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iii.

Abstract

The translational motion of two different particles at low Reynolds
number in a viscoelastic liquid is studied. The first study is an experi-
mental investigation of the motion of a slender rod near a vertical wall.
When the rod is not too near the wall, its motion is found to be in
qualitative agreement with theoretical solutions for the motion of a rod
in an unbounded second-order fluid. When the rod is nearer to the wall,
its motion is shown to correspond qualitatively to a simple superposition
of the motion in an unbounded second-order fluid and the motion in a New-
tonian fluid near a vertical wall. The second study is a numerical
solution of the equations governing the motion of a solid sphere and a
spherical bubble in a viscoelastic fluid of infinite extent. The com-
puted solutions are compared with analytic solutions obtained by asymp-
totic methods. It is found that many quantities are described quite well
by the asymptotic theory considerably beyond the expected range of valid-
ity. Many features of the flow can be described by the model fluid be-

havior in shear and extensional flows.
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CHAPTER I. Introduction



la,

[.  INTRODUCTION

The use of polymers and polymer solutions in the chemical processing

industry has led to an intense interest in the rheological behavior of
these materials. One of the many areas where this information is useful
is in deséribing the motion of small particles or gas bubbles in a non-
Newtonian fluid, and a special case of this class of flows is the simple
translational motion of the particle through an otherwise quiescent fluid.
Two examples of translational particle motions which are of technological
significance are the motion and dissolution of gas bubbles in common
fermentation liquors and the sedimentation of solid particles in a non-
Newtonian suspension.

The flow properties of most polymer solutions or melts are known as
viscoelastic, by which we mean that the fluid demonstrates dynamical
effects which reflect a finite memory for past deformations; i.e. shows a
dependence of the dynamical properties at the present instant on the
material configuration at earlier times. Some polymer solutions also
fall into a class of materials which are often called purely-viscous. ,¢
In a linear shear flow, such fluids exhibit only a shear stress which
depends in a nonlinear fashion on the instantaneous velocity gradient.
While the literature of non-Newtonian fluid mechanics contains widespread
use of such specific-sounding terms as viscoelastic, purely-viscous and
pseudo-plastic to describe various liquids, very little is known about
the detailed dynamical behavior of these fluids either for general flows
or, specifically, for the translational particle motions to be discussed
in this thesis. The voluminous literature which has accumulated over

the last thirty years is primarily concerned with the applicability of



various phenomenological constitutive relationships in a very special
class of flows, known as viscometric, where the fluid Jocally undergoes
a simple shearing motion. The main result is that there are now several
constitutive relationships which, at least qualitatively, are known to
describe most viscometric flow phenomena. Unfortunately, none of these
relationships is known to be applicable to non-viscometric flows. In
fact, it is conceivable for two liquids to behave identically in a
viscometric flow, and yet behave quite differently in a non-viscometric
flow. With the exception of rectilinear motion through a straight
circular tube, nearly all flows of technological importance are non-
viscometric. Thus, the lack of knowledge concerning the applicability
of the proposed constitutive equations to non-viscometric flows repre-
sents an extremely important deficiency in our ability to handle non-
Newtonian flow problems of technological importance.

One possible approach to the resolution of this problem is to attempt
to develop constitutive equations which are known "a priori" to be appli-
cable for non-viscometric, as well as viscometric, flows. Such an
attempt would be made, in principle, from a deductive analysis of material
behavior at some suitable microscale. If the material is structurally
simple and dilute, this analysis can, and has been, carried out (e.q.
Goddard and Miller, 1967). The resulting constitutive equation is valid
for any linear velocity field, but is not directly useful for technological
problems since it is only applicable to the simple material analyzed.
While the constitutive equations for these simple models have sometimes

provided a framework for the correlation of experimental data and may



serve as inspiration for phenomenological equations of the classical
continuum-mechanical approach, the class of materials represented is
rather narrow unless new, untested hypotheses are introduced.

The obvious complement (alternative?) to this deductive development
of constitutive models is a direct comparison of experimental observation
for non-viscometric motions and theoretical prediction for the same
flows using specific phenomenological models. Such studies should
initially focus only on fluid motions which exhibit a major
change in behavior when compared with that of a Newtonian fluid. Such
problems can provide a reasonable basis for comparison between theory
and experiment. Two outstanding examples of such motions are the trans-
lation of a spherical particle and the translation of a s1ender rod-like
particle, both at lTow particle Reynolds number. In this thesis, we shall
treat theoretically the translational motion of a solid sphere and a
spherical bubble in an infinite expanse of a viscoelastic Tiquid. We
also experimentally study the motion of a slender rod-like particle in a
viscoelastic 1liquid near a vertical wall.

II. Experimental Behaviof of Non-Newtoﬁiah Liquids

The behavior of macromolecular solutions and melts is known to differ
qualitatively in many ways from Newtonian fluids. Some known experimental
phenomena which are characteristic of such materials include:

1. Shear-rate-dependent viscosity. For over fifty years it has

been known that polymeric fluids are shear thinning. As the shear rate
increases the viscosity, defined as the ratio of the shear stress divided

by the shear rate, drops dramatically to a limiting value which may be a

2 4

factor of 107 to 107" smaller than the same ratio at zero-shear-rate



(see Bird, Armstrong and Hassager, 1977). For problems such as tube
flow, this is the most important property of a macromolecular solution.

2. Normal stress effects in steady shear flows. A surprising

property of mazromolecular fluids is the existence of normal stresses

in a simple shear flow. Since these normal stresses are unequal, some
spectacular differences from Newtonian fluid behavior are observed. One
of these is the so-called Weissenberg effect in which the polymer solution
is observed to climb a rotating rod (Lodge, 1964). Another example is the
slight upward bulging of the surface of a liquid aé it flows down a

tilted trough (Tanner, 1970).

3. Dynamic response in unsteady shear flows. If a steady shear

flow is abruptly halted, it takes a finite amount of time for the stress
components to return to their hydrostatic value (Huppler,Macdonald, Ashare,
Spriggs, Bird and Holmes, 1967). Another example of time dependent
response of a viscoelastic fluid is the recoil or recovery of deformation
exhibited when a driving force (e.g. pressure gradient) is suddenly
removed (Fredrickson, 1964). An effect of potential technological sig-
nificance is the substantially increased mean flow rate which occurs when

a small amplitude time dependent oscillation of the pressure gradient is
superposed on a constant pressure gradient along the axis of a tube
(Barnes, Townsend and Walters, 1969).

4. Other pheonomena. The examples given above all dinvolve shearing

flows (ux = yy). In non-shearing flows there are additional phenomena.
One example is die swell in which a stream of liquid emerging from a die

may increase in diameter to several times the diameter of the die (Graessly,



Glassock and Crawley, 1970). Another interesting example is the tubeless
siphon effect in which a siphon continues to operate even though the upstream
end has been withdrawn from the fluid (James, 1966). A last example of macro-
moiecular fluid behavior is the independence of the Nusselt number on Reynolds
number beyond a "critical" value for flow past a heated cylindrical wire.
This effect renders the hot wire.smmewometer inaccurate for polymer solutions
(James and Acosta, 1970).

This 1ist of phenomena is by no means exhaustive, but it is sufficient to
demonstrate that macromolecular fluids do behave in a different and more com-

plicated way than Newtonian fluids under similar conditions.

III. Rheoloagical Models of Nom-Newtonian Fluids

It is clear that no minor correction to the constitutive equation for a
Newtonian fluid will account for all of the phenomena listed above. Indeed,
no available constitutive equation has been shown to quantitatively account
for all of these phenomena. Below, we shall discuss some of the more useful
equations which have been employed by engineers and rheologists.

In the past, engineers have been primarily concerned with describing the
shear thinning viscosity of polymer solutions and melts. To that end they

have used a generalized Newtonian fluid model given by

1= 2n(y)e (1)
in which I is the extra stress tensor, ¢ is the rate of strain tensor given by
e = %-(Vg +yul) (2)

and % is a scalar given by

¥ = [2(g:e)]? (3)



The factor of two inside the square bracket is chosen so that in a simple
shear flow where the velocity field is given by u, = Yy o, Tey = n(y)y . The
most widely used form for n(y) is

n = my n-1 (4)
which defines the power-law model in which m and n are constants that are
characteristic of the fluid. The power-law form is motivated, in part, by
the fact that the viscosity versus shear-rate curves for many polymer solutions
are approximately linear on a log-log plot over a wide range of shear rates.
One obvious &eficiency of the power-law model, even for simple shear flows, is
that it does not exhibit constant Timiting values for the viscosity at high
and Tow shear rates, but rather yields an unrealistic continuous decrease of
the viscosity to zero as § - o and an increase to « as } > 0. A somewhat more

complicated empirical model which does not have these drawbacks is the so-called

Carreau Model (Bird et al., 1977), which is given by

n-1

:O -n:co . [1 N (AY)ZJ( 2 )

in which A is a time constant characteristic of the fluid, o is the zero-
shear-rate viscosity, N, 1S the limiting viscosity for large shear rates, and

n has the same meaning as above in the power-law region. The Carreau equation is
known to fit experimental shear viséosity data very well. Of course, the
generalized Newtonian fluid model cannot represent any of the normal stress
effects, transient responses, or other "elastic" phenomena associated with

most polymer solutions and melts, and is thus mainly useful for steady, uni-

directional shear flows in confined domains.



One of the most successful theories for describing the motion of a
viscoelastic fluid evolved from the concept of a "simple material" due
to Nol1l (1958). A "simple material" is described as one whose response
to any deformation history is determined by its responses to pure stretch
histories. Noll (1958) proved that an incompressible "simple fluid" may
be characterized by a constitutive relation of the form

T=-p 1+ EW)
where QE represents the history up to the‘time t of the relative stretch
tensor gt(r) which is calculated by comparing the material configuration
at the past time t with that at the present time t. Thus, although the
fluid may have a definite memory of all its past configurations, it
reacts only by cbmparing the past configurations to the present one. Now,
clearly one cannot solve too many fluid mechanics problems if it is
assumed that the instantaneous stress on a fluid element depends upon the
entire strain history of that fluid element. The only tractable problems
are those in which the flow leaves the fluid very little to remember, so
that the subtleties of extended memory are minimized. The flows in which
the fluid locally undergoes a simple shearing motion, which we call visco-
metric flows, are of this type. For viscometric flows, Coleman and Noll
(1959) were able to show that the response of any "simple fluid" can be
determined completely in terms of three scalar functions of the shear
rate alone. To demonstrate the nature of viscometric flows, we shall
consider the case of simple steady shear flow where the velocity field
is given by

uy = ?xz u, = 0 ug = 0 § = constant .



In this case, the stress components become
Tip =) s Tpy=Ty3=0
T~ T3z = oy(v)
Taz = T3z = op(y)
where n, 9y and g, are shear rate dependent scalar functions which com-
pletely characterize the simple fluid in gﬂx viscometric flow. The first
and second normal stress differences, N1 and NZ’ whch are frequently used
by rheologists are related, to 9y and dy in the form
Ny=o1-9 M=o
The theory of simple fluids places no restriction on n, oy and g, Other
than requiring that they be single valued even functions of &.
Later, Coleman and Noll (1961) developed the concept of a simple
fluid with a fading memory for past configurations and used it to show that
the Newtonian fluid constitutes the proper first approximation to this class
of simple fluids for a sufficiently slow flow. The "small" parameter in
this development is the ratio of the largest intrinsic relaxation time scale
of the fluid to the time scale of the motion. At the second approximation,
the simple fluid with fading memory reduces to the familiar second-order
fluid form originally investigated by Rivlin and Ericksen (1955), among

others, namely;

2
+ 4azg (6)

o] o
d1um

I=-pl+2ne+ 20

In equation (6), oy and a, Must be much smaller than No- The symbol &/§t
is the properly invariant co-deformational time derivative which is

defined for an arbitrary tensor B as
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We note here that any properly invariant time derivative could be used
in equation (6) without changing the qualitative predictions of a fluid
described by this eqUation. For a simple shear flow,the second-order
fluid approximation for the viscometric functions n, gy and 95 is given
by
n=n O, = o,y 0, = (20, + o )’2 (7)
1 * 2 17 %Y .

It is obvious from equation (7) that all of the second-order fluid con-
stants can, in principle, be evaluated from viscometric data. The
second-order fluid has been employed by many workers to determine the
first effects of memory for non-viscometric flows.

The method of approximation used by Coleman and Noll can be carried
to any order desired. When the expansion is truncated after terms of
O((Vu)"), the resulting model is called an nthoorder fluid. The primary
problem with the nth-ordér fluid model is that it has a finite radius of
convergence beyond which the full nonlinear "parent" constitutive model
would presumably be needed. In addition, since ntN-order fluids are based
upon a Taylor series expansion of the stress functional, they cannot
represent rapidly varying or discontinuous f]ows.. For example, the
relaxation of stress following the cessation of steady shear flow cannot
be described by an nth-order fluid model.

To qualitatively describe the stress in abruptly changing flows, we
can employ the sub-class of simple fluids which are known as differential

models. A widely used differential model is that which was introduced
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and thoroughly studied nearly twenty years ago by Oldroyd (1958). The

basic six constant Oldroyd model, in its most general form, may be

written as
[
I+ ﬁ - 1-‘1(2'1_5 tre)+ UO(E:L)S
De
= 28 + 2ok, 57 - dngup(ece) (8)

where Al, Hys Hgs Nos AZ and u, are constants characteristic of the
material and D/Dt represents the Jaumann or corotational derivative of

a tensor. For an arbitrary tensor B, this derivative is defined by

DB 9B

D_t_=rt+g-v§+\g.8-__8_' (9)

n=

where w is the vorticity tensor

=-% (vu - (VQ)T) (10)

HE

The corotational derivative describes the time rate of change relative to
a reference frame which rotates and translates with the material element.
With My T Hp T pg T 0, the model reduces to the so-called corotational
Jefferey's model which has been recommended by Bird et al. (1974) as a
useful model for studying polymer behavior in complex flow problems.
Another useful derivative of the full 0ldroyd equation is the four constant
co-deformational Oldroyd model which has been used extensively by Walters
and co-workers. For this model Wy T Al’ Uy = Ay and Ho £ 0. When uy = Al
and Uy = Ay, the terms (e-z + z-e) and (e-g) are conveniently consolidated

with the corotational derivative, giving the Oldroyd or co-deformational

derivative
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The co-deformational derivative describes the rate of change relative
to a frame of reference which not only translates and rotates with a
fluid element, but also deforms with it. From a purely continuum
mechanical viewpoint, there is no reason to prefer one of the two-time
derivatives described above over the other, or indeed over any other time
derivative which is properly invariant to a change of reference frame.
In fact, the two sets of terms involving Al and My and Az and Uy can be
thought of as defining a general tensorially invariant time derivative
which will be intermediate to the two derivatives listed above, provided
0 s My S kl and 0 < Hy < XZ' The only constraint is that one would expect,
from a physical point of view, to have the same time derivative appear on
both sides of the constitutive equation.

In the present work, we will therefore utilize the Oldroyd model with

Hy = aAl and My = aAz where 0<ac<l

thus reducing the number of material parameters by one, while simultan-
eously building the concept of an intermediate, but equal, time derivative
into the general Oldroyd model. In the co-deformational Timit (a = 1)
used by Walters, the primary role of the term involving Hy is to allow
for shear thinning of the viscosity, which is generally accepted as one

of the most important qualitative characteristics of a polymeric fluid.

If o # 1, on the other hand, we will show that shear thinning is predicted
by the model without the M, term. Since the b, term is not known to
provide any other essential contribution to the qualitative response of
the material, we shall choose By = 0 in the present work. The final

form of the Oldroyd model to be used in this thesis is thus
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[ De
T+ Al 7% - ale'z + 1°e)) = Znog + Znokz 7T - 20(g-g) (12)

We shall show Tater that this model qualitatively predicts many of the

1o

known phenomena of viscoelastic fluid flows. We note here, however, that
there is strong precedent for the choice 0 < o < 1 in the many model
studies of solutions and suspensions where deductive theoretical analysis
has shown this restriction to be satisfied in every case known to this
investigator (e.g. Phan Tien and Tanner, 1977; Lumley, 1971; Hinch and
Leal, 1972). |

We assume that any model chosen for initial studies of non-visco-
metric flow (such as the present investigation) should produce at least
qualitatively correct response in viscometric flows, as well as any other
well-documented non-viscometric flow. It should be remarked, however,
that the main motivation for this assumption is the fact that shear flow
behavior is so heavily documented (indeed, very little information about
flow behavior in other geoﬁetries is even available), rather than the
fact that correct behavior in shear flow is known to be important for
correct behavior in other non-viscometric flows.

Indeed, there is considerable evidence in the suspension rheology
Titerature that shear flow is "special" in the sense that it is always a
weak flow (see Tanner and Huilgol, 1975), whereas most flows of techno-
logical interest can be strong if the velocity gradients are sufficiently
large, and thus shear flow would be expected to be a rather poor "test
case" for rhedlogical equations of state. Nevertheless, at the present
time we are forced by lack of other data to accept shear flow behavior as a

dominant criterion for acceptability of a constitutive model for initial studies
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of non-viscometric flows. Let us then consider the behavior of the model
given by equation (12) in several simple flows, starting with a steady
Tinear shearing flow. The velocity field in this case is given by

u, = vy uy =u, = 0

and the resulting stress components calculated from (12) are

TR L)Y

T (13)
yX 0 L+ )5 (1 A az):;
2n iz(k' -'AZ)
) _ e Yy
N7 T Ty T 1+ (1 -0 %) (14)
) -1 )y - %)
Np = vy T ez T 1+ A% (1- az)?z 1)

For Al > AZ >0 , we see that the non-Newtonian viscosity (= 7yx/§)
decreases from No o Ny = no(KZ/Al) as y goes from 0 to = for a £ 1. The
primary normal stress difference, Nl’ which is indicative of an extra
tension, as compared to a Newtonian fluid, in the x-direction, increases
quadratically With v for small v. As ¥ increaées, N, increases monoton-
ically until it reaches a Timiting value as Y > ©. The fact that NZ’ the
second normal stress difference, is negative means that there is also a
tension in the z-direction in qualitative agreement with the observation
of an upward bulge in the free surface of a polymeric liquid in the
tilted trough experiment cited earlier. A negative value of N2 is also
in agreement with refractive jndex measurements of Wales and Philippoff

(1973) and direct measurement by Olabisi and Williams (1972) in a cone
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and plate rheometer. In addition, Leal (1975) has shown that the quali-
tative observation that slender rod-]ike particles in simple shear flow
drift through Jefferey orbits until the particle rotates about its axis
of revolution is also consistent with a negative value of N2. We also
note that the ratio of the second normal stress difference to the first
can be adjusted in the range 0 > N2/N1 > - %—by a suitable choice of a.
Experimentally, this ratio is found to be about - 0.1 (e.g. see
Christiansen and Leppard, 1974). We should also mention two unrealistic
features of the model in shear flow. First is the fact that fora# 1,
Az/kl must be greater than or equal to 1/9. This restriction is required
in order that the shear stress be a monotonically increasing function of
shear rate in a simple shear flow as required by simple thermodynamic con-
siderations. Since nm/nO = AZ/AI, however, this constraint severely
Timits the degree of shear thinning relative to the two to four orders of
magnitude which is often observed in polymer solutions and melts. While
quantitative agreement with such liquids is thus out of the question for
a wide range of shear rates, an appreciable degree of shear thinning can
be made to occur over a restricted range of shear rates and it thus
remains to be seen how severe a restriction this may be in realistic, non-
viscometric flows. The second unrealistic feature of the model involves
the first normal stress difference. If we examine equation (14) for
small Y, we see that as A1 increases, N1 increases which is consistent
with other indications of strdngér viscoelastic behavior with increasing

Al‘ However, if we examine the expression for N1 for large Y we see
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Zn (Al - Az)
N, () = —2 2

1 2
Al(l -«

Thus for large &, N1 decreases for increasing 11. We therefore find the
unrealistic combination of increased norma] §tress effects at small } and
decreased normal stress effects at large y both arising from an increase
in Al. This decrease in N1 for increasing Al at large y is a basic fault
of all Oldroyd models, not just the form examined here.
Another flow which can be used to examine the qualitative accepta-

bility of the constitutive equation (12) is the sudden start up of a
shear flow u =‘fy when the fluid has been at rest for t< 0. The

transient expressions for the various stress components are

» 2\:2
1 F AL - a)y 1 -2,/
) =nY[ 1% . 2’}

yX 0 2 2)'2

1+ Al(l -a )y 1+ i(l - a2)'2

Y

. 1 1" L . -t/x
. (Aly(l - a?)® sin[(l - %)% «}t] - cos [(1 - az)z‘yt]) e 1]
| (16)

°2 -t/
2 Y (A - A ) 1 L .
N1 = no 1 2 [ - & sin[(l - QLZ){2 Yt]

1+ (1 - a®)? Ay(L - o?)%
-t/A L.
e 1 cos[_(l - ocz)zy ]] (17)

From equation (16), we see that T, alWays rises to its maximum value at

X
(1- ag)% Qt = /2 and then under;oes damned oscillations about its steady
state value. Similarly, the expression for N1 rises to its maximum at
(1- OLZ)I/2 %t = m and then also undergoes damped oscillations about its
steady state value. Experimentally it is found that the maximum in N1

occurs after the maximum in Tyx’ in accord with the above results
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(Meissner, 1972). However, in most experiments the curves simply rise
to a maximum and then settle monotonically to their steady state values.
We thus conclude that the model gives qualitatively correct predictions,
although the details are not quite correct.

We next explore the relaxation of the stresses after an abrupt
cessation of a steady linear shear flow u, = yy at t = 0. The expressions

for the shear stress and first normal stress difference in this case are

rb+(1 - xz/xl) -t/

T . = — e (18)
Yooy A§(1 - af)e
2n 7200y - 2,) -t/2,
= e (19)

N, = ;
1 1+ A?(l - az)yz

If we compare the steady state shear stress with equation (18) evaluated
at t = 0, we observe that there is a discontinuity at t = 0, whereas the
expression for N1 is continuous at t = 0. If we divide equations (18)

and (19) by the steady state values (t < 0), we obtain the following

ratios:
Tyx(t > 0) _ (1 - Az/Al)e (20)
T E<0 gy Ap(1 - o)y
N,(t > 0) -t/A

Nt<o ¢
Examination of these "normalized" ratios shows that the shear stress
relaxation trajectory will 1ie below the corresponding normal stress
relaxation trajectory. This is in agreement with experimental observation

(Huppler et a11967). The experiments also show that both of the above
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relax faster with increasing y. This phenomenonis correctly predicted
by the model for the shear stress ratio in the sense that the initial
Jjump is larger for larger values of Q, but the predicted normal stress

ratio shows no such effect.

Uniaxial extensional motion is the one non-viscometric flow where a
reasonable quantity of experimental data is available. While there is some
controversy as to whether a steady elongational flow exists, it is generally
believed that the elongational viscositv of a macromolecular fluid increases
above the Newtonian value (n = 3n0). This increase in elongational viscosity
is consistent with the tubeless siphon effect described earlier. The

velocity field for this irrotational flow is
u, = Ex uy=‘-Ey2 uz=-Ed2

For steady uniaxial extension, the eclonmtional viscosity

(ﬁ z (Txx - TZZ)/E) is thus predicted via equation (12) to be

(22)

1 - asz(l + 2aA1E)
n=3n
o \(1 - ZQAIE)(I + aAlE)
Of particular interest here is the prediction of a "critical" extension
rate at which the elongational viscosity becomes unbounded, namely

E = 1/20L>\1

The increase in elongational viscosity from the Newtonian value of 3no is
in agreement with experiments such as those of Metzner and Metzner (1970)
in which ﬁ/nO was conservatively estimated to be 1700 in one instance.

The validity of the inference of a limit in attainable extension rates,

E, to values less than 1/200\1 is best discussed in the context of the
transient start-up of uniaxial extensional flow from a state of rest. The

transient elongational viscosity for this case is predicted to be
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l-'L_ - 1 - oc)\ZE(l + ZaAIE) ) (1 ] A_Z)
o (1 - 20 E)(1 + o E) M
t t
2 expl- (1 - 20x,E) X exp|- (1 + ar,E) X
, 1°) M, 15/ M (23)
1 - ZQAIE 1+ aklE

First, we note that this expression predicts a monotonic increase to
steady state provided that 1 - ZaAlE > 0. This is in agreement with the
data of Laun and Munstedt (1978) for Tow density polyethylene. In
addition, we see that the "critical" extension rate E = 1/2aA1 is really
a demarcation between bounded stress values at large times, which occur
for E < l/2aA1, and unbounded exponential growth with time which occurs

for £ > 1/2ak1. For E = l/ZaA1 the expression for n becomes

A A -3t/2x A -3t/2)
ﬁ/n=21-—3t—+—2-1+—-2- l-e 1)+—22+e 1
0 Al Al 3 2A1 Al

This expression reduces to that derived by Denn and Marucci (1971) for
the case AZ = 0. Note that the elongational viscosity does not even
reach the Newtonian value until slightly more than one relaxation time
has passed, thus showing that extremely large tensile stresses are not
experienced at all instants of time at the "critical" extension rate.
Thus, unbounded stresses would not be expected to occur in real flows
since the local value of E may be changed through global changes in the
flow type.

Equation (23) is in agreement with the expression obtained by Bird

et al. (1974) for a corotational Jefferey's model (i.e. o = 0) but
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disagrees with the expression obtained by Zana (1975) for the case of

o = 1. Zana's expression for n is continuous at t = 0, whereas the
expression obtained here is not. We believe this reflects an error in
Zana's solution. However, the only qualitative conclusion that would be
changed from Zana (1975) is that Ap = A gives the Newtonian value 7 = 3”0
for all times, not just as t - », Since it is generally accepted that

n is larger than the Newtonian valye, 3n0, we conclude that o must be
greater than zero.

In summary, then, the proposed model for the extra stress tensor
given by equation (12) exhibits a shear thinning viscosity, normal
stresses in steady shear flow, and reasonable transients in start-up and
cessation of shear flow. 1In addition, the elongational viscosity is
found to increase with extension rate in uniaxial extensional flows,
again in qualitative agreement with available experimental information.
Based upon these results, we conclude that the model is a good candidate

for initial studies of non-viscometric flows.
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4. Existing Theoretical Analyses of Translational Particle Motions

in Non-Newtonian Fluids

Theoretical studies of the translational motion of particles in visco-
elastic fluids at low Reynolds number have been pursued actively for almost
twenty years. Due to the nonlinearities in the governing equations, which
are associated with the more commonly proposed constitutive relationships
for the fluid, the resulting analytical solutions have been limited almost
exclusively to cases where the fluid exhibits only a small departure from
Newtonian behavior. The only exception to this is for the motion of
particles in generalized Newtonian fluids. For such fluids, Bird (1960)
and Johnson (1960) have derived variational principles for the associated
boundary value problems which allow approximate determination of drag co-
efficients and velocity fields. These "solutions" to the variational
equations must satisfy the boundary conditions of the problem and the
equation of continuity. The only constraints on the use of these varia-
tional principles are that the convective acceleration terms must be
zero or negligible, and the flow must be steady. Slattery (1962) and
Wasserman and Slattery (1964) used them to compute upper and lower bounds
on the drag coefficient for a sphere moving at zero Reynolds number in a
power law fluid of infinite extent. The two bounds do not coincide for n < 0.9,
Teading to some uncertainty in predicting the terminal velocity.

Recent improvements by Yoshioka and Adachi (1973) énd Mohan and Venkates-
warlu (1976a) have narrowed the gap between the two bounds significantly.
The first attempt to use the variational principle for the creeping flow
of a power law fluid past a Newtonian fluid sphere was made by Nakano and

Tien (1968). A slight improvement on their solution was reported by Mohan
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(1974) who included the dissipation of energy in the drop. Mohan and
Venkateswarlu (1976a) obtained the corresponding lower bound on the drag
coefficient for this problem.

Perturbation solutions can also be obtained for the power law fluid
if we restrict n so that In - 1| << 1. Hirose and Moo-Young (1969) were

the first to carry out this type of an analysis for a spherical gas bubble

in a power law fluid. Their result for the drag force on the bubble is

B 134 an - 8n° Uan 2
Drag = 4m(3) ((Zn N 2)) m (?T) a (24)

where m and n are the material constants which characterize the fluid

[see equation (4)1, U_ is the velocity of the bubble, and a is the bubble
radius. Another solution to the same problem, employing an improved
method of analysis, has recently been obtained by Bhavaraju, Mashelkar and
Blanch (1978). Their result for the drag force on the bubble is

n-1

~ U
Drag = 4n(3) 2 (1 - 7.66 (5 1)) m (T;J a’ (25)

Acharya, Mashelkar and Ulbrecht (1976) have published a solution for the
flow of a power law fluid past a solid sphere under the same restrictions.
Their solution is unacceptable, however, since the drag coefficient does
not lie between the upper and lower bounds of Wasserman and Slattery in
the region 0.8 < n < 1.0. A1l of the solutions mentioned above show an
increase in the drag coefficient with decreasing n if the values of U,s

a and m are held constant.
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Other investigations for generalized Newtonian fluids include Adachi,
Yoshioka and Yamamoto (1973) who used an extended method of moments to
obtain an approximate solution to the flow of a power law fluid past a
sphere at Reynolds number of 60. A numerical solution for a Carreau
viscosity generalized Newtonian fluid at Reynolds numbers ranging from 0.1
to 60 was later reported by Adachi, Yoshioka and Sakai (1977). The Ellis
fluid model, a generalized Newtonian fluid in which n = n(t) [see Bird,
Armstrong and Hassager (1977)], has been treated by Hopke and Slattery
(1970) who found variational principles for this fluid and used them to
calculate upper and Tower bounds on the drag coefficient for the low
Reynolds number flow past a solid sphere. Mohan and Venkateswarlu (1976b)
studied the corresponding problem for a spherical fluid drop.

