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ABSTRACT

The present work starts with & study of isotropic turbulence
which was introduced by G. I. Taylor in 1935. The different notions
of averages are critically examined., The notion of stochastic aver-
age is then introduced and ths general transport equation is developed.
After a detailed study of kinematics of turbulence, the concept of
correlation and spectrum, the corrsspondence between the Kerman-Howarth
equation and the spectrum equation is made. The turbulence decay is
studied. A theory for turbulence decay at large Reynolds number is
proposed. In the study of turbulence spectrum, different assumptions
on the transfer function are critically discussed and the solution us-
ing Heisenberg's assumption is obtained explicitly. The spectrum is
further studied by trying to fit the turbulence phenomenon intoc a gen-
eral scheme of stochastic processes. In the second part of the work,
an entirely different approamch to the statistical theory is made.
Linearized vorticity transport theory is developed and finally the

non-~linear effects in turbulence are studied.t



INTRODUCTION

Osborne Reynolds in his classiecal papers introduced the notion
of turbulent* flow {Ref. 1). Since then the subject has been one of
the outstanding fields in hydrodynamics in the past few decades.
Adnmittedly our knowledge about the general turbulence phenomenon is
still quite meagre today. Taylor defined turbulence as an irregular
motion which in genersl makes its appearancs in fluids, gases or lig-
uids, when they flow past solid surfaces or even where neighboring
streams of the same fluid flow past or over one another. Taylor
stated that the actual motion is usually so irregular that very little
is known of its details., Then why are we interested in such an ir-
regular phenomenon. A best answer to this is to gquote von Karman's
Wright Memorial Lecture (Ref. 3).

*Turbulence is far from being the only irregular motion or ir-
regular phenomenon which physies tries to analyze. As a matter of
fact, regular motion is & rather exceptional case in nature. Zven
the laminar or streamline motlon appears as regular motion only to
the human observer who looks at the molecular world so far away and
with such rough instruments that he is able only to see the average
motion of matter and to measure the average values of physiecal quen-
tities and simple laws for the average motion. Instead of "in spite

i

of the irregular character," we rather have to say, "becauss," ==

The next question is, what is the practical effect of the presence

*The word "turbulent" is due to Lord Kelvin (Ref. 2).



of irregular motion, why are we interested in the irregular motion
which is superposed on the main motion. The answer is that the
presence of irregular motion radically chenges the order of megni-
tude of the frictional resistance, the heat transfer and the diffu-
sion of fluids. Hence the turbulent problem reaches practically into
all fields of engineering in which fluid motion plays an important
role, whether the fluid is the medium in which the motion of a body
takes place, or is being transported for some purpose, or is an agent
in a process involving heat transfer, diffusion, mixing, dissolving
evaporation combustion etc.”

The study of turbulence has been approximately divided into two
branches., One is the study of development of turbulence and the
other is the study of fully developed turbulent flow. Of the former
elaborate theories on laminar stebility heve been developed. The
problem on the stability of two-dimensional parsllel flows for in-
compressible fluid has been clarified by Lin. Details should be
referred to Lin's peper (Ref. 4). The work has been extended to the
compressible flow by Lees and Lin. To study the transition from
laminar to turbulent in a boundary layer, effects of surface rough-
ness, curvature, free stream turbulence etc. have to be investigated.
The reeder is referred to Goldstein Vols. I and II (Ref. 5) and
Dryden's report (Ref. 6).

The study of fully developed turbulent flow is further divided
into two branches. One is phenomenological, the Prandtl's mixing
length theory and Taylor's vorticity transfer theory are typical in

this category. Phenomsnological theories owe their origin to kinetic



theory of gases e.g. the concept of mean free path. The other is
statistical. The aim of the statistical theory is to find the method
representing the turbulence field by considering different mean values
and probability distribution of quantities connected with the motion.
A promising beginning on statisticel theory was made by Taylor who
first introduced the concept of isotropic turbulence (Ref. 7).

Recent advances in statistical theory were largely due to Kolmogoroff
(Ref. 8).

There remains one outstanding method for studying fully developed
turbulent flow. This method does not fit into either of the two cate-
gories mentioned in the last paragraph. However this method is of
great generality and can be applied to both phenomenological and
statistical. This method is known as Xarman's similarity prineciple
(Ref. 9). The principle says the motion at all instances is similar
with an appropriate change in length scale. In particular it was
assumed that the fluctuations were similar to each other throughout
the field of flow so that the conditions of the flow in the neighbor-
hood of two points differ only by a mnltiplicétive factor of the
megnitude of the fluctuations and by a length characteristic. Ac-
cepting the Karman similarity hypothesis we then have the logarith-
mic distribution of mean velocity in a two-dimensional channel which
has been checked beautifully with experiments. In the later course
of the present work we will again use the principle to some extent.

The present work begins with a study of isotropic turbulence.

The notion of stochastic average and the general transport equation

is then developed. After a full discussion of correlation and



spectrum, the correspondence between the Karmsn-Howarth equation and
the spectrum equation is made., Possible extensions of the present
knowledge on turbulence decay and spsctrum are made., In the last
part of the work, an entirely different approach to the statistical
theory is used. Linearized theory for vorticity transport is devel-

oped and finally the non~linear effects are studied.



PART 1 TFUNDAMENTALS OF TURBULENCE

We shall begin with the following definitions:

1.1 Homogeneous Turbulence: Turbulence is defined to be
homogeneous when the average value of any function of cbservable
quantities in relation to a particular set of axes is unaltered by
a translation of the given set of axses.

1.2 Isotropic Turbulence:* Isotropic turbulence may be de-
fined by the condition that average value of any function of the vel-
ocity components and their derivatives at a particular point, defined
in relation to & particular set of axes is unaltered if the axes of
reference are rotated in any mammer and if the coordinate system is
reflected in any plane through the origin.

It is seen that the definition for homogeneity is of global
character while the definition for isotropic turbulence is entirely
local. These definitions obviously depend on what we mean by aver-
age. First we must emphasize the notion of average is necessary.

It is not feasible for us to follow the motion in detail. Further-
more even if the details were known, they will be of very little
practiecel value to us, if for exemple we ere only interested in the

total amount of mass transfer in a turbulent flow etc.
l. DNotion of Averages

Intuitively we want the notion of averages to satisfy the

*This definition was given by Karman and Howarth (Ref. 10).



following postulates. Let us denote the average of a quantity A
by A then
() The average operator is linear, namely the average of the

sum of two quantities is the sum of the two averages. Symbolically
oA A+ /3 B = o K + ﬁ B (1)
where o end B are two constants.

(b) The average of an averaged quantity is the seme as the

averaged quantity before second average, i.e.

= ——

A = A (2)
This is an iterative property.

(¢) Associativity
AR = AB (3)

i.8., the average of a product [ B and another averaged quantity ﬂ] s
is the product of these two respective averages.

(d) Average operators commute with the differential and inte-
gral operators.

Reynolds has introduced three kinds of averages. The first is
known as a time average and is defined as follows.

For any function of time U (t) the time average of ult) is

defined by the following integral

T
n = «—J W(ts t) dt’ (2)

¢
[

The second is space average., For example if we want to speak

of space average of velocities at a given point in a three-dimensional



turbulent flow. Then we first assign to ourselves a neighborhood
of that specified point and the average is defined by the quotient
of the volume integral of velocity and the corresponding volume of

the neighborhood y (V)

T 1}-‘(;) Jif WKLY, 2) dx dy dz (5)

The third one is & combination of these two notions of average,

1e2e
. s

w = V(N T jojij WX g,z tet’) dXdﬁdl at’

(6)

The time average is very useful especially when we want to cor-
rolate between theory and experiment, because in the usual experi-
ments only time averages are actually measured. The definition
nevertheless suffers a theoretical drawback, namely the definition
does not suggest in genseral a proper choice of time interval T .,
Similarly in defining the space average the proper choice of the size
of the neighborhood is left open. In the experiment we have to de-
termine the time resolution for each particular setup. A detailed
discussion of the above three notions are given in Appendix I.

In statistical mechanics we have yet another kind of average
called ensembls average. The concept of ensemble was invented by
Gibbs for the purpose of calculating thermodynamic properties of a
system consisting of very large numbers of molecules. For stationary
stochastic processes an appropriate ensemble average {e.g., each
element of the ensemble may have the same a priori probability) can

be identified with observable time averages. This idea has been



substentiated and actuelly used in some of the recent turbulence
measurements by Liepmann. The notion of averages Jjust mentioned is
releted to the councept of stochastic or probability average. The
details of probability theory, which is nothing but measure theory
will not be reproduced here. The reader is suggested to refer to
some standard treatise on the subject such as Refs. 11 and 12. We
now propose to investigate further on the notion of stochastic aver-
age. Some preliminary definitions will first be given.

(a) Random Variable. W is & random veriable if it is associ-

ated with a unique probability distribution

P{g) = P - u i) (7)

Bge. (7) reads: P(s) is the probability that u has a value less
then or equal to § .

(v) Stochastic Process. Ult) gefines a stochastic process
( t 4is the parsmeter) if for each fixed t, , U't.) is a random
variable.

(¢) Stochastic Average. The stochastic average of a function
of u(t) (we denote this function by F(«) ) is defined by the follow-

ing Stieljes integral

@

F(w J FU$) dP (5, t) (8)

o

i

The definitions here are given for one-dimensional stochastic
processes., The extension to the multi-dimensional case is quite ob-
vious,

If P is differentisble with respect to ¢ , when we sey in this



case we have & probability density F(§,t)

d P (g, ¢) ‘
4 VOO — 9
PlE t) P (9)

The definition for the stochastic averages then becomes

Flw = | FUs) sist) s (10)

— OO

The postulates (a), (b) and (e¢) are easily verified provided
 and p as functions of « and { are smooth enough. The fourth
postulate will lead us to the general transport equation which will
be discussed later. It is also clear, that the definition depends on
our knowledge of the density function. For practical purposes we may
assume the existence of the density fumetion, then proceed to get our
results and finelly identify the stochastic averages of dynamical
variables with thoss experimentally observed by appealing to the so-
called ergodic theory. The virtue of this formulation is its sim-
plicity from the mathematical point of view without worrying about
what should be the appropriate time interval or space neighborhood to

be used in time or space averages respectively.
2. General Transport Equations

In the following discussion we shall assume the probability den-
sities always exist. Since we are primarily interested in hydrody-
namics, the notations are used in accordance with the usual conven-
tion namely, X stands for position coordinates, W the velocity, and
& the acceleration.

Let us suppose the flow field consists of infinitely many
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turbulent particles. The following probability demsity functions

are defined
£ Ux; &)
£, U X, u; t)
f5 L X, w,a;t)
£, dx 1is the probability that a turbulent particle is at a
position between x and X+ dx at time t ,
$, dx du 1s the probability that a turbulent particle is at a
position between X and X + dxX with a velocity between W and
U+ du .
P, dx du da is the probability that a turbulent particle is at
a position between X and x + dx , with a velocity between u and
U+ du  and with an acceleration between 4 and o+da .
More briefly ¢ (t) , £(t) and f(t) define the probability
measure in the respective underlying spaces, (X) , (X,w) and
(X, u, a) g
Let §(x «, t) be any function of the arguments x , u , t
where x and W are the position and velocity of a turbulent particle,

1 may be called a flow function.

Then

*The following relations may be worth noting, i.e.

Jo mewse) aw = g e

Py - -3

jx PSK)‘,M, Q;t)da= fl Q)(')Q)t)



1l

d Ley - b, et of
at T (X‘Ju”t}_ 3t i ax ot ébb % (11)

U and « are stochastic derivatives of X and U respectively.

All ¥ , w and * for a given turbulent particle are random variables.

From postulate (d) we have

a4 . ;42 o f , it *

By definition of stochastic average, the left hand side of Eq. (12)

becomes

,4_ (Xutﬂ)
dtWL ’

h

4 (7
;};fjj ’j”(X‘JLLJ't) fz(X‘, UL;“t) d X duw

([ aftowt) f’ oty 2B
SSSQE—_-*M Pl(xaujt)dx\du,“f--oj {-(‘x Y; )“aT dX“JLL

The right hand side becomes

o aid o0
H Z—§ foUx, L) dX duw f 2{\ w P (eu,t)dx du + J&U 5{ C‘E(-""“fa;t)dxdudo-

-0

Denote the conditional mean of acceleration by A v

ok

j C&fs(‘:\»(,-a;t) da

A = - (13)

f‘z(x}u.j‘t)

*If we use Dedebant's definitions for stochastic derivatives (cf. Ref.
13) then the postulate (d) is superfluous.

**For the definition of conditional mean see Kolmogoroff (Ref. 11).
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Eq. (12) becomes

Jf oo 3w s Fun axaw - ff 35 AR wrau s

The second and third terms may be further transformed by partial
integration and assuming uf,f and A £ vanish when X = =+

and W= i respectively, then

_ RO SN A _ (14)
jJ f‘(x‘,b\;tj( 2t i U“ax =+ 5&-\/’\\ -P’L) dx\ du = 0
Since T may be any integrable fumction a necessary and suffici-

ent condition that the above identity is true is

a?q' v’. .—a.. =
oo ow e Stan) =o (15)

This equation is a particular type of Fokker-Flanck equation
which described how the probability demsity £ (x.u) changes in the
gourse of time in (X,u) space. It is obvious from the equation that
a complete determination of §, as an initial or boundary value prob-
lem will require a definite kmowledge of the conditional mean of ac-
celeration, i.e. & first moment of the probabili.ty density F£{(x.u,a).
This feature is typicel in all statistical considerations of hydrody-
namic problems.

We may proceed from Eq. (14) in a slightly different direction.
Let us define the following conditional averages (denoted by ~—¢ over

the averaged guantity)
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§ FT - J £ P, du

gofu = j fu podu

BN @)
f, “Z’;L; = | u S

g A %§° - f A §£ Fuodu

We then have for example

2P

” fu,u,t)gg- dX du = ftH fP arxdu - JJ Ba”é‘ A oAk du
= i}rf‘}rﬁax~fﬁ,—§gc 4 X

if the differentiation under the integral sign is justified etec.
BEq. (14) then implies

2 e p) P - ;E ?.i . 2 ¥ ]
Sf&(f,ic ) +5}'(f| fu ) f|[ 9t Tu X M A JuU (17)
If the turbulent particle is not restricted in one dimension, then in

general we have (for simplicity ¢ will be derioted by § hereafter)

pu— [REN— B

i(f)—[°)+ 5—(‘“(;“1{?:): f[f‘f . u,,\.bj. A of (18)

at Xy * 7 Uy

This is a generalized transport equation for any flow function f .
This equation is analogous to the Boltzmann equetion in the kinetic
theory of gases. Two important special cases are worth mentioning.

(1) +=1 Eq. (18) reduces to the ordinary form of equation

of continuity
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af
Aat é)(‘k Jo ul( = O (19)

if ¢ is identified as mass density

(i1) f= 4: , then we have

Srus) Z ;%.Nwi?"d[) = ¢R, (20)

where R, is the forcing function

—a

R = { U M 4 A ik‘:'} (21)

Koo,

Following Reynolds we assume U. can be separated into two parts, the

<

mean velocity 12{ = C(‘_ = J wp (x, w)du end the fluctuating part

e

u” « Ege (20) can be written in a more conventionsl form

» U, > o, L < o (22)
Er R L AR

This eguation coincides with the Reynolds equation for the mean
mean motion if we identify f as the ordinary density, the term

<

f W U on the right hand side is just the Reynolds stress.

Similarly we may f£ind transport eguations for many other inter-
esting quantities such as the turbulent energy, temperature, entropy
etc. However in introducing the concept of entropy ecare must be taken
(cfs Ref, 14). First the turbulence represents a dissipative system
end cannot be interpreted as in thermodynamic equilibrium state, and
second we can hardly attach any meaning of the fluctuating entropy as
in the cese of fluctuating velocity.

In concluding the discussion on the notion of averages, it is
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worth pointing out that to adopt either the stochastic average or
the ordinery time average is rather & matter of taste. Mathemati-
eians will tend to use stochastic average, because this notion is
mathematically precise. However, in order that the derived results
may be compared with experiments - which is the ultimate goal of
every physical theory - one has to rely on the so-called ergodic
theory, and this branch of methematics has not been satisfactorily
explored yet., The ordinary time average may be understood as a
smoothing process. The averaged quantity can be again considered as
a variable which varies slowly with time. With this understanding
the time interval T used in the averaging process should be small
compared to any characteristic time interval during which an appre-

ciable change in the large occurs.

3. Concepts of Correlation and Spectrum

Before we shall finelly embark on the dynamics of turbulent flow,
still some further preliminary concepts such as correlation and spec-
trum have to be introduced. The first questidn is how do we define a
correlation betwsen various quantities and secondly if we know these
correlations how much information heve we obtained for the quentitiles

we are interested in.

