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ABSTRACT

This thesis presents analytical studies of internal noise
generation and transmission in jet engines and its radiation from the
duct ends.

The propagation and generation of acoustic waves in a choked
nozzle is considered first. Pressure and entropy fluctuations caused
by gas stream non-uniformities like ""hot spots,' are incident on the
nozzle entrance. A novel noise-generation mechanism is uncovered
where acoustic waves are produced by a distribution of sources of
strength proportional to the entrance entropy fluctuation and local
gradient of the mean flow velocity.

The propagation of acoustic waves in a moving medium in the
presence of semi-infinite or finite boundaries is then consid;:red. A
transformation is introduced which relates the solutions of such prob-
lems to the solutions of associated problems in a stationary medium.
The method is described by discussing the Sommerfeld problem of dif-
fraction of a plane wave by a half plane immersed in a subsonically
moving medium. When the plane has a trailing edge, it is shown that
both reflection and shadow regions expand; while the opposite occurs
for a leading edge,in which circumstance an additional diffracted
wave also appears.

In the supersonic case, all the diffraction problems are re-
lated to a single reference problem, solved by Fourier transform
methods. A decomposition of the pressure field in a '"geometrical

optics'' field and a diffracted field is given, showing some remark-
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able similarities with the subsonic case solution.

The radiation of acoustic modes from a duct immersed in a
subsonically moving medium is treated by a similar transform
method. The presence of the uniform flow has roughly the same ef-
fect as an increase in frequency of the incident wave, at constant
mode number. The effect of acoustical lining on the radiation pat-
tern is examined, and side radiation is shown to be greatly reduced
for the lower order modes.

The transmission and reflection of acoustic waves incident on
a blade row is analyzed by the transform method,and the transmis-
sion and reflection coefficients for the blade row immersed in a
moving medium are expressed in terms of the basic acoustic char-

acteristics of the blade row in a stationary medium.
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1. GENERAL INTRODUCTION --

BACKGROUND TO THE ENGINE NOISE PROBLEM

In recent years noise has become a major consideration in the
.design of jet propulsion systems for aircraft. Development programs

of new engines include acoustical constraints in the first stages of
conception. Some programs, like the NASA Quiet Engine or the
SNECMA M56, seek to include all available features which would re-
sult in noise reduction. The goal for the NASA Quiet Engine is to at-
tain a noise reduction of 15 to 20 PNDB below the sound level of cur-
rent turbofan engines like the Pratt and Whitney JT3D. The develop-
ment of short- or vertical-takeoff and landing aircraft (S/VTOL) also
depends heavily on our future capacity to design quiet engines.

The noise of jet propulsion systems may be classified in two
categories: the internal noise generated by the turbomachinery com-
bustor and other internal processes, the external noise associated
with the turbulent exhaust jet and the related turbulent shear layer,
and in the supersonic case with the external shock pattern.

The relative magnitude of these noise sources depends on the
engine type and characteristics and on the phase of operation (take-
off, flyby, landing). In the Pratt and Whitney JT3D (bypass ratio
1.43), at takeoff the jet noise dominates the inlet noise and is al-
most as loud as the fan noise radiated from the discharge duct.
During the landing phases the noise radiated by the jet is greatly re-
duced and the fan noise radiated by the inlet determines the noise
level on the ground [1.1]. For the current high bypass fan engines

like the Pratt and Whitney JT9D, the General Electric CF6 or the
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Rolls Royce RB211, the noise relation is modified. At takeoff and
landing the fan noise dominates the external jet noise. Moreover, at
low jet speeds {approach) another internal noise different from the
fan noise and depending on the sixth power of the exhaust velocity
(V6) becomes more important than the jet noise (VS). For the Con-
corde powerplant, the Olympus 593, at maximum thrust regime the
main noise is that produced by the turbulent jet and shear layer; all
other sources are in comparison unimportant. At lower thrust re-
gimes, the compressor and turbine noise become significant and
another internal noise appears [1.2].

As can be seen from these examples, internal noise is the
major noise for the present-day high-bypass engines and is impor-
tant during the landing phases for aircraft with more conventional
turbofans or turbojets.

This thesis is mainly concerned with internal noise genera-
tion, propagation and radiation. A first problem of interest is the
noise generation and transmission in a region of non-homogeneous.
flow velocity and non-homogeneous sound speed like the nozzle.
This problem is treated for the particular case when the nozzle is
choked.

A common situation in jet engines is when acoustic waves
propagate in a moving medium in the presence of finite boundaries.
The radiation of noise from the nacelle end sections, the reflection
and transmission at a blade row, are two examples considered in
this thesis. Before treating these cases, a more fundamental prob-

lem is discussed: the Sommerfeld problem of diffraction of a plane
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wave by a semi-infinite plane immersed in a uniform flow.