Up to this point, we have only discussed theoretical solutions for
purely viscous fluids. The first solution for low Reynolds number motion
of a viscoelastic fluid past a solid sphere in an unbounded domain was
Leslie's (1961) small Wi (= E“;K—l) solution for the Oldroyd (1958)
model. The result for the drag on the sphere for the four constant model

used extensively by Walters and co-workers is

(uwxl)z 401 - 143xy/Xy  471u,/2 Ay
Drag = 6mgUa {1 - |\— 25025 * 275 ( "5 %)

We see that the presence of elasticity reduces the drag on the sphere, If

(ug/2y) = 1, we see that the term involving this quantity which is
associated with shear thinning of the viscosity is more than ten times
larger than the remaining term involving Az/kl which is associated with
"elasticity" of the fluid. Caswell and Schwarz (1962) and Giesekus (1963)
studied the translational motion of a sphere in a third-order fluid,

also for small Wi. Giesekus made
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use of the known relationships between the Oldroyd fluid parameters and
the third-order fluid parameters for small Wi to show that his
solution is identical to Leslie's solution. Since the Caswell and Schwarz
solution does not agree with these two solutions, it is believed to be in
error. Mena and Caswell (1974) later included the inertia terms for an
Oldroyd fluid in a formal matched asymptotic expansion for small, but
non-zero Reynolds number.

Wagner and Slattery (1971) were the first to study the motion of
drops in a viscoelastic liquid. They assumed that both the inner and the
outer fluids could be represented by a third-order fluid model and solved

the resulting problem for Wi << 1. The principal results of their analysis
were an expression for the drag (reduced relative to the Newtonian value)
and an expression for the drop shape (prolate spheroidal). There are
several algebraic or printing errors in the work, which casts some doubt
upon the results. Moo-Young and Hirose (1972) used the same six constant
Oldroyd model used by Leslie in the solid sphere problem to analyze the
motion of a gas bubble in a viscoelastic liquid. Subsequent analysis by
me (as part of the present study) and Shirotsuka and Kawase (1974), using
the same fluid model to study the motion of non-Newtonian drop, showed
errors in the Moo-Young and Hirose work. Our result for the drag on a
spherical gas bubble for the four constant 0ldroyd model used by Walters
is
Ua.\2 Ao \[9u /A 2X,/ A

= =1 W21 7 Tl
This result is identical to that of Shirotsuka and Kawase. Of particular
interest here is the observation that if Mo is small enough, the drag on
the bubble will actually be greater than in a Newtonian fluid with the

same viscosity as the zero-shear-rate viscosity, n_. Due to the complexity

0
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of the solutions, no one has determined whether the solutions of Wagner
and Slattery and Shirotsuka and Kawase can be reduced to the same form
if the relationships between the various material parameters are employed.

Ajayi (1975) also used the six constant Oldroyd model to analyze the
flow of a viscoelastic liquid past a drop. He stopped after obtaining
the first correction to the stresses. Using this information he showed
that the drop shape would change to prolate spheroidal as a first approx-
imation. Hassager (1977) presented similar findings for the motion of a
gas bubble in a second-order fluid.

The only attempt to analyze the motions of a viscoelastic fiuid past
a particle, outside the domain of near-Newtonian behavior (Wi << 1), is
the study of Ultman and Denn (1971). These authors used an Oseen-type
linearization td solve for the motion of a Maxwell fluid at finite Wi
past a sphere and an infinite circular cylinder for low Reynolds number.
Due to the importance given this particular work by other investigators,
we will defer discussion of it until later.

The above studies represent the extent of analytical investigation
of the flow of non-Newtonian liquids past a spherical object. Due to the
nonlinearity of the constitutive equations employed, it will be necessary
to employ numerical techniques to push our knowledge of non-Newtonian
flow behavior beyond the small Wi level for this problem.

The only theoretical investigation of the effect of finite container
walls on the translational motion of particles in a viscoelastic fluid is by
Caswell (1970). Caswell used the nth-order fluid model to represent the
fluid (thus again restricting the study to near-Newtonian behavior) and

derived an expression for the effect of the wall which corresponds to the
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usual Faxén correction in Newtonian fluids. He later extended these
results (1972) by examining the effect of terms which are ordinarily
suppressed by symmetry. He found that spheres sedimenting in a non-
Newtonian fluid in a circular cylinder were much more 1ikely to migrate
radially than spheres sedimenting in a Newtonian 1iquid.

Theoretical studies of non-spherical particles in non-Newtonian
fluids have received much less attention than the study of spheres. The
first author to analyze the translational motion of a non-spherical
particle was Leal (1975) who studied slender rod-like particles in a
second-order fluid. He found that a slender rod would sediment with the
same velocity as in a Newtonian fluid which had the same zero-shear-rate
viscosity. The significant difference between Newtonian and second-order
fluid behavior was that the particle was predicted to rotate toward the
vertical so that it eventually fell with its long axis parallel to the
gravitational acceleration vector. More recently, Brunn (1977) developed
the framework for analyzing the sedimentation of a general transversely
isotropic particle in a second-order fluid. Using symmetry arguments
alone, he was able to show that the particle must rotate toward either
the vertical or the horizontal. Unfortunately, however, he did not carry
out the detailed calculations which are necessary to predict which of
these orientations would be stable for a given particle.

A1l of the solutions listed above are strictly valid only for fluids
whose behavior is very nearly Newtonian. Whether they provide correct qual-
itative predictions outside this domain can only be judged by comparison with

solutions (presumab]y numerical) of the complete equations of motion for
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a fully nonlinear constitutive equation, or preferably by comparison with
experimental data.

Among the small Wi solutions for a rigid sphere, only the result for the
drag given by Giesekus is easily adapted for comparison with the numerical
solutions which we have obtained using the fluid model given by equation
(12). Similar small Wi results for a bubble should be obtainable from
the third-order fluid solution of Wagner and Slattery, but their results
are believed to contain some errors. Since the small Wi motion of a
bubble in the viscoelastic fluid described by equation (12) is an important
theoretical result for comparison with subsequent numerical solutions.
we have carried out the pertinent analysis which is described below. The
results which we obtain can be compared with equation (27) of Shirotsuka
and Kawase (1974) for the case of o = 1.

.We shall consider the case of a Newtonian gas bubble rising in an
infinite expanse of the viscoelastic fluid described by equation (12).
Since this problem is axisymmetric, we can satisfy the continuity equation
by introducing the streamfunction Y. A1l of the kinematic variables are
then expressed in terms of derivatives of ¥. The velocities are nondi-
mensionalized by the velocity far from the sphere U,, the radial coordinate
is scaled by the sphere radius a, and the stresses are nondimensionalized
by nOUw/a. The surface boundary conditions for this problem are u. = 0
and T . =0atr = 1. The pertinent governing equations are written

re

out in Chapter III, and will not be repeated here. In order to obtain a
U A
solution valid for small w1(= _?Tl) we assume asymptotic expansions of the

form ¢ = wo + W1w1 + W€2w2 + ... for all of the dependent variables of the

problem. Substituting into the governing equations and collecting all
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terms which are independent of Wi we obtain

(Trr)o N Z(err)o; <Tee)o N Z(eee)o;(T¢¢) B 2<e¢¢>o;<Tr9%)= 2(ere)o (28)
Thus, substituting (28) into the equations of motion and eliminating
pO we obtain
E%y, = 0 (29)
where ) .
e” - :rz * 51:29 % (sirlu 5 g_e) (30)

The solution to (29) is, of course, the standard Hadamard-Rybczynski
result

Uy = C% rZ --% r) sinze (31)

The terms of the constitutive equations which are first order in Wi,

may now be obtained in the form

2 6 5 4g, 2 1

(t.0); = 2(e ) +(1-e){cose(—-—+-——)-—+-—}

rr’l rr’l r3 r4 r4 r3 r4

2 3 5 a 1 1
(T ) 2(; ) - (1 - 8) {}os 8 (__.- —_— . __) - =
56’1 86’1 el S Il R

(32)

5 1 1
(T ) = 2(6 ) - (1 - €) {}0529 (SL - —_ . il) - — g =
$o'1 $o’1 r.3 2r4 r4 w3 2r4

where g = Az/xl
Substituting these expressions into the equations of motion at O(Wi), we

obtain
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ap
1. 1 5 .2 2,02 .4 100} _ 3 . 2
T, ae(E“’l)Jr(l'e)&os 6(4 5 5) 4+5}

r°sin s ro.r r r..r
(33a)
1P -1 5 (E24,) + (1 - &)sin gcosg[L - 2 - 22 (33b)
r 36  rsingor ‘- Y € AT 5T5

and the pressure p, may be eliminated from these expressions to obtain the
governing differential equation for s namely
4 _12(1 - €)a sin® 8 cos © (34)

E'y, =
1 rS

Solving equation (34) subject to the appropriate boundary conditions, we

obtain

Y, = oil-¢) (- 3 2 j%) s1’n2 6cos 8 (35)

1 10 ro

Finally, repeating the above process, we calculate all of the terms in

the constitutive model which are of order Wiz.

(Trph = 2(e, b - =15 5t T - T3

2
ol - e)° 9(14% _ 520 , 560 _ 192)
i r r r r
2
, ol - ¢) c0539(216 _ 856 , 1000 _ 368) - e)cose(g% -8, _1%)
r r

10 r4 r5 3 r7 r

+ (1 - S)cos38(§%-- ég + é%) - a{l - €)cos G(l%-- l%)
r r r r r
+a(l - e)cos36(§% - §g) + a2(1 - a)cos3e 3%
r r r
2 2 2 2
2 (1 -e)" ,gof48 120, 64), a°(1 - €)® 3.,/144 360 , 192
10 rS r6 ’ 10 r5 r6 r7

(36a)
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2
, ol - ) Cose(go _ 358, 415 152)

(ton)r=2(e +
66’2 ee& 10 , r,5 r6 r7
2
) a(116 e)® 0sds (122 . 522 N 632 } 24g> s (1 - e)cose(-l—g ) g_g_+ _2_1_6_)
r r r r r r 2r
3,121 39, 37 3 3
- (1 -¢€) cos e(—-—+—)- a(l - e)cose( -—)
r4 r5 2r6 rT 2r6
+a(l - €) cos’s (-—9— s )- a2(1 - E)COSBG
r5 2r6 r6
az 1 £ 2

P

2 2
- 5 cos e(l%-- 3% + g;) + E_Klié_él_ coss (§§ - 100 +-§é)
oo

(36b)

r r r r r r 2r
35 (1 27 . 25 3 3
- (1 -¢€) cos”8 ( - ==+ ———) -a(l - €) cos® ( - ———)
:"- rs 2r6 ;5 2r6
3. /9 15\ o?(1 - €)cosS9
+ a1 - €) cose(—s-- 6) z :
r 2r r
———Laz(l'ezcosel—g--gp-+—§— ~!-G‘——(-——L2]"Ezcos3e—3§--8£+ﬂ
10 - P r7 10 r5 - r7
2 (36¢)
- a(l - € . 24144 593 , 705 256
(Tre)z‘ Z(ere?2 + ——IO—-L sin 6 cos 8(7[ - -75 + _? - 7)
2
. 2.[26 93 | 45 a(l - ¢€) (36 127 , 135 44
+ (1 - €)sin6cos6 - + ) - sin® - =Ll 222 LI
(7{ 2r5 2r6 10 :"— rs r6 r

2 2
# LU= ) oin 6 cos2e (—1% - 20 -3-%) (364)
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the equations of motion at O(Wiz) become

Thus,
Bp 2
2__ 1 3 2 a(l - ) 216 400 . 168
3r 735 (%) - 10 ©0s® ( 5~ "¢ " 8)
r-sin 9 r r r
2
Lol - €) C0539(360 _ 660 _ 180 . 448) - (1 - e)cos e(gg__ 35, ;;)
10 5T 8T TR 58T
+ (1 - s)cos3e (ég-— éé-- $%) + a1l - €)cos 6(5%-- l%)
r r-.r r-.r
- a(l - e)cos3e (19% --ll;) - az(l - s)cos3e é%
r r r
Ll - L [132  s40, 288
10 6 7 3
r r r
L -e)? 3, (432 _ 1820, 928) (37a)
10 & 8
and
Lz sl a 2y pall=of o2, (20568, 50, 102
r30 T sin® ar ¥2 10 5" 7 8
r r r r
2
a(l - ¢ . 54 104 . 10 24) . 2.[45 36 6
- sinf|—x-=—%+=5+ =]+ (1 - ¢)sindcos e( ————— )
10 (rs BT B 57877
- (1 - g)sin e(i% - J% + 417) - a(l - €)sin ecos2 (gg__ 3;)
r r 2r r r
+ a(l - €)sin e(i%-- —§7)+ a2(1 - £)sin ecosze 5%
r 2r r
o2(1 - )2 2 140 470 . 312
-—i—o———sinecose(—g-—7+—8)
r r r
2 2
+ 2_ilT6Jil_ sin e(l%-- 3%-+ 2%) (37b)
r r r
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Eliminating Py, We thus obtain

2 2 2
E4w _all - €) Sm2e 120 _ 60} L a7 (1 - ¢) Sm2e 72 200 . 120
2 10 r6 :7 10 r6 r7 r8

2
+ & 116 el ¢in2 8cos®s (9ig 289)

Sin- B8cos B8 g - 7 g sin 6 i

2 2
(1-¢€) 2, 2 (576 1440 600) £ (1 - ¢)sinds 3
r r r r

+

o1 - e)sin’e (ig i%) + (1 - e)sin’e cos’e (%g + é;)

2 2
79 cos~ 6 108 (38)

al(l - €)sin“ gcos‘s -

2 2 (144 135) _ d®(1 - €)sin
r r

r

The solution of (38) is conveniently expressed in terms of

Ql(n) =1 - nz = sing

2 4

Q3(n) - 5n

Noting that

sinze cosze = n2(1 - n

-1+ 6n

this solution is

2 2
. _all - ¢ 1.3 ), a0-¢) 2 16 3 .11
by = '“L““"l‘ (7r X ¥ Gizrtar-37*

(1-¢) (3 1, 1 3 ) a(l - &) ( 33 9 )
+ Q r-=+ + + Q, |=— - +
5 115 0l 2003 5 L\Tr " 42 7 25,3
) (1 - €) 0 (jl b9, 27 ) N a1 - ¢)’ Q3 (335 645 _ 20 , 50¢n r)
5 1\10 T 203 50 B g3 T2 T3

+5)
49r r 7r'3 E—I

-
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, (1=l ( 69 ,_ 90 3 _ 32n;r)
5 196r 392r3 8r2 14r3
af(l - ) 201 387 3 ,154n r
- Q ( + -5+ ) (39)
5 3 \196r 196r3 r2 14r3

Although higher-order terms could, in principle, be calculated, we terminate
our efforts here, and turn to the use of the solutions (31), (35) and (39)

for determination of the drag on the bubble. For this problem, the drag

is given by
m
Drag = 2m U_a J (Trr - p)r=lsin Bcoseds
0

Thus, utilizing the exuressions for Tpp and p obtained above, the

result is
.2

Drag = 4m_U_a [} - 4 (18 - 2502 - 20%)(1 - ei] (40)
For the case of o = 1, the above result is identical to equation (28)
Shirotsuka and Kawase (1974) for by = 0, and
this provides some confidence in the solution. We note that the drag on
the bubble is predicted to be larger than in a Newtonian fluid for
a > (18/(25 + 25” %. A possible rationalization may be that as @ increases,
the effects of increasing elongational viscosity eventually overtake the
effects of shear thinning to produce a larger drag.

One use of the equations obtained above, in addition to using them
for a comparison with numerical solutions in Chapter III, is to determine
the influence of viscoelasticity on mass transfer at large Peclet number.
Zana and Leal (1978) have shown that for large Pe(= E%i ) the velocity

field is dominated by the free streaming motion due to the buoyancy
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induced bubble rise. Specifically, in this regime, the velocity due to bubble
collapse is asymptotically small, and the solutions obtained above for the

velocity fields near a rising bubble of constant volume may be used to eval-
uate the convection terms in the convective-diffusion equation. A general
equation for large Pe mass transfer from a fluid sphere, given by Baird and
Hamielec (1962), is

m 2
1
Sh = /; [:j - (Ug) ., sin’e de] pe’® ©(41)

0
With a few simple manipulations, it is easily shown that the only

terms of Ue which contribute to the above expression for the Sherwood
number are those involving Ql(n). For a Newtonian fluid in creeping flow,
Levich (1962) found that

Sh = 0.65 Pe*? (42)

When we substitute the expression for Ug from our present non-Newtonian

solution into equation (41), we obtain

2 2\ 1%
- 5 .2 13 3¢ a7 (1-¢) afl -g) 72 )J 2
Sh = 0.65 Pe l:l + Wi%(1 - ¢) (———50 t35 4 51 - T - 75

(43)

Since the Weissenberg number is small, we may approximate (43) by

2 2
- 4 .2 13 3o ,a" (1l -¢) a(l -€) 360
Sh = 0.65 Pe (1 + Wi®(1 - E)(Tﬁﬁ + 115 * 0 - -5 - 3¢
(44)
In Figure 1, we plot equation (44) in the modified form of
(———§ﬂ——; - 1) _17 as a function of a. From the figure, it is obvious
0.65 Pe™ Wi

that the presence of viscoelasticity can either help or hinder mass transfer
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in this particular case depending upon the value of a. Although Wi was
too large for the present analysis to apply, the experiments of Zana and
Leal (1978) suggest that mass transfer is enhanced in a viscoelastic
fluid. This suggests in turn that o should be restricted to values
0 <a < 0.8 so that the rate of mass transfer is increased.

In obtaining the small Wi solution for the bubble, we assumed that
the shape was spherical instead of calculating it from the normal stress
balance as is strictly required. The normal stress condition can be

written in the dimensionless form

U .
(”°q°°) (2 - P)ey (45)

1
=t

L.
1 R

2
where Rl and R2 are the radii of curvature of the bubble and o is the
surface tension. It is known that (45) is satisfied exactly by the
spherical shape for a Newtonian fluid at zero Reynolds number. Thus, the
assumption of a spherical shape provides a valid first approximation

n UZX

provided (—Qgng-) << 1 , and we can use the solution we have obtained

to calculate the first corrections to the bubble shape. We assume that
the bubble will be axisymmetric. Thus, the surface is defined by re = 1+ f(n)
where n = cos6. For small deformations f(n), Landau and Lifschitz (1959)

have shown that

—R1—=2-2f--c-i-—((l-n2)—di) (46)

1
= +
R 5 dn

1

For the bubble, the normal stress balance now becomes

n U
2 - 2f - gﬁ ((1 - 9 g—:) = ( ano)('f”, - P)pey (47)
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The condition of constant volume implies
1
J fdn =20 (48)
-1
If we specify that the origin of the coordinate system be at the

centroid of the bubble, we obtain the following additional condition

1
Jnfdn=0 (49)
-1

From the form of the streamfunction (35) and (39), plus the equations (48)

and (49), we can guess that the deformation, f, will be given by a series
of Legendre polynomials starting with PZ(”)‘ If (Trr - p)r=1 has a term

represented by anPn(n),n > 2, the corresponding value of f is

a
O 2)?n =) Pn(n). When we carry out all of the necessary calculations

using the solution just obtained for the velocity field, we find that f
is given by

u U
B ol o o]

2
i1 - €) (96 * 7ho + 5007 (1-¢€) [yg6, 4 153a2]) Py(n)y  (50)
490 7350

NoYw

0

) << Wi since otherwise we

: : u.»
would need to apply a shape correction to the velocity field at O Wi"ii:
prior to the velocity field correction at O(Wi%). The 0(Wi) term in

Equation (50) is strictly valid only if (

equation (50) matches the expression given by Ajayi (1975) fora = 1.

With suitable parameter identification between the second-order fluid and
our model, this term also matches the expression given by Hassager (1}977).
Neither of these two authors have included the P3 term found here because
they stopped their analysis at a lower approximation in Wi. The important

thing to notice about equation (5) is the positive coefficient of the P2
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and P3 terms. The P2 term causes the bubble to become a prolate spheroid.
The P3 term causes the front end of the bubble to flatten and the back end
of the bubble to be drawn out even further. The effect of these terms on
the bubble shape is depicted in Figure.2. For positive coefficjents of P2
and P3 this means that the drop is being'deformed into a "teardrop" shape
as is also observed experimentally. The effect of increasing a in equation
(50) is to make the coefficients of P2 and P3 more positive. Thus in
contrast to the drag or effect on mass transfer, this comparison with exper-
iment provides no useful estimate of o since the shape is a "teardrob" for
all a in the allowable range 0 < a < 1.

As we have already noted, the above solutions for particle motion in

a viscoelastic liquid have all been based upon the implicit assumption of
small deviations‘from Newtonian behavior. The only work which purports

to provide an approximate representation of the flow in the domain of
strong elasticity is the analysis of Ultman and Denn (1971) for a gen-
eralized Maxwell constitutive model. Ultman and Denn applied an Oseen-
Tike linearization both to the constitutive equation and to the dynamic
inertia terms in the equations of motion, and then used these linearized
equations to develop analytical solutions along the classical lines of
Lamb (1945). An approximate numerical method was used to "satisfy" the
appropriate boundary conditions at the body surface. This analysis,

which was represented as being valid for finite values of Wi [i.e. 0(1)],
Ted to predictions of a drag coefficient which decreased only slightly,
but with streamlines which showed an enormous upstream shift for relatively
small values of Wi (for example, Wi < 0.5). In addition, the calculated
results showed an apparent separation phenomena for Wi = 5/12. While such
startling changes in flow structure with very small changes in fluid
elasticity (Wi) are not impossible, it appeared to us that they should be

viewed with some skepticism. Consequently, we carried out a brief
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theoretical investigation of the analysis of Ultman and Denn.
The dimensionless linearized equations of motion for creeping flow,

used by Ultman and Denn, are
ou

Re > - Vp + Vi1 (51)
ol

g + Wi _8-)-(- = Zg (52)

Vou = 0 (53)

in which Re = anp/no is the Reynolds number based on the zero shear rate
viscosity and Wi = U/a is the Weissenberg number which is a ratio of the
characteristic relaxation time of the fluid to the convective time scale

of the motion. Combining equations (51) and (52), we obtain

ou
. 3 < .3 2
Re(l + Wi 5;) X (1 + Wi 5;) 7p + 7 u (54)

Our discussion will be confined to Re << 1, since it is the dependence
on Wi which is of primary concern here. For Re - 0, it is known that the
right-hand side of equation (54) wil] provide an adequate representation

of the fluid motion near the body. We now define 6 as
b = (1 + Wi 3-) D (55)
X

Then, incorporating (55) and letting Re - 0, the equation (54) becomes
simply
vp = veu  (56)
Since we are not concerned with the effects of fluid inertia, we may
use the boundary conditions of uniform translation at Targe distances and

zero velocity on the sphere surface. The solution of (56) with these
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boundary conditions is nothing more than Stokes solution with f replacing
p. In order to calculate the drag on the sphere, we need to be able to
invert equations (52) and (55) for the stress tensor, I , and the pressure,
p, respectively, using the known kinematics and p. In principle, this
inversion can be done, but the resulting expressions are too unwieldy to
use. Therefore, we opt for an asymptotic solution of equations (52) and
(55). Thus, we seek solutions for p and T in the asymptotic form

p = pO + Wi pl + Nfzpz + ...

The solution for p is easi1y shown to be

. .2
p= - 2058 M5 026 1) - M (5 o539 - 3 cos 6) + O(i®) (57)

2r2 2r 2r4

Similarly Top and T.g 2re found to be

2

-
i

rr 3C059(71"%')+w1 (3 cos 6 - 1)(%--%)
r. r r r

+ W1'2[cos3e (é%. - LS%—) - cos e(ig - 22)] + 0(wi?) (58)
r r r r
3sin6 . .. . ( 9 12)
T = « ———— + Wi sinfcos 8| — -
re ort )
i3
+ Wil l:sin e/Z—Z - 3%) - sin® e(g‘% - Z?fg-)j] + 0(Wi%) (59)
\r r r 2r

Now, the drag on the sphere is given by

™
Drag = 2m U_a f [(Trr - plcos 8 - T osin 6-_]r=1 sinédo (60)
0
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Substituting equations (57), (58) and (59) into equation (60) and
carrying out the integration we obtain

Drag = 6mn_U_a (1 + O(i%)) (61)

The results of the above analysis are in striking contrast to the
results obtained by Ultman and Denn. We find that the streamlines are
symmetric for small Wi, and, indeed, that the velocity field is identical
to the velocity field for creeping flow of a Newtonian fluid past a sphere.
We see no evidence for any separation phenomena at any value of Wi if the
Re is much smaller than one. Finally, the drag on the sphere remains
unchanged from the Stokes' result for a Newtonian fluid, at least through
terms of O(Wiz). Tt should be emphasized that the differences between
the present results and those of Ultman and Denn is not due to the
restriction that Re << 1. Indeed, equation (54) can be solved in its
entirety for the conditions Re ~ Wi << 1 by using methods similar to
those used to solve the Oseen equations for a Newtonian Tiquid. This
is done in Appendix B. The above results concerning the drag on the
sphere and the detailed flow structure are unchanged by the addition of
small inertial effects.

An examination of the reasons for the failure of Ultman and Denn's

Tinearized theory is presented in Appendix A.



40.

5. Experimental Studies of the Translational Motion of Particles in

Non-Newtonian Fluids

We now turn our attention to previous experimental investigations of
particle motions in non-Newtonian, and especially viscoelastic fluids which
arethe topic of this thesis. We shall compare the experimental findings
with the limited theoretical investigations just discussed.

Apparently, the first serious experimental investigation of the
translational motion of particles in a viscoelastic fluid was that of
Tanner (1961), who studied the gravitationally induced settling of a sphere
at Tow Reynolds number in a solution of polyisobutylene in carbon tetra-
chloride. The usual Faxen correction was employed to account for the
influence of the walls. The major result of this work was the observation
that the drag on the sphere decreased relative to Stokes law at a rate
which was proportional to (Uw/a)2 for 'small' U/a, where U, is the
terminal velocity of the sphere in an unbounded fluid and a is the
sphere radius. This s 1in obvious gqualitative agreement
with the small Wi solutions of Leslie and Giesekus. These
qualitative findings were confirmed by the more recent experiments
of Broadbent and Mena (1974) who measured the drag force on a sphere in
polyacrylamide (PAA) at low Reynolds number using a leaf spring and air
bearing balance. They showed that the "time constant" found from a plot
of the drag data versus (Uoo/a)2 was in agreement with a third-order fluid
description of the shear thinning viscosity for shear rates less than 1.
Also included in this work were photographs of a single streamline for

the flow past a sphere which showed no appreciable change from the stream-

1ines for a Newtonian fluid.



41.

In a somewhat earlier study, Subbaraman, Mashelkar and Ulbrecht (1971)
measured the terminal velocity of several different sized spheres in
solutions of CMC, PAA and polydimethylsiloxane withthe intention of
inferring the zero-shear-rate viscosity. When the influence of the wall
was accounted for by using Caswell's correction, they found that their
data for solutions of PAA and CMC demonstrated a departure of the drag from
the Stokes value which was again proportional to (Um/a)z. They also found
that the extrapolated value of the zero-shear-rate viscosity agreed with a
determination of that value from a cone and plate viscometer. In 1975,

Zana, Tiefenbruck and Leal (see Appendix A) published detailed streamline
photographs for the motion of a sphere in PAA and water and in PAA, glycerine
and water. For small Reynolds number and small Weissenberg number, no
difference could be detected between Newtonian and viscoelastic streamlines.
As the Weissenberg number increased, however, a small but noticeable

upstream shift of the streamlines was noted. The magnitude of the stream-
Tine shift increases up to approximately Wi = 10 where the rate of increase
with Wi decreases sharply. This upstream shifting of the streamlines is

not predicted by any of the theories discussed in the previous section and
thus remains a theoretical challenge.

Finally, Sigli and Coutanceau (1977) have studied the motion of spheres
in a circular cylinder where the ratio of sphere diameter to cylinder diameter
is greater than 0.25,

They found that the presence of the wall increased the effects of fluid
elasticity. They showed photographs taken in a laboratory reference frame

which indicated a region behind the sphere in which the fluid moved in the

opposite direction to the sphere.
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The majority of earlier studies were carried out using purely-viscous
fluids (or at Teast ignored any elasticity in the test fluids). Among
these investigations was that of Slattery and Bird (1961) who reported
drag coefficients for spheres moving through five aqueous solutions of
carboxymethylcellulose (CMC) with concentrations ranging from 0.6 to 5.3%

by weight. The Reynolds numbers for these experiments ranged from 10_4

to 103, The data.were presented in the form of empirical correlations for
the drag coefficient using the purely-viscous, E11is model to represent

the fluid rheology. The model parameters were determined from tube flow
experiments. However, as indicated above, no attempt was made to determine
the elastic nature of these liquids, in spite of the fact that CMC is

known to display measurable normal stresses once the concentration

reaches 1.2% [Subbaraman et al. (1971)1].

