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ABSTRACT

This report is concerned primarily with the effect of surface
injection on viscous two-dimensional flows. More precisely, the
investigation centers on surface injection rates where the wall shear
has been considerably reduced below the no-injection value, but where
the momentum of the injectant is still negligible compared to that in
the free stream. Three separate problems are investigated
to try to obtain an understanding of the physical mechanisms
which control the flow.

For the case of laminar boundary-layer flow, asymptotic solu-
tions are obtained for large injection and heat transfer. It is found in
this case that the boundary layer may be divided into two regions:

(1) an inner region adjacent to the surface where viscous mixing plays
a minor role; (2) a viscous layer where the transition occurs from the
inner solution to the inviscid flow outside the boundary layer. In the
case of the insulated wall the viscous layer contributes only small
corrections to the boundary-layer properties. For the highly-cooled
wall the boundary layer is strongly influenced t:y the viscous mixing
between the inviscid outer flow and the high density low-speed gas
adjacent to the wall.

For turbulent flow, experiments with constant distributed
surface injection at Moo = 2. 6 have been performed. These show
that large injection leads to a constant pressure self-similar flow
with linear growth. The experimental results are shown to be in
good agreement with low Mach number experiments when the normal

coordinate is stretched by using a Howarth-Dorodnitsyn transformation



at the same value of the ratio of wall mass flow per unit area to that
in the free stream.

Finally, the third part considers the upstream effect of the
termination of injection on the flow in the "blown'' layer. An analy-
sis, using an integral approach is presented which agrees with the
experimentally observed effects. In particular, as injection rates
approaching the maximum value which can be entrained by a constant
pressure mixing layer are approached, the analysis predicts that
virtually the entire porous region experiences a falling pressure.

It is postulated that this effect provides for a smooth transition from
a boundary-layer flow to one where mixing is negligible, except in

a thin layer near the streamline which divides the injected and free-
stream gas. Therefore, the analysis provides the step which gives
a quantitative estimate for the range of injection rates in turbulent
flow where the effect of mixing can be neglected and inviscid flow

models utilized.
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PART I. BOUNDARY LAYER FLOWS WITH

LARGE INJECTION AND HEAT TRANSFER*

*This work has been published with Professor T. Kubota of GALCIT
in the AIAA Journal, vol. 6, #1, pp. 22-28, January 1968.
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1.1 Introduction

This first part concerns itself with the solution of a model
equation in laminar flow. Although the conditions required for the
flow to satisfy this equation are of doubtful practical interest, the
trends observed in the solution can be used to provide insight into
the manner in which viscous flows adjust to increasing injection rates.

The effect of la.rge>°< mass injection rates on the incompress-
ible similar laminar boundary layer with favorable pressure gradient

1)

has been examined by Pretsch and, more recently, by Aroesty and
Cole(z). However, since in most circumstances the boundary layer
with large injection will be characterized by large normal tempera-
ture gradients, the effect of compressibility and heat transfer
warrant attention.

The simplest extension of the incompressible analysis can
be obtained by assuming Pr =1 and u ~ T. In this case, as shown

by Lees(3) and Cohen and Reshotko(4), the boundary-layer equations

can be reduced to an equivalent incompressible form. These are

2
f 4+ ff _+ B(g-f) =0 L1
—_ nn T BE-£) (I. 1)

& + fgn =0 (I. 2)

with boundary conditions: fn(0)=0; g(0) =g, £(0) =—fw; fﬂ(w) = glo) =1

where

g = hO/hO e

*"Large", of course, assumes that boundary-layer theory is still valid.



fn=u/ue
B = 2s dMe

Me ds

(1. 3)

no=tete Moo,

(25)z2 Yo Pe
- x
s = o Pelele

If B and fw are constants, then these equations are ordinary, though
nonlinear.

A direct numerical integration of these equations for large fw
is quite difficult, even with the use of high-speed digital computers.
In fact, beyond fw of about 4. 0 most numerical methods commonly
used for solving boundary-value problems of this type completely
break down. Numerical computations carried out by Libby(s) have
clearly indicated this difficulty.

This section presents an approximate solution to the equations
for large fw using the method of matched asymptotic expansions.
Except for the case g =1, the approximate equations still require
the use of numerical methods for solution. But, as is shown later
in this section, the solutions are much easier to obtain.

Section I. 2 presents the analysis and the resulting approxi-
mate equations which are obtained. In Section 1.3, some comparison
with ''exact'' computer solutions are shown which indicate the asymp-
totic solution is valid within a few percent for fw as low as 2. 0.

Some of the numerical results obtained are also presented, which

show the effect of heat transfer. In Section L 4, approximate
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- algebraic formulae for the displacement, momentum and energy
thicknesses are presented which should be accurate for fw >> 2. 0.

In Appendices I. A and I. B, the numerical technique used in the com-
putations is discussed, since a somewhat different, iterative approach
has been used.

1.2 Derivation of Equations

(2)

Following Aroesty and Cole ™/, it is convenient to work in

variables defined by
2
= (f ; f= 1 1. 4
( n) (I. 4)

Equations (I.1) and (I. 2) then become

2
\/“z‘i_%-+f%%-+2ﬁ[g-z} =0 (L 5)
af ‘
4 dg dg _
G WNZ 5l +ig52 =0 (1. 6)

with boundary conditions

(I. 7)

For the inner region, near the wall, a new independent variable,

T =—g— = N € fis introduced. Then, Equations (I. 5) and (L. 6) become
W N
d2 ~ dZ
eN Z "—-:'2+f'~:: +2ﬁ[g-—Z] =0 (1. 8)

df df



(VZ $£1+7 <8 = o (x.9)
df

. Z=0 . g=1
£=-li %;f—»ooz § (L.10)
z

'

Now, consider an ''inner'' (wall) solution that is valid for fixed T and

€ — 0. Expand Z and g as

Z(t;e) = Zy() + €Z () + 5222(?) +.

| (L11)
~ ~ ~ ~ 2~ Cd

glfie) = gplf) + eg () + e gy(f) +.

If the series (I.11) are inserted into (I. 8) and (I. 9), a power series
in € is obtained which must vanish identically in e€; hence the coeffi-
cients of the successive powers of ¢ must vanish. * The coefficients
are sets of second order differential equations for Zi and ’éi' Up to
second order in €, these are:

Zero Order in ¢

~

~ dzo ~ ~

f— +28[gy-24] =0 (I.12-a)
df

~dgg

f—s =0 (1. 12-b)
daf

Boundary Conditions:

Z,(-1) = 0;gy(-1) = g (I.12-c)

A\

% B is assumed to be O(1).



First Order in €

1 d220 . dZ, R
28 —5 tf —— +2p[g;-2,]=0 (I. 13-a)
0 de af 1 1
.1 dg . dg
%[Zé 21+ —= =0 (I 13-Db)
df df df
Boundary Conditions: Zl(-l) =§1(—1) =0 (I.13-c¢)
Second Order in €
z, dZZO 1 dzzo . dZ, .
3 — o3 tLi—=g t 11— +2(3[g2-zz] =0 (I.14-a)
Z(‘; df df df
.1 dg Z, dg, . dg
—%[Zg——}'*‘%:‘”}'—:‘ +T—=2 =0 (I. 14-b)
df df 203 df df
Boundary Conditions:
ZZ(-l) =gy(-1) = 0 (I 14-¢)

As can be seen from Equations (I.12, 1.13, I.14), the expansion near
the wall as € - 0 has resulted in a set of equations one order lower
than the original equations, (L. 8, I.9): hence, the boundary condi-
tions at f -+ are abandoned. An examination of the higher order

energy equations and boundary conditions gives, immediately

89 © 8w = constant
(I. 15)

~ ~

gl = gz = ... :gizo

That is, to all orders in €, the enthalpy ratio, g, is constant in the



inner solution and equal to g
The solution to the zero order momentum equation, (I.12-a),

with the boundary condition (1. 12-c) is
7. =g [1-(-D)?P) (L16)
0 Ew :

The solution of the first order equation, (I.13-a), with the boundary

condition (I.13-c) yields upon integration

~

Z,(®) = (- 7)%P 2p(2p-1)g f L———El— (L 17)

Although the integral can be expressed in terms of a hypergeometric
function, in general, little insight is gained from doing this. An im-
portant result which can be obtained from (L. 17) is the behavior of

Zl as f ~ 0", Then,

2p-2

7, @)~ - pep-Lg? (H2P2 @+ 0 (73R (L 18)

? -0
In order to determine the shear at the wall, note that, in the usual

E

boundary-layer variables

'd-%)f:-f (L.19)
w

[N

f
mm ) n=0
Differentiating Equations (L. 16) and (I.17), or using the differential

equations, (I.12) and (I.13) themselves, yields

5gw 2
fT]T'I)T):O = "-f—v—v‘“ + O€") (L. 20)

And, as indicated in Equation (L. 15), to all orders in€;



-7-

/9—f-> =0 (L 21)
dn n =0

3

[N}
5k

f>f:_f
w

hence %% = 0 to all order in €. Since within the similar boundary-

layer assumption

oT
~ (1. 22)
B o

D

n=0
(5)

One concludes, as was found by Libby that, at least for the case
Pr =1, p ~ T, for any finite B, the heat transfer goes to zero at the
wall for large blowing while the shear is still finite.

Another fact worth noting is a result that can be shown by
examination of Equations (I.13) and (1.14). Ifp= ’;:, then the zero-
order solution Equation (1.16) is exact to all orders in € since all
higher-order solutions contain the factor (2B-1). This case, where
Z is linear with f near the wall, corresponds to the case investigated
numerically by Libby. (5)

Equations (I.16) and (I.18) indicate that the inner solution
cannot really be continued past f=0. If g8, = 1 the solution to (1. 6)
with boundary conditions (I. 7) gives g =1 ever;where. Then, at
T = 0 the inner solution gives the correct value of Z at infinity. Hence,
for the special case 8y = 1, the viscous effect is to smooth the dis-
continuity in the slope in the (Z-f) plane. However, for g _# 1, the
inner solution gives 20 =8y #1atf=0, and the discontinuity in Z
is smoothed by the viscosity in a thin layer aroundxf = 0 (see Fig. (1. 1)

In order to match the inner solution to the outer, uniform

flow solution, a transitional expansion is introduced. For this expan-

sion, the physical variable { is appropriate, because this is the region
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where viscous terms and inviscid terms are of the same order. Fur-

thermore, the behavior of the inner solution as f — 0~ suggests an

expansion of the form

z(te) =2y +ef z )+ ...

(I.23)
glfie) =Gy +eP Go+...
Substituting (1. 23) into Equations (5) and (6) yields
Zero order
N dzzo dz
2 - - -
Z di2+fdf + 2B (Gy-2Zg) =0 (I. 24-a)
dG dG
a [,1 %o 0 _
7 [ZO 7 ]+f = = 0 (I. 24-b)
Order E‘3
. dzzo dZZI 1 dZ1
32—t Zo—g + Zg £+ 2BZ (G-Z) =0  (L25-a)
df df
dG Z dG dG
d [ 3 94 1 o] 1
< |z + . +f =0 (L 25-b)
af |“o0 4 223 df af )

As can be seen, Equations (I.24) are nonlinear while Equations (1. 25)
are linear with variable coefficients. The boundary conditions for
these equations must be chosen so that the transition solution matches
the outer (uniform flow) solution and the inner (inviscid) solution to
some prescribed order in €. Consider, first, the behavior of f — +0,
In this region it is required that Z = g = 1 for all €. This suggests

that as f — +w0, the boundary conditions for (I.24) are that Z . = G, =1.

0 0

With these conditions, an examination of (I. 24) reveals an exponential
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decay to the required values. Then, for large positive f, Equations

(I. 25) give
2 dz
d " Z 1 =
del dGl
+ f = 0 (I. 26-Db)
dfz df

Equation (I.26-a) has a solution in terms of parabolic cylinder func-
tions. (See, for example, Whittaker and Watson, '"Modern Analy-

sis.'")
Z,(6) - G(f) = {exp(-fz/ll) [ch_ZB_l(f) + czDzﬁ(if)]} (L 27)

where it is to be noted that Gl(f) — 0 exponentially as f — +c0,

As f —~+w
2
D_zﬁ_l(f) ~ et /‘lf'l‘?“3 [1+0(1/f2)+...:l f — +o0 (1. 28)
2
Dzﬁ(if)'" ef /4£2ﬁ [1+0(1/f2)] f — +00 (1. 29)

The requirement that Z1 — 0 as f =+ is satisfied only if cg = 0 in
(I.27). With Cy = 0, it is seen that as { — +0, Z1 ~+ 0 exponentially.
The other boundary conditions on Equations (I. 24) and (L. 25) are
determined by requiring that an overlap domain exists where the
solutions to (1. 24) and (L. 25) match the inner solution.

In order to determine these boundary conditions, an inter-
mediate variable f* = f/v(e) is introduced where “:28/“\/:_69 - oo}e - 0,
Then, the matching condition requires that the lim (f* fixed) of the

€—0
inner and transition solutions match. Note that this limit implies
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vix

Ne

inner solution (Equations I.16 and 1. 18) near T = 0 in terms of f*

? = vf* =0 and f = ~ -0 as € — 0 for negative f*, Writing the

3
2(66) ~ g,-8,,Y (-2 - =5 £ {pep-11g 2 (-ven?P (roven P}
v

inner %
(I. 30-a)
glf;e)~ g, (I. 30-b)
inner
On the other hand, the transition solutions become
B
~ * * _
trans. Z'()(Vf /NeE )+ € Zl("f /NEY+ ... (1. 31-a)
8trans. ~ CoVE¥NE )+ e G (vi¥/Ne )+ ... (L 31-b)

Hence

trans. Zinner
= /€ 2p 2P #/\€ % ZB] / 2
= ZO(V+f/ € )-g,tv [(V?/V) Zl(Vf/ €rHg (-1%)7 |+0(e/ v7)

8trans. ~ Zinner
= Gy (vE/NE) - g + P G vENE )+ ...

Therefore, for matching we must have

Z,(6) = Gy(f) — g,
z ., (6) = -g (-£)°P as f— - (L 32)

Gl (f) —0

That the matching can be accomplished is shown in the following
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fnanner. For large negative f, Equations (1. 25) give, neglecting

exponentially small terms

d Z1 le
—;—g—g— + gqg" - Zﬁzl =0
(I. 33)
del dG1
e

1
where £ = f/gvf,

The solution is again given by parabolic cylinder functions
~ 2 i
Z,(&) = {exp(-£°/4)} [AD_%_l(gHBszug)] (L 34)

Then, from (I.28) and (1. 29), for large values of §

Z,&)~B - £ (———%—72) -0 (L 35)
_ .

which has the required form.

After the transition solution is obtained, the composite solu-

tion is constructed by adding the two solutions and subtracting the

common part (which is the inner solution in this case). Hence

Z(f;e) = Z () + /e )Pz, 0 (L 36)

g(f;e)

Hi

2p
Gg(f) + (l/fw) G, () (L. 37)

is a uniformly valid expansion where ZO’ G0 and Z1 and Gl are
solutions of Equations (I. 24) and (I. 25) with boundary conditions
given by Equation (I. 32).

The effect of heat transfer becomes clear from an examination
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4of Equations (1. 24). If By = 1, then a solution to (I. 24-a) and (1. 24-Db)
satisfying the boundary conditions is Z0 = GO =1. Furthermore,
from (1. 25-b) G1-=- 0 and the solution to Equation (I. 25-a) is given by
parabolic cylinder functions, as shown by Aroesty and Cole(z). How-
ever, if 8 # 1, then the leading term in the expansion for Z is the
solution of nonlinear mixing layer equations (Equations L 24-a,
I.24-b). Therefore, for the non-adiabatic case, the viscous mix-
ing layer becomes more important.

Since Z0 represents the solution to the problem of mixing of
two parallel streams of different velocity with pressure gradient, §,
and does not depend on fw’ these solutions can be tabulated once and
for all. Although the governing equation for Z0 (Equation I. 24-a) is
nonlinear and requires numerical integration, it does not possess
any singularities and (as will be shown in the next section) the numer-
ical scheme is quite stable. The correction term, Zl’ is the solution
to a linear differential equation, and it also can be obtained numeri-
cally without any difficulties. An important point which seems worfh
repeating is that neither ZO or Z1 depend on fw' The blowing rate
enters only as a multiplier in the final solution.

The physical meaning of the solutions ZO and Z1 is clear.

ZO represents the velocity in the viscous mixing layer. As Ew ™ 1,
the velocity change across the layer is small. Essentially, this

means the flow is turned from the direction normal to the wall pri-
marily by the effect of the pressure gradient. That is, most of the

turning occurs prior to mixing. For By << 1, however, the pressure

gradient becomes less important (since the fluid density at the wall
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is very high) and it is the mixing of the injected and free stream
fluids which accomplishes the main part of the turning. In both
cases, Z1 represents the rounding off of corners in the velocity

profiles.

I, 3 Approximate Formulae for Integral Properties

For approximate solutions of non-similar boundary layers
with large mass addition at the wall, we may employ the moment
integral method which was found successful in separating boundary
layers with interaction with supersonic external flow. (18) For that
purpose it is useful to have approximate formulae for the integral
properties of boundary layer. For < 1, this can be done as shown
below.

Displacement thickness

5% =f00(1-f )dn =f°° (—1—— - l)df (L 38)
o n JVZ

-1
W

Momentum thickness

00 0 .
9 =j;)fn(1-fn)dn = f_f (1- NZ) df (L39)

Total enthalpy thickness

_ 0 _ 00 af -
o=[ (g-ldn=[ (g-1)=— (L 40)
0 —fw NZ

When fw is large, from the asymptotic solution

ZO(“f') =g, [1 - (—f/fw)zﬁ] for £ = O(-£_)
Z =
Z (£) + (1/fW)2‘3 Z)(0)+ ... for £=001)
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Then it follows that approximations valid uniformly in -fw <f <0 for

1/\[2—, NZ and g are given by:

I U SRR S ,l(J;)Zﬁ Eﬁ---—l—(-ﬂzﬁ + ..
VZ VZ, ~NZ, 2\t re

0 Ew Z% w
0
(I. 41)
2plz

~ 1 1

VZNZ | +NZ, - Ve, +'IZ<T‘) — - NEg 0Pl a2)
W _Z(B)

g G 2l G G Z 2
LW L0 g +(_f_1__) 1 1 Oslwg-(_f)ﬁ
NZ ZO ZO W \IZO Z()T

(I. 43)
Hence*
1 \2P
0% = £ 6+ &, -—;;(-f--) 6, + (I. 44)
w
1 \2P
6 =£ 0.+ 0, %(T“) 6, + (L. 45)
w
1 \2P
o ~fW00+01+<T; 0'2+... (I. 46)
where |

0 1
5, =7 ( Lo 1)df= 1 +N7T (%)/[zgg\gr(% '2'15):\

AN,
(L. 47)
0 0
5, =/ J—-J—>df+f<-—l—-1)df (I. 48)
-® ZO By 0 \[Z—O

*These expressions are valid if <1. For > 1 the last term in these
expressions is of higher order than that which would appear due to the
next order term in the inner solution Zl' The first two terms in
(44-46) are unchanged.



0 Z1 1 2p 0 Zl
5, = [—-—- + —r (-f) ]df+f — df (I. 49)
-0 L Z ng 0 z¢
0 1
1 NE - 1 1 1, 1
0, = T !f 1-VZ)df=1- g2 Nw r(ﬁ)/[z(ml)r(p Zﬁﬂ
w
(I. 50)
0 o0
0, =_[w(\/’zo - Ve, )df+f0 (L-NZj) df (I.51)
or 2 2 © 2
0, = [ [ L+ Ve, (-6) B] ar+[ —- df (L 52)
- Q0 Zog 0 ZOZ
. Ry
0y= (8, UNa T (;,_-15)/ [Zﬁgvf, I+ 715)] (L. 53)
0, G ®© (G_-1)
0'1=f(-——-—9—-\/g )df-f(—l—-—l—)dﬁf 0 4f
(1. 54)
© G ( 0[(G.-1)Z, (g -1)
o, = ——Ldf-—g-zf [ 0 "1, W (~f)2ﬁ]df+
-oNZ - z‘%’ Vey
0 (G.-1)Z
0 1 g (L 55)
0 7 %‘

0

The values of 61, Gi and oi are given in Table I.1. It is interesting
%
to consider %—-— = H{B, 8y’ fw) as fw —w from Equations (I. 41) and

(1. 42).