It is here worthwhile to review briefly the history of research
on noise in jet engines, to provide a context to the problems treated
in the present thesis,

The initial research on jet noise suppression considered al-
most exclusively the turbulence-generated noise. The fundérnental
work by Lighthill [1.3, 1.4] set a theoretical basis for the analysis
of this noise. Lighthill explained the sound field induced by the jet as
resulting from a quadrupolar source distribution of strength equal to
the local fluctuation of the Reynolds stress tensor. This theory was
extended by Curle [1.57 to include the influence of solid boundaries
and Ffowcs-Williams [1. 67 to high-speed jets. A different approach
was followed by Ribner, who introduced a pseudo-sound pressure
field induced by the fluid dilatations. The two theories lead to the
same far-field expressions and are summarized by Ribner [1. 71 in a
comprehensive survey of the jet noise research. Ribner and his co-
workers at UTIAS were also able to explain how the basic radiation
pattern of self- and shear-noise is modified by convection and refrac-
tion to produce the actual radiation pattern. Their work is summar-
ized in reference [1.871. At present, the basic qualitative features of
noise from the subsonic jets are well understood, while quantitative
estimation from measured flow parameters is still beyond reach.

The noise from supersonic jets is less well understood; other mech-
anisms like shock-shear layer, shock-turbulence interactions be-
come important in this case.

With the introduction of the bypass engines, research efforts
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focused on the internal noise produced by the rotating machinery, and
in particular the fan. The discrete tone noise was described by Ty-
ler and Soffrin [1.97 as resulting from rotor-stator interaction pro-
ducing acoustic modes at blade passage frequency and its harmonics.
Reference [1.9] gives also a clear and simple discussion of the duct
transmission and radiation in free space of the spinning acoustic
modes. The fan also produces broadband and multiple-tone noise.
The multiple tones are generally associated with the existence of
shock patterns attached to the rotor blades. This noise is important
in the new high-bypass engines where the tone generation has been
reduced, but has not received until now much attention.

The broadband noise is generally thought to be a result of
flow turbulence and blade row interaction [1. 1], or of blade lift fluc-
tuations [1.10]. Recently, Mather and Savidge [1.117 performed a
detailed spectral analysis of this noise and identified a series of dis-
crete tones around the harmonics of the shaft frequency correspond-
ing to the stator vane number. According to Mather and Savidge, the
so-called broadband noise is in fact a discrete tonal noise produced by
interaction of the almost axisymmetric rotor pressure field with the
stator guide vanes.

Some attempts have been made to estimate the noise production
by fans as, for instance, by Lowson in reference [1. 127 where Light-
hill's theory is applied to study four separate mechanisms.

At present, the identification and quantitative estimation of
the noise sources in fans and compressors is far from complete.

While the duct transmission of discrete tones has been studied exten-
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sively and is well understood, the radiation from the duct ends has
received little attention despite its importance in the determination of
the sound pressure level at various positions with respect to the air-
craft. Similarly, the attenuation properties of acoustic lining set in
the engine nacelle have been studied in detail, while its influence on
the radiation pattern has not been examined.

Very little is known on the internal noise not related to the
turbomachinery. This noise becomes important in the approach and
landing phases when the main jet velocity is reduced. The noise
sources have been tentatively associated with the combustion process
and various turbulence and solid boundary interactions. The trans-
mission of this noise through the nozzle and the noise-generating
mechanisms which might occur in the nozzle were not previously con-
sidered.

Chapter 2 of this thesis deals wifh this problem; the nozzle is
supposed choked, and at the nozzle entrance both pressure and en-
tropy fluctuations are considered. The entropy fluctuations conveni-
ently represent gas stream non-uniformities which might be produced
in the upstream region by some mechanism like inhomogeneous com-
bustion or rotation of shock patterns. The incoming entropy fluctua-
tions are shown to be pértly converted into pressure fluctuations by
the non-homogeneous velocity field in the nozzle. This mechanism
constitutes a novel noise source.

In Chapter 3 we introduce an algebraic transformation which
greatly simplifies the analysis of the interaction of acoustic waves

with edges immersed in a moving medium. The transformation is
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first applied to the diffraction problem of a plane wave by a semi-
infinite hard plane in a subsonic moving medium.

The transformation does not apply in the supersonic case, and
other methods are developed in Chapter 4 to treat this case.

A method similar to that of Chapter 3 is then used in Chapter 5
to study the radiation from a duct immersed in a uniform flow. The
radiation of acoustically-lined ducts is élso discussed.

In Chapter 6 we study the reflection and transmission of a-
coustic waves at a blade row, using methods similar to those of
Chapters 3 and 5. The transmission and reflection coefficients for
the blade row immersed in a moving medium are deduced from the
acoustical characteristics of the blade row in a stationary medium.