Mathemeticelly a correlation VY (x, - .  xw) for » random
variables \x, .. .. .  X,) may be defined as follows
Wi, X)) = },_, I P Urey %) TT o) 4% (23)

N
BN PN

where .§¢ is the expectation velue of the random variable x, , =12 -~ -,
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Xi = J X, Polxe)y dxg (24)
where P, (x, ...-,x,] is the probability density in the n-dimen-
sional space and P (x;) is the probability demnsity for X .

If all these random variables are statistically independent then

Po= TT Poixd) (25)
i
and consequently the correlation is zero. However, the statement thet
"if the random variebles have zero correlation then they are statisti-
cally independent” is not true. It is very easy to comstruct an ex-
ample such that the correlation of two random variables are zerc but
nevertheless they are statistically dependent.
If X 's are functions of time, the correlation is more conveni-

ently defined in terms of time average for practical purposes, i.e.

n

Vle,o, o ke) =TT (5 - %) (26)

=3

where bar denotes the time average.

The use of correlation is best illustrate% by the following
simple examples.

(1) Let us first investigate the mass diffusion inside a one-
dimensional homogeneous turbulent field. To simplify the problem
assume the mass is concentrated at a certain point (taken as origin)
at t=0 , We then inquire how does the mass diffuse when t>o 7
Assume the mass consists of very many mass particles, then the gues-

tion is how these particles distribute among themselves.”

*The first investigation of this sort was made by G. I. Taylor (Ref. 15).
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Denote by uw(t) the velocity of a mass particle, X(t) the dis-
placement of the particle.

Assume for mathematical convenience

S

-u (t) =0 U,I( ty = %

Again bar denotes the time average. Since

t
X(+) = L ui{t) dg (27)

then

t R
X it) = J uic) dt = ©
[+

which is of course true, but this is not an interesting result. For
all practical cases, we definitely know mass does diffuse and we want
to get some measure of the rate of diffusion. The measure that we

ordinarily teke is the dispersion. By definition dispersion is equal

to X*(t) here. We have

t t
x¥t) = (j ult) dg ) | Jo ul( o) dTL)
N
S S SV AN (28)
wlt) Ul ig the correlation function in the present case and

is known as the lagrangian correlation function. Denote Y, = ula) ult,)

s *
For a stationary” process

*Physically a stationary process means that the underlying mechanism

which causes the fluctuations does not change in the course of time.

Methematically this corresponds to say that the probability distribu-
tions and hence correlations are invariant with respect to a transla-
tion of time axis.



i8

V. ot )

and

Eq. (28) then becomes

— t  t o
Xl(t) = Jo jo KP‘&)TI_TL‘) 4T, T,

-t
= 1 } (t- I) ‘(#(t) 4T .
o (29)

We see if Y (v) is given, then we may get by (29)

X'ty = pFw

end the dispersion at any time is known. Even in the case we have
very incomplete information about Y(z) , we cen still discuss some
of the qualitative behaviors of Eg. (29).

We see for small wvalue of ¢t

XHE) =Y tT

and for large value of t

o0
o

Y4 ~— 2t J Y(x) dv - 2 J T Yo dx

o

Denote V(<) = ¥, R where R(t) 1is the normalized correlation

coefficient, then for large t

xHe) ~ z‘}’o[ tr R(T) dT =~ J T R(t)mj

°
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where | is the correlation time and T° is the first moment of
the correlation function.

The above example shows that to introduce a double correlation
gives some knowledge of kinematical description. In turbulence we
are in general interested in two kinds of correlations. Omne is double
correlation and the other is triple correlation. The triple corrsla-
tions are necessary for a complete understanding of the dymamics of
turbulent flow. This will become obvious later on.

(2) The example is this. Suppose we have a definite harmonic

function wu(t)=JZ #w wt , We then inquire what is the correlation

funetion Y(to = uth ult+t) | Formally we have

\}r(t,z) = ult) wit+ 7T) = Cos (W,T)

This again represents & stationary process. Now suppose we know
the correlation, what do we know about the structure of the original
process. In order to answer this guestion we shall first establish
the following lemma,

Lemma.: For a stationary continuous stochastic process T(!), the
correlation function Y is positive definite.”

Proof: By definition

*We call a function Y (X) positive definite if

(i) Continuous in any finite interval and bounded - °< x< <
(ii) Hermitean symmetry, i.es Y% - x) = Y (x) where * denotes complex
conjugate and

(iii) For any arbitrary points X, %, Xm | m=HL 3, 5,.... . ) angd
any arbitrary complex numbers 5, - . 5, , the condition

Z.2_ ¥ X X0) 5.8 o0

/A‘-‘ly:; /uL
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Vo) = iy £ e ()

The condition (1) is obvious.

Take the complex conjugate of (a)

o = ffe ey
hence
IJ[*(_T) = fet-u e = Yo

since the process is stationary.

To verify the third condition, we have

> 7 Vene-wogg, o= | 2 fltTgn | 2o
A=l Vet /u
Any positive definite functions Y(T) can be represented by & Fourier

Stieljes integral as follows (Ref. 16)

Y () = j eindF(w) (50)

F(w) is bounded and in general can be decomposed into two parts
E(w)= D(w) + S(w) , where D(w) is a step function representing the

diseontinuous part and S(w) is continuous. We say that I-(w)gives

the spectral resolution of the given stationary process. In the sec-

ond example we quoted above we have

o

Frlw) = z z soojw] < w,

WL e
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We seo immediately that there is one characteristic frequency
¢, in the given process, however this is all the information we can
get from this representation. Because there may be two or more pro-
cesses which give rise to the same correlation coefficient, i.e. the
knowledge of the correlation coefficient cammot determine the process
uniquely.*

Furthermore if F(w) has a derivative F'(w) and F'(w) is an

even function of « then

o

1}/‘(7:) = J -’lF'(w) Cos WT  do

2 Fl(w) 1is usually defined as the spectrum density of the pro-

cess and is denoted by Etlw), i.e.

Ll

\.y(’c) = J Elw) cos (wr) dw (81)

In this way we have clearly demonstrated the relation between the cor-
relation coefficient and the corresponding spectrum. If Y (z) repre-
sents the velocity correlation Y (t) = uit) ulte o) then

Vo) = wit) = J E (w) dw (32)

L]

E(w) may be interpreted as actual energy density il.e. E(w) dw 1is
the amount of contribution to UW(t) between the frequencies w and
w+dw , G, I. Taylor in 1938 first introduced the concept of spec-

trum into the theory of turbulence (Ref. 17), and thereafter it has

*For example the process  Ult) = Y2 <os (%l + @) where ¢ is a
random variable, and ¥ eare uniformly distributed o< ¢ < a2 ,
then this process has the same correlation coefficient <yic)= cos w,t o
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remained one of the interesting objectives for the workers in the
field. Actually to speak of correlation or of spectrum is rather
a matter of preference, s long as they provide the same intuitive

physical picture.
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PART II <CRITICAL REVIEW OF THE THEORY OF ISOTROPIC TURBULENCE
1. Kinematics of Turbuleunce

Kinematics in general deals with mathematical or graphical de-
scriptions of motion. In fluid mechanics we are particularly inter-
ested in the velocity or vorticity fisld of flow at every instemt.
The fect that the turbulent velocities are highly irregular hints to
us to seek an alternative form of description. It twrms out that the
concept of correlation that we just described is very useful in this
respect. Namely, we want to get some informetion of how the veloci-
ties at different peints in space are correlated at the same time or
how the velocity at & given instant is correlated to the velocity at
the same point but at a later time in order to calculate the rate of
heat transfer, mass diffusion etec. These are indeed the concepts of
space correlation and time correlation. The use of correlation as
sn unknown veriable in hydrodynamics was first proposed by the late
A, Friedman (Ref. 18), however he could not carry through his idea
to asny practical results. von Karman in 1937 (Ref. 19) was the first
one who used correlation with success and also with reasonable sim-
plicity. An excellent reformulation of Karmen's original paper was
given by He P. Robertson in 1940 (Ref. 20).

Karmen introduced the now well-known Karman correlation tensors
as follows, (in the case of the homogeneous and isotropic turbulence
field)

(1) Double velocity correlation tensor

R«'j = ,“_.._EVLH_ (33)
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(2) Triple velocity correlation tensor

T, = X (34)

The same notations as in Ref. 19 are used.

The assumption that the turbulent field is homogeneous implies
that Rﬁ and |« are functions of §. { § = X - X: L, i=1,2,3 ).
Furthermore, on account of isotropy Rﬁ and ng must be of the fol-

lowing form (isotropic tensor)

R, = R . 5.,
J ‘gl gJ + R’l cj
(35)
TU" = T &5+ T, Sy 5e * T Su §j + T, SJ-ng_
where R, , R, , T, », © , T, and T; are scalar functions of

the distence 7 between the two points P and P' « The isotropic
tensors of first or higher ranks can be easily expressed in similar
forms by using Robertson's invariant theory. It should be pointed
out that not only isotropic tensors are useful in studying isotropic
turbulence but also the skew isotropic tensors. The skew isotropic
tensors transform as isotropic temsors in proper rotation, but they
take opposite sign to isotropic tensors on reflexion in the origin.

A typical example is the velocity and vorticity correlation a:muﬁ'

where U, is the ¢ -th compomnent of the velocity vector at point P
and Lﬁf is the ;-th component of the vorticity vector at point P .
Karmen has obtained the following results for homogeneous iso-

tropic turbulence
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S | T,o- R L T;’A:'ZF (36)

Notations are explained in Ref. 19.

If we assume the fluid is incompressible, additional simplifi-
cation can be made. The equation of continuity them states that the
velocity is a solenoidal vector. Consequently the velocity correla=-
tions are solenoidal tensors, i.c. R%,;= Rﬁzj = 0 , Using this con-
dition the double or tripls correlations can be expressed solely in

terms of a single scalar function. We have

r af
8: {: + 2 %’;
ﬁ = ~1‘P\ (37)
- r %
o= k- 55
Hence
Lo 2f raf ) 5.
ch Ty or gggJ' + (f + 3%}‘/ SLJ

and a corresponding expression for 'Tgx .

S0 far we have not mentioned the properties of the isotropic
veoctor, iee. the isotropic temsor of first rank. This class includes,

for example, the correlation between a scalar fluctuating quentity at
a point and the velocity at & different point. von Karmen and Howarth

show thet in incompressible homogeneous and isotropic turbulence the
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correlation between pressure fluctuating and velocity is identically
zero on account of the equation of continuity. Actually, the argu-
ment there is quite general and under these assumptions, l.e. inconm=-
pressible homogeneous and isotropic, the correlation between asny
scalar quantity and velocity is identically zero.”

It is seen that Ry or T« oen be expressed in terms of only
one scalar function, hence any operator operating on these tensors csn
be replaced by en appropriate operator operating on the corresponding
scelar functions. TFor example, the vorticity correlaticn can be ex-

pressed in terms of velocity correlation as follows: by definition
QL‘J = @ ‘A—JJ'I (38)
where «; is the  th vortleity component at point P x, x., ;) and

’

uﬁ’ is the | th vorticity component at point p' (x’, x/, x/ »

3

We have
U
Wy = ex'.(K BX_L
o = ¢ 2uU,
i imt Sx
hence
n > '
L e - u, u
T T Sam Gpme gygy o TR

*It is easy to show that the skew isotropic vector is identically
zerc for homogenecus turbulence, even though the fluid is compressible.
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It is not difficult to verify that the laplacian of IQﬁ an

isctropic tensor of second rank is an isotropic solenoidal temsor of

second rank 352;& with a different characteristic scalesr function.

W

If we write

~LLe ! af T v B:E
SEg oL ey (B r L2 ) s,
J-»J ) 2r 3T ngJ 2 37 J (39)
then
¥ = DF
3‘).
D is a scalar operator and in the present case D= 7. ° %-g; .

In certain cases we find it is more intuitive and convenient to use

the vorticity correlations rather than the velocity correlation.
2¢ Dynamics of Isotropic Turbulence and the Dynamic Inveriant

Using Friedman's ideea one now seeks to find an equation satis-
fied by the double and triple correlations. The equation was first
given by von Karmen and Howerth in 1938 (Ref. 10) using the Navier-
Stokes equation as the basis for the development. It should be men-
tioned that some people (for example Bass Ref. 12) raise the question
that the turbulent velocity is not a differentiable function of time
and hence the Navier-Stokes equation cannot serve as a starting point.
However, it was pointed out by Kirkwood that for ell practieal pur-~
poses the observed fluctuating velocity is elready a small time
average (small compared to some characteristic time in a given tur-
bulent field), consequently any irregularity including the non-
differentiability property is smoothed out by this process. It is

only essential that two different time intervals are distinguished
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(efe the end of section 2 Part I). Furthermore the success of the
Karmen-Howarth equation in explaining the turbulent energy decey and
the fact that "the measured values of A and G (Ref. 21) (notations
will be explained later) both from correlation and spectrum measure-
ment check with each other respectively for A and & well within the
experimental error” indicates very little doubt sbout the differenti-
ability of fluctuating velocity.

The Kerman-Howarth equation which relates the double and triple

correlations is the following:

e . ‘%, / A
a(ut+v . o) %7_+_ 42 )
2

Eq., (40) can be rewritten in terms of the trace Tr. of the cor-

relation tensor E*‘Rﬁ . The trace is defined as follows:

Taoo= w2 Ry o= ow {fr2g) (41)

L=

The trace is an intrinsic properity of two points in a homogeneocus
turbulence and invariant under unitary transformation., Its use will
facilitate to establish the correspondence between the energy spectrum

equation and the Karman-Howarth equation (cf. section 5). We have

3T, —

2 )

%(gg , 2@ QD“E, 2 fﬂ»

= 2y +
2L 73 / BY 2T Y, B

(42)

*For derivetions see Ref. (10). On account of the non-linear terms in
the Nevier-Stokes eguation, the equation for time rate of change of
double correlation necessarily involves the triple correlations. Simi-
larly the equation for time rate of change of triple correlations in-
volves the quadruple correlations and so on. Hence the Karman-Howarth
equatioh, is in this sense, indeterminate as long as we do not have an
additional independent relation between the double and triple corrslation.
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where & = R+ lg , +k and i are triple correlations defined
by Karmen.

Bg. (40) is the basic dynamic equation for studying homogensous
isotropic turbulent flow. The next guestion is does there exist any
dynsmic invariant? In classical mechanics, the Hamiltonian or the
total energy (potential energy plus kinetic energy) is an invariant
of motion in a non-dissipative system. However, in a bturbulent flow
the mean energy of fluctuation is continuously dissipated by the ac-
tion of viscosity and becomes a part of molecular heat energy. Hence
we cemnot expect the total mean fluctuation of energy to be invariant,
instead we have to seek some alﬁernatives. Experimentally the highly
diffusive charascter due to vortex stretching etc. is a well-recognized
fact in eny turbulent flow. If we may define some sort of length
characteristic for turbulence, then we expect this length to increase
as time increases. It is very probable that a certain combination of
length and turbulent intensity (according to Dryden's definition the
turbulence intensity is equal to 15; where U 1is a reference vel-
ocity) is invariant in the entire decay process. Such an invariant
wes first discovered by Loitsiansky (Ref. 22).

Suppose that we multiply the Karman-Howarth equation by 2% and
integrate the whole eguation with respect to L from zero to infinity
and if the order of time differentiation and space integration can

be interchanged and the following conditions are satisfied

(i) As N oo ; AL = o and /14“3"& - 0

(1) A A= 0° j TR
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then
d {7 4 —
Therefore
J ‘)14 (I\. j{r(/\) dA =A = Cméﬁnb (43)

©

Similarly we can find

J PRI T(n) d = 1o /Y = conel (432)

where 57 = w = w,r = W in isotropic turbulence. 1 (~)

We see immediately that Jm/144(A) 4r has a dimension of (L°) .

An appropriate length scale L_* can be introduced such that

K.

AT RS ISV RN
hence
A = u- L

It seems at the present time that all possible invariants (except
those trivial invariants arising from the equation of continuity) are
not independent from Loitsiansky's invarient. We shall see later how
the Loitsiansky invariant pleys an important role in the behavior of
turbulence decay and spectrum of turbulence expecially in comnection
with large eddies in a turbulent flow.

The ordinary measure for turbulence scale is the correlation

length L defined by



31

L o= j fa)

o

¥
Assuming | 1is proportional to L , we then have”™

5

A o~ Tk
/L in this form has been experimentally measured (sees Ref., 21). The

results show that /\ is practically a constant
3. Kolmogoroff's Theory of Local Isotropy

The recent advances in the statistical thsory of turbulence were
largely due to Kolmogoroff's theory of local isotropy. In the follow-
ing we shall give a qualitative description of Kolmogoroff's theory
and in sections 4 and 5 we will show the use of the theory in dster-
mining the shape of turbulence spectrum and the rate of turbulent
energy decay, especially for the cases of very large Reynolds number.