As f — oo, o* approaches a constant, H(B, , ) given by
g °PP Ew
[ Tk
ve Mo 1
2 1Bl pg 2
20 w
1
\/—Z F(‘Z—B)
2

1-
§) +1
i rGg)

—

o
=
@

su

8
“emart

"
gl

(I. 56)

®| g
ElE o
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For the cold wall, g << 1 this gives

1
J= TI'Gg) 1
HP, g,,»®)~ —g— 251 ll [1 + O(gvf‘,)] (I. 57)
rétd Pg2
8w << 1 2p W

Finally, for p << 1, this gives to lowest order in § and g since as
1
Z —w I'(Z)~NZ7 2272 2

T
HP, g, ®)~ 2Pe,, (1. 58)

g B << 1

Numerical calculations indicate that, over the range of § and g, Pre-
sented in Table 1.2, Equation (I. 56) is accurate to within =7% for

fw > 3.0. Hence, H becomes independent of fw quite rapidly and this
approximate relation may be useful for large fw'

I.4 Accuracy of the Solution

Strictly speaking, the analysis presented in Section (L. 2) is
valid only as fw—’oo. Just how large fw must be to guarantee an accu-
rate representation of the flow is certainly worth determining. In
order to estimate this, solutions obtained frornﬂthe asymptotic equa-
tions were compared with a straightforward integration of Equations
(I.1) and (I.2). The results are shown in Figs. (I.1), (L 2) and (I. 3).
For fw = 2. 0 the asymptotic solution is already within a few percent
of ""exact'' numerical results. * Hence, for any higher values of fw’
the foregoing analysis is expected to be quite accurate. Since, as

mentioned previously, the asymptotic solutions do not depend on f_

* The straightforward integration was performed with a computer
program written by J. Klineberg of GALCIT.
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implicitly, then solutions obtained for fo = 2.0 can be used to obtain
results for higher fw. That is, once ZO and Z1 are tabulated for

various values of B and 8y’ the velocity can be obtained from

1 2p
VA ZO+ (—f-—-) Z1

w

1 \2P
g Go+<f”) Gy

W

2p
for any fW > 2.0 to order (J—-) .

f
W

As an example, Figs. (L. 4) and (I. 5) present the functions
ZO’ Zl’ GO, G1 for various values of p and B In Fig. (I.6) and
Fig. (I. 7) the effect of wall temperature on the velocity and enthalpy
profiles for f = 0.1 and 1. 0 is presented. Figs. (1. 8) and (L. 9) pre-
sent the variation of the values of velocity and total enthalpy along
the dividing streamline (f = 0) with B and By A remarkable insen-
sitivity to B is observed for 8q << l indicating that a ''locally'’ similar
solution may be valid in some cases.
I.5 Summary

The effect of large mass injection on the compressible similar
laminar boundary with favorable pressure gradient has been examined.
It is found that for high rates of injection, the boundary layer may be
divided into two regions: (1) an inner region adjacent to the surface
where the viscosity plays a minor role; (2) the viscous layer where
the transition occurs from the inner layer to the inviscid flow outside
the boundary layer. Matched asymptotic expansions appropriate for
large injection rates have been constructed for each layer and a uni-

formly valid solution has been obtained. In the case of the insulated
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wall, it turns out that the viscous outer layer contributes only small
corrections to properties of the boundary layer. In the case of the
highly-cooled wall, on the other hand, the boundary layer is dominated
by the viscous mixing between the inviscid outer flow and the high
density, low-speed gas adjacent to the wall. Simple expressions for
heat transfer rates, skin friction and approximations for integral
properties of the boundary layer have been derived, which are useful

in future application in non-similar boundary-layer calculations.
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TABLE L. 1

Integral Functions from Asymptotic Solutions
for &%, 6, o

By P % 89 9 ) % %
.200 0.100 -.454 1,022 -. 001 -.022 .624 548
. 200 -. 481 . 860 -. 013 -.039 .638 .472
. 300 -. 500 . 726 .. 022 -.055 .649 .413
. 400 -.516 . 609 -. 028 -.073  .659 .362
. 500 -.528 . 509 -. 034 ..089 .664 .315
. 600 -.538 . 403 -. 039 -.108 .669 .28l
. 700 -.547 . 303 -, 042 -.129  .674 .239
. 800 -.554 .204 -. 046 -.150 .678 .208
. 900 -.560 . 096 -. 048 -.175 .68l .166
1. 000 -. 565 -. 051 . 684
1.500 -.584 -. 059 .695
2. 000 -.596 -. 064 . 701
. 400 .100 -.118 . 433 . 007 -.044 .180 .265
. 200 -.125 .318 . 002 -.075 .183 .222
. 300 -.131 .216 -. 001 -.105 .185 .188
. 400 -.135 .123 -. 004 -.138 .186 .158
. 500 -.139 . 038 -. 006 -.168 .187 .133
.600 -.142  -.056 -. 008 -.205 .188 .108
. 700 -.144  -.151 -.010 -.244 .189 .08l
. 800 -.146  -.251 -. 011 -.287 .190 .059
. 900 -.148  -.361 -.012 -.335 .191 .032
1.000 -.150 -.013 .192
1. 500 -.155 -, 017 .193
2. 000 -.159 -. 019 .194
. 600 .100 -. 026 .146 .010  -.078 .041 .132
. 200 -. 028 . 050 . 008 -.126  .041 .107
. 300 -.030  -.040 . 007 -.172 .041 .088
. 400 -. 031 -.124 . 006 -.218 .042 .070
. 500 -.032  -.208 . 005 -.267 .042 .054
. 600 -.033  -.299 . 005 -.321  .042 .039
. 700 -.034 -, 395 . 004 -.380 .042 .022
. 800 -.034  -,498 . 004 -.444 .042 .008
. 900 -.035  -.612 . 003 -.517 .042 -.011
1.000 -. 035 . 003 . 042
1.500 -. 037 . 002 . 043
2. 000 -.038 . 001 . 043
. 800 .100 -.002  -.031 . 004 -.118 .00l .053
.200 -.002 -.118 . 004 -.181 .00l .044
. 300 -.002  -.200 . 004 -.243  ,001 .034
. 400 -.002  -.281 . 003 -.305 .001 .025
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TABLE L1 (Cont'd)
g, B N 5, 0
. 500 -. 002 -.361  .003
. 600 -. 002 -.453 . 003
. 700 -. 002 -.549 . 003
. 800 -. 002 -.654 .003
. 900 -. 002 -.772  .003
1. 000 -. 002 . 003
1.500 -. 002 . 003
2. 000 -. 002 . 003
1. 000 .100 0 -.164 0
: .200 0 -. 239 0
. 300 0 -. 319 0
. 400 0 -. 397 0
. 500 0 -. 476 0
. 600 0 -.567 0
. 700 0 -. 664 0
. 800 0 -. 771 0
. 900 0 -. 891 0
1. 000 0 0
1.500 0 0
2. 000 0 0

. 369
. 442
. 520
. 607
. 702

.164
.239
. 319
. 397
. 476
. 567
. 664
L T71
. 891

. 001
. 001
. 001
. 001

001

. 001

001

OO OC OO ODOOOO

. 029
. 011
. 003
. 005
. 013

COO0OOCOOOOOOOO0
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TABLE L 2

)

Comparison of Computer Values of H(B, g
with H(B, g’ o) for GW =3,0

&%

, O
w'w

£ H= 2 HE@,g ,») [Egn. (L56)] % Error =
w 8w P 5 B g, q e
H
0.200 6. 66 7.154 7. 4%
0.200 0.600 4, 41 4.617 4.1
1.000 3.72 3.874 4.0
2. 000 3. 05 3.174 3.9
3.0 0.200 4,24 4,521 6.6
0.600  0.600 3. 00 3.074 2.3
1.000 2. 61 2. 625 0.4
2. 000 2.19 2.148 1.8
0.200 3. 55 3.818 7.6
1.000 0.600 2. 75 2. 884 4,7
1. 000 2. 54 2. 660 2.4
2. 000 2. 34 2. 496 6.8
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—— Asymptotic Solution

® Klineberg

o) | l 1 ]
-2.0 0 f 2.0

FIG.I.3 COMPARISON OF "EXACT" AND ASYMPTOTIC
SOLUTIONS f,=2.0 gy,=05 fB=0.5
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04+
0.2} fu = 2.0 —— Asymptotic Solution
) ©® Klineberg
B =05
9y=0.5
0 I ] 1 |
-2.0 0] f 2.0

FIG.I.4 COMPARISON OF EXACT AND ASYMPTOTIC
SOLUTIONS



FIG.I.5 VELOCITY FUNCTIONS IN ASYMPTOTIC EXPANSION
Zoand Z, gy =0.l
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.0
0.8
Go {3 =1.0 and o.n}
0.6
4 |-
02 |
/ 6, {8 =0.1and 1.0}
| 1 — L_,:__,.—-""‘ e e e e 1
-3.0 -2.0 -1.0 20 , 30
-0.2 -
-04 L

FIG.I.6 ENTHALPY FUNCTIONS IN ASYMPTOTIC

EXPANSION

gw = 0.1
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APPENDIX 1. A

NUMERICAL SOLUTION OF THE EQUATIONS

Equations (I. 24) and (1. 25) constitute two fourth-order systems

and are repeated here for clarity.

iG.  z
d 1 1
I ["Zo t 57

+f +

0(00) =1
Z (~») =g
zZ dZZ dZZ
= —9 iz
2 dfz 0 dfz

28[Gy-Z4] = 0 (I A.1-a)
—9 -9 (L A.1-b)
Go(oo) =1
(LA, 1l-c)
Go("w) = gw

+\/""f +2p\/’“‘[G -Z]=0 (L. A.2-a)

df df 0
Zi(o) =0

25
Z ( ) gw( f)

dGO dG1
df ]+ f-a'-f"— =0 (I.A.Z-b)
Gy ()0
(I. A.2-¢)
Gy (-0)—0

The coupling between the two sets is seen to be one way; namely, the

solutions of (I. A.1) enter into (I. A.2) as coefficients.

The technique used in solving these equations is the method

of ''"quasilinearization'' (6) (7). In this scheme, a form is assumed

for the solution which satisfies the boundary conditions exactly, and

an iterative procedure is developed from the finite difference form

of the differential equations. The method possesses distinct
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advantages in solving boundary-value problems of this type, since
it may be shown that the ''shooting'' method becomes unstable for
large injection rates. However, questions of convergence for non-
linear systems are, in general, very difficult to answer.

In order to illustrate the technique used, consider Equations

(I. A.1). Assume solutions F(1) and G(1) to (I. A.1). Then let
F2)=F1)+ [F(2)-F(1)] =FQ1)+ AF (1. A. 3)

If the assumed solution, F(1) of (I.A.1) is fairly close to the correct
solution, AF << F(1). Hence Equation (I. A.1) can be linearized

around F(1) to give

F'' (2)NFA) + F(2) [—1‘:—'-(-1—)- _ zgs] +F'(2)

WEF()
=EANEQ)  5pca) (L A. 4)

where primes denote differentiation.
Now, the derivatives in Equation (I. A. 4) are written in finite differ-
ence form, where Af, the interval size, is assumed constant,

F(2,ntl) - 2F(@2,n) + F{2,n-1)

F''(2,n)
a6’

(I. A. 5-a)

F@2,ntl) - F(2,n-1)

F'(2,n) IAT

(I. A. 5-D)

substituting this into Equation (I. A. 4) and collecting coefficients of

F(2,1i), gives
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[1 - —Jé—f—)f——] F(2,n-1)
2NF(d, n)

2 '
+[ (Af) ( F'(l,n) -2;3>- 2] F(2,n)
NF(1,n) \2JF(1,n)

¥ (1 +—-—-(-4-9-f—-—->F(z,n+1)

2VF(1, n)
2 1
_ _(af) [F él,n) NF(I, 1) - 2BG( )] (I. A. 6)
NF(, n)

If the ""interval'' [-0 < f< ] is characterized by f g and f

with N, points on the negative f axis and Nl points on the positive

f axis, there is a total of N2 + N, + 1 points at which the solution

1

is to be obtained. Equation (I A. 6) applied at interior points de-

scribes a system of N1 + N2 - 1 equations. The two boundary

conditions at { and f_. provide two more equations making
max min

this a complete algebraic system. If we change indices from n to

I whereI=1,2, ---N2 + N, - 1, Equation (I. A. 6) can be written

%

1

as a matrix equation
A(l,IUI-1)+ A2, )U{I) + A(3, I)U(I+1) = V(I) (I.A.7-a)

where

2
(I-Ny) (A1)

AL, T) =1 -
WF(, 1)
2
A2, 1) = —Af) i > 1 [F(1, 1+2)-2F(1, I+1)
VEIL D) 2(A0NF@, &0

+F(1,1)] - 265 -2 (I. A. 7-Db)
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A(3,I)=2 - A(1,1)

V(1) =

2
(Af) [\/F(l,lgl) (F(l, I+2)-2F(Q, +1 ¢ F(1, I))
NE(1, I+1) 2(a1)

-2BG(1, 1+1)]

U() = F(2,1+1)

Here the finite difference form for F‘l‘, F'l has been used. The

boundary conditions are

Z (@) =1 U(N.+N,) = 1
0 — 12 (L A. 7-c)

Zy(-0) =g U(0) = g,

This procedure has been employed for Equations (I. A.1-b) and

(I. A. 2). The iteration procedure used was as follows: An initial
guess is made for the function Zo(l ). Using the guess, the energy
equation (I. A.1-b) is solved for Go(l) subject :co the boundary con-
ditions (I. A.1l-c). This solution for Go(l) and Zo(l) are substituted
into Equation (I. A. 4), which is solved for ZO(Z). The entire pro-
cedure is then repeated until the successive solutions satisfy a
prescribed convergence criteria. Once the solutions to Equations
(I. A. 1) are obtained, Equafions (I. A. 2), written in a similar finite
difference form, are solved using the solutions of (I. A. 4) as coeffi-
cients. With Z = (fﬂ)2 determined as a function of f, the physical

distance 7 can be obtained from
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f
daf
n=[ = (I. A, 8)
—fw NZ
Since a straightforward numerical integration as given by (I. A. 8) is
very difficult near f = -fw[Z -0 as f— —fw] , M is computed as fol-
lows:
-f +Af
W
n=f Ly df (I A. 8-2)
i, NZ I +AfNZ

the second integral poses no numerical problems. For the first
integral, near the wall, the '""inner'' solution, Equation (I.16), is

certainly valid if Af is small. Using Equation (1. 16)

-fw+Af
1 df
.n1=____1_f 55T (I. A. 9)
- 2
& hw (1 -4 ]
W
2P
lettingw =1 - (- 'f_)
w
L.ty P 1-28
W fy  A-w) 28
'ql = T 1 dw
2pg2 0 wl
If ?A-—f<< 1, then w << 1,
W
28
since Oswsl—(l-%—g) .
w!
Expanding the upper limit and the integrand, we get
| 25€£: 1
fw dw 2fw :
1’]1 - T -1 = (5"——) Af (L A. 10)
el 0 w2 Ew
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. 2
to the order of (-féi)

W
This scheme was programmed on the IBM 7094 and the solu-

tions for ZO’ Zl’ GO and Cr1 were obtained for 0.1< g,< 1. 0 and
0.1<B<2.0. The scheme works quite well with convergence usually
obtained in 2-5 iterations. The running time for the most extreme
case (gw = 0.1) was under ten seconds.

In all, the success and efficiency of the numerical scheme

indicates it may be quite useful for future applications.
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APPENDIX 1. B

COMPUTER PROGRAM FOR SOLUTION OF EQUATIONS
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ASYMPTOTIC SOLUTION OF BOUNDARY LAYER EQUATIONS FOR LARGE INJECTION
B8Y THt METHUU UF QUASILINEARIZATIUN

OIMENSION F(2,300)y G(2¢300)y A(3,300), VI(300),U(300)
LGGICAL EOQDL
1 READ(5,900) BETA, FW, Gw, LOD
300 FCKMAT{(3F1U.0,L10) .
REAC(5,901) FMAX, FMINy EPSy CONVF, N2, N1, MiT, ITPRT, NSTEP
901 FORMAT(4F10.0,4515)
X1 = N1+N2
DELF = (FMAX+FMIN)/X]
WRITE(64325) BETA,FWsGWy FMAXy, FMIN,OELF N2yNL1,MIT,EPS,CONVF
329 FORMATU(IHLySXO6HBETA = FOe495X4HFA = F5,3,5X4HGHW = F5.3/7
LOXEHFMAX = F5295XOHFMIN = F5.295XOHDELF = F53¢5X01HN2 = 1[4,
25X4HNLl = 14/5X10HMAX ITER = 13,5X13HERROR BOUND =FB.1,5X
313HCONV FACTOR = F3.1//715X1THITERATION COUNTER/Z/}

8ETA = DIMENSICNLESS PRESSURE GRADIENT

Fw = DIMENSICNLESS INJECTION PAKAMETER
UW = WALL ENTHALPY RATIQ
FMAX ESTIMATED VALUE OF F AT TOP EDGE UF MIXING LAYER

FMIN tSTIMATED VALUE UOF (-F) AT BOTTUM EOGE OF MIXING LAYER
UELF INTEGRATIUN STEP SIZE IN F- PLANE

EPS = ERRUR BOUND FCR SUCCESIVE APPRUXIMATIONS

CONVF = CONVERGENCE FACTUR «GTe O AND oJLE« 1.0

NZ = MUMBER OF SUBDIVISIUNS FOR NEGATIVE F

N1 = NUMBER UF SUBOIVISIONS FOR PUSITIVE F

n o oH

NMAX = TOTAL NUMBER OF PIVUTAL POINTS = N2¢Nl+1l
= (TOTAL NUMBER OF SUBODIVISIONS) ¢ 1
MIT = MAXIMUM NUMBER OF ITERATIONS

ITPRT = 0 IF PRINT QUT UF SUCCESIVE ITERATION IS NOT OESIRED
= 1 IF PRINT OUT OF SUCCESIVE ITERATIUN [5 UESIRED
NSTEP = IF ITPRT=]1 SOLUTIUNS ARE PRINTED AT EVERY (NSTEP)-
MULTIPLE UF SUBINTERVAL
(T = 0O
ITE =0

INITIAL APPRUXIMATION FUR FZERO AND GZERQ

NMAX = NL1#N2+]
Fllsl) = Gw
oG 2 1 = 2,NMAX
Rl =[-N2~-1
2 Fllyl) =GW+{le-Gm)*(SQRT((KI*DELF+FMIN)/(FMAX+FMIN))
GO 7O 105

SULUTIUN UF MCMENTUM EQUATIUN
COMPUTATIUON CF COUEFFICIENT MATRIX FUR MOMENTUM EWUATION
5 CCONTINUE

K=NMAX -2
DG 10 I= 1K



-40 -

Kl=j-NZ~-1

SI = SQRT(F{LlsI¢1})

Allsl) = 1.0 =~ RI®DELF*%2/(2.0%51)

Ad2¢1) = DELF*#2/SI*({F(1s142)1-2.0%F(Llol¢l)+F(Ly1))/
1l (2.0%VDELF**2%5]) -2,0%BETA)-2.0

A(3¢1) = 240=A(1+1)

1O VUL = DELF*%2/51%(SI/(2.0%DELF**2)%(F(1oI+2)~2.0%F(LyI+1)+F(1l,41))

1 =2.0*BETA*G(1l,1+1))
VIil} = V(1) -A(l,1)*GwW
A(lsl) =0.0
{= NMAX~2
VII) sv{l) =A{(3,1)
A(3,1) = 0.0

SOLUTION GF SIMULTANEOUS(NMAX-2) LINEAR EQUATIONS WITH BANUED MATRIX

ITV = [TM+]

IFLITM.OTLMIT) GO TU 400

CALL SEWSOVINMAX=2y39sA¢VSsEPSyUITyILL)
WRITE(69330) ITE,y 1TM, IT

130 FURMAT (1LOX15HOUTSIODE LOOP = 13,5X14HINSIDE LOOP = ]3,

20

102

501
300

503
310
35
36

1 5x12HSEQSOV IT = 13}

IF(ILL.EG.L) GO TO 1000

F(2,1) = Gw

K = NMAX-1

DC 20 I =2,K

F(2:1) = UtI-1)

F‘ZQNMAX) = 1'0

[F(ITPRTLEQ.0) GO TO 510

ARITE(64502)

FCRMAT{1HO y6X1HNy 13X2HF 1y 1BX2HF2418X1HG//)
00 500 I=1,NMAXINSTEP '
WRITE(6+501) LoeFlLlvi)eF(2¢1)0Gl201])
FCRMAT{IBy1P3E20.5)

CCANTINUE

WRITE(64503)

FCRMAT(1HO,//)

CCNTINUE

DC 36 1 = 1,MMAX

FlLyl) = FUlel)e CONVFR(F(2+s1)=F(ls1))

SULUTION OF ENERGY EQUATION

~UMPUTATIGN OF ENERGY COEFFICIENT MATRIX

105

110

K=NMAX=-2

OC 110 I = 1,.K

IF(FELyI+1)eLTL0.0)GU TO 1000

ST = SCRT(F(l,1I+1))

RI=[-Ng-1

Allel) = SIJUELF*%2 ~RI/2,0 =(F{1lol42)=F(Llold)/ (B8, OKSI®DELF**2)
A(241) = =2.,0%S5[/VELF**2

= =(Al2+1)*A(1, 1))

vVi{I) = 0.0

V1) = V(1) ~GW*A(l,1)
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Ali,+1) = 0.0
VINMAX=2]} =V{(NMAR=2) = A(3,NMAX~-2)
A{3NMAX=-2) = 0.0
CALL SEUQSUVINAMX=2939A3VeS5¢EPS»U KTy ILL)
{FILL.EGSL) GO TO 1000
G(2+s1) = OW
K = NMAX-1
00 130 | = 24K
Gl2yll = UlI-1)
130 CCNTINUL
Gl2,NMAX) =1l.0
0C 135 I = l.NMAX
[F{ABS(G(2+1)/GU1,1)- 1.0)eGELEPS) GO TU 145
135 CONTINUE
GC TO 200
15 VDU 146 [=1+NMAX
146 Gll,I) = G(2,1)
GG T0 5

SULUTICN UF ZERC OROER MOMENTUM AND ENLRGY EQUATIONS COMPLETEL

200 WRITE(6s6670)
370 FGRMAT(5X29HZERU ORDER SOLUTION CUNVERGED)

SOLUTICN OF FIRST URDER EWGUATIUNS
ITF =0

INITIAL APPROXIMATIUN FOR 061
e 800 1 NMAX

= 1y
300 G(2+1) 0.0
GC TO 600

SOLUTICN UF HIRST OURDcR ENERGY EQUATION

COUMPUTATICN CF COEFFICIENT MATRIX
6 K= NMAX -2
DC 11 I = 1.K
Rl = [=-N2-1
ST =SQKT{F(1ly1+1})
DOL =(G(LyI+2)=6l1s1))/(2.0%DELF)
OF L ={F{1sI42)=-F(Llel))/7(2.0%DELF)
U2GI =(6{1el#2)=2.0%G( 1y 1+1)+G(1ly1))/DELF*%*?2
Allyl) =SI/OELF*#2=(R[*UELF4DFI/(2.0%S1))/42.0%DLLF)
A(241) = =2.0%S1/DELF*%*2
A(3,1}) = ~tA(2,1)+A(1 1)
A1 VUL =F(20 1410 /(4 0%31 %53 ) xDF I[*0GI~UGI*(F(2,142)~-F(2:1))/
1 (4.0%0ELF*SI)=F(2,1¢1)%02GI/(2.0%S1)
A(lsl) = 0.0
A(3,NMAX=-2} = 0,0
[Te = [Te +1
IF(ITEGT«MIT) GU TO 400
CALL SEUQSUVINMAX~24343AsVe54EPSsUsITyILL)Y
WRITE(69331) ITEZITM,IT
31 FOGRMAT(1O0X15HOUTSIDE LOUP = I3,5X14HINSIDE LOOGP = 13,
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i SALLHIEWDUVY LE = 1 3)
IFCILL.EC.1) GO TO 1000
K= NMAX-1
00 136 1= 24K
LF(ABS{G(241)=Ul1=11)GE.EPS) GO TO 147
.36 CUNTINUE
GC 1O 201
47 GI2yNMAX) = 0.0
Gl241) = 0.0
K = NMAX - 1
0C 148 1=2,K
148 G(2.1) = U(I~i)