A better understanding of the effect of -the moving medium is thus

obtained.
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2.1 INTRODUCTION

A great amount of research has been devoted in recent years
to study of the noise generating mechanisms in turbojets/turbofans.
The early formulations by Lighthill, Ribner, Ffowcs-Williams, and
twenty years of research have led to a reasonable understanding of
turbulence noise from high-speed subsonic jets (V8 noise). The
noise of supersonic jets (V3) is less well understood; probably the
non-stationary shock pattern is also important. The recent develop-
ment of high bypass ratio turbofans has triggered extensive research
on fan/compressor noise. The duct propagation of the discrete tones
generated at rotor blade passage frequency has been intensively
studied (Tyler and Soffrin, Morfey), while the noise sources have not
been completely identified.

A noise source which has received little attention is that due
to events ahead of the nozzle: (a)the acoustic fields caused by com-
bustion noise or by turbine noise ahead of the nozzle; (b) the entropy
non-uniformities in the stream, generated by the combustion pro- ~
cesses or by rotating shock patterns attached to the turbine rotor and
which tend to cause mass fluctuations and hence induce pressure
fluctuations.

Experimental observations on low speed jets from high by-
pass ratio turbofans have shown that rough flow conditions upstream
of the nozzle generate an acoustic power which varies like V6 and is
not affected by the noise suppressors designed for the V8 noise of
higher speed jets. The noise sources in this case were tentatively

identified as combustion noise, broadband turbine noise, and dipole
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radiation from the nozzle end section (Large, et al. [2.1]).

It is our aim in this chapter to study this novel noise source
utilizing a one-dimensional model employed by Tsien [2.27 and Croc-
co [2.3] to study internal oscillations of rocket motors. At the noz-
zle entrance we shall consider both pressure and entropy fluctuations.
The nozzle will be assumed choked when in steady state operation.
This case is considered because the noise source under study might
be important for turbojets with supersonic exhaust jets, especially in
the case where the nozzle is preceded by an afterburner. The acous-
tical problem is also greatly simplified when the nozzle is choked
because only outgoing waves may then propagate after the sonic sec-
tion and thus the acoustic radiation from the end section does not in-
fluence the propagation in the nozzle. In other words, the radiation
impedance of the end section is irrelevant to the present problem;
the nozzle may be viewed as a 'black box' with as input the entrance
pressure and entropy fluctuations and a transfer function independ-
ent of the output conditions. We shall see that the sonic section also
plays a key role in imposing an impedance relation in the throat.

The mathematical model is one-dimensional (i.e., it involves
averaged quantities in each nozzle section) and uses the basic as-
sumptions of theoretical acoustics (non-viscous, non-conducting
fluid, linearized perturbations), but the isentropic condition is re-
laxed to allow for entropy fluctuations at the nozzle entrance. Be-
cause the viscosity and heat conductivity are set equal to zero, the
entropy non-uniformities or ""hot spots' do not diffuse but are only

convected by the flow.
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The present model was developed by Tsien {2.2] and Crocco
[2.3] to study the behavior of a nozzle under unsteady entrance con-
ditions in relation to combustion instability in rocket engines. Tsien
and Crocco were principally interested in the boundary condition im-
posed by a choked nozzle on the chamber oscillations. They did not
consider the transmission through the nozzle and only studied special
entrance conditions, isothermal fluctuations by Tsien [2.27] and isen-
tropic fluctuations by Crocco [2.37, with only a few remarks on non-
isentropic conditions.

The present problem is formulated in section 2.2, a system
of two first-order ordinary differential equations is obtained, and
the suitable set of boundary conditions is discussed in detail.

Asymptotic solutions in the form of series expansions are
derived in section 2. 3. Because the system of differential equations
is singular in the throat section, some care is necessary to obtain a
regular (bounded) solution of this system by numerical methods: one -

procedure is described in section 2. 4.
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2.2 FORMULATION OF THE PROBLEM

The nozzle has an area profile A(X) , the entrance section
is at X{ , the throat at X% , the length of the subsonic section is
ﬁ = X%~ Xe . The flow in the nozzle channel of an ideal non-
viscous, non-conducting perfect gas may be described by writing the

equations of continuity, momentum, energy, and state

3 (A 3 (FXA) =0 (2.1)
3t d ! X (E%A

AL L wAW L 13 _o (2.2)
ot 9 'é’ AX

- o R2\¥ =0 (2.3)
Er W |

S = cvin (?;/é‘l{) (2. 4)

This is a system of four nonlinear equations for the four unknowns
P‘, é, il',, g’ , respectively pressure, density, velocity, and
entropy.