Turbulent motion is an irregular fluctuating motion. One may
suppose superposing on the mean motion, there are "large eddies" which
contain the bulk of turbulent energy. The "large eddies" are unstable
and superposing on large eddies, there are smaller eddies and so on.
The "smeller eddies™ derive their energy from the large eddies by the
inertia action. The viscous dissipation becomes more important when
the eddy sizes become smaller, and finally all the turbulent energy
will pass on to the molecular energy of heat by the action of vis~

cosity. The above vaguely described process - better lknown as the

*1£ the spectrum is a true optical spectrum, then L is actually
proportional to | * .
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Cascade process - is one of the characteristic features of all ture-
bulent flows. A concrete example is given in Appendix II.

One may suspect due to the random character of breaking down of
large eddies that the smaller eddies are subjected to approximately
space isotropic conditions™ despite that the flow as a whole is not
isotropic, e.g. turbulent shear flow. This is indeed the supposition
of Kolmogoroff (Ref. 8) and experiments by Townsend at Cembridge
(Refs. 23 and 24), Laufer et GALCIT (Ref. 25) and Corrsin at Johns
Hopkins University (Ref. 26) seem to verify Kolmogoroff's idea, Fur-
thermore within small time intervals it might be possible to consider
this particular regime of turbulence as approximately stationary de-
spite that the flow as a whole is markedly non-stationary. This is
indeed also the concept of equilibrium turbulent spectrum which was
developed by Heisenberg (Ref. 27).

It is clear that all above statements do not make sense, unless
we have specifically defined what we mean by "smaller.”

It is probably more proper to speak of high wave number compon-
ents of turbulence instead of speaking of small eddies. The low wave
number components will correspond intuitively to the large eddies.

In this paper these names will be used synonymously. By high fre-
quency components we mean those components whose length scales L
are much smaller than the overall characteristic length L., of turbu-

lence which we may define by dimensional reasoning as

*For a mathematical definition of loeal isotropy see Kolmogoroff's
originnl paper (Ref. 8).
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(a2) *

where R, is called the Reynolds number of turbulence.

Kolmogoroff suggested that the characteristic length L, and
velocity v, scales at high frequencies are determined solely by
the kinematic viscosity » and the energy dissipation & , again by

dimensional reasoning

L= vt & TL . Ry p
‘ ) \15‘)’4 A
Vi = Vﬁ' 3 G = 5" w RAL

Then the existence of high wave number components in the Xolmogoroff
genge requires

L == L, (46)
We see that the relations are consistent if Ry>»> 1 &

Based on the physical picture discussed at the beginning of the
section, Kolmogoroff proposed the first hypothesis of similarity.
This hypothesis states that all the statistical properties for small
eddies are uniquely determined by the quantities » and & . He

* %K
further suggested that a "low" wave number end of the small eddies

* L, wig the type of turbulent diffusion coefficient suggested by
Dr. von Karmen in 1937 (Ref. 3).

W= \/LT"

«y is the microscale of turbulence defined by Taylor (Ref. 7).

In this range the characteristic length L is such that L » L,

but still [ << L, »
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the effeet of viscosity is irrelevant, because the turbulent energy
transfer mechanism is independent of wviscosity, and also in this range
the viscous dissipation of energy is smsll compared to the energy
transfer due to inertis effect. This is his second hypothesis of
similerity. The consequences of both hypothesis end their applica-

tions will be discussed later.
4, Turbulence Decay

Problems on decay of turbulence were first investigated by
Go. I. Taylor in 1935. He predicted a linear law of decay of turbu-
lence behind the grids™ in a wind tunnel (Refs 7). This law has been
compared with experimental results with satisfactory accuracy. How-
sver, all these experiments show e simller behavior that at lerge
distences from the grid, the turbulent energy decays faster than those
predicted by the linear law. Of course there is no & priori reason
to believe that linear law should apply to the entire range of decay
process. Nevertheless the experimental facts do indicate the basic
mechanisms for decay are not the same for both initial period of de-
cay and the final period of decey. As already pointed out, the Karman-
Howarth equation is the basic equation in the study of isotropic btur-
bulence, let us now investigate what are the possible deductions from
the Xarman-Howarth equetion on the decay of turbulence.

Using the power series expansions around =0 for correlation

functions 7 and

*It is understood that this law does not apply to regions too close
to the grid where the shadow effect of the grid is important.
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til = o » ur 1
p— 1 % 1y —— W (48)
duf ’—:— o) he = lji y w7,

The first eéuation is then the egquation for turbulent energy decay.
The second equation represents the decay of vorticity.* Eq. (48) cen

be rewritten as follows:

4 -

““““ = - o ¥ W

dt A (49e)
— " _ .i/z 14 — N W

dor g0 3" )T s s v et A 1, (49b)
4t

Some remarks may be made in connection with the above equations.
At first glence the turbulent emergy decay depends only on the vis-
cous terms, where the net effect of inertia terms in energy decay seem
to be equal to zero. However, it is generally believed that the non-
linear terms ars responsible for the transfer of energy from low fre-
quencies to high frequencies where the viscosity is meinly operative.
This will be clear after we derive the equation for time variation of
\ presently. Eq. (49b) cen be interpreted as follows: The first
term represents the time rete of change of vorticity, the second term

represents the increase of vorticity due to the vortex stretehing and

L.
*The mean square of the fluctuating vorticity components w* < Z
can be expressed in isotropic turbulence in terms of w and A by

:’:—15—:&1*0”:’5' I‘/A_L‘
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the term on the right hend side represents the viscous dissipation of
vorticity.
The equation for time wvariation of the micro-scale can be easily

obtained by combining Bgs. (49a) and (49b) and eliminating «* , the

result is
axt _ 14 7 _ 50
- v( 3 G“FSRA lO) (50)
where
Y
Cr = 7\4 Ta
a . WA *
l{)\ - V
S = 2 fxom )\3

S cen be expressed in a slightly different form by noting thet in

isotropic turbulence

Ju 3 3/1 e
(ax B

hence

5 = - ST (81)

One obvious inference is this, if ome thinks of above average as
stochastic average, then - S is the ordinary skewness factor for the
probability distribution of %ﬁ « It is immediately seen that

is closely connected with the triple correlation or the non-linear

terms in the Navier-Stokes equation. Physically S represents exactly

*Notations are due to Batchelor and Townsend (Ref. 28).
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the deformation of vortex tubes. From all present day experiments
(Refs. 29, 30, 31) we generally conclude that the probability dis-
tribution of fluctuating velocity is Geussian (which implies the
skewness is equal to zero). Unlike common stochastic processes, the
distribution of the derivative ie not Gaussian (Refs. 29, 32). How-
ever, one should not be disturbed by the fact, as the author points
out presently thet S is a real characteristic of turbulent flow
ropresenting the interaction between different Fourier components of
the fluctuating velocity is a dissipative field. It is really amaz-
ing thet the distribution of velocity is Gaussian.

Any further discussion on the decay will necessitate to dip
more into the nature of the correlation function. First we eoxpress
the Karman-Howarth equation in & nonedimensional form.

ILet V and L be the reference velocity and length and intro-

duce the non-dimensional units u. s, o end T as follows

L.
L
v

T

After simplification the equation beccmes

[ . .
> &) Aok 4Ry 2 [ 2Fu) 4 od “:_)) .
s T 1&"‘0) ‘\ an T /.\n/) R \\ Py Ao 3/10// (5d)
V0L
where R = -5 is a reference Reynolds number of turbulence. We

assume in the following that R is of the same order of magnitude

as RA .



38

4e. Cases of Large Reynolds Number

Define the wave number of & given turbulent component X by
lﬁ{. where [ is the length scale of the given turbulent component.

Then the criterim for the high wave number reads (refer to section 3)

s

Hence as R, becomes larger and larger most of the turbulent compon-
ents can be considered such that they obey Kolmogoroff's first simi-
larity hypotheslis. By dimensional reasoning we can express the cor-

relation functions? and * as follows

A v

— + 3 —
uk(l*f(’\))z V= F(V% a—')
3 (53)
— — + o (e
@k A = PO H V%E,a.:)
Furthermore the characteristic wave number of the high frequency

components is

N
4+ '
. aw B am Us) T
s - T R)
Hence as R, becomes sufficiently large then most turbulence compon-
ents can be treated as low wave number components of the small eddies.
Consequently Kolmogoroff's second similarity hypothesis applies, i.e.
terms on the right hand sides of Eq. (53) should be independent of
the viscosity. The only possible combinations are
vz
woro- o dw) = (G (en) :
(54)
3
()~ alw = Goen

¢, and (, are two constants the same for all fislds of turbulence
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with large Reynolds numbers. The first of the above equations has
been experimentally verified by Liepmann (Ref. 29), and Batchelor
and Townsend (Ref. 33).

When the Reynolds number is large, the terms on the right hand
side of Eq. (52) can be neglected.® The Karman-Howarth equation then

becomes

i ) I A Y 4% N
e + 2(ur) ( Sa T *ii?) = 0 (55)

Substituting Eq. (54) into Eq. (55)

d u

+ Jo (C_ & = o
o €
or
dis  _ _ Isoy ur ¢
dt G s (56)

Comparing with Eq. (49a), we obtain e definite value for (. , i.e.

& = 7% (57)

A slightly different approach is the use of the idea of self-

preservation of correlation coefficients. Thisﬁidea was first intro-
duced and used by von Karmen in 1838, He arrived at a law of decay
with an arbitrary exponent in the time variable. A closer investiga-
tion will show that this exponent is definite at least in the large
Reynolds number case.

Assume in the turbulent flow with large Reynolds numbers that we

*To be sure this is a singular perturbation problem. However, it is
different from the classical boundary layer theory, the problem here
does not involve any definite boundary conditions.
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have only one characteristic length which is proportional to A the
misro-scale. For simplicity, this characteristic lengih may be taken
as A itself. Since both extremely low wave number and extremely
hizh wave number components do not play important roles in this pic-

ture, the above assumption does not seem umreasonable.

Assume
$ = 3i%)
o= R (%)
and
o
5 = T
Eq. (55) becomes
dE @A g @ (R =0 (s8)
;\';(’_t. 4‘ -~ e +2\M S )

where prime denotes the differentiation with respect to the argument
¢ + The idea of self-preservation is compatible only if the above
equation is a differential equation with one independent variable

¢ . Hence the following equations must be true

G - - ®
. (®)
U:")'/L o & /

A and (3 are two time independent constants. However, there does
not seem any good reason to believe that < and /3 are entirely in-
dependent. In the following we shall suppose that they are not in-
dependent and hence Egqs. (a) and (b) are really one equation. The

other appropriate equation in this connection will be Egq. (49a)
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d u n
- = - 10 Y R

Eqs. (a) and (c ) imply that

— Jo Vv
LA (a)
o r)
Substituting (d) into (b) we have
— A
I o (e)
« ) dt /
Solving for u- in (e)
o = = < ’.3/30{- t + C) (£)
= > Lo

u'\.
The integration constant C appearing in Eq. (f) can be chosen as
zero by a proper shift of time axis. Since u*r is necessarily a
positive quantity, « and 2 must be of opposite sign

Finally, we have the decay law

’é} = ljj t (59a)
Using Eqse (c) and (d)
A = dowt (59b)
and
< = - 2i (59¢)

Eq. (58) can be rewritten as
28+ Bsf o~ 2 (2 + 4 %4%) = 0 (60)

Eqs. (59a) and (59b) have been experimentally verified by Batchelor

and Townsend (Ref. 33).
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From Eq. (d) we have

3 . 2
, < (61)
Hence in the present theory, we require R, as a constant during

the decay process.

Coming back to Eq. (50) and using Bq. (59b), we have

According to Kolmogoroff's theory, all dimensionless parameters speci-
fied solely by smaller eddies should be absolute constants. In the
case of very large Reynolds mumber R, (which is the case that we dis-
cuss here), most of the eddies can be considered as "smaller" (of.
section 3). Hence G and S should be approximately constant. Again
this regquires that R, is a constant during a decay process. Thé con~
stancy of the quantities G and S in the initial period of decay has
been approximately verified by Batchelor and Townsend (Ref. 34) and by
Liepmann, Laufer and Liepmann (Ref. 29). The present theory is con-
sistent with Kolmogoroff's theory.

It is noted that the above theory gives the asymptotic law of
decay when the Reynolds number of turbulence is very large. In all
present day experiments R shows a tendency to decrease after a cer-
tain time interval and eventually R becomes so low that to neglect
the viscous terms in the Karman-Howarth equation is no longer justified,

There remains one arbitrariness to be settled, that is the arbi-
trary constant which appears in Eq. (£)s A closer investigation shows
that C can only depend on the mean velocity I{ and the mesh size M_

in a turbulent flow behind a grid in a wind tunnel, i.e.
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cl

«, is a proportional constant. Similarly Eq. (59b) becomes

/\‘zjov(t_ac% (63)

where ¢ 1is an absolute constant for very large Reynolds numbers. If

we may replace t by ')& then

N TR ( ‘j%f - at) (64)

oMy (642)

where A, is the micro-scale when the grid of mesh size M is used
and ), is the micro-scale when the mesh size M, is used. The A\ 's

X,
ars measured at the same ‘M « For a fixed mesh size

AL W (64b)

Al U,
X
again A\ 's are measured at the same M in respective cases. A,
and A, are the micro-scales corresponding to mean velocities U{, and

I{, . Similar equations for U can be obtained in a similar fashion.
4b., Cases of Very Small Reynolds Number

This part of turbulence is easily understood and is also least
interesting. Strictly speaking the name turbulence is not very ap-
propriate in the sense that the turbulence is essentially a non-
linear phenomenon. In this range the non-~linsar effect is believed
unimportant, i.e. we can neglect the triple correlation terms in the

Karman-Howarth equation, hence
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This is exactly the equation for diffusion of heat in five~-dimensional

spherical symmetry cases. The fundamental solution is
r\.

! svt
(gmrt)7~

Denote U{ at time t -oby " f (v, t,) end suppose this is known

then we can write down immediately u*{ at any later time .

| S N R A T -
2 L (o - — w2 YTt 3“3 —~ (¥ (66)
R (th);/xj F(7-7,t) e 4t (v)

dT(7) is the element of volume in the five-dimensional space end the
integration is ecarried out over the full space.
If we are only interested in the decay of energy, we may simply

put Y =° in the above equation, we have

Y

Y”
- * gy e ETE 4 (67)
o= u &1/ to e ¥ dY

* 4y )7 f o 1 )

Assume j n° fn) v exists, then
[

T - ._;_/_\_._»_.,_ (1 O\J{y (67e)

) 48 Vi (vt)s/’—
where U is the mathematical order symbol and /\ is the Loitsiansky

inveriant. Using Eq. (49a2) we have

A" : 4yt (e8)

i

Also

Z 2.6 (vt/ (69)



45

The solution for this problem has been obtained by Karman and Howarth
(Ref. 10) in a different form by using the concept of self-preserva-
tion. In this range there is likely only one scale of length deter-
mined by the viscosity and hence the correlation function is completely
similar. The result is

A % % X X
3( 2 { A (70)
X)=2 X e -1(‘”_::;)}% ( g)

A comparison of the derived decay law shows that A must be

equal to x . The solution (70) is then much simplified. We have
4,-

() = e €t (71)

This is a Gaussian correlation with the dispersion 4 »t . From this
result, we can again derive the formulas for A and G . By Taylor

series expansion

$o = 1= D .

then we have

A = 4 vt
(72)
G = 3
As a check, recall that we have an equation for the diffusion of
micro-scale
AN (73)

e - 25 e FsR—10)
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if Ry<< ! , then

iR
W

‘}E&%C}“‘lo) ar G

It should be noted that in all ectual cases & 2 3 .
4¢. Cease of Medium Reynolds Number

In the previcus discussions on very large and very small Reynolds
number cases, we have seen that the decay laws in the two are quite

different. In the one case u* 1is proportionsl to t™ and in the
other case W" is proportional to t7%, If we imagine the tur-
bulence starts to decay at very large Reynolds numbers, then the pres-
ent case just represents the transition period between the previous
two. Consequently, both inertis forces and viscous forces are effec-
tive and of the same order of magnitude and hence neither terms in
the Karman-Howerth equation cen be neglected. We know the behaviors
of large eddies (non-viscous) and small eddies (viscous) are not the
same, The concept of self-preservation does not lead to any definite
result in the present case. It is also difficult to estimate the time
duretion of the transition period. There does seem that at least two
characteristic lengths exist which eventually will coincide with each
other in the last stage of the decay process.