[N

SOLUTION OF FIRST ORDER MOMENTUM EQUATION

'COMPULTATION OF THE CUEFFICIENT MATRIX
200 K = NMAX=2

DO 601 I =1.+K

ST = SQRT(F(1l,1¢1))

RI = I-N2~1

Il = F(ls,I+1)/DELF**2

A(l,1) = 21 -SI*RI/2.0

A(241) = (FULyI+2)1=2.0%F(1si¢1)¢F(1si})/(2.0%DELF®%2)

1 -2.0%BETA*S[~2,0%21

A(3,1) = Z1+SI%RI/2.0
301 VII) = =2.,0*BETA®G(2,1+1)

RN = N2

VI1) = V(1)+A(Ll,L)*GH*(+RN®DELF}*%(2,0*BETA)

A{lyl) = 0.0

A(3,NMAX=2) = 0.0

CALL SEGSOVINMAX=293¢AsVo5EPScUITyILL)

[F (ILL.EQ.1) GO TO 1000

Fl241) = =GW*(RN*DELF)*%(2,0%8ETA)

K= NMAX-1

D0 602 1=24K

Flz2,1) = utI=-1)
302 CONTINUE

FlZyNMAX) =0.0

GC TO 6

SCLUTICN OF FIRST ORDER EWUATIONS COMPLETED

201 WRITE(64335)
335 FOCRMAT (5X18HSCLUTION CONVERGED)

VELOCITY, ENTHALPY DISTRIBUTION, INTEGRAL THICKNESSES

UGELTA ={1.0/ Fl)**{2,0%BETA)
Alls1) = 0.0
K = NMAX~-]
00 210 1=24K
210 AtLleI) = SQRT{F(1l,41)+0ELTAS®F(2,1)}
A(1L,NMAX) =1,0
Vil) = 0.0
VIiz) = SURT(2.0%FW*DELF/(BETA®GW))
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Do 211 1= 3,NMAX
211 V(L) = 2.0%DELF/(ALL I I*ALLvIi-11)
A(2+1) = Gw
DG 212 1 =2.AMAX
212 A(Zs1) = G(ly1) +DELTA®G(2,1)
Ull) = =FNW
Utll = =Fw+lLELF
UL 213 I = 3.NMAX
213 Ulh) = Ull=1)0+¢ VIII*(A(LlsI-1)04A(1,1)1/2.0
DELSTR = 0.0
THETA = 0.0
SIGMA = 0.0
DU 214 1 = 24NMAX
FNEAR = (A(1l,1) +A(l,I-1))/72.0
SNBAR = (A(2,1)+A(241-1))/2.0
DELSTR = LELSTR+(1.0-FNBARI)I*V{I])
THETA = THETA +(FNBAR~FNBAR®%2)%V(])
- SIGMA = SIGMA+{(1.0-SNBARI*V(])
214 CCONTINUE
H = QELSTR/THETA
DC 224 [ = 1l.NMAX
224 A(3,1) = SQRT{F(1,1I))
J = (FMIN=Zz.0)/DELF+2.0
ALPHA = (0.0
VDELTA2 = 0.0
GAMMA = 0.0

THETA2 = 0.0
SIGMAL = 0.0
SIGMAZ2 = 0.0
SIGMA3 = 0.0
00 217 I = J.NMAX

ALPHA = ALPHA +DELF/A(3.,1)
DELTAZ2 = DELTAZ ¢ FU24L)*DELF/(A(3,[))*%3
GAMMA = GAMMA-A(3,1)*DELF

THETA2 = THETAZ + F(2,y1)*DELF/A(3,1)
SIGMAL = HIGMAL ¢ (1.0-G(Ll 1))*VELF/A(3,1)
SIGMAZ = SIGMA2 + G Lo [)*FU2,1)1*0ELF/(2.0%A(3,1)%%3)
SIGMA3 = SIGMA3 + G(2,1)1*DELF/AL3,1)
217 CCNTINUE
THETAL = GAMMA+FMAX
DELTAL = ALPHA - FMAX -
SIGMAL = FMIN®*(1.0-GW)}/SQRT(GW) =SIGMAL
SIGMAZ = SIGMA3 -SIUMAZ +DELTA2/2¢0 #(1.0-GW)XFMIN*%*(2,0%BETA +1.0

L1 /7(2.0%5URT(GW)*(2.0%BETA+1.0))

THETAL = THETAL +FMIN®*SQRT{Gw)

ThETAZ = THETAZ +S5URT{GH)I*FMIN®*{ 2, 0%*BETA+1.0)/(2.0%BETA+1.0)
DELTAL = UELTAL-FMIN/SQRTI(GNW)

VELTAZ = DELTAZ + FMIN®*%{2,0%8ETA+1,0)/(SQRT(GWI*(2.,0%BETA+1.01)

WRITE(6+300) BETAFWeGwW
300 FORMATULIHLSXOHBETA = F9Ie4ySX4HFW = FS5,345X4HGW = FS54.3//TX3HLETA
1 1UXIHF ¢ 1 IX2HZUs 10X2HZ 19 LOX2HFNy LOX2HGO ¢ LOX2HGL » LOXLIHG/ /)
K=0
VG 235 I = 1,NMAX
= K¢l
Vil = v(l) ¢+ v(l)
IF(K.NE.52) GO TO 230
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K =1
WRITE(64315)
315 FCRMAT(5X15H** CUNTINUED **/1H1,6X3HETA,10X1IHF,11X2HZ0+10X2HZ1,
1 LOX2HFNs10X2HGO ¢ 10X2HGL + LOXLIHG/ /)
230 WRITE(G6+310) VILIWULL)oFULlol)oFU20E)sAlLloldsGlLeD)sGU240)0A(2,1)
310 FCRMAT(8F12.5)
235 CONTINUE
WARITE(64320) DELSTRyTHETA,SIGMA,H,UELTAL,DELTA2,THETAL,THETA2,
1SIGMAL +SIGMAZ
320 FORMAT(15XIHDELTA* = Fl0.5¢5XBHTHETA = Fl045¢5XB8HSIGMA = #10.5,
15X4HH = FLl0.54/5X9HDELTAL = F1l0.5¢5X9HDELTA2 = Fl0.5¢45X9HTHETAL =
2F10.595X9HTHETAZ = F1l0.5¢/5X9HSIGMAL = F1l0.5,5X9HSIGMA2 = F10.5)
ETA = BCUNDARY LAYER SIMILARITY VARIABLE
F = SIMILAR STREAM FUNCTION VARIABLE

L0 = ZERO ORDER MOMENTUM SOLUTTION ( MIXING LAYER SOLUTION)
Zl = FIRST ORCER MOMENTUN SOLUTION

FN = DIMENSICNLESS VELOCITY

60 = ZERU URDER ENERGY SULUTION ( TOTAL ENTHALPY RATIO)

Gl = FIRST URDER ENERGY SOLUTION

G = UDIMENSIONLESS ENTHALPY
DELTA® = DISPLACEMENT THICKNESS
THETA = MUMENTUM THICKNESS
SIGMA = ENERGY THICKNESS
DELTA(L)y THETACLI)y SIGMA(I) = COEFFICIENTS IN ASYMPTOTIC
EXPANSICN FOR INTEGRAL THICKNESSES
GC 10 2000
400 WRITE(O,410) MIT
410 FORMAT(1XBFEXCEEDED I3,1X10HITERATIONS)
1000 K=NMAX~2
WRITE(698238) (1y(A(Le1)el=193)eVildel=1yK}
8238 FCRMAT(LHL+5X o 19HSEQSUV TROUBLE DUMP //7/(5X4[541P3E20.5+5X41PE20,5
* }))
2000 IF{.NOTLEQOD) GO TO 1
STOP
END



-45.

SUBRUOUTINE SEGSOVINBNOUOWTH,BOMTIX Vs ITER«EPSy Fy ITy ILL )
DIMENSIUN A(34300)4V(300)eX(300),F(300),BDMTX{3,3001),
L R(300),XX(300)
BOMTX = BAND MATRIX GENERATED ROW-WISE AS FOLLOWING
le FIRST ELEMENT OF ANY ROW MUST BE STORED AS FIRST ELEMENT
OF EACH COL.
2« LIAGONAL TEKMS ARE ALWAYS IN THE MIODDLE ROW
3. 15T COL. HAS LEADING ZEROSs LAST COL. HAS TRAILLING ZEROS
(USER MUST STORE DATA SO THAT {T LOUKS AS IF THE ARRAY
HAS BEEN RUTATEU 90 DEGe CLOCKWISE AND OISPLACED
UP BY 1 EACH TIME)
N = CRUER OF MATRIX,
BNOWTH = UBANDWIDTH - TOTAL NON - ZERO ELEMENTS /7 ROW
82 = BNDWTH / 2 ¢ ] -~ ROw DEFe. WHERE DIAGONAL TERMS ARE SIORLD
Bl = 84 - 1 - NO OF NUN - ZERO OFF - DIAGONAL TERMS
INTEGER BNDWTH, B2, Bl
DCULBLE PRECISION R
SAVE ORIGINAL BAND MATRIX AND COLs VECTOR V - AX = ¥
ILtL = 0
IT =0
DC 10 4 = 1+ N
X(Jd) = viJ)
F(J} = 0.
00 10 1 = 1y, BNDWTH
A(ILyJF = BUMTX(I,J)
10 CCATINUE
B2 = BNOWTH /7 2 + 1
Bl = 82 - 1
Nl = N - 1
. TRIANGULARIZE MATRIX - SAVE MULTIPLYING FACTOR IN MATRIX
Ki = Bl
0C 60 |
Kl = K1 +
K = 81
IF(A(B2y1=1) +EQ.0.) GO TO 200
DC 55 J = I.Kl
CX = A{KyJ) 4 Al(B2y1-1)
Ll = 82 + 1
KPE = K ¢+ 81
KPl = K ¢+ 1
J0 50 L = KPl, KP8
AlLsJd) = AlLod) = CX * Al{LLyI-1)
50 L1 = L1 + 1
A(KyJ) = CX
K =K~-1
55 CCNTINUE
60 CCANTINUE

2N
1 = (1+B1~1)/7(N+})

.

. FURWARD PASS - OPERATE UN RIGHT HAND SIDE AS ON MATRIX
62 CONTINUE
IN = B1
OC 70 1 = 24N
IN = IN®#]1 = ([4Bl~1)7(N+1)
K1l = 8l
OC 65 J = 1, IN
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X{d) = X{J) = X(1-1)*A(K1eJd)
Kl = K1 -1

CUNTINUE

CONTINUE

BACKWARD PASS - SOLVE FOR AX = B

XX(N) = X{N) / A(B2sN)}
DG 80 I = 1s N1

SurM = 0,0
K =N~
L =82 + 1

15

80

90

95

Kl = K+Bl-1

IF(Kl1+GTe N1) K1 = NIl

DC 75 J = KeKl

SUM = SUM ¢ A(LyK) * XX{J¢l)
L =1L+ 1

CCNTINUE

XX(K) = (X{K}=SUM) / AlB2.K)
CGNTINUE

DO 90 I = 1y N

FOI) = FUI)Y + XX(E1)

CONTINUE

IFCIT +EQe ITER) GO TO 100
IT = IT + 1

DC 95 I = 1y N

[F(ABSIXX{TII/FCL))Y oGT. EPS) GO TO 150

CUNTINUE

FINISHED

100

CONTINUE
RETURN

. DOUBLE PRECISICN MATRIX MULTIPLICATION

150

160
170

180

200

510

CONTINUE

L = B2

L2 = BNUWTH

DO 170 I = 1ls N

R{l)} = 0,000

K =1 - 82 + L

DO 160 J = Ly L2

R{I) = ROI) ¢ BOMTX(Jdel) * FLK)
K = K + 1

CONTINUE

IF (1 oLTe B2) L =L -1

IF (N-1 JLTe B2} L2 = L2 - )
CUGANTINUE

DC 180 I = 1s N

X(I) = vi1) - R(I}

CCATINUE

6GC TOU 62

il = [-1

itk = 1

WRITE (6+510) 11 |
FCRMAT(/1X25FERROR RETURN FROM SEQSOV

1 35HTH DIAGONAL TERM REDUCED TU LERQO

RETURN

110,
/)
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PART II. EXPERIMENTS IN SUPERSONIC TURBULENT

FLOW WITH LARGE DISTRIBUTED SURFACE INJECTION*

*A portion of this work has been presented at the AIAA 6th Aerospace
Science Meeting in conjunction with Prof. E. E, Zukoski (AIAA Pre-
print #68-129).
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induced flow angle at edge; tan® = Ve/ue °
incompressible momentum thickness, J;)-gﬁ/ﬁe(l --\I/Ge)d7
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“II. 1. Introduction

The normal injection of gas through a porous wall into a two-
dimensional turbulent boundary layer bounded bya supersonic stream
can produce large changes in flow inclination angles and can induce an
appreciable increase in surface pressure.

At least three regimes exist for the uniform blowing problem
in a supersonic flow. First, when the skin friction term in the inte-
grated momentum equation is comparable to or larger than the
injectant term, both skin friction and injectant flow rate influence
the problem. Although the boundary layer theory is applicable, no
simple, self-similar solution can be obtained because of the skin
friction term. Second, when the injectant term is very large com-
pared with the skin friction term but the injectant momentum flux is
small compared with the free-stream momentum flux, the boundary-
layer approach is still valid and now self-similar solutions with linear
growth and a uniform external flow become possible. Finally, when
the momentum flux of the injectant and free stream are comparable,
the boundary-layer approach is not applicable. |

The problem studied experimentally in this section is the
second one where skin friction is negligible, and the terms 'large
blowing rate' or 'strong blowing' will be used to describe this second
regime in contrast to the first one. The conditions obtained in this
study never approach those of the third regime. In this experiment,
a similar, two-dimensional turbulent flow is approached by large
blowing into a turbulent boundary layer. The mean flow quantities

are measured and analyzed to determine the effect of blowing rate
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and compressibility.

A survey of the literature indicates that both for incompress-
ible and compressible flow, the effect of injection has been experi-
mentally investigated primarily with the view of determining the
effects on skin friction and heat transfer (the first regime). Because
of this, the data quoted in the bulk of the literature are for injection
rates low enough that the velocity profiles, though altered, can still
be regarded as slightly perturbed boundary-layer profiles.

Recent experiments have been performed by Hartunian and
Spencer(s) at M__ = 4. 5 for flow that was probably laminar and for
truly massive injection rates. On the basis of pictures taken of the
resulting flow, they concluded that for large injection rates the mix-
ing region between the injected and free-stream gas appeared to grow
linearly. ﬁniortunately, the nature of their experiment did not allow
for careful probing of the layer to determine velocity profiles.

Incompressible data on turbulent flows with fairly large

injection have been reported recently by McQuai‘d(g) (10)

(11}

Simpson
and Mugalev Mugalev's experiments were conducted on a plate
mounted in a free jet. Because velocity profiles are given for only
two stations in the flow and no attempt was made to monitor or
control the static pressure these data are suspect and are not used
in the present report. In more carefully controlled experiments
McQuaid used a flexible tunnel wall to maintain the tunnel static

pressure constant and made detailed velocity measurements for a

wide range of injection rates. Simpson's experiment is characterized
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by a very long porous section which allows for careful measurement
of boundary-layer growth rates and detailed velocity measurements.
For compressible turbulent flows with large injection only some data

by Mugalev(lz)

appear to be available and his few results are included
in this report.

The purpose of this experiment is to investigate the behavior
of a supersonic turbulent boundary layer with large blowing including
both the interaction with the external flow and the effect of compress-
ibility.

II. 2 General Description of the Experiments

II.2.1 Tunnel and Model Description

The experiments were conducted in the Supersonic Wind Tunnel
of the Graduate Aeronautical Laboratories, California Institute of
Technology (GALCIT). The tunnel test section is 2 inches by 2
inches and the tunnel operates at a nominal Mach number of 2. 6. The
stagnation conditions for all runs were a pressure of 742 mm Hg
- (+ 5 mm) and a temperature of 80°F (+ SOF). The boundary layer on
the tunnel wall was tripped near the nozzle throat to ensure turbulent
flow in the test section. Subsequent to these experiments, an inde-
pendent experimental investigation by Sega1(13) has shown that for
these conditions tripping of the boundary layer is not necessary to
produce turbulent flow in the test section and, furthermore, that no
measurable difference seems to exist between the tripped boundary
layers and the ones obtained through natural transition. At the start
of injection, the boundary layer is about 0. 12 inch thick. Three

models were used in the experiment. The first was a uniformly
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porous, stainless-steel insert, approximately 3. 5 inches long and
2 inches wide, which formed part of the test section wall and was
separated from the tunnel side walls by swept fences. Figure II-1
presents a detailed description of the first model with the pertinent
dimensions. Figure II-2 is a schematic of the first model mounted
in the tunnel. The other two models employed in the experiment
represent an attempt to obtain a check on the results obtained with
the fir st model and an extension of the experiment to higher injection
rates than those obtained using the insert model.

The idea* used in constructing these models was to realize
that if, for large injection, a boundary layer with linear growth is
approached, then it appears feasible to perform an experiment on a
model where the wall is pitched down from the oncoming flow at a set
angle and the injection is increased until uniform free-stream condi-
tions are obtained at the outer edge. A schematic of this concept
is shown in Figure II-3. Angles of 10° and 20° were used and a half
nozzle was employed in both cases to make maximum use of available
test section.

The primary advantage of this form of an experimental
arrangement for the GALCIT supersonic tunnel is the virtual elimina-
tion of the strong shock produced by the onset of blowing with the first

model and the problem of its reflection from the opposite tunnel wall,

*This unique experimental innovation, which was suggested to the
author by Prof. Donald Coles of GALCIT, would appear to be par-
ticularly useful for incompressible experiments with large injection
and may eliminate many of the difficulties associated with maintaining
constant pressure in such flows,
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which effectively shortens the available working section for any set
tunnel dimensions. The disadvantage of these two models lies in the
fact that only one injection rate meets the required conditions for
each angle. For injection rates substantially lower than those neces-
sary to produce a uniform external flow, separation (reverse flow) is
produced on the porous plate by the turning of the flow at the end of
injection. For injection rates substantially higher than the optimum,
the reflected shock from the opposite tunnel wall impinges on the
blowing region because of the small half tunnel size (1''). Figures
II-4 and II-5 present a detailed description of the manner in which
models 2 and 3 are constructed. A 25u porous plate was used for
model #1 and a 10u plate for the other models. The thickness of
porous plate used for each porosity was determined by requiring that
the pressure drop across the plate be much greater than the variation
in pressure expected in the flow external to the plate. Hence the
mass flow per unit area is insensitive to the induced flow conditions.
The porous plates were separately examined to determine uniformity
and mass flow per unit area. This investigation is discussed in
Section II. 3. Room temperature air was used as the primary injec-
tant in the experiments, although some data on model #l was also
obtained using helium as injectant. Figure II-6 is a schematic of the
air and helium supply system employed in the experiments. As is
seen in Figure II-6 a dual flowmeter system wasused because of the
wide range of mass flow required. With this system both low flow
rates and high flow rates can be measured accurately and a check on

the individual flowmeter calibrations can be obtained by allowing for
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cross calibration of one flowmeter against the other in the flow range
where they overlap.

The total mass flow through the plate was measured, along
with the temperature in the model plenums and the back-face tem-
perature of the porous plate. Both of these temperatures were found
to be within a few degrees of the tunnel stagnation temperature for
all runs. The ratio of wall mass flow per unit area to that of the
free stream was varied from 0 to 0. 045.

The measurements taken during the experiments included
schlieren photographs to determine the induced shock angles, center-
line Pitot-tube measurements, static pressure measurements, and
hot wire fluctuation measurements, ¥ The instrumentation is de-
scribed in Section II. 3. In reducing the data, the total temperature
of the flow was assumed constant.

II. 2.2 Description of the Resulting Flow

II.2.2.1 Model #1

The first set of tunnel runs was made to .determine crudely
the nature of the flow field, and only schlieren photographs were
taken (with and without side fences). These photographs showed
remarkably straight shocks and linear growth of the
mixing layers, and hence indicated the possibility that a similar
flow field had been established, However, the photographs also

indicated that transition regions existed at either end of the porous

*The author is indebted to Dr. W. Behrens of GALCIT for his invalu-
able guidance and help in obtaining the fluctuation measurements.
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plate. Figure II-7 presents a schematic of the flow field for model
#1. At the upstream end, the transition region required for adjust-
ment of the initial turbulent layer to the injection appeared to occupy
about 5-10 initial boundary-layer thicknesses. At the downstream
end, the expansion required by the end of injection appeared to prop-
agate upstream over the porous plate a distance of about two final
boundary-layer thicknesses.

Care was necessary at the higher blowing rates to ensure that
events occurring downstream of the porous plate (such as reflected
shocks or probe movement) did not cause separation on the porous
plate itself. A large region of separated (reverse) flow behind the
porous plate was characterized by extreme sensitivity of the overall
flow field (both on and off the porous plate) to any measuring probes
which were placed in the region. This would, of course, invalidate
any measurements made with these probes. Separation was prevented
by removing the standard tunnel diffuser, replacing it with one of con-
stant area and by increasing the pumping capacity of the tunnel.

