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ABSTRACT

Power Electronics is an interdisciplinary field which combines
three of the major disciplines of electrical engineering--control,
power and electronics. The three topics in this thesis arise from
problems encountered in these fields.

Part I is an application of modern control theory to. the design
of any dc-to-dc switching regulator. By feeding back all the state
variables in a regulator, the system closed-loop poles can be placed
anywhere desired on the s-plane. This is {n contrést to the conven«l
tional single-loop design where the closed-Toop poles are constrained
on the root loci between the open loop poles and zeros. With this
total-state feedback technique, the stability margins and transient
responses of a switching regulator can be shaped as desired.

Part II is a study of transformer modelling, which is important
in the design of power processing circuits. The simple w-model is
used to model two-winding, three-winding and under some special éases,
four-winding transformers. In the past, the parameters in the model
were expressed in terms of the coupled-inductor coefficients Lyy, My,
L22 etc., while in this thesis, they are expressed in terms of the
permeances whfch 1ink the model directly to the physical layout of
the windings. With this representation, the physical insight of the
transformer 1is ekp1icit1y exposed in the model.

Part III analyzes the cross-regulation problem of a two-output
Cuk converter. The unique effect of the unequal discharge of the

coupling capacitances on the cross-regulation of a Cuk converter
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is first discussed. It is pointed out that this effect can be

made arbitrarily small by increasing the values of the capacitances.
The parasitic effects such as leakage inductances, winding
resistances and diode offset voltages are then included in the more
~general analysis. Quantitative results, which are useful in control

and improvement of the cross-regulation, are given at the end.
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INTRODUCTION

As world energy becomes increasingly scarce and expensive, the
efficiency of all the power processing equipments in the electrical
and electronic industries becomes more and more important. For
example, a better designed motor drive announced by Exxon this year
is claimed to save the equivalent of a million barrels of oil a day
in the U.S. Although efficiency alone is worthy of attracting more
attention to better design of power processing equipments, volume,
weight, and cost of such equipments deserve even more improvement.
This is because advancement of very large scale integrated circuit
technology, which drastically reduces the size and the cost of
signal processing electronics, leaves the power processing é1ectronics
relatively bulky and expensive. Leading manufacturers of motor drives,
computers, communications systems, and electronic instruments have
been investing more and more heavily in reseérch and development of
power processing equipments, and a new field -- Power Electronics --
has just emerged from 1imbo.

Power Electronics is an interdisciplinary field which combines.
three of the major disciplines of electrical engineering -- contro];
power, and electronics. In the control part, both continuous and
discrete ana1ysi; methods of linear system theory and modern control
theory are being adapted to ana?yze the dynamics of power processing
systems. In the power part, static and rotating equipments are being

restudied, and emphasis has been on the better design of magnetics and



development of new magnetic materials. - In the electronics part, new
devices such as thyristors, power transistors, VMOS, Tow ESR
capacitors and new control chips are being developed and applied to
innovative circuit topologies and feedback schemes. It is only
recently that some efforts have been made to integrate the state-of-
the-art ﬁechno]ogies from these three disciplines to improve power
processing equipments. |

The three parts in this thesis correspond to the three
‘disciplines mentioned above. Part I is an application of modern
control theory to the design of any dc-to-dc converter.  In recent
years, a method of analysis, called the state-space averaging method,
has been deve1qped to describe the dynamics of the powef stage of any
dc-to-dc converter, which is a nonlinear system, by a set of linearized
differential equations or by a linearized equiva1ent'circuit
model [1,2]. The beaufy of this analysis method is that all the
familiar results from linear system theory and control theory can be
applied to power‘processing circuits. Many applications of this
linearized equivalent circuit model have been demonstrated successfully
in the design of conventional voltage feedback switching‘ |
regQ1ators [3-10]. However, the feedback control is not limited to
the single-loop scheme: substantial advantages can be effected by
two-state feedbaék, such as the current-programmed mode in which both
the transistor current and the output voltage are sensed and fed back
to control the duty ratio of the main power transistor [11,12]. This

idea of two-state feedback can be further generalized to multi-state



feedback. In fact, from mathematical system theory, it is known that
the closed-loop poles of a linear controllable system cén be placed
anywhere desired on the s-plane, provided that the feedback signal
is a linear combination of all the state variables in the system [13].
When this technique is applied to switching regulators, the design
jterations on the feedback network can be avoided. The closed-loop
pole locations are first determined from the specified stability
margins and the transient respdnses, and the feedback‘gainsbfrom each
state variable can then be calculated. Detailed discussion of this
technique is presented in Part I.

Part II is a study of the transformer modelling. Transformers
and coupled-inductors are among the most impig%ant elements in a
power processing circuit because they are responsible for energy
stbrage, energy transfer and power sp1it.‘ Unfortunately they are
probably the least controllable components in the circuit. The
non-idealities of a power transformer usually have a strong effect on
the performance of the converter and give high'stress to the other
components in the circuit. But on the other hand, the Teakage
inductances of the coupled inductor in a Eﬁkfconverter can be used to
steer the switching ripples away from the output and/or input
current [14]. Thus, a good transformer model is extremely important.
It should be not only simple and accurate enough but also physically
interpretable. The model is to bear a close relationship to ihe
physical layout of the transformer windings so that the effect‘of

different winding techniques on the leakage inductances can be easily
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understood. For many years, transfbrmers and coupled-inductors

have been modelled by the popular w-model, which consists of one

ideal transformer with effective turns ratio in the center, one
magnetizing inductance in paraliel with it, and oné Teakage inductance
on each winding. This model is the most convenient one to use, but
jt is noticed that the w-model is under-determined for two-winding
transformers, uniquely-determined for three-winding transformers, and
over-determined for transformers of more than three windings. In
other words, the w-model can be used in two-winding and three-
winding transformers, but only under special cases can it be used in
four-winding transformers. A general model has to be used when the
n-model is not applicable. In the past, the elements of the x-model
have been expressed in terms of the coup]ed—inductor‘coefficients

Li;, M2, Logsetc., but in Part 11, they are expressed in terms of
the permeances associatedbwith each magnetic flux path in the field
map of the transformer. It is found that more physical insight into
the transformer properties can be obtained with use of the permeances.
For example, it is observed that each 1eakage inductance on a three-
winding transformer is not only a function of the physica1 tightness
of the winding itself to the core, but also the relative layout of
the other two windings with respect to the first one. Some
applications of the transformer models such as the effect of the air
gap on the coupling coefficient of a two-winding transformer and the
.effect of the Teakage inductances on the zero ripple éuk converter,

are also presented.



The third part of the thesis is on the cross-regulation of a
~ two~-output 6uk converter. In switching dc-to-dc converters, it is
quite common to provide multiple outputs from one converter by
inserting a multiple-winding transformer in the switching part of the
converter to split the energy flow to several secondary windings. The
Vo]tage of the major output is sensed and fed back to control the
duty ratio of the main power transistor. The voltages of the other
outputs are ideally fixed with respect to the major output voltage
by the turns ratio of the transformer. But actué]]y they are
affected by the changés in the load current of any of the outputs.
The variations in the voltages of these "sTaved" outputs due to load
current changes are called cross~regu1ation$. Since the cross-~
regu1ation'is basically a second-order effect and 1s a strong
function of the non-idealities in the circuit, it is usQa1]y not
analyzed quantitétiveiy. Many multiple-output converters are built
simply by adjusting the turns ratio of the transformer by a trial and
error,ﬁethod. Part III of this thesis is an effort to analyze the
cross-regulation of é two-output éuk converter. The quantitative
“effects of the non-idealities in the circuit such as the ESR of the
capacitors,.winding resistances of the transformer and the inductors,
the leakage inductances of the transformer and the diode offset
voTtéges, are presented.

The three topics above are three typical problems encountered
in the Power Electronics field. They are not similar in nature -

because they came from three different disciplines of electrical
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engineering, but it takes all of them to make a good design -- an

example of the breadth of this new field.



PART I
PoLe PrLAaceMENT TEcHNIQUE FOR Dc-To-DC

SWITCHING REGULATORS
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CHAPTER 1
INTRODUCTION

A dc-to-dc switching regulator is a power processing circuit
which converts the unregulated dc voltage at the input to a well-
regulated dc voltage at the output. The components used in the power
'stage are low-1oss switching transistors, switching diodés, inductors
and capacitors. Four common SWitching dc-to-dc converters are shoWn
in Fig. 1.1. The switch is periodically thrown between positions 1
and 2 to transfer the energy from input to output. For example, in
a buck-boost cdnverter, the input energy 1is tfansferred and stored
in the inductor when the switch is in positioh 1, and released to
the output when the switch is in position 2. Similar energy transfer
mechanisms hold for the buck converter and the boost converter. In a
Cuk converter, the energy is transferred through the capacitor ¢
when the switch flips back and forth between positfon 1 and position 2.
" The switching period TS, which is a complete cycle for the switch
to go through positions 1 and 2, is typically constant. The fraction
of the whole period for which the switch is in position 1 is called
the duty ratio d. By modulating the duty ratio according to the |
error signaf derived from the output, the output voltage can be well
regulated, as shown in Fig. 1.2. Since the power transistors and
power diodes are used as low-loss switches and the switching
frequency 1s typically as high as 20kHz to‘ZOOkHzA(which means that

the energy transferred per cycle is small so that the energy-storage
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components such as inductors and capacitors can be made small), the
total efficiency, vo]ume, and weight of a switching regulator are
much superior to those of a conventional linear reaulator.

Although a switching regulator has many advantages over a
linear regulator, its design and analysis are not trivial problems.
This is because a switching mode dc-to-dc converter is a variable
- piecewise-linear system. It is piecewise-linear because it switches
from one linear system when the power éwitch is ON, to another when
the power-switch‘is OFF. It is variable because the switch ON or
OFF time is modulated by ﬁhe feedback signal, and hence is not a
constant. The difficulty in analyzing such a comp?icated system has
until recently kept the design of switching regulators in a very
primitive state. |

In recent years, a method of analysis has been developed which
describes the dynamics of a switching converter around its nominal
operating point by a set of averaged Tinear time-invariant
equations [1,2]. The success of simplifying the converter into a
linear time-invariant system may be appreciated by the fact that the
converter ‘can now be modelled by an equivalent circuit and the
standard feedback theories such as the Nyquist criterion and the
root-Tlocus method can be directly applied. The use of this state-
space averaging method and the linear feedbéck théories has been
demonstrated in many applications [3-12]. _

In this, part I of the thesis, another technique which has

been used in modern control theory is applied to the linearized
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system of a switching converter. In mathemética] system theory, it
is known that the c]dsed—?oop poles of a linear controllable system
can be placed anywhere desired on the s-plane provided that the
feedback signal is-a linear combination of all the state variables
of the system [13]. When this technique is applied to place the
closed-Toop poles of a switching regulator [15], the stability
margins and the transient responses of the regulator can be shapéd
as desired. Furthermore, if the source voltage and the Toad current
| are monitored and fed back together with all the states, better Tine
rejection and Toad regulation can be obtained.

Although the method is illustrated only for constant frequency
duty-ratio-programmed converters in this work, the same analysis
also applies with minor modifications to constant ON-time or constant

OFF-time converters.
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‘CHAPTER 2

MATHEMATICAL DESCRIPTION OF A TOTAL-STATE
FEEDBACK REGULATOR

2.1 Review of state-space averaging method, continuous conduction

mode

The state—spacé averaging method has been developed to describe
the small-signal dynamics of any dc-to-dc converter operated in both
the continuous and discontinuous conduction mode [1,2}. Since the
fesuits of this method are the basis for the total-state feedback
scheme, a brief review of the state-space averaging method for the
continuous conduction case is presented here.

The state~spacé averaging techmique,outlined in Fig. 2.1, begins
with a description of the converter topologies appearing during one
cycle of operation. During the interval dTS, d being the duty ratio;
when the switch is closed,the converter can be described by a set

of linear, time-invariant differential equations

X = Mx kb | | (2.1)

where x is a state vector of inductor currents and capacitor
voltages. Similarly, it can be described by another set of Tinear

differential eguations

X = Aox + byv . (2.2)

during the interval d'TS z,(1-d)Ts when the switch is open, as shown

in box 2 of Fig. 2.1. These two sets of equations can be combined
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in an average sense to produce a single matrix differential

equation, also shown in box 3 of Fig. 2.1

>’<=Ax+bvg ' (2.3)
where A = dA; + d'A,
b .:_:dbl +d'b2

which describes the averaged behavior of the converter, that is,
with the switching ripp]é fi]tered from the state variables.

Note that the hatrices A and b may be duty-ratioc dependent,
which means that the averaged equation may be nonlinear with respect
to duty ratio. 4Since the ultimate goal is to find an equivalent
linear circuit model, the analysis is to be restricted to the linear
domain. Hence, as in box 4 of Fig. 2.1, the averaged equation is

perturbed around the operating point by substitution into (2.3) of

d=D+d
x =X+ ;
X (2.4)
vg =V _+ vg
RL = R + ﬁl - Toad resistance variation

where capitalized quantities on the right side of (2.4) refer to
steady state values and careté %ndicate small perturbations. Upon
expansion of the result and retention of only first-order
perturbatidns, the final state-space averaged equations ére obtained.

(represented in box 5 of Fig. 2.1):
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steady state

AX + BV =0 | (2.5)
operating point g v
ac small-signal x = Ax + bvg + cd + eR : (2.6)
where A= DAy + DAy

b = Dby + D'bs

C =

= (A1-Az)X + (blsz)Vg

b1 , abz
St D sy

RYASE + D 3A2
"L Lg

e = (D
R R

sp% + (D

The small-signal equivalent circuit model can then be derived from
(2.6).

In summary, the small-signal low-frequency behavior of the
converter in box 1 of Fig. 2.1; including both input and butput
properties, has been represented by the canonical model in box 6 of
Fig. 2.1 or the linear time-invariant differential eq. (2.6) through

the averaging, perturbation,and linearization processes.