A rough epproximation can be made by using a single* character-
istic length which is related to the Loitsiensky invariant and dimen-

sional analysis. The following decay laws were proposed by Kolmogoroff

*Phis is indeed an over simplification which can hardly represent the
reel physical situstion, see also comments by Batchelor and Townsend
(Ref. 38).
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(Ref. 35) and Frenkiel (Refs. 36, 37)

2 .. 18
G- 67 A Gty
(74)

* 3 7
L7 = 902 A7 (i)
where ¥ is a constant.
As a final remark the Loitsiansky invarisnt may be corrsct in an
infinite turbulent field, however, in actual experimentel set-ups the

invariant need not be true due to the limited size of the apparatus.
5. Turbulence Spectrum

G. I. Taylor was the first one who introduced the concept of
spectrum imto turbulent flow study. His spectrum E (now better known
as Taylor spectrum) can be expressed as the one-dimensionsl Fourier
transform of 1 -correlation (comparing section 3, Part I), i.e.

Eik) = = & | () o fhr) w (75)

L]

By Pourier inversion theorem

oAy - Jw E (k) wovikn) dk (76)
£(h,) d%, may be interpreted as the comtribution to w* from
those turbulence components whose wave numbers in the w -direction
lie betwesn K, and «, +dK, « Taylor's spectrum cen be experimentally
measured by using ordinary hot-wire techmiques and passing the output
through & harmonic analyzer. OSince turbulence is essentially a three-
dimensional phenomenon, it is obviocus that Taylor's spectrum will not

be suitable for & theoretical investigation.
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Heisenberg in 1948 first studied the three~dimensional turbu-
lence spectrum and gave very instructive formulation (Ref. 27). We
have seen in section 3 Part I that there exists a definite relation
between the correlation function and the spectrum function. The
formulation can then be made straight forward if we start from the
Karman-Howarth equation.

First, we shall establish the relationship between correlation
and spectrum in the three-dimensional case. From analogy in the one-
dimensional case, we take formally the three~dimensional Fourier
trensform of Karman's correlation tensor.

Definition of b ;

* -~ (KY)
” R (e 4T (7) (r7) **

where

the i-th component of fluctuating velocity at P(R)

¥ the j-th component of fluctuating velocity at P (R

—d —

’; = R,I“’R

R denotes the wave number vector

—

K’r) the inner product of two vectors ¥ and ¥ ,

WKv) = AR X + A X0 t Ry X

dT(¥) element volume in the physical space

*The ! appearing in the exponent should not be confused with the
subseript ¢ .

*¥rhis was first introduced by Kampe de Feriet (Ref. 39) for homo-
geneous turbulence and also by Batchelor (Ref. 40).
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g;‘ exists if R;j(?) is absolutely integrable, i.e.
J

o

[ RL-J-&?)} dT(¥) <= o
Using the inversion formula
- _ . C(Ky)
RJ (¥ = Jgj E?i)-( k) ¢ AT (k) (78)

Putting v = ¢ in Eq. (78) we have
w = ] EL R dncw (79)
J %

_§U\ﬁJ dT( k) can then be interpreted as the contribution to the
Reymolds stress* J:Y%; from those Fourier components having wave
numbers lying between K and K¢+t dit; (¢=1id, 2, 3) « In par-

3
ticular, ”ﬁ_‘ ZT‘ §u’ is the spectrum density of the total emnergy
of turbulence,

It can easily be verified that the equation of continuity

V.U =0 can be expressed in terms of <P .. in the wave number space
‘

J
as follows
K\ 5‘:_ - e
J (80)
Kj § ‘,J' = O

Eq. (80) expresses the orthogonality relation between spectrum com-
ponents and the wave number vector.
So fer in the present discussions we have not restricted our-

selves to the consideration of isotropic turbulence. In isotropic

*For simplicity the density P in the present discussion is assumed
to be equal to 1 .
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turbulence gij is not a very interesting quantity, instead we ask
ourselves what is the amount of turbulent energy contributed from e
spherical shell in wave space, 1l.e. those Fourier components heaving
their norm of the wave vector lying between < and K +dk . This
question can be answered immediately.

Rewriting Bg. (79)

[T J a L] Q*f}f (%) 42 ()]

42 () is an element surface on a sphere of radius k in wave space or

‘ J x| J[+ 2 d k) ds (%) (81)

v 0

o0
e
L. W

by Heisenberg and we shall frequently refer to it as Heisenberg's
spectrum to distinguish from Taylor's spectrum. From Eq. (8l1), it is

obvious thet
o L a0y H FooAw) 42 (R (82)

Substituting ¢  in Eq. (82) by using Eq. (77)
?.,

— 83
? = ;r J Ta. kA i Ao doe ( )

VWhen expressed in terms of 1 correlation alone
T o= o J (AR Ao fha - KA e dn) dr (64)

a

Comparing Bgs. (75) and (84) we obtain a relation between

Heisenberg's and Taylor's spectrum
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i E(R) 5 &£(R) (s5) *

GJT~

Heisenberg has obtained an integral relation in a different way
{(Ref. 27)s One essential difference should be noted, that is that
Heisenberg's spectrum is equal to zero when % is zero, while Taylor's
spectrum does not equal zero when X, 1is zerc. The reason is fairly
obvious. In the Heisenberg case this simply means the Fourier compon-
ent with infinite wave length does not exist, while in Taylor's case
the total energy contribution from those Fourier components, which
*k

have in one direction wave numbers equal to zero, is by no means zero.

In fact

»
=1
r

E(o) =

&l

where L= (" 4(n) dn , L 1is the correlation length.

Heving thus clarified the definitions of different spectrum func-
tions, we are now in & position to investigate deeper into the nature
of the spectrum. An equation for the time variation of spectrum can

be formally obtained by taking some appropriaste transform of the

*Heisenberg's integral relation is of the following form

oo

E(R) - J& % VA= A2) T (A) dk (a)

It was pointed out by von Karman (Ref. 41) that this relation repre-
sents the geometricel fact that all oblique waves with wave length
2V < *V% & necessarily contribute, in the one-dimensional analysis,
to waves with length 2T /%, .+ Also, from Eq. (A) we lmow £ (#%,) has
a maximum at A, = o

**See Appendix III.
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Karman-Howarth equation. Multiplying Eq. (42) by —;’c A e ha and
integrating with respect to 4 from zero to infinity, after some inte-

gration by parts and using Eq. (83) we have (compare also with Ref, 42)

96;‘ N b Gf
_‘;g + Wi = -2 ¥ K J (86&)
2 @)% P
VVK - — - .) Q (/L) (;;/L Cov o~ Ak fe/l,) % s (86b)

If we integrate the above equation from ¢ +to X with respect to X

we heve
LK X K
(jz )‘ G, Ak, o+ J ]/\/('\K') AR = -—J 2 K'Lg"(k’) dr’  (87)
and
- e
K L) Q2
j W dk = *_EL) f [3A4 cwwhn + BAT i B ~3MAJL} =
6 K‘ 7T p

K
Eqe (87) can be interpreted as follows: j “F (k') 4k’ repre-

sents the energy content for all Fourier components with wave numbers™*
less than K . Hence Eqe. (87) states that the time rate of change of
the energy content between o and X is equal to the rate of wiscous
dissipation in that region plus the rate of amount of energy trans-
ferred to those Fourier components having wave numbsers higher thean x ,
The trasnsfer term is represented by LK W, d¥ « We have seen the dif-
ficulty in the Karmesn-Howarth equation is the triple correlation.

Here again the difficulty in the present spectrum approach is the

transfer term VVk and indeed the triple correlations and transfer

*More appropriately the norm of the wave number vector.



terms are related through Eq. (86b). However, we have made some
progress so long as the spectrum does provide a more intuitive physi-
cal picture which will allow us to make more reasonable assumptions.
Some information about the spectrum can be obtained immediately
without the detailed knowledge of the transfer function. If we ex~-

pand formally Eqs. (83) and (86) in the Taylor series in K we have

-3 4 o0
B e 2 [T
Fo= JU A, A da ) Ix, 2 dat
A 4 BN L (88)
W, 3&“2 [ —f J G AP dr ot Efi QA" dat l
T . e

The Taylor series expansion can be continued as long as the re-
spective integrals appearing as the coefficients converge. On account
of the equation of continuity the following results can be easily

verified.

j Th, A% da = o
Jw G A% dn = 0
J“’ Ta. /L4 dn = =2 J\'

Then for small values of K

c* ﬁ’.% A 2 b
f = -3‘7; ./L + O ( R )
(89)
; 3 _ﬁ_\-a/2 6 &
We < 20 @™y v o (8°0)
1& 7

where
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Substituting in Bq. (86a) we have

A

i ) (20)

This gives a different derivation of the Loitsiansky invariant. The
result that we just obtained states that the spectrum at very low
wave numbers is proportional to the 4tn power of the wave number A2 ,
if the convergence conditions for Loitsiansky's invariant are satis-
fied, and furthermore the proportionality remains constant throughout
the decay process. However, apart from atmospheric or interstellar
turbulence the significance of this result is doubtful due to the
limited extension of the geometrical configuration in the particular
cases involved.

. The next simple case is the case of very large Reynolds numbers
to which the Kolmogoroff theory applies. Then for high wave numbers
the spectrum should be uniquely determined by ¥ the viscosity and
& the total energy dissipation. By dimensional reasoning the char-

acteristic length L and the characteristie velocity\/ are

A ]
. (91)
L= v%F &%
Again from dimensional reasoning the spectrum °F 1is of the form
7 = VL F(«xL)
(92)

£ A 2> 4
= )}4' é‘?‘ ‘F(Kv+5 4‘)

By Kolmogoroff's second similarity hypothesis, the spectrum at
the low wave number region of the high wave number reglon should be

independent of viscosity. Then we arrive at the famous -5/3 power
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l&w, iec.

iy

4 - ¢ K (93)

The region of the applicability of the above power law can be extended
to very low and very high wave numbers provided the Reynolds number
of turbulence is large enough (see section 3).

In order that the result (Eq. (93)) can be compared with the ex-
perimentally measured powsr spectrum VY , some modifications will have
to be introduced. First we must have a characteristic frequency w,
and this is easily done if we introduce the mean velocity U of the

turbulent flow behind a grid. For instance we may define w.= X

L

where L is defined in Eg. (91). Secondly we note that Eq. (85) is

homogeneous in %2 . We naturally expeoct that any power laws derived
for 75 will in general be preserved for E . So the argument we

just went through for °f can be directly epplied to W . Hence we

have

5 ! £
ES T ., - ¥ .- -t
W o= v * & U W ( wy L U ) (94)

For the part of the spectrum whers the viscosity is irrelsvant, we

have

e et U e P
W= 1 (95)

C, is a constant for all turbulent flow behind a grid.

Befors going into further detail some specific assumptions on
the transfer term Wy will have to be madse.

First we postulate the transition fumetion O («k — k') exists,

i.e. the function which represents the amount of energy transferred
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per unit time from the Fourier components having their wave numbers
between * and «+d4k 4o those Fourier components having their wave
numbers between k' and k +dr', In general G will be a function

of time. From definition
g (k= x) = - O (k=) (96)

and VVx can be expressed as

K

We = J © (K=K dr’ — }K O (K- k) dx’ (97)

The first term on the right hand side represents the energy transferred
into < and K+ dK from the components having their wave numbers lower
than k , and the second term represents the energy transferred out to

higher wave numbers. It follows from Eq. (97)

fc W, dk = © (98)

Eq. (98) is of course a true identity, it expresses the fact that the
net transfer effect over complete wave number range is zerc.

Second we assume the transition function shall be a fumction of
four variables % (x) , F (v» , K and ', This assumption prob-
ably cannot be exact. We shall see in the third part of the present
paper the transfer term can be expressed as a convolution integral of
velocity spectrum. This means that the values °F (| k% w/)) will
likely appear in the argument of the @ function. However, we shall
accept this as a first approximation.

Third we assume (3 can be expressed as

o’ 3 3’ *
6 = - ¢ "}”((K) G (xy kU okl (99)

*This assumption was first introduced by von Karman (Ref. 43).
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From dimensional argument * t o= *i‘ . 3+ /’3' = 3’:
5a. Helsenberg's Approach - The Concept of Equilibrium Spectrum

Heisenberg in 1946 introduced a very interesting assumption on
the transfer function ): W, dx o« The idea was based on the concept
of eddy viscosity. He assumed that the action of small eddies on
large eddies is equivalent to an additional variable viscosity coeffi-
cient., By dimensional analysis we have

K = K
j W, dx = 2 J y/i}ij e J Ty 2wt dx
A K '« Kn.i .
Hence the spectrum equation becomes

I3 RS K
) 4 ‘L » / ?(“”} R LR
S’h: Py j Flh,t)dh' = "( +oe 3 J/ e dk) J 2 K Fk) dx’ (100)

Ku3

where 2¢ is a constant of order 1.*
It is not difficult to verify that this corresponds to our case

oA = , A7~ > . Heisenberg then proceeded using Weizsacker's re-

-‘Z .
sult (Ref. 45) that for large values of . , S, must be independent
of K because most part of the energy is contained in long wave length
regions, l.e. small k region. This idea lsads to the concept of the
egquilibrium spectrum. A more careful examination will show that the
Heisenberg equilibrium range corresponds essentially to the range we

defined in section 3 where we may apply Kolmogoroff's similarity hy-

pothesis. Rewritting Eq. (100) and for large K , SK approaches

*Lee has recently made an estimate of >¢ (Ref. 44).
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to & constant. Let us denote the constant by {~€) which is of

course the total energy dissipation
£ = (7+ j ,i_‘l‘./ alK") J k't F (k) 4k’ (101)
K

Indeed in the low wave number part of the equilibrium range in which
the viscous effects can be neglected, the solution is obblained

immediately

2
9 aﬁ_/ K (10 )

2,
5o (L V-
J
which is the Kolmogoroff result (Eq. (93)). For very high wave numbers
Heisenberg gave an approximate solution. However, the exact solution

cen be obtained easily (see Appendix IV). The solution is

rRe N3 -
) *
Ty = 2 (103)

[ |+ Q"EC)L}J%

C et & F
K, = R
5u3)

We see for ~'f7c >> 1 , then

N

T = ""“’E) k7 (104)

2v*

Since the Heisenberg equilibrium renge is essentially Kolmogoroff's
similarity range Eqs. (103) and (104) should check with the experi-
mental measured spectrum even in a shear flow, if the Heisenberg as-

sumption is correct. The measurements by Laufer (Ref. 25) in a

*This was independently worked out end at the same time published by
Chandrasekhar (Refs. 46, 47).
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two-dimensional channel seem to verify this result satisfactorily.
Obukhov (Ref. 48) in 1941 made a different assumption, which

in the present notation

" Y,

jk W dk = 2= | j K F (k0 dx ) Jj T (0 dx (105)

]

We may interpret this assumption as follows: In a two-dimensional
shear motion the turbulent energy transferred from the mean flow can

be expressed as

pwvs 1is the Reynolds shear stress and —— is the mean velocity
gredient. An obvious analogy can be dravm at once. [ Lk K™ F (0 dx}y
represents the mean velocity gradient of the macro-components” of
turbulence (which corresponds to %ﬁf ) and j;o F(x) dk repre-
sents the shear stress acted on the macro-components of turbulence by
the micro-components* of turbulence. However, the analogy is not com~
plete, besides it is contradictory to the theory of local isotropy.
Because in this analogy we have tacitly assumed that the shear spec-
trum and energy spectrum are similar even at very high wave numbers.
This fact obviously precluded the possibility of local isotropy.
Direct measurements of shear spectrums have been made by Corrsin
(Ref. 26) and Laufer (Ref. 25). Their results show that the shear

spectrums fall off to zero much more rapidly than the corresponding

*Macro and micro here simply denote the wave number is less or greater
then k .
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energy spectrums. Consequently, Eq. (105) may not be a good a8sump -
tion. Indeed if we try to use Heisenberg's concept of equilibrium
spectrum and OQbukhoff's assumptions, the results are indefinite at
very high wave numbers. Although Obukhoff's assumption does lead to
the -5/% law for the non-viscous range of the spectrum, this only
mesns the assumption is dimensionally correct (see Appendix IV).

At present Heisenberg's assumption is alone able to predict the
spectrum distribution at extremely high frequencies. It seems in-
structive to consider what the spectrum distribution is at low wave
numbers by using the same assumption on the transfer function. It
is fairly obvious that the low wave number regions caennot be included
in the equilibrium range especially when the turbulence is decaying
because the low wave number range of the spectrum contains most of
the turbulent energy. Consequently the term iz/ cannot be neglected.