We assume that the fluctuations at‘the nozzle entrance are
small so that the stationary flow in the nozzle is only slightly per-

turbed. It is then convenient to write

F = p + P’ | | 2.5)
o = e+ ¢ (2. 6)
L = u + w (2.7)
§ = s + § (2.8)
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- where P, e, w,s pertain to the stationary flow in the nozzle,
and P’ ) e’, \L’, 8' are small unsteady perturbations. By sub-
stituting equations (2.5) to (2. 8) in the system (2. 1) to (2. 4) and sepa-
rating the terms of same order, we obtain the following zeroth order
system:

d_(pwhA)=0 | 2.9)
clx

pudw . dP : o) (2.10)
dx dx

s = cvin(p/e¥) = cst. (2.11)

and the first order system:

P_..Q_,.) + u_'é_.(g_ + ._“P.'.) =0 (2.12)
” e ox @ W
3w e, 2wydu wa_(w
B‘t(u,) +(e * u.)dx * Bx(u.)
=P du __(P\’B (P') (2.13)
P dx puw’ dx \p

] 4 ) ’
(%_E + u%.;)..s._ = (2 & u.%_;)(% -Xg_.)zo (2. 14)

The zeroth order system is the classical set of equations describing
the isentropic flow of a perfect gas in a channel: its solution is well

known.

The first order system for the unsteady perturbations has been
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- written in the form (2. 12), (2.13), (2. 14} so that the nozzle profile
A(’q would not appear explicitly. This system is linear, of first
order, with variable coefficients. We are not interested in this chap-
ter in the transient behavior of the nozzle: it is therefore natural to
perform a harmonic analysis of this system.

All the perturbations have a time factor QXP (—-l'.w-t) and
we define q’, S; v, g, e by

P ) -twt (2.15)
P it

2 - 8 -t 2.16)
e ot

S = oK) ?:Lw (2.17)
v

wo= ) Q_""wt (2.18)
' ot

T - e et 2. 19)
-

At the nozzle entrance the index &£  will be used to designate the

fluctuations

Q(%e) = D | d(%e)= Se , PXe)=22

I(xe) = e , B(xe)= O (2.20)

The energy equation (2. 14) is immediately integrable

X
s P _ ye . t_{a .
» b e ‘{:( x,“«) (2.21)



and as s’le is harmonic in T

X
o= @ ¥ = o QxF(l'.w dx) (2.22)

We introduce the definitions (2.15) to (2.17) into (2.12) and

(2.13) and rearrange (2.22) to get

-lwd 4+ wd? | wd§ _o (2.23)
dx d X -

—wV +B+2D)du L, wdP -
d x dx

d (2.24)

¢dw _ w c* d¢
u* dx

W
dx ]

. |
8 = L% _ _G_a_zx;:(h{_s_) (2.25)

|
¥ ¥ e, W
Then 9 may be easily eliminated to obtain

¥udl . wd? _{w®? =0 (2.26)
dx dx

(ﬁi«l)wcdii'i - [Qs'-\)g.x& -Lw](P

X
+ 3(23;“‘ - Lw)‘?-; Ug,é%: exF(iwf%) (2.27)

Ke
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This is a system of two first-order ordinary differential equations for
the pressure and velocity fluctuations, Y and YV . The non-
homogeneous term in (2. 27) results from the entrance entropy fluctua-
tions. This source term is proportional to the entrance entropy fluc-
tuation 0’& and to the local derivative of the mean velocity duldx .
We shall see that this term is responsible for the conversion of en-
tropy fluctuations into pressure fluctuations. This conversion only
occurs in a non-—homogéneous velocity field (i. e., d\kldx $0 )
The system (2.26), (2.27) may be solved numerically for any
velocity profile \L(X) corresponding to a given nozzle profile A(K)
However, it is difficult to obtain analytical information in this general
case. It is therefore coh{réhient at this pointto supposeé that the noz-
zle profile is such that the velocity distribution \&(") is linear. This
does not suppress any essential feature of the system, and is in fact

a good approximation of the situation in actual nozzles. We write

dw . w _ o* - a¥-ue (2.28)
dx X X* L

where Q% is the sound speed in the throat.
It is also convenient to introduce, following Tsien [2.27 and

Crocco (2. 37, the new variable 54 , defined by

= (X Vv = [WY 2.29)
.b' ( X* ) q*)
The Mach number and 2, are related by

M = 2% [ [ &+1) - QH)}] (2. 30)
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We also define the dimensionless angular frequency, or reduced fre-

quency
B = wx*a* = wl/(a*-ue) (2.31)
The system (2.26), (2.27) becomes

dav de , iR ¢ (2.32)

KR
dx ¥ dx 23’5,

d®

3 (‘6+\)(\ -%)

i
f

('5’ )bp/ Y- -tP

Qr+)(1-3)
¥(2 -iB) v, (2.33)
Qr+1)(1- %)

By eliminating YV  between (2.32) and (2.33), a second

order equation for C‘P only is obtained

(-3)3d*® _ (2 _ 2iB).d? P 2-iB
'0"3%; -2 s, e =

(_L)Lmz (2.34)
2(K+\) |
This is a hypergeometric equation with singularities at 3: o,
‘6« =\ , ‘8 =z &0 , of which only ‘6:: | lies in the range of
interest for 3» . At ‘5’= i , the Mach number is unity and the
mean flow becomes supersonic for ‘3 > | . In this region the
characteristic lines of the system (2. 12), (2.13), (2. 14) all have

positive slopes
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CL‘CL
+ | x
i"

wte on Cx (2. 35)
(Mach lines)

0.
x

w on Cg (2.36)
(path lines)

Q.
t

They point in the positive X direction and only propagate
signals in the flow direction. The singularity 3: | corresponds to
the change in direction of the characteristic C. at the sonic sec-
tion. This singularity plays a key role in the present problem by
providing one of the boundary conditions.