‘2.2 Total-state feedback applied to switching regulators

Now that the system has been reduced to a standard linear time-
invariant equation (2.6) around its steady state (2.5), total-state
feedback can be applied to the regu1ator.‘ Equation (2.6) can be

transformed into the s-domain:

sx(s) = Ax(s) + bu(s) + cd(s) + eR(s)  (2.7)
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where 39 and R are the two independent inputs and 8 is the feedback
signal. If the feedback is a linear combination of all the state
variables ;, the input voltage variation Gg, and the load variation @,

that is,
is) = Ghls) + A(N(S) + RRS)  (2.8)

where g = (g], 9o v gn) is a row vector of constants,
f; (s) and f,(s) are the frequency dependent feedback

gains from the source voltage and the load, respectively.
then the state equation (2.7) becomes

sx = (A+cg)x + [b+cf1(s)]ﬁg + [e+cf,(s)IR (2.9)

or

A

adj(sx-A-cg)[(b+cf1(s))ﬂg + (etcfy(s))R]

x(s) = (2.10)
det{sI-A-cg) ‘

Upon application of the inverse Laplace transform, eq. (2.10) becomes

. adj(sI-A-cg)[(b+cf1(s))Qg + (etcfy(s))R] ,
x(t) =L " (2.11)
det(sI—A—cg) v

Equation (2;10) can be used to study the closed-loop dynamics in the

frequency domain and eq. (2.11) can be used to study the transient

responses due to small source and load variations in the time domain.
The poles of the closed-loop system are the eigenvalues of

A+cg. They can be calculated by
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det(sI-A-cg) = 0 | L (2.2)

For stability, all the poles should be in the left half of the s~p1aﬁe,
and for fast transient responses, the dominant pole should have a
large negative real part. Thus, a judicious choice of the feedback -
gain g can not only assure stability, but also provide a fast
transient response for the system.

In fact, thanks to mathematical system theory, the polés can
be placed anywhere desired if the system is controllable. Chapter 3
is a description of how to choose the feedback gain g so that the
closed-Toop poles can be assigned at the desired places. Once
the feedback gain g is determined, eq. (2.10) can be used to determine
f1(s) and fo(s) so that a better line rejection ;(s)/Gg(s) and load
regulation ;(s)/é(s) can be obtained. In the case of the buck
converter, f] can be chosen to null out the numerator of the line
rejection function completely. Thus excellent line rejection can
be realized. Notice that the choices of f] and fz do not affect the |

pole positions.

2.3 _Closed-loop pole movement in the’presénce of multi-state feedback

The pole movement on the s-plane may. be better understood by the
following discussion. The closed-Toop pQ1es are’deiermined by
eq. (2.12), repeated here: |
det(sI-A-cg) =0 o (2.12)

But
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where Ni(s) equals sI-A except that the i~ column is replaced by

the vector -c,

Ti(s) = giNi(S) / det(sI-A) is the loop gain associated with
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th state variable.

with the i
Comparison of eq. (2.13) with the result for a single-loop feedback
system, i.e., n=1 in eq. (2.13), shows that the'sum'of the loop

. n
gains % Ti(s) replaces the role played by the usual single loop

i=1
3 e n_ )
gain T: for stability, = Ti(s) has to satisfy the Nyquist
i=1 n
criterion; and for good regulation, = Ti(s) has to have high gain
-i=]

and wide bandwidth.
The positions of the poles on the s-plane are determined by
the linear combinatiorn of the loop gains. In the special case where

only the 1th

state is returned, g = (0 0"'91 0---0), the closed-
1oop poles move from the open—1oob pole positions det(sI-A) = Q0 to
the zeros of Ni(s) as g, increases from 0 to ., A root-locus plot
is shown in Fig. 2.2. If Ni(s) has zeros in the right half-plane,
the system could be unstable when the feedback gain 95 becomes too
large. Output voltages of the boost, buck-boost and Cuk converters
belong to this category.

One way to overcome this stability problem is to feed back
two state variables. Fig. 2.3 shows how to stab%]ize the system by
feeding back a second state with left-half plane zeros. The system
can be stabilized by proper choice of the weights between the two
states. It is also noticed that the root loci expand from a line
into an area, which means more design freedom is obtained.

In general, the span of the closed-loop poles on the s-

domain increases as more and more states are returned in the feed-

back path. In particular, when all the states are fed back, the

closed-loop poles can be assigned anywhere desired on the s-plane.
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CHAPTER 3 |
CALCULATION OF FEEDBACK GAINS FOR POLE PLACEMENT

Suppose that the‘c1osed—1oop poles of a regulator are
désired to be placed at - Ap> T Gos -es T O One brute force
method for solution of the feedback gains g = (g], 9ps --- gn) is
to compare the coefficients on the two sides of the following
equation

det(sI-A-cg) = (s+oq)(s+ o) ... (5+ o) (3.1)

However, the algebra can be very complicated as the order of the
system increases. A more systematic method, which Tends itself
to direct computer programming, is presented in the following.

The system of eq. (2.7), repeated here with R omitted for
simplicity,
sx = Ax + cd + bGQ (3.2)
will be transformed into its "phase variable canonical form”Aas
in eq. (3.9) so that the gain g can be easily determined. To
traﬁsform an arbitrary matrix into its phase variable canonical form,
two successive changes of variables are performed. First, the system

is transformed into its diagonalized form through a similarity

transformation:

~

X = Ty where columns of T are (3.3)
. the eigenvectors of A
Assume that the system has distinct eigenvalues Ays Aps eee Aps

then, the new system matrix has a diagonal form:
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sy = Ay + T-lcd + T-1b§g | (3.4)
where
M
0
=T
0 A
n

This diagonal form can be further transformed into the desired

phase variable canonical form through a Vandermonde transformation:

z=vy (3.5)
where
1 1 coo | X\ k1
A Ay A, % ky 0
V= § K =
[ 0
At o

V is the Vandermonde matrix for 4, which'tranforms a diagona]vmatrix
into its phase variable canonical form. Matrix K is just a

scaling factor whose function is to transform the coefficient of d
into (0 O ;.. —1)T'as in eq. (3.9). “With this Vandermonde trans-
formatfon, the state equation in terms of 7 becomes |

L Tb)v | (3.6)

4+ (VKT~
c) ( g

sz = Pz + (VKT

where
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0 0 1 0 0
P =vav! = :
0 0 0. 0 1
\—a] -a, -2y - a1 e /
The next step is to determine the scaling factor K such that the
coefficient of d is simplified to (0 O ... —1)T
1-e. kT te = (00 ... -1)" - (3.7)
or '
K, 0 | 0
Tl =y (3.8)
0

Apparently, if all the n elements of T']c are non-zero, a unique
solution for K can be easily obtained. On the other hand, if T']c
has a zero element in it, the system is called "uncontrollable",

~ which means that K cannot be solved and the poles cannot be placed

as desired. If will be assumed here that the systeﬁ is controllable,

i.e. K has a unique solution. Equation (3.6) then becomes the

desired canonical form:



0 1 0 0

0 0 1 0

o = ... )

0 0 0 0

“dy T3y T3y "

With substitution of a 1i
d = gx + f1§g = gk V12

into eq. (3.9),

0 1

0 0

57 = : :
0 0

"(a1+h]) ’(az+h2) .

The closed-loop poles of t

equation

det[sI-P+(0 0 ...

n
s+ (an+hn)s

0

But the desired poles are

(s*a, )

(S+a1)(5+a2) eoe A n

H

det(sI-A-cg)
det(VKT‘])—det(sImAfcg)—

H
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0 / 0 \ |
0 0
R A N P (VKT—]b)Gg (3.9)
1 0
-1 "% \—] }

near feedback

+FVg (hy hy -ee h)z + Fvg (3.10)
0 oi
0 0
: S+ b -1, £ | v
1 0 9
.. -(an+hn) 1 /
) 7 (3.11)

his system satisfy the much simplified '

1)h]

1yt (apthy)s + (agthy)

+ .

(3.12)

det (VKT 1))
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= detivir sTTiC VT - vk AT Y - vk Te(gmic v Ty

= det(sI - P+ (00 ... 1)'h) |

_n -1 : -

=5 + (an+hn)sn + ... F (a2+h2)s + (a1+h]) (3.13)

Equation (3.13) can be used to solve for the feedback gain
h = (h] h2 e hn) in the 2 coordinate easily. Once the h-vector
is solved, the desired feedback gain .
g=hukr! o (3.14)
in the original x coordinate can be calculated. |
In summary, the system is first transformed into its canonical
form through two similarity transformations. Since eigenvalues
are invariant under similarity transformations, the feedback gain
can be easily determined in the canonical space. The feedback gain
is then transformed back to its original coordinate system. The
symbols used are summarized in the following. The open-Toop poles
satisfy
(s—x])(s—xz) e (572))
= det(sI-A)
= det(sI-P)
= s"+as

0 | | | | (3.15)

n-1
+ ... +'aZS + a]

it

The desired closed-loop poles satisfy

(S+u])(5+a2) o (s+an)

det(sI-A-cg)
det(sI-P+(0 0 ... 1)Th)

L]

n

s+ (axn%*hn)s.n"7| +

.k (a]+h])
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-0 | | f (3.16)
By choosing appropriate hi's, which can be transformed back t0'gi's
through eq.(3.14), the closed-Toop poles can be assigned at anywhere
desired. Since A fs a real matrix, all the ai's are real numbers.

Vand vir! s

Hence h;'s are real from eq. (3.16). But g= h-VKT~
real from eq. (3.7), so g is always real. ‘Note that the gain f](s)
from the source veltage does not affect the positions of the poles.
Although this method is applicable only to controllable
systems with distinct eigenvalues, real systems almost always fall
into this category, fortunately. A slight change in the values
of the circuit elements can separate the degenerate eigenvalues "
and make all the elements in T-]c non-zero. |

A computer program can be developed to solve for the feedback

gain using this technique. A flowchart is presented in Fig. 3.7..
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Input

(T) Matrix A
(2) Vector ¢
(3) Coefficients b's of the desired polynomial

n n-1

n
s+ bns + ...t bzs + b] = 1*§(s+ai)

é' i=]

&

Find eigenvectors T and eigenvalues A

of matrix A |

Calculate 71, v, V7

;

Solve for K

k(1 le) =vioo... N

%

Calculate a. from VAV

7

Feedback gain
1

g = hVKT™

Fig. 3.1 Flowchant for solving feedback gain g
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CHAPTER 4
ILLUSTRATIVE EXAMPLE OF A TOTAL-STATE FEEDBACK
BOOST REGULATOR

The methods discussed in the previous chapters are illustrated
in this chapter by a boost converter. The design equations are
developed in Sec. 4.1 and the experimentallcikcuit and data are
given in Sec. 4.2. The same converter is designed again in Sec. 4.3
using the conventional single-loop compensation method to compare

the merits of the total-state feedback vs; single-loop feedback.

4.1 Design of a total-state feedback boost requlator

The design equations for a total-state feedback boost converter,
whose basic configuration is shown in Fig. 4.1, are developed in
this section.

The state-space equations for the two states, inductor current

iﬁ and output voltage v, are:

o \ :
iﬂ 0 0 ip T

= + ]
u 5 | - vg‘ during dT, (4.1)
v 0 ——= v 0

; RC \

AoV
ip 0 T Tp T

= ]+ v during d‘TS (4.2)

< »
o3
ol
—
(e
<
e R
Q
i)
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Fig. 4.1 Basic configuration

0f a boost converten.
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Proceeding with the state-space averaging method, one can weight-
average these two equations to obtain a single equation which
describes the average behavior of the converter:

{1}\ 0 :‘CLL\ iy %\

t

| = | + v o (4.3)

' ' -1 |
v =~ 57/ \V 0
C RC
i
In order to arrive at a Tinear time-invariant descirption of the

system, the state variables can be perturbed around their operating

point by substitution of

v=yv+V

gt

@=99+% (4.4)
d=d+0D

R = R+R

into eq. (4.3). With omission of the second-order terms, the desired |

set of linear time-invariant differential equations is obtained:

>
]
I
'—JC’
-ty
S -
]

d+ R (4.5)

<>
M
[eviRws}
il
O} —
< >
len]
1
(’3’ —t
i
Jan
<
Rl
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If integral control is used;.a new state

e =f?/dt , (4.6)

should be incorporated into the state equation (4.5):

) p " 1 v
sl v |= D -1 0 v |+l o [v + :EL— a4 L R (4.7)
: C RC : Vg C 2 .
R™C
e \0 10/ e 0 o/ 0
With substitution of the total-state feedback
N ~ A~ A T A ’ “
4= {0y 9, 930(1, ve) + Fylshyy (4.8)

into eq. (4.7), the closed-loop behavior of the converter is described

by
o 9,V 9V 95V \
T T A T e
Ao Pt 9l o %L sl
c" "¢ T®°C C
e 0 1 0 .
IS
1. h
/r*"r‘ 0
“1F, 1 .
S (AR N R O )
\ ¢ g RZC
Vo [\
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With use of the inverse of the matrix sI-A-cg,

l— -1
-s(D'-g,V)+g,V T,V ‘
- T - L 0
-s(gy1,-0") ('«'91") LA v s
s{s-—) -- — vt -
C L C g RZC
R Y
V = e ‘ - = -
. 012 g,V "g,1 4 g,l V2
N 1.2, s . D o2 2 2°L _RD 3°L,._D'"R
& s(s“pet o) - st e s (s )
(4.10)
The open-loop poles of the system are
2
2, s . D'y .
S(S+ﬁ€+”fﬁ)‘o (4.11)
The three loop gains associated with irductor current, output
voltage and integral of error signalare:
-g VY
— (s + &) |
T, (4. 12)
L 2, §__+'D'2, ,
~ RC " LC
g,1 2
"% L(s - DLvR) _
TV (4.13)
‘ 4
_ 2 s D'
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2
?—3%—(5 -0

L

- 7
€ 2 s D!
s(s™ + qp + o)

(4.14)

The root locus corresponding to each of the three feedback gains
are plotted in Fig. 4.2, 4.3 and 4.4.

From eq. (4.10), the closed-loop line rejection is

5[17 -zt R0 - “S*L‘z“)]

~ V2 '
v - —— - K (4.15)
Vg .‘93(] + &;J(] + 559(1 + ag? :

where d], ans 0g Are the desired pole positions.

It is seen from the root Tloci and eq; (4.15) that the negative
feedback from the inductor current -gy; moves the poles away»from
the imaginary axis to stabilize and speed up the converter, but,
at the same time, it degrades the line rejection. Quite on the
contrary, the feedback from the integral of the output voltage
error tends to destabilize the system but improves the line
rejection. A compromise has to be made between stability margins
and line rejection. The feedback from the source voltage f](s)
can be chosen to minimize the numerator of eq. (4.15) to improve the
Tine rejection.