The complete spectrum eguation becomss

X 00 /_"”' K
S Sk") N a
3—} Gl E)dx = —(V“"j J ‘*K)} EALVER (106)
K o

at ), K

Assumption on the transfer function alone is not enough for the
present investigation. We now introduce a second important assumption
that the turbulence at all stages is similar. The conecept of simi-
larity was first introduced by von Karman. This concept has been ex-
tensively used in all fields of hydrodynamics. It means the following:
"The physicel mechanism underlying the process is the same for all
time, but the scales are changing. The scales may be length scale,

time scale stc.” With this additional assumption we now assume (as
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in Ref. 49)

— W) o= -
4 = e 4
7 - ~ (kR E) (107)

Y and L are charscteristic velocity and length respectively., Let

AVt = X

R -t vié

4

R is the Reynolds number of turbulence in this case. Eg. (106) now

becomes
X m/”‘ A
a J a;d)r— x é?g,) = { 4 + RJX /7{3 dx} l’ 071(“ X (103)

Now, introducing the viscous dissipation z = ‘J ?fk Tdx  as

@
e

the independent variable and w= 7 %’ as the dependent variable,
the above integral equation can be transformed into the following non-

linear ordinary differential equation

X gt Rz - B aw J{—— =
VLR R AWJM + [22R+fw - 2R W] = 0 (109)

Discussions on Eq. (109)

The range of independent variable Z is finite o =< = = Z,

o

—

z, = j & x* 4x except when R <o , then 2z, = == because there

]

is infinite dissipation.

(a) For infinite Reynolds number we have

*This assumption implies a linear law of decay of turbulent energy,
1e0e U o U , and consequently cannot be valid when the Reynolds
number is very low,



Z 4 . =
T oz —aw =0 (109a)

i 74

This equation cen be easily solved, and the result is % o «x

=

as expected.
(b) For very small Reynolds number; in the limit we put R= o

then we have

d*w aw- -
w "d"j;l """ 2. a-lz + & = o (109b)
T _— x?.
This equation can also be solved and the result is < = xe * .

Compare the result with Eq. (89). We should expect that when X is
small (;:oc x* » due to the equation of continuity. However, this™
is not the case here. This fallacy hints that the extremely low wave
number portion of the spectrum cannot be included in the similarity
range in the sense of Eq. (107).

(¢c) For any finite Reynolds number; W is positive for
o<z <z, 5 W=o0wWhen z=o also W-—=o when :2- z . For very
dw dw

and —

small W , and assuming that in the sotual solution a2 es

are bounded, then Eq. (109) can be simplified to the following form
BM_Z_ W 4 22 R = o (109¢)
2 4z

If R+ o  , then Eq. (109¢) implies either

or

aw 4 (110)

*The linear variation here cen be proved quite generslly for all
finite Reynolds numbers.,
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The results (Eq. (110)) are independent of the Reynolds number,

z=o0 is a trivial result. The other, 3%5 <-4 , leads to oot X
as X o « So this shows that the concept of equilibrium spectrum

is consistent with the similarity assumptions.

Before concluding the present discussion, we should keep in mind
that the equilibrium spectrum cannot persist for an indefinite length
of time in & decaying field of turbulence. This is because of the
limited amount of energy supply. However, the general tendency in
the transition period is the different characteristic lengths in
turbulence which may exist at the initiel period will tend to the
same order of magnitude and very probably the spectrum will be come
pletely similar in the final period of decay.

Assume that we can neglect the transfer terms V. in the final

period of decay, then the spectrum equation is

9“7’ r e
—— = - 2V
ot A4 (111)

The general solution of the above equation is

—avkE )
T - T e (112)

f{* is a function of K only. Since T k* at low wave
numbers, we have

_11)'(1'&

Y o= O x* e (113)

This result can also be directly obtained by applying the Fourier

transform to the correlation function (see Ref. 50).
5b. Spectrum Functions and Their Relations to Stochastiec Processes

Dryden (Ref, 51) end Liepmann (Ref. 21) found experimentally
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that the Taylor spsctrum £ (*%,) can often be best approximated by

the following empirical formula

Elay = 2 b (114)

& I T T
for a wide range of low wave numbers k, . L is +the correlation
length defined as L = | #(a) dr , Using Eq. (85) we then have the

Heisenberg spectrum expressed by the following empirieczl formula

e \
(hy = =3 ) (115)

—
Y >
T 1+ L*KY)

This means that apart from the equilibrium range of spectrum which
does not contain an appreciable amount of energy, the energy contain-
ing part of the spectrum can be best approximated by Eq. (115). It
is obvious that Eq. (115) does satisfy the continuity requirement,
ie0e “F = C«¥ when | x<<1 . Furthermore since L and L” are
proportional, then the coefficient ( is proportional to Loitsiansky's
invariant which is & low wave number characteristic (compare Eq. (89)).

At any rate Eq. (114) represents a reasonable spectrum in addi-
tion to the simplicity. We have tried wvery haéd in the previous dis-
cussions on turbulence spectrum to make more or less restrictive as-
sumptions on the transfer function Wy . The question is "can we get
some information on the turbulence spectrum from general theory of
stochastic processes and then extrapolate backward to find out more
exact knowledge about the transfer function?”

One immediately recognizes Eq. (114) as the Fourier transform of
the exponentisl correlation coefficient. We have seen in section 3

Pert 1 a complete information about correlation coefficient does not insure
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a2 unique interpretation of the stochestic process. For the time
being there are two well-known types of stochastic processes whicsh
lead to exponential correlation. OUne occurs in the theory of com-
muﬁication, the rendom telegraph signal with Polsson distribution
{(Ref. 52). This process has a close analogy with the action of grid
which is responsible for turbulencs producing in asctual experiments.
The other occurs in the theory of one-dimensional Brownian motion.
It can be proved that if the given one-dimensional stochastic progess
w(+) is stationary end Markoffian,”* then the correlation is of the

Bl t-s|
e

exponential type provided the joint probability of u(t)

and U(s) is double Gaussian (for proof see Appendix V).

*Por the definition of the Markhoff process see Kolmogoroff (Ref. 11).
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PART I1I ON THE NAVIER-STOKES EQUATION WITH

RANDOM BOUNDARY CONDITIONS
1. General Introduection

The present part of the paper is concernsd with the investiga-
tions of the effect of the random disturbances produced in a cerbain
part of the domain of fluld upon the solutions on the Navier-Stokes
equation as a whole. By random boundary conditions we mean that the
boundary conditions ars not known exactly, but instead we have cer-
tain statistical informations such as the probability distributions
and correlation cosfficients. The problem is then to determine the
probabiliby distribution and the correlations away from the boundary.
The present lovestigation was first suggesbed by the fact that all
the present day experiments for isobropic turbulence are carried out
in wind bunnels behind grids, hence the turbulence thus produced is
connected with the action of grids if it is not all distorted by the
inertia effects (in the latter part of the work simple non-linear
examples are studied). It has been pointed ou€>(cf. the end of
PartIl) that if +the irregular shedding of vortices by the grid is
something like a random telegraph signal with a Poisson distribution
then the simpls optical spectrum is indeed a very plausibls turbu-

lence spectrum.
Z,  Method of Anmlysis

The keruel of the recent turbulence research on isotropic tur-

bulence is to understand how the modulation and phase interaction
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between differsnt Fourier cowmponents take place. Consequently the
mogt approprists direct approach is to use Fourler analysis.

Assume the compressibility effect can be neglected, the funda-
mental sguations to be used are |

(1) Egquation of Continuity

>

V-V = o (1)

(2) Equation of Motion
. = -
A A R A V2 (2)

We choose the following coordinate system. Let the Z axis
coincide with the direction of mesn motion or the wind tummel axis
and the XY plane correspond to the grid plane.* The grid is supposed
to have a periodic spacing of their rods both in X and Y direction.
Heburally this suggests that it is reasonable to assume that the bound-
ary conditions at z = o are periodic in x and VY , for simplicity
we assume the period is 1 in both directions. The analysis gilven in
the following can be easily extended to the cases where the boundary
conditions can be expressed in bterms of the Fourier integral.

Assume that we have & consbtant mean flow in the =z direction with

velocibty W, . IHence we have

(3)

P = ’}a + ':E

o
The system of coordinates is chosen with an aim to approximste the
actual experimental case.
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where
e, is the unit vector in the z direction
o is the fluctuation of V about its mean u, e,
P mean pressure, P is the fluctuating part
Egs. (1) and (2) then become
vou o (a)
,a"" o . 3“’ -~ _/t_ N
L T Reve q uo'g% ““Vf) t Y v (5)

We are interested in finding out the turbulence fisld for the

region
o P z <z =
- e < N < o
- e < X < @)

The boundery conditions are as follows:
(I) w=o0, 2<o , i.e. the grid does not introduce any
upstream influence. To be sure this is only a mathematical ideali-

zation, in the actual case ™ # o , but the flow cen be considered

a5 leminar.

(I1) W —>¢ @as z - o ; this condition expresses the fact

that the turbulence decays downsbream.

(I11) A&t z= o , U = Ug(x Y, o+) periodic in x and
Y with periods 1 , where —aé for each fixed time is & random vari-
able, i.¢. only the probability of 3@ is given.

Remark:

If W, in (III) is a perfect definite vector function, and if



the insrtia terms in the Navier-Stokes equation can be naglected,
then from the theory of linear partial differentisl squations, the
conditions {II) and (III) alone guarantee the existence of a wnique

soiutlon. In the non-linear case there is no guarantes for uniqueness.
e Pressure and Veloclty Spectrums and Their Relationship

We define the velocity spectrum [ (R t) end the pressure spec-

trum T[] (R, t) as followss

X L am K'Q.;)
j a(r)e dx dy dz (8a)

" ' LTTCKL}?)
TT(kt) = Jw I _;j(;) © Ax dydz () °

where ¥ is the position vector in the physical plane T = A€, 4 3ég~*zzi
% = ne, f.ﬂeg + R o€, 3 n , m integers, ﬁ1 is a continuous
resal variable.

A relation betwsen these two spectrum is immedistely obbained by
combining the squation of contimuity snd the equations of motion and

taking appropriate transform of the resulting e§uation. Ve have
v = (4)
AVl G (X-vw)=o (7)

Taking the transform of Eq. (4) as follows

*In this definition we choose P=¢ for z < o , Since only pressure
gradient is lmportant, it is clear that ws can counsider any appropri-
abe pressure as Zsro Pressure.
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o "'”L-(v".?)
250w Ty
The result is
Re T (Re) = 3 % LR (8)
where
- vt ame (ke ¥)
¥zl h) = 53 Uz Ux, 9,0t )€ dx dy

U, is the fluctuating velocity in the = direction.

Taking the similar transform of Eq. (7) we have

T1--% ';{.Z’J (R P he®)) TR dky, + A Tt) (9)

where

A (%) - ;__.!.;;{ St am ke tam i R 2T W (R k) % (R
S22 am Uk R, (W)

' m?

toame R 00 % (koo kD) W Tz:)}

= L e

d X dﬁ

o F dx dy



72

i
—_

) N t(—y;w.?)

¥ (k) = i L wx y,¢,t) e T X oy
p et . 1‘7[(—]%1'?)

wiko - ] 5 (eye9 e Axdy

ARt may be interpreted as an action function which consti-

tutes a part of the pressure spectrum depending only on the character
of the boundary conditions.

4. Fundamental Equations in the Spectrum Anelysis of Turbulent Flow

Having obtained the relation between the pressure spectrum and
the velocity spectrum, we then take the transform of the Navier-

Stokes equation and arrive at the following integro-differential

equation for the velocity spectrum. The required equation is

STHRE) . ‘ ®-T(R-R 2T () aty
TED 4 PRt -2 2 j’“ k.P(k~h7}i~-’§,§)-P( ) dk,
— X
(10)
= BLY + u, Y = B (Rt
T\T«)t)‘ € +ayi h Alkty+ 27 %(Q“k) ?(%I)
] ) (11)
- L ¥, — 2T h\?]
where
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wox + B(kt) may be called a grid fumction. It is believed that the
statistical behvaior of TR’(kt) does determine the complete statis-
tical behavior of the entire turbulent flow field downstream. Refer-
ring to BEq. (11), we see that the first two terms on the right hend
side represent the effect of pressure fluctuations, the third term
represents the incipient inertia effect and the last term represents
the local dissipation at the grid plane.

Eq. (10) can be further simplified by using the equation of con-

tinuity. In this simplification the convolution terms in B(¥t)

disappear. We have

— - . R -, ~ "’“" —_ s ’
LT —ch_E;J o h“h)ii ’;(i}'f“(*’i) dh,
" S
_ _ RK , R f . (12)
{;?:4 ﬁt%%(k) + 2}_ ;[_a__t_{ + B(K)YSJ
where

ot

X (%) = uo? -y ¥+ oy R,V ;’ + oe,

The advantage of the present formulation is that we now have a
clear idea of where we should introduce the statistical element into
the ordinary hydrodynamic theory. With a slight modification, the
equation can be applies to an infinite turbulent field (in the sense
of Part I of the present paper). If we assume that we nowhere have
a feed in of turbulent energy, then B (K,t) =0 o Furthermore
we assume that there is no mean motion, i.e. u,=o¢ , the non-homo~

gensous Eq. (10) then becomes
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L

2R [

e B ([ R Bt SRR a0 ay

17

and the equation of continuity

TR =e (14)
Eg. (14) states that the Fourier componsnt at every instant is perpen-
dicular to the wave vector (compare with Eq. (80), Part I). In cer-
tain cases this fact does help us to visuelize the geometrical picture

in teking aversges. The term

T et > - - Q 'Z i .
ard ) BT OR-R) L PR Ak
represents the effect of pressure in the way the equation is derived.
In all practical cases we are not primerily interested in the
instantaneous values of the velocity spectrum, but rather in the mean

energy distribution for various wave numbers. The total energy con-

tained in the turbulent flow E is equal to (assume demsity f =1 )
) T -
E = “zj Uu'u))A A7
v

= | T de (15)

*The doubly infinite sum n', m’ in Eq. (10) has been replaced by an
integral in Eq. (13). It is obvious that we can make such a change if
the Fourier transform exists.
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Since W is real
PLR) = T -k (16)

then

.

E <4< Fuay- MH(R)), dk
Hence the energy spectrum may be identified as

F(ot) = 3 (FE)- PR, an)

and

Multiplying Eq. (13) by F*- and adding the result to the product of
I'- and the conjugate of Eq. (13), we then have the spectrum equation

27

Tt We = - eT »™ 5 (18)

W, represents the transfer term and is given in terms of small time
average in the following expression
W= (o g P2 ) | G FCRR) R Ry aie ) a9)
- 00 v
W, given in this form should be compared with the different as-
sumptions we made in section 5 Part II. It is now clearly seen that
the transfer term is related to the triple correlation of the velocity
spectrum. We note that in the energy equation:the pressure term does
not appear on account of the equation of continuity. Therefore the

pressure fluctuations have no direct effect whatsoever on the transfer

mechanism which is responsible for continuous modulation among different

*The average operator may be either a small time average or an ensemble

average.
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Fourier components in a decaying turbulent field, if there is no ex-
ternal supply of turbulent energy from the mean motion. This ori-
teria applies to isotropic turbulence as well as to non-isotropic
turbulence since we have not made any specific assumption about the
isotropy. It is probable then that the fluctuation of pressure is
connected with the problem of interaction between the field of sound
end turbulence. Batchelor (Ref. 40) has proved that the pressure
effect does not change the total energy contribution by any small
region of wave number spéce for an incompressible homogeneous turbu~
lence field. The only limitation to the present theory is that the

underlying turbulence fleld can be subjected to a Fourier analysis.
4a. Stetionary Spectrum

Using Eqs. (8), (10) and (11) the equation for the variation
of instanteneous spectrum % (not the averaged quantity) in the non-

homogeneocus case can be written as follows

ar"/

Sty T W = Do) v 2 Re [T (B +wd)  (20)

where D' (&, U) represents the effect of pressure

laedd )

7 et PR T (R)

Diwn - - RfZZ TR PGPy G (k) dk,
and o

W, = am }wﬁ F*(E)Q;Z;J (Raﬁ(z*?)) T (%) dk,

Eq. (18) is still non=-linear and in fact it is just another
phase of the Navier-Stokes equation. Similarly Eq. (86a) (Part II)

is another phase of the Karman-Howarth equation. At the present time
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it does not seem possible to find the complete solution of the equa-
tion. We mey assume, as in the actual experiment, that the flow in
a wind tunnel reaches stationary state after a certain transient
period. By stationary state, here, we mean the mean wvalues at any
given point inside the wind tunnsl are independent of time. It is
not difficult to see that in the homogeneous case (i.e. an infinite
turbulent field without the extermal forcing function such as the
grid in the present case) the stationary state in the sense we just
described is in general not possible. We should keep this difference
in mind in order that & decent comparison between the theory in Part
1T end the experiments can be made.

Accepting the stationary assumption and taking the averages of
Eq. (20) we have

87 " F ¢ We= D(k,t) + R < . (B + u°:§/)>Av (21)
The first term on the left hand side represents the viscous dissipa-
tion of a given Fourisr component, W, is the energy trensfer due
to inertia effect, D(k, t) represents the effect of pressure (this
effect is out if we do not have the grid forcing function) and the
last term represents the correlation term with the boundary forcing
functions.