Later, Turian (1967) studied the motion of falling spheres near the
zero shear stress 1imit in two solutions of hydroxyethylcellulose (HEC)
and two solutions of polyethylene oxide (PEO) at 20°C and 30°C. Both of
these polymers form aqueous solutions which demonstrate appreciable
elastic effects [Acharya et al. (1976)]. Special emphasis was placed on
determining the effect of the wall on the sphere motion. This was
accomplished by using seven cylinders with different inside diameters and
several sizes of ruby and steel spheres. Turian's data indicated that
the effect of the wall is smaller for the non-Newtonian Tiquids than it
is for Newtonian 1iquids when the ratio of sphere diameter to cylinder
diameter are the same, but is nevertheless significant (16% of the Stokes
drag for diameter ratios as small as 0.1). Turian presented his own

correlation for the drag coefficient at low Reynolds number in which he
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used the Faxén correction to reflect the influence of the wall and the
E11is model to represent the fluid rheology. The model parameters in
Turian's study were fit to shear viscosity data in a cone and plate
viscometer, with the zero shear-rate value determined by extrapolation of
the sphere velocity data. As in the earlier study of Slattery and Bird
(1961), no attempt was made to evaluate the influence of elastic effects.

When the results of the above two experimental studies are compared
with the theoretical predictions for purely-viscous fluids by Wasserman
and Slattery (1964) and Hopke and Slattery (1970), it is evident that
neither of the theories does particularly well. Both of these theories
consistently underpredict the drag coefficient. The average of Wasserman
and Slattery's upper and lower bounds was found to predict the drag co-
efficient for the experimental conditions of Slattery and Bird with an
average error of 18%. However, when the same expression is used for
Turian's data, the error is 58%. On the other hand, the average of Hopke
and Slattery's upper and Tower bounds predicts Turian's data with an
error of 16% while the error for the Slattery and Bird experiments is 29%.
Thus, solutions based upon the generalized Newtonian fluid are seen to be
of limited value for prediction of the motion of a sphere, even when the
fluids are purposely chosen to minimize elastic effects relative to the
purely-viscous characteristic of a shear thinning viscosity.

The most exhaustive experimental work for the motion of a sphere in a
non-Newtonian 1liquid is the study of Acharya, Mashelkar and Ulbrecht (1976).
They measured drag coefficients for several sizes of steel, glass, red

acrylic and black phenolic spheres in solutions of CMC, PAA, PEQ, HEC and
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and Carbopol. Data werecorrelated over a wide range of Reynolds number

-4 to 104) using power law relationships to represent both the vis-

(10
cosity and the first normal stress difference. The rheological data used
in the correlations were measured using a Weissenberg Rheogoniometer.

For Reynolds number less than one, Acharya et al. (1976) found that all

of the data could be correlated in terms of the shear thinning viscosity
alone. However, the drag coefficient was still larger than the value
predicted by Wasserman and Slattery, While there is thus no theoretical
justification for the low Reynolds number correlation presented by Acharya
et al., it does accurately describe the results of their experiment.
Perhaps the reason that the correlation appears to work is that Acharya

et al. (1976) have avoided strongly elastic fluids.

A few summarizing comments are in order on these experimental obser-
vations for translational motion of rigid spherical particles in non-
Newtonian fluids. First, the initial decrease of the drag from the Stokes
law value for "strongly" Viscoe1astic 1iquids depends quadratically upon
Um/a in qualitative agreement with the small Wi theories. If independent
values of Ay were available, it is possible that the theories might be

shown to be in quantitative agreement, at least for small values of Um/a.
2

The inferred values of M from the measured dependence of drag on (U_/a)
range from .2 sec to 2 sec, which is quite reasonable for a "normal" visco-
elastic fluid. Second, although the data for 'weakly' elastic fluids
appear to correlate well with the parameters of a purely-viscous fluid
model, there is a considerable numerical discrepancy between the predicted

terminal velocities for such a model and the actual data. An obvious



inference is that the fluid's elastic behavior, while weaker than for the
'strongly' viscoelastic fluids described above, is still significant for
the particle drag. The apparent correTation with purely viscous fluid
parameters may be due to the fact that the parameters characteristic of
elasticity were not varied significantly in these studies of weaker
elastic fluids. Further, the wall effect on the drag on the sphere
appears to be adequately described, for small Wi, by Caswell's analysis
which employs the results of Giesekus for the motions of a sphere in an
unbounded fluid. Caswell has shown that Turian's data can be described
quite well using these results. For larger Wi, the effect of elasticity
on the drag coefficient is not known experimentall.y Also

unexplained is the upstream shift of the streamlines for the flow past

an isolated sphere. It seems highly probable that this is a manifestation
of the elastic nature of these fluids. Finally, the 'reverse flow'
behavior described by Sigli and Coutanceau would also appear to be elastic
in origin, but as yet remains unexplained.

After the translational motion of a rigid sphere, perhaps the next
most studied translational motion of a particle in a non-Newtonian fluid
is the buoyancy induced rise of a gas bubble. Among the first authors to con-
sider this problem were Astarita and Apuzzo (1965). For weakly elastic
polymer solutions such as Carbopol or low concentrations of CMC, they
found that the terminal velocity-bubble volume relationship for small
bubbles (i.e. small Reynolds numbers) was of the form suggested by Stokes
law with the definition of Reynolds number modified to a form compatible
with the power-law model. The terminal velocity curve in these fluids

varied smoothly with increasing volume from this behavior to the well-known
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Davies-Taylor relationship for large bubbles. The corresponding bubble
shapes were the usual Newtonian type which pass from spherical to oblate
spheroidal to spheroidal cap. However, the results were quite different

for polymer solutions which demonstrate appreciable normal stresses at shear
rates of 0(1). For small bubbles, the terminal velocity-bubble volume
relationship was again found to definea curve which appears to depend only
upon the power law index n. However, at a critical volume which was slightly
different for each of the four elastic liquids used (the critical radius was
on the order of 0.28 cm), the terminal velocity exhibited an abrupt rise,

by as much as a factor of six, with only an infinitesimal increase in

volume. The terminal velocity-bubble volume curve then proceeded smoothly

to the Davies-Taylor expression for large bubbles. The bubble shapes were also
unusual. For extremely small bubbles, both the Reynolds number and the
Weissenberg number are small and the shape 1is thus spherieal.

However, as the volume of the bubble increases, the bubble shape first

changes to prolate spheroidal then becomes teardrop shaped, followed by

oblate spheroidal witha cusp and, finally, by a spherical cap shape which
still retains a cusp on its lower surface.

Other workers who reported similar observations include Calderbank,
Johnson and Loudon (1970) who studied carbon dioxide bubbles in a constant
volume tank in PEQ, and Leal, Skoog and Acrivos (1971) who studied air
bubbles in PAA. Leal et al. also measured the terminal velocity of glass
spheres in the same PAA solutions. They found that the terminal velocity

of the glass spheres was the same, when small corrections were employed
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for the density difference, as the velocity of the air bubbles in the
volume range prior to the terminal velocity discontinuity. In addition,
the glass spheres showed no discontinuity in terminal velocity. These two
observations when combined with the observation that the change in bubble
shape is very slight at transition, provide strong indirect evidence that
it is a change in surface boundary conditions which is responsible for

the observed velocity transition for the bubbles.

Acharya, Mashelkar and Ulbrecht (1977) studied the motion of bubbles
in CMC, PAA and PEQ for both high and low Reynolds number. In the low
Reynolds number regime they observed a velocity jump even for CMC, which
had not been discerned by Astarita and Apuzzo, who also studied CMC
solutjons. ‘According to Acharya et al. (1977), the magnitude of the jump

in this case (less than a factor of 2) is quantitatively accounted for by

by employing the empirical correlation for the velocity of a sphere with
a no-s1ip surface and the solution of Hirose and Moo-Young (1969) for a
freely circulating Spherfcai bubble, both in a power law fluid. This result
for purely viscous fluids is thus seen to support the hypothesis that the
veJocity transition is caused by an abrupt change in surface boundary con-
ditions. When Acharya et al. attempted to apply these purely-viscous fluid
arguments to a viscoelastic fluid, however, they found that the agreement
became worse as the fluid became more elastic. The rise velocity for.
large bubbles (high Reynolds number) was found to agree with predictions
based upon an inviscid wave analogy.

Zana and Leal (1978) studied the motion of air and carbon dioxide

bubbles in four solutions of PAA with the objective of examining the
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differences (if any) between dissolving and non-dissolving bubbles. For
non-dissolving air bubbles, the data essentially reproduced the earlier
results of Leal, Skoog and Acrivos (1971). For dissolving carbon dioxide

bubbles, on the other hand, Zana and Leal found that therewasonly a rapid vari-

ation in terminal velocity with instantaneous volume, but no discontinuity

in terminal velocity. Perhaps. more important, however, they showed that the
magnitude of both the velocity transition and the bubble eccentricity correlated
with the Weissenberg number, in addition to the power law index n for these
strongly viscoelastic 1iquids. In this regard, Zana and Leal's (1978)
investigation is seen to complement the work of Acharya et al. (1977),

which showed a correlation only with n and to suggest that those authors

were operating primarily in the "purely-viscous" regime where elastic

effects are only weakly manifested in the bubble's motion.

There have also been a few studies of the motion of liquid drops in
non-Newtonian fluids. The early work on this problem was done by Mhatre
and Kintner (1959). They observed drop shapes in viscoelastic fluids
which were similar to those described above for gas bubbles. In
addition, and perhaps more importantly, they also observed a steep increase
in terminal velocity when the drop reached a critical volume. Similar work
with the same results was reported by Warshay, Bogusz, Johnson and Kintner
(1959) and by Fararoui and Kintner (1961).

More recently, Acharya, Mashelkar and Ulbrecht (1978) studied the
motion of drops in dilute solutions of CMC, PAA and PEQ. All of the drops

studied here were in the "post transition regime". Considering the weak
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elasticity of the fluids studied, it is not surprising that for Tow
Reynolds number (Re < 1) they were able to show agreement with the theoretical
solution fora Newtonian drop in a power-law fluid due to Mohan (1974). For
Reynolds numbers larger than one, they found that the drag coefficient in
viscoelastic 1iquids was higher than the drag coefficient in purely-viscous
1iquids with similar viscosity curves. This may be due to the observed
differences in the size of the wake for the two fluids. Finally, at targe
Reynolds numbers, they found that the terminal velocity of the drops was
independent of the suspending fluid rheology and was accurately described by
an extended wave analogy developed by Marucci, Apuzzo and Astarita (1970).
The conclusions that we can draw from these studies are somewhat
different from those we made for the solid sphere. First, we note that the
terminal velocity of bubbles and drops in purely-viscous fluids appears to
be adequately described by theoretical analysis using a power-law fluid,

whereas this is not true for a sphere. Second, the effect of elasticity

is clearly present in the shapes reported for bubbles and drops in visco-
elastic liquids. These shapes are at least in qualitative accord with
the predictions of the small Wi solutions cited earlier. Third, we
conclude that the magnitude of the velocity transition is likely to be
associated with elastic effects since the argument of Acharya et al. (1977)
using generalized Newtonian fluids is able to account for a jump of only
a factor of 2 as compared with the Newtonian value of 3/2. No adequate
explanation for the abruptness of the jump has yet been found.

A11 of the above studies have been concerned with spherical or nom-
inally spherical particles. Many naturally occurring particles are non-

spherical, and the experimental investigation of nonspherical particles
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is thus also extremely important. However, the only study of the trans-
lational motion of nonsphérica] particles in a non-Newtonian fluid of
which we are aware is the brief investigation of Zana and Leal [see Leal
(1975)1. These authors showed that a slender rod sedimenting in a visco-
elastic liquid would rotate toward the vertical, as predicted earlier in
the same work, but did not carry out any more detailed studies.

The dearth of experimental data for translational motions of
nonspherical particles motivated the study of the motion of a slender rod
presented in Chapter II. This particular problem was chosen since it is
the only one where there exists a complete theoretical analysis. The
motion of a slender rod near a wall is also of interest because of the
change in particle orientation which occurs for a Newtonian fluid. This
easily detectable effect should allow us to assess the effect of the wall

on a slender rod in a non-Newtonian fluid.

In Chapter III, we shall study the Tow Reynolds number translational
motion of a spherical particle in a viscoelastic 1iquid using the Oldroyd-
type constitutive equation which was detailed earlier. The method of investi-
gation will be via numerical solution of the governing partial differential
equations and associated boundary conditions. This method of attack is

_necessary since we want the results to be valid for non-trivial values of
the Weissenberg number. Since linearization of the constitutive equation
is not possible in these circumstances, numerical solution is our only
recourse. We examine the influence of slip (freely circulating) and no
s1ip boundary conditions in the motion of spherical particles. Thus, not
only do we obtain results for the drag on a rigid sphere which we can
compare with data, but we also hope to shed some 1light on the velocity
transition phenomenon. The numerical results may also help to assess the

range of validity of the small Weissenberg number solutions.
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Figure Captions

Figure 1. Y = (———éh——; - 1) A versus the rheological parameter a.
0.65 Pe? Wi
Figure 2. Some "typical" bubble shapes
A. r=1+0.2 Pz(cos 8)

B- r=1+0.2 Pz(cos 9) + 0.2 P3(cos 8)
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APPENDIX A. A Note on the Creeping Motion
of a Viscoelastic Fluid Past a Sphere

(This paper was published in Rheologica Acta, V. 14.)
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INTRODUCTION

Among the general class of nonviscometric flows of a viscoelastic
liquid, one of the most important is the uniform translation past a sub-
merged object, such as a cylinder or sphere. In spite of this, relatively
1ittle progress has been made in the theoretical description of such flows
since the governing equations are nonlinear not only in the convective
acceleration (or inertia) terms, but also in the constitutive model for
the fluid. Indeed, with one exception which we shall discuss below, all
theoretical studies to date have been restricted to the 1imit of "slow"
flow in which the nonlinear contributions are either neglected altogether,
or at least are embedded within the framework of a small parameter pertur-
bation expansion about the linear, Newtonian creeping flow state. The
conditions required for validity of such an analysis are Re << 1, We << 1,
where Re(z ud/v) is the Reynolds number and We(= Au/d) is the Weissenberg
number which is a ratio of the largest characteristic relaxation or retarda-
tion time for the fluid, A, and the convective time scale d/u of the fluid
motion. The Weissenberg ngmber thus provides a measure of the relative
importance of the fluid's elasticity. The best known exampley of an analysis
of this type is the creeping (Re = 0) flow solution for the rheologically
slow (We << 1) flow of a viscoelastic fluid past a sphere, which was
obtained (independently) by Leslie (1961), Caswell and Schwarz (1962) and
Giesekus (1963). The solution shows a small downstream shift in the
2).

streamlines at O(We), and a decrease in the drag at O(We More recently,

Mena and Caswell (1974) have carried the small We analysis one step

further for both a cylinder and a sphere by including inertia terms in formal

matched asymptotic expansions for small, but nonzero Reynolds number.
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The only investigation which purports to provide an approximate repre-
sentation of the flow for strong elasticity (i.e. moderate to large We) is
the analysis of Ultman and Denn (1971), which is based upon an QOseen-like
linearization of the‘dynamic inertia terms, as in the usual Newtonian
case, and also of the nonlinearities in the generalized Maxwell constitu-
tive model which was adooted for the work. An approximate numerical
method was used to "satisfy" the appropriate boundary conditions at the
body surface. Both in the original analysis and in subsequent discussions
of the work (cf. Astarita and Mar ucci, 1974) it has been implicitly
assumed that the Oseen linearization provides a uniformly valid first
approximation to both the convective and constitutive nonlinearities
provided only that Re << 1, without any fundamental restriction on We.
Indeed, realistic solutions were claimed by Ultman and Denn (1970) for
Re g 1, provided only that We satisfied the additional condition ReWe ¢ .05,
which was obtained by requiring the mean square error in satisfying boundary
conditions at the body surface to be no greater than that obtained in the
Newtonian case for Re = 1. It is important to emphasize that the condition
on We was intended as a restriction on the accuracy of the approximation
involved in solving the governing linearized equations of motion, rather than
an inherent restriction on the validity of the linearization itself. One
feature of the governing equations, which seems to support their validity for
Re << 1, but Weissenberg number essentially unrestricted, is the fact that they
change type from elliptic to hyperbolic at ReWe = 1. As Ultman and Denn (1970)
and a number of subsequent investigators have pointed out, this change in type

seems to correlate reasonablywell with (and evenexplainina qualitative sense) a
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variety of experimental observations which are otherwise difficult to compre-
hend (cf. James and Acosta 1970, Ultman and Denn, 1970). In spite of such
apparent suscesses of the theory, however, certain of its other features

are difficult to accept. For example, Ultman and Denn's (1971) calculations
for ReWe as small as .05 (where the small We solutions might be expected

to be relevant) show an enormous upstream shift of the streamlines--assumed
by Ultman and Denn to be a physically realistic consequence of nonzero, if
weak fluid elasticity. In addition, the calculated flow structure near the
body surface in some cases shows streamlines actually crossing the body
boundary. Finally, the calculated results show an apparent separation
phenomenomwhich occurs for very small values of He provided that We is
larger than 5/12. While clearly not impossible, such fundamental changes

in flow structure with very small changes in ReWe or We from the Newtonian
value (zero) must be viewed with some skepticism and we believe subjected

to further study.

Unfortunately, there have been very few attempts to actually observe
the streamlines experimentally for the motion of a viscoelastic fluid past
either a solid sphere or cylinder. The only studies of which we are aware
| are those of Ultman (1970)--reported in Ultman and Denn (1971)--and of
Broadbent and Mena (1974). The values of Re and We for these two experi-
ments are given in Table 1.7 1In both cases, Re << 1 and We << 1. However,
the results obtained were very different. Ultman and Denn (1971) published

a single die-streak photograph for the motion of 1.7% aqueous solution of

TIn the case of Broadbent and Mena (1974), We was calculated from the coefficient
of the quadratic term in the expression for the drag in flow past a solid sphere
which was measured in the same work. The value of We for Ultman and Denn (1971)
was apparently mis-printed as 3.2. However, simple calculation using Ultman

and Denn's stated values for A of :04 sec, velocity u = .077 cm/sec, and ~ g,
cylinder diameter, 2R = 3/8 inch leads to the value quoted here of 3.2 x 10 ~.
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CMC-7H past a cylinder which showed the apparent existence of a large up-
stream shift in streamlines, as predicted by their theory. On the other
hand, similar photographs for a cylinder and a sphere obtained by Broadbent
and Mena showed essentially no shift in the streamlines either upstream or
downstream. The latter result would appear to be in accord with the small
Re, small We theories listed at the beginning of this section which predict
only a very slight and likely imperceptible downstream shift but is clearly
contradictory both to the experiment and theory of Ultman and Denn (1971).
However, both Broadbent and Mena's and Ultwan and Demm's flow visualization
experiments were restricted to a single value of Re and We, and the data
consist. of one (U. - D.) or two (B. - M.) die-streaks at a moderate dis-
tance from the body.

Motivated by the restricted amount of available data, and by the
apparent contradictions between the existing experimental and theoretical
studies, the present work was undertaken to obtain detailed visualization
of the motion of a viscoelastic fluid past a solid sphere for Re << 1 but
with We varied over a wide range. This work has led us to a re-examination
of the theoretical analysis of Ultman and Denn (1971), which we describe

briefly in the last section of the present communication.

EXPERIMENTAL RESULTS

The experiments were conducted in a vertical tank with dimensions
6" x 6" x 7'. The sphere was supported in the liquid by a thin but stiff
horizontal wire which was attached several diameters from the sphere to
lightweight vertical strings as shown in Figure 1. Preliminary experiments

d
showed that this configuration for the sphere produced little, if any,
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disturbance of the flow in the meridional symmetry plane, where observations
were made. The relative motion between the sphere and surrounding fluid

was produced by simply pulling the sphere vertically upward at a known rate
through the otherwise quiescent fluid. Flow visualization was accomplished
using micron size polyethylene particles as tracer material. These particles
were found to be nearly neutrally buoyant and, in fact, would neither float
to the surface nor sink to the bottom of the tank on a time scale of several
weeks. The field of view was illuminated through two very narrow slits

(4" in length and .15 mm in width) which were placed on either side of the
column at a position which bisected the sphere as it moved through the field
of view. Photographs were obtained using a Graflex single lens reflex camera,
which was mounted on a movable platform. The film used was type 57, high
speed (ASA 3000) Polaroid, and exposure times of several seconds were typical.
A more detailed description of the apparatus and experimental methods may be
found in Zana (1975).

The experiments were designed to yield small values of the Re (maximum
0.1), but a wide range of We. This was accomplished by using two different
solutions of the commerciai polymer Separan AP30, several different size
spheres, and a relatively wide range of translational velocities. The
basic conditions of the experiments are summarized in Table 2.

The key data from the present experimental study are the streakline
flow visualization photographs. Several representative examples covering
the range Re < 0.12 and 10'2 < We < 22 are reproduced in Figure 2. Included
is the case Re = 10'4, We = 10'2 (Figure 2a) which corresponds approximately
to the prior experiments cited in Table 1, and a case Re = .08, We = .62

(Figure 2c) corresponding to the value ReWe = .05 for which the Ultman and
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Denn calculations show strong upstream shifting of the streamlines.

At the smallest values of We, the streamlines at all radial positions
are perfectfy symmetric fore and aft, with nodiscernible shift in
either the upstream or downstream directions. This behavior is clearly at
odds with the experimental observation of Ultman and Denn (1971), but con-
sistent with the more recent photograph of Broadbent and Mena (1974). For
larger values of We, however, there is a definite upstream shift in the
streamlines, which increases in degree with increase of We, but at a
decreasing rate for the larger values of We. Two streamlines, which termi-
nate at the same downstream points (0.1 and 0.6 sphere diameters from the
axis of symmetry) were traced from Figures 2a and 2e in order to illustrate
more clearly the magnitude of the upstream shift. These are reproduced in
Figure 3a. Clearly, even for We = 10 where elastic effects would be
expected to be large, the magnitude of the upstream shift is relatively
small and primarily limited to the region nearest to the sphere. Nowhere
in the flow is the shift anywhere near the magnitude suggested by Ultman
and Denn's study. A more direct comparison is provided in Fiqure 3b where we
have traced two streamlines from Figure 2c, for ReWe = .05, together with
several of Ultman and Denn's calculated streamlines for the same value of
Rele (Figure 5 of their paper). Again it is evident that the magni-
tude of the experimentally observed shift is extremely small compared to
that predicted by their theory.

In order to provide atleast a qualitative measure of the dependence
of the upstream shift on We, three streamlines starting downstream at 0.1,
0.2 apd 0.4 sphere radii from the symmetry axis were traced out from the

experimental pictures for several different values of We, and the difference
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in the area bounded by these streamlines between the upstream and down-
stream half of the flow field was measured. This difference, normalized
with respect to the total area under the same streamline, is listed in
Table 3 for eight different values of We, with Re < 0.12. In a Newtonian
fluid in this Reynolds number range, no inertia-induced shifting can be
detected. Although the actual numbers AA/Atota] are somewhat arbitrary,

we believe that they nevertheless provide a useful relative measure of
skewness for different values of We and different distances from the body.
For the smallest values of We, no shift could be detected, as we have sug-
gested above. However, with increase of We (and also of RelWe), the magni-
tude of the streamline shift increases up to approximately We = 10 (ReWe ~ 1)
where the rate of increase with We appears to decline fairly rapidly. This
later result is similar to James and Acosta's (1970) heat transfer measure-
ments from a cylinder in which Nu number was found to become independent

of the uniform stream velocity at velocities greater than the shear wave
velocity (i.e. Rele » 1). One final point is to note that the region of
flow influenced by the presence of sphere increases with increasing elas-
ticity. This can be seen by comparing the streamlines 0.6 diameters away
from the symmetry line in Figures 3a, and 3b. For We = 0.6, no shift can
be detected at this distance from the sphere. For We = 10, however, there
is a definite upstream shift, though it is greatly reduced in magnitude com-

pared to that for the streamlines which are closer to the body (cf. Table 3).



67.

DISCUSSION

The experimental results of the preceding section have shown conclu-
sively that.the theory of Ultman and Denn greatly exaggerates the degree of
upstream skewing of the streamlines. In view of this, plus the physical
significance which has been associated with the change in type of Ultman
and Denn's model at Relle = 1, we have undertaken to re-examine the validity
of its basic assumptions. Among these, the most fundamental is the lineariza-
tion of the constitutive model and equations of motion using an Oseen-type
approximation. As we have noted previously, both Ultman and Denn (1971)
and subsequent investigators have assumed that this linearization is valid
for Re << 1 only, with any restriction on We being a result of subsequent
approximations which are required to solve the linearized equations and
boundary conditions.

We contend, however, that the linearized equations themselves do not
provide a uniformly valid approximation to the elastic flow contributions
for the type of problem considered, even if Re and We are both vanishingly
small. In order to clearly illustrate this point, it is useful to briefly
consider the equations of motion, and an Oldroyd rate-type constitutive
equation of the same general form as that adopted by Ultman and Denn. In

dimensional form, these are

dU. ou.
1 il - _ 8P L 3

PI5T * Uk 3% . T 3 Tik (1)

k k
and
Dr.

to Ay K b L e = u(TasBa, * Ta €s:) (2)

ik 1 Dt HoT33%ik T M1V TiiTik T T3kt
tpd

Deyy -

F V1585004 T 2”[}ik YA oT T %%k T Vet &tk




68.

where D/Dt is the generalized Oldroyd time derivative, and li’ M and Vs
are all material coefficients. For slow flows, these equations may be non-
dimensionalized with respect to the free stream velocity U, the body diameter

2, and the characteristic viscous stress, upU/2. Denoting the non-dimensionalized

quantities with overbars, we thus substitute

= U = 0% ) = (ul]=
A 1 41

and

into the quations (1) and (2) to obtain
i;} + Uy E;i N ﬁL'[ ax1 ik 1k} &
with
Tt weE;k + ;% ik ;I‘ (Tis25c * Taktig)
+ X%' 31-32 1é “

The quantities (uo/x1), (u]/x]), (v]/x1), Az/x], uz/x], and VZ/A] are all
dimensionless ratios of intrinsic time constants for the constitutive model
and are generally of order unity.

The Oseen-type linearization may now be formally invoked to simplify

the exact equations (3) and (4), i.e. we assume

= 4uly B, =el s T.o=ti, 3 p=p
- Uj = 647 HUp s 85 T ey s Ty TTy s PP

and neglect all terms which are quadratic in any of the primed variables.
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With Ay = 0, the resulting equations are those which were obtained by U]fman
and Denn (1971). The key question is whether the linearized equations provide
a uniformly.valid approximation to the exact equations (3) and (4) in some
appropriate limit. In the special case We = 0, corresponding to a Newtonian
fluid, it is by now well-known that the Oseen linearization does provide
such an approximation for the nonlinear inertia terms provided only that
Re << 1. Far from the body (i.e. v = O(Re'T)), where the convective term is
the same order of magnitude as the pressure and viscous terms, the Oseen
linearization is a good first approximation since [ui| << 1. Near to the
body where the linearization is poor, the convective terms are asymptotically
small compared to the pressure and viscous terms (provided Re << 1), and the
linearized equation of motion still provides a valid first approximation to
the exact equation (3).

When the Oseen linearization is applied to (4), the only terms surviving
(for a steady flow) are

ath, A :
, ik _ . 2 ik

Clearly, the equation (5) will provide a good approximation to (4) at large
" distances from the body. However, near to the body for arbitrary We, it
will not. At first, it may seem that a similar argument could be applied

to the neglected nonlinear terms in the constitutive model for We << 1, as
was just used in discussing the nonlinear term in (3) for Re << 1. Indeed,
near to the body where the linearization is inaccurate, all of the nonlinear
terms are dominated by the Newtonian terms provided We << 1, as before. The
difference is that far out, where the linearization is accurate, the
corrét%]y modelled term which is left is still small compared to the

dominant Newtonian terms if We << 1, as required in the region near to the
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body. Thus, unlike the Tinear approximation of the inertia terms which is
of greatest relative significance in the region where it is also most
accurately modelled, the elastic contribution is restricted by the require-
ment We << 1 to be of second order significance compared to the dominant
Newtonian terms everywhere in the flow domain. Furthermore, in view of
inaccuracy of the Oseen linearization near to the body, it is clear that
the linearized equation (5) does not even provide a uniformly valid first
approximation to the small elastic corrections. One consequence is that
the asymptotic solution for small but nonzero We using (5) does not agree
even qualitatively with the corresponding limiting solutions of Leslie
(1961) and others which are based on the full constitutive model (4). Most
evident is the difference in streamline displacement which is downstream
in the solutions of Leslie (1961) and others, but completely unchanged
through O(Wez) using (5). Furthermore,'the drag coefficient is predicted
to decrease at O(Wez) according to Leslie, but again to remain unchanged
when the Tinearized model is used.

Our conclusion, then, is that the Oseen-linearized theory of Ultman
and Denn (1971) for the motion of a viscoelastic fluid past a submerged body
is not a uniformly valid approximation of the elastic contributions to the
fluid behavior for any value of We.T Thus, though the calculations of
Ultman and Denn did show an upstream shift of the streamlines, as also
observed experimentally (but with much smaller magnitude), the theoretical
result must be considered as completely without substance since it was

based on a model which is incapable of correctly modelling the physics. A

T A similar conclusion is also inherent in the independent work of Mena and
Caswe®1 (1974). These authors show that the Oseen equations may be utilized
in the outer region of a matched asymptotic expansion for small Re (and UYe),
but do not consider the apparent alternative which one is led to from the
Newtonian case (We = 0) of using the Oseen equations to provide a uniformly
valid first approximation.
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similar remark must also be made with regard to the apparent correlation
between the change in type of UTtman and Denn's equations at ReWe = 1, and
the occurrence of experimentally observed discontinuities in certain features
of the flow at a similar value of ReWe (cf. Ultman and Denn (1970)). A clear
understanding of the physics responsible for these and other equally important

features of the motion of a viscoelastic fluid past a submerged body must

await further investigation.
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TABLE CAPTIONS

Table 1: Re and We Numbers for the Experiments of Ultman and Denn, and
Broadbent and Mena.