The transient responses of the inductor current and the output
vo1tége due to small load variation can be calculated from eq. (4.10)

to be:
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= RS

Fig. Lok g ’
Lg. 4.2 Root Locl for feeding back the inductorn curnnent alone
| ¥ ne.
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Fig. 4.3 Root Locd fon feeding back the output voltage alone.
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Fig. 4.4 Root Loci for feeding back the integral of the output
voltage erron alone.
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- \2/ [s(D'-g,V) - g5V]

2 1] RC -

12.('1:) = L (S"’OL})(,S'*'OLZ)(ST*'OL:S) R(S) (4.]6)
3o6-F) |

- -1 §RC L A

v(t) =L (stay) (57,0 (5%5) iR(AS)- (4.17)

where ai, dz, d3 are the desired pole positions.

4.2 Implementation and experimental data

A total-state feedback boost converter has been constructed.
whose circuit diagram is shown in Fig. 4.5. The source voltage
is 15V and the output voltage is regulated at 30V. Nominal load
is 750, Both states in the system, input inductor current and
output capacitor voltage are sensed so that the closed-loop poles
can be assigned anywhere on the s-plane. Integral control and
source vb]tage sensing are used to impro&e the line rejection. The
ac component of the inductor current is sensed by integrating the
voltage across the inductor which was wound on a Magnetics Inc.
pot core G-42616-25 with 90 turns of 24 AWG wire. The voltage
across the inductor is sensed by the 11 turns of 24 AWG wire wound
on the same core. The feedback gains from the oﬁtput error signal
and its integral were implemented on the same operational amplifier
because they have the same sign in this ekahp]e, A11 the feedback |
signals were summed up in a quarter of LM324 to control the duty

ratio of the power transistor through the control chip SG 3524
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and the base driver DS0026. The switching frequency is fixed at
50 KHZ and the nominal duty ratio is 0.5.

The selection of the pole positions is a compromise between
stability, transient response, and line rejection. For good stability
and fast transient, the poles should have large negative real parts,
but the feedback gain required may be too high to be practical.

High-Q complex pole pairs should be avoided because of the low
stability margin and high peak in the frequency response of the line
rejection. As an example, suppose that the closed-loop poles are

1

desired to be at s=-4000, -4000, -2x]04 sec’ 50 that the converter

is well stabilized and its transient responses are dominated by
the 250 us time constant. The required feedback gains can be

calculated to be

9y 7 -1.84 9p = -0.0142 = -196 (4.18)

93
The component values in Fig. 4.5 are selected according to these
values. Since both 9o and,g3 are negatfve, they can be implemented
by»a single op-amp. |

The closed-loop transient response of the system can be well

displayed by the load to inductor current transfer function

eq. (4.16). With the feedback gains és chosen, the response'of ip

to a 20% step change of the load from 750 to 60¢ is

=t 2t -t
ip(t) = 0.16 - 0.18 0 3x154t.é~236+ 0.021 e (4.19)

in which i, is in amps and t is in usec.
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Note that the third term has a negative maximum of 6n1y -0.027

at t=250us. Apparently, the first two terms are dominant during
the transient. The output voltage waveform during this transient
can be calculated from eg. (4.17):

ot -t

T(t) = -0.026te2%0 + 0.5202°0 | g 5pe50 (4.20)

in which V is in volts and t is in nsec.

The first term, which has a negative maximum of -2.37 at t=250 us,
is the dominént one. The predicted transient responses of the
inductor current and output voltage eqgs. (4.19) and (4.20) are
plotted in Fig. 4.6. The actual waveforms on the oscilloscope are
given in Fig. 4.7. The slightly lower final va]ue predicted by
eq. {4.19) is due to the fact that 20% change on the load exceeds
the assumption of small-signal pertubation in the state-space
average method. However, the accuracy of the time dependence is

still quite acceptable.

From eq. (4.15), the closed-loop line rejection is

A L 8/2m
5 (s/zﬂ)[p.131‘+ £1(s) (1~ 345T)] o)
v - S$/2m N2(y  S/2m '

v 312/ (1 + £5705) (1 + 576072)

g ,
If f1=0, i.e., without monitoring the source voltage, the Tine

rejection is

(4.22)

<>
N
RS~
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N
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30 VY
- 28
— 26V
- 24 1.0A
0.9 -~
0.8 -
0.7
step s_ig‘ncl’
S R [
O 40 800ps 1200 1600

Fig. 4.6 Predicted transient neépanéeé 04 the Anducton cwuvient dnd the
output voltage under a 20% step Load change.

Fig. 4.7 Actual trhansient waveforms observed on the oscilloscope.
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The asymptotes of this equation are plotted in Fig. 4.8 as the dotted
lines. The open circles are the measured data. To improvs the

line rejection at low and medium frequency, f] can be chosen to
minimize the numerator. With = -0.092, the low frequency line

rejection can be improved and the zero introduced by f1 cancels

one of the poles, s = -4000 sec"} = -2m-637Hz. The line rejection
then becomes
v _{ s/2a B
v \"7o7z) ° (1 + 502 (1 ;1;_;5/27;) (4.23)
g : 637/Hz ) 3180Hz

The asymptotes of eq; (4.23) are shown in Fig. 4.8 as the solid
lines. The "x" afe the measured data. The deviation at the Tow
frequency end 1is ekpected to be the hon—exact cancellation of the
pole and the zero because the position of the second zero is
extremely sensitive fo the value of f]. It moves from o when
£,=0 to 637Hz when f,=-0.092 and to OHz when ,=-0.131.

| Note that this improvement on the line rejection by sensing
the source voltage and modulating the duty ratio of the switch is
of small-signal nature. A different approach, the feed-forward
technique, which nulls out the source variations by modulation of

the switching frequency, can be of large-signal nature.

4.3 Comparison with conventional single-loop design

In this section, the same boost converter used in Sec. 4.2

is redesigned using the conventional single-pole compensation
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technique to compare the merits of the two designs.

From eq. (4.13), it is seen that the loop gain of a boost
power stage has a pair of complex poles and a right half-plane
zero. - The right half-plane zero makes it very difficult to design
a stable system with high loop gain. One common remedy to this
problem is to add a single pole at very low frequency in the
compensation network as shown in Fig. 4.9. The’feedback gain can
then be increased with loop gain crossover at low freduency with
-6dB/oct s]ope; The stability problem is solved and the static
regufation is improved. The following is a quantitative analysis
of this compensation technique;

In Fig. 4.9 the duty ratio modulation d is related to the

output voltage variation v by the following equation:

= _-9v.__ | , :
where
Y
Ry
1
W, = e
1 R]C1

Substitution of eq. (4.24) into the state equation (4.5) of the boost

converter, with R omitted, gives

3 'y, g -1 /1
e s CHe T+ 70, L

) v
. ) : PO g
v L A B 0
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I+ b L .1 Vel
Vorlomr  r—- C== R
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R,
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L \ é
N o
comparator /]/] VREF_EE

Fig. 4.9 Conventional single-pole compensation technique.
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] L9 =D’ . gV 1
(srqe)litsfog) - = T (sfo)) -7\ /1
v
' g
'g—(1+3/m]) s(1+s/uq) _ o/
) 2 s A yp L\ - )
s
(1‘*‘5/&)])(5 +-:[—z~§+——[-—c—> + QLC < - |2)
RD'/.
The closed-loop line rejection is
;‘, 'l.+.s/m ]
v — — (4.26)
v

5
g D‘(1+s/m1)(1 R Lg) s qu(1 - 2k
' RD' D' RD’

The locations of the closed-loop poles as g increases from 0 to =
are shown in the root-locus plot of‘Fig. 4.10.

For the element values of the circuit in Sec. 4.2, it can be
shown that the root locus is always the type of Fig. 4.10(b)
regardless of the value of Wy A typical désign is to choose a low
frequency m1/2H=5Hz. Figure 4.11 shows the asymptotes of the closed-
loop line rejection eq. (4.26) for g=1, g=0.5, and g=0.2. It is
seen that as g increases, the poles move toward the'imaginéry axis,
producing a high Q pair which exhibits a high pedk in the line
rejection function. For g=0.2 the line rejection eq._(4.26) becomes
' s/2w

1+ .
5Hz

<< >

6.5(1 + 3Lt

g N7 olarsn) * (gismz
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a)l
- e R, S
b)
— -2 RS

Fig. 4.10 Possible root Lock when the single-pole compensation
technique is applied 1o a boost regulator.
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The closed-Toop poles are

s = -424, -1256+4967j sec”!

(4.28)
The transient response is dominated by the single pole which has |
a time constant of 2.4 msec. Apparently, the design in Sec. 4.2
has better stability margin; transient response and Tine rejection.
The pole locations of these two designs are summarized in Fig. 4.12.
The comparison between the pole placement technique and the |
single-pole compensation method can be better understood from the
root-locus plot of Fig. 4.10(b). As feedback gain g increases, the
complex closed-loop pole pair move toward the imaginary axis from
their open-loop pole positions, which means the closed-loop poles
always have a higher Q than the open-loop po]es{ ‘The Q increases
with the feedback gain g. The static regulation is improved with
high feedback gain, but the resultant high Q means less stability
margins and higher peak on the Tine rejection function. The
transient response is dominated by the low-frequency single pole
when the feedback gain is low, and is taken over by the complex
high-Q pole pair as the feedback gain increases. But the negative
real part of the dominating pole, which determines the speed of the
transient, is always smaller than that of the open-loop pole pair.
In other words; the speed of the transient response and the Q value
of the complex pole pair are limited by the open-loop ﬁo]e |
positions. In‘contrast to this, the pole placement technique
e11minafes the 1imit imposed by the open-loop poles. The closed~‘

loop poles can be assigned anywhere desired on the s-plane regardless
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IS
A

= 1256 + 4967 .

R o .§‘$_%Res
-2Xl! -4000 ~%2
VA
256 = 4967]

X Pole placement fechnique

A Single-pole compensation technique-

Fig. 4.12 Closed-Loop pole positions using the total-state feedbachk
technique vs. the single-pole compensation technique.
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of the positions of the open-loop poles.

One common problem encountered in the design of a switching
‘regulator is that the user may add an extra capacitor to the output
of the switching regulator. This'effective1y changes the positions
of the poles of the system. If the size of this extra capacitor
is too large, the system may be unstable. For example, in the design
of eq. (4.27) with ¢=0.2, the system will be unstable if an extra
capacitor of 30 uF or larger is added to the output, according to
eq.{4.26). However, this phenomenon does not exist in the design
of Sec. 4.2. With the comﬁonent values used and the feedback gain
chosen in Sec. 4.2, eq. (4.10) predicts that the system will be
stable regardless of the size of the capacitor. This is because
of the 1arge stability margins reseryed in that particular design,
and also because of the fact that in a multiple-state feedback
system, the feedback from thevbutput voltage constitutes only
part of the loop gain, but not the entire loop gain. The breadboard
of Sec. 4.2 has been working éuccessfu]1y with an extra 100 yF
added to the output. It did not pass the test when another 100 uF
was added because the stability margin of the system was tob small
to be practical. The-performances of the two designs are summarized

in Table 4.1.
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CHAPTER 5
CONCLUSIONS

The state-space averaging method has been demonstrated in various
papers as a useful tool to obtain a set of linear time-invariant
differential equations which describes the dynamics of any switching
dc-to-dc converter around its operating point [1-10]. The standard
analytical tools for linear systems can then be applied to the |
linearized system to study the stability, small-signal trénSient
responses, and various transfer functions of the converter.

In this part of the thesis, the pole placement technique was
used along with the state-space averaging method to assign closed-
loop poles of any switching regulator at the desired locations on
the s-plane. The advantage of this method over the conventional
single-Toop design is that the locations of the closed-foop poles
are no longer constrained on the root loci between the open-=loop
poles and zeros. The result is that the stability margins and the
transient responses can be shaped and controlled as desired. The
enlarged stability margins and the less sensitivity to the output
voltage loop gain are appreciated when an extra capacitor is added
to thé output by the user.

One limitation of this method is that the dc level of the line
rejection of the regulator depends on the feedback gains and cannot
be independently placed as desired, since the feedback gains are also
determined from the considerations of the stability and transient

responses. In the cases of boost, buck-boost, and Cuk converters,
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there exists a right half-plane zero in the controi-to-output transfer
function. In order to stabilize the systems, the pole placement
technique depends heavily on the feedbacks from those states which
tend to bring the poles to the left half-plane, such as the input
inductor current. Unfortunately, the feedback from these states

tend to degrade the line rejection. In the case of the Cuk converter,
this problem can be overcome by properly damping the converter as
discussed in [10]. The relative weights of feedback from the input
states will then be reduced. Sensing the source voltage to control
thé duty ratio is one way to improve the Tine rejection. In the

case of the buck converter, feedback from the source voltage can

be properly chosen to completely null out, around the .operating

point, the line effect on the output voltage. ‘

Another potential prob]embof this method is that the sensitivity
of the pole positions on the feedback gains may be large becausé the
pole positions may be determined by the small difference between two
large gains. A sensitivity study has to be performed in practical
applications. Also, since the state-space averaging method is accurate
only for small variations around the operating point, the regulator

performances have to be checked for extreme operating conditions.
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PART 11

TRANSFORMER MODELLING
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CHAPTER 6
INTRODUCTION

Transformers and coupled inductors are among the most important
components in the field of Power Electronics. They are used for
isolation, energy transfer and power splitting in almost every
power processing circuit. Unfortunately, an ideal transformer or
coupled inductor is impossible to build. Magnetic leakages always
exist between the windings and the magnetic core. Usually these
Teakages have adverse effects on the circuit performance and produce
high stress on the other components in the circuit. But they can
alsc be Qsed wisely to steer the switching ripple away from the input
or output current in a Cuk converter [14]. A good understanding of
_ transformer modelling is thus necessary to the analysis of power
converters and 1ﬁverters.

For decades, two-winding transformers and coupled inductors
have been modelled by the n-model which consists of an ideal
transformer with effective turns ratio in the center, a magnetizing
inductance in parallel with it, and one leakage inductance on each
winding. A similar model can be used for three-winding trans-
formers [16]. Since this model is simple and convenient, it should
be used whenever applicable. It will be shown in the subsequent
chapters that this g-model is actually under-determined for
two-winding transformers, uniquely-determined for three-winding
transformers, and over-determined for four-winding transformers.