In addition to this problem of downstream separation, a
separation of the initial boundary layer upstream of the porous plate
was encountered when the turning angle produced by blowing was
greater than about 14°. This result is to be expected from earlier
studies of turbulent boundary-layer separation. (14)

When all separation phenomena are avoided, the external
flow produced by injection resembles that produced by a wall which
turns toward the flow through a small angle and then, after a space,

returns to its original direction. The transition regions at both
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turns and the uniform flow region in between are present. This
general picture of the flow is confirmed by Pitot pressure measure-

ments discussed later.

11.2.2.2 Models #2 and #3

The behavior of the flow fields for models 2 and 3 is interest-
ing enough to warrant a separate discussion. For model #2 (the 10°
ramp), the flow field with and without injection is shown schematically
in Figure I1-8. As shown in this figure, there exists a drastic differ-
ence between the flows with and without injection. Without injection,
the rapid expansion around the sharp corner causes a very abrupt
change in bouﬁdary—layer thickness and pressure which, for turbulent
flow seems to originate from a region near the corner which is a
fraction of a boundary-layer thickness in extent. With injection,
there is a weak compression (due to the fact that injection starts
right at the corner), followed by an expansion to free-stream condi-
tions.ﬂ For this case, longitudinal surveys taken across the wave
indicated less than 1% change in total pressure; hence the entire
compression-expansion process can be considered isentropic. This
corner region is followed by a region of constant pressure as shown
in Figure II-8 and then a falling pressure region which seemed to
affect the last inch of porous plate. For model #3 (the 20° ramp),
the resulting flow fields are shown schematically in Figure II-9. In
this case, without injection, the expansion is so rapid that the initial
boundary layer virtually disappears and both schlieren and Pitot sur-
veys indicated the growth of a new, thin viscous layer whose origin

appeared to be at the corner. With injection, it was found that with
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the maximum amount of injection which still allowed for the process
near the corner to be considered isentropic, a falling pressure
existed over virtually all of the porous region. As will be discussed
later, for the 20° case, similarity was not observed in the porous
region,

Hence, model #2 provided a reasonable sized region of simi-
lar flow while with model #3, no such region was realized. These
results are discussed in more detail in Section II 4.

II. 3 Instrumentation and Porous Plate

II. 3.1 Porous Plate Characterization

The porous plates used in the experiments were prepared
from sintered stainless steel particles by the Mott Metallurgical
Corporation of Hartford, Connecticut and, according to the vendor,
possess an average porosity of 40-45 percent. As was mentioned
previously, the plate thicknesses were chosen so that mass flow
would be insensitive to the spatial pressﬁre variations encountered
during tunnel runs (as, for example, the expansion observed near
the rear end of injection). For all of the conditions, pressure ratios
of from 10-40:1 were maintained across the plate (plate plenum
pressure to pressure in turbulent layer), the lower value corres-
ponding to the lowest injection rate investigated. For these pressure
ratios, the porous plate is not choked in the sense that there is a
Mach 1 flow at the plate exit. However, the plate mass flow is quite
insensitive to spatial variations in tunnel conditions.

Since there is some question about the mechanism of '"choking"

in porous plates, it might be appropriate here to mention that
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Ern::muel(l5 has performed an analysis of this flow problem and
some of his results may be used here to obtain an estimate of the
pressure ratios required to choke porous plates. If reasonable
~estimates are made as to the form of the drag coefficients in the
plate by using experimental data on the overall mass flow charac-
teristics of the plates, then it seems that pressure ratios which are
of the order of 200:1 are necessary to choke the porous plates em-
ployed. However, the analysis also shows that at pressure ratios

as low as 5:1, a 10 per cent change in ambient condition produces

2z 5

only a 1 per cent change in mass flow; that is, for po/pexit 2

2
~ P21 (p /P * -]

mplat:e exit

So it can be concluded that the mass flow through the plate under the
conditions employed (pO/ Posit ® 10-40) is determined only by the
plenum pressure. Furthermore, the average Mach number of the
flow at the tunnel side of the porous plafe is quite low (X 0.1) and
hence the flow possesses negligible momentum compared to the free-
stream momentum,

Determination of spatial uniformity is not as straightforward.
The plates were first inspected visually by immersing the models in
a bath, injecting through the plate and noting the resulting bubble
pattern formed. This crude inspection should indicate any large
scale non-uniformities. The fine scale non-uniformities are more
difficult to characterize. For model #1 (which should possess the
largest non-uniformities because of the larger pore size) detailed

surveys near the plate were made. Although the porous section is
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‘best calibrated under actual tunnel operating conditions, this was not
found practical in the present experiments, and instead, the assem-
bled 25u plate and plenum configuration was surveyed under atmos-
pheric external conditions using a constant-temperature, hot-wire
anemometer (DISA Model 55A01 } and a specially-constructed, plate-
facing Pitot tube. The wire used was 0.1 mil diameter platinum-
rhodium, mounted between two needles approximately . 030 inch
apart. The Pitot tube used was composed of thin-wall sta;inless
steel tubing with an outside diameter of about . 040 inch.

Very close to the surface, some large spatial non-uniformities
(as high as 50 per cent for the 25p plate) in velocity were observed
with both the Pitot and hot-wire probes, The wavelength of the fluc-
tuations (for the hot-wire surveys) was about 0. 04 inch and the mean
velocities, calculated for lengths of this order, were found to be
within + 5 per cent of the overall plate average value, indicating no
1arg;3—sca1e non-uniformity. Futhermore, the fluctuations decayed
rapidly with distance from the surface, and at a distance of 0.1 inch
were within + 5 per cent of the overall mean value. The decay with
distance away from the plate would be expected to be more rapid in
the low-density tunnel operating conditions. Finally, and perhaps
most important, the overall mean injection velocity at the plate cal-
culated directly from the hot-wire measurements agreed in all cases
within + 5 per cent with the values obtained by taking the measured
total mass flow to the plate and dividing by the ambient density and
the measured plate surface area. Under tunnel operating conditions,

the same agreement should exist between the mass flow per unit area
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determined by dividing the total (measured) mass flow to the plate by
the plate area and the mass flow measured directly. Hence, the
quoted values of >\oo which follow can be considered accurate to within
+ 5 per cent (including flowmeter inaccuracies). In all, however, it
must be concluded that use of bench mounted hot-wire surveys to de-
termine spatial uniformity of the porous plates leads to an inconclusive
result as far as the details of the non-uniformities are concerned be-
cause of the complexity of the flow at the plate surface but may provide
an indication of any large scale, spatial trends towards non-uniformity
in injection.

II. 3. 2 Pitot and Hot-wire Instrumentation

The Pitot probes and hot-wire probes used in the experiments
are shown in Figures II-10 and II-11. The Pitot tube tips used in the
experiments were fabricated from 0. 065 o.d. stainless steel tubing
with a tip flattened to 0. 008 inch bjr 0. 080 inch and an opening of about
0. 004 inch. Thus, readings to within 0. 004 inch from the wall were
possible. The Pitot was pitched down at an angle of about 10° to the
horizontal to allow minimum angle-of-attack effect within the injection
layer. Experiments showed that the probes used in these tests were
insensitive to angle-of-attack variations of + 10° for subsonic and su-
personic flows. The hot-wire probes were constructed as shown in
Figure II-11 and were used only to obtain qualitative fluctuation meas-
urements in the layers; hence no pre-calibration was necessary.

The Pitot pressure and y-position data were recorded using
a Statham pressure transducer (PA-208TC 50084; 0-10 psia) and a

40-turn Helipot ( Model E ) whose outputs were connected directly to
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a Moseley x-y plotter. The horizontal and vertical Pitot drives used
were accurate to within 0. 001 inch. Pitot tube contact with the wall
was determined electrically. Very near the surface of the plate,
where the streamlines are strongly curved, the Pitot readings will
have large errors because of the large angle of attack of the flow
relative to the Pitot probe axis. The electronic instrumentation for
the hot-wire fluctuation measurements has been described by Beh-
rens(lb) and both the spectrum (1-320KC) and mean square fluctua-
tion signals were recorded for various of the test conditions.

II. 3. 3 Static Pressure Measurements

Wall static pressures were measured directly ahead of and
behind the porous plate region. The pressure taps consisted of
a 0. 021 hole drilled into the wall which opened, after about 1/1 6"
depth, into a larger section to maximize response time and mini-
mize any possible leak effects. All static pressures were meas-
ured using mercury manometers which allowed for a repeatable
reading within 3 mm Hg. For the tunnel conditions in this experi-
ment the error thus obtained is never greater than 2%.

In the porous region, the static pressure is quite difficult to
measure directly., The use of standard pressure taps in the porous
region may give results which are in error due to blowing, and, fur-
thermore, any such taps may cause large non-uniformities in the
injection distribution. In an attempt to circumvent this problem,

pressure taps were installed on the fences of model #1 as shown in
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Figures II-1 and II-2. The question now becomes one of determining
the correlation between the values of pressure as measured by the
fence taps and the porous-plate static pressure. For no injection,
the fence pressure-tap values agreed with the normal static taps
ahead of and behind the model within a few per cent.

For the case of injection, the following procedure was fol-
lowed. First, Pitot traces were taken from the wall out to and
across the induced shock wave for the injection rates of interest.
Figure II-12 shows a typical Pitot trace taken (with side fences) at
an intermediate injection rate. Two points are worth mentioning.
The first is that the raw Pitot traces were found to be similar when
scaled with the thickness as determined from the maximum slope
intercept shown in Figure II-12. The second is that, unlike normal
turbulent boundary-layer Pitot profiles, the traces for large injection
are quite inflected near the wall (i. e., slowly varying).

Using the measured jump in Pitot pressure across the shock
wave and knowing free-stream conditions, the static pressure and
flow deflection angle just behind the shock wave were calculated from
the oblique shock equations. The angle was checked with that meas-
ured from the schlieren photographs. As seen, the flatness of the
Pitot trace from the boundary-layer edge to the shock for various
x-stations and the uniformity of the shock Pitot-pressure jump indi-
cate a uniform (constant pressure) flow behind the shock.

Secondly, the fact that the Pitot pressure is slowly varying
near the wall indicates that, regardless of angle of attack, the flow

near the wall has a very small dynamic pressure, and the Pitot



-68 -

reading should be close to the static pressure. If this is so, then
very near the wall there should be only a negligible effect of Pitot
orientation. To verify this idea, a Pitot tube with an opening facing
the plate was constructed and vertical traverses made. Near the
wall, good agreement was found between pressure measurements
obtained with the modified and standard probes. This result indi-
cates the validity of the above hypothesis.

Finally, all four of these pressure values, i.e., the fence
values, the values deduced from the shock jump, the plate-facing
Pitot value, and the value for the standard Pitot at the wall, were
compared in the region where similar flow was observed from the
raw Pitot data. For all injection rates, these data agreed within 8
per cent, and thus show that the fence taps give a valid value of
plate static pressure and indicate the absence of any appreciable
y-pressure gradient,

In the region near the end of the plate, where the abrupt
cessation of injection dominates the flow and causes severe stream-
line curvature, the readings from the fences were used alone to
determine the pressure. As would be expected from the preliminary
discussion, a positive pressure gradient in the y-direction was
indicated in this region by the side-fence taps, and this gradient
shows the effect on the flow of the rapid expansion near the end of
the injection.

Figure II-13is a composite of the static pressuredata obtained
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in this manner for the various injection rates investigated. ¥ The
good agreement obtained for model #1 indicated that for the ramp
models (#2 and #3) the value of pressure determined from the wall
Pitot value and the value deduced from the Pitot edge value would
give an adequate value of the static pressure in the similar region
and hence the fences for these models were not fitted with fence
pressure taps as for model #1.

I1. 3.4 Data Reduction Procedure

The Pitot data were reduced by using the measured static
pressure and the Rayleigh Pitot formula to calculate the Mach num-
ber distribution. No corrections were made for the effect of angle
of attack on the Pitot data, since at least two other effects must be
included in this region to correct the Pitot data accurately. The
first is the effect of Reynclds number on the reading, because the
region of high angle of attack is also the region of low flow velocities
and low densities. The second effect is that of the wall on this meas-
urement. Hence, the data presented can be expected to be in error
(large relative error but small absolute error) near the wall.

The final assumption made concerns the total temperature
distribution in the layer. Since both the tunnel and model plenums
are at room temperature, it was assumed that the total temperature
everywhere in the layer was equal to room temperature. With these

assumptions, then, the velocity profiles were obtained and relevant

*Note that for the highest injection rate, a small, but noticeable,
pressure drop seems to exist over most of the porous plate. This
effect will be referred to in later sections.
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integral properties were calculated using standard integration tech-
niques and formulae.

II. 4 Experimental Results

II. 4.1 Similarity
The Pitot tube traces, the schlieren photographs and the hot-

wire fluctuation measurements discussed in the previous section
suggest that a region of flow over the porou‘s plate exists where the
velocity profiles are self-similar for models #1 and #2, i.e., scale
linearly with the distance along the surface, x. Examples of this
similarity are shown in Figures II-14-17 for model #1 and Figure
II-18 for model #2. Note that in Figure II-17 (2, = .029) the approach
to similarity is not as well defined as in the previous figures. This
effect might be expected since, for this injection rate a small, but
noticeable, pressure gradient exists on most of the porous plate
(Figure I1.13). In thése figures, the momentum thickness has been
used to normalize the y-coordinate, simply because it is subject to
minimum experimental error as compared, for example, with the
mixing layer edge. For both models #1 and #2 it is seen that in about
5-10 initial boundary thicknesses the velocity profiles become inde-
pendent of x. This similarity continues until one reaches the rear
region of the plate where the effect of the rapid expansion destroys
the similarity. Of course, the fact that mean flow profiles appear
similar does not necessarily indicate a self-similar turbulent flow
and the small physical scale of this experiment could certainly be

subject to criticism,



-71-

In order to try and verify this approach to similarity, hot-
wire surveys were made at various stations on the porous plate for
both models #1 and #2. Figures 1I-19-21 show some of the results.
In Figures 1I-19-21 the mean square fluctuation value of the hot-wire
voltage is plotted as a function of distance normal to the wall, y/6.
The value of 6 used to normalize the y scale was obtained from the
maximum slope intercept of the hot-wire data. Although quantitative
reduction of the hot-wire data is extremely difficult in this flow, the
raw hot-wire output can be used to check for similarity. These fig-
ures show traces taken at various stations on the plate at bandwidth
of 1-320 KC. The rapid adjustment of the fluctuations from the no-
blowing values to a reasonably similar trace would seem to verify
the previous conclusions drawn from the mean flow data. Note that
Figure II-21 represents the data obtained on model #1 for injection
with helium and also indicates this rapid approach to similarity.

Several other interesting results can be obtained from the
hot-wire data, In Figure II-22, the edge of the-hot-wire signal is
compared with that obtained from Pitot surveys for an intermediate
injection rate (both edges determined from the maximum slope inter-
cept). For the same injection rate, Figure II-23 shows measured
hot-wire fluctuation readings as a function of the mean flow veloci-
ties. Unfortunately, this result, which is representative of the
results for most injection rates, indicates that both the mean velocity
levels and the hot-wire fluctuation measurements are low near the

wall; hence any accurate determination of the relative magnitude of
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velocity fluctuations in this region will be quite difficult. Figure
II-23 shows that the peak value of fluctuation intensity occurs when
u/uez 0. 75. This is to be compared with the point of maximum
shear stress which occurs at u/ue = 0. 6 (Figure 11-40).

Finally, if the flows are indeed approaching a self-similar
state, then spectrum measurements taken at, say, the peak point in
the fluctuation data should be invariant with distance. Figures 1I-24
and II-25 present such typical results for models #1 and #2. The
spectra are seen to be quite close except at low frequencies which
might indicate the effect of the finite initial boundary-layer thickness.
In these figures the integral quantity ue/LE 4];)00-1—3%7 df has been
used to normalize the frequency scale, where E is the mean square
signal strength, E(0) is the value at zero frequency. The integration
has actually been terminated at f = 320 KC, the limit of the instrumen-
tation. For the injection rates shown in Figures II-24 and II-25 the
quantity ue/L calculated as shown above is initially a function of dis-
tance along the plate and seems to approach a constant. If the induced
flow angles are measured then u, can be obtained and, hence, L. For
the injection rates shown in Figure II-25 L varies from 1.9 x 1072
inch (x = 0.4 inch) to 2.5 x 10”2 inch (x 1.6 inch). For Figure II-24
L varies from 4.8 x 10_2 inch (x = 0. 37 inch)to L. = 4, 6 x 10—2 inch
(x 21.0 inch). The fact that L. approaches a constant in both these
cases would seem to indicate that the contribution to the integral scale
from the low frequencies is less important as one approaches a simi-

lar flow.
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For the 20° ramp configuration (model #3) it was found that
a constant pressure region could not be maintained and that similar
flow could not be achieved as with the other two models. It is felt
that this is primarily due to the effect of cessation of injection, an
effect which is discussed in more detail in Part III. Since this result
is anomalous to the ones observed for both models #1 and #2, a dis-
cussion of the data obtained on model #3 is left to the end of this
section and is discussed in more detail therein.

IL. 4.2 Two Dimensionality and Induced Flow Angles

The question of two-dimensionality of the flow is not as
straightforward to decide as is similarity. For example, if the flow
is two-dimensional, spanwise pressure measurements taken ahead
of and behind the model should be uniform (as indeed they are in these
experiments). The converse, however, is not true. Two methods
were used to check for the two-dimensionality of the flow. The first
was to integrate the continuity equation from the wall to the edge of

the layer for model #1 and model #2. In this case, one obtains

, *
v pP_u (6-86 )
e _ _ do* @ 00 d
E—-tan@-—-—-—-—dx +)\oopu -7 . dx(peue) (IL. 1)
e e e e e
N )
where § =j;) (]_-pu/peue)dy
Mo T pWVW/ P oo
(IL. 2)

® = the inviscid flow angle at the edge of the layer

o
L]

the location of the edge of the layer
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é.nd where the subscripts (e) refer to quantities at the edge*. The
quantities contained on each side of equation (II. 1) can be obtained
independently from experimental measurements, and for constant
edge pressure, the last term in equation (II. 1) contributes nothing.
Figure 11-26 presents a check of this equation for model #1. In Figure
1I1-26, the angle ® deduced from the schlieren~-measured shock angle
and the results obtained by evaluating the right side of equation (II. 1)
from the measured velocity profiles are plotted as a function of )\00.
The good agreement between the values of ® calculated by the two
methods indicates that the flow is very close to two-dimensional.

Figure 1I-26 also shows independently one of the more inter-
esting results of the experiment: ®, the induced angle of flow
deflection due to surface injection. It is seen that for xoo as low as
0. 03, deflection angles greater than 10° are induced, and these large
angles produce significant pressures and side forces. The value of
® increases very nearly linearly with )\00 up to about ® = 12° at
Xco = 0. 03 and more slowly for larger values of ”Aoo. The maximum
value obtained for model #1 is fixed by the upstream separation phe-
nomena described in Section II. 2. 2. 1.

For model #2, the resulting plots of &% is shown in Figure
II-27. Since, for this model, the angle is fixed at 100, the calcula-~

tions shown in Figure II-27 show the resulting mass balance. The

*Since there may be some confusion concerning the notation used in
these equations, and those which follow, the convention will be sum-
marized here, Subscript (o) always refers to the free stream.
Subscript (e) always refers to quantities at the edge of the layer. For
model #1, Mg # M, because of the shock, while for model #2 M= Me’
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results for the 10° ramp cannot be plotted on the same graph as those
for the flat plate model because, for this flow angle and edge Mach
number, they essentially represent flat plate flow at M =3 3.

A second check of two-dimensionality is to consider the inte-
grated x-momentum equation. Assuming a boundary-layer type flow,

one obtains, for zero x-pressure gradient, the result

do _

S o= 1+ cyan] (IL. 3)
5 p, L2

where 6 = j(; pou. (1—11/ue)d}’, Ce= Tw/“’:peue’ Ne —pwvw/peue

For the injection rates of this experiment, it can easily be shown

that Cf/)\e< <1, so that to a first approximation,

de _
S A, or 8=0,+\ x (IL. 4)

if the flow is two-dimensional. Figures II-28 and II-29 present the
values of 6 obtained from the flat plate and 10° ramp velocity profiles
plotted versus x and the slopes required to agrege with equation (II. 4).
At the highest injection rate, where the uncertainty in calculating 6 is
a maximum, the deviation is about 10 per cent, and it is much less at
lower injection rates.* Hence, both methods indicate that a reason-
ably two-dimensional flow has been achieved. (Note that without the

fences, agreement achieved by either method was noticeably worse. )

*As noted previously, at the highest injection rate a falling pressure

was observed over a good deal of the porous plate.” As will be shown
later (Equation II 21) this falling pressure (Figure II-13) is sufficient
to produce the noted discrepancy.
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To illustrate the importance of fences, Figure II-30 presents the
values of A®/Ax obtained for the flat plate without fences and the
resulting discrepancy in slopes required for two dimensionality.

I1. 4. 3 Similar Flow Profiles

Since it has been shown that a similar, two-dimensional flow
is approached, the velocity profiles measured in the similar region
should be unique, i.e., should be independent of such incidental
experimental details as the initial boundary-layer thickness, and
should depend only on such parameters as Mach number or blowing
rate. From equation (II. 1), it is seen that the natural parameter
for the blowing rate is Ae = pwvw/peue, where the subscripts e denote
conditions at the edge of the layer. Plots of u/ue versus y/6 are
shown in Figure II-31 for the flat plate. By increasing the value of
he’ a whole range of profile shapes can be obtained. At the highest
injection rates, the velocity profiles are fully inflected and seem to
approach the free mixing-layer curve. Note that despite the great
change in profile shape, the thickness of the layer, in terms of the
momentum thickness, does not change greatly and remains close to
10 @ for xe?.. 0. 004 (compared with the no injectioh value at this Mach
number 6= 13 0).

