2})-DATA{ 2,
2K))Ax2+ (ABR(3)-DATA(?2,K))**%2)/3.)

X(K)=DATA(Ll,K)

Y{K)I=DATA(2,K)

CONTINUE

READ(S,WLGIU(FREQUIJ)4I=1,3),J=1,5)

FORMAT(3FL10.2)

SUMFRE=0,0

D7 24 K=1,N
AVGFRE(KI=(FREQ(Ly,K)+FREZQ{2,K)+FREQ(3,K)}1/3.
SDFREQIKI=SARTI{{FREQ( L K}I~AVGFRE(K) ) ¥*2+{FREQ(2,K)}~-
2AVGFRE(K ) ) **2+(FPEQ(3,K)-AVGFRE(K} )1 *¥*%2}/3,)
SUMFRE=AVGFRE(K} +SUMFRE

COMTINUE

OVERFR=SUMFRE/N

SNAF=0.0

N3 25 J=1.+6

DO 26 1=1,3 :

SQF=SQF+(FREQ(I,J)-0OVER=R)**2

CONTINUE

CVERS3D=SQRT(SQF/18.)

CALL LSQUARICATA,M,2,A,CHISQ, STOR)

WRITE(6,80)

FORMAT (L ¥, *RESULTS FNP RESONANCEZ TUBE WITH 1/2 INCH
FVENTY, / /)

WRITE(G6,IRV(Y LT,y Y(1),CATA(3,1),AVGFRE(T), SOFREQ(T),

?I=1,4)
FIRMAT(LIX " MACH NUMBER ALLPHA HNET STANCARD DEV.
PRRAEQUENCY NET STANLCARD DZVe OF FREQ. 460/ 42Xy

2F6.2¢ 11X Fhe2y LOXFT.2:19X,F4.2))
WRITE(6H,39)IVERFR,QVERSC
FARMAT(/ 41X, *CVERALL AVG FREQ = 'Z,FT7.2, ¢ +— ',F4.2)
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SUMXS2=0.
SUMX=0,
SUM:\) .
D5 I=1,M
SUM=SUMH (AL 2V %X (T)+A(1)~=Y (1)) %2
SUMXSQ=SUMXSQ+X{ T ) *=2
SMX=SUMX+X (1)
CONTINUS
STGSA=SUM/N
DILTAa= N*SUMXSQ~SUMX*=2
SIGA2=SQRT(N*SIGSQ/OELTA)
SIGAL=SQRT{SIGSU*SUMXSQ/DELTA)
W2ITE(6,999) 2(2),51GA2,AlL1),SICAL
Qa9  FORMAT(/y1X,'MALPA= V,FE13.6,"' +— ',E13.6, ' TIMES
2MACH NUMBER *,1X,' PLUS ',F10.6,* +— *,E13,6)

v

SToP

END
//7GATA DD *
C SEFE THE DATA FOR RESONANCE FREQUENCY NEAR 2645.00 HZ
C o FINAL DATA FILE NO.L2

1/
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APPENDIX F. DETERMINATION OF THE INFLUENCE
OF THE EXHAUST VENT NEAR THE
SECOND MODE '

As an additional check for the validity of the one-dimensional
calculations, tests have been carried out with the resonance tube
operated near its second longitudinal mode. Let us first examine
the case of a centrally located circular vent. Equation (3.4) for
the second longitudinal mode is given by:

_ 1 1 a2
Qe = - ~ s ﬁ(Vpaz) mde (F.1)

el Polay

For the second longitudinal mode, the waves within the resonance

tube are,

Py, ~ cos(Zkzz) with k, = w/L .

Then
. 2 2
(Vp‘aﬂ) = {Zkzsm(Zkzz)} = 0at z = L/2 .
Thus, equation (F.1) when applied to the process of flow turning at

the centrally located exhaust vent gives,

(aft)__ L= T 0 (F.2)
Ty v
Thus, from equation (3. 3), a, for the second longitudinal mode is
given by:
a = a (F.3)
To measure this loss, a resonance tube was constructed with

a centrally located circular vent of 1/2" diameter and whose
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fundamental longitudinal frequency was 670 Hz. This resonance tube
was then made to run at its second mode, i.e., at the frequency of
1340 Hz. The resonance curve is obtained as usual by varying the
input frequency to the drivers; the relative phase is maintained at
00, while the amplitude of the drivers is held constant. Table F. 1
contains data taken for three series of tests performed at each
Mach number for this case. The average value and standard devia-
tions of both net attenuation constants (recall, Zanet equals the
width of the resonance curve Aw at the half power points) and
resonance frequencies are also given, As discussed earlier (see

§ 6.2), two series of tests have been carried out with no flow:

one with the vent closed and the other with the vent open. The
difference between these two cases should represent the loss due to
radiation of acoustic energy through the vent. Figure F-1 shows the
variation of the average values of the net attenuation coefficient as
a function of the Mach number of the average flow at the resonance
frequency near 1340 Hz. The solid line in the figure represents

the least squares fit, assuming that a varies linearly with the

net
average Mach number of the flow. Details of the computer pro-
grams for this purpose are given in Appendix E.