This means that the model can be used for two-winding and three-
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winding transformers, but only under special cases can it be used for
four-winding transformers. A general model, which models an
arbitrary n-winding transformer, exists. But it is tob complicated
to be of help in physical interpretation.
For many years, the elements in the w-model have been expressed
in terms of the sfandard coupled-inductor coefficients L1], M12, L22
etc. In this work, they are expressed in terms of the permeances
of the associated magnetic flux paths. In transformers and coupled
~inductors, magnetic flux paths can be artificially decomposed into
flux components and each component has an associated permeance. If
the elements in the transformer model are expressed in terms of the
permeances, close relations between the model and the physical

layout of the transformer windings are preserved. This makes it
possible to expose explicitly the physical meaning of each.e1ement

in the model and a better understanding of the transformer is obtained.
For example, it is observed that each leakage inductance of a three-
winding transformer is not only a function of the physical tightness
of that winding itself to the core, but is also a function of the
coupling between the other two windings and their relative positions
to the first one. The effects of the leakage fluxes on the effective
turns ratio of a three winding transformer are also explicitly.
represented in the model.

Two-winding, three-winding and four-winding transformer
modelling are discussed in the subsequent chapters. In all these

cases, the core 1oss is neglected to linearize the B-H loop.
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Interwinding capacitances are not included. Some examples and

applications of the models are given in Chapter 10.
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CHAPTER 7
TWO-WINDING TRANSFORMER MODELLING

Consider a two-winding transformer with currents flowing in

both windings. A typical resultant field map is shown on the left

side of Fig. 7.1. For the purpose of analysis, the flux per tu
linked by each winding can be decomposed into two artificial

components: (1) a mutual Flux ¢, which 1inks both windings, and

rn

(2)1eakage fluxes doy and p2 which only Tink one winding, as shown

in Fig. 7.1.
Under this decompositfon,
o1(t) = a(t) + ¢p(t)
0,(t) = 4(t) + ¢,o(t)

By Faraday's law,

vy = ngéy = nq(de,y)

Vy = Npdy = nylitd,,)

Since the leakage flux is in the air for a considerable portion

(7.
(7.

(7.

(7

of the length of its path, it is almost directly proportional to

the current producing it, 1i.e.,
%g1 T P1M™y
bp2 T PaM2Tp

The mutual flux is mostly confined inside the core, so
¢ = B-AC

H-Zm = nﬂ'1 + nziz

(7.
(7.

(7.

(7

1)
2)

.4)

5)

7)

.8)



62

Nwﬁ

YounoJ swovy Buypuym-omy v wy xny) vroubou mo :wﬁ%qogsouumm \. -Gy 4

©-

VA
WANAWA




63

I1f the core loss is neglected, and the B-H loop is assumed to be
linear as shown in Fig. 7.2, then |

B = uH : (7.9)
Equations (7.7), (7.8) can then be combinad to relate the mutual

flux to the currents:

¢ = pplnyi imyi,) . (7.10)
where ng
p = —
m Km

The coefficients Pis Pos pm‘are the permeances of the associated
magnetic paths. - The permeance relates the flux per turn to the
currents producing the flux. Thus, it has the meaning of inductance
_per turn for that particular magnetic flux component.

Substituting egs. (7.5), (7.6), and (7.10) into egs. (7.3),

(7.4), we have

vy ® L”i1 + M1212 (7.11)
v2 = M12i1 + L2212 (7.12)
where 5
Ly = ny7(pyp,) (7.13)
Loy = 0,2(pp ) - (7.14)
o9 = Mo \Pp™Ry, AL
M]2 = NP | (7.15)

An equivalent circuit, or the y-model, that corresponds to
eqs. (7.11), (7.12) is given in Fig. 7.3." The w-model is composed

of an ideal transformer of effective turns ratio A in the center,
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(a) actual

B H

(b) linear approximation

Fig. 7.7 Linear assumption on the B-H Loop of a magnetic cone.
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Fig. 7.3 The n-model for a two-winding Lransformer.,
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a magnetizing inductance Mo in parallel with it, and leakage
inductances LE]’ L£2 on the two windings. Since there are four
parameters in the model but there are only three constants L]], L22’

and M12 in egs. (7.11), (7.12), the model is actually under-

determined and the turns ratio A can’be'chosén érbitrari]y, The
arbitrary choice of A corresponds to some artificial manipulation

of the flux components. For example, the leakage flux in winding 1
can be reduced by decreasing A. Since the mutual flTux will increase
by the same amount, the flux sensed by winding 1 will remain the same.
The increased mutual flux will not affect the total flux sensed by
winding 2 because the effective turns ratio and the leakage flux

on the secondary can be changed accordingly.

Although the turns ratio A can be chosen arbitrarily, it is
most natural to choose A = "2/n1 so that the model is closely
related to the physical transformer. The model parameters expressed
in terms of permeances under such a choice of A are éhown in
Fig. 7.4. It is seenvthat the leakage and the mutual inductances are
just n2 times the associated permeances which héve the meaning of
inductance per turn.

If the core is made of ungapped square~loop material, the
magnetizing current is usually negligible compared with the currént
flowing in any of the windings. In this case, the B-H loop can
be assumed to be a vertical line through the origin."In other words,

B or po> e, and the model is reduced to that in Fig. 7.5. Note

that in general, there are infinite choices of models because A is
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arbitrary. However, in the ungapped case, there is no other

choice since Py > =
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.2
Lpi=niP
4+ il
v, M0=n?Pm

Fig. 7.4 The n-model expheAAed in terms of permeances, with chotce

A = nz/n
L, =n2P 2
Rﬁ! g1 nl i Lﬂz‘_‘na% R
-\ 22

:*TT"ANWWWGD ANy —

12 v
V| ! \!2

l'\l : na

Fig. 7.5 The w-model for an ungapped square Loop material transformen
with winding resistances anﬁuded
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CHAPTER 8
THREE-WINDING TRANSFORMER MODELLING

The procedures used in two-winding transformers are now

used to model three-winding transformers. The voltages and currents
are related by the standard coupled~inductor equations but all the
coefficients L]T’ MTZ’ L22,»étc. are expressed in terms of the
associated permeances. The p-model corresponding to the standard
coup]einnductor equations can then be related to the permeances.

| In a three-winding transformer; the flux per turn can be
decomposéd intq seven components: one mutual flux ¢ which Tinks
all three windings; three leakage f1uies; 912> 923> 973 which
Tink only two windings; and three leakage fIUXeS, 4,15 ¢pps dp3 -
which only link one winding! The compenents are shown in Fig. 8.1.

By Faraday's law:

vi = (6 g1p bzt 0p) | (8.1)
VZ = nz((b + ¢]2 + (?23 + ¢£2) : (8.2)
Vg 7 n3(¢ + 9',_3]3 + é’23 + (;)E:’))’ ' - (8.3)

Since the leakage fluxes have most of their paths in the air,
they can be assumed to be proportional to the currents producing

them:

o1 = PIMYy (8.4)

bpp = Polats (8.5)
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bp3 P3ngis (8.6)

412 ~ 912(”1‘1v+ n2ip) | (&7

423 = Pp3lnpip * n3iy) (8.8)

413 = Pralngiy + ngis) (8.9)
The mutual flux is mostly confined inside the core, thus

b = B-A B - (8.10)

Heg = nydy 0y, + ngig _ : (8.11)
If the core is linear, i.e.,

B = uH | (8.12)
then

¢ = p(nyiq + nyiy + ngis) | (8.13)
where

Py = noALE,

To find an equivalent circuit model in terms of permeance,
the voltages across the three windings will first be put in the
standard coupled-inductor form; The w-model can be easily derived
Tfrom these equations. The permeances can then be substituted into

the elements of the model. From egs. (8.1) through (8.9) and (8.13)

- .

vy © L]]i] + M12i2 + M]313 '(8.14)

'3 . o

Mpgly + Lopiy + Myaig

1

Vo (8.15)



72

* .

V3 = Mygiy ¥ Mygiy + Lagis (8.16)
where
b = ”12(Pm Pzt Pzt ) (8.17)
Ly = np* (P + P * Pa3 * Pp) _' | (8.18)
L3z = ”32(ph t Py3 + Pzt P3) (8.19)
Myp = mnplpy, + Pyg) | | (8.20)
Mag = nang(py + Pp3) (8.21)
M3 = nyngley + py3) (8.22)

The w-equivalent circuit model corresponding to eqs. (8.14),
(8.15), and (8.16) is shown in Fig. 8.2 [16]. Again, the r-model
has an ideal transformer with effective turns ratios A and B in the
center, a magnetizing inductance M0 in parallel with it, and one
leakage inductance on each winding. By comparison of the model of
Fig. 8.2 with egs. (8.14), (8.15), and (8.16), the unique solutions

for the six unknowns are

gy = Ly - Mgty (8.23)
Lop = Lop = MypMos/ty3 (8.24)
Loz = L3z = MygMy3/th, (8.25)
Mo = MyaMya/Mo3 (8.26)
A= Mys/Mys (8.27)
B = My3/My, (8.28)
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Fig. 6.7 The m-model fon a three-winding trans formes,
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Substitution of eqs. (8.17) through (8.22) into (8.23) through

(8.28) leads to

!

2 .
Ly = 1y [(p]+p23)pm * Po3(PytpyotPy3) - PyoPy3d / (pm+p23)
~ n.z( +p,.) | 8.29
_ 2. ! . o '
Lop = 0y Lpotpy3)py + Pys(potpytPag) = Pagpypl / (p#py3)

2
= 1, (p2+p]3) (8.30)

2 o
Lps = ng"[{pgtpy)py + PralPgtpyghag) - Pygppsl /7 (ptpy,)

. n32(p3+p]2) (8.31)

My = 1y 2(p,012) (Pthyg) / (pi¥Pp3)
. "12pm | (8.32)
A= (/) (pptpas) /7 (pptpys) | | (8.33)
B = (n3/n)(p+pps) / (PptPyp) | - (8.34)

The results are summarized in Fig. 8.3.

If the core is made of ungapped square loop material, y » =,
or p, > «, the model is then reduced to that in Fig. 8.4.

The effective turns ratio of the w-model in Fig.‘8.3 can be
understood by the following argument. Consider the case when both
winding 1 and winding 2 are open circuit and only the third winding
is carrying the current. The ratio of the open-circuit voltages

measured at winding 2 and winding 1 is clearly the effective turns
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odel fon a three-winding thans fjormen, expressed in

Fig. §.3 The w-m
terms 0f permeances.
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Fig. §.4 The w-model fon a thiree-winding tnanbﬁcnmen. with magnetizing
cuwrent negllec/ted ‘
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ratio A. . From the flux map in Fig. 8.5, it is easy to see that the
effective turns ratio A is equal to (nz/n])(pm+p23)/(pm+p]3).
The physical turns ratio n2/n] is corrected by the relative size of
the partial leakages Po3 and P13 to the mutual permeance P
The leakage inductance on winding 1 is

Ly = 2 (oy#ppg) - (8.29)
The contribution from p] is easy tb understand‘because it is
proportibnaT to the flux which flows only in winding 1 without
coupling to any other winding. However, the contribution from Pos
is not so obvious, because Poa is a measure of the coupling between
the windings 2,3 and the core, and it seems as though it has nothing
to do with the coupling between winding 1 and the core. Nevertheless,
the total flux ¢+¢T2+¢13+¢£1 sensed by winding 1 can be thought |
of as a new mutual flux ¢' plus n}Z(p}+p23)i] if the magnetizing
current n1i]+n212+n3i3 is small compared with the current on any
of the windings. Thus, the term n12(p1+p23) becomes the effective
leakage in winding 1. The detailed manipulation is shown in the
following. With use of the assumption |

n]i1 + nziz tngis =0 o (8.35)
07 = Ny (0 + dyp + dy3 + 0py)

=y Lo+ pyplngipingis) + pyglngipingis) + pyngiy]

1

s . . 2 .
ny Lo = pypngig = Pyghpiy = Pugnyiyd + nyt(pytpys)iy

- ' 2 :
- n](b + n‘l (p]+p23)11 ) (8-36)

where ¢'= ¢ - py ngis -pygnyi, - P23y
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Fig. §.5 The effective tuns natio between winding 1 and 7 can be
easily interpreted by comsidening the fLux components
passing through winding 1 and 7. :
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Similarly

. 2 .
09 = oo’ + n,5(pytpy5)i, (8.37)
o 2 . ,
¢3 - n3¢' + n3 (p3+p]2)13 (8.38)

Notice that ¢' is common to all three windings, thus it can be
thought of as the new mutual flux. |

The effect of Pyg ON the leakage in winding 1 is demonstraied
in the example of Sec. 10.1 where it is shown that eveﬁ though
the transformer winding 1 is closely wound around the core, the
effective leakage on winding 1 can vary drastically depending on
the winding geometry of windings 2 and 3.

Note that, in the thre§~winding'transformer model, the
magnetizing inductance can be reflected to any of the three windings
but, unlike the case of the two-winding model, the leakage inductance

-cannot be reflected to the other windings.

The six parameters Lﬁ], ng, L£3, Mo’ A, B in the three winding
wmodel as shown in Fig. 8.3 can be derived from the following
measurements.

(1) With use of a network analyzer, inject a voltage at winding 3
and measure the open-circuit voltage at winding 2 with respect
to the open-circuit voltage at winding 1. The reading on the
analyzer is the value of the turns ratio A. A similar
measurement gives the turns ratioc B.

(2) With use of the network analyzer and a current probe, measure

the impedance looking into winding 1 with the other two windings
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open. This gives S(LZ}+M0)‘
(3) Measure the impedance looking into winding 1 with winding 2
open and winding 3 shorted. Theis gives
2.
s{ gy + I, [] (L8]
Similar measurements give
. 2.}
s{ Lo + O[] (LerA]
and '
I m2m 2 }
s{L,p + 2200, [] (13780

These four data can be used to calculate L L L, and M,

217 "2 g3

The network analyzer has to be zeroed before the measurement
of turns ratio. The freguency for the measurement of impedance
has to be high enough that the winding resistances are negligible,
and Tow enough thatithe effect of interwinding capacitance is very
small. |

Similar methods can also he applied to the two-winding
n-modei, eXcept that a specific turns ratio has to be chosen
before the values of other parameters can be assigned.

If the mutual inductance were neglected in the model, the
three 7mpedance measurements in step (3) can still be used to
determine the three leakage inductances. However, in the case
of the two-winding transformer; it is impossible to separate the
leakage inductances from their reflected sum when the magnetizing

inductance is neglected.
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CHAPTER & .
FOUR-WINDING TRANSFORMER MODELLING

The same procedures used in three-winding transformer
modelling are used in this chapter to model the four-winding
transformer. But it will be found that the r-model is over-
determined, and only in special cases can it be used.