Table 2: Values of A, d and u for the Experiments in Two Viscoelastic
Liquids.

Table 3: Difference in Area Bounded by Streamlines Between Upstream and

Downstream Half of the Flow Field.

FIGURE CAPTIONS

Figure 1: The Experimental Configuration

Figure 2: Experimental Streamlines (Flow from Left to Right)

Figure 2a: Re = 10'4, We = 1072
Figure 2b: Re = 1.5 x 1073, He = 0.17
Figure 2c: Re = 0.08, We = 0.62
Figure 2d: Re = 0.05, We = 1.00
Figure 2e: Re = 0.10, We = 10.0
Figure 2f: Re =0.12, We = 22.0

Figure 3a: A Comparison of Experimental Streamlines
— Re=10"% we =107

—— Re =0.1, We =10.0
Point A: 0.1 diameter away from symmetry axis.
Point B: 0.6 diameter away from symmetry axis.
Figure 3b: A Comparison of Experimental and Theoretical Streamlines

Re 10'4, We = 1072 (Experimental, this work)

Re = 0.08, We = 0.62 (Experimental, this work)

0.10, We = 0.50 (Theoretical, Ultman and Denn, 1971,

n
n

— ——Re

RE Solution, N = 2)



74.

—-— Re = 0.10, We = 0.50 (Theoretical, Ultman and Denn, 1971,
MSE Solution, N = 4)
Point A: 0.16 diameter awey from symmetry axis

Point B: 0.60 diameter away from symmetry axis



75.

Table 1
Investigators Re
Ultman & Denn 2 x 10'4
(1971)
Broadbent & Mena 2 x 1072

(1974)



Solution

% AP30-Water
by weight

0.523% AP30 -
45.6% Water -

53.9% Glycerine
by weight
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Table 2
A(sec) d(cm) u(cm/sec)
3.8 1.56 0.05
2.56 0.68 - 2.34
0.64 1.60 - 7.40
0.34 1.80
15.0 0.95 1.28 - 1.45
1.90 0.005 - 0.38
1.75 1.0 - 1.52
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Table 3
AR tal
0.1 Radius | 0.2 Radius | 0.42 Radjus
Re We ReWe Away Away Away
1074 1072 1070 - -- -
1.5x107% [ 017 | 2.5 x 1074 -- -- --
0.08 0.62 0.05% 0.039 0.0213 --
0.08 9.25 0.74 | 0.1468 = 0.1275 0.0700
0.09 9.70 0.87 0.1798 § 0.1475 0.0873
0.10  [10.00 1.00 0.1894 |  0.1539 0.0915
0.12  |22.2 2.66 0.1960 0.1540 0.1033

¥ No measurable difference

* Same case as Ultman and Denn's theoretical streamline pictures.
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i Symmetry Axis

Figure 3a

Figure 3b
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APPENDIX B: Solution to the Full Equations Used by Ultman and Denn

In the main text it was implied that the effects of inertia were
small if Re << 1. However, it might be argued that a combination of
inertia and elastic effects could produce a noticeable difference.
Therefore, it is useful to examine the solution to the full equations
derived by Ultman and Denn.

The dimensionless equations they used to describe the motion of a

Maxwell fluid past a sphere are
Re(1+w1 -g-x-)g-g- = -(1+w1‘ —g—)—(—)Vp+Vzg (8.1)
Vou=0 (B,2)
Following Ultman and Denn's 1971 paper we write
g=j-V¢)+cl (B.3)
where the velocity is written as the sum of a constant (the uniform
stream at Targe r), a rotational part g and an irrotational part denoted

by the gradient of a scalar potential ¢. Equations (1) and (2) are

satisfied by

= 90
p Re == (B.4)
q = ﬁ%-(v - ReWi %; - Re i]x (B.5)
where the scalar functions ¢ and X satisfy
vzd) = 0 (8.6)
52 3
- 2@—7 X = 0 (87)
aX
and o = 52 & = 1 - ReMi
w

(XZ/uF + yZ + 22)%

b
]
]

<

N
"

N

~
]
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The solutions to (6) and (7) which behave properly at large r are

given by
A A, x 2 3
0 1 3x 1 5x 3x
6= 2+ + A - =1l+A ( —-——) + ... (B.8)
roo3 (75- r3) 3\ 5
-a(r-x) - . - -
Lo B , pemalFR) [ox , &)
7 1 2 -3)
r r
- - .2 2
N Bze-a(r-x) (% - 1) ( %2_ + %% + ._33.) (B.9)
r r r r

The solution for x represents the first difference between this
work and that of Ultman and Denn. They assumed that a meaningful solution
could be obtained by retaining just the Bo term.

In order to obtain the unknown constants, we must apply the no-slip
condition at the body. To facilitate the determination of constants, we
expand ¥ for small values of ar, ignoring terms of order az. This repre-
sents an assumption thatlboth Re and ReWi will be much smaller than one.

Therefore X becomes

- 2
1 ax X ax
X =B |=-ag+=}| +8B _+—-2——3-_]
° LF wF] 1 [;:j wr
(B.10)
s, [ 9 + % 3 3-5]
2L TP P W
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The expressions for the velocities become

A _x 3.2 15.3 o 4 2
1 X 9x 35x 30x 3
U =1+ -2_+A2 ( X - -—) + A ( - -—) + A ( - + )
X ";3' 1 —r,":':' 3 2\ 7 5 3 _—;9' 7 ;?
— L, 3
-B | L+ X_ 4 x2 +B w_ 3x° __3x
0| = -3 2-3 1 -3 -5 3-5
_?r Rer 2w r Re r wRe r 2w'r
~ 2 3 4
2r Re r wr Rew ™ r 2w r
Ay 2 3.
. _0O 3xy 15x"y _ 3 35xy _ 15xy
Yy “3‘*’*1“‘5*“2(% ‘%)"As( 3 7
r r r r r r
-B(y . xy)_B 3xy +3x2y)
% \Re F‘3 2w2F3 1 wRe o 2w3;‘5

ol e

3
9y 9xy _ _45x"y _ 45x
+ 82 (Re FS + 2_5 = 74;—\‘ . (8.12)

2wr Re w7 2077/

The only difficulty remaining 1is that the boundary condition must

be applied at r = 1 not at r = 1. Examining the equation for r

2 1 .
- 2,2, 2, 2w |2 [1-wf) 2| [2 . Rewi 2|4
(X/w™ + y" + 27) '(” "( 2 ) ") = (‘” +'1"-'"Rew'1'x)

r =
w
- 2 2. ReWi x°
r= (r® + ReWi x7)% = r |1+ % (B.13)
2r

In arriving at equation (13), we have made use of the previous
assumption that ReWi << 1. Using equation (13) in equations (11) and (12),

and dropping terms of the order ReWi, we obtain the following



A x 2 3 4 2
_ 0 3x 1 15x 9x 35x 30x 3
Ux“1*—§+A1(‘?'—3)+A2(—7'—5)“%(“‘5'“‘7*‘5)
r r r r r r r r
. 3
1 X X 3Wi x )
- B + + -
0 (?; Re r3 2r3 2r5
. 4
1 Wil 1 1 .\ 3x 3x 15Wi x
ol ) 52
1 Re 2 3 R rS 2r5 2r7
2 . 3 4 . 5
3 27x . 9% ( 1 5w1) 45x°>  45x7 . 315Wi x
+B + = - et - + (B.14)
2 (2r3 Re r5 P> Re 2 r7 2r7 2r9 )
Ay 2 3
- o’ 3xy 15x"y _ 3 35x7y _ 15xy
Uy =—3+A5+h (“Tfl |+ Ay |2 7
r r r r r r
.2
- y +Ly_3W1xy)
0 Re r3 2r3 2r5
- (3; . w1) 3xy , 3y _ 15Wi Xy
1 Re ' 7 r5 2r5 2r7
ea |9y, %y (;L.+ 3w1) 45xy _ a5xly . 315x%y w1> (5.15)
2 Re r 5;5 Re E r7 2r7 ng

Now the equations are of the form where the no-slip conditions at the
surface of the sphere can be applied. In order for the velocities to be
zero on the surface of the sphere, each coefficient of every power of x
and y should be equal to zero. The resulting equations for the unknown

constants are

38

B .
0 1 Wi 2 _
Ap - 3A3+ > - By (ﬁE - 7?) -7 =1 (B.16)

A, - 9A, - B /Re + 27B,/Re = 0 (B.17)
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B
0 1 . _
3A1 - 30A3 - - 381 (ﬁg + WI) + 982 =0 (B.18)
3B Wi 3B .
0 1 1 S5Wi}| _
lSBIWi 4582
35A3 + — - 5 = 0 (B.20)
315W182
— = 0 (B.21)
BO 982
AO - 3A2 -_RE+-TE-= 0 (8.22)
B - 9B
0 1 Wi 2
3B _Wi 3B .
0 1 1 Wi _
15 A2 + 5 al i 4582 (h—e- + -—2—') =0 (B.24)
ISBIWT 4582
35A3 + - 3 = 0 (B.25)
315W1B2
— = 0 (B.26)

Thus we have nine independent equations for the seven unknown con-
stants since equation (20) is the same as equation (25) and equation (21)
is the same as equation (26). This brings us to our final assumption.

In order to make this system of equations have a unique solution, we have

to make an assumption regarding the magnitude of BZ‘ [f we assume that

B, is of O(Niz), and then ignore all terms of o(w13), equation (21) becomes
an identity and equation (24) and equation (19) then become the same. The

solution of the resulting system of equations is

. 2
_ 3 1, 3Wid _ 3Wi _ 23 - -
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2), hence we know that the error

3

We observe that B2 is indeed of O(Wi
in the solution of the flow problem is O0(Re,Wi”). If we insert the con-
stants determined above into the velocity field expressions given by

equations (14) and (15), we obtain

which is easily recognized as Stokes solution for the velocity field of
a Newtonian fluid moving past a sphere of zero Reynolds number. The

pressure, p, is determined from equation (4). The result for the pressure

is
p = - 3x _ 3Wi (3x2 _ 1) _ 9w12 [5x3 _‘3x)' +
2r3 < rE r3 2 \ r: rE

When we make the substitution of cosg = x/r, we find that the above result
for the pressure agrees with theresult obtained‘in equation (57) of Chapter
I. Ultman has shown that the drag coefficient depends only upon AO for
this method of solution, (CD = 8AO). Thus we see that the drag remains
unchanged from the Stokes value at this level of approximation. The
difference between this solution and the one published by Ultman and Denn
lies in the manner of satisfying the boundary conditions. We conclude that
the method used by them to satisfy the no-slip condition was faulty, and

thus led to the unusual behavior of the solution which they reported.
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CHAPTER II. A Note on Rods Falling Near a
Vertical Wall in a Viscoelastic
Liquid

(This paper is to be published in the
Journal of non-Newtonian Fluid Mechanics.)
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Summary

The motion of a slender rod near a vertical wall in a viscoelastic
liquid is investigated experimentally. When the particle is not too near
the wall, its motion is compared to existing theoretical solutions for
the motion of a slender rod in an unbounded second-order fluid. In this
case, it is found that the theory and experiment are in qualitative agree-
ment provided the particle is at least two half-lengths from the wall,
When the particle is nearer to the wall, its motion is shown to correspond
qualitatively to a simple superposition of the motion in a second-order
fluid of infinite extent and the motion in a Newtonian fluid near a

vertical wall.
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Introduction

Problems involving the motion of small particles in a viscoelastic
suspending fluid have received considerable attention in recent years.
Interest in these problems is due, in part, to their importance in such
diverse technological applications as the processing of fiber or particle
loaded polymers, and the mass transfer from gas bubbles in common fermentation
liquors. At the other end of the spectrum, however, experimental and
theoretical studies of particle motion provide a fertile ground
for the development of badly needed physical understanding of viscoelastic
fluid motion outside the class of viscometric flow which has been studied
almost exclusively by rheologists.

The motion of particles in non-Newtonian, and especially viscoelastic,
fluids can be considerably different from their motion in a Newtonian
fluid. When the particle Reynolds number is sufficiently small, these
differences can be conveniently categorized into two distinct classes:

one, in which the instantaneous fluid and particle motion differs little

from the Newtonian case, but in which there is a gradual "drift" of the
particle/fluid configuration to a new state which differs from the initial

state by a large amount; and the second, in which the instantaneous fluid/

particle motion differs by a large amount from the corresponding Newtonian
problem., An example of the latter type would be the velocity field and
particle motion for buoyancy-driven translation of a moderate sized gas
bubble through a quiescent viscoelastic fluid (cf. Zana and Leal [13]).
Examples of the former type include the drift of axisymmetric particles
toward a preferred equilibrium orbit in simple shear flow (Gauthier,

Goldsmith and Mason [2]; also Leal [3]1, and the cross-stream migration of
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rigid spheres in unidirectional shear flows (Ho and Leal [4], Chan and
Leal [5]).

The present paper is concerned with the sedimentation of slender rod-
Tike particles in a quiescent suspending fluid. In an unbounded fluid
domain, this problem is one of the class which can exhibit strong
accumulative effects of weak, instantaneous non-Newtonian contribution
to the particle’'s motion. Specifically, in a Newtonian fluid the orien-
tation of the particle at zero Reynolds number is "indeterminate", in
the sense that there is no preferred equilibrium orientation. Indeed,
in the absence of disturbance effects such as Brownian rotation or particle
interactions, the particle orientation in this case does not change from
its value at some initial instant.

The addition of a viscoelastic contribution to the angular velocity
of the particle can then yield a gradual drift toward a preferred
equilibrium orientation even if the viscoelastic effect is very weak.
Indeed, a rod-like particle in an unbounded viscoelastic fluid has been
shown theoretically and experimentally to rotate to an equilibrium orien-
tation in which the axis is vertical (Leal [3]).

A recent extension of the theory of creeping motion for slender bodies
in a Newtonian fluid has been the development of methods to include hydro-
dynamic interactions with container walls. Russel, Hinch, Leal and
Tiefenbruck [6], have presented both experimental and theoretical results
for ﬁhe motion of a slender rod near a single vertical wall. In this case
the particle rotates in a deterministic fashion as it approaches the wall,
though of course, the statistical distribution of orientations in a sus-

pension of sedimenting particles nevertheless remains indeterminate as a
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result of the indeterminacy in "initial" orientation for a single particle
at large distances from the wall. In the present paper, we present some
experimental observations for the motion of rod-like particles near a
vertical wall when the suspending fluid is viscoelastic. In this case,
there is a preferred steady state orientation (vertical) in the absence
of any wall, and the particle motion thus consists qualitatively of a
superposition of "viscoelastic rotation" toward the vertical and "wall-
induced rotation" which, if it resembied the wall-induced rotation in a
Newtonian fluid, would correspond to rotation toward either the vertical
or horizontal depending upon the initial orientation of the particle
(cf. Russel et al. [6]).

One motivation for the present study is simply that one would like
to understand the effects of container walls on sedimentation of non-
spherical particles in a viscoelastic suspension. However, the results of
the investigation also add to our general knowledge of the behavior of
viscoelastic liquids. Specifically, comparison of experimental and
theoretical results for lateral migration in shear flow (cf. Chan and
Leal 1978 [5]) seems to suggest that weak viscoelastic behavior influences
particle/wall interactions relatively less than it influences particle
motions in an unbounded fluid. On the other hand, Sigli and Coutanceau's
[7] study of inertial effects in the movement of large particles through
a tube filled with a polymeric 1iauid suggests the opposite effect in a
strongly viscoelastic flow. The present investigation provides a further
qualitative indication of the nature of particle/wall interactions when

the viscoelastic contributions to particle motion are weak.
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Apparatus and Procedure

The method of investigation here, as in our previous Newtonian
experiments, was to obtain a continuous photographic record of the particle
motion. The position of the center of the particle and the orientation of
the particle with respect to the horizontal was then determined from these
pictures as a function of time.

The experiments were conducted in a plexiglass tank with a 15" by 15"
cross-section and a height of 36". The tank was placed on a stand which
was adjusted so that the walls of the tank were vertical. On the back
wall of the tank, horizontal and vertical reference lines were marked at
regular intervals, to assist in the determination of particle position and
orientation.

The viscoelastic fluid used in this study was a 1% by weight solution
of the commercial coagulation polymer Separan AP-30 in distilled water. This
solution has a shear thinning viscosity and appreciable normal stresses
in a linear shear flow. The detailed rheological properties of 1% Separan
in water have been reported elsewhere (Leal, Skoog and Acrivos [8], Bruce
and Schwarz [9]), and will not be repeated here. For our purposes we need
only the value of the zero shear rate viscosity which is 120 poise, the

3, and the value of the principal

value of the density which is 1.0 g/cm
relaxation time of the fluid, as deduced from the primary normal stress
difference in linear shear flow, which is 3.8 seconds. Separan AP-30 in
water is colorless and clear, making it ideally suited for the present

photographic study.
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The particles used in this work were cut from a copper
wire and then rolled to a nominal diameter of 0.033 cm. The
rolling, which was done between two smooth, flat stain-
less steel plates, also had the beneficial effect of straightening the
particles and the more important effect of work hardening the soft copper
wire, leading to a particle which is effectively rigid under conditions of
the present experiments. The particles were 2.54 cm long. Thus the
aspect ratio (particle diameter/particle length) of the rods was 0.013
A check of the particles under a microscope verified that they were
straight and had a constant radius except for a small region near the
ends which was slightly tapered. The measured density of the rolled copper
wire was 8.32 g/cm3.

The motion of the particles was recorded on high speed (ASA 400) 16 mm
movie film with a Bolex cémera, operated in a frame by frame mode. The
camera was mounted on a counterweighted platform which could be moved up
or down at a variable, but controlled speed. Thus we were able to track
the particle during its entire fall, generating a record of the particle
trajectory. Lighting for the pictures was provided by a spotlight mounted
on the same platform as the camera. The light was only turned on at the
instant of exposing each frame, and then it was immediately switched off,
so as to minimize possible natural convection effects in the tank.
Quantitative measurements of particle position and orientation were made

from the film using a microfilm reader and the reference 1ines on the back
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of the tank. ' Parallax errors were accounted for by using the known
geometry of the experiment to calculate a correction. The system of
reference lines on the back of the tank showed no distortion in the
pictures, therefore we believe there is minimal error due to refraction
effects. A typical run would take as long as thirty minutes, during which

as many as sixty frames would be shot at constant intervals.

Results

a) Particle Motion Far from the Wé]l

When the particles are sufficiently far from a wall, they are
expected to sediment as if they were in an unbounded fluid. This case is
of some interest in itself, and has been studied theoretically by Leal
[3] and Brunn [10]. Both of these authors considered the motion of
slender rod-like particles in a second-order fluid, this representing
the first non-Newtonian term in a general ‘'"retarded motion"
expansion. At this levellof approximation, it was shown that there is no
non-Newtonian contribution to the hydrodynamic drag for a slender, axi-
symmetric particle with fore-aft symmetry. On the other hand, the angular
rotation of the particle, which is zero for a Newtonian fluid at zero
Reynolds number, was found to be nonzero at the second-order fluid Tevel,
with a stable equilibrium orientation occurring only when the particle is
vertical. The rate of rotation toward this equilibrium position was pre-
dicted to depend on the magnitude of the non-Newtonian contributions to
the fluid's rheology, as well as the particle geometry and initial orien-

tation. The only prior experimental work on this problem of sedimentation
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in a viscoelastic fluid, Leal [3], was restricted to demonstrating that
the particle actually rotates toward the vertical, as predicted. No
detailed comparison was made between the experimentally observed or
theoretically predicted rates of rotation, nor were other details of the
particle's motion studied. Thus, it is of interest to compare the current
results for particles which are far from the wall, with the second-order
fluid theories.

As a preliminary, it 1is wuseful to recall the basic results
and restrictions which are inherent in the theories. Foremost among these
is the fact that the second-order fluid model is strictly applicable only
when the intrinsic relaxation time scale of the fluid, t, is much smaller
than the convective time scale of the motion 2/u*, where 2 is an appro-
priate characteristic length scale of the particle and u* an appropriate
characteristic velocity scale. In the present probiem, 2 is conveniently
chosen as the particle half-length. An appropriate characteristic velocity
is the actual translationél velocity of the particle. Since this is
unknown, but predicted not to change at the second-order fluid level (Leal
[3]), it is convenient to use the predicted "slender body" value for a rod
of infinite axis ratio at zero Reynolds number in a Newtonian fluid. Apart
from an 0(1) correction factor to account for particle orientation, this is

2

Apg ro

Qn(ZQ/ro)
2n

u* =

where Ap is the density difference between the particle and the fluid, g is
the gravitational acceleration constant, and o is the radius of the cylin-

drical particle. The viscosity of the fluid, n, is taken here to be the
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zero shear rate 1imiting value for the Separan/water solution. Let us
denote u* for n = Ny S u*o. With these quantities used to evaluate ug
for the conditions of our experiments, we obtain

u*O v 0.041 cm/sec .
The principle relaxation time of the fluid, t, was estimated earlier to
be 3.8 seconds and thus we can calculate the ratio, A, of time scales for
the fluid and the'fluid's motion,

u*t

= 9
A= 2f\,0.12

The magnitude of A, which is sometimes called the Deborah number, is
indicative of the importance of elastic effects on the motion of the
particle. We see that X is small, but not negligible in the present
experiments. The retarded motion results for a second-order fluid, on
the other hand, are strictly valid in the asymptotic limit x >~ 0. An
obvious and important question is whether X ~ 0.12 is sufficiently small
for the asymptotic theory to provide quantitative or even gqualitatively
correct results. This question is particularly significant since other
problems involving particle motions in an unbounded, viscoelastic fluid
(cf. Leal [3], Ho and Leal [4], and Tiefenbruck and Leal [11]) have led to
the rather surprising conclusion that the second-order fluid theory will
yield reasonably accurate results for A as large as 1.

For convenience in the present discussion, as well as in the analysis
of experimental data which follows, we adopt the coordinate system shown
in Figure 1. Assuming the analysis of particle motion in a second-order
fluid to be applicable under conditions of our experiment, as indicated

above, it is expected that the translational velocity components will be
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given by the results relevant to motion in an unbounded, Newtonian fluid
[recall, there is no O(A) contribution to the drag for a slender, axi-

symmetric particle with fore-aft symmetry in an unbounded fluid], i.e.

u*
u, = g%- = - 0.64 7? sinecose (1)
d ug 2
u o= I = 0 (1 +0.64 sin®) | (2)

y dt 2

The number 0.64 in the above expressions is the correction to the
classical slender body results which is necessary due to the finite axis
ratio of the particles (see Russel et al. [6]). Integrating equations
(1) and (2) and dividing by ¢, we obtain the following dimensionless

trajectory equations
t

xo - X ug _ :
- = 0.64 J sinecosadt : (3)
0
t
Y=Y, ug .
z = 3 [} + 0.64 J sin“adt (4)

0
which depend on the instantaneous orientation of the particles, 6(t). For

a second-order fluid, the theories of Leal [3] and Brunn [10] show
an(tans/tans ) = At (5)
in which 8, is the initial orjentation and A is a constant which depends
upon the rheological parameters of the fluid and the detailed variation of
the particle cross-sectional area with position along its major axis. It
is of interest to test both the predicted independence of translational
velocities on the change from a Newtonian to a second-order fluid, and the

predicted dependence of particle orientation on time as given by equation

(5).
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Let us first consider the orientation of the particle as a function
of time. The experimental results are shown in Figure 2, where we have
plotted zn(tane/taneo) versus the time t for four different values of 60.
For values of time less than 500 sec, equation (5) appears to describe

the data quite well with a value of A equal to 0.0021 sec™?,

For a
circular cylinder with an axis ratio equal to that of the experimental
particles, and estimates of material constants in the second-order fluid
model, Leal's asymptotic slender body theory gives A ~ 0.0028 sec'l. This
degree of agreement between theory and experiment is well within expec-

"1 and thus pertains

tations since the theory is first-order in [2n(22/r0)]
strictly to particles which are more slender than those used here. The
fact that the predicted value of A is larger than the experimental value
is qualitatively consistent with theoretical corrections for finite aspect
ratio in Newtonian fluids (cf. Figure 3, Russel gg_gl. [61). The more
important linearity betweeh Rn(taneltaneo) and t is clearly confirmed by
our present experimental results. It should be noted in this regard that
the deviation of the data from a straight line at larger times is due
primarily to the presence of the wall. We will discuss the interactions
with the wall in detail in the next section.

Let us now turn to the predicted trajectories, (3) and (4). In order
to provide a valid test of the independence of drag on deviations from
Newtonian rheology in the second-order fluid regime, we must use the
experimentally determined va1ue‘of A = 0.0021 s,ec'1 in equation (5) to

evaluate the right hand sides of equations (3) and (4). The integrals in

these expressions were calculated numerically using a trapezoidal rule.
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Our objective is to compare the experimentally measured trajectories with

the calculated results. For this purpose, we plot experimental values of
the horizontal and vertical displacements at various points in time, i.e.
(xO - x)/e and (y - yo)/z, versus the theoretical values of the same quantities
calculated as explained above. These plots are presented in Figures 3 and
4, respectively. If the theory and experiments were in perfect agreemént,
the points would of course, fall along the 45° trajectories which are shown
as solid lines in these figures. We see that the measured and predicted
values are, in fact, in reasonable qualitative agreement. Nevertheless,
quantitative discrepancies are clearly evident. In particular, there is
more spread in the data than might be expected, especially for small times
when the particle is far from the wall.

This difference between experiment and theory appears to be due
primarily to the idealization which is inherent in the use of a second-
order fluid model for the description of the Separan AP30 solution at
small but finite Deborahlnumbers. In particular, the second-order fluid
model allows for normal stress effects in simple shear flow, but no shear-
thinning of the apparent viscosity. The Separan AP30 solution, on the
other hand, exhibits a small but significant degree of shear thinning even
in the low shear-rate range of the bresent experiments. A particle will
sediment, all else being equal, more rapidly for larger values of 6. Thus
the mean shear rate in the suspending fluid will also increase with an
increase in 8,

This increase in mean shear-rate has no consequence for creeping

flows if the fluid is Newtonian. However, the same is not the case for a
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shear thinning 1iquid such as Separan AP30 in water. In equations (3)

and (4) it was assumed that ug was independent of time (or equivalently
that the viscosity n was independent of the changes in shear rate which

are caused by changes in the particle orientation). Since this is not
precisely true, the comparison between experiment and theory in Figures

3 and 4 will be affected. Specifically, since the particle has a
different initial orientation in each of the experimental runs, the data
will reflect a different mean viscosity history for each run. When plotted
in the fashion of Figures 3'and 4, this will lead to an apparent scatter
when the data from the different runs are compared. The importance of

this effect may be tested by replotting the data in a manner which reflects
the fact that the viscosity is expected to vary with the particle orien-
tation. This is accomplished by shifting the data for the three runs with
the Targest initial orientation angles, e:, so that the first data point

in each case matches the values of (x_. - x)/%2 and t from the fourth run at

o
the same angle ¢ = e?. A.simi1ar shifting was also applied to the vertical
displacement data for the particle. The resulting plots are shown in
Figures 5 and 6, respectively. In effect, this method of shifting assumes
that there is a unique value of particle velocity (and thus fluid viscosity)
for each orientation, 6. If this assumption is correct, when incremental
displacements are compared for the same orientation angles, they should be
identical from run to run. The collapse of the data in Figures 5 and 6 to

a single universal curve therefore suggests strongly that it was the shear

dependence (and thus the orientation dependence) of viscosity which was

responsible for the data spread in Figures 3 and 4. Figures 5 and 6 also



104.

allow a comparison of the experimental results with the results predicted

on the basis of (3) and (4) with n = n, = const. The predicted trajectories
are plotted in figures 5 and 6. The experimental results for horizontal
displacement, in figure 5, are, in fact, in quite good agreement with the
simple theory (n = no). The results for vertical displacement, in figure 6,
show a larger deviation between theory and experiment, and the data indi-
cate smaller vertical velocities than predicted by equation (4). We have
not been able to trace the source of this difference.

We may summarize the results of this section by saying that the second-
order fluid theory for an unbounded fluid provides a qualitatively correct
description of the particle motion when the particle is more than approxi-
mately two half-lengths from the wall. However, in contrast to earlier
results on particle migration (Ho and Leal [4]) and orbit drift in shear
flow, (Leal [3]), the weak shear thinning which exists for small but non-
zero A is seen to play a non-negligible role in the present results. For
this reason, significant deviations between theory and experiment occur for
somewhat smaller values of A than would have been expected on the basis of

our earlier studies. Let us now turn to the interactions between the

particle and the wall.

b) Particle Interactions with the Wall

Before describing the interactions of a particle with the wall in
Separan/water, it is useful to recall the most important results from the
previous Newtonian fluid experiments. Specifically, it was found that
there were two distinct modes of wall induced particle rotation, the so-

called 'glancing' and 'reversing' turns. In the 'glancing' turn, the end
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of the particle nearest the wall moves 1in such a manner that the angle of
the particle with respect to the horizontal increases. In the 'reversing’
turn, on the other hand, the particle appears to pivot about the end
nearest the wall, finally moving away from the wall with the opposite end
leading. Particles which approached the wall with orientation angles, 6,
greater than a "critical" value were found to undergo the glancing turn,
while those with smaller angles § underwent the reversing turn.