Generally we are guided by the principle that an acceptable
physical relation must be regular at the critical point. We define the

velocity of propagation of pressure disturbances 'U(K) by

}
2B 4 v '3 ( ) (2.37)
P

which for the time harmonic perturbation (2. 15) gives

Ux) = w @/(d¥/dx) (2.38)

Since the supersonic section only propagates signals in the forward
direction, the velocity U(X) should keep the same sign and remain
finite across the throat section. This in turn requires that d‘PIdx
and @ be finite and that @ be different from zero at the throat.
The same argument is applicable to the other perturbations. The
boundary condition to be satisfied at the nozzle throat is that all the
perturbations be regular in that section.

To obtain a second condition, we consider the nozzle entrance.

The main idea here is that in the subsonic region it is not possible to
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uncouple the nozzle from the elements situated upstream. When the
noise generating process depends on the nozzle dynamics, it is con-
venient to suppose that the complete (incident and reflected) pressure

and entropy fluctuations are prescribed at the nozzle entrance

P(xe) = Do (2.39)
o(Xe) = O (2.40)

This artificially uncouples the nozzle from the upstream elements,
and allows a simple analysis of the nozzle dynamics.

Another situation of interest is when the complete fluctuations
(2.39), (2.40) are not known, but only the incident fluctuations, gen-
erated by some upstream mechanism, are given. The case when the
incident pressure fluctuation ‘?i.e. =0 » while only entropy
fluctuations Q'Q‘ are present at the nozzle entrance, is of particular
importance because it singles out the effects of gas non-uniformities.
The condition {Pf.e,“-" O reduces to an impedance relation at the
nozzle entrance. To see this we have to consider the wave propaga-,
tion in the upstream region. We suppose that this region contains a

uniform flow with a mean velocity We . the pressure perturbation is

solution of the convective wave equation

a r B
4 (8 L uwe Y = 2P (2.41)
¢t ‘9t + L'ax) P X%

and the velocity perturbation u,, is related to Pﬁ by the momen-

tum equation in the X direction

2 sue Yuw = _3p (2. 42)
e('art M L'ax) X
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Interms of P and VY these two equations may be written

as

L (2 AY = 23%¢ (2. 43)
o Gp + ued) ® A xE
and

Ue(D 4 ue2 )Y = -pd¢f (2. 44)
e e( ST + eax) P.ax

The time harmonic waves propagating in this region are plane

waves with wavenumbers

ke = w/lc+ue) (2. 45)
k. = w] - Wwe) | (2. 46)
and
Uk, x ~wl ~U(kx +wt)
® = ¢ E.L(l“ ) + Yre (2.47)
CheaX - -t wl
P - V¢ et(k X wt) Dy & C(kx + ) (2. 48)
and from (2. 44}
Vi = @ /YMe (2. 49)
Ve =-Q | ¥Me (2.50)
Thus
¢ = §Me N Q-bk“( + (_P’_a-—bk-x (2.51)
> Wl

The specific acoustic impedance s defined by
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3 = ey (p'w) (2. 52)
is related to (Plv by

Qv = ¥IMS (2.53)

Hence,

(X)) = q"'etk” + q’ré—-w-x (2.54)

P, 2Lk—+x - @ e-ik.x

If the specific acoustic impedance 3 is given in some upstream

section, then
-1
Se = @Me) %/ve (2. 55)

at the nozzle entrance is known through expression (2. 54), and con-
stitutes the second boundary condition. When (Pf, =0 , then S=-I

in every upstream section, and in particular at the nozzle entrance

Yo /Ve = ~ ¥Me (2.56)

It is now possible to write the solution of system (2. 32), (2.33)in a |
general form. If (QP!, v ) desighates a regular solution of the
homogeneous system ( Up= QO ) and ( ('P*) ’D* ) is a regular solu-
tion of the non-homogeneous system ( Ug= i ), then the general so-

lution of the system (2. 32), (2.33) is of the form

@ = AP 4 O ¥ (2.57)
P = ANV 4 gy V¥ (2.58)
The entrance condition then determines the constant X . For con-

dition (2.39)
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A= (Y - 0‘@(99_*)/ ¢Pe (2.59)

For condition (2. 55)

A= - O (9X- T¥Me V) (% - 3EMR) (2. 60)