In‘a four-winding transformer, the flux per turn can be
decomposed into 15 components: one mutual flux ¢‘which links all
four windings, four fluxes 0123> 934> 934> $1pq Which Tink three
windings, six fluxes 012> 923> 934> 913+ $14> ¢og Which Tink two
windings, and four Teakage fluxes 9p1° bp2> $p3> bpa Which tink
only one winding. Since all the leakage fluxes have most of their
paths in the air, they can be assumed to be proportional to the

current producing them:

bp1 = PIMTy - (9.1)
bp2 = PaNaip (9.2)
bp3 = p3h3i3 (9.3)
dpa = p4n41'4 (9.4)
912 = Pyplngiy + nziz) (9.5)
423 = PazlnaTy + m3l3) (9.6)
014 = Pra(nydy * mgdy) (9.7)
by3 = Pyalngiy + ngig) (9.8)
t2q = Paqlngip + nyig) (9.9)
b3y = p34(n3i3 +'n414) (9.10)
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9234
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The mutual fTQx ¢ is mostly confined inside the core, thus

(b: B.
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= Pypg(ngiy + mydy +ngig)

= Ppgglnyiy * ngig +nyig)

=P

AC

Pyog(nyiy + nyiy + npiy)

130(M 1y +ngig +ngiy)

Helpy = nqly # 005 +ongig 0ty

If the core
B = pH
then
6 =
where Py = n-A
By Faraday's law
vy =

H]

Similarly,

it

-where
17

22

L1

M2

M]3

A

14

is linear, i.e.,

Pp{nyiy #nydy + ngiy +nyiy)
C /'em

b

.

i, + M i, + Mo, + M, i

1 12°2 13°3 144

i1 + L22i2 + M23i3 + M

T+ Moai, + Layad, + My i
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*
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(9.
(9.

(9.

(9.

(9.

1)

(9.
(9.

12)
13)

J14)

15)
16)

17)

18)

19)

20)
21)

22)

23)

24)
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L33 = (pm+p3+P13+p23+p34+P123*9134*9234)“32 ' (9
Lag = (ph+p4+pl4+p24+ps4+P124+P134*9234)”42‘ (9
M2 = myy (p]2+9123+p]24+9m) ' o | (9.
Mz 7 g (Prg*PigstPagtPn) (9.
Mig = h]n4 (p14+p124+p]34+pm) (9
Myg = gy (Py3*P1o3*Pyss*Py) (9
Mag = Moy (p24+p124+P2§4+pm) | (9
(9.

Mag = N3ty (P3gPy3a*Pp30%Pp)

.25)

.26)

27)

28)

.29)
.30)

.31)

32)

“An exact equivalent circuit model can be found for egs. (9.19).

through (9.22) , as shown in Fig. 9.1. The model has an inductance

between all the nodes and the ground. The same modelling technique

can be extended to arbitrary n [17]. Since there are n{n+1)/2
elements in the equivalent circuit model and there are the same
number of coefficients in the coupled~inductor equations, the
values of the elements in the model can be uniquely determined.
Although this model is exact, it is too complicated to be
useful. The measurements of the values of the elements are afso
difficult. The simple n-model, which ignores most of the inter~

dependences between windings ,is explored here. The purpose is to

find out the conditions under which such a model is'applicabXS. As

shown in Fig. 9.2, there are 8 unknowns LK]’ LEZ’ L£37 L£4, A, B,

M0 to be expressed in terms of the 10 known constants: L]], L22,

C,
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Fig. 9.1 An equivalent cincuit model for a fowr-winding Lransformes.
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Fig. 9.2 The m-model forn a fowr-winding trhans former.
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M]Z’ etc. Comparison of Fig. 9.2 with egs. (9.19) through (9.22)

shows that there are 10 equations to be satisfied:

Loy + My = Ly (9.33)
Lep + AN = L, (9.34)
Lyg + BZMO = Lgs . (9.35)
pé4 + %My = Lag C(9.36)
A= M | (9.37)
MB = Mg (9.38)
MC =M, |  (9.39)
ABM = Mg v (9.40)
ACH) = 1, (9.41)
BCM, = My, (9.42)

In general, there exists no solution to these ten equations
unless they are a dependent set. In other words, the rx-model is
not adequate to represent the four-winding transformer except in
certain special cases. ‘ | |

Consider the four gnknowns A, B; C, and MO in the six

eqs. (9.37) through (9.42). It is easy to see that unique solutions

exist if and only if

A:B:C=M M M

12 P Mg s Mg =My, el

20+ M3p @ MygMy,/Myg

MM, = M. M (9.43)

or
M 1320 = MygMys

M

12734 ©



86

The unique solution under this assumption is

Mo = (M12M13M14)2/3)/ (Mygtpgts) (9.44)
Ay, /M -  (9.45)

B =My /M | (9.46)

C =My /M | (9.47)

Loy = Ly - My S ' (9.48)

Lo = L2z "AZMo | (9.49)

Lyg = Lyg = B, - (9.50)

Leg = Lag - CZMO ' o R

The constraints in eq. (9.43) can be expressed in terms of

permeances by substitution of eqs. (9.27) through (9.32) into it:
(P #P1*P123 Py 2a) (P¥P34*Po34 P134)

= (Py*Py3%P123P130) (PP 24 P230 Pr24)

= (PytP14*Py247P134) (P P23 *P234 P 23) (9.52)
or
) |
P * Pr(P12*P34P123™P1aa Pr3a™Posa) * -+
2 .
= by P (Py3tPogtPy23tP14 P30 Poza) T oo
- .2, ; ' ‘
= Pyt Pp(PrgPa3Prog P Prag Poge) - (8.53)
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1.e.
either Pty = PygtPyy = PygtPyg |
(9. 54)
or (Pyo3*Py2a*Py3TP3g) dominates Prou bajs Pygs Py
If eq. (9.43) is satisfied, the eight parameters in the
m-model can be expressed in terms of permeances as follows: |
(with the assumption that Py > the rest of the p's)
- S y2/3 1/3
My = (ot )72 / (My3MagM3g)
2. - ,
= DLl (Pt 3P o3 Py 93 P00 P34 P34 /Py
2 .
= n1 pm (9.55)
= Y [~ I " ) hall -
B = Mo/ = (na/m T + (Poz=PyptPoas=Pipg)/p ] (9.57)
C = Myg/Mg = {ng/np)LV + (P3y-Py3™Pa3s7P23)/ Py (9.58)
- L2
Loy = Ly = My = 07 (Py#0p34%Py4P)3) (9.59)
! L,, = L -A2M~n2( P gD F P ) (9.60)
2 " F22 o = My WPy Py34™Pog Py .
_ 2, 2 :
Lys = L3z = BM, = 137 (pgPyp4tP15*P3y) (9.61)
i} 2. 2
Log = Lag = CMg = 0" (pg#py534Po PPy 3) (9.62)

In other words, the m-model in Fig. 9.3 will be adequate if eq. (9.54)
is satisfied.
Under the following conditions, the constraint eq. (9.54)

can be considered satisfied.
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Fig. 9.3 The w-model expressed in Lerms of the peameances when the
constraint (9.54) 45 satisfied.
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(1) If the four windings are wound tetra-filar such that
P12 ™ P13 ™ Pyg 7 Pp3 = Ppy T Py

P123 = Po3a = Pipg 7 Py3g

(9.63)

(9.64)

then the transformer can be modelled by the p-model in Fig. 9.3.

(2) If three windings are wound tri-filar (e.g., windings 1, 2, 3)
and the fourth winding is wound alone, then Pys3 and Pa will
dominate the rest of the leakages. In this case, eq. (9.54)
will be satisfied and the transformer can be modelled by the
n-model in Fig., 9.3.

(3) If the four windings are wdund on the four sides of the core,
P> Pys p3, p4 will dominate the rest of the leakages. 1In
this case, the interdependences become second-order compared
with Lyps Ly, Lﬁé,vL£4, and the r-model in Fig. 9.3 is
adequate.

The worst case is when windings 1, 2 are bifilar on one sfde
of the core, and windings 3,4 are bifilar on the other side of the
core. In this case, Pio and P3g dominate the rest of the leakages.
Clearly, eq. (9.54) will not be satisfied, the r-model will not be
adequate, and strong interdependent terms are eXpected. A model

like the one in Fig. 9.1 has to be used.
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CHAPTER 10
EXAMPLES AND APPLICATIONS OF TRANSFORMER MODELS‘

Some examples are given in this chapter to demonstrate the
physical meanings and the applications of the models derived in the
previous chapters.

10.1 _An example of three-winding transformey modelling

A set of three-winding transformers has been wound to demonstrate

the effect of p23 on the leakage of winding 1. A1l three transformers

were wound on the Ferroxcube 3019 P-A400-3B7 ferrite pot core with

N, = N = 30 turns of #28AWG. The individual differences and

1 2 3
ekperimenta] data are summarized in Fig. 10.1.

= N

The transformer #1 was wound tri-filar. Any flux which is linked
by one winding would be linked by the other two. Therefore, the mutual
permeance is the highest among the three transformers, the leakage in-
ductances are all very small, and the effective turns ratios ére each
virtually unity. |

The transformer #2 has all its three windings separated from one
another by the blocking tape, but winding 1 is closest to the ﬁore.

A1l the six leakage permeances P1s Pps P3s Pyps» Ppgs Pyg are h%ghef
than that of the transformer #1, so that the leakage dinductances on
the three windings are larger and the effective turns-ratios are
different from the physical turns ratio J,O; The mutual flux is
smaller than that of transformer #1,

Transformer #3 has its winding 2 and winding 3 wound bifilar.
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a) Transformer |

winding layout

WI,w2,W3
trifilar

bobbin

- — i G m daa aon

experimenta! data
0.5puH  0.4Q

0.492 O.SuH , > 1.0 | W2
M0 |
Wi C430pH S 1.0 0.5pH  0.4Q
N
1.0 W3

10.1(a) The winding Rayout and the equivalent cirewit model gor

Fig.
the trnansfommern #1.
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b) Transformer 2

winding layout

FU S
Wi /7 A—tape
bobbin
Yo
ZZZZ/_}, o
I
]

experimental data ,
24 pH 0.4

0.3 {OpH

— M G
Wi 370uH .00 I2uH  0.5%
VA

.02 w3

Fig. 10.1(b) The winding Layout and the equivafent circuit model for
the transfommen #7.
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c) Trcnsfor_mer 3

winding layout

7/7[\&"2 3 bifilar
L
Wi //C;Zj;;P-~tc”?e

bobbin

7/f£%1

experimental data
0.5uH 0.5

0.382 60pH
Wi 380uH 089  o5uH 059
A
.00 W3
Fig. 10.1(c ) The winding Zauout and Ihe equ&uaﬁent cineult model fon

the iﬂan&lchmen #3.
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The winding 1 was wound exactly the same way as in the transformer
#2. Since winding 2 and winding 3 were bifilar, the_]eakage per-
meances pPi,, Pqao ng P3 must be very sma11; as in the case of the
#1 transformer; This eXp]ains the small Teakage inductances on
winding 2 and winding 3. It also ekp]ains why the effective turns
ratio between winding 2 and winding 3 1is 1.0. Since the winding 1
was wound away‘from the other two windings, p] and'ng can be large.
Thjs~ekp1ains why the winding 1 was wound closest to the core, and
yet has the largest leakage inductance.

Note that the winding 1 in the transformer #3 was wound
identically to that of the transformer #2 but the leakage inductances
| differ by SOQHQ It is clear that this SOﬁH is the contribution from
the permeance p23; With the assumption that n]2p23 = SOQH and

n]ZP]3 = OpM, the effective turns ratio between winding 2 and winding

1 would be
;l. E@*imgl§.= ;g@ ggg*;;gﬁ.= 0.88 | (10.1)
2 Pmo+ P23

The measured value is 0.89.

Note that in all three transformers, winding.l was always wound
closest to the caore, but the leakage inductance on winding 1 varies
drastically from 0.5uH to 10uH, to 60uH depending on the winding

layout of the other two windings.

10.2 Transformer model applied to the zero-ripple Cuk converter

The purpose of this examp]e is to test the validity of the
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transformer model in a zero-ripple Cuk converter. A coupled-inductor

Cuk converter with turns ratio nz/n] is shown in Fig. 10.2. Its model,
shown in Fig. -10.3 can be decomposed into a dc component as in Fig.
10.4 and an ac component as in Fig. 10.5. The input and output

current ripples can be solved from Fig. 10.5 as

i (s) = [Z, + (1 - ny/n.)sh ] (s} - (10.2)
e VO 1z, w i (2, + (ng/n,)%2,]

i(s) = [Z; - (1 = ny/n,)(ny/n,)sM ] v(s). (10.3)
2 [ 17722 M2 750 Z]Z2 + sMo[Z] + (n]/nﬁzzz]

It is seen from eq. (10.2) that the input current ripple depends on the
value of Z, * (J?n]/nz)sMb. Since Z, is dominated by sL,, at

switching frequency and its higher harmonics, the switching ripple on
the input current can be practically made zero if Lzz + (_1-—n]/n2)M0

is zero. This corresponds to the matching condition nk = 1 in [14].
Similar arguments hold for the output current; By adjusting nys Ny

and Mo’ the ripple can be steered to the input or the output side.

A third winding can be wound on the same core to absorb the
ripples away from both the input and output currents [18]. The
arrangement is shown in Fig. 10.6. Its ac model is shown in Fig. 10.7
where Mys My, My are the effective turns ratios. From the model in
Fig. 10.7, the current ripple on winding 1 1is
L

2
o

=N

m32

1 2
mz(m2~m])

b
2
ij(s) =M

my” v(s)

(10.4)
23 » sM0

m3(m2—m1)

m 2
i 3



96

Fig. 10.7 The basic configuration of the coupled-inductor Cuk converter.

n, :n,

Fig. 10.3 A model {or the coupled-inducton Cuk converter in Fig. 10.2
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N :ng

Fig. 10.4 The de component of the model in Fig. 10.3.

10.5 The ac component of the model in Fig. 10.3.

Fig.
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Fig. 10.6 A thind winding can be added to the coupled inductor o
absonb the switching ripples grom the input and output
Anducton curnents. -
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Fig. 10.7 The ac model forn the circuid 4in Fig. 10.6.
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Similar equations hold for 12(5) and i3(s).

If my = my = Mg, the current ripples become

i (s) = LLllz; vis) | (10.5)
Z, S ¥ (G T4 1127 -

io(s) = fallZellzg v(s) | (10.6)
Z M (L TTZ,T1Z;)

i(s) = AllZplizg vis) | | (10.7)
Z ST (2 TTZ,11Z,)

It is easily seen that the ripples in input and output currents
can be made very small if [Z,] is much smaller than [Z,] and |Z,] at
the switching frequency. This is the impedance division principle.
Note that this principle holds only if my = m, = m;.