In figure 7, we have plotted our results for the present experiments
in Separan AP30/water. This plot shows the distance between
the particle center and the wall as a function of the orientation of the
particle with respect to the horizontal. The solid line at the bottom of
the figure delineates a "forbidden region" in which some portion of the
rod would be required to penetrate the wa]].. As in the preceeding Newtonian
study, the particle trajectories show both "glancing" and "reversing" turns
due to interaction with the wall. Specifically, runs (b) and (c) demon-
strate the 'glancing' turn, while run (f) is an example of a reversing
turn. In contrast to the Newtonian problem, however, the tendancy to rotate
toward the vertical in an unbounded viscoelastic fluid means that a particle
can only exhibit a 'reversing' turn if it starts sufficiently near the wall,
in addition to being sufficiently near the horizontal in its initial orientation.
Extrapolation of the curve (f) to 6 = 0 suggests, in fact, that no reversing
turn could occur for a particle which was initially more than 6.5 particle
half-lengths from the wall. Although the value 6.5 is obviously specific to
the particular particle geometry and viscoelastic fluid of the present
experiments (i.e. 1% Separan AP30 in water), the general conclusion that

'reversing' turns are limited, not only to initial orientations sufficiently
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near horizontal (as is also true in a Newtonian fluid), but also to
particles which are simultaneously close to the wall, is expected to be
true for the general class of viscoelastic suspending fluids. It may be
noted that a particle which is sedimenting in a container with vertical
side-walls will generally be restricted to a single reversing or glancing
turn since it will rotate to the vertical and thus fall parallel to the
walls prior to travelling across the container for a second wall encounter.
Although a theory of particle motion in a viscoelastic fluid near a
wall could, in principle, be constructed for a second-order fluid along
the Tines outlined by Leal [3], using the solution of Russell et al. [6]
for the motion of a slender rod-like particle near a wall in a Newtonian
solution, the magnitude of the necessary algebraic manipulations is so
formidable that the analysis is impractical. An admittedly "ad hoc"
alternative is to simply superpose the wall interactions for motion in a
Newtonian fluid, as calculated by Russel et al. [6], with the non-Newtonian
contribution of (3) - (5) for particle motion in an unbounded second-order
fluid. The results from this simple approach, plotted in a manner similar
to the experimental data in figure 7, are shown in figure 8. Comparison
of figures 7 and 8 shows that the "ad hoc" theory is in reasonable quali-
tative agreement with the experimental observations — thus suggesting
that the simple superposition described above is a reasonable approximation
to the dominant physics of the particle's motion. This is not altogether
unexpected since it is only the non-Newtonian “corrections“lto the particle-
wall interaction which are missed out in the approximate theory, and these
are expected to be small relative to the dominant Newtonian fluid contri-

butions for small ).
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A more detailed comparison of figures 7 and 8 shows that the
theory underestimates the maximum distance which a particle
can be from the wall, and still undergo a 'reversing’' turn. This is not
too surprising since the distance for significant interaction between the
particle and wall in a Newtonian fluid was also underestimated by the
slender-body theory of Russel et al. [6] for small values of 8. Indeed,
if we had estimated the particle-wall interaction from the experimental
data of our earlier study, rather than from the theory, the agreement
between “theory" and experiment in the present work (i.e. fiqures 7 and 8)
would have been much better. This suggests that any non-Newtonian contribution
to the particle-wall interactions must be relatively unimportant.

The simple theory of figure 8 reveals an additiona1, more subtle
feature of the particle-wall interaction process which, due to the limited
depth of the experimental tank, is less obvious in the experimental data
of figure 7. This is the fact that a particle which undergoes a 'glancing’
turn without passing too close to the wall actually overshoots the vertical
orientation, and continues to rotate while simultaneously moving away from
the wall. Furthermore, the results plotted in figure 8 suggest that all
trajectories approach the value 6 = m/2 for large x along a common asymptote.
The reason that the particle continues to rotate past 6 = n/2 when it is
near the wall is simply that the wall interactions continue to generate a
torque even though the viscoelastic contribution to particle rotation has
momentarily vanished. We shall discuss the asymptotic behavior as the
orientation re-approaches n/2 for larger x at a later point in this section.

First, let us consider the experimental results in greater detail.
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Examining the experimental data in figure 7, we see that the tra-
jectory (c) is indeed smooth and continuous through 6 = /2 as predicted.
Run (b) also exhibits a smooth curve through m/2, but the effect of the
wall appears to be smaller than expected on the basis of figure 8. Run
(a) shows no discernible effect of the wall at all. Unfortunately, the
available experimental tank was too short to allow a more definitive study
of this aspect of particle-wall interactions. Part of the difficulty, as we
shall see, is that the particle only re-approaches the vertical in the
asymptotic limit, t » <, Further, we found it impossible to achieve
reproducible results unless the particle was initially started at four or
five half-lengths from the wall. In spite of these limitations, however,
the available data suggest. that the wall-particle interaction is over-
estimated for the larger values of x and 6 ~ n/2 by the "ad hoc" second-
order fluid theory. In this sense, the present experimental results are
consistent with the earlier investigation of the lateral drift problem by
Chan and Leal [5] which a1so seemed to support the conclusion that the
magnitude of wall effects on particle motion was over-estimated by a
second-order fluid theory.

Runs (d) and (e) warrant special attention since the approximate
theory of figure 8 is not capable of providing any insight as to the
expected behavior once the minimum separation distance between the
particle and wall is small (of the order of the particle radius). The
experimental trajectories appear to suggest that the particle makes contact
with the wall. After this happens, the leading end continues to slide down

the wall, and the orientation approaches m/2. Once this happens, the
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particle ceases to rotate and appears simply to slide very slowly down

the wall until it reaches the bottom of the tank. This behavior is, of
course, different from the 'glancing' turns which occur when the separation
between the particle and wall is larger, and cannot be explained by the
slender-body theory which is inherent in figure 8. The fact that the
particle slides down the wall suggests that it does not actually hit the
wall, but only comes close to it. This finding agrees with a similar con-
clusion from our previous Newtonian fluid investigation.

The only example of a 'reversing' turn in the experimental data of
figure 7 is run (f). As indicated above, this particular form of wall-
particle interaction is not very common due to the influence of fluid
elasticity which tends to cause the particles to turn toward the vertical
before they encounter the wall. In the region prior to reaching 8 = 0°,
run (f) reflects the competing effects of contributions to the particle
rotation due to fluid viscoelasticity and to hydrodynamic interactions
with the wall which are in the opposite sense! After the particle has
passed through the horizontal, on the other hand, the two contributions
add so that the particle approaches the vertical more rapidly than it
would in an unbounded fluid. This is most easily seen by choosing a value
of x (say 2), and then noting the angles at which it intercepts the
trajectory (f) (26.5 and -36°). As the particle moves away from the wall,
we see that the slope of the trajectory approaches the far-field value.

As © approaches - m/2, we anticipate an asymptotic approach to vertical in
a manner similar to the 'glancing' turns as depicted in the left most

trajectory of figure 8.
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The most important practical implication of the particle-wall inter-
actions which we have described is their effect on the concentration
distribution for a dilute suspension of sedimenting, rod-like particles
in a viscoelastic fluid. In order to determine what this effect may be,
it is necessary to consider the asymptotic behavior of the trajectories
of Figure 8 which overshoot 6 = n/2. This may be discussed quite simply
in terms of the governing equations for the "ad hoc" theory, approximated

for |6'] << 1 where 8' = (6 - n/2).

Y  _ 1
3t f(e) (6)
ox  _ B’
3t 2f(e (7)
~ L s 1
36! = 3e X2 EXT. -11- _A_Q._ g (8)
ot 2f(e) 1\ L u;
=]
z)"
where
e = '[2n(22/r0)]-r
and

f(e) = correction to the drag for motion parallel to the particle
axis, due to the finite axis ratio of the particle (see
Figure 3 of Russell et al. [6]).
The quantities A, £, u; and s which are inherent in the scaling factors
% and u¥ of equations (6) - (8) were defined earlier.
The two terms on the right hand side of equation (8), for the time-
evolution of €', represent the interaction induced rotation due to the
wall and rotation induced by the non-Newtonian properties of the bulk fluid,

respectively.
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It is the balance between these two effects which produces the character-
istic over-shoot and return behavior which is demonstrated in Figure 8.
An approximate theory for the "common" trajectory at large x and small &'

may be obtained from (6) - (8) by assuming 56'/3t = 0, so that

U, 1+-2% |
5 = el K| — 20y (9)
1+ L)
X

Equation (9) with the constants evaluated for the conditions of the present
experiments is reproduced as the solid line in Figure 9. Substitutina g

from equation (9) into (7) then gives the following equation for x

1+—12-
F ot | —2 (10)
1

(1 o
where *
_ 0
o= Thcls N\

A (¢e)

The above equation for x cannot be integrated analytically as written.
To proceed further we thus approximate the right-hand side of equation (10)
as a power series in x'l. Upon integrating the resulting expression, we
obtain

3
8x” 8x - 4 log ( i %) = Bt +c¢ (11)

3
where ¢ is a constant of integration. If we evaluate B using the values
of the constants from the present experiments, g = 1.59. Thus, for example,
if the particle was at x = 2 for t = 0, then at t = 240, x = 5.20. The
real time for the particle to travel the horizontal distance of 4.06 cm in

this example will be over 2 hours! During that same period of time, the
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particle would have fallen vertically over 254 cm! The values of ¥y
corresponding to four values of x at equal increments of time are shown
in Figure 9, to give some perspective of the relative magnitudes of the
horizontal and vertical velocity components. The points in Figure 9
represent numerical results from the full "ad hoc" theory which show the
degree of approach tothe asymptotic behavior for various values of x and
8'. The key feature of the solution (11) is that it shows that

X + as 8' -~ 0,
for an infinitely deep and wide tank. For an infinitely deep tank of
finite width, a particle which undergoes a 'glancing' turn would thus be
expected to move to the center where, for reasons of symmetry, it would
stop moving normal to the wall. We note here that a similar theory may
be developed for 6 approaching - m/2 which is the case for the 'reversing’
turn. The ultimate position of the rods in this case is also "far" from the
wall. Thus, a dilute suspension of rods sedimenting in a finite tank should
exhibit a "particle free'" zone near the wall which increases in width
with depth in the tank. As a consequence, the particle concentration at
the center of the tank must also increase with increasing depth. The
eventual development of an "equilibrium" concentration distribution in
which almost all of the particles are near the center of the tank, at least in
principle, is in contrast to the case of a Newtonian suspending fluid
where the distribution of particles would be expected to remain more
nearly uniform. It should be noted in "the non-Newtonian case that
the results of Figure 7, runs (d) and (e), suggest a second concentration
peak, albeit with relatively few particles, which would be located right

at the wall. In this region, particles which approach near enough to the
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wall with 8 > ~ 60° appear to be "trapped" and remain very close to the
wall for subsequent times.

In summary then, the particle interaction with the wall appears to
agree reasonably well with predictions based upon a simple "ad hoc" super-
position of wall induced rotation in a Newtonian fluid, and rheologically
induced rotation in a viscoelastic liquid. Both 'glancing' and 'reversing'
turns are evident, but the latter are limited to a relatively small range
of initial orientations and positions relative to the wall. The effect of
the wall on the concentration distribution for a dilute suspension of
sedimenting rods is predicted to be much different for a viscoelastic

Tiquid than for a Newtonian suspending fluid.
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Figure Captions

Figure 1. The coordinate system.
Figure 2. Variation of m(tane/taneo) versus time. Ieo = 42.5°,
.90 = 320, Aeo = 20.5°, 060 = 48°, The open markers
represent points where the particle is within 22 of the wall.
Figure 3. Experimental horizontal particle displacement versus predicted

horizontal displacement. ®Run (b) x_ = 6.55, @Run (c)

0
Xy = 6.37, A Run (d) Xo = 6.48, ®Run (a) x_ = 6.53. The

0
open markers represent points where the particle is within
2% of the wall.

Figure 4. Experimental vertical particle displacement versus predicted
horizontal displacement. ®Run (b), @Run (c), ARun (d),
® Run (a). The open markers represent points where the
particle is within 22 of the wall.

Figure 5. Horizontal displacement of particle center as a function of
time. Points are plotted in a manner such that the orien-
tation is the same for all of the runsat each point in time.
@ Run (b), @Run (c), ARun (d), ®Run (a).

Figure 6. Vertical displacement of particle center as a function of
time. Points are plotted in a manner such that the orien-

tation is the same for all runs at each point in time.

® Run (b), @Run (c), ARun (d), €Run (a).
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Figure 8.

Figure 9.

116.

The variation of the distance of the particle center from
the wall and the orientation of the rods as they turn.

+ Run (a), O Run (b), ORun (c), ARun (d), X Run (e),
CRun (f).

Particle trajectories calculated by superposition of
Newtonian hydrodynamic interaction with the wall and visco-
elastic fluid induced rotation,

Asymptotic solution for the particle trajectory after

'glancing' turn,
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This avpendix consists of a vaver that avpeared

in the Journal of Fluid Mechanics (1977).
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As an inclined rod sediments in an unbounded viscous fluid it will drift horizontally
but will not rotate. When it approaches a vertical wall, the rod rotates and so turns
away from the wall. Illustrative experiments and a slender-body theory of this pheno-
menon are presented. In an incidental study the friction coefficients for an isolated rod
are found by numerical solution of the slender-body integral equation. These friction
coefficients are compared with the asymptotic results of Batchelor (1970) and the
numerical results of Youngren & Acrivos (1975), who did not make a slender-body
approximation.

1. Introduction

Sedimentation of a sphere through a Newtonian liquid in the absence of inertia is
straightforward. In an unbounded fluid the sphere does not rotate and falls in the
direction of gravity. The proximity of a vertical wall induces rotation about a horizon-
tal axis parallel to the surface but causes no drift. This well-known behaviour follows
from the linearity of the Stokes equations and the symmetry of the geometry.

With rodlike particles a more interesting behaviour can be observed. Taylor(1969)
and others have demonstrated that the sedimentation rate of a rod depends on its
orientation: a slender cylinder falls approximately twice as fast when it is vertical as it
does when it is horizontal. Consequently a rod will drift laterally at intermediate
orientations. The absence of rotation, however, again follows from reversibility.

In a tall container the horizontal drift must eventually bring the particle close to a
side boundary. Since Batchelor (1970) has demonstrated that the far-field disturbance
generated by a rod resembles that of the sphere which encloses it, one might expect
interaction with u side to induce rotation. Indeed, this can be observed and is predicted
by the far-field analysix of Caswell (1970). Unlike the case of a sphere, however, both
the magnitude and the sign of the angular velocity depend on the orientation. Accord-
ing to Caswell's analysis, approach normal to the wall at an inclination of less than 45°
to the vertical initially inducos a negative angular velocity, i.c. the leading end
rotates away from the wall, while at larger angles a positive rotation results. Thus two
modes of interaction are suggested (figure 1). A rod approaching at a amall angle turns

10 PLI N3
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FIGURE 1. Glancing and reversing turns of a sedimenting rod, as predicted by the asymptotic
theory of §2, with £ = #. The glancing turn starts from § = 20° when X = 3 and the reversing
turn starts from § = 70° when X = 3. The rods are shown at time intervals of dmul*[F,.

smoothly through the vertical and drifts away with the same end leading, a ‘glancing’
turn. At orientations closer to the horizontal the wall primarily retards the near end of
the rod, causing it to pivot and then move away with the opposite end leading, a
‘reversing’ turn. While the far-field analysis indicates the orientation of approach
separating the two modes to be 45°, we shall see that terms which have been neglected
decrease the critical orientation.

In a tall container there is the possibility of a small rod repeatedly being turned away
from the sides before it reaches the bottom. In the case of two vertical sides, symmetry
requires the rod to oscillate periodically and not to approach a terminal position or
orientation. This effect would lead to a fairly uniform distribution of the rods in the
interior of the container, 80 long as interactions between the rods can be neglected.

The following sections contain an analysis of the interaction between a slender
circular cylinder and a single plane wall. We first formulate the problem in terms of
slender-body theory and present an asymptotic solution for the instantaneous motion.
Then an independent, and more accurate, numerical solution of the integral equations
is discussed and the trajectories calculated by the two different approaches are com-
pared. As an aside, numerical results for the friction coefficients of a slender particle in
an infinite fluid are compared with the third-order asymptotic solutions of Batchelor
(1970) and the non-slender-body results of Youngren & Acrivos (1975). Finally we
describe some simple experiments which verify the main theoretical predictions.

2. Theory Slender-body analysia

Within the past decade slender-body theory, originally proposocd for potential tlows,
has been extensively developed to describe the translation and rotation of rodlike
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Fi1Gure 2. The co-ordinate system.

particles at low (zero) Reynolds number. The basic theory has been extended to
include the effects of (i) blunt ends (Tuck 1964), (ii) centre-line curvature (Cox 1970),
(ili) non-Newtonian suspending fluids (Leal 1975) and (iv) interactions with walls
(Blake 1971). Here we use the last development to analyse the motion of a straight
slender circular cylinder of radius R, and length 2! which is sedimenting through a
viscous fluid in the vicinity of a plane wall. We assume that the plane of motion of the
particle is perpendicular to the wall. Furthermore, end effects are ignored and atten-
tion is restricted to situations in which the cylinder is separated from the wall by a
distance much greater than R,. These simplifications retain most of the interesting
physics governing the particle trajectory while making the analysis tractuble.

The eaacnce of slender-body theory lies in an approximate representation of the
body’s effect on the Huid by a distribution of singularities (i.e. point forces, force
doubleta and source doublets) along its axis. The nature and strength of these singu-
larities are adjusted so that the disturbance flow cancels the applied flow at the
particle surface, i.c. there is no slip. If a plane wall is present, an additional set of
singularities must he distributed along the axis of the body’s image in order to achieve
no alip on the wall. The image syatem for a point force near a plane wall was obtained
by Blake (1971). He found it to be a point force of equal magnitude but opposite sign
plus a force doublet and a source doublet. These results suffice for our prublem.

The co-ordinate system used is illustrated in figure 2, which also serves to define

102
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certain other variables that appear in the theory. The midpoint of the particle is
denoted by (X, Z) and its angle of inclination to the vertical by 6. The variables s and
s’ both specify the position of points on the particle axis relative to its midpoint. The
distance between s’ and a point on the particle surface at s is denoted by r, while the
distance between & and the image of ¢’ is denoted by r,. For convenience, we scale all
position and distance variables with respect to /. With these conventions, the two
significant disturbance velocities at the cylinder surface are

@) [1 + (s—s')2sin0 + jx3cos?d 1 rg(x®+2%) +6zx'(x + x’)z]

1 1
o) = g2 [ e = . 7

—g'y2 2 N ol - ’ "
+E(8')c088[sin0(a__‘f_)__¥._(3_3')"3'(‘”"’)3‘“'9 6xx(m+x)]>ds,, (1a)
r Tx
1 a2 2 e , ,
u,(s) = %‘ {F,(s’)cosa[sinﬁu-’):r—ii +(8_8,)7‘=’.(:f: z') rfzx (x+2z )]
-1 3
— ’ 2 . 2 _ ’ _ , 2 2 ,
+F(s) [1+(s 8')tcos?f+3xPsin?@ 1 (s—8)(ri Gxx‘)cos 0+2r,xx] i’
r 3 T r:

(1)
where x = R,/l is the aspect ratio and

r=X+ssind, 2’ =X+4'sinb,
r2=(3—8)2+k2, 12 =(s—8)2+4X2+48inf(sX +3'2).

The fluid motion normal to the plane of figure 2 is O(x) and therefore negligible. The
appropriate image singularities have been included in (1), so that the boundary con-
dition on the wall is automatically satisfied.

The integral equations (1) are solved by choosing the force distributions F,(s) and
F,(s) in such a way that the disturbance velocities are of the form of a rigid-body
motion:

uy(s) = U, + Qlscosf, wuys)=1U,-Qlssin0. (2)

The translational velocity of the rod (U, U.) and its angular velocity 2 are determined
by the conditions of constant force and zero couple on the particle:

1 1
f F (s)ds =0, J. F(s)ds = = Fll
-1 -1 B
: (3
and J. [F.(s)cos O — F(s)sinfl|sds = 0.
1

In the following scction, numerical solutions will be presented for the integral equa-
tions (1) subject to the side conditions (2) and (3): herec we develop an asymptotic
solution for the limit € = 1/In (2/x) < 1.

The asymptotic analysis capitalizes on the quasi-local nature of the slender-body
theory; i.c. the fact that the induced volocity at the cylinder's surface primarily
depends on the force density at the nearest axial point, as long as the foree density
varies on a length scale of 1 and not «. From (1) we have (Batchelor 1970)

u,(#) = (4mpe) (1 +8in20) F,(s) + nin ) cont) Fy(s)] +er,,

4
u,(4) = ($mpe) Muin O cos O F () 4 (1 + cond ) F (0] 4 er, 4
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where the correction terms v, and v, vary with s and are not local. Even when the rod
is very near to the wall, i.e. # ~ 0, X < 1 and X/x > 1, de Mestre & Russel (1975)
showed that the local nature is preserved with € = 1/In(2/«) in (4) being replaced by
1/In (2X/x), but for simplicity we suppress this extension by assuming that « is very
much smaller than X. In order to make the disturbance velocities in (4) vary linearly
with s as required by (2), we must clearly choose, at lowest order, force distributions
which vary linearly with s. The only such force distribution consistent with (3) is

F, = O(eFy)l), = —}Fy/l, (5)
which results in
sin § cos 6 1+8in%8 F,
U.t ~ = -S—ﬂ.LTl_E—Fo’ Uz ~ 877]1.16 FO’ Q= 0( lg) (6)

Substituting the first approximation to the force distribution (5) into the integral
equation (1) yields the correction terms v, and v, in (4). The force distributions are then
adjusted locally to cancel these corrections. The constraints (3), however, do not per-
mit these adjustments to the force distributions to contain a part which varies linearly
with s. The parts of v, and v, which vary linearly with s are balanced by adjustments to
the translational and rotational velocities U,, U, and Q. Thus we find

8in§ cos § € !
(jz = -WF0+§J‘_IU:(8)‘18, (70)
1 +438in%6 e !
Uz—-—gﬂﬂ—le- 0+§J‘_lvz(8)d8 (76)
and Q= —f [v,cos 8 —v,8in ) sds. (7¢c)

After much algebra, evaluating v, and v, in (4) and substituting into (7), we find the
analytic expression for the angular velocity:

4 3 *-
Q= 3F 12{2X1 S24+ 1, S(1 +48%)+2X(2+382~ 484)&5,—'-)——5 - 28%(1 + 487
———E-IS-—+L S[X2(1 +482) - S¥3-48%)] - L XS’(!—4S’)‘[1+0(5)] (8)
(X2+C’)l 1 - 0 b3 1 1)
where
1 +S‘ |
N = si = = L o= = —
sinf, C =cosl, I, f_’a In(R,|R_)ds, L, lnA —1 L, T

Ry ={a24+2[2XSF(1 —=28)]a+1+4X2 24X} + 1 +2X8 - (1 -285%),
= [(N24+ )4+ XS + C}(XFS).

Corresponding equations for the translational velocity components can also be
obtained. However, the resultant expressions have not been integrated analytically
because of their complexity. Instead, for trajectory calculations, we have used the
velocities (6a, b) without wall effects. As illustrated by the numerical computations
which follow, the dominant error in these approximations lies in the O(¢) and higher
corrections to the resistance coefficient rather than the O(c/In X) wall effect. We note
that the shape of the slender body does not enter the asymptotic theory at the level of
approximation in (8). Thux, although we have worked with a circular eylinder for
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simplicity, (8) is applicable to any slender body. In view of its algebraic complexity,
we have checked (8) against the theory of de Mestre & Russel (1975) for § = 0 and
$m and against numerical evaluations of (6a). Furthermore, we have confirmed that

Q- 0 as X - o0 as expected.

Numerical solution of the indegral equation

Slender bodies can be easily constructed with x sufficiently small for little error to be
expected in the predictions of the integral equations resulting from (1). The asymptotic
solution (64, b) and (8) of the integral equations, however, has a more limited applica-
tion because particles rarely have ¢ = 1/In (2/x) small. For example, in the experiment
described in §3 the particles have x = ¢ and € = 0-209. A numerical solution of the
integral equations was therefore sought to make reasonable predictions for these
particles.

The integral equations from the slender-body theory were discretized by dividing
the rod into N segments of equal length. Within each segment the Stokeslet force
distribution was assumed to have a constant value, introducing 2N unknowns, and the
integral was evaluated at the centre of each segment, providing 2V equations. Care is
needed in integrating the kernel function. While the part of the kernel arising from the
images in the wall is adequately treated by the trapezoidal rule using the two end
points of the segment, such a treatment of the remaining, non-image part of the
kernel would result in large, O(1/In N) truncation errors. This part was integrated
analytically and the resulting analytic expressions rearranged to avoid the numerical
subtraction of nearly equal large numbers. The discrete form of the integral equation
was thus 2N linear equations for the velocity distribution in terms of the 2N values of
the Stokeslet distribution. While no elements of the coupling matrix vanish, the
diagonal is fairly strong, reflecting the singular nature of the integral equation at small
x. A Gauss—Seidel iterative procedure was therefore adopted to solve for the Stokeslet
distribution. The iteration was started from the lowest-order asymptotic result and
usually converged to an r.m.s. error of 10~! in less than seven iterations. When time
stepping the configuration, the iteration was started with the converged result from
the previous time step and often required only a single iteration. To avoid systematic
errors, the iterative sweep was started from alternate ends at each time step.

To determine the motion of the rod near the wall, three integral equations were
solved for each configuration, corresponding to the three velocity distributions for
translation of the rod at unit velocity parallel and perpendicular to the wall and for
rotation at unit angular velocity. For each velocity distribution, the net force and
couple acting on the rod were evaluated from the Stokeslet distributions and the
correct linear combination chosen so that the couple vanished and the net force was
unity parallel to the wall. This translation and rotation were finally used in a fourth-
order Runge-Kutta time-stepping procedure to calculate the next configuration. A
step size for which the rod fell through its own length in two time increments generally
produced an accuracy of better than 10-3. Smaller time steps are necessary very near
the wall, s0 automatic interval halving waa used.

To assess the accuracy of the numerical solution of the integral equation, several
studies were performed without the images in the wall. The motion of a rod in an
unbounded fluid has received considerable attention and Batchelor's (1970) third-
order asymptotic theory is available for comparison. First the effoct of increasing .V on
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the numerical representation of the Stokeslet distribution was studied for perpendicu-
lar translation and « = g5. The general shape of the distribution does not change for
N-= 3,7, 15and 31 (at which the centre of the end segment is within one radius of the
end). Except for the end segments, where the distribution sharply rose by 609, the
predicted values of the force distribution differed by less than } 9,. Varying the length
of the numerical segment or subtracting a special analytic end correction might have
improved the representation.

The main side study evaluated the various friction coefficients for a free circular
cylinder as predicted by the slender-body integral equation. The net forces #; and %,
on a rod translating parallel and perpendicular to itself, respectively, were calculated
together with the couple £, on a rod rotating about an axis perpendicular to itself and
the stresslet %, when the rod is placed in a pure axially symmetric straining motion.
At fixed & these friction coefficients varied little with V, and the error scaled on In ¥/.N,
as expected from the poor representation of the end regions. For the rotation, the most
sensitive of the three coefficients involved in the wall interactions, the result at
Kk = ¢ for N = 10 had a 7% error and that for ¥ = 28 a 3} % error. The results for the
friction coefficients extrapolated to N = cc are shown in figure 3, normalized by the
first-order asymptotic prediction.

Also shown in figure 3 are Batchelor’s (1970) third-order asymptotic resuits (his
equations (8.11)~(8.14)]. At k = 4l the first-order asymptotic results are poor, with the
stresslet out by a factor of two. The third-order theory narrows this gap to 13 %:-

In the case of ., and %, we have in addition been able to compare our results with
those of Youngren & Acrivos (1975). They solved numerically the integral equation for
Stokeslet singularities distributed on the surface of the rod including the ends, and
thereby made no slender-body approximation. Our slender-body numerical results for
F, tend quickly to the full numerical results, with an error of 0-4x coming from the
ends. The agreement for %, is not so good, with a 5%, difference between the two
results at x = ,}5. (Note that in their table 4 Youngren & Acrivos give the couples
multiplied by a factor of 8.) It is not clear whether the discrepancy is due to the slender-
body approximation or whether the numerical results are inaccurate at large aspect
ratio.

Results
The equations of motion for a rod moving near a wall have been integrated numerically
as outlined in the previous subsection. Figure 1 shows the two possible ways in which
the rod can turn. Those rods which start far from the wall at an initial inclination to the
vertical greater than 67° turn such that they are horizontal at closest approach, while
those starting with an initial inclination less than 27° are vertical at their nearest point.
Each of the two turns is symmetric under time reversals, so that after the turn the
particles tend to the initial inclination to the horizontal but with the opposite sign
Between 27° and 67° the slender-body theory predicts a collision with the wall, al-
though the analysis breaks down for separations less than a diameter. The neglected
end cffects then become very large and stop the rod from touching the wall. Simple
lubrication considerations presented in the appendix suggest that these effects will
immobilize the end, causing the rod to pivot through a horizontal position. althouh
this behaviour is not entirely confirmed by the experiments. A detailed analysis of
such collisions is complicated by their sensitivity to the precise shuape of the end ot the
rod, with a possibility that the symmetry of the turn would be lost for imperfect ends
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Figure 3. The friction coefficients for slener circular cylinders for perpendicular (%) and
parallel (F,) translation, for rotation about an axis perpendicular to the cylinder (%) and for
pure straining motion in the direction ot the eylinder ((¥},). Our numerical results () are com-
pared with Batchelor’s third-order asyvinptotie results (A4) and the full numerical results of
Youngren & Acrivos (crosses).