W D(%,t) are believed to be important at high Reynolds
numbers. However for very small Reynolds numbers we may neglect
these terms and Bq. (21) becomes "approximately” linear. The only
non~-linear character of this equation is retained through the bound-

ary forcing functions. This assumption is justified when we are
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interested in the turbulence field far downstream from the grid and

also when the turbulence level is low. Hence Eq. (21) becomes

s e (R DB wE),

or

Fo—lin (R P (Brw¥ ), (22)

Eq. (22) clearly shows the very dependence of the spectrum func-
tion on the rendom forcing function in the case of small Reynolds
numbers. True, this is a consequence of linearization. Nevertheless
this does indicate that "there is no a priori reason to expect the
turbulence spectrum will approach Gaussien at far distances downstream
from the grid. The effect of the grid seems to be an importent fac-
tor in low Reynolds number turbulent flow in a wind turmel."” Indeed
the measurements by Liepmann, Laufer and Liepmann showed that the
turbulence spsctrum at ii'= 1,000 with mesh size 0O.l41 cm and mean
velocity U, = 630 cm per sec. agrees poorly with the Gaussian spec-
truc (Ref. 21). The agreement is especially poor at low frequencies.
This fact strengthens the belief thet the large eddies produced by
the grid are of the first order and unaffected by the non-linear and
viscous terms. The small eddies damp much faster than the large ed-
dies. Hence any irregularities of large eddies will markedly show
up at far distances downstream. This argument incidentally explains
why in Townsend's messurements (Ref'. 50) the agreement between the
Gaussian correlation curve and the experimentally observed correla-
tion curve become worse instead of better at large gi , if the

mesgsurement is carried further downstream.
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5. Attempts to Relate Turbulence with the Theory of Brownian Motion*

It is noted that if we linearize the fundamental equation (10),
the resulting equation which we will get is just the equation of mo-
tion of a free Brownian particle, known as the Einstein-Langevin

equation (Ref. 53)

Qr‘(ﬁ,t) s > 4
el Bk Mk, ey = B (k) (23)
/
/3()2) = YK = fuoﬁl

ﬁgLiﬁ,t) is the linearized boundary forcing function.

The effect of linearization is to decouple the interaction be-
tween different Fourler components. This fact enables us to consider
each Fourier component separately. This treatment will also serve as
a first approximation to the case where there is a weak interaction
between these components. Nevertheless, the investigation of Eq. (23)
will give us some information regarding the random charscter of tur-
bulence. Eg. (23) is not a differential equation in the ordinary
sense, simply because we do not know exactly the time history of
—%Lkﬁvt) . Some statistical behaviors of 3§L\E,t) may be assumed
and this leads to a type of stochastic differential equation. The
appropriate problem for this equation is "given f:(E,t) a‘ﬁ( R,o)
at t=c , we ask what is the probability distribution of T (Rt at

any leter time t>c ," To be sure we have to talk about distribution

*In this section 27w |z has been replaced by & in order to save
writings.
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functions of the real and imaginary parts of ©(Rit) separately.
For all practical purposes we are especlally interested in the limit-
ing distribution which will in genersal correspond to the experimen-
tally observed distribution.

We may mention in this comnection another type of stochastic
problem for differential equations which will be illustrated in the
next section. In this problem, the differential equation itself does
not involve explicitely random functions, however the boundary or
initiesl conditions that we deal with are not sharply defined. Hence
the solutions obtained herewith can only be interpreted statistically.
Both types are useful in treating the statistical theory of turbulence.

The following arguments are tentative. They are plausible rather
than unigue. We assume

(1) @L(i, t) is independent of [ (i,t) . Physically this as-
sumption means that the flow downstream from the grid is in no way to
effect the forcing mechanism of the grid.

(2) There exists a time interval AT , during which B _(i%)
has undergone very many fluctuations while [:” (T’L, t) changes slowly.
Specifically we assume the correlation function M = B_(R,t) —'EL_&T{JK*’C)
= M, §tx) * where ﬂ: is independent of t (i.e. the process is
stationary). §(x) = {  when T=o , and zero when T > aT . 4T
is small compared to the characteristic time during which T (% t)
hes an appreciable change. Physically this second assumption means

that flow conditions dowmstream do not have an immediate response %o

*This means that the forcing function has a white frequency spectrum.
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the rapid change of the boundary forcing functions. This seems
rensonable especially when the approximate steady condition in a
wind tunnel is established.

Let

et - R bt

where [, , [, , B3, and B. are now resl quantities. The solu-
tion of Eg. (22) consists of two parts., The first part consists of
a solution to the homogeneous equation and staisfies certain initial
conditions. For |K! >0 +this part will be demped out exponentially

when t >° . Hence the limiting distribution function will not

depend on the initial condition ( /Kl >° ). The second part consists

of the solution to the non-homogeneous equation and satisfies the
homogeneous initial condition. This part is not damped out as time
t approaches infinity and is of interest in studying the limiting
distribution function. Hence as t—>= | ¥ >o

- t *"KL{ s 3
r (hlt)=fe [B,(t-§)m(uoﬁ,§) - Bt(t—§)ém(uoﬁ.§)] a3

9

= 2 ¢ vkt - -
I (R, t)s= J e ;[ B,(t-3) wolaR,T) + B (E-3) dn(noh §) 4 (24)

Qe

In order to obtain the limiting distribution, we apply the following
lemma, which was proved by Chandrasekhar (Ref. 53) which states that
if F and B_are real, and the second assumption on 731 is valid,

and if

T Bus)
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Then the probability distribution P of[ (Rhis given by ¢t~ =

N , |
S e e (- )
prafvwagt T S

vhere { is proportional to temperature in the case of Brownian mo-

tion. In the present case ; is related to the correlations of bound-

ary forcing functions.

The limiting distributions that we obtain are for the real and

imeginery parts of I (for x>o Y3

3

! )

ex - L (25a)
[qn— ( Z,d.z+ 82-“:)]% f ( 5a

4HAT T Af Al

i

PR = ———— epl - LY (25b)
(n [4?(8@,x+8.o<§)]% P +5Lo<,‘+4f',<)

2
where g , and [ ocen be shown to be equal to

i= + J:}{Dk B,(3) E,(E')>Av ds d3’
(26)

0T - - '

o b L] RO B s s

-

T is an appropriste time interval. The average operator here refers

to ensemble average

(27)
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In deriving Egs. (258) and (25b) we have also assumed that there is
no correlation between the amplitude of the boundary forcing func-
tion and its phase. This assumption is probably wvalid.

Hence the distributionsof ©( R) and [ (% will approach
Gaussisn, however the approach is not uniform for all K . The ap-
proach is especially slow when K is small. When K=o , the in-
itial condition is not damped out, consegquently the limiting Gaussian
distribution can hardly be realized. For the moment let us suppose
that we have & zero initial condition eand that the turbulence consists
of denumerable numbers of Fourier compenents. Furthermore, if the
sum of the dispersions of components is finite, then the fluctuating
velocity has a Gaussien distribution.

The second deduction that we can make from assumptions (1) and

(2) is the frequency spectrum and the time correlation coefficient.

We do this by using a time Fourier analysis of Ege (23). Let

s a R W,
B ( K.t) = 2 Bilke
(28)
S s~ = ‘ot
PORE) = 2 Toioe :
Substituting Eq. (28) into Eq. (23) we have
= B, ()
Lik)y = n (29}
/3(3‘) ¢ W
Hence the time spectrum of T (k,t) is
-2 = B ‘@ * K)
Mo RA () = ot B (30)
V’*K‘* + (U-fz,—~ wn)L
Let us denote | (K)hﬁf (W by “F (k) (spectral tensor) and
) (k) B* (v  and furthermore restrict outselves to talk
- n h
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about positive frequencies, then

]
— e [ ] (31)
T ( * N
Cj,v‘ ,‘J::‘ [ le'(",f.. (uaﬁ'-—w“).“ "lk%'{— (“oﬂ,“f‘*’h)

It is seen that if ¥ is a small dimensional coefficient there exists
a sharp resonance at w,= uw,A . This probably explains the reason
for introducing the mean velocity in defining a characteristic fre-
quency (see section 5, Part II). It is elso worthwhile to notice that
f}; is inversely proportional to the square of frequency when the
time frequency is very large in comparison with the rest of the terms
in the denominator.

From the general theory of Brownian motion (Ref. 54) the correla-

tion tensor is of the following form

= - ~ Ak ||
Re (v) = () Mher ) = Relo)e A (52)

—~——

if the process is Markhoffian. If we separate the resl and imaginary

parts
Rete) = RalT) - lﬁ‘(t)
hence
Ralo s Fo e+ [0 Ry (o)
(33)
Ryl = PO T (v — Py (te 1) Pt
and
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Comparing Egqs. (32) and (33) we have

~ Y KHT|
Ry, (=) = R o) e woo (U, R, T)
(34)
~yrYitl
Ria (T) = Ri o) e A Lok, T)

It is not difficult to verify that the spectral temsor ¢/ in Eq. (31)
corresponds to the Fourier transform of the real part of the correla-
tion temsor E&LU + Similarly the energy spectrum is also completely
determined by the reasl part of the correlation function. The imaegi-
nary part of the correlation is believed to be the time phase correla-
tion of each individual space Fourier component. This assertion is
not in contradiction with the assumptions we made on the boundary
forecing functions since the time scales are different in the two cases.
In actual cases the phase interaction among different Fourier compon-
ents is of interest, nevertheless R.. (t) can be served as & rough
indieation of the more complicated problems.

It should be pointed out that a more exact treatment than that
given here is possible. The ordinary space correlations downstream
cen be expressed in terms of the generalized correlation functions™

at the boundery, i.e. the grid plane.**
6. Linearized Vorticity Transport in a Turbulent Flow

Sometimes it is found more convenient toc consider the vorticity

*The generalized correlation function is a mixed space and time cor-
relation function.

**This was pointed out by Professor J. G. Kirkwood.
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or the curl of wvelocity rather than the velocity itself. Let us
denote W the velocity and & the vorticity, then
SO o= VA Q& (35)
A vorticity spectrum () may be defined as follows (cf. section 3)

~ o r R
= J ) J 2T Lher

w ¢ «AX‘A\jo\Z.

cot v 2Tl (R ¥) 8
j J w @ chl\j dz. (3 )
[ @ J

The relation between vorticity spectrum and veldo:lty spectrum

can be easily obtained. We have

o

T« - R PRt - kxlany - §€) (37)

where

-, o, Ax dy

U, 1is the velocity in the 2 direction.

The equation for vorticity spectrum can be directly obtained
from the velocity spectrum equation. However, the author will not
proceed further on the spectrum discussion at present. The follow-
ing analysis will be carried out in the physical plane.

We shall freguently refer to A , X. and X; axes as previous
X 5 4 5 Z axis, and «); and Y. respectively vorticity and velocitbty
in the X, direction, ' =1, 2 or 3. The Helmholtz vorticity equa-

tion is

> wy W, SuU- (38)
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We choose our coordinate system such that the XX, plane cor=-

responds to the grid plame and X, in the direction of mean motion.
When the grid is absent, we have a parallsl uniform flow in the

direction with velocity { . The effect of the grid is to produce

the cross components of velocity and a fluctuation in the longitudi-
nal components. In other words, the effect of the grid is to pro-

duce a random vorticity or velocity field. Denoting the fluctuating

components with primes we have

M.‘ = M\
U, = u

i
Uy = -ZJC t M_)

Letting M denote the mesh size at a sufficient distance (e.z.

]7%1 ~Joo ) downstream from the grid we assume

4

Wi 2u; U
“y < 1 SEROU I R .4
7 2 X% M
2
2 Wy Wy 27w alU.
and —* , — and ——* are of the same order as —* .,
X 2t ax:j-*— ax,

With these essumptions, Eq. (38) becomes linearized if we keep only

first order terms. The resulting equations are

.awt + U 2wy, (.‘Zifﬁ' + _?_iff)_‘_' + izwc?é_) (39)
2T 2 X3 2 x> Xy dAS

{ =1, 2 or 3. We see that all vorticity components satisfy the
same linear equation. For simplicity we shall drop the subscript

L , and it is understood that o may refer to any of the three

components

(40)

4
g:l
#
<
—
i
I
—*_
1
|
I
&-
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6a., Non=-Viscous Solution

If the viscosity is very small, such that the terms on the right
hand side can be neglected, we then have a simpls linear first order

partial differential equation

%Ct—u + W %E = (41)
The characteristic of this equation can immediately be seen to
be z= Lt + constant. Suppose that the boundary values of w at
2=, &are given as P (x, 4, t) , then this condition determines the

solution wniquely since Z= o is a time-like axis. The solution

can be written as

w= F{X 9,3%) (42)
where

s+ L)
If we know the probability distribution for w at z= o , the cor-
responding statistical information at any Z > © can be obtained quite
easily by Eq. (42). In a more general case L{ will be a function of
w o Eqe. (42) then provides a non-linear functional relationship be-
tween «© . It is the non-linear character that produces the steep-
front of vorticity and finally leads to discontimuity.™ In the region

around the pseudo discontinuity the viscous terms are important, no

matter how small the viscosity is.

*
More properly the regrouping of vorticity.
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6b. General Solution to the Linearized Eguation

VWie have the gensral linearized equation

dw

= F U %,‘:{ = k_éﬁf p 2wy 2—2‘) (40)

In the course of linearization we have neglected (1) the vorticity
transport due to the fluctuating velocity component and (2) the in-
crease of vorticity due to the deformation of vortex tubes (including
both stretching and shear). These limitations should be kept in mind
in order 4o not over emphasize the linearized results.

The problem now is to solve Eg. (40) under the following bound=-

ary conditions:

Given at Z=o0 o= w, Uxy, 1)

AR N damping conditions

We assume «w. can be expanded as a triple Fourier series in X , y
end t . The Fourier coefficients at each fixed time are random vari-
ables. (This obviously cen be extended to those;boundary conditions
which can be represented by a Fourier integral or almost periodic
function. )

One may easily convince oneself that the solution for this prob-
lem with a definite boundary condition at 2z = ¢ and a damping at
infinity is unigue. No uniqueness proof will be given here,

We assumo the fundamental solution o is of the following form



20

= (ol,/a,/») - qz{ .f (az,/3/,,,u)/umw+/ﬂv r‘fzyc) + 2 (d,/ﬁf) “—(n(o(x—f}/.?? +7L+/u,t)} (4:1)

where a and ¥ can be expressed in terms of <X , 2 and /- (see

«~ are real numbers

Appendix VI) and a , « , A s v end

(42)

[add

Lo (o«‘—r/s‘)}lf;f;{Jt}

Since Eg. (40) is linear we may by principle of superposition write
down the general solution as follows
we T 52T Cupyd (49)
/
We assume the vorticity ¥. at Z = 0 can be expanded into e

triple Fourier series. Let us denote the expansion of w. as follows

&, (X, Yy, )= ‘2_ %_Z_ {D(d,/&/u) Ann (o(x+/_}\1 4= /Mt) + jo(-(/sy‘«) c.ofa(f,(x+/33 !:/u.t)
/V\.

For simplicity we assume w,( x, 4, +t) = w,(xtzm, Yramw, tezm) by a

proper normalization, then both £ , /A and W are integers and

w

. . T i
.f;(d) /ﬁ,/*) - _n_3 J J wa()(n Lj,t) M\/\(dx*/sﬁ"f//“t)d)(‘d‘j p(t

o g :

j W, (X, Y, ) dX'JHj dt (44)

*The corresponding solution for the linearized Navier-Stokes equation
can be similarly obtained by considering the effects of random pressure
snd random velocities at the grid plane separately.
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W
9. ¢ */5/&) = .%}JT.J;~ IW @, (X9, t) COD@X?V@%.&MAt) dx‘dj dt

when £ , 4 end &« are not zeros.
/

The complete solution to the present problem is

o= Z e { f‘o(afyu} AA;V\(G(X'}'/Gj*—KZ,,,/AIt) + 9, \d,/_;%k) m@\x +/$j+-,2 +/Mt)}
o
where { end g  are given by Eq. (44), <« and ¥ by Eq. (42). It

should agein be emphasized that {h(dvﬁqu and 30(g7ﬂ9f~)are random
variables given by the boundary condition., If we assume that
{o(&/ﬁvﬁﬁ and 3c(dvﬁyu) are statistieally independent and that they
have the dispersion Af(dyl/“) , it is very easy to show that the

normalized vorticity time correlation function can be expressed as

[, e 2a ‘dfy“) z
WlteT) wit) = _ e A (s, ) com st .
Kit, ) = @ —— = o o e /T*_ (45)
Wit - 2o, ) 2
%?“‘ € 7 A% pp)
R

We see that K\t t) does not depend on t , hence the process is
stationary in the sense we defined before (cf. section 3 Part 1).

In the linearized treatment the vorticity is simply transported
downstrean from the grid with an exponential decay and with & proper
amount of phase shift., The rate of decay and the actual phase shifts
are in general different for different space wave numbers and time
frequencies. Eqg. (42) is too complicated for general discussion. 1In

the following different limibing cases will be investigated. At the

*Compare this equation with Eq. $2).
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ot
for the evaluation of certain statistical averages is

same time the question of whether it is allowable to replace
by -U 52

also investigated. This replacement is & standard technique and

sometimes is necessary for a comparison of theory and experiment.