-

and in the special case when J=-) corresponding to q’(e =0

N = o< e (‘P: + XM@UC,*)/(%,‘ +‘Kﬂzve:) (2.61)
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2.3 ASYMPTOTIC BEHAVIOR OF SOLUTIONS

For low frequencies we expan(i (P(b«) in powers of ¢ p
PFP) =P(F) + PUGI+ CPYR(Z)+.-.  @e2)

and introduce (2. 62) in (2. 34) to get the hierarchy of equations

(\? Y2 d?% _ 22 d% = O (2. 63)
5% d3* | Tay

- d?y 24 d¥ _

‘ had —

-3 T—Z.L ¥ -—-db
a (2. 64)

- 2-§ d(PO - ‘ QPO s UC ’

¥+ d3 ¥+l 2(¥+))

When these equations are integrated, all singular solutions must be
discarded. The velocity fluctuation 1 1is obtained by using expres-

sion (2.33). This procedure yields a solution of the homogeneous

system (G’g = O)

' = @ - ﬁ%[{o ('3) —{a(&)] + O(p’) @.65)
+

V' = Y- g, 4 O(LR) (2. 66)
2%

and a solution for the non-homogeneous system (0'2, = | )

@ = B [ fo(y)- folBe)] + OPY een
2(¥+1)
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v¥ - ?ZLK— + o(vp) (2. 68)

where the function 'FO (b') is regular at ‘8: | and defined by

fo(z) = HIngy /0-3) (2. 69)

On the other hand, for high frequencies we look for kP‘ in the

form

Q' - exp(- ip f)’d:b') (2.70)
where y is solution of the first order equation
|~ ) = 2 "‘ﬁ -+ | - L
%)% 2(¥+1) ol 7‘?'—)37
+ P 3(-%) y? (2.71)

We then expand y in inverse powers of cﬁ

Y = Yo (’3) + -J;—-Y‘(b) + @;5)1 yz(})-f.,. (2.72)

After some algebra and use of relation {2.30), the following solution

is obtained

@' = i) Q.XP(-I'.PQ’o) + OQILPI) (2.73)
£ilMe)
V' = 10 4, o (Yip) (2.74)
M
where

LMy = s Qenmy2) M (e m) (2.75)
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and e is a real function so that QXPG‘:P QO) is only a
phase factor.

For the inhomogeneous syétem (0’@ = | ) we seek a solu-

tion of the form

Q¥ _ c'F(B)(;,/b&)m‘" | | (2.76)

~J
The function q)(a) is solution of

W% Q" _ [tP‘(\;‘B e I) ,+,.?-3],q’)

+ [&i a)"(.t_

Py - BT i

; . 8*‘ Z(X"’ \)

A L4
L?(‘b—) is then expanded in inverse powers of LP to get

oL ouls) e
L e

e L™ 4 olle) 2.1
L

Using the foregoing results, we can now compute the transmission
coefficient | = \LP "P@, ! and the ratio q’ ‘ v for isentropic
entrance condition (Ue, = O)

For low frequencies (2. 65) yields

= |@/%l = | + O(PpYH (2. 80)
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-~ and from (2. 65) and (2. 66)

fe/vl = 2%/(¥-1) + O(R® (2.81)

The transmission coefficient is close to one; thus,

PP Pe [ Ppe : (2. 82)

the pressure disturbances decrease in the same ratio as the mean

1]

flow pressure along the nozzle. At low frequencies, the nozzle re-
sponse is quasisteady.

For high frequencies,
T = \9R) = {t_(M)H‘(ﬂe) + OQJprY) (2. 83)

and

1@Vl = ¥YM + 0(1/p?) (2. 84)

The transmission coefficient ¥ is greater than one and depends
on entrance and exhaust Mach numbers. The ratio (Ph) , related
to the specific acoustic impedance by expression (2. 53), is seen to
have a modulus almost equal to XM , wWhich is the value taken
by “‘”U\ for a plane wave propagating in a medium moving with
a uniform Mach number M . Because of their high frequency, the
disturbances are able to ''adjust'' their impedance in each particular
nozzle section.

When the upstream flow contains entropy non-uniformities but
no incident pressure wave (q’(,c = O) , the solution has the form
(2.57), (2.58) with A determined by (2. 61). Using the foregoing

results, we get for low frequencies
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Q= - oo Me + O(p) (2. 85)
2% +(¥-1)Me

while for high frequencies

Fe = G Me(l-Me)/2ip + O(V(R) (2. 86)

For low frequencies, expression (2.85) shows that the pressure fluc-
tuations resulting from the entrance entropy fluctuations depend only
on the entrance Mach number Mp .

For high frequencies, the evaluation of ({’ in the exhaust
section requires a large amount of algebra and was not carried out.
Instead, the expression for the entrance fluctuation Cf’e, is given
(2.86). As C?ce;:O in this case, q’g_ is also the reflected pres-
sure fluctuation due to the incident entropy non-uniformities.