In figure 1 the vertical length scale is seen to be large: the rod falls much faster
than it moves sidewayx or rotates. This is particularly evident for the near-vertical
glancing turns. An alternative presentation of the results is given in figure 4, where the
trajectory is plotted as the inclination from the vertical @ vs. the distance X from the
wall to the centre of the rod. Markers at equal time separations (87p02/F,) are placed
along the trajectories. The shaded region denotes the forbidden configurations in
which some part of the rod lies within the wall. The trajectories terminating in this
region indicate collisions with tho wall at finite orientations, even with very fine
numerical resolution. Most trajectories show little rotation one particle length from
the wall. Rods approaching at 45, for which the angular velocity vanishes in the far-
field analysis of Caswell (1970), rotate through less than 1€ before approaching within
one quarter of their length from the wall and rotate through only 5° before colliding
with the wall, The exceptions are particles which turn at a large distanee from the wall.
These start near the horizontal or vertical and turn slowly, therefore falling through a
large vertical distance before completing the turn.

The full curves in figure 4 are based on the numerieal solution of the integral equa.
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FIGURE 4. The variation of the distance from the wall and the orientation of the rods as they
turn. Numerical solution of the integral equation yields the solid curves, which are marked at
time intervais of 8mul3{F,. The dashed curves labelled A are trajectories for 20° and 70° obtained
from (8a, b) and (8). The dashed curves labelled M use the modified friction coefficients of
figure 3. Experimental data points: 4, 8, = 65°; @, 0, = 54°; (0,0, = 47°; A. 0, = 27°;
0.0, = 17° (run t); @, 0, = 17° (run 2).

tions. T'he results from the first-order asymptotic solution of the integral equations
are also plotted as dashed curves labelled 4 for the 20° and 70° trajectories. This
asymptotic theory underestimates the drag on the rods, allowing them to come much
closer to the wall; indeed, the band of initial angles leading to collisions widens to
23°-69°. Because most of the error in the asymptotic theory comes from the poor
friction coefficients for translation, a modified theory was developed in which the
numerically evaluated friction coefticients replace the asymptotic ones but the angular
velocity remains that of the first-order asymptotic theory. The resulting trajectories
for this modified theory, plotted as dashed curves labelled M, lie very near the full nu-
merical curves and demand somewhat less computer time. The success of the moditied
theory indicates that the wall has little effect on the translational velocity of the rods.
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FIGURE 5. The particle release mechanism. Not drawn to scale.

. Experiment
3 pe Apparatus and procedure

The experiments were conducted in a Plexiglas tank with a 2 ft by 2 ft cross-section
and a height of 5 ft. The tank was placed on a stand which was adjusted so that the
walls were vertical.

The particles were made from aluminium screen wires. These wires were placed
between two smooth flat stainless-steel plates and then rolled to a nominal diameter of
0-0254 cm. The aspect ratio 1/k = I/ R, of the particles ranged from 59 to 69. A qualita-
tive check with a microscope showed the particles to be straight and of constant radius.
The particles were in addition shiny, which made them well suited for photographic
study, and light, with a measured density of 2-36 g/em?.

The liquid used was a white mineral oil supplied by Standard Oil Co. of California.
This liquid is colourless and clear, ideally suited for a photographic study. At 22:2°C,
the density of the liquid is 0-88 gfcm? and its viscosity is 170 cP.

In order that the experiment can be compared with the theory it is important to
release the particle in a way which does not cause it to turn out of the plane perpen-
dicular to the wall, or cause a significant disturbance in the surrounding fluid. The
release mechanism which we used is shown in figure 5. Its significant feature is the thin
metal plate with a groove 0-05 cm in diameter in the bottom edge. Just prior to
starting the experiment, the groove is wetted with the liquid being used. The slender
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Wy, ul

F1GURE 6. Distance between the particle centre and the wall as a function of time. @. 0, = 54 ;
0.6, =47°;, 0,0, =27°:.C, 0, = 17°.

body is then carefully placed in the groove. When the plate is submerged in the liquid,
the slender body slowly slides out of the groove. The plate can be adjusted such that
the particle is released in the proper plane. We found that this system successfully
launched about 80 %, of the particles.

The motion of the particles was recorded on 16 mm cine film with a Bolex camera.
The camera was mounted on a counterweighted platform which could be moved up or
down at a variable, but controlled speed. The particle was thus tracked during its
entire fall, and a continuous film obtained of its trajectory. Quantitative measurements
were made from the film using a microfilm reader. Vertical position was measured from
image lines on the back of the tank. Horizontal position was determined using a photo-
graph of a ruler taken prior to the experiments. A typical run lasted 5 min. during
which thirty frames would be taken at constant intervals.

Results

The purpose of the experiments was to verify, at least qualitatively, the theory
described in §2. Thus measurements were made of the position of the purticle centre
and the particle orientation as functions of time for various initial inclinations ranging
from 17° to 65°. We present data here for the five representative cases ¢, = 17 (two
sets), 27°, 47°, 54° and 85°, which include one ‘glancing’ turn (17°), two ‘reversing”
turns (54° and 65°), one * colliding’ turn (47°), and one turn just on the border hetween
‘glancing’ and ‘colliding’ (27°). Plots showing horizontal and vertical position us a
function of time for initial inclinations of 17°, 27°, 47° and 54° are given in ftigures ¢
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FIGURE 7. Vertical displacement of the particle centre as a function of time. &, &, = 547;
0,0, = 47°;, A, 0, = 27°;, 0, 0, = 17°

and 7. The measured angle of inclination as a function of horizontal position for all five
initial angles has been superimposed on figure 4, where it may be directly compared
with the theoretical results. An indication of the degree of reproducibility of the data
is provided by the two independent sets of data for #, = 17°in figure 4. We shall discuss
figures 4, 6 and 7 in detail shortly.

First, it is useful to consider the motion of the particle when it is far from the wall.
All of the experiments were started with the separation between the particle and the
wall sufficiently large that the sedimentation rate was constant and the particle
rotation nil. The existence of such a regime suggests strongly that both inertia and end
effects of the top and hottom of the tank have a negligible influence on the particle
motion. For, if inertin or end effects were significant, the particle would rotate and
translate with a velocity which varies with time. The absence of a measureable inertia
cffect is important since the Reynolds numbers based on the observed velocities show
values as large as 0-1. A further check on the importance of inertia or end effects is
provided by n comparison hetween the measured velocities and theoretical values
corresponding to the drag coeflicients of figure 3. The horizontal and vertical velocity
components are listed in tuble 1 The two sets of values are in good agreement., thus
confirming the Inck of significant inertin or end effects. A tinal demonstration, which
also illustrates a degree of self-consistencey in the data, is the fact that the vertical and
horizontal positions, plotted v« time in the manner of figures 6 and 7, collapse onto
universal curves when the particles are fur from the wall,

Turning to the regime of wall internetions, it is elear from tigure 4 that the observa
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Experimental Theoretical
0. U, U, U, U.
56 0-206 0-0495 0-209 - 0-048
47 0-210 0-051 0-221 0-050
27 0-265 0-044 0-254 0-041
17 0-255 0-0275 0-265 0-028

TaBLE 1. Particle velocities (cm/s).

tions and predictions are at least in qualitative accord. In particular, the ‘glancing’
and ‘reversing’ modes of interaction are both evident, the former for 6, = 17° and
the latter for 8, = 54° and 65°. In addition, at intermediate angles, e.g. 6, = 47°, the
particle appears, with the resolution available, to hit the boundary and then complete
its rotation.t Even from a quantitative point of view, the two cases #, = 17° and
0, = 27° are in excellent agreement with theory, certainly well within expectations
given the approximations of the theory and uncertainties in the experimental data.
The case f, = 27° appears to be close to the maximum angle for a ‘glancing” turn. as
the particle comes extremely close to touching the wall.

The three cases of larger initial inclination, 8, = 47°, 54° and 63°, in which the
particle undergoes a ‘reversing’ turn, are in poorer agreement with the theory. In
particular, the influence of the wall is felt at a much greater distance than that pre-
dicted. This is especially evident for 8, = 54° and 65°, where the particle inclination is
already changing when the centre is some 5 half-lengths from the wall. The horizontal
velocity is less influenced, but it too begins to be affected by the wall at nearly 3 half-
lengths separation distanice. We may note that the end of the particle comes very close
to touching the wall for 7, = 47°, as predicted by the slender-body theory. but ap-
parently it does not make contact. The strongest evidence for no contact is that the
particle continues to slide vertically down the wall. rather than pivoting about a
fixed end.

Neveral other features of the observed particle motions are worth noting. First. the
particle trajectories are reversible. We have only shown data corresponding to the
approach to the boundary. However, complete symmetry was observed between the
approach and retreat. This is true even for /1, = 47°, where the particle end is very
close 1o the wall, thus providing further evidence that the particle and wall do not
touch. Second, the angle of inclination appears more sensitive to the influence of the
wall than any of the other variables. In particular, the plots of figures 6and 7show close
agreement with predicted translational velocities in an infinite fluid, right down to one
half-length separation between the wall and particle. Indeed, except for separations of
one half-length or smaller, deviations from the infinite-fluid result are well within
normal experimental error, and probably of little significance.

Clearly. most features of the motion of rod-like particles near a plane wall wre
correctly predicted by the slender-body anulysis of §2. Some points of disagreement,
for exanmple the lack of contact between particle and wall for ¥/, = 47°, may result from
end correetions neglected in the analysis. Other points of disagreement, however, are

t We shall dinerss this lest pomt in more detal later,
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not so easily explained and thus require further study. Most important are the devia-
tions between theory and experiment which are found at large distances when the
initial inclination is large (i.e. f, = 54°and 65°). At present, we see no obviousexplana-
tion for these differences either in the theory or in experiments.

L. G. Leal and G. Tieffenbruck wish to thank the National Science Foundation for
its support of their participation in this work, through grant ENG 74-17590.

Appendix. A lubrication theory for a ‘colliding’ turn

The way in which lubrication forces acting on the end of the rod manage to stop it
colliding with the wall makes an interesting study for the method of matched asympto-
tic expansions. Here we summarize the basic results. Time is non-dimensionalized by
4mul/F, and lengths remains non-dimensionalized by the half-length of the rod. For
simplicity we assume that the rod has a spherical end of radius <R with R of order
unity. Except for lubrication forces acting on the end, no interaction with the wall is
included as appropriate at the lowest order of slender-body theory.

The standard expressions for the lubrication forces become applicable when the
separation d between the rod and the wall is somewhat smaller than «, i.e. the thick-
ness of the rod. These lubrication forces do not affect the motion, however, until
d = O(x*In k), because the friction coefficient for the whole rod is 1/« In« larger than
that for the small end. Initially only the normal lubrication force acts, and it dramati-
cally slows down the horizontal motion towards the wall. The normal force also
causes & negative angular velocity.

The tangential lubrication force becomes important after a short time O(x In x), when

d = O(x%exp (5 cos?O/R k Inx)).

This occurs in spite of the fact that the friction coefficient associated with the tangential
lubrication force is O((d/x) In (d/x)) smaller than that associated with the normal foree,
because the normal velocity drops more dramatically than the tangential velocity. The
action of the tangential lubrication force is to decrease the tangential velocity of the
end of the rod, and to make the rod rotate with a positive angular veloeity.

There then follows a long phase in which the rod rotates virtually pivoting on a fixed
end. The pivoting turn lasts for a period of time

)
g —l— In (trm -—'—“) .

During the turn the end of the rod slips vertically a distance ((x) while the minimum
separation is predicted to be
d = k*R?exp (3 sin¥, [kt Inn K?).

This minimum separation is extremely small; indeed, 8o small that physical contact
must be expected in practice, o.g. in the experiments of §3 a separation smaller than
10-1% m is predicted. Physical contact, or any other breakdown of the lubrication
theory, would of course destroy the svmmetry of the turn. The reason for the smallness
of the minimum separation is not difficult to see: the normal lubrication foree

Inthed fd
remains O(1) during the tuen, which lasts for 1/lnx, thus In (dfdg) = O(1 [x? In x).
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CHAPTER III. Translational Motion of a Sphere
in a Viscoelastic Liquid
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1. Introduction

The mechanical behavior of macromolecular fluids in viscometric flows
is now reasonably well understood. However, with the exception of tube
flow, nearly all of the technologically important flows are associated
with non-viscometric fluid motions. One interesting and important non-
viscometric fluid motion is the flow around a submerged object. The only
attempts to describe the motion of a viscoelastic fluid for this class of
flows have employed the so-called "retarded motion" expansion which
effectively reduces the constitutive behavior to that of the nth-order
fluid which is usually associated with the names of Rivlin and Ericksen.
Such an expansion-necessarily restricts viscoelastic effects to a secon-
dary role. Nevertheless, for the class of particle motions which involve
cumulative, weak viscoelastic contributions, the "retarded motion" expan-
sion has been shown to yield qualitatively correct predictions of particle
motions, both in uniform streaming flow and in shear flow [c.f.
Tiefenbruck and Leal (1979) and Chan and Leal (1979)]. What is needed
now is a description of particle motions when the effects of viscoelas-
ticity are strong. Analytical description would be preferable, but such
problems must await the development of new, hopefully more general,
mathematical approximations. The only real hope for developing such
approximations is to obtain a better understanding of the physics of
viscoelastic fluid motion. Perhaps the best way to acquire this under-
standing is to compare experimental results with exact theoretical
descriptions for the same problem. Due to the nonlinearity of the con-
stitutive equations, such solutions must be obtained numerically. A

specific problem, from the class of particle motions which will allow
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comparison with experimental data, as well as being of direct technological
interest is the streaming motion past a sphere.

The uniform translational motion of a Newtonian fluid past a sphere
has been treated theoretically for a number of different cases. The
solution for the motion of a sphere in a "perfect fluid" may be found in
Lamb (1945). Stokes (1851) analytically investigated the motion of a
sphere in a Newtonian fluid in the creeping flow or inertialess regime.
Stokes' solution was later extended by Oseen (1910) to include weak
inertial effects and still further extended by Proudman and Pearson (1957)
by use of the method of matched asymptotic expansions. When the con-
vective acceleration terms in the Navier-Stokes equations are not small,
the resulting nonlinear problem must be treated numerically. Hand compu-
tations using finite difference techniques were carried out by Kawaguti
(1950) and Jenson (1959). The methods of Jenson were extended to a finer
grid by Hamielec, Hoffman and Ross (1967) who solved the equations on a
digital computer. The motion of a sphere in a power law fluid in the
creeping flow regime was studied by Wasserman and Slattery (1964). Using
variational methods they were able to obtain upper and lower bounds for
the drag coefficient. Yoshioka, Adachi and Ishimura (1971) studied the
same problem for a Bingham fluid. The creeping flow of a micropolar
fluid (a rather exotic fluid with a nonsymmetric stress tensor)past a
sphere was analyzed by Rao and Rao (1970).

The study of the motion of a sphere in a viscoelastic fluid was begun
by Leslie (1961) who carried out a "retarded motion" asymptotic analysis
for an Oldroyd fluid. For weakly elastic 1iquids the problem is linearized

about the Newtonian solution given by Stokes.
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Similar solutions were obtained by Caswell and Schwarz (1962) and
Giesekus (1963) for third-order fluids. Giesekus used the known relations
between the third-order fluid and the Oldroyd model in the "slow flow"
1imit to show that his solution and Leslie's were in fact identical. Due
to the nonlinearity of all realistic constitutive equations, this is as
far as analytical investigation can take us. To proceed further, the
problem must be attacked numerically. In this work, we shall obtain
exact numerical solutions to the equations governing the flow of an incom-
pressible viscoelastic fluid past a spherical obstacle.

One area for the application of the solutions for sphere motion is
in describing bubble motion in gas-liquid contact mass transfer equipment.
The analysis of such problems begins by considering an isolated bubble.
For the motion of a single bubble in a viscoelastic 1iquid, it has been
observed experimentally that the terminal velocity versus bubble volume
curve has a discontinuity at a "cfitica1" volume [=0.1 cm3, see e.g.

Zana and Leal (1978)]. It is generally believed that the cause of this
discontinuity is an abrupt change of the surface conditions from solid-
1ike behavior (no slip) to a freely circulating behavior (zero shear
stress). Leal, Skoog and Acrivos (1971) have shown that the change in
bubble shape is not very significant at the point of transition. Indeed,
glass spheres were found to fall at the same velocity as the bubble rises
if suitable corrections for the density difference are made. In the light
of this observation, a spherical shape is used to represent the bubble in
our present study. The actual shape for this problem would be slightly
teardrop. Since the flow of a viscoelastic fluid past a sphere is already

a difficult problem, we have chosen to forego the problems associated with
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the nonspherical bubble shape and employ spherical coordinates centered
in the bubble.

One of the problems associated with theoretical studies of particle
motion in strongly elastic liquids is the choice of an appropriate con-
stitutive equation to describe the fluid. Since none of the currently
proposed constitutive equations can quantitatively describe all of the
known viscoelastic phenomena, the most we can require from the constitu-
tive model is that it qualitatively reproduce all of the known viscometric
flow phenomena with a single set of thermodynamically acceptable values
for the material coefficients, and that it not be qualitatively inconsis-
tent with the limited non-viscometric flow data which presently exist,
The model for the extra stress tensor, T, used in this work is a form of

the model presented by Oldroyd (1958),

1o
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In equations (1) and (2), the rate of strain tensor, e, and the vorticity

tensor, W, are given by

= %. (vl_j + (vu)T) W =% (‘79 - (VU)T)

no

The model represented by equation (1) is consistent with the forms
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suggested by deductive studies of dilute suspensions where 0 < o < 1.
The 1imit o = 0 is obtained only for the special case of a suspension of
spheres or near-spheres where the microstructure rotates exactly with
the local vorticity. The 1imit o = 1 corresponds to a suspension of
rod-like particles with an infinite axis ratio. In order to elucidate
the model behavior in viscometric flow, we may consider the model pre-

dictions from equation (1) for steady simple shear flow uy, = §y

1+ (1 - 852
12
MY 2 77

~
1]

y¥X 0

2n 2(0, - 1)

] _ oY VM T

Np = Tx ™ Tyy © 2 N
7Y L+ a7(1 - o)y

N2/N1 = - (1-0)/2

Thus we see that the model predicts shear thinning for Az < Al, a # 1.

The model also predicts a positive first normal stress difference and a
negative second normal stress difference in qualitative agreement with
experimental observation for simple shear flow. It may be noted, however,
that xz/xl must be greater than 1/9 to insure that the shear stress is a
monotonically increasing function of shear rate in a simple shear flow,
and this restricts the maximum degree of shear-thinning to 1/9; which
is less than is observed. For steadyuniaxial extensional flow, the model

gives the following result,
T, - T,, =3n_ E
XX 22 o) (1 - ZaAIE)(1+ aAl E)
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where E is the extension rate. We note that for non-zero o the model
predicts an increasing elongational viscosity in uniaxial extensional
flow. Thus we can see that as o increases from zero to one, the exten-
sional viscésity increases, while the degree of shear thinning at a given
shear rate decreases. For a more detailed discussion of the model be-
havior in these simple flows, the interested reader is referred to
Tiefenbruck (1980).

The study of Leal et al., cited above, found that only 30% of the
observed velocity jump could be accounted for using a purely viscous
(shear thinning) fluid model. Therefore, it appears that the magnitude
of the velocity jump in the bubble velocity transition phenomenon is a
manifestation of fluid elasticity. For any meaningful comparisons between
experimental observations and theoretical predictions, it is necessary
to solve the relevant governing equations for non-trivial values of the

u_A
Weissenberg number, Wi = —E%JL . This dimensionless parameter can be

viewed as the ratio of the time scale of the fluid memory, Al, to the
convective time scale of the fluid motion, a/u_. To obtain the necessary
theoretical results, our only recourse is to employ numerical techniques.
The first numerical solution for a viscoelastic liquid, of which we are
aware, was obtained by Gilligan and Jones (1970) who studied the flow
caused by an infinite circular cylinder impulsively started from rest in
a second-order fluid. Due to the growth of errors from their method of
calculation for long times, they did not continue the integration to
steady state. In view of the unacceptability of the second-order fluid
in transient situations, it is hard to assess the results of their com-

putation. Crochet and Pilate (1975, 1976, 1977) have considered plane flow
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in a square cavity, flow through a contraction, and flow around cylin-
drical bodies all for a second-order fluid. Tanner, Nickell and Bilger
(1975) and Caswell and Tanner (1978) have developed a finite element
algorithm to treat the flow of a second-order fluid in planar channels

and in typical wire coating geometries. While their program is set up to
accept shear rate dependent parameters, the only efforts in the area have
been for a power-law fluid in the wire coating problem. With the possible
exception of nearly viscometric flows where the second-order fluid with
rate dependent parameters is exact, the second-order fluid model is
strictly valid only for "retarded" motions, where the Weissenberg number
 is much smaller than one. Numerical solutions using the second-order
fluid model for finite Wi are therefore of questionable value. Even
solutions for the more general nth-order fluid model are of Timited value
since the retarded motion expansion is generally believed to have a finite
radius of convergence, Wi = 1, beyond which only an infinite number of
terms would suffice.

A model for a viscoelastic fluid which does not suffer from these
drawbacks is the differential model introduced by Oldroyd (1958). The
first numerical investigation of the flow of an 0ldroyd fluid was that of
Townsend (1973), who studied the following transient pipe flow problems

(1) Impulsively imposed pressure gradient

(2) Fluctuating pressure gradient

(3) Vibrating motion of the pipe along its axis
using a four constant Oldroyd fluid (no,Al,Az,uo) with a codeformational
(e = 1) time derivative. More recently, Akay and Kaye (1976) studied

unsteady flows of a three constant corotational (o = 0) 0ldroyd model in
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a concentric annulus geometry. Perera and Walters (1977a,b) have inves-
tigated the steady flow of the four constant codeformational Oldroyd
model in L and T shaped channels and in the expansion/contraction/expansion
problem. Finally, Gatski and Lumley (1978) have studied the motion of a
three constant (codeformational) Oldroyd model through a hyperbolic con-
traction. These studies are all different from the previously mentioned
second-order fluid studies in that they all solve the full differential
constitutive equations in parallel with the equations of motion. In
addition, all of these studies have used finite difference methods for
solution of the resulting system of differential equations. In both of
these features, the algorithm used in this work resembles that of these
eér1ier investigators,

The one study which we are aware of that employs a differential model
and uses the finite element formulation to discretize the problem is due
to Kawahara and Takeuchi (1977) who considered various planar channel
flows for a Maxwellfluid with a codeformational time derivative. The
study was, however, limited to small Wi (0 < Wi < 10'1), and serves to
point out some of the difficulties associated with finite element for-
mulations. Perhaps the major drawback is the lack of resolution associ-
ated with the relatively large elements and rather simple interpolation
formulae which they were forced to employ. The flow around a sphere is
found, in the present study, to exhibit large variations of velocity and
stress over short distances near the sphere. Thus we would need to
employ a prohibitive number of elements to achieve reasonable results via

the finite element technique. Furthermore, in the absence of a varia-

tional principle, we would be forced to employ a Galerkin technique like
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that described by Taylor and Hood (1973) for a Newtonian fluid, and the
implementation of a finite element algorithm is thus also an extremely
complicated problem. Finally, although Kawahara and Takeuchi say their
program takes only a "reasonable running time", they fail to give any
figures which can be compared with the currently available finite dif-
ference calculations. In the light of these difficulties and uncertain-
ties involving finite element technique, and the wealth of experience and
information in using finite difference methods in Newtonian flow problems,
we have used a finite difference approach in the present work, as indicated
earlier,

In section 2, we formulate the equations and appropriate boundary
conditions for the flow of a viscoelastic 1iquid past both a solid sphere
and a spherical bubble. In section 3, we discretize the governing
equations and discuss the method of solution. In section 4, we shall

discuss the results of the computation.

2. Problem Statement

The problem which we consider is the uniform streaming motion of an
unbounded viscoelastic fluid past a spherical particle. For formulation of
this problem, we use spherical polar coordinates (r,6,4) withtheorigin
Tocated at the center of the sphere and 6 = 0 in the downstream direction.
The equations governing the steady motion of an incompressible fluid are
the equation of continuity

vVou =0 (3)

and the so-called "stress" equations of motion
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p(u-vu) = v-I (4)

where p is the fluid density, u is the fluid velocity and T is the stress
tensor. The stress tensor is usually represented by two terms as

I:-p£+ (5)

4

where T is the extra stress tensor which is caused by the fluid motion.
It is important to note that p is not the same pressure as is normally
associated with a Newtonian fluid since I is not traceless. Rather, in
non-Newtonian fluid mechanics it has become conventional to split the
stress tensor in such a way that p is simply an isotropic term which is
necessary to satisfy the governing equations. In this work, T is given
by equation (1).

To completely specify the problem, we need to consider the boundary
conditions. At large distances from the sphere, the fluid velocity is
required to approach that of the uniform stream, Uy Along the axes of
symmetry ug = 0 and ;;3 = 0. The boundary conditions at the surface of
the sphere depend ﬁpon the nature of the spherical particle. For a solid
sphere, we have zero velocity at the sphere surface, while for a spheri-
cal gas bubble, the appropriate conditions at the surface are zero normal
velocity and zero shear stress,

In order to make the equations and boundary conditions dimensionless,

we utilize the free stream velocity, u_, the sphere radius a and the

typical stress nouw/a. The rheological parameter & is already dimen-

sionless. The governing equations nondimensionalized in this manner are
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ot 3T ot (tan -
re , >re 1 7Tee . Too

S ar r r o6
au U, ou u.u
- 8 8 8 ro
re (o gt 2o L ) (1)
193 2 1 3 . _
;Z'—F (r ur) e 55-(uesxne) =0 (12)
Uty pu_a Ay
where Wi = Re = —— £ = —
a "o Al

In this work, we shall assume that the Reynolds number, Re, is much smaller
than one, and thus ignore the inertia terms on the right-hand side of
equations (10) and (11). The magnitude of the Weissenberg number is

indicative of the importance of elastic effects on the stress experienced
by a fluid element and therefore of its importance on the fluid motion.

Since the uniform streaming motion past a sphere is an axisymmetric
problem, we may introduce the streamfunction, y, to satisfy the contin-

uity equation (12). The velocity components are given in terms of ¢ by

1 1 oY
u, = Uy, = = ——— = (13)
r rzsine 36 5] r sing ar

The problem is thus to solve (6) - (11), expressed in terms of the stream-
function, subject to the appropriate boundary conditions. The usual pro-
cedure when working with the streamfunction is to eliminate the pressure

vby taking the curl of the equations of motion. For the system of equations
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used here, the resulting equation is

2
" T 9T 2
8 .4 %% 19 1 3 . ) 1.3 )
2 Al e ;?'—§'<s1ne 35 (Tres1n®)) + = 555 (Tog = Tpy)
cot® 9 1 9 -
T (Tee - Td:qb) WAL (ZTrr' Tag Tq:(b) 0 (14)

When we substitute the Newtonian expressions for T in terms of ¢ into

equation (14), we obtain

eh = 0 (15)
where g2 - - + 8in® §_.(__l_.§_)
3l r 96 \sind 9

The usual manner of obtaining the numerical solution of equation (15) is
to split it into two second-order equations

E2) = - wr sing (16)

E2(wr siné) = 0 (17)

% is elliptic and there is

but, in any event, the differential operator E
no difficulty in obtaining numerical solutions for either formulation.
However, if we consider the system of constitutive equations separately
from equation (15), we obtain only hyperbolic operators, in spite of the
fact that the combined form is an elliptic equation.

The presence of hyperbolic operators night, at first, appear to be

an advantage since direct methods are available for integration of

hyperbolic equations along characteristics. However, no satisfactory
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scheme could be found to solve even the Newtonian problem, much less a
fully viscoelastic problem. There are two basic difficulties with such
an approach. First, the problem to be solved is, in fact, elliptic, no
matter how it may be formulated. Indeed, the boundary conditions are
not of the proper form for use with any of the usual schemes for inte-
gration along characteristics starting with initial values at one end.

Second, it is only the particular solution to the various hyperbolic

operators which produces the proper solution to the problem. The homo-
geneous wave solutions are clearly spurious. Due to the presence of
truncation errors, however, their presence is unavoidable in numerical
calculations. In order to overcome these difficulties, we have developed
an "indirect" scheme which is similar to the decomposition to second-
order elliptic operators represented by equations (16) and (17). To
accomplish this, we simply write the stress as the sum of a viscous term

and a non-Newtonian contribution

T o= 2e-P | (18)

2 . . 32Prr 4 aprs 13 1 5 :
E“(wr sing) = r sing 3r2 + ¥ v ;?'56'(5?36'56'(Pres1n99
LL9 (P -p_)+S0t828 (p _p )
r arasb 66 rr r ar 66 od
13
AT (2P = Poq Pdmb)} (13)

and

E°y = - wr sing
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We can obtain P in either of two ways. Either we can calculate ¢ and g

and then solve (18) for P, or we can substitute (18) into (1) and obtain

a differential equation for g which is then solved directly. We have
employed both methods in this work and we have found that there is no
effect on the solution and only a minimal difference in computation time.
We have also found it advantageous to work with the disturbance stream-
function, @, given by

Vo= oy - %-rz sin%e (21)

rather than y itself. The accuracy of the many kinematic variables is
greatly improved with this substitution. In order to enhance the reso-
lution near the surface of the sphere, we have introduced an expanding
mesh by transforming from a normal spherical coordinate system (r,6,6) to
the system (z,n,6) where z = Inr and n = cosé. Prelinminary cormputations
using a (z,8,¢) coordinate system with the usual centered difference formu-
lations on the axis of symmetry produced inaccurate values of the stress
components and pressure along the upstream axis of symmetry. Numerical
experimentation showed that the introduction of the n coordinate and the
use of one-sided differences greatly improved the calculation of the
stress components along this axis. The primary difficulty in using the

n coordinate arises in connection with terms like r . or w which behave
1ike sin6 near 8 = 0,7. Sind is, of course, given by /5 - nz. Since
/{i?:Fris not represented very well by a Taylor series expansion near

6 = 0,m , errors are introduced into the computations. The simplest way
to handle these terms is to multiply them by sin6 and then make the

appropriate changes in the governing equations.
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In order to employ the streamfunction it is necessary to reconsider
the boundary conditions which are to be satisfied. For large r it is

1 2

easily shown that y - z-rzsin 5 as anticipated in equation (21). Further-

more, at the surface of the sphere and along the axes of symmetry

=0 for r=1 and =0, | (22)

The second condition at the sphere surface depends upon whether the sphere
is a solid or a bubble. For the rigid sphere, the condition on the stream-

function is

%% =0 r=1 (23)

For the freely circulating surface, the correct condition is not guite as
obvious. However, it can be shown that Trg = 0 at r =1 implies that

€ = 0 at r =1, even when 1 and g are related via the constitutive
equation (1). This results in the conditions for the streamfunction

n

3 oY -
er'r =0 r=1 (24)

Q

A11 of the above conditions can also be represented, in different form of
course, for @.