For this case, the basic governing equation (7.1) takes the

form:

a =2x1345x(A(r)+'M‘)+av+a

net b (F. 4)

d
Further statistical treatment of the experimental data can be carried

out in exactly the same way as discussed in chapter 7. The
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necessary data for the real part of the admittance function for two
porous plates were taken from the previous results at the frequency
of 1345 Hz. See tables 6.3 and 6.4 for details. Furﬁher, it was
assumed that the real part of the admittance function at the fre-
quency of 1349.84 Hz (average resonance frequency of the first 18
experiments done with the vent open, see table F, 1) is the same as
that at the frequency of 1345 Hz. Table FZ gives the attenuation
constant due to radiation of acoustic energy from the vent, while
table F.3 gives the results corresponding to the verification of the-
data for the circular vent with no flow and vent closed. Table F. 4
gives the values of the average{ attenuation coefficient and standard
deviation for the circular vent for our case and table F.5 gives the
values of the slope and standard deviation of the attenuation constant.
The final results for the attenuation constant due to the éxhaust vent
are plotted in figure F.2. The dotted straight lines in the figure
represent the theoretical variation of a, at the frequencies of 670 Hz

and 1340 Hz, given by equation (8.2), while the solid straight line
‘ dT

represents equation (7.12). The slope can be calculated using

equation (7.13). Also, note that the safnlf sign convention is adopted
here for the purpose of data reduction. For further details see
chapter 7.

From the results given in tables F.4 and F.5, it is obvious
that there is a non-zero influence of the exhaust vent at the second

mode of operation of the resonance tube. In the absence of suitable

theoretical calculations for acoustic energy loss associated with
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radiation through the vent for the second longitudinal mode, the gain
obtained here raises some doubt about the assumption made
previously that a4 is independent of M. Results represented
previously in chapter 7 may have contained in them this influence
which is difficult to separate just because of the unabailability of the
corresponding data pertaining to this work. The interactions between
the boundary layer due to the mean flow and the acoustic boundary layer
due to the externally driven acoustic mode in the resonance tube, may
give rise to ﬁhis observed reduction of the acoustic energy loss at the
boundary. This reduction seems to increase approximately linearly
with the Mach number of the mean flow. Until separate experiments
are designed to prove this, it can only be regarded as a tentative

conclusion.
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TABLE F.1

DATA TAKEN WITH RESONANCE TUBE, 3' CIRCULAR
VENT, SECOND MODE FREQUENCY 1349.84 Hz

— 4 -
M x 10 %het £ %het ca d c’:E

(sec™!) (Hz) (sec™) (sec™t) (Hz) (Hz)

70.92 1350.60
0 71.01 1350. 60 70.98 0. 04 1350.70 0.14
71.01 1350. 90

72.21 1349.20
4.43 71.94 1349.50 72.05 0.12 1349.37 0.12
: 72.00 1349.40

71.54 1349.80
8.86 71.65 1350.10 71.57 0. 05 1349. 97 0.12

71.53 1350. 00

71.24 1349. 00
13.29 71.28 1349. 00 71.34. 0.12 1349. 00 0. 00
71.51 1349. 00 :

71.23 1349.50
17.72 71.21 1349.50 71.25 0.04 1349.70 0.22
71.30 1350. 00

71.81 1350, 00
22.15 71.84 1350.50 71.93 0.15 1350. 33 0.24
72.14 1350.50 :

71.41 1338. 90
0 71.51 1339. 00 71.46 0.04 1339.10 0.22

(Vent 71.47 1339.40
Closed)
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TABLE F.2

ATTENUATION CONSTANT DUE TO RADIATION OF ACOUSTIC ENERGY
FROM 3" CIRCULAR EXHAUST VENT AT THE SECOND MODE

27 ~(AT/AL) 2.4 I 4

(Hz) (Hz/Inch) (sec™t) (sec™t)

1345 132.59 -0.48 0.01
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TABLE F.3

VERIFICATION OF THE DATA FOR 3" CIRCULAR EXHAUST VENT
AT THE SECOND MODE, WITH NO FLOW AND VENT CLOSED

Description 2f ~ 1345
(Hz)
Znet(sec'l) 71.46
Acxnet(sec'1 ) 0. 04
E ) x10? 1.5639
AAb(l‘) x 10° 146
K a, (sec™) 19.47
(Ed) (sec™) 0 9.92
other
losses
(Aad) (sec™!) 0.43
other :

losses
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TABLE F.4

VALUES OF THE AVERAGE ATTENUATION COEFFICIENT AND
STANDARD DEVIATION FOR %" CIRCULAR EXHAUST VENT
AT THE SECOND MODE

M x 10% o Ao
v : v
(sec™t) (sec™t)
0 -0.48 0. 86
4.43 -1.38 0.80
8.86 -4.16 0.81
13.29 v -4.66 0. 96

17.72 -5.51 0.83

22.15 -5.27 0. 86
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TABLE F.5
SLOPE AND STANDARD DEVIATION OF THE ATTENUATION

CONSTANT FOR 3'" CIRCULAR EXHAUST VENT
AT THE SECOND MODE

dzv o ' do
—— (sec 1y A —-—_5—) (sec™)
dM dM

-1979.34 711.90
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Figure F.2 Attenuation Constant for 1" Circular Vent,
Second Mode Frequency 1345.00 Hz