The preceding asymptotic expansions give only partial informa-
tion; a numerical solution was therefore developed and is described

below.
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2.4 NUMERICAL SOLUTION

We consider first the homogeneous system (0'¢,= 0) . Wwe
need a basic solution ( ® ‘) U') which is regular at the throat
'8 = | . If the integration of system (2. 32), (2.33) is started from
the nozzle entrance 'a = avg' , the solution produced will most
probably be singular (unbounded) at the throat. This drives us to
start the integration from the singular point ‘a« = | towards higher
and lower ‘3 . To obtain an initial value problem we use the regu-
larity conditions as follows. In the neighborhood of ¥= Vo, @

and WV may be expanded in Taylor series

¢

H

PAY + (- dLO) 4 45 fEEPW ... @sn
& ay +Z(bl)dbz_ + 2. 87

do@ _'_C’a-l)z d*v(), ... (.ss)

dy 2 d 32

Then we insert (2. 87), (2.88) in (2.32), (2.33) and equate coefficients
" o

of (‘a--l) and (‘b -1) to produce

v = V0O +('3-\)

vy = Y-1-tB W) (2.89)
¥ (2 -LR)

dRMm . B 2-(B g() (2.90)

dy b ¥+l -(BR

dv) = B 2¥-LB (v (2.91)

d'a' 4 X+\-LB

We assign an arbitrary value to Q¢ (, ‘) , say 1. Then expres-
sions (2.89), (2.90), {2.91) may be used to begin a fourth-order

Runge-Kutta integration procedure from a.-:-. ! towards lower and
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To solve the inhomogeneous system
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consider a solution in the form

@ = & (3/3) P

~J
and \P

B
v

The same method may be used to obtain the initial values at

They are

¢ =

]N)JU\ =

d %0 -

P (};}};e.)bplz
) {5 is a solution of the system
-1 dF _p Y
v dy 1

|

% ) Qr+1)(1-3)

L -B) §
Q+1)(-3)

v(2-B) ¥

Q+1)(-3)

b

¥-ip

Y(2-LPB)

_ (B 2¥+1-(B

4

¥4l - LB

(0’&: ‘)

_LBP g

2%

, we

(2.92)

(2.93)

(2.94)

(2.98)
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~
dav = I LIO .L_E_ V(1) 2.99)
d3 2 dy

These values are then used to start a fourth-order Runge-Kutta inte-
gration procedure.

Before we discuss the results of the nwmerical integration, it
is interesting to estimate the reduced frequencies p corresponding
to the various pressure and entropy fluctuations which may be present
at the nozzle entrance.

The turbine produces various discrete tones at the frequency
of the rotor blade passage and its harmonics and multiple tones as-
sociated with the shaft frequency and the stator guide vane number,
and spanning the range from 800 to 3;000 Hz. The corresponding re-
duced frequencies ﬁ are between 8 and 20.

The acoustic frequencies found in combustion instability are
situated in the interval 100 to 400 Hz, generally close to the natural.
modes of oscillation of the combustion chamber. For longitudinal

modes

-f- = N Cco (2.100)
2 bkco

where C¢o is the speed of sound in the combustion chamber of

length \.¢q . The corresponding p are

= rm( ) aiwue') (2.101)

the fundamental P is of order 3.
Another type of disturbance found in combustors is an oscilla-

tion associated with the unstable shear region generated by the flame
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in the duct and whose frequency depends on the flow velocity W ¢o
and the combustor width Weg (see, for instance, Blackshear

and Rayle [2.41])
{»‘ v 2 Yo IWc.o (2.102)

The reduced frequency p is again around 3.

The entropy non-uniformities which arise from the rotation of
the shock pattern attached to the turbine rotor have their frequency
in the same range as the pressure fluctuations generated by the tur-
bine. The entropy non-uniformities produced by the combustion
processes (hot spots) probably do not exceed the size of the approach
duct diameter and are convected with a velocity W e . Their fre-

quency is therefore

£ > Wef2De (2.103)
and

p > T_Ue L ~ "M £ (2.104)
(0%~ We) De De

Thus, F would be in this case of order one.
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2.5 RESULTS AND DISCUSSION

The numerical integration was performed for a range of fre-
quencies p between 0 and 16, for a gas with a specific heat ratio
x =1.4. We first generafed the basic solutions (“'9‘) u‘) for
the homogeneous systerﬁ ( Ue = o ) @) = ‘) and (‘?‘) 5)
for the non-homogeneous system (U'e_z J ?P‘ (\) = | ) . A
typical solution ‘(" is represented on fig. 2-1 for a reduced fre-
quency P = 5. Figure 2-2 shows a typical solution tﬁ for the same
reduced frequency. From these basic solutions, any solution corre-

sponding to particular entrance conditions may be constructed using

expressions (2.57) and (2. 58).