Since the equation for I involves derivatives with respect to
spatial coordinates, it would appear that we would need extra conditions
to determine the stress components on the boundaries of the computational
region. This is not the case as we shall see below. Far away from the
sphere, it is clear that g = 0 and thus T must also be zero. Along the

axes of symmetry ug = 0, and T may be expressed as a system of ordinary
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differential equations with r as the independent variable. At both the
forward and rear stagnation points, the constitutive equation always
reduced to a system of algebraic equations. Indeed, for the case of a
rigid sphere, the stress components over the entire surface are given by
a system of algebraic equations. When the sphere surface is freely
circulating, on the other hand, the non-zero normal stress components are
related by a system of ordinary differential equations with N as the
independent variable. Thus, the values of all stress components can be
determined via either algebraic or ordinary differential equations along
all boundaries of the computational domain, knowing only the values of I
at infinity.

Clearly, one of the difficulties with a numerical solution of the
problem just formulated is the application of the boundary conditions for
r >, In principle, one method of handling this problem is to impose the
known boundary conditions for r -« at some large but finite value of r.
For the creeping flow of a Newtonian fluid past a sphere, however, we know
that the disturbance velocity drops off 1ike 1/r. Therefore, if we apply
u = u, at any reasonable finite r, we obtain an overestimate for the drag.
For example, if we impose u = u_ at r = 10, the calculated drag is
7.31mpua, approximately 20% high. One of the ways of minimizing this
difficulty is to determine additional terms in the asymptotic solution
for large r and then use that asymptotic expression evaluated at finite r
as the boundary conditions. Such a method has been used by Robertson,
Seinfeld and Leal (1973) in analyzing the combined forced and free con-
vection of a Newtonian fluid past a flat plate. The derivation of an

asymptotic solution for large r in the present case is carried out in the
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appendix. The results given below are the stresses and disturbance flow
due to a point force in a 1iquid described by a linearized version of

equation (1). The asymptotic results are

bﬁ = Bl[r - Wi(l - s)cose]sinze + 0(1/r) (25)
T = 484 cose/re + 0(r3) (26a)
Tog = 28, cose/r2 + O(r'3) (26b)
Top = 28, cose/r2 + O(r'3) (26¢)
Ty = 0+ 0(r7Y) . (264)

The constant 81 represents the strength of the point force and is

related to the drag on the sphere via the equation.

1
8, = - % j [(tpe = PIN = (1,4 5108)] _; dn (27)
-1

Thus, the asymptotic correction to the free-stream boundary-values
introduces a coupling between the solution at large r and the solution at
the sphere surface. At each iteration in the numerical algorithm a new
estimate is obtained for 81 and this value is then used to determine the
boundary conditions at large r from (25) and (26a-d). As a measure of
the improvemenf this type of boundary condition affords, we consider the
Newtonian problem (Wi = 0) with equation (25) imposed at r = 10. The drag

on the sphere 1in this case is 5.9970 TUU_a, an error of only 0.05%.
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3. Finite Difference Equations

Now that we have the equations and boundary conditions in a form
suitable for solution, we can turn to the problem of discretization. In
equations (19) and (20) we used centered differences for all of the

derivatives. Thus, equation (20) at hj’zi) is

V1) = 25(3,1) + 5(3,1-1) - 8 (0(4,1+1) - D(3,i-1))
2z 2

£ ) (0G+11) - 2505,9) + 31 )=-e (a2)%e(3.1) (28)

where ¢ = wr sing and k = Az/An. If we reorganize equation (28), we recog-

nize a block structure which is typical of elliptic partial differential

equations discretized 1in this manner. This structure is given by

A&
BaA2Cs
B;AQCQ
- Bn;Am .
Cp = (1 B %%) Lnxn By = (1 ¥ %;) Loxn

-2+ - nd) K- nd)

KE(1 - ng) - 2f + KR - ngﬁ k(1 - ng)

-2f1+ 1 - nd)
- = nxn
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where Inx stands for a (nxn) identity matrix. In the notation used here,
m+2 i§ the number of z coordinate lines including the boundaries and n+2

is the number of n coordinate lines also including the boundaries. In

the computation described below, m=61, n=29, An =h%§ = 0.0667, and

Az =1n(20)/62 = 0.0483. This system of equations, represented by (28), is in-
verted by taking advantage of the sparse block structure to reduce the number of
operations needed. The algorithm for this inversionmay be found in Dorr (1970), or
Isaacson and Keller (1966). The inversion of the system of équations took

approximately one minute on the California Institute of Technology's

IBM 370-158. The "inverse" which is then stored for future use required
storage of 206 K of computer memory.

Since equation (19) is of the same form as equation (20), we can use
the same matrix calculated above to solve for . All that needs to be
changed is the inhomogeneous term. The inhomogeneous term, f, for
equation (19) is
£33 Zi*.. CAn¥® .. * ., *..+

(3,1) = e "{Pg(3,1+1) = 2P (5,1) + P ,(3,i-1) + l.SAZ(Pre(J,1 1)

* * * * .
Pro(d,i-1)) = K212 (g (3+1,1) - 2Ppa(3,i) + Prg(3-1,1)

+

(1-n2) (P (3#1,141) = P (5-1,841) = P (541,8-1) + P (3-1-1)

Pee(j+l,i+1) + Pee(j-l,i+1) + Pee(j+l,i-l) - Pee(j-l,i-l})/4

+

1382 (Pag (35 1+1) = P (3,1+1) = Pyg(d,i-1) + P, (3,1-1))/2

82 (1-n2)QP, (F+1,1) = Pgg(3+1,1) = P, (341,1) = 2P, (3-1,1)

+

-+
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where P:e = Presine. At this point we need to formulate boundary con-
ditions for z which may be used in conjunction with the discrete form of
equation (19). At large distances from the sphere z can be calculated
from equations (20) and (25). From the symmetry conditions it is known
that £ = 0 at 6 = 0 and m. Thus, equations (23) and (24) must be used to
generate an equation for the surface vorticity for the cases of a solid
sphere and a spherical gas bubble, respectively. Let us first consider
the solid sphere. In this case, we find from equation (20) that
r = - Bzw . = dU - -
(g;2;L=O . Then, using the fact that v 2 0 at z = 0, we

obtain the following approximation for c.

B(5.2) + e 102y /2
(3,1) = -2 : (30)

(8z)°

.
-

The formal Taylor series representation of the error in equation (30) is
0(az). However, Orzag and Israeli (1974) have found for several model
problems that a representation like (30) for surface vorticity gives second-
order accurate results, thus indicating that the formal Taylor series ex-
pansion may be misleading. The calculation of the vorticity at the

surface of the bubble is not as straightforward, but is still not difficult.
First, we write down a centered difference representation of equation (24).
Then we write the discrete form of equation (20), both at the bubble surface.
By eliminating the value of the vorticity below the bubble surface, we

obtain the following expression for the surface vorticty



164.

¥(j,2) + e(ZAZ)(l-n?)/z
cglds1) = -2 z(1+1.50z] : (31)

The equations (30) and (31) are the required expressions for the surface
vorticity. In order to calculate the stresses, we must be able to com-
pute all of the necessary kinematic quantities. Once again, we employ
central differences for all derivatives. The relevant expressions are

B ¢
P

-3z. ~ . Nl e
1 9 ) = "1,
e (3,i)=e [2 (w(J+1 1)2Anw(a 1))
(@(j+1,i+1) - D(§-1,i+1) - 9(j+1,i-1) + @(j-l,i-l))} (32)
) 48zzhn
-3z, N 2(3.9+1) - 0(3,i-1)
e (d,1) = e ! [(. S (w(3,1 )ZAZw(q i
1-n;
(@(j+1,i+1) - 5(j-1,i+1) - P(j+1,i-1) + @(3-1,1-1))
+ 4AzAn
- (@(j+l,i) - @(j-l,i))] (33)
24n
-3z | (B(*1,1) - @(j-1,1)> . <®(J,1+1> - @(j,i-l)j]
e¢¢(j,i) =-e [( 2An (1-n§) 20z
(34)
T (B - B(ie)
* . -,-+ - .,i'
e g(d,1)= e.451n6 = S [3 (w \EL ZAzw J )
. <®(j,i+1) - 20(4,i) + @(j,i-1>>
(a2)°
Ny o - ~ .,. ~ .-1,.
+ (1-n§) <w(3+1,1) 2@(321) + u(J 1))] (35)
(&n)
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*
* ”e) . ( ADY 25, 2
(ére - = (j,i) = W~ ) Sine = e (l-nj)

e i[(@(j,ﬂl) - 20(§,1) + @(J’n’-ll) 3 (xﬁ(in'ﬂ) - @Uﬂ‘-l))
5 (Az)2 20z
) (@(j+1,i) - 20(3,1) + @(i-l,f)>] (36)

These equations are applicable throughout the flow domain except at
the axes of symmetry, the surface of the sphere, and the outer boundary.
At the outer boundary there is no problem computing any of the kinematic
quantities since we have an analytic expression for $. On the axes of

symmetry it is easily shown that

€y e¢¢ = - err/Z and Weg = ey T 0

To evaluate the derivatives on the axis of symmetry it is necessary

. . . . . )
to employ one-sided differences since we have no information on 5% or

2

é—% at n = #1. Thus we find that at n = -1 (j=1), ep is given by
an

-3z, Ao oy Apa s
e..(1,7) = e “i [2 (4w(2’1)22\nw(3’1)>

i (é@(Z,i+1) - 0(3,i+1) - 4B(2,i-1) + $(3,f-1))] (37)
4AzAn

Similar expressions are used at n = 1 (j=31) except, of course, backward

differences are employed instead of the forward differences used in

equation (37).
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The kinematic variables at the surface of the sphere depend, not
surprisingly, upon whether the sphere is rigid or freely circulating. For

a rigid sphere, it is easily shown that €. T €9 T e¢¢ = 0 and

r
WP i (c/2)  at z=0 (38)
e, T W, = -5 = C at z=
re  ré 2 3,2 s
For a bubble, on the other hand, Weg = Ug = €9 = 0 at z=0.

Using equation (31), we thus find that

- oo

u. = uw

g rg =" 63/2 at z=0 (39)

Furthermore, the continuity equation gives

M oL1
or re 2

BCB

P at  z=0 (40)

Finally, it may be shown that

——TMB t z=0 (41)
e = at z=
b0 2(1m") |
and €55 can be calculated by difference
o T " Cpp T 84y - (42)

Equations (39) - (42) specify all of the needed kinematic quantities in the
constitutive equation at the surface of a spherical bubble.

The computation of the stress components is handled differently from
all of the above equations. It is easily shown that equations (6) - (9)
are a system of ordinary differential equations if we follow lines of
constant ¢ i.e., follow a fluid element as it travels through the flow

domain. Thus, it is seen that for a steady flow with no regions of
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recirculation, the stress can be calculated at all points in the flow
field, if the stress is specified at the inflow boundary, by integrating
forward along the streamlines. In the algorithm used in this work, the
specified value of the stress at the inflow region (large z,n<0) is taken
from the point force solution given by equation (36). While we cannot di-
rectly take advantage of the fact that the equations are ordinary, differen-
tial equations along streamlines, we have designed our algorithm so that

we mimick the "natural" scheme of integrating along streamlines as closely
as possible. To do this, we sweep through the field starting fromn = -1
and proceeding to n = 1 while simultaneously moving inward toward the
sphere on rays of constant n where Uy < 0 and outward from the sphere where
u.> 0. Fortunately, u. never changes signs more than once on a given ray

r
in the solutions which we have obtained and this simplifies the programming

effort considerably. The derivative terms in the stress equations were

discretized in a one-sided manner such that information flowed to the point

where the stress was to be calculated.

We reproduce below the discretized form of the constitutive equation

used when U, (denoted below as u) > 0. We note here that -uesine (denoted

below as v) is always > 0.
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= Trr(j’i'1)>
Az

=2 /T (J31)
T (351) + Wi:U(J,i)e ‘( -

-21<TY‘Y'(J.’1) = Trr(j'lsi)> ZT:e(Js")/<* U;) L.
An ¥ (1_n§) Cre - 7/ (351)

+ v(j,i)e

*
- aere(J91)> - Zaerr.(j,i)'frr(j’i)} = zerr(jsi)

-z, (e (j,i) - e (j,i-1)
+ 2eWi {u(j,i)e ! ( rr . rr

* *
~-Z., e (Js") - e (J'l"‘) ZE (j"]) u
Fv(y.i)e j ( rr Anrr > 4 r8 Qﬂ* -ﬁi>(j,i)

- aeje(j,1)> - 2aerr(j,f)2} (43)

., 9 - i1
Tee(j,i) . {u(j,i)e z (198(3 i) AzTee(J i ))

L (reé(j,i> - ree(j-l,i)) 2t ,(0i)
an (1-n5)

+ v(j,i

* U* *
* ((wre = _r.—e'> (j’i) + aere(.j’i)> = Zaeee(j’i)Tee(jQi)} = 2eee(j’i)

-z (e .(3,1) - e . (j,i-1)
+ 2eWi {u(j,i)e 1 ( 99 89

Az

)e-zi (eee(j,i) - eee(j-l,i))

+ v(j,i e

Ze* (i,1) * U* *
. -;_jn—z_)— ((“’re‘ —f—) (3,1) + ocere(j,i)> - Zaeee(J',i)Z} (44)
J
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=-Z. T (351) - T (J,T'l)
T,5 (1) + Wi {u(j,i>e ‘ <9¢ 2 )

Az
L. ('a.) = ('1a1)
+ v(j,i)e “i <T‘P¢ J.1 Aanbd) J > - 2ae¢¢(j,i)r¢¢(j,1')}
T (s) = (Jsi'l)
= 2e,,(3,1) + 2¢Wi {u(j,i)e ‘s <e¢¢ il Aze¢® >
., ) - 1.1
e V(5406 z, (e¢¢(3 1)An e¢¢(3 1)> ) 2ae¢¢(j,i)2} (25)

* %*
i3 . - . . : - . .-1)
*(3,1) L s & (Tre(3,1) Trg(dsi >
Tro + Wi {U(J,1)e =
* * ‘Zi
-z (1..(3,1) -1 _,(3-1,1) n.e .
Fviae ( e > gy freved

1-nj

* * U*
-aTY‘G(j’i)(eY'Y‘(j’i) + eee(j91)) = TY‘Y‘(j’i) ((wr.e - _r.e'> (Jﬂ)

* _.(* u;>(j,i) * _ *
toe, (3,1)) + 155000 1) (\wpg = = - e (3,1)) ¢ = 2e (3,7)

* . . * o 3
z4 <er9(3,1) - ere(a,1-1)>
¥:

+ 2eWi {u(j,i)e

") - e (-1,0) R
-Z. [e J,1) - e J=1,1 n:e * .
+v(j,i)e ( a: i £ > + e.qV(3,1)
(1'ﬂj)
*
* - . * “e) - . .
- 20, 5(3,1) (e, (3,1) + g (5,1)) 4-Q%9 - =) (G51) (ggp(d,51) - e..(3:1))

(46)

The differencing used in these equations is basically a backward Euler

scheme which, unfortunately, is only first-order accurate. The advantages
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of equations (43) - (46), relative to a higher-order scheme, is that they
are easy to implement and the resulting computation is stable.
Stability is important here because of the stiffness of the equations
when u and/or v are small. While the formulation used here is stable, it
does introduce dispersion errors. Attempts to implement a second-order
scheme with no dispersion error were only partially successful because of
the stiffness problem which caused the computed solutions in the outflow
region to have an unrealistic wave character.

The actual use of equations (43) - (46) to calculate the stress at
(n-,zi) involves the solution of the four equations for the four unknown
stress components. Since equation (45) only involves r¢¢(j,i), that
equation is easily inverted immediately for that component. The other
three components are coupled.

The resulting 3x3 system was inverted symbolically using Kramer's
rule. When all of the nécessary coefficients are evaluated, the re-
sulting stress components can be calculated in a straightforward
manner. We note here that the above scheme takes advantage of the fact
that the constitutive equation is linear in the stress components.

Now that we have a discrete form of the governing equations and
methods to solve them, we shall proceed to describe the computational al-
gorithm. Given a value for the vorticity field ¢ and 81 the "force
constant”, we inverted equation (28) to obtain ¥. We thenused U to calcu-
late all of the kinematic quantities needed to solve for the stress com-
ponent. We then solved for the stress components using equations (43) - (46)

with equation (26) as the initial condition, and used equations (10) and (11),
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to determine the pressure, p, at the sphere surface. A new value of 81
could then be calculated using (27), and this value was under-relaxed so

that the overall solution scheme is stable. We used

< 8 - )

where BI is the directly calculated value of 81, and b is the relaxation
parameter which was generally assigned the value 0.05. This value was
found by preliminary testing which showed that 61 = .05 gave rapid, well
behaved convergence for the Newtonian problem. We found that it was
actually beneficial to have 81 vary slowly since it exerts a large in-
fluence on the solution through the initial condition on the stress com-
ponents. Finally, we determined P from equation (18) (unless it was
determined directly from the differential equation). We then updated the
boundary conditions on ¢ (the vorticity at the body was also under-relaxed)
and then inverted the relevant equation to obtain a new value of ¢. If

the value of

max lc*(j,i) - c(g)(j,i)} < 0.001 ,
i,d

the calculation was stopped. If not, we substituted

*
L ()
and the entire process was repeated. The solutions reported in the next
section were obtained by using the Newtonian solution as the initial
iterate and then increasing Wi slowly. Each succedingly Targer value of

Wi was computed by using the preceding solution as the initial iterate.
The computations took between 5 and 20 minutes each on an IBM 370-158 for
increments of approximately 0.3 in Wi.
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Results

The best way to present the results of these computations is by ex-
amining detailed plots of the various kinematic and stress variables. We
shall plot stress tensor components directly in order to facilitate com-
parison with the small Weissenberg number solutions of Leslie (1961) and
Giesekus (1963). Figures 1-4 are the Newtonian (Stokes) solution con-

tours of the streamfunction, vorticity, t__, and Trgo for the flow past a

rr
solid sphere. The fore-aft symmetry of the solutions is readily apparent.
The sharp radial gradient of T n€23r the surface of the sphere is pro-
duced by the no-slip condition which forces T to be zero on the surface.
Figures 5, 6 and 7 are plots of the Newtonian values of the streamfunction,
vorticity and Trp for a bubble. Once again the fore-aft symmetry of the
flow is apparent. The effect of the free shear stress boundary condition
is to cause the streamlines to become "flatter" and displaced slightly
closer to the sphere. A second feature, which will play an important part

in understanding the results for viscoelastic fluids is that the normal

stress component, T ., is approximately three times larger near the bubble

rr
than it was near the solid sphere, reflecting a similar difference in the
magnitude of the corresponding diagonal component of the rate of strain

(or velocity gradient) tensor. These changes, relative to the solid

sphere, are consistent with the idea that the bubble boundary exerts less
shear force on the fluid than a solid sphere. Indeed, the shear stress Treis
identically zero in the case of the bubble ina Newtonian fluid. In both of the
Newtonian solutions, the plots of Toe and Too have the same appearance as

the plot of T but with different numerical values, which again reflect

rr?
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the presence of larger values for the 66 and ¢¢ components of the rate of
strain tensor in the case of the bubble. These first seven plots are
shown here for comparison with the viscoelastic plots detailed in the
remainder of this section.

In all of the solutions to follow, the viscosity ratio, e, was
assigned the value 0.2. This value was arbitrarily chosen as being larger
than 1/9 and still small enough to provide a "reasonable" amount of shear
thinning. One of the ways of checking the accuracy of the numerical re-
sults is to compare them, in the 1imit of small Wi, with available asymp-
totic solutions for the nth-order fluid models. One comparison between
the numerical and asymptotic (Brd-order fluid) theories is shown in Table 1,
where we 1ist the results for the drag for all cases considered. For the
smallest two values of Wi shown, namely 0.1 and 1/3, the agreement between
the numerical and analytical values is extremely good. We shall return to
discuss the results of Table 1 in more detail later. However, one re-
markable feature which can be mentioned here is the fact that asymptotic
results are very close to the numerical ones up to Wi of at least 2/3 for
all cases except the spherical bubble with o = 1 where they show signifi-
cant differences at somewhat lower values. The level of agreement is
especially surprising in view of the fact that the analytical results are
based on only three terms of an asymptotic theory which is strictly valid
for Wi << 1. There has, of course, been some previous indication in

h-order fluid approximation may

other problems of the fact that the nt
provide qualitatively correct results for finite values of Wi (cf. Leal
1975, Ho and Leal 1976, Chan and Leal 1979, Rivlin 1976, Giesekus 1976),

but the present results are the first which afford the possibility of a
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detailed numerical comparison with 'exact' results for a fully nonlinear
constitutive model. Thus, in the following discussion we examine more
closely the correspondence between the numerically calculated results for
the constitutive model given by equation (1) and analytical results for
both the second- and third-order fluid approximations. In all of the
figures to follow, the points are the values from the numerical solution
and the solid 1ines are computed from asymptotic solutions.

Figures 8 - 13 show the numerical results for flow past a solid sphere,
as well as the analytical solution for a second-order fluid, for Wi = 2/3
and a = 1, Figures 14 - 20 show the same numerical results but with the
analytical solution for the third-order fluid. It is useful to recall
that the constitutive model, equation (1), for a = 1 exhibits a positive
primary (or first) normal stress difference in simple shear flow, but zero
second normal stress difference and a shear-rate independent viscosity.
In axisymmetric extensional flow, the apparent viscosity increases rapidly
as a function of the strain rate for the uniaxial case, but decreases in
absolute value and changes sign in the biaxial configuration.

Prior to any attempt to discuss the details of the various plots
(8) - (20) in terms of the rheological properties of the fluid in the simple
rheometric flows, a few general observations about the results can be made.
First, and most surprising, is the very good agreement between the numeri-
cal results for the full constitutive model, and the analytical solutions
for both the second- and third-order fluids, evaluated at the same
Weissenberg (Wi) number. There are considerable qualitative changes
relative to the Newtonian solution, particularly in the various stress

components, and the analytic solutions represent only the first two and
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three terms, respectively, in an asymptotic sequence for Wi -~ 0. It is
apparent that the nth-order fluid, retarded-motion approximation provides

an excellent quantitative fit to the exact (numerical) solution over a

much wider range of Wi than could have been anticipated. Furthermore, in
spite of the fact that the shear-viscosity is constant for o = 1, both in
the equation (1) and its retarded-motion approximation, there is a con-
siderable modification in the shear stress distribution. We shall dis-
cuss the results for Trg in somewhat more detail below. However, it is
evident that the shear stress field changes significantly for flow past a
sphere even though consideration of rheological data in simple shear flow
and in extensional flows, the two identifiable "components" of the motion
around a sphere, would have suggested that little or no change should occur
for a fluid with constant shear viscosity. Thus, anticipating similar
results to be presented later in this section, it may be concluded that
even a well-developed understanding of the fluid's behavior in simple
shear or extensional flows will not totally suffice for gqualitative "a
priori" predictions of fluid response in the more complicated streaming
flow past a solid sphere — in spite of the fact that the latter would
appear to be dominated by shear flow near the surface and by extensional
flow farther out into the fluid. It is the coupling between shear and
normal stress components which arises from the non-Cartesian geometry of
the velocity field that leads to the predicted changes in Trg for flow
around a sphere, and such coupling effects simply do not exist in the
simpler unidirectional or Cartesian geometries of the rheological flows.
Let us now turn to a more detailed consideration of the individual

figures 14 - 20. If we compare these figures with the Newtonian fields
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represented by figures 1-4, it is evident that the most striking mani-
festations of viscoelastic fluid behavior are in the stress components

s T

Tgg and Ty though easily discernible changes also occur for Tpp

¢
and the vorticity w. It is of interest to see whether at least some :f
these changes can be understood in terms of fluid behavior in simpler
flows (a = 1). Let us first consider Tog- Near the sphere surface, the
velocity components Ups Ugs u¢ are all very small and the motion is
closely related to a simple shearing motion,'invo1ving ug = ue(r), and
the constitutive equations (6) - (10), reduce, for this type of flow,
essentially to those for a viscometric flow. For such a flow, the fluid's
memory, as fluid elements convect through the space, is not an important
factor, but it is expected for @ = 1 that the primary normal stress
difference, Tag = Tpps should be positive, the second normal stress

r
difference zero, Tpp = T¢¢ = 0, and the shear stress field unchanged from

its Newtonian form. Since Ty C2D be shown to be zero on the sphere's

surface for a = 1, it follows that Too must be zero and further that Tag
must be positive everywhere on the sphere surface. It is clearly the
surface contribution t0'reg associated with the existence of a positive
first normal stress difference in simple shear flow, which is responsible
for the strongly skewed and altered pattern for Tag in figure 16. In
simple shear flow, N1 increases with the shear rate and in the present
interpretation of the flow near the surface of the rigid sphere, this
would imply that the non-Newtonian contribution to Tse should increase
Tocally on the surface with increase in €.g- The latter is, of course,

equal to zero at the front and back stagnation points and increases to a

maximum at the equator. Examination of the surface values for Tog» which
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are plotted in figure 21, shows that they do, in fact, increase also in

the manner expected to a maximum in the vicinity of the equator, thus

again supporting the contention that the observed changes in Tyg are a

result of a nonzero primary normal stress difference in the simple shear-

Tike flow which exists near the surface. The fact that'ree/eﬁe is not exactly
constant (figure 21) for the larger values of Wi, provides an indication of the

th order fluid Timit

degree of departure of the full fluid model (1) from the n
where Tao increases as eie. lle have already noted that the non-Newtonian con-
tributions to the other two normal stress components, resulting from the
shear-flow behavion will be zero at the surface and presumably small else-
where. Thus, any changes in thefie]dSTrr or T¢¢ must be associated pri-
marily with other effects. One obvious candidate is the extensional

nature of the fluid's motion as it moves around the sphere. In the up-

stream portion of the velocity field (and especially near the symmetry

axis), this flow resembles a biaxial extension with €55 and e¢¢ positive,
while ey is negative. Thus, the stress components Tag and T¢¢ would be in-
Creased by the viscoelastic nature of the fluid if the flow were, in fact, a quasi-
steady biaxial extension, whilerrr would be decreased in absolute value. On the
other hand, behind the §phere, €55 and e¢¢ are negative\Nhileerr is positive and
the flow resembles a uniaxial extension. In this case, if the flowwere quasi-
steady, the stress component T would increase fora viscoelastic fluid, while
both Tsg and r¢¢ would decrease in magnitude. When superposed on the stress fields

for the Newtonian fluid these changes would appear as an increase in the magnitude
of Tag and r¢¢ upstream and a decrease in absolute values downstream thus
Teading to the appearance of a downstream shift in the countour plots of

figures 17 and 18. The axial stress component, Ty ON the other hand
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would be expected to exhibit smaller absolute (i.e. less negative) values
upstream and more positive values downstream, thus appearing to shift the
lines of constant Trp in the upstream direction. Examination of the plots

> Tag and r¢¢ shows that

56 and oo both appear to be shifted in the downstream direction, though

the effect is somewhat obscured for T

in figures 16, 17 and 18 (or 10, 11 and 12) for Trp

T

06 by the surface shear contribution

which was described earlier. Close comparison of r¢¢ with the corres-
ponding plot of figure 3 for a Newtonian fluid shows clearly the existence

of larger positive values for 1t _ upstream of the sphere, and less nega-

ol
tive (i.e. smaller absolute) values downstream just as suggested by the
qualitative discussion above. Furthermore, it is evident in figure 16
(or 10) that the stress component T, has increased positive values down-
stream of the sphere, relative to the Newtonian fluid, and less negative
(smaller absolute) values upstreah, again in qualitative accord with the
existence of a significant contribution of quasi-steady extensional
flow to the stress fields around the sphere. Although the qualitative
behavior of the fluid in steady shear and extensional flows thus appears
to largely account for the results obtained for the normal stress com-
and t,, in flow past a solid sphere, at least for o = 1

rr’ To8 o0
and Wi = 2/3, it should be noted that there is at least one further

ponents T

mechanism available which may lead to skewness in the stress and velocity
fields for a viscoelastic fluid. Indeed, a factor which we have not con-
sidered above is that the flow around the sphere is wunsteady in a
Lagrangian sense, and this would be expected to imply the existence of
additional changes in the stress (or velocity) distributions due to the

finite "memory" of a fluid element for past configurations. In the
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constitutive equation, (1), these "memory" effects can be identified pri-
marily with the convection term, u-Vz, since other nonlinear terms in-
volving products of g and I or wand I persist even in Langrangian steady
flows such as simple shear flow. The idea of "memory" in the fluid is a
consequence of finite "intrinsic" relaxation and retardation times in the
fluid, coupled with a Lagrangian unsteadiness in the deformation of a
fluid element as it ié convected around the sphere. In the region up-
stream of the sphere, the fluid "remembers" the lower stress level it had
far upstream and the magnitude of the non-Newtonian contribution to the
stresses in this region is expected to be decreased, in absolute value,
relative to the values in the absence of any "memory" effects. Conse-
quently, the contours of constant stress will be displaced inward towards
the sphere in this part of the domain. Similar reasoning will lead to a
downstream shift of the stress contours behind the sphere relative to their
position in the absence of any memory effects. Although it may be ex-
pected that these "memory" effects are present in the results represented
by figures 14 -20 (or 8-13), it is difficult to determine their importance
for the normal stress components, Ters Tog and r¢¢ due to the simultaneous
presence of streamwise shifting from the presence of the strain-rate
dependent extensional viscosity effect which was described above. To
obtain an indication of the importance of "memory" effects we must wait
until we consider the numerical results for a = 0 where the extensional
viscosity is constant. Figure 20 is a plot of the "pressure" contours
(remember that the "pressure" in this case is only an isotropic term which
is necessary to solve the equations of motion). The contours are shifted

downstream from the corresponding Newtonian fluid contours, possibly as a
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consequence of the fluid's memory. Finally, we can consider the shear
stress component, Tprg- We have noted above that the shear viscosity for
a = 1 is constant. Thus, the major non-Newtonian contributions to Trg
arise from the streamline curvature and resultant coupling between Trg and
the normal stress components Tpp and Tog- We note that the countours of
constant shear stress, shown in figure 13, are shifted upstream at moder-
ate distances out from the sphere, while the contours closest to the
sphere are shifted downstream (i.e. in the opposite direction). The up-
stream shift evident at the larger distances is caused by the interaction
of Tpp and Tag with ue/r — i.e. it is caused by the curvature terms which
arise from u-Vz when the constitutive equation is transformed from rec-
tangular to spherical coordinates. The downstream shift nearer the sphere
s Tan and w . in the

rr’ 08 ro
terms which appear in the co-rotational time derivative. It should be

is brought about by a similar interaction between T

noted, in this regard, that the upstream shift is dominant for large r
because ue/r decreases as 1/r, whereas Wog falls off as l/r2. Nearer the
sphere, on the other hand, ue/r ~ (r - 1)/r = 0, while the vorticity
approaches a nonzero constant and the downstream shift is dominant.