Figure 1I-32 presents the velocity profiles for the 10° ramp
and those for a similar injection rate for the flat plate. The differ-
ence in these profiles at the same value of Ae will be shown in a
following section to be well accounted for by the compressibility
effect due to difference in edge Mach number as indicated in Figure

II" 320
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Table II. 1 presents the value of Pitot pressure for the data
presented in Figures II-31 and II-32 together with the calculated
velocity profiles and integral parameters. In Table II. 2, the non-
similar data are presented for completeness.

II. 4. 4 Compressibility and Turbulent Mixing

Two difficult questions which have not yet beenanswered for this
type of flow are: f{first, the question of the effect of density variation
across the layer on the mean flow quantities; and second, the process
by which the turbulent fluid motion entrains the mass injected at the
wall and mixes it with the external flow. Since a direct experimental
explanation of the second question in supersonic flow is extremely
difficult, it is useful to attempt first to determine the overall effects
of compressibility on the mean flow properties. If this can be done,
then low-speed experiments, where direct, quantitative measure-
ments of turbulent shearing stress are considerably simplified, can
be used to help understand the mixing. As stated previously, the
data of McQuaid(g) include moderately high injection rates, and his
careful monitoring of pressure by adjusting the tunnel walls ensures
a minimum pressure gradient in the flow direction. In addition,
because the results of Figure II-31 indicate that boundary-layer
velocity profiles approach the free-mixing layer values for large
injection rates, the mixing-layer data of Liepmann and Laufer(ln
will also be useful for comparison with the results obtained at the
high injection rates.

(18)

According to Coles , sufficient conditions for transforma-

tion of a boundary-layer flow from a low-speed or incompressible
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flow (barred quantities) to a compressible flow are:

/b = o(x); dx/dx = §(x); POy = n(x)pdy (IL 5)
A result of this transformation is

= [ofx)/nix)] u (IL 6)

which implies that at corresponding points

u/ue = 'ﬁ/ﬁe (IL. 7)
From (1. 5)

- Yy

Py =nix) j(; pdy (IL. 8)

where we assume y(y = 0) = 0, i. e., assume wall transforms into

wall. The momentum thickness is given by:
00 1 ©_ _
0= fo pu/p v, (1-u/u )dy = o fo u/a,(1-u/3 )p/p_ dy
or
P8 =nx)p 6 (IL. 9)
Combining (I1. 8) and (II. 9), one obtains
7/ = [o/o, ats/o (. 10)

at corresponding stations, which is a general form of the Howarth-
Dorodnitsyn transformation.
If the transformation shown in equation (IL 10) is applicable

and if the only relevant parameter is the mass flow at the wall
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normalized by the edge value, he’ then the velocity profile u/ue(gr-/-é)
obtained at M_ = 2. 6 should agree with the low-speed data obtained
for the same value of A _ (for large injection where Cf/he<<1). *

Figure II-33 shows a comparison of the present data with the
subsonic data for the injection rates closely corresponding to Mc-
Quaid's(g) experiments. Also shown are the profiles obtained at the
largest injection values and the data of Liepmann and La.ufer(1 7).

The good agreement indicates that for large injection rates the nor-
malized velocity profiles do depend only on the properly normalized
mass flow rate. Note that at Mcn = 2.6 (compare Figures II-31 and
1I-33), the transformation shown in equation (II. 10) gives a reduction
in scale of about a factor of two. Hence, the good agreement between
compressible and incompressible data is a sensitive check on the
transformation.

The profile obtained at the highest injection value also agrees
well with the data of Liepmann and Laufer except near the wall. This
discrepancy is to be expected, since the maximum injection rate
shown is about 10-20 per cent lower than the value obtained for their
mixing layer. It should be noted that in comparing the profiles for
this case the u/ue = 0. 5 line has been picked to match.

Another check on the effect of compressibility can be obtained
from the data shown in Figure II-32, which compares model #1 and

#2, 1If the scale normal to the wall is transformed as shown in

*Note that this statement represents an assumption which must be
verified by comparison with low-speed results. It is not a necessary
condition.
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equation (II. 10), the profiles in II-32 can be shown to collapse onto
each other as shown in Figure 1I-34. This good agreement shows
the consistency of the transformation for fixed ke and varying edge
Mach number.

The success of the transformation in comparing the velocity
profiles suggests that the form parameter H = 6%/6 can be similarly
correlated. With the assumption of constant total temperature and
the transformation of equation (IL. 10), one can show that

H=s+/0= [LL M2+ 1+ L2 MOHEE )] (IL 11)
where H = _5*/§ is the value for an incompressible flow.

Equation (IL. 11) is valid for, say, air to air injection. For
the injection of a foreign gas, an estimate can be made for the trans-
formation of the form parameter, H, if it is assumed that the mo-
mentum, mass and energy diffusivities are equal. As is shown in
Appendix II- A, the induced angle for the flow with injection is

approximated by

M

n® = Y-i o2y |y e —air g IL 12

Tan®@ =2 _(1 + 5= M) T (I. 12)
inJ

where /nw is the molecular weight of the gases in question.  For air

to air injection, where velocity profiles are available, equation (II.11)

can be used to give H. For foreign gas injection, equation (II. 12)

should provide a reasonable estimate of the variation of H with the



-81-

injection parameter, Ke' If direct concentration, velocity and tem-
perature measurements are available, equation (Il. 12) is not necessary
and H can be calculated directly from the data.

In order to test the density transformation, helium was
injected through model #1 and the resulting induced flow angles were
recorded from schlieren data. Then, using equation (II.12), H as a
function of )\e can be calculated for any set of known freestream con-
ditions by iteration. Figure II-35 shows the values of H determined
from equation (IL. 11) using the measured values of Me’ 6%, and 0 at
Moo = 2.6, and the values for helium injection obtained from equation
(I. 12). These are to be compared with the results of McQuaid
(M = 0). Also included in Figure II-35 are the values of H calculated

directly from the data of Mugalev(lz)

at Moo = 2.5 for air to air and
COZ-air injection, the results of Danberg(lg) at Moo = 6.2, and the
results obtained herein on the 10° ramp (model #2). The agreement
is good for the range where overlap exists. Furthermore, at the
highest injection rate where the boundary layer is nearly separated,

&

the value of H obtained from the experiments is close to the value

.(33) Hence, it appears that B can be ex-

for separated flows (~4)
pressed solely as a function of )\e for large injection rates regardless
of density variation, and that the limiting velocity profile reached at

)\e?:‘ 0. 03 is the mixing-layer profile.

II. 4.5 Flow Angle and Shear Stress Distribution

With similar flow established, it is possible to use the velocity
profiles shown in Figure II-31 to calculate the flow angles through the

layer and the shear stress distribution if one assumes boundary-layer
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‘flow. The equations in the zero pressure-gradient similar region are:

continuity (pu)x + (pv)Y =0 (II. 13)
momentum puu_ + pvu,_ = 'TY (11. 14)
Integrating (IL 13) fromy =0toy = ';r,
PU, PU Y >
VoI e e e e d dy
T = ) -2 {fo pu/peuedy}+ = (IL. 15)

For similar flow, pu/peue = f(y/e) and d9/dx = Ae’ so equation (II.15)

gives

v [peue Pelle ﬁ’/e ~ ] 6
37 he ou " Tpu . pu/peued(y/9)+y/9 (IL. 16)

Similarly, integrating equation (Il. 14) and using equation (II.16), one

gets
T-T y/8 /0 5ul
pu
7 = Aeg%- 2 P ou/p u aty /o) ] zd(y/e)§ (L 17)
Pele e e 0 0 Pele

where Tor is the wall shear stress. Equations II. 7 and II.10 can be
combined with equation II. 17 to yield a density invariant at corres-

ponding stations. Combining these we get

W W
5 = — (II.17-a)
Apu XA pu -
el'e e e e

at corresponding stations in the flows. This result is the basis for
some of the plots of shear stress shown later in the text (Figures
II-38-11-40). Figures II-36 and II-37 show the results of equations
(IL. 16) and (IL. 17) as applied to the data presented in Figure II-30.
From these equations, one sees that the minimum value of v/u and

the maximum value of 7-7_/p u? occur when
Y/e w e e

[, ew/pu dly/e) =1 (I 18)
The diviglring streamlin}? (V¥ = 0) is defined by
V.
[ B ay= ] Pww o (IL. 19)
0 Pe“e 0 Pe“e
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For constant injection and similar flow with %xg = Ae’ equations
(I1. 18) and (IL. 19) are the same if the initial boundary layer is zero
thickness. The effect of finite initial boundary-layer thickness is to
cause a discrepancy in the calculated maximum in shear stress and
the dividing streamline location as determined from equation (1I. 19).
Hence, for a truly similar flow, independent of initial boundary-layer
thickness, the maximum value of shear stress, and the minimum
flow angles should occur along the dividing streamline. In Figures
II-36 and II-37, the point ¢ = 0 determined from (II. 19) (a mass bal-
ance) is plotted. The close agreement with the maximum of 7 and
minimum of v/u is still another check on the two-dimensional, simi-
lar nature of the experimental flow. It should be emphasized that in
using equation (IL. 19), x is the actual distance from the beginning of
the porous plate and has not been corrected for any virtual origin ef-
fects. It might also be noted that factors other than the initial bound-
ary-layer thickness might cause the small bias shown in Figures
(II. 36) and (II. 37), for example, the assumption of constant total tem-
perature or the effect of Pitot probe angle of atﬂtack might be respon-
sible.

Figure II-36 also indicates the region where large errors in
the Pitot tube readings are important because of angle-of-attack effects.
The most important result shown in Figure II-37 is that, although the
shear stress at the wall is expected to be quite small, the maximum
shear stress in the layer is several times the maximum value in the
boundary layer with no injection, and this result emphasizes the im-

portance of turbulent mixing in this problem. For example, for the
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approaching boundary layer at the Reynolds number and Mach number
2
of these tests (Re@ = 2000, M_ =2.6), C, = va/peue & 0.0025. At
. e . . 2
the highest injection rate shown in Figure II-37, 'rmax/peue Ae:' 029~
. 01, and this value is about four times larger than CfO' If one

assumes Newtonian shearing stress, then at the wall one obtains

(from Figure II-31)

du/u )
A < .05
3y/6 )tez. 03 :

So,
Tw 1w e/ <5x10°°
u Reb e 8(y79)
Pele/n =.03

for 8= . 09'' and Re/inch= 2.2 X 105. Hence, for these high injection
rates, the wall stress is of no importance.

As a further check on the compressibility, the maximum

value of -X-l-— T > is plotted as a function of Aeﬁin Figure II-38 and

e Pele (9)

compared with the results of McQuaid'’’ and Simpson(lo). As is

-
-x-l— ——r—{l—%}i should be an invariant
e Pele

for a free shear layer ('rW = 0) and Figure II-38 shows the variation

shown in Appendix B of this part

of this quantity with injection rate and the asymptotic value of Liep-
mann and Laufer at M = 0.

An interesting plot of the data is shown in Figures II-39 and
II-40 where 'r/'rmax is plotted as a function of velocity for various
injection rates. In Figure 1I-40, the incompressible data of Simp-

son'1®) (17)

and Liepmann and Laufer are also included. The plot shows
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an interesting insensitivity of the normalized shear stress curve to
both density and injection rate when Cf/he << 1. This insensitivity

is most apparent in the outer (wake) portion of the layer, where
u/ue.?, 0.5. The determination of an eddy viscosity from mean flow
profiles involves differentiating data and is thus subject to large
errors. Nevertheless, such information may be useful for future
applications. Figure IL. 41 presents the value of the derived eddy
viscosity normalized by the maximum value for the velocity profiles
previously presented. In differentiating the data, a five point
smoothing was used. A quartic was least squares fitted to successive
sets of points and the derivative was calculated for the central point
in a set by differentiating the resulting polynomial. The shear stress
was calculated using equation (II. 17) and the eddy viscosity was ob-
tained from € = 7/p —g—;—l In Figure IL 41, the transformed eddy vis-

cosity is plotted [Z/Emax = (p/pe)z e/e For completeness

]
max
both the transformed and untransformed values of eddy viscosity are
tabulated in table II-1. The maximum value of € is included in
section III, Figure III-6. Although there is considerable scatter,
it appears as if E/Emax certainly varies across the layer with a
roughly parabolic shape. This effect has been experimentally ob-
served in other types of flows with low skin friction. (39,40)
Finally a physical picture of the flow field can be obtained
from the data presented thus far. Figures 1I-42 or II-43 show the

streamline pattern calculated for an intermediate injection rate.

In Figure II-43 the effect of the termination of injection is quite
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pronounced and is discussed in more detail in Part III of this thesis.

II. 4. 6 Induced Side Forces

Another result which can be obtained from the data is the
induced side forces caused by the interaction of the injectant with
the external stream. Assuming that Cf/he<< 1 and that H =5%/0
can be expressed only as a function of )\e (regardless of density ratio
across the layer) and using a Crocco integral relation for the total

enthalpy in the layer, Lees(zo)

has combined the integral form of the
boundary-layer continuity and momentum equations to obtain the

following expression for the induced angle:

-1 ..2 —
Tan® =2_[1+55= MO[1+ Tw/T, A ()] (IL. 20)

By an iterative process, it is possible to obtain ®()Le, Me) or @(Am, Ma}
from the above equation and Figure II-35.

Calculations of the total side force produced by injection were
made without taking account of up- and downstream end effects, and
consequently the total force for a plate of length L and unit width was
calculated from F = (Pe ®) - POO)L. Values of F normalized by the
thrust of a sonic jet of the same mass flow rate flowing into a vacuum,
Fsv’ were calculated for 2.6 < Mms 8; 05 ® <= 140, Y =1.4 and
0.33< Tw/Ttoos 1.5.

As would be expected from the excellent agreement between
calculated and measured values of ®(7\m), shown in Figure 11-26,
calculated and experimental values of F/Fsv for the M00 = 2.6 case

agree well. The thrust ratio increased from 2. 9 for very small
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values of Ae to 3.5 at the maximum blowing rate of 0. 03 = )Le. In
addition, calculated values of F/Fsv were within + 10 per cent of 3.2
for the whole range of parameters examined in the calculations.
This value is slightly larger than similarly normalized side forces
obtained experimentally for concentrated injection of gases from
narrow slots and into supersonic streams. (21)
Hence, it appears as if the thrust ratio obtained by injection
into a supersonic stream is quite insensitive to the manner in which
the fluid is injected (slot or porous plate). This result may have

some interesting implications for future design of control surfaces.

IL 4.7 Results Obtained on Model #3 (20° Ramp)

As has been mentioned previously, it was not possible to ob-
tain a similar flow region for the 20° ramp model. This model
configuration was chosen on the basis of the results obtained previ-
ously. For Mach number = 2. 6 it should represent a fully '"blown
off'' condition for constant pressure. Experimentally it was observed
that the pressure in the layer was always dropping. Furthermore, if
the effect of falling pressure is neglected, neither a mass nor momen-
tum balance can be achieved. Figures II-44 and II-45 present the
computed displacement thickness and momentum thickness variations
observed for this model and indicate the large discrepancy between
these results and the behavior expected for a constant pressure flow,
Although the variation appears linear, it was found that the velocity
profiles could not be scaled with, say, y/6 (Figure II-46). However,

and this result may have some bearing on mixing layer experiments,
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if the velocity profiles are plotted from some arbitrary point as
origin, instead of the wall (where it is known u = 0), then it would
appear that the flow is similar for .2 < u,/ue < .95 (Figure II-47).
Thus, care must be exercised in interpreting compressible mixing
layer experiments. The low velocity tails on the profiles can have
large effects on the deduced entrainment values and, unfortunately,
are subject to large experimental errors. Table II. 3 presents a
summary of the data obtained for model #3 and shown in Figures
(11-42 - II-47).

It is postulated here that this behavior observed on the 20°
model was due primarily to the falling pressure induced by the ter-
mination of injection. That is, an a priori assumption of constant
pressure in the transition region from the porous to the non-porous
section requires that the slope of the momentum thickness and the
slope of the shape factor H possess jump discontinuities which are
determined from, say, equation IL. 1 and II. 4. Such discontinuities
cannot be tolerated by a viscous flow and, hence, unless special
care is taken in tailoring the geometry of the non-porous section,

a pressure gradient will be generated due to viscous inviscid inter-
action similar to that observed in flow approaching an expansion
corner. For example, at this injection rate, including the pressure
gradient term the integrated momentum equation becomes

aM_ H+2- M

de _ o
M, d&x (1+I———£1Mi)

Ao " dx

IR

(IL. 21)
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using ke = 0,04

de _ .

= - 0. 028
(I1. 22)

H = r-1 M2 + (1 + y-1 MZ)H., H. = 4 (for a separated

2 e 2 e’ 1 i flow)
M = 2.67
e
gives
) dN[e
—M-—; &= = - 005 (IL. 23)

at the midpoint of the plate Ax= 2'', 6 = . 05"

€~ 20%

M
e

So, the discrepancy between d8/dx and ke can be accounted for by an
overall change of about 20% in the Mach number over the plate which
is of the order of that which was observed. This may possibly be
alleviated by redesign of the region downstream of injection to ap-
proximate the final streamline leaving the wall.f The difficulty in
calculating the proper streamliﬁe shape stems from the fact that the
actual flow for which the shape is to be calculated is not known.
However, assuming that for model #3 it is very close to a mixing
layer and using the compressibility transformation cited in the text,
a first approximation to the shape can be computed from, say, the

(

data of Liepmann and Laufer. 17) This shape can now, conceivably,
be iterated upon to try and maintain a constant pressure region.

I1. 4.8 Effect of Finite Plate Length for Model #1

This short section may be considered as a prologue to the



-90-

third part of this thesis and repeats some of the results already cited
in some of the previous sections. However, it is felt that the effect
of the end of injection is important enough to warrant several further
comments.

Since the effect of large injection is to cause inflection of the
mean velocity profiles and to move the sonic line away from the wall,
the fact that the porous plate is finite in length could be felt upstream.
The termination of injection causes an abrupt expansion of the flow
with noticeable pressure variations normal to the wall and large
pressure gradients in the streamwise direction. This effect is also
readily observed in the velocity profiles.

For all injection rates examined, the effect of the rapid ex-
pansion is felt about two layer thicknesses upstream. Since the
induced angles depend only on ?te and Me’ it seems reasonable to
suppose that, in any experiment which attempts to investigate higher
injection rates than the present values, the ''few'' thicknesses which
are influenced by the end of the porous region wjll essentially cover
the entire porous plate. For example, if the induced angle is 20°,
and if the corner effect propagates upstream 2-3 layer thicknesses,
then it is easily seen that regardless of the plate length, about 75-100
per cent of the plate will be dominated by the effect of the termination
of injection (see for example Section Il 4. 5).

Hence, any theoretical analysis of the flow field produced by
injection rates much larger than the maximum used here must include
this downstream interaction region. In this case, the flow will not be

similar over most of the injection region.
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I1I. 4.9 Some Comments on Constant Pressure Mixing

The results quoted in the experiments which have been de-
scribed seem to indicate that as injection is increased the boundary-
layer velocity profile approaches a free mixing layer shape. The
value of mass injection at which this seems to occur is close to the
value of entrainment which has been observed for the incompressible
mixing layer.

However, an important discrepancy exists between these

(22)

results and the correlation Alber obtained for compressible mix-
ing layers. In examining avz_a.ila.ble data on these layers Alber found
that the mass entrained on the low speed side of these layers was
proportional to the square of the density ratio across the layer. In
the blowing experiments, the ratio of edge density to that at the wall
is about two. If the maximum amount of mass which can be entrained
by the constant pressure boundary layer corresponds to the free
shear layer entrainment value (which is the case for laminar
ﬂow)(23’ 24) Alber's correlation predicts an entrainment rate about
300% too low. *

The experimental data used by Alber in his correlation came
from two sources: supersonic experiments by Maydew and Reed(zs)

(26)

and by Sirieixand Solignac. In an attempt to explain the discrep-

ancy, a careful study of these two sets of data was performed.

*The data of Danberg(lg) presented in Figure II-35 is at an injection
rate which according to Alber's correlation is already 3 times that
which can be entrained by the mixing layer at that edge Mach number.
Clearly, Danberg's results do not represent a ''blown off'' boundary
layer.
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The data from Maydew and Reed in an axisymmetric experi-
ment were treated by Alber as two-dimensional. The first point
worth mentioning concerns the actual discrepancy in the momentum
thickness variation obtained directly from Maydew and Reed's data
and that of the present report (Model#1) at the highest injection rate

(for the same edge Mach number). Assuming a two-dimensional flow

for their data, the author has re-calculated %—xe—- from their data and
found that g—}% Mewz.[): 0.015£0.002. For the present work, at the
highest injection date, —g—-}e—{- Maxav,O.OZS (see Figure II-28). Hence, Al-

ber's correlation underpredicts the data for this case. A second
point is that the data were obtained in the potential core region of

flow exiting from a circular pipe. Because of this, two effects are
evident in the data which, it is felt, may strongly influence the dis-
crepancy in entrainment. The first is the axisymmetric effect. The
fact that the zero streamline must be displaced a few degrees in order
to satisfy the symmetry boundary condition on the pipe centerline has
been investigated and can be shown to cause an increase of about 30%
in the entrainment values deduced from considenring only the growth

of momentum thickness. That is, if, for axisymmetric flow, @ is de-
fined in the manner used throughout the text, %’3 # )\e . The effect of
the zero streamline displacement enters directly into the determi-
nation of the low-speed side mass entrainment rate. If this 30 %
difference is applied to the previously mentioned results, the differ-
ence in entrainment rates for these two exper_iments is less than 30%o.

Hence, no great discrepancy actually seems to exist between the two

sets of data if they are properly interpreted. Secondly, and perhaps
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more importantly, it has been calculated that the induced flow at the
low-speed side of the layer is not characterized by zero longitudinal

velocity (u_oo) (see for example, Taylor(27)

). This may be an impor-
tant difference between the mixing layer results and those obtained
using a porous plate where a no slip condition (u = 0) seems quite
reasonable.