The implicit assumption involved is that "locally we have a uniform

statistical pattern which flows with uniform velccity L in the z

direction.” We see that this is a rather severe assumption.

The following cases are investigated.

(1) When . is small, i.e.

e << .%'f , two cases are dis-
tinguished.
(a) « , A are small compared with =
(v) «

, ; are large compared with %

< . wl
(2) VWhen . is large, i.e. « » = and 4 5 << R

(3) When

1

s f 5 s are large. . K o 7 e

The following table gives the approximate values of & and v for

each of the above cases.

4
s Smm(t 10-'32
¥ s A
=L = . L -
Y o= 7—2,(': . 2y /db+/BL
Small &
R R N z N . N N o
@ E:T\oc +/3+7{) a / o _,/3 *O(—%—L—)
+
— _,_2’
bt : oLt L
Tz ~»,,/{f’; T:-{~f(d+/5'“)*-f}(“/5)-r/€_‘;‘]}
20.)*38 — L | L ‘ " f
o = ~\/ /)\% @ = - " 2—(,(‘—0—/5 )+ }'I\n(+/5“)., 7)}&;}}




93

In case « , # end s« are small, the solution (Eq. (43)) can be
written in the following form

~ 1, oatpyt
7 (o +/r3 +3")

w= =2 ¢ [y amlaxmpy wpn (b= 2)] 4 g, con [axfynptt -ZJ]} (46)

It is immediately seen that the replacement of 53_; by - %; is

Justified in this particular case. In all other cases the replacement

canmot be justifled. Since « and A are generally of the order }‘1

hence the interchenging of = and -1 &  is permissible if
(1) R = UM .51
¥
and
(1) e B

The first condition requires that the Reynolds number in terms of mesh
size be large compared to ome. Again we should be aware that this
conclusion is reached by the linearized treatment.

The present conclusion is that if the conti:ibution to a given
statistical mean value is mostly from the turbulence elements with
low frequencies ("low" compared to %z ), then the replacement of

alt by - U £ is a good approximation. The approximation gets
worse if we try to replace the higher order derivatives 33-;,‘ by
U 5——; , n=2,3, - for the same quantity, because in each differen-

tiation process we introduce more weight on those turbulence slements

*In this range, the decay is independent of viscosity to the first
approximation.
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with higher frequencies.
7« Study of the Hon-Linear Effects

At present we are still guite ignorant of the complete solution
to the non~linsar Navier-Stokes equation. In order that we shall be
able to discuss some of the non-linear effects we are forced to
simplify drastically the equations of motion., The simplified equs-
tlons may not have any physieal reality. More properly we should
call the simplified equations a mathematicel model. The use of msthe-
metical models in studying turbulence was first made by Burgers with
some success (Refe. 55). The use of the model is to elucidate some
principal festures such as the non-stationary charascter, the non-
linear effects and the singular perturbations. The simplest one which
will suit our present purpose is the following

U au ' U

S_i; + W 5; = v 37(‘; (47)

This equation has also been used to some extent by Burgers in his
models (see also Cole Ref. (56)). In Burger's paper no exact solu-
tion has been given. In this section an exact solution is found and
consequently is of more interest. In Fq,. (47) W can be interpretsd
as either of the velocity components in the x , 4 or 2z direction.

It is & well-known fact that the equation 2% . » 2«  does permit

gt 2 X
similarity solutions of the type
w = Jfg Fim)
x (48)
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i.6., the velocity at any point X, at time t is equal to the vel-

/’—"\
ocity at point ~, at time . multiplied by /%  where
Ko _ X (49)
ﬁc ﬁl

It is appropriate to ask ourselves "do we still have the similarity
solutions if the non-linear term u %i is present.” The answer is

in the affirmative. Using the transformation Eq. (48), Eq. (47)

then becomes
:fq'““rl'?:f.—lfl¥ _rlffr:.o (50)*

where the prime denotes the differentiation with respect to | .

Eq. (50) can be integrated once and we have

s .
= (manf « 2%) A (51)
A is an integration constant. One immediately recognizes that this

is a type of Riccati equation and can be transformed to a linearized

second order equation in S (Ref. 57) by the following transformation
M
B T A
S - e ! v gy ey (52)

The resulting equation is

d-s ds
—- *

2w 45 A - o (53)
d)}"‘ ’qu 2/ 8

The general solution to Eg. (53) is

S = A{ F \’:/;\-i}l,_‘;"7‘) t ""7 ;F; (j'j“Ltl';-gs“7l)}

*A particular solution of this equation can be easily written down by
inspection namely 1:17 Or w= %: which is & non-viscous solution.
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Let us denots

T~ E(-Z.t )

snd then

s=a{ 5+ ~gh (54)

x and A are integration constants. Hence the general similarity

solution for u is
o/ @
v P O
w- [T ] 22 f (55)
o .

The integration constant A cancels out, and we have two integration
constants % and /\- remaining. These are supposed to be determined
from boundary and initial conditiouns.

x

When 1 iees 25 is small, Eq. (55) can be expanded into

power series, we have

TG o= Lt Aty SN A2 *
7 c7 |

= (/S DI A-3) (-1 ¢

G "( + 5 7{ t &_,_...A. DR +
3o
hence

[V ’/z % X

u = \?) «+(8/\~"‘)j‘t+"*' 3“”7‘“1 (56)

When 7 is large the solution of the differential Eq. (53) cen be

expressed by two semi-convergent series (Ref. 58)

S = A FA) + x E(A)}
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where A & A
~— "“I}‘_ ;« ( 2L I - L‘—_._ ).—n
R D T
N ~ Aty o )
— -7 . =5 __A;;f_) )+1/;\_" -m
G = < 1) S S &,_HJ (19 (57)
n=o ‘V\.l
hence if A +o *, we have
N i E
w2 (2 ) for 7t (s8)
X x>/

The general properties of the solution are:
1. For a fixed finite X , the time history of velocity w is

2

as follows: it starts off with a velocity equal to *ka , and then

at large t it falls off as féit . The curve asymptotically ap-
proaches the curve TN 8 .

2. For a fixed finite T +the space distribution of u is as
follows: it begins at X=° with a velocity equal to k%).tk and
then falls off as ‘%’ as X eapproaches infinity i.e., the curve asymp-
totically approaches the curve UX=2¥/\, It ig clear that the be-
haviors of the space and time decays are differen%.

We have seen in Bq. (52) that the logarithmic derivative trans-
formation throws the non-linear Riccati equation into a second order
linear differential equation. A natural attempt is then to apply &

similar transformation directly to the partial differential Eq. (47)

to see whether we shall be able to reduce it to a linear partial

*Two particular values of A are of interest. If JL = o the solution
represents the response to a pulse in the non-linear case, and if
A = 1 the solution is stationary.
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differential equation. Fortunately this works and we may further
explore some interesting solutions to help us with the understand-
ing of the non-iinear effscts.

Introducing the transformation W = -av 33 L,j [, then f

satisfies the following equation
3t 2"
- 2k (59)

Eqe (59) is the simplest one-dimensional heat equation. The
solutions for initial value problems and radiation problems are well
known and can be used in the present discussion.

(A) The Initial Value Problem

Given an initial velocity distribution w, at t=o0 , we are
asked to find the velocity field at any later time. Since only first
order derivatives in t occur, we need only one initial condition to
determine the complete solution. The initial condition in terms of

f is

[« 2 §§ (ﬁgj f(r,t)]t- = U,

¢

The derivative on the left hand side is evaluated at t=9° , 8ince
the differentiation is in respect to X only we may write
U, = —.zv—;;(‘,ﬂoj[‘f(x,o)]

then the initial condition in the heat equation (59) is t=c 1= {f(x

/

:FO LX) = e (60)

The general solution of the initial value problem for one-dimensional

heat equation can be written as
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- Al__

‘Fo('\) C ot

- o &x-1)
[T j - 1 (61)

Hence the general solution of the initial value problem for the non-

linear equation is

“ 114‘, W' )L
w = Loty e (] U"’“ bl A (62)
o6 ,-7 - L
+ J CI\F [ - J Bl_(jz dy - yf—-wlz J d=

-0 4t

The general properties of solution (62) can be best illustrated by

the following two examples:

(A1) Non-Linear Response to a Pulse at the Origin

In this case the initial condition in the physical plane is

u= u, §(x) at t=o (63)

$(x) is a Dirac function and ju S)dx = 24 5 A may be in-

terpreted as the initial spread of disturbance. Hence

it
| .

:?_O'L ) < o .
1 ok L= (84)

W, £

5 denotes the Reynolds number in the present case and will be

denoted by R . The solution is obtained by substituting 1,(°7)

in Eq. (62)

W= 2/’li il (” jgé“).ﬁwwwﬂ (85)
) e (o)

This is & kind of similarity solution and indeed it is one of the
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similerity solutions we found before having - ~° . The linearized

solution in the present case, by neglecting the “ 35; term, is .
v ' X
wos JH R ar ) (s6)

The linearized solution is symmetric with respect to x = o
however in the non-linearized case the solution is not symmetric with
respect to X=° , and the location for the maximum velocity is dis-
placed toward the positive x axis. We know in the linesarized heat
equation that the total smount of heat introduced is preserved, or in
the present case we should interpret that the disturbance moment D
is preserved. This fact can be immediately verified. If we integrate

in Eq. (66) with respect to x from minus infinity to plus infinity

and keeping time fixed we have

e o — XL
- /5 R | e P e = R = 2w (67)
(2 -

In the non-linearized case the same statement holds true. We have

EY , 1

DUNIRYE CAEL
“HLD) - e
] EACYREN )
= av ﬁo—j e — [ = 2y K= 2ud (68)
Cot s, (R - 1

Hence we know there is a certain "disturbance moment" which is in-
variant even in the non-linear case. This concept is an socordance
with the Loitsiansky invariant.

We expect that for the small Reynolds number, the linearized
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solution should give a good approximation. Indeed this is true in
the present case. As R —>9 ; (oH -zRN % , since }ﬂ»{rﬁﬁ— J <
the denominator in Eq. (66) simply reduces to -;-i— , and the non-
linearized solution coincides exactly with the linearized solution.
Next, we expect that the solution will approach the linearized
solution at very large t . Let us consider when X is finite. Then

X
as t approaches infinity, the term 2r>¢ ©an be neglected in com-

parison with Coth —?— . Hence the solution becomes

Wz a2 Tk () e (- 257) (69)

t 4t

Eq. (69) almost agrees with Eq. (66). However, the linearized
solution fails to predict the correct amplitude of the solution.

An asymptotic solution for very large Reynolds number may be
written as

v ex (R—- xL)
w o= 2 /755 F oy (70)

C’R“ X 2.
%zr;p B

When R is large, then for any finite x ," 2 in the denominator can

be neglected. The solution than approaches the limit for infinitely
large Reynolds number. It is of interest to study the motion of the
location of meximum velocity X ,,. From a dimensional reasoning

—
/% defines an intrinsic velocity in the field, we have

v t
y 14
X max = 70\) ?
is a function of Reynolds number. = o when R= o and = o0
[4 70 70

when R-= o0 ,

The § function as initial condition is typical in an infinite
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domain of fluid. We shall now treat another typical example in a
bounded domain.

(A2) Response to a Sinusoidal Disturbance

Let us consider X lies within a closed interval - T . . o T .

The initisl condition is

U LX) = 2 Uy A, (KX) (71)

and the solution should satisfy the boundary conditions ui xt) =o

at X-= % and - %— . The characteristic Reynolds number R in

Uo

the present case is

v

We may reduce the problem to an unbounded domain _ w < x <o ,

and the corresponding initial condition is

Uo(,x) = 4 U, AA’V\\K)C) - < X L O

The general formuls (62) can now be applied, the solution is

o v ep [ SR R eemno] i

4 vt
U = - N - (72)
+ - e ' \nKk)] d
jm e)\r[ +v7t + R eoo 1 )] "
Using the known expansion formula
e T L T (e) v 2 2% L, (2) o= ™0 (73)

=y
L.l2) is the modified Bessel function of the first kind of
order m ., The integrals in Eq. (72) can be integrated out and the
final solution is

S = - vKkTtn
4 v Z_ { nk I,(R)e¢ /A/\}v\\m«x)}

n=1

(74)

- & - ~pnt Rt
T,(R) + 2 2 I.(R)e con RX)

n=y
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It is not difficult to verify that the boundary conditions and initial

conditions are satisfisd. The solution for the initiasl condition

LAY = LA T LU, Ase KX where L is a constant velocity is
2 , N -
4w 2._ { i TLARY € A [»mpc-— Ut)”
> _ . A_yV\L&\‘t
I,(R) 2 Z__ IT.\R) & coo [ mK (X- U:*L)}
n=1
The effect of uniform flow U is to produce a corresponding phase
shift for each Fourier conmponent,
When R<< i , solution (74) becomes
vkt
u e LU, An (KX e (76)

Eg. (76) coincides with the linearized solution. In this case the
linearized solution again is a good epproximation when R« 1 .« In
the non-linear solution 8ll the higher harmonics are excited. This
characteristic feature due to the inertia terms is sbsent in all
linearized theory. Since all higher harmonics damp faster than the
fundemental harmonic when 1 is sufficiently large, Eg. (74) can be

approximated as follows

(i (77)

This is the form of a linearized solution. As in the previous case,
the linearized solution fails to predict the correct amplitude., It
is believed that the effect of non-linear terms is to produce steeper
fronts where the viscous dissipation is more effective. IHence the
amplitude given by Eq. (77) should be smaller then that given by

linearized theory. Let us denote the amplitude given by linearized
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theory by AL and that given by non-linear theory A, , then the

smplitude ratio /4 = V(R)
Q= R I.(R)
Yt - 2 I, (R) (78)

Some numerical wvalues are given in the following:

R Oel 1.0 10.0 1660

Y(R) 1.0125 1.1204 5.25 8.21

We see when R = 16 the amplitude given by linearized theory is about
8 times larger. A next higher approximation for the spectrum distri-
bution at large t in the non-linear case can be written as

> nt (1, I
oz 7 4 f2l8) e " A (nK X)) (79)
nog \IG(R')

We have seen in the previous discussions on spectrum and cor-
relation functions the Xolmogoroff theory applies very well in the
case of indefinitely large Reynolds number. It is interesting to
gee what the corresponding limiting solution is in the present case.
The asymptotic series for I,(R) when R is large is

R ~ * T t X
n . - -
T = == oot MEOWRY ] (s0)

o Jan v L8R al gR)t

The first terms in the asymptotic expansions of I, are the same

for all fihite n , hence mas’ R~ =~ the limiting solution is

o oy ntkt T

4y Z { n em

u = n=1

& ~ v R"E
N € coo (MKX)

Ao kmm)} (81)

Eq. (81) can be rewritten in terms of () function (Ref. 59)
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5 .
Lo = kv 5z g 1O (= )]
(82)
- vkt
f-o
K.
z = -
Bg. (82) can be further simplified (Ref. 59)
= e VYK " ‘n KX
- o) Arn n K X
Up = 4 KY 4—;"*‘ - an ¥ K*¢
n=\ | i e
ol ” ) ody
D e LAV X (83)
e ande (ny k') nE

It is seen that whem v iK't << 1 then most of the Fourier com-
ponents §. are proportional to = , or the energy per each com-
ponent (E. =% 1%, |7 is propoertional to l/w” . However, when
is very large, such that =y k't » | , the amplitude falls off ex-
ponentially. This fact was interpreted by Burgers, that there exists
a practical limit for the range of turbulent spectrum. It is obvious
that the low wave number components contribute the most energy. The
dissipation per each Fourier component is proportiomal to n" E, ,
hence in this case we have an equi-dissipation of energy for low wave
number components.

The infinite Fourier series in Eq. (83) can be approximately

summed if ~» k't << 1 , the result is

Coxde Ty e e [ [ - ” (84)

U = 3 ( K Ko

in the region ¢ < X < §,:~ . Solution in this form shows that
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there is a steep front developed by the non-linear term in the neigh-
borhood of X = %% o

We could go on to discuss the space correlations in the respec-
tive casss, However, the mathematical expression gets complicated
and hardly any definite physical significance can be drewn. In the
next section we shall discuss another clags of problem known as the
rediation problem.

(B} Radiation Problem

In this class of problem we restrict ourselves to the domain
0O¢ t< o 5, o0%x=o o Veloclbty U.(t) is preseribed at x=o
for t>o ., For simplicity we assume that there is no disturbance
initially, i.e. at t=o | U=¢ for all x >o , Then the prob-
lem is to find the veloecity field for sll X at any time t > ¢

The fundsmental equation used for this problem is agein Eq. (47)

U au 3w 47
st T 0T Y S (47)

This class of problem is difficult and no general solution such as
Eq. (62) in the last section has yet been obtained. The uniqueness
of this problem is still questionable. The following gives & method
of apprecach.