Finally, we may note that the streamfunction and vorticity are both shifted’
very slightly downstream relative to their contours in a Newtonian fluid.
Although this shift might at first appear to be another manifestation of
the fluid's memory, this is not correct since the presence of "memory" is
independent of o while the downstream shift occurs for @ = 1 but not for

@ = 0. It appears that the shift in the streamfunction and vorticity are
more closely related to the skewed stress distributions which arise from the

quasi-steady shear and extensional flows near the sphere surface.
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Plots of the streamfunction, vorticity, stress components and
pressure for flow past a rigid sphere with Wi = 2/3 and o = 0 are shown
in figures 22 -28. In addition, more detailed plots for Tpp and Tgg AT
given, in figures 29 and 30, for the region immediately adjacent to the
sphere. The constitutive model, with o = 0, exhibits a shear-thinning
viscosity, and nonzero first and second normal stress differences (with
N2 = - % Nl) in simple shear flow, but has a constant apparent viscosity
in axisymmetric extensional flows. As in the case, o = 1 and Wi = 2/3,
there is excellent agreement between the analytical results — here, for
a third-order fluid — and the numerical results based on the full con-
stitutive model, equation (1). The present discussion will focus on a
comparison of the kesu]ts for the two limiting cases, o = 0 and o = 1,
and specifically on the manner in which the predicted changes in rheo-
logical behavior for simple shear flow and uniaxial/biaxial extension
(indicated above) are reflected in changes in the solutions for flow past
a sphere. The two most obvious differences between the solutions for
a = 0, and those discussed above for o = 1, are that the normal stress
component Ty is dramatically changed near the sphere surface to a form

which is at Teast superficially similar to t.., and that the streamlines,

66
constant vorticity contours and shear stress contours are all shifted
significantly inward toward the sphere surface. More subtle, but also
evident, is the fact that the normal stress components Tog and T¢¢ are
more nearly symmetric, i.e. less shifted in the downstream direction. Let

us consider the physical reasons for these changes, beginning with the
dramatic changes in T As in the case, a = 1, the flow field very near

the sphere surface is dominantly shear in nature and this suggests that
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the explanation for changes in the stress fields near the surface should
1ie in changes in the behavior of the model fluid, equation (1), for

simple shear flow as « is changed from 1 to 0. Indeed, two new rheological
features do appear for o = 0, as noted above. The shear viscosity now
decreases as the shear rate increases, while the second normal stress
difference, N2, is nonzero and equal to - %-Nl (where N1 is the magnitude
of the primary normal stress difference). Thus, since N1 > 0 and increasing
with shear rate in simple shear flow, we should expect Tag = Tpp > 0 in the

flow near the sphere surface, while t NZ) < 0, with both in-

re ~ Tod (=
creasing in magnitude near the equator where €.g is maximum. Since

7., = 0 at the sphere surface (cf. equation 9), it follows that Tap < 0 at

olo)
the sphere surface and the contours of constant T 2re changed in the

same qualitative manner as was described for Tgg in the case a =1

(where T was identically zero at the surface since NZ =0 for o = 1).

rr

The contours of constant Tag are similar to those found for o« = 1, and the

reason for their modification relative to the Newtonian fluid solution is
unchanged. It should be noted, however, that since Tpp < 0, the magnitude

of Ty at the sphere surface is smaller than for the case o = 1, and this

5]
contributes to a smaller apparent upstream skewing of the Tog contours in

the case a« = 0. Indeed, since N2 = --% Nl in the simple shear flow, the

magnitude of the surface values of 7, and 7., i.e. |tgg! and |T..l5
should be expected to be identical in flow past the sphere for a = 0.
Comparison of the contours of constant Top and constant Tog in the latter
case shows that they are, in fact, virtually identical in form near the
sphere with only a change in sign differentiating one from the other. The

presence of a shear-thinning viscosity for the case a = 0 in a simple shear
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flow is also clearly reflected in the solutions for flow past a sphere.

In particular, the contours of constant ¥, w and T.g are all shifted in-
ward toward the sphere and this is highly reminiscent of the contour shifts
obtained for purely viscous, shear thinning liquids. Changing the value of
a also changes the fluid response in regions of quasi-steady extensional
flow, such as exists upstream and downstream of the sphere near the axis

of symmetry. The presence of the strong (shear flow)induced normal stress
effects near the sphere surface 1érge]y obscures the effect of this change
for 7. and Ty

rr 6°
directly affected by the shear flow behavior of the fluid. In the case

However, the third normal stress component, T¢¢, is not

a = 1, we suggested earlier that there were two contributions tending to

shift t @ contours downstream: one associated with the finite memory of

¢
the fluid and the other with the strain-rate dependence of the apparent
viscosity in gquasi-steady extensional flows. For a = 0, however, the
extensional viscosity is constant and T¢¢ would be unchanged from its
Newtonian value in either steady biaxial or uniaxial extensional flow.
Thus, if our explanation for the changes in oo for o = 1 were correct,

the T, contours for o = 0 should be Tess shifted downstream, showing

ol
only the effect of the fluid's memory. Comparison of figures 18 and 26
shows that this is indeed the case. Furthermore, comparison of figure 26
with the normal stress contours for a Newtonian fluid provides an indi-
cation of the relative strength of the mmory effect. Finally, we may
note that the pressure, streamfunction and vorticity contours are all
shifted upstream slightly in the solution for o = 0, whereas the same

quantities were shifted very slightly downstream for o = 1. It may be

noted that experimental evidence obtained by Zana, Tiefenbruck and Leal
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(1975) showed the existence of a small upstream shift in the streamlines.
However, it is not evident to us how this shift may be explained on physical
grounds.

Let us now turn our attention to the case of flow past a spherical
bubble. This problem differs from that for flow past a solid sphere pri-
marily due to the fact that the no-slip boundary condition is replaced by
the zero shear stress condition (ere = Q) at the sphere surface so that
the flow near the surface no Tonger has a strong shear flow component.
Thus, the rheological behavior of the model material (equation 1) in shear
flow should be much less important than for the solid sphere, while the
extensional flow behavior and/or memory related effects should be rela-
tively more important. This is especially true in view of the fact that

,» €., and e, are larger in the

the normal strain-rate components, e 56 b

rr
bubble problem than for the solid sphere.

Numerical results for streaming flow past a spherical bubble, as well
as the analytic solution for third-order fluid, are shown in figures 31 -37
for the case Wi = 2/3 and a = 0. For most of the variables (w and Trg
being the notable exceptions) the analytical and numerical solutions show
excellent agreement. The departures between these solutions, and the
only significant deviations from fore-aft symmetry of the normal stress
components, all occur in the downstream wake region immediately adjacent
to the sphere. Since the fluid motion is dominantly extensional in
character near the sphere, and because the model fluid (1) exhibits a
constant extensional viscosity for a = 0, it would appear that the fluid be-

havior responsible for these changes must represent an effect of the fluid's mem-

ory in a strongly transient elongational flow. Specifically, in the downstream
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region, e.p starts with a value near to zero at the equatorial plane and
increases to a maximum at the downstream axis of symmetry. The conse-
quences of this kinematic pattern are that the stress, Tpp? is initially
small near the equatorial plane and is kept lower than the Newtonian
values over the whole rear of the sphere, as a consequence of the fluid's
memory. As the fluid approaches the rear stagnation point, the rate of
strain tensor approaches a maximum while the velocity goes to zero. The
combined effect of these two phenomena is to cause the gradient of the

stress component, T to become very large in the vicinity of the rear

rr’
stagnation point. This large gradient then exerts an effect on the vor-
ticity as observed in figure 32. This explanation is supported by the
work of Denn, Petrie and Avenas (1975). Figure 36 is a plot of Tpg for
the case Wi = 2/3, a = 0 for the bubble. Since Trg is identically zero
throughout the flow domain for a Newtonian fluid, the points and contours
in figure 36 arise solely because of the non-Newtonian nature of the con-
stitutive equation. In contrast to the normal stresses which are well
described by the third-order fluid solution, Trg shows a considerable
difference from the asymptotic result. This plot indicates that we are
outside the range of strict applicability of the asymptotic solution,
though it is also evident that we can have a marked change in a stress
component and still have relatively little impact on the kinematic vari-
ables. The pressure field is plotted in figure 37. The differences in
the pressure field from the asymptotic results must be laid primarily to
the Trg field, since the other stress components were accurately repro-

duced by the asymptotic results. The numerically calculated pressure can

be shown to be influenced strongly by the shear stress distribution.
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Since extensional flow effects appeared to play a significant role for
the case of a bubble with o = 0, we can expect much greater departures from the
Newtonian solutions for the case of o = 1. Figures 38 through 44 are the
plots of the kinematic and stress quantities for the case of Wi = 2/3,

a =1 for a spherical bubble. The streamfunction, vorticity, Tpp and Trg

all show appreciable differences from the asymptotic results. The cause

of these striking changes appears to be the high levels of stress which

are generated at the rear of the spherical bubble. To understand the

source of these high levels of stress, we can examine equation (43) at the

rear stagnation point. We find that t,..(31,1) = 2¢_(31,1) (1 - 2eWie _(31,1)) /
1 - 24i e (31,1)]. For the Newtonian Tiquid, e.(31,1) = 1.0. There-

fore as the Weissenberg number approaches 0.500, we can expect changes in

the velocity gradients so as to reduce T.. in the rear wake region. Natu-

rr
rally, this high value of the stress also gives rise to a large stress
gradient, which is the direct source of the changes in the velocity field.

In essence, the much larger values of Trp in the downstream region result
from the same strain-rate dependence of the extensional viscosity which caused
the downstream shift in Top for the rigid sphere with o = 1. However, the

effect is more pronounced for the bubble because the values of the strain

rate e.. are larger. The existence of fluid memory causes the high stress

r
Tevels to persist for a considerable downstream distance, thereby extending
the region influenced by the strain-rate dependent extensional viscosity.

This effect on the contours of Tn is quite evident in figure 40, espe-

r
cially when compared to figure 33 for Wi = 2/3, @ = 0 and figure 7 for a
Newtonian fluid. Note the extended region between the computed contours

and the downstream axis of symmetry as compared to the third-order fluid
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contours. The vorticity and t 5 show also the effects of changing veloc-

r
ity gradients in this region. Clearly, the sharp change in the vorticity,

T, and T, contours at the back of the sphere is not "real". This

rr ro
apparent sharp change is due to the limited resolution of the grid in this

region, thus making a linear interpolation, of the type used to draw the
figures, inaccurate. To investigate whether the limited resolution in this
region might effect the gross features of the solution (rather than simply
appearing as a plotting 'error'), we have obtained a solution for the
bubble with Wi = 2/3 and o = 1 in which the mesh size was halved in the n
coordinate. We found that all of the stress and kinematic values remained
unchanged on mesh points which were common with the larger grid. The
representation of all of the quantities in the plots was improved between
the second last and last rows before the downstream axis of symmetry,

but there still remains a sharp change (in the plots) between the last

row and the axis of symmetry. Figure 45 is a plot of the contours of

vorticity for this fine mesh solution.

One additional feature of the solution forWi = 2/3 and o =1 is worth
mentioning here. This is the skewing of the stress contours for Tag and
T¢¢. In the case o = 0, shown in figures 34 and 35, these components are
only slightly skewed with respect to streamwise symmetry. Here, however,
where a = 1, the extensional viscosity is strain-rate dependent and the
influence of the relatively large magnitudes of €59 and e¢¢ in flow past
the bubble is to produce a strong skew in the contours of Tog and T¢¢ .
The stress levels upstream of the sphere, where e¢¢ and e¢¢ are positive,

are considerably enhanced relative to the values for either o = 0 or for

a Newtonian fluid. Downstream, on the other hand, where €55 and e¢¢ are
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negative, the magnitude of the stresses is decreased.

For Weissenberg number equal to one, the solutions qualitatively
exhibit the same type of behavior as shown above. The kinematic variables
(particularly the streamfunction) show very little change from the asymp-
totic values, while the stress components show an increasing deviation
from the third-order fluid solutions. Figures 46 - 53 are contours of
various quantities for the solid sphere at Wi = 1 and o = 0,1. Solutions
for the bubble with Wi = 1 and o = 1 are shown in figures 54 - 56. Solutions
were also attempted for Weissenberg number greater than one. Using the
algorithm detailed earlier, it was possible to systematically reduce the
error (or residuals) in the vorticity, but the rate of convergence deteri-
orated rapidly and the solutions were not carried to complete convergence.
The results of these partially converged solutions are not unreasonable, but
their accuracy is in doubt, and we shall not report them here.

Perhaps the most important quantity that can be calculated from the
solutions outlined in this section is the force that the fluid exerts on
the sphere or bubble. For the case of a solid sphere, the results of

Giesekus (1963) for a third-order fluid may be expressed in the form

.2 .
Dra _ Wi (1 - ¢) 2 2
ﬂ_nouma = 3 E. - —é'sm— (5439 - 14380. - 50380. )] (47)

For the case of a spherical bubble, the corresponding result has been

derived by Tiefenbruck (1980)

.2
Drag _ _WiT(1 - €) _ 2 _,2
Zﬂnouma 2 [ 75 (18 - 25¢ 20" ¢) (48)

The results from the numerical solutions for the model fluid (1) are com-

pared with equations (47) and (48) in Table 1. It is not surprising,in
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view of the preceeding detailed comparisons between the analytical and
numerical solutions, that the numerically calculated results for the
drag are in good agreement with the asymptotic results, except for the
case of the bubble when o = 1. A pointofparticular interest in Table 1
is that the drag for the corotational model (¢ = 0) is smaller than pre-
dicted by equations (47) and (48) and that the difference increases as
the Weissenberg number increases.

In summary, we have developed an algorithm for the numerical solution
of the motion of a viscoelastic 1iquid past a spherical obstacle. We

have found that the results are reasonably well described by third-order

fluid solutions up to Wi = 1 in most cases. The algorithm mimicks the usual

Newtonian method of solution, and the convergence difficulties found for

Wi > 1 areundoubtedly associated with the fact that elastic terms become

increasingly important for Wi > 1 as the Weissenberg number is increased.
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APPENDIX: Far Field Boundary Conditions

The derivation of the far-field boundary conditions is much simpler
if we employ several assumptions. The first assumption is that we are far
enough away from the sphere that its effect on the fluid may be described

by a point force. The second assumption is that

u=i+u's e=es wews pegiandpsp (A1)

where i is the unit vector in the direction 6 = 0 and all of the primed
quantities tend to zero as r -~ «, When we substitute (Al) into the con-
stitutive equation and neglect any term which is quadratic in the primed
variables we obtain

ot se'
TN S = 2e' 4 2eWi o— (A2)

1]

We now use the first assumption to write the equation of motion as

vp' = v-g' + 8mgs(x) (A3)

where R is a constant vector which characterizes the magnitude and

direction of the point force which represents the sphere and
8(x) is the three-dimensional delta function. Recall from potential flow

theory that
85(x) = - 4= v(g/r) (Ad)

Now substituting (A4) into (A3) and combining the result with (A2), we

obtain
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A . 0 2, . 9
(1+w1—a;','vp~(l+€w1—a';)V!-2(l+w1§x-)v-

Now we take the divergence of equation (A5) and solve the resulting

equation for p' to obtain
T . 3
p' = 2(8x)/r (A6)

If we now take the curl of equation (A5) and solve for the vorticity, we

obtain
28 @ x
. 9 — ) =eC
(l + €EWi -3? )(_;.) = (1 + Wi —8-3(- ) T (A7)
which can be further simplified to
(Byz - Bqy) ‘ (BoXxzZ = Baxy) .2
I 3 . 2 3 eWi
mx = 2 ——-—;3———-— - 6W1(1 - EZ) Y-S + 0 (—;1—) (A8a)
(8% - 82) (85¢° - 8x2) 281 - ¢)
w' o= 2-—————7;———- - 6Wi(1 - ¢) z + 3
y r 4 r r
.2
eWi
+0 (_:77_) (A8Db)
2 .
(Byy - Box) (Byxy = Box")  2B,Wi(l - ¢)
o= 2 =L eui(1-e) A i - 2
r r r
.2
eWi
+0 (—;I—) (A8c)
Using the usual method of obtaining a velocity field from a known vor-
ticity field [see Batchelor (1967)], we obtain
B, x(B-x) 3x%(8-x) B, X

r r r
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B, y(8x) Wl - o) <3xy(8 x) Bly) (390)
u' = —= + — - i - -
Y r r ) r 7‘3
By z(8x) Iy(B-x) 82
Ué = Tt Wi(l - ¢) S - ) (A9c)
r r P

For an axisymmetric problem like the one under consideration here,

82 = 63 = 0. Employing this simplification and expressing the velocities

in spherical coordinates, we obtain

2 cose  Wi(l - 5)81(3 cos%s - 1)
up = = - 2 (Al0a)
r
Blsine
ug = - —= (A10b)
These velocities correspond to a streamfunction given by
v = 8ylr - Wi(l - e)coselsin®e (A11)

Calculation of the far field stresses is now easily carried out and the

results are given in equation (26) in the body of this work.
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Figure Captions

Figure 1. Streamlines for the flow of a Newtonian fluid past a sphere.
The streamline values are A = 0.05, B = 0.20, C = 0.50,
D=1.0,E=2.0, F=3.0,G=4.0, #=25.0.

Figure 2. Lines of constant vorticity in a Newtonian fluid for flow
past a sphere. A = -1.01, B = -0.50, C = -0.25, D = -0.125,
E. = -0.0625.

Figure 3. Lines of constant Top for the flow of a Newtonian fluid past
a sphere. A = -0.45, B = -0.30, C = -0.15, D = +0.15,
E = +0.30, F = +0.45.

Figure 4. Lines of constant Trg for the flow of a Newtonian fluid past
a sphere. A= -1,0, B =-0.25, C = -0.0625, D = -0.015625,
E = -0.00390625.

Figure 5. Streamlines for the flow of a Newtonian fluid past a bubble.
A =0.05 8B=0.20, C=0.50,D0=10,E=2.0, F=3.0,
G. - 4.0, H = 5.0.

Figure 6. Lines of constant vorticity for the flow of a Newtonian fluid
past a bubble. A = -0.75, B = -0.375, C = -0.1875, D = -0.09375,
E = -0.046875.

Figure 7. Lines of constant Ty for the flow of a Newtonian fluid past
a bubble. A =-1.25, B = -0.45, C = -0.15, D = -.15, E - 0.45,
F=1.25.

Figure 8. Lines of constant ¢ for a sphere. Wi = 2/3, o = 1. Asymptotic

results are for a second-order fluid. A = 0.05, B = 0.20,

c=0.50,D0=1.0,E=2.0, F=3.0,G=4.0,H-5.0.
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Lines of constant w for a sphere, Wi = 2/3, a = 1.

Asymptotic results are for a second-order fluid. O = -1.00,
A = -0.500, t = -0.25, x = -0.125, &= -0.0625.

Lines of constant Ty for a sphere, Wi = 2/3, o = 1.
Asymptotic results are for a second-order fluid. A = -0.45,
B=-0.30, C=-0.15, D = 0.15, £ = 0.30, F = 0.45.

Lines of constantree for a sphere, Wi = 2/3, a = 1.

Asymptotic results are for a second-order fluid. A = -0.225,

B =-0.150, C = -0.075, D = 0.075, E = 0.150, F = 0.225.
Lines of constant T¢¢ for a sphere, Wi = 2/3, o = 1.
Asymptotic results are for a second-order fluid. A = -0.225,
B =-0.150, C = -0.075, D = 0.075, E = 0.150, F = 0.225.

Figure 13. Lines of constant Trg for a sphere, Wi = 2/3, o = 1.
Asymptotic results are for a second-order fluid. O = -1.00,

A = -0.250, t = -0.0625, x = -0.015625.

Lines of constant ¢ for a sphere, Wi = 2/3, o = 1. Asymptotic
results are for a third-order fluid. A = 0.05, B = 0.20,
c=0.5D0=10,E=2.0, F=3.0,G=4.0, H=5.0.

Lines of constant w for a sphere, Wi = 2/3, o« = 1. Asymptotic
results are for a third-order fluid. O = -1.00, A = -0.500,
t = -0.25, x = -0.125, < = -0.0625.

Lines of constant Top for a sphere, Wi = 2/3, a = 1.
Asymptotic results are for a third-order fluid. A = -0.45,

B =-0.30, C=-0.15, b= 0.15, E = 0.30, F = 0.45.

Lines of constant Tag for a sphere, Wi = 2/3, a = 1.
Asymptotic results are for a third-order fluid. A = -0,225,

B =-0.15, C = -0.075, D = 0.075, E = 0.15, F = 0.225.
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. Lines of constant Ts0 for a sphere, Wi
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Lines of constant t,, for a sphere, Wi = 2/3, a = 1.

o)
Asymptotic results are for a third-order fluid. A = -0.225,
B = -0.150, C = -0.075, D = 0.075, E = 0.150, F = 0.225.
Lines of constant T, for a sphere, Wi = 2/3, o = 1.

9
Asymptotic results are for a third-order fluid. O = -1.00,

A = -0.250, + = 0.0625, x = -0.015625.
Lines of constant p for a sphere, Wi = 2/3, o = 1. Asymptotic

results are for a third-order fluid. A = 0.90, B = 0.30,

¢=20.10, D = -0.10, E = -0.30, F = -0.90.

Ratio of ree/ere2 for various values of Wi, « = 0. O = 0.1,
A= 0.33, + = 0.667.
Lines of constant y for a sphere, Wi = 2/3, a = 0. A = 0.05,

B=0.20,C=0.50,D0=1.0,E=2.0,F=3.0,G6=4.0,H=5.0.
Lines of constant w for a sphere, Wi = 2/3, 0 = 0. O = -1.0,

A = -0.50, + = -0.25, x

-0.125, <& = -0.0625.

Lines of constant Ty for a sphere, Wi = 2/3, a = 0. A = -0.45,

B =-0.30, C=-0.15, D =0.15, E = 0.30, F = 0.45,
0. A= -0.225,

i
1]

2/3, a

1]
n

B =-0.150, C = -0.075, D = 0.075, E = 0.150, F = 0.225.

Lines of constant t,, for a sphere, Wi = 2/3, a = 0. A = -0.225,

ol
B = -0.150, C = 0.075, D = 0.075, E = 0.150, F = 0.225.
Lines of constant Trg for a sphere, Wi = 2/3, « = 0. O = -1.00,
A = -0.250, + = -0.0625, x = -0.015625, <> = -0.00390625.
Lines of constant p for a sphere, Wi = 2/3, a = 0. A = 0.90,
B =0.30, C=0.10, D= -0.10, E = -0.30, F = -0.90.

Lines of constant Ty Near the sphere, Wi = 2/3, a = 0.

A = -0.45, B = -0.30, C = -0.15, D = 0.15, E = 0.30, F = 0.45.
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A

F

0.
Lines
B = 0.

Lines
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of constant Tgg near the sphere, Wi = 2/3, o = 0.

-0.225, B = -0.150, C = -0.075, D = 0.075, £ = 0.150,

225.

of constant ¢ for a bubble, Wi = 2/3, a = 0. A = 0.05,
20, C = 0.50, b=1.0, E=2.0, F=3.0, G=4.0, H=5.0.
of constant w for a bubble, Wi = 2/3, o« = 0. O = -0.75,

A = -0.375, + = -0.1875, x = -0.09375, < = -0.046875.

Lines

Lines

of constant Ty for a bubble, Wi = 2/3, o = 0. A= -1.25,
B=-0.45, C=-0.15, D = 0.15, E = 0.45, F = 1.25.

of constant Tag for a bubble, Wi = 2/3, a = 0. A = -0.625,
B =-0.225, C = -0.075, D = 0.075, E = 0.225, F = 0.625.

Lines

A

F

0.

Lines

Lines
A =-0.

Lines

of constant t,, for a bubble, Wi = 2/3, a = 0.

¢

-0.625, B = -0.225, C = -0.075, D = 0.075, E = 0.225,

625.
of constant Tpg for a bubble, Wi = 2/3, a = 0. O = 0.05,

025, + = 0.0125, x = -0.0125, O = -0.025, &= -0.05.

of constant p for a bubble, Wi = 2/3, a = 0. A = 0.15,

05, x = -0.05, O = -0.15, & = -0.45.

of constant y for a bubble, Wi = 2/3, a =1. © = 0.05,

20, +=0.50, x = 1.0, O =2.0, & =3.0, %=4.0,
0.

of constant w for a bubble, Wi = 2/3,a =1. O -0.75,
375, + = -0.1875, x = -0.09375, <= -0.046875.

of constant Trp for a bubble, Wi = 2/3, o = 1. A = -0.45,

+=-0.15, x = 0.15, < =0.45 4 = 1.25.
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Lines of constant Tso

A = -0.225, + = -0.075, x

Lines of constant T¢¢ for a bubble, Wi

for a bubble, Wi = 2/3, a = 1.
0.075, < = 0.225, 4 = 0.625.

2/3, a = 1.

A = -0.225, + = -0.075, x = 0.075, O = 0.225, T = 0.625.
Lines of constant Trg for a bubble, Wi = 2/3, o = 1.

O = 0.005, o = 0.025, + = 0.0125, x = -0.0125, < = -0.025,
& = _0.05.

Lines of constant p for a bubble, Wi = 2/3, a = 1. 4 = -0.225,

4= -0.075, x = 0.075, <= 0.225, & = 0.675.

Lines of constant w for a refined mesh for a

a=1. O =-0.75, A = -0.375, + =-0.1875, x

& = -0.46875.

Lines of constant y for a sphere. Wi
B =0.20, C=0.50, D=1.0, E=2.0,
Lines of constant w for a sphere. Wi

A = -0.500, + = -0.25, x = 00.125, <

Lines of constant Tpp for a sphere. Wi

A= -0.45, B = -0.30, C = -0.15, D = 0.15, E

Lines of constant Trg for a sphere. Wi

bubble, Wi = 2/3,
-0.09375,

"

1, a = 1. = -1.00,
-0.0625.
=1l,a =1

= 0.30, F = 0.45.
=1l,a =1.

O = -1.00, A = -0.250, + = -0.0625, x = 0.015625.

Lines of constant ¢ for a sphere. Wi

0.20, C = 0.50, D= 1.0, E = 2.0,

B
H=5.0.

Lines of constant w for a sphere. Wi

F

1,a =0. A=0.05,
= 3.0, G = 4.0,
1,a = 0. © = -1.00,

A = -0.500, + = -0.25, x = -0.125, <= -0.0625.
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Figure 52. Lines of constant Ty for a sphere. Wi =1, a = -0.45,
b=-0.030, c =-0.15, d = 0.15, e = 0.30, f = 0.45.
Figure £3. Lines of constant Trg for a sphere. Wi =1, o = 0.

A = -0.250, + = -0.0625, x = -0.015625.
Figure 54. Lines of constant y for a bubble, Wi = 1.00, o = 1.
O= 0.05, A = 0.20, + = 0.50, x = 1.0, & = 2.0, &= 3.0,
% =4.0, z = 5.0,
Figure 55. Lines of constant w for a bubble, Wi = 1.00, a = 1.
O= -0.75, A = -0.375, + = -0.1875, x = -0.09375,
&= -0.046875.
Figure 56. Lines of constant Tpp for a bubble, Wi = 1.00, a = 1.

A= -0.45, + = -0.15, x = 0.15, O= 0.45, &= 1.35.
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