(26)

The data of Sirieixand Solignac , are believed to be subject
to the second effect. If so, the geometry of the low-speed region is
open to question and may have strongly influenced the deduced en-
trainment rates. Furthermore, their results indicate a very slowly
growing layer which may have been strongly influenced by the initial
boundary layer.

The conclusion is that the question of the mass entrained by
variable density turbulent mixing layers is still unresolved but

(17)

appears to be limited by the Liepmann and Laufer value of Ke =

p-oov-oo/peue =~ .035. However, the results included in Appendix II-B
show that there may be strong effects of small secondary velocities
for highly compressible flows. Clearly, further experiments are
required in which the boundary condition of u_ o= 0 is assured at
the low-speed end, or at least in which LI is measured. It is felt
that using porous plates to supply the mass (at low momentum) may
provide the answer to this experimental difficulty.

Furthermore, the present injection experiments indicate that

the effect of termination of injection seems to influence the flow

strongly at injection rates near the constant pressure mixing layer
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limit. It may be possible that the downstream (reattachment) boundary
condition on most experimental mixing layer experiments may, in
fact, dominate the experimental results obtained.

Finally, a plea is made to the experimenters who obtain data
on mixing layérs. The practice of trying to fit a measured com-
pressible flow velocity profile to an incompressible analytical esti-
mate by using a simple affine transformation of the scales is not
only incorrect, but quite misleading. If a reference incompressible
profile is used, it should be an experimental one, not a theoretical

error function estimate of such. The effect of compressibility is
certainly not a linear one and if scales are to be stretched, the
stretching should be performed by using some rational integral
transformation such as a Howarth-Dorodnitsyn transformation in-
stead of a constant factor.

II. 5 Conclusions

(1) A self-similar, two-dimensional flow field with linear growth
has been established experimentally for uniform .injection on a flat
surface and its mean flow properties have been investigated.

(2} The results obtained at Moo = 2.6 can be brought into agree-
ment with the available incompressible data on boundary layers with
moderately large injection by using a Howarth-Dorodnitsyn type
transformation.

(3) At the highest injection rate obtained without upstream sepa-
ration, the mean velocity profiles approach the free mixing-layer

results. However, the amount of mass entrained at this point seems
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to be close to that for the constant density layer (vaW/peue = . 03).
(4) Forces obtained with distributed injection are comparable
to those obtained with injection through a slot for a given total mass
flow rate.

(5) For any finite, porous-plate length, the effect of the discon-
tinuity in injéction at the end of the region is felt farther upstream
as )Le is increased and is expected to dominate the entire flow field
for induced flow angles of about 20° or larger, regardless of the
plate length.

II. 6 Future Work

The following related experimental investigations are recom-
mended:
(1) An investigation of the flow field in an incompressible bound-
layer layer with injection rates approaching the entrainment value for
a mixing layer (Ae = ,03). The geometry recommended for this is
the ramp with the addition of a variable angle capability.
(2) Further investigation as to the effect of compressibility on
flows with large injection using a cold wall or a heavy (large molecu-
lar weight) injectant. This should allow one to approach the limiting
Ae with a minimum effect of the finite plate length, since the induced
flow angle will be much smaller for a given injection rate.
(3) An investigation of the flow field with large injection on an
axisymmetric body {e.g., a cone) with emphasis on the possible
effects of transverse curvature.
(4) A more detailed investigation of the effect of compressibility

on a two-dimensional mixing layer than has been performed to date.
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NOMENCLATURE FOR TABLES II. 1, II.2 AND II. 3

Mm freestream Mach number
Poo freestream pressure (cm. Hg.)
loo pwvw/poouoo
xe pva\x.'/peue
P, pressure at edge of layer (cm. Hg.)
Me Mach number at edge of layer
H form factor - §%/0
H transformed form factor _5*/_9.
3] momentum thickness
® induced flow angle - tan ® = ve/ue
Y distance normal to wall - inches
X distance along plate —.inches
P/PTZ ratio of static pressure to Pitot pressure
v/ R transformed distance normal to wall
u/ue velocity ratio
T . .
> normalized shear stress
Pele
u€6 normalized eddy viscosity
e
€ transformed eddy vi ity = (&~ ‘ =
y viscosity = (=)
u 9 ‘ ’ ) : Pe u‘ee
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TABLE II. 1, 1

TABULATION OF SIMILAR EXPERIMENTAL DATA (MODEL #1)

i

Moo = 2. 600 A_=0 Pe = 3. 800 H =4, 490 @ = 0.008502

QO
P =3.800 XA =0 M =2.60 H=1.334 ® =0
Q0 (<} e

T'Tw* e”t é_*

¥ P/PT Y/é_ u/ue 2 u o ——

2 pu u o

e € [S]
0 1. 0000 , 0000 .0000 .0000 .0000 .000000

. 005 . 396 . 288 . 636
.010  .317 . 627 . 712
. 015 L2171 . 991 . 761
. 020 .253 1.371 . 781
. 025 .238 1.761 . 799
. 030 .224 2.161 ©  .816
. 035 . 209 2.572 . 834
. 040 .198 2.993 . 848
. 045 .188 3. 425 . 862
. 050 . 181 3.865 .872
. 055 .173 4,314 . 884
. 060 L 167 4,773 .894
.065  .160 5.240 . 905
. 070 .154 5,717 .914
.075  .150 6.202 . 922
. 080 .144 6. 697 . 932
. 085 .139 7.202 . 942

*Not calculated for this case
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TABLE II. 1.1 (Cont'd)

y  P/P. y/e
2
.090  .136 7. 715
.095 .13l 8.238
.100  .128 8. 769
.105  .124 9.310
.110 . 120 9. 860
J115 . 118 10. 418
.120 . 115 10. 985
125 .113 11.558
.130 .11l 12.138

.135 .110 12,723

¥Not calculated for this case

. 948
. 957
. 963
. 970
. 978
. 988
. 989
. 993
. 996
1. 000

gl

#*

=g

|
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TABLE II. 1,2

TABULATION OF SIMILAR EXPERIMENTAL DATA (MODEL #1)

2.59 A 0. 0039 Pe =4.551 H =4.701 6 = 0.0155

O (o)
= 3,80 A, =0.0036 M_=2.45 H =1.591 ® =1.160
T-T s
y P/Pp. y/6  u/u, Z w9 oo
2 Pele e uee
.000 1.000 O 0 0 0 0
.010 .722 .307  .285 .00143 0 0
.020 .569 .639  ,382 .00180 . .0145 .00415
.030 .469 .994  .453 00200 .0328 .0105
.040 .403 1.365  .497 .00207 . 0455 . 0158
.050 .358 1.752  .537 .00210 . 0515 .0193
.060 .318 2.155  .583 .00210  .0508 .0208
.070 .276 2.579  .638 .00204 .0502 .0230
.080 .246 3.025  .682 .00196 . 0529 . 0265
.090 .222 3.490  .721 .00185 . 0577 .0314
.100  .202 3.975  .758 .00172 . 0591 . 0349
.110  .186 4.479 .793 .00156  .0592 0377
.120 .173 5.002  .824 .00140 . 0584 . 0398
.130 .163 5.541  .853 .00123 . 0562 . 0408
.140 .153 6.098 .88l .00104 . 0513 .0395
.150 .145 6.671  .907 .000849  .0453 .0370
.160  .139 7.261  .931 .000654  .0394 .0339
170 .133 7.865  .953 .000459  .0311 .0281
.180 ,129 8.483  .970 .000295 0 0

.182 ,127 8.608 . 976 .000234 0 0
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TABLE II. 1. 3
TABULATION OF SIMILAR EXPERIMENTAL DATA (MODEL #1)
M_ =2,54 A__=0.008 P =520 H=5,116 0 =.0231
0o o e
Pco =4,20 Ae = 0. 0077 Me =2.270 H=2.012 ® =2.689

T-T

R W € €
y P/Pn y/6 u/u > ) —

2 p.u e u 0

e e e

.000 1.000 0 0 0 0 0
.010 -.929 .216 .203 . 00156 0o 0

.020 .867 .436 .28l .00213 -.0197 .00519
.030 .806 .660  .343 .00256 .0377 ~ .0104
.040 .759 .889  .386 .00283 .0471 .0134
.050 .707 1.122  .431 .00308 .0569 .0168
.060 .646 1.361 .48l .00332 .0634 .0198
.070 .608 1.605  .511 ,00343 ,0716 .0231
.080 ,559 1.853  .549 ,00355 .0775 .0262
.090 .520 2.108  .580 .00360 .0776 .0273
.100 .479 2.369  .617 .00363 .0780  .0290
110 .435 2.636  .646  .00362  .0693 0271
.120 .391 2.911  .681 .00355 ,0621 .0257
.140 .301 3.497  .775 .00317 .0487 .0244
.160 .235 4.142  .853 .00257 .0429 .0262
.180 .195 4.846  .906 .00192 .0395 . 0282
.200 .169 5.603  ,947 ,00123 .0324 .0265
.220 .152 6.409  .977 .000523 .0178 0

.240 .141 7.255  .999 -.000102 -.00512 0
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TABLE II. 1.4

TABULATION OF SIMILAR EXPERIMENTAL DATA (MODEL #1)

M _ = 2.550 A =0.0147 P =6.15 H=6.085 0 =0.033
0 00 e
P =4.150 A =0,0126 M =2.18 H=2.632 ® =5.102
0 e e

e T Tw € €
y P/PT Y/e u/ue 3 u 0 p—

2 p.u e u o

e e e

. 000 1. 000 0 0 0 0 0

.010 .997 .,155 . 044 . 00055 0 0
. 020 .992 311 . 069 . 00087 . 0175 . 0046
. 030 .984 . 466 . 097 . 00122 . 0242 . 0064
. 040 .976 .622 .119 . 00148 . 0257 . 0069
. 050 .953  .779 . 167 . 00205 . 0338 . 0091
. 060 .932  .937 . 204 . 00247  .0367 . 0101
. 070 .911 1.096 .232 . 00280 . 0449 . 0124
. 080 .872 1.256 . 280 . 00332 . 0550 . 0156
. 090 .848 1.418 . 307 . 00359 . 0620 . 0179
. 100 .820 1.581 . 336 . 00387 ' .0709 . 0209
.110 .788 1.746 . 367 . 00414 . 0688 . 0207
.120 .750 1.914 . 402 . 00443 . 0675 . 0209
.130 .707 2.084 . 440 . 00470 . 0673 . 0216
. 140 .661 2.256 . 478 . 00494 . 0698 . 0232
. 150 .615 2.433 . 516 . 00514 .0744 . 0258
. 160 .572 2.613 . 550 . 00528 . 0762 . 0275

. 170 .532 2.797 . 582 . 00537 . 0803 . 0303
.180 . 492 2.985 . 620 . 00542 . 0869 . 0346
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TABLE I 1.4 (Cont'd)

y  Ben T wh, —Y & &
2 Pele e u, 0
.190 . 456 3.178 .646 .00542 . 0889 . 0368
. 200 424 3.374 .668 .00539 . 0891 . 0382
.210 . 384 3.576 .701 .00528 .0805 . 0366
. 220 -, 353 3. 782 .732  .00512  .0715 . 0344
.230 . 327 3.996 .76l .00492 . 0684 . 0349
.240 .299 4,216 .794 .00462 . 0641 ..0351
. 250 .274 4. 443 .822 .00429 . 0601 . 0351
. 260 .253 4.678 .848 .00394 .0586 = .0365
. 270 . 232 4,922 .875 .00351 0542 . 0363
. 280 .216 . 5.173 .896 .00310 .0509 . 0361
.290 .200 5,432 .918 .00262 .0473 . 0358
. 300 . 188 5.699 .936 .00217 .0432 . 0346
.310 .178 5.973 .951 .00133 m,ozgf' . 0329
. 320 L170  6.254 .965 .00133 ,0334 . 0294
. 330 .163  6.541 .977 .00089 0 0
. 337 .159  6.745 .984 . 00061 0 0




-103-

TABLE II.1.5

TABULATION OF SIMILAR EXPERIMENTAL DATA (MODEL #1)

o =255 Ao =0.026  P_=7.20 H=17.088 ©=0.0417

P =3.95 A, =0.0189 M_=2.12 H =3.259 ® =8.684
T-T -
vy PPy Y/8 ufu 7  wo ==
"2 Pl e uee

0 1. 000 0 0 0 0
. 050 . 986 .633 .091 .00172 0 0
. 075 . 966 . 951 .143  .00266 . 0876 . 0248
.100 .960  1.271  .157 .00289 .0928  .0264
.125 . 941 1.591 .190 .00344 .0984 . 0282
. 150 - 906 1.915 .243  .00423  .0926 . 0272
. 175 .862 2.242 . .296 .00496 .0941 . 0284
.200 . 804 2.575 .357 .00567 .0966 . 0303
.210 . 778 2. 710 .382 .00593  .0976 . 0312
. 220 . 750 2.847 .408 .00617 .0964 . 0315
.230 . 720 2. 985 .435 .00639 . 0950 . 0318
. 240 . 686 3.124 .465 . 00660 .0938 . 0323
. 250 . 652 3. 266 .493 ., 00676  .0925 . 0328
. 260 .615 3.410 .523 .00689 .0923 . 0338
.270 .578 3. 557 .553  .00698 .0877 . 0333
. 280 . 541 3.706 ~ .583 ,00703 .0858 . 0338
.290 .503 3.858 .619 .00702 0862 . 0356
. 300 . 468 4,014 .647 .00696 0871 . 0376

. 320 . 399 4. 336 .698 .00671 . 0808 . 0378



. 340
. 360
. 380
. 400
. 420
. 430
. 440
. 450

. 460

. 235
.201
. 180
. 170
. 164
.162
. 160
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TABLE IL. 1.5 (Cont'd)

y/8

4.

-~ oo o0 00 &

675

. 037
. 424
.839
. 278
. 506
. 739
. 976
.214

u/ue

. 763
. 828
.883
. 930
. 963
. 979
. 989
- 994
. 996

. 00171

. 00105

. 00060

. 00037

. 00023

s

. 0354
.0333
. 0326
. 0301
. 0255
. 0211

. 0171
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TABLE IL 1. 6

TABULATION OF SIMILAR EXPERIMENTAL DATA (MODEL #1)

M =2.60 A =.0436 P =8.20 H=7.644 0 = 0.0623

[ 0] o0 e
P =3.70 A =0.029 M =2.010 H=3.781 ® =14.084

(e o) e e

— T T € €
¥ P/Pp  y/® u/u 5 .y p——
2 p.u e ub
e e e

0o 1. 000 0 0 0 0 0
. 050 . 998 . 444 .039 ,00114 0 0
.100 . 989 . 889 . 083 .,00240 ", 0819 . 0252
. 150 . 975 1.335 .127 .00359 L1130 . 0351
. 200 . 956 1.783 .168 . 00466 . 1384 . 0434
., 250 . 922 2.235 .226 . 00602 .1619 . 0519
. 300 . 886 2.692 .275 .00704 .1730 . 0567
. 350 .833 3.155 .337 .00803 = .1720 . 0584
. 400 . 774 3. 628 . 398 ., 00884 . 1403 . 0497
. 420 . 729 3. 820 . 440 .00919 .1183 . 0434
. 440 . 680 4.017 .483 . 00945 : 1058 . 0403
. 460 . 621 4,217 .533 . 00962 . 0972 . 0390
. 480 . 562 4,424 .583 ., 00962 . 0972 . 0390
. 500 . 500 4,637 .640 . 00943 . 0866 . 0397
.520 . 435 4,858 .689 . 00906 . 0798 . 0393
. 540 . 378 5,088 . 738 .00847 . 0727 . 0389
. 560 . 328 5. 329 .793 .00753 . 0627 . 0371
. 580 .287 - 5.583 .844 . 00640 . 0539 . 0354

. 600 . 252 5.850 .887 .00513 . 0459 . 0334



. 620
. 640
. 660
. 680
. 690

P/P

.223
.198
.183
177
. 176

y/8

6.131
6. 426
6. 735
7. 051

7.211
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TABLE IL 1. 6 (Cont'd)

u/u

e

. 927

. 962

. 985
. 997
. 998

T
w

u
pee

. 00370
. 00213
. 00095
. 00024

. 00013

. 0370
. 0261

. 0179
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 TABLEIL 21
TABULATION OF NON-SIMILAR DATA (MODEL #1)

Moo 2.590 koo =.0039

3.800

P
(e o]

Pe=4.450 x =.900 Pe=4.500'x=1.410 Pe=4.55 x = 2.410

y P/PTZ y P/PTZ y P/PTZ
0. 1.0000 0. 1. 000 0. 1.000
0. 010 0.610  0.010 0. 662 0.010  0.758
0. 020 0.454  0.020 0.517 0.020  0.607
0. 030 0. 368 0. 030 0. 429 0.030  0.506
0. 040 0. 311 0. 040 0. 366 0.040  0.433
0. 050 0.2696  0.050 0.317 0.050  0.386
0. 060 0.237  0.060 - 0.276 0.060°  0.337
0. 070 0.212  0.070 0. 243 0.070  0.299
0. 080 0.193  0.080 0. 220 0.080  0.268
0. 090 0.178 0. 090 0.198  0.090  0.243
0.100 0.166  0.100 0.182 0.100  0.223
0.110 0.155  0.110 0.170 0.110  0.207
0.120 0.146  0.120 0. 158 0.120  0.192
0.130 0.139  0.130 0.150 0.130  0.180
0. 140 0.133  0.140 0.142 0.140  0.169
0.150 0.128  0.150 0.136 0.150  0.158
0.153 0. 127 0. 160 0.132 0.160  0.150

0.170 0.143
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TABLE IL 2.1 (Cont'd)

y

0.180
0.190
0.194

0.138
0.133

0.131
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TABLE IL. 2.2

TABULATION OF NON-SIMILAR DATA (MODEL #1)

M_ = 2.600 o = - 0146
P_ =3.650
P_=5.70 x =.304 P_=525 x=2.67 P_=4.35x=3.06
v Pe/PTz y Pe[pTz y Pe/PTz
0. 1. 000 .0 1. 000 0. 1. 000
0.010 0. 786 . 025 . 981 0.025 0.946
0. 020 0. 648 . 050 .913 0.050 0.879
0. 030 0. 543 . 075 . 861 0.075  0.820
0. 040 0. 458 . 100 .808 . 0.100 0.763
0. 050 0. 389 .125 . 750 0.125  0.702
0. 060 0. 322 .150 . 603 0.150 0. 649
0. 070 0.271 . 175 . 528 0.175  0.600
0. 080 0.233 . 200 . 447 0.200 0.537
0. 090 0. 208 . 225 . 368 0.225  0.470
0.100 0.191 . 250 .299  0.250  0.406
0.110 0.178 . 275 . 240 0.275 . 0. 343
0.120 0.167 . 300 . 200 0.300  0.290
0.130  0.157 . 325 . 173 0.325 0.244
0.140 0.149 . 350 . 153 0.350  0.206
0.150 0. 144 . 375 . 141 0.375  0.175
0.160 0.142 . 400 .138 0.400 0.153
0.170 0.141 . 420 . 136 0.425 0.137

0.175 0.141 . 430 . 135 0. 450 0.126



TABLE I1. 2. 2 (Cont’d)

. 440
. 450
. 460

. 470

-110-

Pe/PT

.134

.134

2

. 475
. 500
. 525
. 550
. 575
. 600

Pe/P

0.120
0.119
0.118
0.118
0.117

0.117
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TABLE I1.2. 3

TABULATION OF NON-SIMILAR DATA (MODEL #1)

M_ = 2.550 = - 0260
P_ = 3.950
P_=7.250  x=.695 P_=7.200  x =1.0880

y /Py y P_/Py

2 2

0. 1. 000 0. 1.000
0. 050 0. 967 0. 050 0. 980
0. 075 0. 929 0. 075 0. 941
0. 100 0.879 0. 100 0.917
0.110 0.848 0.125 0.878
0.120 0. 801 0.140 0.847
0.130 0. 751 0.150 0.823
0. 140 0. 694 0. 160 0. 791
0.150 0. 639 0.170 0. 754
0. 160 0.578 0.180 0. 716
0.180 0. 466 0.190 0. 670
0. 200 0.367 0.200 0. 626
0.220 0.290 0.210 0.576
0. 240 0. 231 0. 220 0. 529
0. 260 0.194 0.230 0. 480
0. 280 0.172 0. 240 0. 436
0. 300 0. 160 0. 260 0. 355
0.310 0.157 0.280 0. 285

0. 320 0.156 0. 300 0.232



0. 330

0.156
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TABLE IL 2. 3 (Cont'd)

Yy

0. 320
0. 340
0. 350
0. 360
0. 370
0. 380
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TABLE I1.2. 4

TABULATION OF NON-SIMILAR DATA (MODEL #1)
. 0436

M00 =2.600 hoo

P_=3.700
' 0o

Pe=8.500 x=1.115 Pe 8.300 x =1.480

y P /P, y P_/P.
2 2
0. 1. 000 0. 1. 000
0. 050 0. 992 0. 050 0. 995
0.100 0. 964 0.100 0. 982
0.120 0. 944 0.150 0. 958
0.140 0. 928 0.200 0.918
0.160 0. 908 0.250 0.858
0.180 0. 886 0. 300 0. 790
0. 200 ~ 0.859 0.320 0. 755
0.220 0.827 0. 340 0.722
0. 240 0. 788 0. 360 0. 664
0. 260 0. 742 0. 380 0. 606
0.280 0.693 0. 400 0.537
0. 300 0. 635 0. 420 0. 464
0. 320 0.574 0. 440 0. 398
0. 340 0.503 0. 460 0. 342
0. 360 0. 423 0. 480 0.293
0. 380 0. 352 0. 500 " 0.253
0. 400 0.295 0.520 0.220

0. 420 0. 249 0. 540 0.197



0. 440
0. 460
0. 480

0. 490
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TABLE IL 2, 4 (Cont'd)