A demonstration circuit was built, whose circuit diagram is
shown in Fig. 10.8. The conYed-in'uctor information is summarized
in Fig; 10.9. Winding 1 was wound away from the bifilar winding 2
and 3 to create leakage permeances Po3 and Py as discussed before.
The extra 3 turns on winding 1 is to bring the effective turns ratio
to 1:1:1. The waveforms are shown in Figs. 10.10 and 10.11. The
fact that the winding 1 is direct]y'cbnnected to the power supply
without any external impedance and yet the ripples on the input
current are still cut down by the correct amount, demonstrates the

validity of the transformer model.
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i, 10 : 10:10 iy -2V
e 1 ' = )
o
N
W;] W3
12V = 4 20pF == %iza
+ 100pF ' ~
20KHz GE v
D=0.5 Da4HIO T 5FFI5
Vee

Fig. 10.& The experimental cireult of a th&ee~wind£ng coupled-inducton
Cuk conventer.
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N,=32 Ny=N3z=29 all of 28AWG wire _ |
core: Ferroxcube 30I1S5P-A400-3B7 ferrite pot core

winding layout

‘ 7\{*1{{ “;/:/L .t

bobbin

e

experimgntal data

O0.4uH 0.4%
0.5%2 60uH =10 .- | we
Vs

Wi 0.4uH  0.4Q

00—

1.0 357uH W3

Fig. 10.9 The winding information and the equivalent circuit modef o4
the coupled inducton used Ain the cireuit of Fig. 10.5.
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CE

i
(0.5A/div)

i
(0.5A/div)

Fig. 10.10 The input and output currnent aipples of the cireult in
Fig. 10.8, with the thind winding open.

SRR
Edsas

i
(50mA/div)

iy
(50mA/div)

is
(0.5A/div)

Fig. 10.11 The cwwient &ippﬂéé in %ig, 10,10 are absonbed into the
thind winding which provides a Low impedance path fo the
ground.
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- 10.3 Coupling coefficient as a function of air’qu

In the zero-ripple Cuk converter it is desired to know the
functional dependence of the coupling coefficient k of a two-winding
transformer on the length of the air gap Zg [14]. 1In this section,
it is found that the fringing flux in the air gap has substantial

effect on the functioh 1/k vs. £_ which would otherwiSe'be a straight

g
line.

Consider a two-winding transformer wound on a gapped core as
shown in Fig. 10.12, 1in which O and ¢£J,_¢22 are the mutual and
leakage fluxes per turn. Hm and Bm are the magnetic field intensity
and magnetic induction inside the core while Hg and Bg are the corres-
ponding quantities in the air gap. Em is the magnetic path length and
Zg is the gap length. Because of the fringing effect, the effective

cross-section Acg inside the air gap is different from the cross-

section Am

, of the magnetic core.

Two of the Maxwell's equations can be written as:

Hl + 2ty = nqig + npiy (10.8)
Aenbn = PegB (v-B = 0) (10.9)
Inside the core: B = ugu (10.10)
Inside the air gap: By = oMy - o (10.11)

where u_ is the permeability of the free space and . is the relative
permeability.

By combinations of eqs. (10.8) through (10.11),
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- cross section Agg

cross section Agp

Fig. 10.12 A two-winding transformer with a small air gap.
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-
B = By npigt mpis
m - . .
A L | | (10.12
Acg m

‘The quantity inside the bracket is the effective permeability of the

gapped core, which is known as the "shear-over" effect on the B-H Taoop.

From eq. (10.12),

=’ = i i =. ch . .
b = Buftem = Pulngiy + nplp) where py AL - (10.13)
20+ ﬁES. m
g em M
o
Note that when ﬂg >> T the inductance per turn is proportional to
v _

the effective cross-section ACg instead of the actual cross section

A . The relation between Acg’ A and Zg is a very complicated field

cm cm

mapping problem. An empirical equation has been found for rectangular
cross-section core:

ACQ = (a + Kg) (b +,£g> (10.14)

where a and b are the cross-sectional dimensions of the actual core
faces [17]. Experience shows that this ruTevordinarily gives satis-
factory results if the correction applied does hot exceed about one~-
fifth of the cross-sectional dimension to which it is applied. With

eq. (10.14), P, can be expressed as a function of the air gap:

P IR Gl [ G  (10.15)
m 2£g ST
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In a two-winding transformer, the coupling coefficient k is defined as

M]2 n nnop

oy \/“12(p ") ") \/(H )< )

= ———— if the transformer is symmetrically wound such that

m Py ®= Py = Pp (10.16)

Substitution of eq. (10.15) into eq. (10.16) gives

Koo e d 5 , ~
Py <21ig ' ﬁfﬁ,) | | - (10.17)
r
v bo (24 ”eg)(b ") |
or g, Pp(¥g o) (10.18)
K Ko (3 : L) (> 4) |

Experiment shows that Py is approximately a constant as the gap 1epgth
varies. Note that 1/k vs. zg would be a straight Tine if the fringing
effect could be neglected,

An experimental setQUp as shown in Fig. 10.13 was used td verify
gs. (10.14) and (10.18). Two core halves were mounted on a Kulicke-
Soffa X-Y wicropositioner. The gap length was adjusted by inserting
Kraft paper of different thicknessés between the core halves so that
the attractive force produced would not change the gap-length. The

core halves are Magnetics Inc. 2-103738-001A C-cores made of 2 mil
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Westinghouse "Hypersil". The cross section of the core is 0.60 inch
by 0.23 inch. The winding 1 is made of 50 turns of 24AWG wire and
the winding 2 is made of 35 turns of the same wire. An HP3040A net-
work analyzer system and a Tektronix AMS03 current probe were used
to measure Lyy, Loo, M,, and L, (sum of the Teakage inductances seen
from winding 1) at 10kHz, as shown in Fig. 10.14. Note that only
three out of these four quantities are independeni. The data show
very good consistency (to within 1%) between these four quantities
eXéept for the measurements when the air gap is less than 4 mils,
For air gap less than 4 mils, the accuracy and consistency of the
measurements wefe degraded because of the strong electromagnetic
force betwzen the core halves and the sensitivity of the measured
quantity to the exact gap length. |

From these measured quantities, the couplirg coefficient k, the
1eakage inductances LE]’ L£2,‘and the effective cross-section Acg can
be inferred. Both Lﬁl_and L£2 are essentially constants (to within
+ 2%) as the gap length varies from 4 mils to 78 mils. This shows
that the leakage inductances are practically independent of the gap
length. Thus the permeance Pp in eq. (10.18) can be considered as a
constant.

The effective cross section Acg can be derived from the measured

quantity My, by the equation
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HP 3040 A
Ch. B
READING s ——
DING Ch. A
Ch.A Qutput at IOKHz Ch. B
CP o Q o o (o]
| "’
G 0 —— -
TEKTRONIX O-frrmem
AM 503 © _—
set at I0OmA /div |

Reading -

i

Ly 46 Ch.B 4s comnected to winding 1, with

winding 2 open. ,
L, Af Ch.B is connected to winding 1, with

winding 2 shonted,
= My, 4§ Ch.B 45 connected to winding 2.

"

Fig. 10.14 The set-up for the measuwrement of Ligs Ly Ly and Mjg-
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f’m
M, (2g, + |
A = 9 M | | (10.19)

9 R LPLR

where ;@_2 6.7 mil which was determined by the data oi"'M]2 and Acm
r v

at Kg = 0. The effective cros$~section is plotted in Fig. 10.15 with
the prediction of the empirical eq. (10.14).' It is seen that the
empirical equation is a good approximation. The dotted Tine in Fng
10.15 is the physical cross-section of the core. The difference be-
tween the solid Tine and the dotted Tine is the effect of the fringing
flux. |

Figure 10.16 is a plot of the cbup1ing coefficient derived from
the measured quantities L]], L22, M]2 and that predicted by eq. (10.18).
It is seen that the prediction is reasonably good. The dotted |
straight line is the projected value of the coupling coefficient if
the fringing effect were neglected.

From the data of this example, it is observed that the leakage
inductances of a two-winding transformer are practically independent
of the length of the air gap. The coupling coefficient decreases as
the gap increases, but the leakage inductances remain the'same. ~The
decrease of the coupling coefficient is explained by the decrease of
the mutual flux.

Without the fringing flux, the inverse of the coupling coeffif

cient would be a Tinear function of the gap length. The "bending
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effective cross section,

- 2.0 Ao
| 5em? Aog= (a+Rg) (b +1,) ]
e ] .
Q o ’
*‘“O MM‘M
W:sm_—gm.«..m...m.m~m...__-m-._-.....m__._..-«......_. _________
ACl’ﬂ

— 0.5

i ' I . i ; N
0] 20 40 mii 60 80

gap length, £,

Fig. 10.15 Prediction and experimental data of the effective
cross-section Acg vs. the gap Length Eg’ The dotted
Line 48 the physical cross-section of the core Acm‘
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| .
— //
2k0 2 ‘
: R 0.50 -
/S .
/ o
1.8 . _ P 0.56
without frmgmg// '
flux ’
.\\\\ﬁf/
g o 0.63
prediciion
0.71 -
0.83 —
e, R ; ] “ |
20 , 40 mil 60 80

gap length, L

Fig. 10.16 Prediction and experimental data of the coupﬂing'
' coefficient k vs. the gap Length Kg’ The dotted
Line 45 the predicted coupling coefficient L§ the

fringing effect were neglected.
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down" effect observed on the 1/k vs. Zg curve is successfully ex-

‘plained by the fringing effect.
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CHAPTER 11
CONCLUSIONS

The concebt of permeance, which is directly related to the
magnetic flux, was used to express the parameters in transformer
models. This has the advantage of retaining more physical insight of
a physical transformer in its equivalent circuit model. For example,
in a threeéwinding transformer, the effect of the physical layout
~of winding 2 and 3 on the 1eakage inductance of winding 1 can be
seen from the model directly. . The effect of the leakage flux on.
the effective turns ratio is also eXp]icit]y described in the
model.

The g~model is recommended wbenever applicable because it is
simple to use and easy to interpret. It is interesting to see that
this model is under-determined, uniquely-determined, and over-
determined for the cases of two-winding, three-winding and four-
winding transformers; respective]y; In the two-winding casé, the
effective turns ratio can be chdsen arbitrarily. But every
parameter is uniquely determined in the three-winding case. For a
four-winding transformer; the simple r-model is adequate only for
tetra-filar, tri-filar and separate-winding situations. The
general model has to be used when the p-model is not app]icab]e;

The three-winding g-model was verified as applied to the
zero-ripple Cuk converter in Sec. 10.2, The concept ofrpermeance

also helps the understanding of the relationship between coupling
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coefficient and the gap length. The fringing flux was found to have
substantial effect. It was also observed in this study that the

Teakage inductances are practically independent of the gap length.
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PART TII

CROSS-REGULATION OF THE Two-OUTPUT

Cuk CONVERTER
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CHAPTER 12
'INTRODUCTION

A multiple-output switching regulator is usually constructed
by insertion of an isolation transformer with multiple secondary
windings in the switching'part_of the circuit to split the energy
flow to the outputs. Similar output circuits are connected to each
of the secondary windings. The "principal” butput voltage is
directly sensed by the feedback network and regulated to the desired
value. The others, or the "slaved" outputs; are not directly
regulated, but are fixed with respect to the principal output
voltage by the turns ratio of the isolation transformer. This
provides a cost-effective method of providing multiple outputs in a
switching regulétdr. However, the slaved outputs usually do not
have as good load regulations as does the principal output. The
variations of the slaved output voltages due to the changes of the
load currents are called cross-regulation.

The Cuk converter, as shown in Fig. 12.1, introduced at the
1977 PESC {7], was described as having a configuration which provides
the basic dc-to-dc conyersion property with the smallest number
of e1emehts that permit both the input and output currents.to be
nonpulsating.  This basic topology has been extended in a simple
and elegant manner to incerporate. dc isolation and multiple outputs,
with retention of a single switch [19], as sﬁoWn in Fig. 12.2.
Typically, this converter is incorporated in a feedback loop in

which only the principal output voltage V, is regulated. In this
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Fig. 12.1 The basic topology of the de-to-de Cuk converten.

C
!
i

o0

<

of
o
AVA

1
O
(€5}
1
i
W
A

Controller

Fig. 12.2 A de-isolated multiple-output Cub converten with principal
output voliage V; directly rnegulated.
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application, the regulated voltage V1.remains essentially constant,
but the slaved output(V2 can vary substantially with the currents
drawn from either output.

The cobjective of this study is to find out all the cauées and
their quantitative effects on the cross-regulation of a two-output
Cuk converter operated in. the continuous conduction mode.

Imperfect cross-fegu1ation in conventional multiple-output
converters results from, among other effects, inductor and transformer
windingAresistances, unequal diode drops, and leakage inductances
of the isolation transformer; In the multiple-output Cuk converter,
the separate coupling capacitances C; and C, in the circuit of
Fig. 12.2 contribute an additional term to the cross-regulation
property because of their unequal discharge during the switch ON-
interval. This effect is discussed in Chapter 13 with all the
elements in the circuit assumed to be ideal. It will be seen that
sufficiently large values of the capacitances Cy and CZ cah be used
to make the contribution to the cross-regulation from this effect
arbftrarify small compared with the remaining effects. The same
analysis:is repeated in Chapter 14 with all the hcn—idealitiés in

the circuit included in the model.
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CHAPTER 13
THE EFFECT OF UNEQUAL DISCHARGE OF
THE COUPLING CAPACITANCES

In this chapter, emphasis will be concentrated on the effect
of unequal discharge of the coupling capacitances on the cross-
regulation of a Cuk converter. A1l the circuit elements will be
assumed ideal and the inductor current ripples will be assumed
small comparéd with their dc levels.