Pirst we have to rephrase our boundary conditions in terms of
T and the corresponding heat equation.

(1) x=o , u= ) implies ‘“a%( Log = wett) .« Let

Aer) = Heley then

2y

\%‘X_)x_. t ’f‘(t)'} - o b X = 0 (a-)

*First differentiate with respect to x and then set x = ,
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(i1) t=c¢ use  implies f-« at t=o (v)

o 1is certain constant. The result which we want to get should be

independent of ¥ , since « does not come into the actual physicel

problem.
is bounded and integrable with respect to X implies

(e)

(1i1) «

that ¥ is bounded.

The equetion for T is the one-dimensional heat equation

P a*{ =
A -y S (59)
The following analysis will be based on the theory of Laplsce

trensform. Reference should be made to standard treatise on laplace

transform (for exsmple Ref. (60)).

Define the Laplace transform of + by 4io)
I = | 3 e 4 (85)
Bq. (59) becomes
> ¥ e 7 . o « ,
o I A ()

Boundary conditions {a), (b) and (c) become

3

(1) %—jj + ;%? ); £{€~2) ";E-(Z) dz = o at  x=o (v)
(i) X —» e 7£ o Jueals ()

vhere ~(9) is the Leplace transform of h (U and the contour inte-

gration (indicated by U ) is carried out around a suitable contour.
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The appropriate solution to Eq. (d) is

—
T x

4 = Ble) = + (86)

JES

where B in general is a function of o , B(=) can be determined
from the boundery conditicn (b). Substitubing Bq. (86) in (B) we

have an integral equation for B(s) , namely

wJ/—_%T Blo) + —;%Li—— j E(G—“Z_)L Bl =z) + —"Zi-] dz = o (87)
L

Having determined B(o) from a given boundary condition, we then
by substituting the result in Eq. (86) and transforming Eq. (86)
back, arrive at the required solution for the given probtlem.
Only & simple example is worked out here. The problem and its
connection with statistical theory need further investigations,
Let us suppose at X =¢ , u=u, for all t>o ; U, may be
Uo

interpreted as stochastic constant. Then A= 5= and the
[en

resulting integral equation is

- o ! Us { B(Z.) —
R I R S R TIC)
o °-2)

Fortunately, this integral equation can be scolved and the result is

Jd __.l.'{.?__

23

Blo, =

Hence
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The solution for u is

Uo X u
i - X
e ® v\f—c \ame - /%
U = U, - - e (89)

x
s P W e X y__o/j:_
V& ave ¢ ¢ - " M% (:,[H—' % “)

It is easy to verify that this satisfies the required boundary condi-

ticns. The linearized solution W, for this problem is well-known

A ve

U, = U, M{r& P (90)

2
Again when %X _ 4 and Mo ,_. 1 , the non-linear solution
4-v

iy

approaches the linearized solution. When X > Wt we have

w oz U, € B M,&_Q ‘2"5'/.;:‘: (91)
The amplitude in Eq., (91) is much smaller than that predicted by the

linearized theory.
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APFENDIX I
A. DNotion of Time Averages

With the definition given by Eq. (4), the postulates (i) and
(iv) can be easily satisfied. However, (b) and (c) are not in gen-

eral true., This can be seen from the examples below.

Assume
A = A T
then
A= [ et~ coy (£+47)]
7\ = ‘:‘: [2 Arn it v) — Al — A Lt+z~c)J
L

hence A X A in genersal.

Next agsume

R = con t
then

3 = %[M(t+r)—mt]
and

’—A*E = “-:‘:‘L[ {‘%*”4_“] {A«M(t+1‘)~/&&»\t)}(l"%t)

A T Y - -2
1 Y ( A (T ) /L»“JL}J

hence

AB = A®
The conclusion is that the iteration property and the associ-

ativity condition cannot in general be satisfied. However, for this

simple example, we could have chosen 7T= anW , then the postulates
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(b) and (c) are satisfied., Again this reduces to the theoretical
problem of how to determine an appropriate time interval T in

general.
Bs Notion of Space Averages

The discussions on the first three postulates are similar to
those for time averages. The postulate (d) needs a further consid-
erstion. The following discussion is limited to one-dimensional
(the generalization to cases for more then one-dimension is obvious).

Let us suppose we have the same notion of neighborhoods for
every point in the one-dimensional space. Denote a point in the

spece. We define specifically the neighborhood as follows, namely
X € Ng LX) S box- xa | < a

where « is a given positive real constant. The space average is

then defined as

{_Zwl
— - ._L_ / A
A Lx) oy a’& A ( §)V §
By definition
X+ o
XtaXx ta
) A{s+ ax)ds
A - L (§)ds =~ &
A (x+ox) = - J)ﬂdx‘a A(s) rw Y
Hence the derivative of A (X) is
A (x) A (x+ax) — A(x)
—— = L I TS ——
o x ax-ra A X
- Lim & }XM A5 ran~ Alg) .5
ax » e X~ AX
. [AM .
i A(s) ds



112

where prime denotes differentiation with respect to § .
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APPENDIX 1II

A Simple Cascade Process
The starting point of the following analysis is the Helmholtz

vorticity equation, i.e.

p— . Wy e - Wy _“_Z_l.;_l: = P AVZ W (8,)

convergence that «w; and W, can be

We assume without proving the

expanded in Taylor series for sufficiently small values of ' as
follows
Loy W z ‘i’-)
w, = w; 2t w, o+ &—.__Vt) it il -
i [y 2l
(®)
P )
e) st '] vE ' u-
o= U + e u; b .o
u‘. L K s ) 13 + & LL) Py +
{m
ot are

L represents a charecteristic length in the flow field.
‘o) ‘o)
functions of position only. w; and Uy are the initial vel-

ocity and vortieity distributions which are supposed to be given in

the present case. Substituting (b) into (a) we have

} .
2 { \0) au‘\o (@) B(—O& }

R — Kk

T

. = A AV + —_
@i L ¢ > sk 3%,y

(e)
Y te) hid Y
) Ly \‘”‘)L(.‘ Wy YRS @) !
M ot * -;;l we SZ 4w, 250 o By W,
&y L 2Xp 2Ky X, 3 X4

W)

@

T

We see in principle thet if we know the initial velociby distribution

then we can celculate the initisl vorticibty distribution, hence

the first approximation can be calculated directly. Heving lmown
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we mey by introducing the vector potential* evaluate the first ap-
proximation of the velocity and then proceed to calculate the second
vorticity approximation. The method is tedious and only the first
approximation will be given here. In this particular example we

consider the initial veleocity distribution as follows:

W, = A‘ Ann a; X oD Ay X,y Con oy X,
u, = A; Cow Ay Xy Arn G X Lo oy Xy (6‘)
Uy, = A3 cor G X, cod Gy Xy Ay Xy

Velceity distribution in (d) represents the flow inside a rectangu-
lar parallelepiped (T x T . T ) inside the fluid.
i 7

On account of the equation of continuity we must restrict our-

selves to

3
Z— A; a; = °©
(=4

The computation is straight forward and will not be given here. The

first approximation is

1 1
Lot K = o + a' +

P”} B Ll K‘ 13\“) Ll A| Q!( AJ QA . Az Gj) . (2 G, x\.) “a/V.V\ (Z aJ x3)
= -~ | i ’.): s e

X {azkf Q;)

*The vector potential /> must also satisfy g%’ﬁ o
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M\JO\IX|) m\2 Q;)('z)

W) v . lo) 12 As Uy (/-\2 a, ~ A,q,_) a,
S S——
4. ( a* « a,”)

Ar o (A, 8 - A a,) a A»wﬁiq‘XQ”cvapa,xa) } (£)

ot a, ) J

The other components can be obtained by cyclic permutations of the

above formulas. It is not difficult to see thet the first terms

fo )
represent the viscous dissipation of the primary components U ,

w:” . The second terms represent the superposed flow on the pri-

mary components. They represent the flow inside a new rectangular

parallelepiped of 1/8 of the original volume.
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APPENDIX 1III

The asseration that "Taylor's spectrum E(Kk) dx, represents

the contribution to %' from those Fourier components heving in x,

"

direction the wave number between X and K, + dK, can be made

clearer if we make a direct ecalculation.
From Eq. (79) we have (assume the flow is isotropiec)

o0

JI] 2,10 4 )

ut

#

S T VXTSI (2)

where dA. 1s the element of surface area of the plane perpendicu-
lar to «x, axis at *1 and the double integration is carried out over

the entire plane. Hence our previous assertion corresponds to

E) = 2 )] B, (k) dA (9 (b)

Using Eq. (77) we have
c(KX)

* *
P (o = o j dx, ” dAl) R (xpow)e (c)

F

where d A (r) bears the seme significance as d AU  in the physi-

cal space. Substituting (¢) into (b) we obtain

* i (hyx3 t X))
ﬂ” Rj, (x4.%,%) ¢ dA ) dA (r) da,

R %

= e e [ J'S qu (’cn)x‘l;x‘i) §(x) Scx)) O{A(V)} dx/

* §  4is the Dirac function,
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i ik Xy *

-;—C— 5 < R“ (1\, 01 0/ d?‘-,
]
o v kX,

! > X

w ), W e A

L[ e e e
T ¢
(a)

QaEJD.
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APPENDIX IV

In this appendix the solution for the spectrum with Heisenberg's

assumption will be derived, together with a more detailed investiga-

tion of von Karman's assumption.

von Kerman suggested that YV be represented in the following
form

o

- - o
W, = - ¢ {"_f‘ ] (A K /de‘ - F K j?““) K'/éde (a)

"

where ( is a constant. The condition for low wave number range of

the equilibrium part of the spectrum is exactly W,=c . Physically

this means the amount of energy transferred into that wave number

interval is equal to the esmount of energy transferred out from that

interval. If we set (a) W,.=° and let

i

3/ o
l}/ j "]’A AQu) K’ /3AKl
(b)
K
0‘ . B B

mo= ] T «f
L ob
then we have
2 2B -1
r 3~ ZA 3~24
5——’
Fo=y K
_ad 3B -4 (c)
’?/ - ,\70 i 3208 /‘< I~
Equation Wy = © then becomes
33 A4~ 3
_:;/:44 g aet

K 770 : 770 , = Cx (a)
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where (, is an integration constant. Prime denotes differentiation
with respect to K o If 4« -3 #: j.e. «# 075 , the gen-

eral solution cen be expressed as

sA=3f 3 4ol= 3

O . B

and

T - { A x #ai3 ,R ] K (o) *

F T K (£)
This explains why any dimensionally correct assumption leads to the
well-known -5/3 power law.
If we put Heisenberg's value of < and 4 in solution (e) we
have B # o
PR

. S (g)

ok k)

This is exactly the form of Eq. (103). Ome would be surprised
at the first instant because this derivation does not involve the vis-
cous terms. However, a closer investigation shows that with the
Heisenberg special choice of ¢ and £ the presence of viscous terms
does not affect the reduction to the differential equation (d). The

details will not be reproduced here.

*This solution does not make sense if the convergence conditions of
the integral W/,  are not satisfied.
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If 44-3 =0 di,e, d= 075 | the equation W,=° has a
unique solution oy ~ vz provided B # 025
However, when o = 0.75 3 Je =0.25 +the solution for the equi-

librium spectrum can be solved explicitely. We have in this case

/ a 3, ) ° Y, b/ 7;,“ 4"
g% e [T o F T
[ 33
Differentiating
¥ 4 Fo_F %
o — /
Cf4k4~rl)(74z:k Foe g xt T T =
or
y  _¥ ) _,
Ca_f-)/zK +v(%K|7+iaf)=o
Let
F- /G
then
%o _ ¥
- l - e ! =g
G« +(+K G+ % G/) (1)
Solving (i)
G = ___*
(t+- Ak?) *
/q is an integration constant. Or
o — (3

U AR
The solution (j) behaves linearly when K is small and behaves like

the K~7 law when K-» ~ , the same as Heisenberg®s prediction.
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APPENDIX V

In this appendix we prove the following theorem (the proof is

originally due 4o J. L. Doob).

Theorem: Given a one-dimensional stochastic process u(t) of
continuous time variable t . Assume the following are true:
Al. The process is stationary, i.e. temporally homogeneous
A2, The process is Markhoffian
A3. For any given %, and t., the joint probability distribu-
tion of the random variables Wit) ~and W(%,) is doubls

Gaussian; then we obtain

Rl. Forty<t, ---- < t. | the joint probability distribution
of random variables U(t,), ult,), - - - - -, uit,)is n-variate
Gaussian ;

_ ] UCE) W(E45) ~ pls!

R2. The correlation function = e

Wity
where the bars here may be interpreted as time averags.
Proof: Por simplicity we shall assume the mean of ult)=¢ and
the dispersion v:(t) = ! (normalization).
Pirst we note that since the process is stationary, we can iden-

tify the time average as stochastic average. By Al the correlation

function r(t,s) = Ut) Uu(t+ s) is independent of t . Hence

we may write

ris) = ult) u(‘tfs) = ﬁ { ult) ult+ $) ()

By A3 we can write the joint probability distribution P, for

u(t) and y(t+slassuming S > o
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| i Uty = 2r UL+ S) + ut(tes) )
ex S ‘g

[ (b)

21 { - r‘(s)}y‘

r is only a funection of 3 . By the method of desent the probabllity

distribution for Ut} is one-dimensional Gaussian

P —— erp {“ &‘z’(gj (e)

am)h
But
P = BT (d)

T is the transition probability, i.e. the probability that u(t + s)
at a certain value knowing u(t) at a definite value. By A2 the tran-
sition probability T together with the probability distribution of
one initial random variable specifies the Markhoff process completely.

Combining Eqs. (b), (c) and (d) we have

T ot e (&)

@m)* (- rie))

whereY is a function of s , the time interval between the transi-

2.
u(t+s) - 7ULt)] }

J = r(s)

tion.

Introducing the notation for the correlation function

o= b)) w(tie) Y. a funetion of i, -t only (f)

L

where t.,, > t. . The the n-dimensional probability distribution

for Wiy, o T ult,) can be expressed as

- } ' n-1 (uJ.TI bl )3 uj)z
R - e~ -t > AT TANL
S n=1 . 71 r \ 2 1 2 Z’_ | — 2 (2;)

Ty /
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By expanding out the quadratics in Eq. (g), Rl is easily verified.
Let us now take the trivariate Gaussian distribution for u(t) |

ult,) and ult;) assuming t <t.o=< t, and then calculate the
expectation value of w(i;) ult,;) . This value is the correlation
function Y{$) evaluated at s-= t,-t, . After integration we get

the following functional equation
vCty= t) = v ty—t)r(t-t) (h)

for any t<t, < ts , The unique non-trivial non-singular solution

of the above sguetion is

—_ {5 \ tg" t,)
rity-t) = e

p7e

Hence RZ2 is proved.
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APPENDIX VI

If we substitute & in Eq. (40) we get
{ (/«&+ ALy - 2avy) )C(v,/s./u) +( Uarvy - vq"fv(d“*/é‘)) 3(°hf,/wj co \ax«r/Sj +az+/ut)

+ [(_/,g—- wr+ _)_“yy) j(d,/}/«.) + ( UL asv X‘_,}o"-_'_ v (d.H/j'-)) f(d,/&/“)] A \dx«;ﬂf’*f)‘z_-t/\&t)

= o (a)

The Bq. () must be valid for &11 t , x , Y and 2z, hence Eq. (a)

can be split into two equations

S/~+'a? v - aavy) For [ Uas va’L~)’0~L+V(°<L+/3‘)]‘(}=°
(v)

[ Uar 2> q}+9(d‘.3./31-)] f + (—/“‘-— Uy + rav Y) 3 = 0
The simultaneous equations admit non-trivial solution of T and 9

only if the following determinant is equal to zero, i.=s.

Y + Uy— 2av 7 U oasr vy —ra*y i(d"-}ﬁ‘)

= 0
UQ«t—VBL-—Va.L-f')’(dl‘PﬁL) 3 M= UT o 2av Y
A necessary and sufficient condition for the determinant to van-

ishfcrrealo(,/B,Y,/Aand a is
/mru‘,?(* 209y ¥ =o (el)
Lo +77 - vof+v(ol‘+/f)-.:o (c2)

Eq. (2) is a quadratic eguation in 4 ., The solutions are

b
a,, = .,(f.(',_i Jt()-’-— _ﬁé; (“L+/5LT)’L) 1}
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The positive root of a4 1is ruled out by the damping condition at

infinity, hence
- b= e 22 e p ) s
a= = w (c3)

Y

From (¢l) we have

uwy . u
Sy T Tyt (o4)

Comb‘ining (c2) and (c4) we have

EN

X
e w (i e ) (65)

Y (%3

e is the time frequency and is in general taken as positive, so ¥

must be negative. Solving (c¢5) explicitely we have

2 \t P
ot e 2L AT

a

4y*
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