P /P
e T2

0.214
0.188
0.177

0.176

0. 560
0.580
0.590
0.600

Pe/P

0.183
0.177
0.176

0.175
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TABLE II. 3.1
TABULATION OF NON-SIMILAR DATA (MODEL #3)

M00 =2.610 Poo = 3. 660
7\00 =.0354

Pe=4.100 x =0.4 Pe =3.800 x =0.785 Pe = 3,380 x =1.180

¥ P'e/PTZ y Pe/PT2 ¥ Pe/PTZ

0 1.000 0 1.000 0 1. 000
0. 0805 0.993 0.162 0.987 0.188 0.958
0. 0855 0. 988 0.172 0.979 0.238 0.939
0. 0905 0.976 0.182 0.969 0.278 0.914
0. 0955 0. 965 0.192 0. 955 0. 303 0.883
0.1005 0.943 0.202 0.938 0. 328 0.824
0. 1055 0.921 0.212 0.916 0.333 0.814
0.1105 0.882 0.217 0. 900 0. 338 0.795
0.1155 0. 845 0.222 0.880 0. 343 0.777
0.1205 0.804 0.227 0.850 0. 348 0. 756
0.1255 0. 752 0.232 0.826 = 0.353 0.735
0.1305 0.701 0. 237. 0. 795 0. 358 0.712
0.1355 0. 646 0.242 0.769 0.363 0.690
0. 1405 0. 590 0.247 0.735 0. 368 0.663
0. 1455 0.536 0. 252 0.704 0.373 0.644
0.1505 0. 485 0. 257 0.670 0. 378 0.617
0.1555 0. 434 0. 262 0.639 0. 383 0. 591
0.1605 0. 392 0.267 0.603 0. 388 0.591

0.1655 0. 353 0.272 0.571 0. 393 0.537



. 1705
. 1755
. 1805
. 1855
. 1905
. 1955
. 2005
. 2055
.2105
. 2155
. 2205
. 2255
. 2305
. 2355
. 2405
. 2455
. 205

. 2555
. 2605

. 2655

0. 319
0. 291
0. 269
0. 249
‘0. 234
0.219
0. 206
0.195
0. 185
0. 176
0.168
0.161
0. 155
0.149
0. 144
0.139
0.134
0.130
0.126
0.122
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TABLE IL 3.1 (Cont'd)}

y
0.277
0.282
0. 287
0.292
0,297
0. 302
0. 307
0.312
0. 317
0. 322
0. 327
0.332
0. 337
0. 342
0. 347
0. 352
0. 357 -
0. 362
0. 367
0.372
0. 377
0. 382

0. 387

P /P
e T2

0.539
0. 503
0. 466
0. 432
0. 398
0. 369
0. 341
0.313
0.288
0.267
0. 248
0.233
0.220
0.207
0.196
0.187
0.178
0.170
0.163
0.157
0.151
0.145

0.140

. 398
. 403
. 408
.413
.418
. 423
.428
. 433
. 438
. 443
. 448
. 453
. 458
. 463
. 468

. 473

478

.483
. 488
. 493
. 498
. 503

. 508

0. 508
0. 483
0. 457
0. 431
0. 405
0. 380
0. 358
0. 336
0.314
0.296
0.278
0. 261
0. 245
0.230
0.217
0.205
0.195
0.185
0.177
0.169
0.161
0.155

0.149
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TABLE II 3.1 (Cont'd)

Yy

0. 392
0. 397
0. 402
0. 407
0.412
0. 417
0. 422

0. 427

Pe/PT

0.135
0.131

0.127

- 0.123

0.120
0.117
0.115

0.114

2

.513
. 518
. 523
. 528
. 533
. 543
. 548
. 553
. 558

. 563

0.143
0.138
0.133
0.129
0.124
0.117
0.114
0.111
0.109

0.108
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TABLE IIL 3. 2

TABULATION OF NON-SIMILAR DATA (MODEL #3)

M, =2.610
P_ =3.660
Aoy = 0.0354
P_=3.180 x=1.570 P_=3.080 x=1.970 P_=2.900 x=2.750
y P /P, y P /Pr ¥ P /P,
2 2 2
0 1. 000 0 1.000 0 1. 000
0.278 0.978 0.208  0.994 0.270 0. 990
0. 478 0.909 0.408  0.978 0. 520 0.973
0. 528 0. 909 0.488  0.962 0. 840 0. 951
0. 548 0. 896 0.558  0.948 0. 900 0. 935
0. 558 0.883 0.608  0.928 0. 940 0. 921
0. 568 0.871 0.658  0.906 0. 970 0. 906
0.578 0. 855 0.708  0.880 1. 02 0.879
0.588  0.837 0.718  0.868 1.07 0.817
0. 598 0.811 0.728  0.856 1. 08 0. 795
0. 608 0.776 0.738  0.844 1. 09 0.773
0.618 0. 740 0.748  0.828 1.10 0. 744
0. 628 0.704 0.758  0.800 1.11 0.716
0. 638 0. 662 0.768  0.770 1.12 0.682
0. 648 0.620 0.778  0.739 1.13 0. 647
0. 658 0. 580 0.788  0.700 1.14 0.611
0. 668 0. 536 0.798  0.658 1.15 0.574

0.678 0.493 0.808 0.622 1.16 0. 542



o O

o

. 688
.698
. 708
. 718
. 728
. 738
. 748
. 758
. 768
. 178
. 788
. 798
. 808
.818
. 828
. 838
. 848
. 858
. 868

Pe/P

0. 451
0. 405
0. 366
0.330
0.299
0. 268
0.242
0.219
0.198
0.178
0.162
0.150
0.139
0.130
0.123
0.116
0.110
0.107

0.104
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TABLE II 3.2 (Cont'd)

Yy

0.818
0.828
0.838
0.848
0.858
0. 868
0.878
0.888
0.898
0. 908
0.918
0. 928
0.938
0.948
0. 958
0. 968
0.978
0. 988
0.998
1.008

1,018

P, /PT

0.
0.

Oo

581
540

501

. 463
. 428
. 392
. 360
. 328
. 299
271
. 247
. 224
. 205
.186
.170
. 156
. 144
. 135
. 126
. 119
<113

2

1.

y

17

.18
.19
.20
.21
.22
.23
.24
.25
. 26
.27
.28
.29
.30
.31
.32
.33
. 34
. 35
. 36

.37

P /P

0.509
0.475
0. 446
0. 414
0. 384
0. 358
0. 330
0. 305
0.282
0.259
0,241
0.222
0.206
0.190
0.176
0.163
0.151
0.141
0.132
0.124

0.117
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TABLE IL 3.2 (Cont'd)

y
1.028

1. 038

1.048

Pe/PT
0.108
0.104

0.101

2

1.38
1. 39

1.40
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Appendix IL A

An Approximate Expression for the Induced Flow Angle with Foreign

Gas Injection

For the case of zero pressure gradient, and Cf/ke<< 1.
the continuity equations (IL. 13) and (II. 14) can be integrated across

(20)

the layer and combined to give
tan@:he[un’ﬁ (IL. A. 1)

*
where H = 6*/9.

Defining dy = p/pe dy

% 5 Pe 6pe u —
5 =/ (- u)dy=f(—-—--l—1——)dy (I. A. 2)
0 e e o P e
6 u 611 ’ —
o =[ P - u/u_)dy =[ - u/u_)dy (IL. A. 3)
0 Pele 0 e

for a perfect gas mixture at constant pressure,

Ci = mass fraction

M. = Mol. Wt. of the Species (IL. A. 4)

Assuming an air-injected gas mixture with air only at the edge of the

layer (Cgas = l-Cair)
Pe T air
o T; {Cair * (1'Cair)/'n——_-} (L. A.5)

gas

For simplicity assume

Cair =u/ue (II. A. 6)



-169-

H=H_+ (He-Hw)u/ue (1. A. 7)
where
H=ECh, + w? /2
(II. A. 8)
h, = C_ T,
1 1

and where the individual gases are assumed to behave like perfect

elements (Cp = const, zero heat of formation).

Then, assume for the GALCIT tunnel

u
e (II. A. 9)

(i. e., the wall is at the same temperature as the plenum which is at

room temperature). This, combined with equation (II. A. 7) implies

that 'I‘0 is constant across the layer. Combining (II. A. 7) and (II. A. 9

with the definition of total enthalpy (II. A. 8), one obtains (letting sub-

script g refer to the injected gas, a to the air)

T u M Cp
T %-——-&—g- —£ (l-u/ue)§

o (57 S,

Cp M Cp M
-1 Mi;““/“f rgt 2B w0 -E 2R
M € M
Py /My Py Mg
M Cp
*fg*]n"g‘”c";g”(l’“/“e) (II. A. 10)
a a

where C_ is the molal specific heat at constant pressure.

i
Then, using (II. A. 5) and (II. A, 6), get
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P u/ue+(l -u/ue)/na//ng

e y-1 .2 2
L = M. (u/u_-(u/u_)“)
e u/ue(l-u/ue)Cpg/na/Cpa/ng a € e e
C
p
1+ 1'-5-1— Mi)-—c—;—g -/-n—“l (1-u/u ) + u/a, (IL A, 11)
p, M,

If both gases are diatomic, then C /C_ =1. For helium injection,
Cp /C_ = 5/7. However, for u/ue = 62 <1 it can be shown that this
effgect isa not important to order €. For u/ue = 1-€, the effect causes
an error = 15% for these test conditions. In view of the approxima-
tions made thus far, it seems justifiable to neglect this effect. Then,

equation (II. A.11) becomes

p

e ~uw _y-1,.2 2 y-1.,.2 _a
5 o = Me(u/ue-(u/ue) )+ (1 + = Me)/n (l-u/ue)
g
(11, A. 12)
Combining this with (II. A. 1) and (II. A. 2) gives
* _o*k,  y-1l,,.2 Y-1 42, _a ==
H =35 /9.-———2 M+ (1 + 5= Me)m H (II. A. 13)
g
U B
where H =E*/§-, 3* =f (1-u/u_)dy
0 e
Then, the expression for the induced angle (II. A. 1) gives
v-1 2 /nair s
tan® = Ae(l t 5= Me) 1+ H (II. A. 14)
gas

Of course, equation (II. A, 14) can only be expected to give approxi-
mate answers, but should be useful in obtaining a reasonable estimate
of the effect of varying molecular weight of the injected gas. Table
IL. A. 1 summarizes the results obtained using schlieren photographs

to obtain ® and equation (II. A. 14) to obtain H ()te).



. 0027
. 0038
. 0059
. 005
. 0067
. 007
. 008

. 0143
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Table II. A. 1

Shock Angles, Helium Injection (MOD = 2.55)

26.5
27.5
29.5
28.5
30

30.5
31.5

27.5

4.2
5.3
7.8
6.7
8.3
8.9
10.0

5.3

A

e

. 0023
. 0032
. 0045
. 004

. 005

. 0053
. 0058
. 0124

H
(Eqn. IL A.14)

1. 75
1.85
1.91
1.83
1.90
1.96
2.02

2. 61

Injectant

Helium

AIR (Check
Case for Eq.
(II. A. 14))
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Appendix II. B

An Invariant for Constant Pressure Mixing

B.1 Preliminary Discussion

Although the analysis presented in this appendix does not
directly relate to the problem investigated in this section, the con-
clusions arrived at seem general enough to warrant presentation.
We consider the ideal case of constant pressure mixing between two
fluid streams. One has density and velocity Pps Y- The other has
density, velocity Py Upe

v G p2'u2

____.’. //
/ . 3
- ?memg
T~ one
mmasrsmsm————— \\\\

— 7 PY

We assume boundary-layer equations are valid for the mean flow

g%(pu)+ ;;(pv) = 0 (ILB. 1)
u bu _ T ’

Assuming a turbulent layer where viscous stresses are neglected,
the only parameters in the problem are P> Uys Pps Uy There is no
length scale in this problem so postulate that the flow must be simi-
lar. Since y/x is the only dimensionless quantity involving lengths,
the layer must be linear in x, i.e., u, p are functions only of

y/x = &,

The coordinate system is taken to be along the streamline
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which divides the two fluids. By definition, this streamline originates
from the origin of the mixing region and is a straight line for con-
stant pressure mixing. Since the coordinate system is located on

this line, £ = y/x = 0 along this streamline ( = 0). Hence, u, p are
constant along Y = 0. Then, from equation (II. B. 2) since u = constant
along this line, _g_;r; = 0 which implies 7 has an extremum (a maximum
in this case).

Integrating equation (II. B. 2) and using (II. B. 1) we get

o0
T ey = 7(0) =j;) pu(uZOu)d(y/x) (II. B. 3)

using a stream function :—a—\Jd = pu, LI v, equation (IL. B. 3) can be
g oy p % P

written as

= L ou
L. fo s 5y & (IL. B. 4)

II. B. 2 Analysis

The sufficient conditions for transforming an incompressible

(barred) flow to a compressible flow given by ques(ls) are

P=oxN

dx = §(x)dx

p 3y = nix)pdy (IL. B. 5)

We will assume y = 0 transforms into y = 0. From these equations

it then follows that
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is necessary for the two flows to transform into each other. Further-

more, from (Il. B. 5) (see Coles(ls))
u E —
7 xdo | 1 sydo ___.L_Qz}
Py Ep11{1+0dx+v1 {odx pu O‘BX} (II. B. 6)
and
o0
— d ou
_5_121 T = ”'l‘ai‘f Y5y dy (II. B. 7)
Y

in particular, wheny =0, 7 = T nax and (11, B. 7) together with (IL. B. 4)

gives

En - - x
02 p =7 {1 + = (II. B. 8)

max max

&la
Tsamamd

For conical flow, with some manipulation of equation (IL B. 6) and
using the fact that % = const, equation (IL. B. 6) becomes
Uy

(1+— I) (IL. B. 9)
Y1

—— g x do
P vy --E-plv1 (1+o =)

00
where I =f0 (p/py-1)d(y/x) (II. B. 10)

Then, using (IL. B, 8) and (II. B, 10), we get, letting Re = plvl/pzuz;

Ae =V /u2

T T
max  _ max

puzh

(IL. B. 11)

2 !
e P Ae{l + o 1}

So, since these are constants it follows that
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-
max %

= const,. (II. B. 12)
21+ 1
U ALl ¥ v

For the special case where u, = 0, (II. B. 12) gives

-
rr;ax = const = 0, 34 (using the data of Liepmann- (II. B. 13)
pzuz)\e Laufer (17))

which is the analogue of Coles' ''Law of Corresponding Station. ' (18)
More importantly, equation (II. B. 12) indicates the sensitivity of the
shear stress-entrainment ratio for flows with large density gradients
and small, but finite secondary flows (u1 # 0), because an incompress-

ible flow equation (II. B.12) shows that a secondary flow will have no

effect on the ratio.

*This result is as general as the equation used initially, No assump-
tion as to the form of the density variation or shear stress function
has been made. It should apply to flows with more than one gas, or
variable Mach number.
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PART III. THE EFFECT OF

FINITE PLATE LENGTH
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PART III

THE EFFECT OF FINITE PLATE LENGTH

III. 1. Introduction

This final part of the report concerns itself with an analytical
investigation of the effect of the abrupt cessation of injection which
occurs at the end of any finite length porous plate in supersonic tur-
bulent flow. The experimentally observed importance of this effect
at the larger injection rates has been briefly referred to in the pre-
vious section,and in this part a physically rational yet mathematically
simplified approach is adopted to predict the observed pressure and
velocity profile variations caused by the adjustment of the flow to the
end of injection.

The reason for establishing an analytical model which can
predict the extent and magnitude of the observed induced favorable
pressure gradient (—%}% < 0) upstream of the termination of injection
canbe found in the results obtained in Part I. Although the analysis
presented in Part I was for similar laminar flow, certain qualitative
aspects can be expected to carry over to the tl;rbulent case. In par-
ticular, there is the very important conclusion that for any finite
favorable pressure gradient there is no singularity in the boundary-
layer equations as injection is increased, as compared to the zero
pressure gradient case (Blasius equation) where such a singularity
does exist for a particular value of injection. An analysis of this
singularity has been performed by Catherall, Stewartson and

(23)

Williams who show that for laminar flow the singularity occurs

at a value of mass injection very close to the value obtained for a



-181-

constant pressure mixing layer. (See, for example, Lock(ZB) and

Chapman (24)).

One would like to determine, then, whether a flow
with (initially) constant pressure exists and rapidly ''blows off'' (ex-
hibits a singular behavior) as injection is increased beyond a certain
critical value, or whether a pressure gradient will be generated
because of viscous-inviscid interactions which will prevent this blow-
off and allow, instead, for a gradual transition to a flow where vis-
cous forces are negligible everywhere except perhaps along a thin
shear layer around the dividing streamline (the inviscid limit).
Furthermore, for turbulent flow, if this latter result prevails, one
would like to establish quantitative bounds on the regimes of injection
rates for which mixing, both pressure gradient and mixing, and only
pressure gradient determine the solution.

Hence, the question becomes one of determining what mech-
anism will generate the pressure gradient. One possibility is the
effect of induced nose bluntness caused by injection from a leading
edge, which would provide a falling pressure. However, for any fixed
injection rate beyond the constant pressure ''blowoff'' value it seems
that this effect could be minimized by making a porous section long
enough so that eventually one would arrive back at the situation of con-
stant pressure and an injection rate greater than that which can be tol-
erated by a constant pressure boundary léyer. A second and more
plausible mechanism involves the effect of termination of injection on
the flow as a means of inducing a favorable pressure gradient. This

effect should be similar to that experienced by a flow approaching a

rapid expansion corner. This explanation seems more physically
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appealing since the thickness of the layer itself near the end of injec-
tion is expected to be the dominant length scale in determining the
upstream induced pressure field. Since the layer thickness is itself
‘proportional to the plate length, this effect may not be as easy to
negate simply by going to a longer injection region. This second
mechanism is, therefore, investigated here for the turbulent case.

The difficulty involved in analyzing this problem stems from
two main causes: the fact that any realistic analysis of this effect
must involve a simultaneous solution of the coupled viscous and
inviscid equations; and, secondly, the viscous layer in question is
a compressible, turbulent flow, which possesses its own complica-
tions.

In order to incorporate the important interaction of the exter-
nal (inviscid) and viscous flow, at least approximately, the integral

(29)

approach proposed by Lees and Reeves and extended later to tur-

bulent wake flows by Alber(zz)

seems most promising. In turbulent
flow additional complexity is added to the problem in that there is, in
general, no strict one-parameter equivalent to the Falkner-Skan

(29)

similarity solutions used by Lees and Reeves to characterize
the velocity profiles. Furthermore, a completely specified trans-
formation is not available a priori to reduce the compressible flow
eqﬁations to an equivalent incompressible form.

However, for large injection the experimental data obtained
in Section II indicates that in the constant pressure region the velocity

profiles and, hence, the integral functions which will appear in any

moment-integral description, arewell represented as a one-parameter
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family. Under these cc;nditions the effect of the
viscous sublayer is negligible. That is, the effect of wall shear can
be neglected. I.ees and Chapkis(ZO) have employed this idea in for-
mulating a theory for the constant pressure region which has success-
fully predicted the experimentally observed trends. Although their
formulation employed an eddy viscosity model for the turbulent shear
stress, this assumption is not essential and, in fact, is not made in
the analysis which follows. What is assumed, however, is that even
in the non-similar region near the end of injection a one-parameter
representation of the flow profiles is adequate. This is the crucial
assumption made in this analysis. Its only real justification must
lie in the agreement of the theory with experimental observations.

With this assumption, the most logical source for the ''similar
solutions'' which will be used to characterize the integral functions
is the constant pressure experimental data itself. Use of this data
obviates the need for an eddy viscosity model and provides the neces-
sary information as to the effect of compressibility.

In summary, the approach to be taker; involves a moment
integral description of the flow assuming a one-parameter family of
flow profiles which will be derived from the experimental data ob-
tained in the constant pressure region. The effects of compressi-
bility will also be deduced from the correlations of the present data
with incompressible experiments in the constant pressure region.
Using these assumptions, the attempt is made to predict the

observed pressure field in the non-similar region near the end of

injection.
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Section III. 2 presents a derivation of the governing equations,
and the compressibility transformation employed. Section III. 3 out-
lines the analytical approach used to treat the flow in the vicinity of
the end of injection. Finally, in Section III 4 the results of the com-
putations are compared with the experimental data and conclusions
are drawn for higher injection rates.

III. 2 Governing Equations

III. 2.1 Derivation and Transformation of the Equations

The equations for the mean flow quantities are assumed to be
the boundary-layer equations of a perfect gas (v, Cp = constant) with

a constant total temperature

(pu)y + (pv)y = 0 (I 1)

puu + pvuy = 'ry~PX (I1L. 2)

P =0 (IIL. 3)
y

C T+u’/2=C.T +7U%/2=constant (IIL. 4)
p p e e

where the subscript e refers to quantities at the edge of the viscous
layer. The assumption of constant total temperature is not a neces-
sary one but is consistent with the data to be predicted (Section II).

Equations (IIL. 1) and (IIL. 2) and the equation obtained by multi-
plying equation (III. 2) by u are now integrated across the layer

(y = 0-8) to give (for isentropic external flow)

6¥-6 d
PY dx

(=}

tan® = v _/u =%—§;:+

J/, pu, + A, (L. 5)

o



du
1 d 2 o e _
5 @ PUd) t o o =AJ(1+C/2n ] (L1 6)
e e
du
1 d 3 k% 2 e
3 Ex"(peuee )+{1—_ dx {6*' Gu}
Pee €
2 6 . B(u/ue)
=2 [”'X“f z 5y dy] (III. 7)
e 0 Pele

where subscripts e refer to quantities at the edge (y = 6) and sub-

/p_u

e e’

" scripts w refer to wall values, where )\e =p Cf/Z =

v
W W
'rw/peuz and where &*, §_, 0 and %* are defined by

) )
&% =£ (1 -y, 6=[ B (1-u/u )dy

peue 0 pe e

(I11. 8)
) )

¥k u 2 -
0 -j(') —R———peue (1-(u/u )%y, au_{) (1-u/u_)dy

At this point, in.equation (IIl. 6) it is assumed that in the blow-
ing region Cf/ZAe<< 1 and this term is neglected. However, the last
term in equation (IIl. 7) which represents the turbulent energy pro-
duction is retained since mixing is assumed to’be important in the
layer, although wall shears are negligible.