With tnis assumption, a two-output Cuk converter can be
represented by the model in Fig. 13.7. The steady state input and
output currents are modelled by the. constant current source. The
output currents flow from the ground into the converter because
the output voltages are negative. The transistor and the diodes
are modelled by ideal switches. Since.the isolation transformer is
assumed ideal, it can be removed from the model if the state |
variables and element values are properly adjusted for the turns
ratios, as demonstrated in Fig. 13.2 (2)(b). Both Fig. 13.2 (a}, (b)
are equivalent to Fig. 13;1. For simplicity, the'turns-ratio of the
isolation transformer will be assumed to be 1:1:1 in this chapter,
and the model in Fig. 13.3 will be used. The resuits derived from
‘this chapter can be generalized to arbitrary turns ratio by simple
replacements of V, + V,/nq, Cy ~ n}zc], Iy - nqIy, etc. |

In Fig. 13.3, let (v;) be the well-regulated output voltages

then, <v1>—<v?> represents the deviation from the desired value at
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ics Ce L2 Vy
~§MT%,;.“,m..r(;@zj\__._
° Voo © .
i "2 g CDIZ
i35~ : |
| |
« / cg =
Ig ng C! Ll \V}
AbET00r—
Ve, © '
4 I,,

Fig. 13.1 A cinewit model §or the two-output Cuk converten in Fig. 12.2,
assuming Ldeal components and negligible nipples on ithe
- Anductor curnnents.
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2
. ngC 2
nzlcz 272 L2/n2 V2/n2
P00
o Veo/ns & :
o cz2/e
ngCg | / ? n212
i
+-
/‘ 7 VCg/ng 3 .
”9%&) I 2
? n.i nyC, L,/n?
Hel V/n,

Fig. 13.20a) The funs ratio of the ideal fransformer in Fig. 13.1
can be nreduced Zo 1:1:1 by properly adjusting the values
of the components and the cornresponding state variables.
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Fig. 15.2(b) The 1:1:1 ideal #ransformer in Fig. 13.2{a) can be

nemoved.  This cineuit model is equivalent to that in
Fig. 13.1.
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Fig. 13.3 A sdmplLified model of Fig. 13.1. The transformen Lurns
- natio 45 assumed to be 1:1:7.
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the slaved output*. Since the average voltage across an inductar

is always zero in steady state,

) = (g (13.1)
<V2>::<V2x> (13.2)

and

therefore,
M- 227 (i Qax)
= (Vo) = (Ver)

=(Yc2 = Ve1)

by dt fti dt"

G ety

2 1

Equation (13,3) suggests the procedure to calculate the cross
regulation:

(1) Find the capacitorAcurrent waveforms, iC](t) and icz(t)

(2) Construct Vep - vCIlfrom ic](t) and icz(t)

(3) The cross regdlatioh is equal to the average va1@e of Ve T Ver -
Typical iC}(t) and iCZ(t) are plotted in Fig. 13.4 with corresponding
‘VCZ - Ve plotted in Fig. 13.5. They are explained in the following.

At t=0, when the transistor Q] just turns on and the two

* <x(t)> rgpreéents the dc component of the time dependent quantity
x (»t)c .
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Pny ol '
Gl g2 Ig+12
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g2 Sy

'CI |

_12

Fig. 13.4 Tdeakized capaciton current waveforms Loy and A, An a fwo-
output Cuk converter. N

H ‘szb' T

Fig. 13.5 The voltage difference befween the two capacifons C; and Cy.
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diodes just turn off, VCT = Ve and the two capacitors start to

discharge with load currents —I] and —12 repectively. By the

end of DTS, a voltage difference

L oLy
Veo ~ Vo1 T AV = ET—~ T (13.4)
2 .
has been developed across the two capacitors. If AV is positive;
diode 1 will turn on as soon as the transistor turns off at t=DTS,
but diode 2 will remain off because it is reverse biased by _jy.

While C, continues to be discharged with -I,, C] is now charging

with Ig+I . This helps to reduce the voltage difference Veo T Ve

2
I .1 I
by a rate of ~EE«2~M—+ EZ- and bring up the voltage across the
1 2

diode 2 until, Dsz later, Ve T V2 and diode 2 turns on. The
source current Ig now splits into two paths proportional to the
capacitance values so that the voltages across the two capacitors
remain equal to the end of the cycle.

The cross regulation can be calculated from the average value

of Fig. 13.5:
. AV '
(vy)y = (vp) = (D) (13.5)
where '
I I
1 2
AV = (- —~—%)DT
< C] C2 [
and
D = Y
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It is seen that the two diodes in a two-output Cuk converter do
not turn on simultaneously if the two capacitors are not discharged
equally. Its effect on cross-regulation is represented by the area
under the triangle of Fig. 13.5. This contributes an extra term
to the cfoss—regu1ation which does not appéar in most other dc¢~to-dc
converters. However, this term can be made very small if the |
capacitance values are large, as can be seen from eq. (13.5). In
fact, it will be seen from the next chapter that if the capacitances
€y, C, are large enough, the cross-regulation of a Cuk converter
will be dominated by the non-idealities in the circuit, just as in
most other dc-to-dc converters. It should be noticed that the
requirement for large capacitances_C] and C2 does.not l1imit the
dynamics of the‘converter because the energy transfer capacitor Cg,
which is in series with.C] and C,, can be made small.

If the inductor current ripples are not small compared with
their dc values, Fig. 13.4 and Eig;'13.5 w111‘be modified into
Fig. ]3;6 and Fig. 13.7 where ALy is the peak-to-peak current
ripple of 1, and I, is its dc value. Similar definitions hold
for AIZ and AIg. The dotted lines are the approximations made by
neglecting tﬁé current ripples and using their dc values only.
The shaded area of Fig. 13.7 represents the correction terms to

eq. (13.5). It can be shown that the shaded area is Tess than

, (1, L\2
2 AT AT D1 (‘i“ "C’Z‘ | 1 I :
DTS 1 . 2 S C} 2 A.IngA o A 2
TN G ol B P P . G (13.6)
e\ &) (T, L\ G 2
Cy Cy ,



Fig. 13.6 The capacitfon cuwuvrient waveforms with fhe/w switching nipples

Lnuudaci
Voo~ Vo1
% A <_A.._.I.L_ - éj_?__ D2 T
12\ C, C,
AV
l , N
DTS \A TS
'd - S

) S 1 2
-+

4 (Ig""lz 12 )2 < C| Cz

AIQ"'AIQ AIQ)

Fig. 13.7 The switching up;oﬂezs of the capaciton cwwients have very
small effect on the voltage difference between the two
capacitons.
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which, in most practical cases, is small compared to the value
given by eq. (13.5). The inductor current ripples will therefore -
be neglected in the following chapters and their dc values are

used as approximations.
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CHAPTER 14
THE EFFECT OF COMPONENT NON-IDEALITIES

ON CROSS-REGULATION

Paraéitics play importént roles in cross-regulation. The
output voltages are affected by the parasitics such as the ESR
of the capacitors, the winding resistances of the transformer and
the inductors, the leakage inductances of the transformer, and
diode offset voitage. Among all these parasitics, the leakage
inductances of the transformer are the most undesirable. In fact,
the converter cannot operate properly when the leakage inductances
are too large. In Sec. 14.1, the limitation on the size of the
leakage inductances is discussed. The effects of the sma]lér
leakage inductances as well as the other parasitics on the cfoss—

regulation are then investigated in the following sections.

14.1 Limitation on the sizes of the leakage inductances

A three-winding transformer can be modelled by a series leakage
inductance and a series winding resistance connected to each
winding as discussed in Part II. The effect of leakage inductances
on the Cuk converter during.turn«on and turn-off are explained in
the following. |

As the transistor is being turned off, a large voltage spike
is produced across the traﬁsistor because the currents are reversing
their directions through the leakage inductances, as shown in

Fig. 14.1. The magnitude of the voltage across the transistor is
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Vee = Veg Y V01t (egtVer)
oAl Al '
- (g cv
=y, + vV +<£———~+£————~—. (14.1)
| Cg Cl g toff 1 tof .
where toff is the turn-off time of the transistor

AICg’AIC1 are the magnitudes of the currents
which reverse direction during turn-off and
Kg, £y are the leakage inductances of the isola-
tion transformer
For. safe operation, the quantity in eq. (14.1) has to be smaller
than the max. VCEO allowed, otherwise, a snubber has to be used.
When the transistor is being turned on, a voltage spike
appears across the diode in such a direction as to reduce the reverse
diode voltage, as can be seen from Fig. 14.2. The diode voltage

during the transient 1is

VD] | = _(‘VC]+V_CQ) + (yﬂg—*‘vf])
o Al e |
=%V+V)+<ﬂ~@+zwLJ (14.2)
C1 "Cg g ton 1 ton
where bton is the turn-on time of the transistor and

AICQ,AIC] are the magnitudes of the currents

which reverse direction during the transient.
For normal cperation, the quantity in eq..(14.2) is negative so that
the diode is off when the transistor is on. However, if the leakage
inductances are too large, vy in eq. (14.2) can be postive. When

this is the case, the diode will remain on with Vo clamped at
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AICg . AIC(
e e
Veg Vig Voo Vg

T R
CQ ’Qg 'E' C|

L]
©

+ ‘ |
openo—-—g Ve - | iz closed

Fig. 14.1 The Leakage inductances produce a voltage spike across the
- Transiston dudng Luin-off transient.

AIC@ AICi
e e
VCg V_Qg VCQ
- - + : +
| fD;OU“ ’66(5\~—-§§»~ww
Cq g

’—.é/ ® [ 4 +
closedo- by | Vo, N open

Fig. 14.2 The feakage Lnduc/tcmc?/s produce a.voltage spike which
neduces the back-bias o4 the diode du/ung trhansiston
tun-on transient.



135

0.7V even after the transistor is conducting. The length of time
when both the transistor and the diode are conducting can be
estimated from eqg. (14.2) with Vm clamped at 0.7V.
A test circuit, as shown in Fig. 14.3, was built to demonstrate

the effect of large leakage inductances. The transformer T was
wound on a Ferroxcube ferrite pot core 3019P-L00-3C8. All three
windings were made of 70 turns of 26 AWG wire. The magnetizing
inductance was measured to be 30 mH and the three Teakage inductances .
are 28 yH, 18 yH, and 5 pH. The waveforms of the diodes are shown
in Fig. 14.4. It is seen that diode 1 remains ON for about 2.5 us
after the transistor is fully turned on. The transistor is
protected from the big voltage spike during the turn-off transient
by a snubber.

In this study of cross-regulation, the leakage inductances
will be assumed to be small enough that the converter is operated
under normal conditions, i.e., the length of the time when both
the transistor and one of the diodes are conducting simultaneously
is very small compared with the whole switching period. In other‘.
words, the two diodes will be assumed to ba turned off simultaneously
when the trahsistor is turned on. ’Equationf(}4;2) can be used as a

criterion for the validity of this assumption.

B 14.2 Cross-regulation under the small leakage inductance assumption

With the assumption of small Teakage inductances, the effect

of parasitics on cross-reguiation is now investigated. Figure 14.5(a)
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i
(1A/div)

;
(1A/div) O

Fig. 14.4 The voliage and cuvient waveforms of the two diodes in
Fig. 14.3.
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is a model of the converter which includes the winding resistances
r,. and Y2 of the output inductors, the diode offset voltages

£1

vh, and Vp2» the secondary leakage inductances K] and £, of the

D1
jsolation transformer, and the ESRs of the capacitors plus the winding
resistances of the transformer r and ro. Again, the ideal
transformer can be removed from the circuit, as shown in Fig. 14.5(b),
with circuit element values and state variables properly adjusted
for the turns ratio. For simplicity the turns ratio will be
assumed to be 1:1:1 as in Fig. 14.6. The result of this sectién can
be generalized to arbitrary turns ratiovby simple replacements of
T e Y L RN N ete.

To separate the effects of output inductor winding resistances
and the diode offset voltages from the rest of the parasitics,

Fig. 14.6 can be manipulated into Fig. 14.7. Figure 14.7 is

equivalent to Fig. 14.6.  From Fig. 14.7,

() - v g’ = ve 2t Wy vpgd gy - Torgp) o (143)
Note that the average voltages across the ESRs and the inductors,
being zero in the steady state, do not appear in eq. (14.3).

To calcu1ate<<vcz' - VC1'> from the model, it is useful to

simplify Fig. 14.7 into Fig. 14.8. Figure 14.7 and Fig. 14.8 are

c2
The calculation of the cross-regulation of the circuit in

equivalent as far as calculation of ey and v is concerned.
Fig. 14.6 has now been separated into three components as shown

in eq. (14.3). The first term is the contribution from the series
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Fig. 14.5(a}l The circuit model fon a two-output Cub converter with
component non-idealities Aincluded. '
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r2 ﬂz n2C L_2.... I_é.z..
o 000 b 00— 2
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Fig. 14.5(b) The ideal transfommern in Fig. 14.5{a) can be removed by

properly adjusting the values of the components and
thein conresponding state variables.
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T oz
- =

Fig. 14.6 A sdmplified model of Fig. 14.5(a). The transformen
Luwrns ratio 48 assumed to be 1:7:1. ;
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Fig. 14.7 An equivalent cincudt model of Fig. 14.6.

" O

. .-
L;(?) j o
S “’VVVL““”/ZYXTM"“%g_

Ve, i/. ‘<:f:)l|

Fig. 14.8 A simplified circuit model wh&ch 45 equivalent Io that of
Fig. 14.7 as fan as caleulation of UCT' and v ey A4
concerned.
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connection of the coupling capacitors, the ESR plus the winding
resistance of the transformer and the leakage inductance of the
trqnsformer.' The second. term is the contribution from the diode
offset voltages, and the third term is the effect of winding
resistances of the output inductdrs; The last two terms are
simple to calculate and easy to understand. The emphasis will now
be directed to the first term which will be solved from Fig. 14.8.

The model of Fig. 14.8 is very similar to that of Fig. 13.3
of Chapter 13. Similar procedures will be taken here to calculate
the difference of the averége voltages of the two coupling capacitors:
The capacitor currents will be investigated first. The §o1tage
difference Ver = Ve can. then be constructed and it§ average is
the desired first term of eq. (14.3), <VC2 - VC1>'

A typical capacitor current waveform predicted by the model
of Fig; 14.8 is shown in Fig. 14.9 with the corresponding VCZ" VC]'
plotted in Fig. 14.10. They are ekp]ained in the following.

» During DT when the transistor is conducting, the two diodes
are off under the small leakage inductances assumption. The two

capacitors are discharged by the Toad currents,Land a voltage

difference of

I] I2 v
AV = (E':l' - -C'-Z-')DTS ) (714-.4)
is developed in addition to their initial difference Vo’ After
the transistor is turned off, the diode 1 wiil be on and diode 2

may remain off if the voltage difference aV of the capacitors is

positive.. This situation lasts for an interval D T, during which
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Iciilce

O
L f ol

Fig. 14.9 The capacitforn cwurent wavegorms predicted by the model of
| Fig. 14.8. |

DTg (D+D,)Tg Ts

Fig. 14.10 The capacitor voltage difference predicted by ithe model.of
Fig. 14.8.
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C, is charged by IgfI2 and C, is discharged by 12. The voltage

1
across diode 2 1s‘brought'up from some negative value to zero
which occurs when the voltages across the two LRC branches are
equal. The capacitor voltage difference at this point is equal to

the voltage drop across r]-and rot

Von = (Ig+12)r1 + 12r2 (14.5)
The two diodes then both become conducting and the source current Ig
is split into two paths. The current split is governed by the

following differential equation:

.