Now equations (III. 5-II1. 7) are to be transformed into an

equivalent low-speed form in order to remove the implicit Mach num-

ber dependence from the integral properties appearing in the equa-
a.p

tions. In order to do this, define a variable dY = dy, where

a,p
22
the subscript (2) refers to some reference point in the flow (which
will be taken to be the similar region upstream of the end of injection

where dP/dx = 0).
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Using this transformation and manipulating the equation, one

obtains for constant total temperature

¥ %
Bdﬁi N 6* d/‘/+ ; 61 dMe ) 2.Pe [tan® ) _32 (L. 9)
dx i dx M dx ~ a,p,|m m ’
e 22 e e
st
ds, 6* dM p a
i % gt e _ e e
At s, o+ @+ g — =2, 65) (II1. 10)
e 272
* *
ds. 376, dM p_a
i * dJ i e _ e e
J-—a—x—+6.1—é-x—+-—-ﬁ-;— = -Ae[1+R](p2aZ> (IIL. 11)
l+m
whereB=H+ e,m =uM2
e e 2 e
2
M-
'y+1 e e 3y-1
61 6
z == u/u d¥; J = =L f u/u_(1-(u/v, 12)ay
5. 6. O
i i
5. 6
% i
6.1 =f (l-u/u =f u/ue(l u/u )dY
0 0
5,
. d(u/u )
_ * _ 2 g e
A=0/6; R=5—] z oy &
e O Pele

Now it must be shown that the integral functions Z, J and R

which appear in equations (III. 9-IIL. 11) are not implicitly dependent

on Mach number.
This can be done by recalling the transformation of Coles(ls)

used in Part 1II
(I11. 13)

§o=o(x)y
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dx = £(x) dx (I11. 14)

P 8y =nix) p dy (IIL. 15)

where 0, £, 1 are three unknown scaling functions. * An immediate
consequence of equations (III. 13-III. 15) was shown in Part II to be
that at corresponding points in the flow for any n(x), u/ue = .1;/-\_1—8.
Since the quantities Z and J are formed by ratios of integrals over
the transformed variable Y and the integrals involve only velocity
ratios, u/ue = u/ue, these functions are already in a form indepen-
dent of density effects and are independent of the choice of n(x).

The argument for R is somewhat more complicated. In
general, the quantity R which appears in equation (III. 11) does not
transform in a simple manner. However, if the effect of wall shear
can be neglected, as shown in Part II, equation IL 17-a, the quantity

T~ is an invariant under the transformation (III. 13-111. 15) at

f:ce)l;?esgonding stations for constant pressure flows. Then, the integral
R is iﬁdeed independent of density or of the choice of n(x). Hence, the
integrals R, J and Z which appear in equations “(III. 9-II1. 11) are den-
sity invariant at corresponding points in the two flows.

The problem now becomes one of determining what is meant

by '""corresponding points.'' That is, what is the relationship between

Ae and Xe, the injection rates in the compressible and incompressible

*As pointed out by Coles(ls), these equations make no assumption as
to the nature of the shear stress function, 7, or of the energy equa-
tion. Their restriction lies in the assumption of boundary-layer equa-
tions. In order to specify the functions and hence the transformation,
more information about these quantities is necessary.
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flows ?

This information is provided by the experimental data. As
was shown in Part II, the velocity profiles for both the incompress-
ible and compressible flows (u/ue vs. y/9) can be shown to agree
for large injection and constant pressure at Ke = —Xe, where )\e, Xe
are the ratio of mass flow per unit area at the wall to that in the free
stream for the compressible and incompressible flows, respectively.

Hence, Ae = —Xe characterizes the corresponding points in the two

flows for large injection with
c:f/ke << 1; Cf/xe« 1

where Cf, Ef are the skin friction coefficients in the two flows.

Now, it is assumed that this relationship holds (Ae = —Xe) even
when the pressure is not constant. That is, the compressibility
transformation is not affected by the pressure gradient.

Furthermore, at this point it is assumed that the quantities
Z, R and J appearing in equations (IIL. 9-1IL. 11).can be expressed as
functions of one-parameter H = E)i/6;k , and that the functional de-
pendence can be obtained from the consfant pressure similar flow solu-
tions (experiments ). Aone-parameter representation is valid if in this
region there is only one scale = to the problem. However, the
region downstream of injection, where wall viscosity effects again
become important probably requires a two-parameter presentation.

Finally, a relation between M‘3 and tan® is needed to complete

(29)

the set of equations. Following IL.ees and Reeves , since this is
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‘expected to be an expansion starting from a uniform flow region,
Prandtl-Meyer flow is assumed. Then, the relation between induced

flow angle and Mach number is

Mo M%.1  dMm
®x) - ®lx,) = fM Sy T2 M (IIL. 16) -
e + 2

where ®(x2) is the inviscid flow angle in the similar region, which
can be calculated as shown in Part II (equation II. 20).

Equations (III. 9-III. 11) together with the relation (III. 16) and
the definitions (III. 12) form a set of three ordinary differential equa-
tions for the three unknowns Me’ 6:‘, /‘/ Once these are obtained,
the pressure and physical displacement thickness can be computed by
standard methods.

It is important to note at this point that in the constant pressure
region where H, Me are constant, H is directly determined as a func-
tion of Ae. In the non-similar region near the end of injection, how-
ever, the profile will be '"unhooked'' from ke. That is, the
dependence of J, dJ/dH, Z, R onH is maintainﬁed, but nowH is ob-

tained from a solution of the three equations (III. 9-III. 11).

III. 2. 2 Evaluation of Integral Functions

In the similar flow regime, Me’ IL/ = const., , equations (III. 9-

I1I. 11) reduce to

ES
dé. PV
B = tfg@ S Lh (L 17)
e P2Y2
3k
Hdﬁi Pw'w
o = ” (I11. 18)

P22
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sk
3 d61 - pWVW[

dx - pyu,

1 + R} (II1. 19)

H, J, and Z are calculated from the measured velocity profiles with
minimum error. However, a direct calculation of R is difficult since
it involves differentiating experimental data. Therefore R was eval-

uated by combining equations (III. 18) and (III. 19) to give
J/H=1+R

or

R=J/HMH -1 (I11. 20)

so, for any # and J, R is determined.

Sinc;e there is some scatter in the experimental data for, say,
H, J and Z in the similar region (see Part II), the results obtained
have been approximated with a least square fit, dJ/d?q was obtained
by spline fitting the curve of J vs, # and then least square fitting the
resulting derivatives, Figure III-1 presents the curve for # obtained
from the data as a function of )Le, the injection parameter. Figures
III-2-III-5 present the quantities Z, J, 43 and R as a function of //
obtained as indicated above.

A point worth mentioning at this stage is that if the eddy vis-
cosity model proposed by Lees and Chapkis(zo) is assumed, and the
reference density is taken to be equal to the edge value, the only
term which changes in equations (ﬁL 9-III.11) is R. For their formu-

lation (see (20)),
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K AR
R = 0
A
e
where
o D 8(a/u_) °
R' = 6i fo G(Y/GI)P-—BT-] d¥Y

With an eddy viscosity formulation, R', J, can be obtained as a func-
tion of # from the resulting similar equation regardless of the value
of Ke. Then, if one uses the experimental curve of H vs. Ae’ K, can

<]
be obtained from

A H
K. (A )= e [J‘ ) . 1} (IIL. 21)
Tl aard) Aoy

Figure III-6 presents the resulting curve obtained using the experi-
mentally determined curve of H as a function of ?te and the integral

functions J and R' obtained from the similar solutions of L.ees and

(20) =x

Chapkis It is interesting to note that K_ thus obtained is a

0

slight function of Ke’ and at high injection rates seems to be approach-
ing the free shear layer value used by Lees(zo) K(Kez . 06). However,
some caution is necessary at this point in interpreting this trend in
Ke, since a distribution function G(Y/@i) for the variation of the eddy
viscosity across the layer was assumed, a priori, by Lees and Chap-

kis(zo) in their formulation. The form chosen for this variation

influences the value of Ke obtained using equation (III. 25). Hence,

*Also included in Figure III-6 is the value of Kg obtained by directly
evaluating the eddy viscosity from the experimental data and taking
Kg to be the maximum value in the layer. In view of the errors in-
volved in differentiating experimental data, the agreement can be
considered quite good.
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the approach taken from here on in is to use the integral functions de-

termined as shown previously without employing an eddy viscosity
model.

III. 3 Analytical Considerations

III. 3.1 Subcritical-Supercritical Behavior of Equations

Under certain conditions the effect of a disturbance in a bound-
ary layer can be felt upstream of the point of disturbance through the
coupling of the inviscid pressure field and the viscous flow. Within
the framework of the integral formulation, the flow can be divided into
two regions, subcritical and supercritical. Subcritical flows exhibit
an upstream sensitivity to disturbances while supercritical flows do
not.

The boundary can be obtained by considering equations (IIL.9-

IIT1. 11) as a set of linear algebraic equations for the three derivatives

5: am_ N (M H)
= (I1L. 22)
M, dx D(Me,z‘z’)
% dﬁ NZ (Me’H) B
5. = (IIL 23)
1odx D(M_, )
dsf N3(Me,H)
- = (I1L. 24)

D(Me,H)

where, in this case

ap M l+m )
le__‘i__?. tan® fip 7y a2 e-(ﬁj =0 Br-nd L 2s)
azpz me ezM me m
e
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a p M
N, B0 e g My F §3JB—(W(7’+1)B+ Aoy @) -fJ}
m a,p e, M m m
e 2v2 2 e e e
M
+ Ry —2{iH-B@H + 1)} (I11. 26)
€2 Me
ap M
N, =200 _eefar poHin)}l 4 a2 d@H+1)-£1-T")
3 m_  a,p, e, Me

-3J -

e

(37- (2H+1)3 )}
m

M
2
+RA ezm-;{zf/ﬂ-f} (L1 27)

D = {Hr-3} - 3H-1)+ B{35-2H+1)0}; Aez = p Vi /P oY, (LIL. 28)

(29} (30)

As shown by Lees and Reeves and Klineberg , the curve
D(Me,ﬁ) = 0 is the dividing line between super- and sub-critical
flows. For values of Me’ # on one side of this line the end of injec-
tion will have no calculable effect on the flow upstream of the termi-
nation and for values on the other side an effect will be observed.

If the integral quantities are known as a function of # in equation
(I1I1. 28), then this dividing line can be obtained by iteration. Figure
III-7 is a plot of the critical line for this flow. Since the problem
under consideration starts with a similar flow, then initially, H is
known as a function of Ae and Figure III-8 shows the critical line in
this manner. Finally, siﬂce the similar region is characterized by

a straight shock (linear growth), then equation (III. 17) and (III. 18)

can be combined to give the critical line in terms of freestream
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values, 7\00 = pwvw/poouoo and Moo’ by using the shock relations to
obtain @(xz) and solving these equations by an iteration process.
This is shown in Figure III-9. Note that in performing these calcu-
lations (Figures III-8 and III-9) the crucial step is to establish a
relationship between #/ and )\e. Hence, as is seen from Figure III-8
at M__ = 2.6, any )\00 2 . 007 will result in a flow which has a finite
region near the end of the porous plate that influenced by termination
of injection.

With the subcritical nature of the flow established for a given
free stream Mach number, the next question is how to obtain a solu-
tion to equations ((IIL. 22)-(IIL. 24)).

III. 3.2 Analogy with Flow Around a Corner

The approach taken here is to note that in the case of sub-
critical flow past a sharp corner, (also a rapid expansion), Ko and
Kubota(Sl) were very successful in approximating the flow field by
assuming the moment equations possessed an integrable singularity

at the corner. In reality, as shown by Victoria(32), the corner is

the region where a transition from subcritical to supercritical flow
occurs. Essentially, this observation means that in equations ((III. 22)-
(II1. 24)) Ko and Kubota allowed D — 0 while Nl’ NZ’ N3 remained
finite. What really happens is that both D and N, — 0, but until one

is very close to the corner Ni/D >> 1. In view of the fact that the
equations themselves are questionable in this region, the simpler

approach of Ko and Kubota(3l)

is used in this analysis.
One expects the effect of the end of injection to be similar to that

for a flow effectively approaching a sharp expansion corner. Thatis, for
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an initially subcritical flow on the porous plate, the end of injection
should cause a rapid expansion of the flow (an effective ''corner'').
Hence, consider solutions to equations ((III. 22)-(IIL. 24)) which possess
integrable, sink-type, singularities in the gradients of Me, H, éf. This
should be a valid approximation if the flow becomes supercritical very
near the end of injection.

III. 3. 3 Existence of a Singular Solution

Two questions have yet to be answered for the equations
(111.22 (111, 24)) before the solutions can be obtained in a logical fashion.
The first is whether solutions of the type required exist for these
equations and the second is to establish a consistent method of ob-
taining these solutions numerically. Fortunately, the similarity
between these equations and those treated by Ko and Kubota(31) make
the answer to the first question quite straightforward to obtain. If

one looks for solutions where

dMe -a

ax (L-x)

dai* -

T ~ (L-x) (IiL. 29)
-Y

L -

sk
near x = L, then requiring finite H , M , 6. atx =L means that
L™ ey ig,

0<a, B, v<1 is necessary

2
By linearizing the equations about , M , 6. it can be shown that
L er, i,
to lowest order
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1
a = ﬁ =Y :oz-
Then
1
M =M -k, (L-x)*
e e, 1
1
H=H. -k (L-x)2 (I1I. 30)
L 2

s =6+ k, (L-x)
1 1L

L
2

near x = L, where kl, kZ and k3 are positive constants which can be
obtained in terms of conditions at x = 1.. Hence, solutions with a
sink type behavior exist for equations ((IIL 26)-(IIL 28)).

The second question involves the determination of a consistent
perturbation procedure for obtaining these solutions starting with a
similar flow (Me’ H = constant). In the vicinity of the end of injec-
tion, a small but relatively rapid change occurs in the boundary layer
and the perturbation in the external flow must be considered simul-

taneously with that in the boundarylayer. Assuming € = (Z—é——l-)ZMghe <<1, ”
2
)

then the analysis of Ko.and Kubo(:atj(31 for laminar flow

*The assumption [[y-1)/2]EM3 Aep << 1 is not as restrictive as it may
first appear to be. For hypzersonic flow, Lees(l7) has shown that
even for M3 Ag >> 1 the induced flow an§}§ in the similar region, ®,
approaches a limiting value where ®~ A,/ ~. Since in this case

M, ~ 1/8, the quantity [(y-l)/Z]zM: kez approaches a constant given by

1
— _ 2
“max [_________’y (VZ 1) ]
Forvy =1.4, €, = .53 which is still small compared to unity.

Hence, this perturbation scheme can be expected to work for most
of the Mach numbers and injection rates of interest.
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can be directly applied to this problem., Assuming the change takes
place over a small scale, let

xX-X
2

X =
€

where X is assumed order 1; X-X, << 1. That is, assume the change
takes place over a distance of order Mg hez which, for hypersonic
flow with large injection, is of order (Mach number) x (boundary-layer
thickness), so boundary-layer equations are still applicable. For
supersonic flow, the dependence of boundary-layer thickness on Mach
number is more complicated but is less than I\/l"'zZ In this case, the
validity of the boundary-layer equations may be questionable but they

will be assumed to apply in the analysis.,

Near the similar flow region (subscripts 2), let

5, = 5;* FAS
1 2
H = 7L/2+)\// (IIL. 31)

where A<< 1 and © quantiti'es are assumed of O(1). Then a substi-
tution of (III. 31) into the equations ((III. 22)~-(IIl, 24)) yields directly,

to lowest order

8/, = -K[(+2#,)T} - 37,]
2
H = K[u-z‘/z)Jz] (IIL. 32)

M/M, = K[H,7}-5]
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where K represents an arbitrary, but small, perturbation of the simi-
%
lar flow variables, HZ’ Me , 61 , i.e., Equation (IIL. 32) relates the
2 2
change in any two variables if one is given small change. This result

is the same as that obtained by Ko and Kubotawl) and Victoria<32) for

laminar flow for weak interaction where (7_1)

is assumed. The analogy to the corner solution of 31)(32) re-

2

quires that in our case (y—-é——l—) <<1., So, in flows with large

3
M5 A,
injection, the analogue of x is Mz Ae'
III. 4 Results

II1. 4.1 Numerical Solution and Comparison with Experiment

With the background presented, the equations ((II1. 22)-(IIl. 24))
can now be integrated in a systematic way to the end of the porous
plate. An important point to note in this problem is that, unlike the
laminar flow case, in equations ((III. 22)-(IIL. 24)) Nl’ NZ and N3 are
only functions of Me and H Hence, the equations are invariant to an
affine transformation X = X/XZ’ 3= 6? /XZ' This means that at the
beginning of the integration X, can be chosen ar?itrarily. Then, using
the perturbations on 6?,IL1’, Me from the similar solution, a solution
is generated which has a proper behavior. Numericélly this is accom-
plished by picking a positive value of K so that the solution obtained

. ) sk ) *
corresponds to an expansion (Me, H increasing, &; decreasing). At

the point where, say = gets larger than a predetermined number,

*Note also that since Nj, Np, N3 do not depend on 6?, the equations
can be solved without reference to the particular value of K chosen.
That is, the effect of varying K can be scaled out of the solution as

long as K is small so that the relations (equation 32) are valid.
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the solution is continued by simply considering x as a function of H
and inverting the integration procedure. Since neither Nl’ N2 or
N3—’ 0, the solution then proceeds smoothly., The singular point can
then be rightly called the plate length, L. Computed pressure varia-
tions obtained in this way can be plotted solely as a function of x/L
for any set of freestream Mach number and injection rate.

Solutions were obtained for three of the higher injection rates
used in the experiments using a 7094 computer and standard integra-
tion routines. The results are shown in Figure III-10 and compared
with the experimentally observed pressure distribution. The agree-
ment is fairly good although significant % were observed very close
to the corner in the experiments and, of course, the equations do not
provide for this. At the highest injection rate the theory seems to
somewhat overpredict the observed pressure gradient. More impor-
tantly, the simple one-parameter representation seems to predict
accurately the scale of upstream influence in pressure produced by
termination of injection. In fact, for the highest injection rate a good
portion of the plate is strongly influenced by the finite length effect.
Figure III-11 presents a comparison between the observed and pre-
dicted variation of the form parameter, H . The disagreement in the
region near the beginning of the porous plate is caused by the fact
that in the experiment a finite thickness boundary layer is present
at the start of injection while the theory assumes zero initial boundary-
layer thickness. The observed initial variation in H is, then, the

adjustment of the initial boundary layer to the injection. Conceivably,
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this effect might be amenable to analysis using ideas similar to those

employed herein.

II1. 4.2 Implication of the Analytical Results

If the analysis presented is plausible, then there are some
rather startling conclusions. First, as indicated by the equations,
for large injection where Cf/7Le << 1, the solutions are functions only
of x/L. This means that experimentally, a doubling of porous plate
length will not decrease the fraction of plate influenced by this down-
stream effect. That is, since the similar layer grows linearly and
since the only scale height in the equations is 6%, the effect will scale
with this height and thus always cover the same percentage of plate.
.Of course, the absolute length of similar region is increased but only
in proportion to the length of plate. The second effect is shown more
clearly in Figure III-12, where a parametric study has been per-
formed for various injection rates. Here it becomes clear that, at
leastat M _ = 2.6, when Aoo = 0. 050 which corresponds to Xe = . 033,
virtually the entire plate is influenced by the pressure gradient pro-
duced by the termination of injection. This value of injection parameter
approaches the entrainment rate of the incompressible constant
pressure free shear layer (expected to be the ''blowoff'' value for
the turbulent boundary layer). It is not expected that solutions would
exist for constant pressufe beyond this value. However, if qualita-
tively, at least, the turbulent flow solutions behave like the laminar
ones, then the analysis presented in Part I would indicate that no
singularity will be observed for any sma.li negative pressure gra-

dient and such a pressure gradient has been provided by the effect of
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termination of injection.

Moreover, the laminar solutions of Part I indicated that for
adiabatic flow at values of injection parameter about twice the value
which would normally '"blow off'' the zero pressure gradient boundary
layer, the lowest order asymptotic solutions (which are essentially an
inviscid flow approximation) give a valid representation of the flow. *
If the analogy can be stretched to the turbulent case, one would expect
that at Mooz 2. 6 for adiabatic flow, an inviscid flow model will ade-~
quately characterize the flow for )\003 0.1 (kez . 06). If the effect of
compressibility observed on Moo = 2.6 can be used at very high Mach
numbers, then at Moo >> 1 for ?\OOZ 0.4 (hez . 06), the same should be
true.** However, for injection rates this high at Mach numbers great-
er than 7 or 8, for adiabatic flow, the effect of the momentum of the
injected gas will become important and may invalidate the neglect of
9p/8y in the analysis.

Hence, the analysis has provided the step which gives a quan-
titative estimate for the range of injection in turbulent flow where
the effect of mixing can be neglected and inviscid flow models utilized.
It also indicates that inviscid solutions for a semi-infinite plate with

constant injection may not comprise a rational approximation to the

*For a cold wall, however, the effects of mixing will influence the
flow to higher injection rates.

*%It might be mentioned here that the above analysis is also appli-
cable to laminar flow. In this case, one expects that the termination
of injection will influence the flow for much smaller injection rates
than mentioned herein, since the limiting value of entrainment for a
laminar mixing layer is O(1/A/Re).
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physical flow. For constant injection, the proper limiting inviscid
models would seem to be those which properly account for the dis-
continuity in boundary conditions which exists at the end of injection
for any finite plate length. Perhaps this may explain the difficulties
encountered by theoreticians who have attempted the former inviscid

, 35)

a;:)prc>a.ch(34 and the ease with which solutions are obtained by

those who employ the latter(36’ 37),
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