Tepdy P Vet gy T il e i
: L | (14.6)
Teg Vg = g
The solutions to eq. (14.6) are of the form:
overdamped (a > wo):
-5.t -s,t C
o 1 A,
iy = 348 +aye L e Ig
1 72
iy = Iy = igy o (14.7)
-s.t -s,t C,r,-C,or
St L A L At
Ve T Ve age + a4e + | C}+CZ Ig
where
S] =0 - az*m Z
(@]
2 2
So = aty o wg
I Ml
2(£]+£2
2
W C1+C2

Q - 77
CCo(44%L,)
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critically dampad (g ==wo):

s -ot 1
iy = (kytkptle ™0+ ey
172
iy = _Ig - g (14.8)
o Cara=Cor.,
. . IR L A
Vep' mver' T (kgtkgtle BT 4 0T, g
underdamped o < wo):
- : Ko
.. -at 1
Ty = byd Preoslugtrey) + gl
2= 1y~ 1y (14.9)
: C.r,-C,r
¥ ' "a't ) _L] 2.»._2_4
Ve - Ve = bze cos(wdt+ez) + C;¥Eé Ig
where
73

w, = fjw -u
d

The average value under the curve of VCZf—VC] will contribute
to the cross-regulation as the first term in eq. (14,3). A complete
soTution is quite involved and does not provide further insight

into the problem. A qualitative discussion is instead given in the

following.

14.3 Possibilities of overdamping and underdamping

It is seen from the solutions that the system is underdamped,
critically damped or overdamped, depending on the relative sizes

~of the resistances (r1+r2) and L where ro= (C]+C2)(El+ﬁ2)
| o (6
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is the characteristic resistance of the two Teakage inductances

in series with the two coupling capacitances. A test circuit
as-shown in Fig. 14.11 is constructed to demonstrate this effect,

The transformer T] was wound on a Magnetics 52133-1F Supermailoy core
with winding 1 and winding 2 bifilar on one side of the core:and

a single layer primary winding on the other side of the core.. This
arrangement produces a relatively large leakdge inductance of 7.5 yH
on the primary side and small leakage inductances of 0.3 yH on the
bifilar windings. All three windings were made of 18 turns of

26 AWG wire which produced a 0.14q resistance on each winding. The
capacitor current waveforms together with the equivalent circuit
models under three cases are shown in Fig. 14.12. Figure 14.12(a)

is a typical waveform of the underdamped case. Diode 2 remains OFF
‘until 2 pus after diode 1 is conducting. Notice that the final

values of iCT and iCZ are equal as predicted by eq; (14.9), and the
oscillation frequency is close to the expected value. Figure 14.12(b)
is the waveform of the same circuit as used in Fig; 14#12(@) eXcept
that the transformer primary winding is ekchanged with the winding 2.
- This increases the value of £;+¢, from 0.6 wWH to 7.8 pH,. By
comparison of Fig. 14.12(b) with Fig. 14.12(a), it is clear that

the damping time constant 1/a is increased and the oscillation
freqUenCy'uH is reduced;’as expected from eq. (14.9). Notice that
iC? can go negative as long as the diode current is positive.

Again,'the two capacitor currents are approaching the same final

value because of the same capacitance values. Figure 14.12(c)
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7.5uH

with

snubber

E

a) Underdamped

Fig. 14.12{a)

The observed underdamped capacitorn curhent waveforms
and the component values used.



tco

without

snubber

b) Underdamped

Fig. 14.12(b) The §requency of oscillation of the wavegorms £n Fig.
14.12(a) was reduced when the Leakage 4nductance £,
was Aincreased. :



’ - 0
7.5pH é Tantalum

with | °
snubber ' O0.3uH 43, G

Wi} g,
® 22uF
| . Tantalum

c) Overdamped | '

Fig. 14.12(c) The system was overdamped when the values of the
capaciiances C, and C, were Ancreased.
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shows that the system can be/Operatedyin the overdamped case if
the capacitance values are increased. The circuit for Fig. 14.12(c)

is identical to that for Fig. 14.12(a) except that the two capacitors
C] and C2
This reduces the value of the characteristic resistance E

are increased from 1 pF to 22 uF and 10 uF, respectively.

{

o =\J(C]+C2)(£]+£2)/C1C2 and the system is overdamped. The

final value of 1CT is about twice that of iCZ because C] is twice
the value of C2' Notice that the two diodes.turn on simultaneously.
This is another effect of increasing the capacitance values. It

is seen from Fig. 14.10 that the voltage difference between the

two capacitors AV is reduced when C1 and C2 are increased. If the
two capacitors are large enough, the peak of the capacitor voltage
difference VCZ'*VC}' at t=DTS may be smaller than Von’ In this
case, the two diodes turn on simu]taneousiy. In other words, the
unequal discharge of the two capacitors in a two-output Cuk
converter usually cause one diode to turn on before the other.
However, if the voltage difference resulting from the unequal
discharge is smaller than fhe sum of the voltage drops on the ESRs
of the capacitors and the winding resistances of the transformer, the
two diodas still turn on simultaneously. This is apparently the
more desirable case, not only because the two diodes have the same
duty ratio but also because it means closer cross—regu!ation;

Figure 14.13 is a reduced version of Fig. 14.10. It is seen that

the cross-regulation <vF2'—vf]'> is always smaller than
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V.
4 ! So |
0 D i's Tg

Fig. 14.13 The wavegorun of ;the/.voﬂtaga difference between the fwo
- capacitons Lf the ifwo diodes turn on simulianeously.
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VOn = (Ig+12)r1+12r2. Some qualitative results can be drawn from
inspection of Fig.vl4.]3. The cross-regulation can be improved by
reduction of the voltage difference between the two capacitors AV,
the final value of the voltage difference Ve and the time constants
of the exponential curve during D'TS. These can be achieved by
increase in the sizes of the coupling capacitors C] and CZ’ and

reduction of the sizes of the ESRs and leakage inductances.

14.4 Cross-regulation in overdamped condition

Since it is always possible to increase the capacitor sizes
to force the system into.the overdamped operation and cause the
two diodes to turn on simultaneously, with the benefit of close
cross-regulation, the case shown in Fig. 14.13 will be solved in
detail in fhe following. |

During DTs, the waveform of Fig. 14.13 is just a straight

line. During D‘TS, the waveform can be described by the following

equation:
gy *+ gy *vgy = 225(;2 gty Fvey! | (14.70)
Vey' = 1c1/ci (14.11)
V' = Te/G | | - (14.2)
iy + gy = Ig - mt | (14.»13)1

where -m is the down slope of the input inductor current

D'T |
l fo S igy(E)dt = 10T e
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Equations (14.10) through (14.13) can be combined into

. C
: 2. o 2 71 (1 s
oy ¥ 2 algy * o iy = u C]+02(Ig mt-mr,C.,) (14.15)
and v '
- . 2. 2 1 . Y P S »
vV + 2qv + @O vE o E;EEE{(CZrY C1r2)(1g mt ) -m( ]C] 202)] (14.16)
where
o = -
_ 2(£1+£25 |
2 Gl

Yo CiC051E)

Those terms with coefficient m on the right-hand side of egs. (14.15),
(14.16) are the effect of the slope of the inductor current. They
will be neglected in the following analysis because they are

usually small. The initial condition 1CT(O) can be evaluated by -
consideration of the transient when the transistor turns off during
the interva]_toff. As a first-order approximation, it can be
~assumed that the voltages across the two leakage inductancesﬂ1 and
L, are equal during the transient, because the voltages acrosé the
resistors ry and ros and the voltage difference on the two capacitors

C1 and C2 are relatively small. Therefore,

2

i 2 (0) + 1 I - i..(0) +1
, L _al®rh T1L1( )

(14.17)
1 torr of f

ne

or

igp(0) = 1? T | (14.18)
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Equations (14.14) and (14.18) can be used as two boundary conditions

to solve eqs. (14.15) and (14.16) completely:

C S
icq(t) = ae™51% 4+ pe7S2t 4 11 C(18.19)
c+C, 9 '
176
where ( C]
a=i.(0) - I -b
Ci g
C,*C,

s,C.C C S -

2“1%2 M 2 ~51D'T
oL aY - (0)- =—m1 < ) (1-e 1 s>
_ C+C, | [m C +02 g] 5

<]_e—szD TS> (Zz) (1- ~5,D'T )

1

Y (Cy+Cp) ey #ty)
S1sSp = — 1 JT - 5
2(£,+2,) €,Cy(ryr,)

and
C.ri-C,vr
i Y S]t Zt 11 22
v - = + de e |
c2 " Ver T ¢ C 9 (14.20)
. 1 >2
where s I-C +C 1
s2 v+ "Jc' (:2 i7(0) -2 (s)(] -e’ ZDT)
1 | &% 2 | \%y

[ S o 1
(1—e_52D Ts) - (EZ, <1~e 54D Ts)
1
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' C,+C 1

172 . 9 ] =-s.D'T

AV - [—-C—:i—ﬁ—z-m 1C](‘0)~ C2]<-§*:~) (]—e 1 S)
d = : _ L ! .

| S '
(T-e_SZD Ts) - <?fi> (1—e'S1D Ts) _
1

With eq.(14.20), the cross-regulation can be evaluated by taking the

average value of the curve in Fig. 14.13 and adding the effects of
diode offset voltage and the resistances of the output inductors, as
shown in eq. (14.3). With the assumption that e"S1DATs<K e'SZD Ts

2

the result is

<91> = (V2)

z-é§~n VY + (VD1"V92)+ (11”13“12r£2)

s - [1-(sp75))%- (15,7, )52 s

\a ' ~-s,D'T
- [}c1+c2,1C](0)/c]c2 - Ig/Cé] [1-(52/51)—(1~32/s]—32Ts)e 2" J

| /// 55,7, [1-(52/51)-e‘szD'T§] (14.21)

where
I I
AV = M,L-m_ji>DT
Y
v - A
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L (1) - 4

i (0) =
1™

D

Iy = (I#1,) .

The first term on the right side of eq. (14.21) comes from the
unique effect of unequal discharge of the energy transfer capacitances
C1 and C2 in the Cuk converter. It is seen that by inéreasing the
values of the'capacitances C] and CZ » this first term may be made
| smal]l compared with the effects of circuit non-idealities which are
common to most dc-to-dc converters. | |

If the turns ratio of the isolation transformer is not 1:1:1,
tﬁé result in eq. (14.21) can be modified by the replacement
| v1+v]/n], i»i]n]; £]+£]/n]2, C]+n12C] etc. Noticé that the diode
offset voltage term would contribute VDZ'(nZ/nl)VDT to the deviation
of the slaved output <v2> - (nz/nl) <v]>. If_né/n] is large, the
diode offset voltage term can be very importantf The transformer
turns ratio has to be trimmed to compensate this term. |

The circuit sﬁown in Fig. 14.14 was constructed to verify the -
prediction of the cross-regulation eq. (14.21) under the overdamped
case. The power switch of the test circuit was operated at 20kHz
with duty ratio D=0.5. The output voltage VT was fixed at -15Y, and

the difference between V2 and V] was measured. The parésitics in the
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circuit are all artificial so that their values can be better
controlled. External inductances E] and Ez were used to simUIaté
the leakage inductances of the isolation transformer. Since the
system is overdamped and the two diodes turn on simultaneously,

eq. (14.21) can be applied. Figure 14.15 is the prediction and the
experimental data of the self-regulation of the output V2 when the
load current 12 varies from 0.2A to 1.0A, with I] fixed at 0.6A.
Figure 14.16 is the prediction and the experimehta1 data of the
‘cross-regulation of V2 when the load current I] varies from 0.2A to

2A, with I, fixed at 0.5A. Since the turns ratio is 1:1:1, the

2
effect of the diode offset voltage was not included in the prediction.
The data agree quite well with the prediction. Note that C] and CZ
are only 10 uF. The cross-regulation can be easily improved by

increasing the values of these two capacitances.
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Fig. 14.15 Prediction and experimental data of the self-regulation
04 the clreudlt in Fig. 14.14.
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Fig. 14.16 Prediction and experimental data of the cross-negulation
0§ the cirewit in Fig. 14.14.
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'CHAPTER 15
CONCLUSIONS

The imperfect cross—fegulation of a switching regulator
usually results from the non-idealities in the circuit, such as
~winding resistances of the inductors and transformers, the ESRs of
the capacitors, the offset voltages of the diodes, and the leakage
inductances df the isolation transformer. In the case of the multiple-
output 6uk converter, the unequal discharge rates on.the coupling
capacitors contribute an extra term to the cross-reqgulation. This
problem was discussed in Chapter 13, and it was shown that this effect
can be made arbitrarily small by increasing the sizes of the coupling
capacitors on the secondary side of the isolation transformer. It
was also pointed out that the sizes of these capacitors do not 1imit
the dynamics of the regulator because the coupling capaciter on the
primary side of the transformer can be made small.

The effects of the leakage inductances, the windingvresistances,
the ESRs, and the diode offset voltages, together with the effect
of the coupling capacitors were discussed in Chapter 14. It.was
shown that the effects of the diode offset voltages and the winding
resistances of the output inductors can be important if the turns
ratio of the transformer is large. In that case, the turns ratio
has to be pre-adjusted for good regulations on the slaved outputs.

The Teakage inductances of the isolation transformer can be
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the most important parasitics in the operation of the mu]tip]e~v
output Cuk converter. The leakage inductances cause a big spike
across the transistor when the transistor is turning off, and
prohibit the diodes from turning off simultaneously when the
transistor is turning on. A criterion was given in Sec. 14.1 and
the leakage inductances were assumed to be smaller than these values
so that the diodes practically turn off simultaneously. It was also
shown that the diodes will turn on simultaneously if the coupling
capacitors are ]arge’enbugh.

The ultimate goal of close reqgulaticn can be achieved by
miﬁimizing the average value of the voltage difference between the
two coupling capacitors. This can be realized by increasing the
sizes of these two capacitors so that the voltage difference
developed during the transistor ON time is small. This difference
will die out toward its final value with a faster time constant
if the coupling capacitors are large and the leakage inductances
are small. Finally, the final value will be small if the ESRs

are small or if they match the values of the capacitances.
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