Isentropic Case (Ce = 0)

From the basic solution ('P' , the pressure transmission

coefficient
T lelel = | (PUP)IRLI el

may be computed. T is shown graphically on figs. 2-3 and 2-4.
The transmission coefficient is seen to remain above one and below its
limit for large frequencies. This limit was computed in section 2.3

and was found to be

To = lim T = £(M)]£i(Me) (2.105)
Rp—ooo

A decrease in the entrance Mach number MQ_ or a larger
frequency ﬁ results in a larger transmission coefficient. The nu-

merical data for Y may be compressed by using the reduced ratio

© = (T-1)] (T -1) (2.106)
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which is represented on fig. 2-5.
Another important quantity is the ratio of pressure fluctuation

to velocity fluctuation,

¢v = kel et

This ratio is related to the specific acoustic impedance S by formu-
la (2.53). The modulus \C'P’V\ is represented on fig. 2-6 and the
phase § is shown on fig. 2-7. A full analytical expression for q’h)

is available for the throat section (2. 89) and may be rearranged as

@ . 2 _\-iB2 2. 107)
V(1) ¥-1 V- (plly-1)

In other nozzle sections Y|V behaves very much like Q) , V(l)

and may be represented by the approximate expression

¥ - 2y - (BM/2 (2. 108)
Vv -1\ V=~ OB I(Y-1)

This expression is exact for the limits Fr—DO and }3"9' oo .
For low P . (:P’v is the same in all nozzle sections and has
the value 2% l(b’-—\) imposed by the presence of the sonic throat.
When P) ! , the modulus \q’h)‘ rapidly approaches its limit
for large p : ®M . This is also the value of H’IU‘ for a
plane wave propagating in a medium of uniform Mach number M .

It is also interesting to compare the mass fluctuation

M= Y+ & (2.109)

to the associated pressure fluctuation ¢ . The ratio }AI‘P was

therefore represented on fig. 2-8. For the exhaust sections M>| 5
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the mass fluctuation is seen to have approximately the same magni-
tude as the pressure fluctuation, with a slight phase lead on the pres-
sure fluctuation. For very low frequencies the ratio Nq’ does not

depend on the section Mach number:
mle = (1)) 2% (2.110)

No Incident Pressure Is Present (‘?{,g = 0)

A typical solution q) for Cfp = ! and ‘ﬂ,’c.‘-‘-O is shown on
fig. 2-9. This solution was obtained by combining the basic solutions
‘?‘ and \\é' represented on figs. 2-1 and 2-2 and using A given
by expression (2.61). In this case, the entrance Mach number was
Mg, = 0.29. At the nozzle entrance represents the reflected
pressure wave and is seen to be a small quantity. Along the nozzle
Y increases rapidly as the entropy fluctuations present at the noz-
zle entrance are converted into pressure fluctuations.

Figure 2-10a, b, ¢, shows the ratio \ q’, de,\ of conversion of
enfropy fluctuations into pressure fluctuations for several entrance
and exhaust Mach numbers. This conversion factor generally shows
a maximum for reduced frequencies P around 3. For low p the
factor \qlﬁg,‘ depends only on the entrance Mach number and

may be found from expression (2. 85)
| /0| = Me. (2.111)
2¥ {¥-1)Me

It is worth applying the last results to a specific example and

estimating the radiated pressure at some distance from the nozzle

exhaust, when only entropy non-uniformities are present at the nozzle
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~ entrance. An approximate expression for the far-field radiated pres-
sure has been developed in Appendix 2-A, (2A.21), (2A.22); the max-

imum radiated pressure is given by

lonax] ~ AXo Gy (b (2.112)
Paas 2T b (—Ra

where A is the pressure fluctuation amplitude in the exhaust sec-
tion, B is the exhaust radius, X0 is some effective radiation
length of the order of a nozzle diameter, GH is a factor defined
in Appendix 2-A.

We consider a n\ozzle.operating under the following conditions.

at the nozzle entrance,

Te = 2000°Kk | Pe = 3.Ubbars |, Me = 0.29

at the nozzle exhaust,
P = | bava ) M= LS
At the nozzle entrance we suppose that no incident pressure fluctuation
is present, QP(,(_ = Q . The pressure fluctuation at the entrance
is only the reflected pressure fluctuation, and ;)vas seen to be small

compared to the entropy fluctuation. The following relations between

the entrance fluctuations may be written

Qe - % = O (2.113)
% - ¥b%e = U (2.114)
then

e = ¥Oe- e (2.115)
¥-I
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and \Pg_ ¥ O implies that (e ™ Xee . The entropy fluctua-
tion (e is proportional to the temperature fluctuation ee_ .

The amplitude of the pressure fluctuation in the exhaust section may

be found by using the factor \&PI Cfg_\
A Y ¥6e |9 de] (2.116)

)
If the temperature oscillation at the entrance “lg = 100°K and
the frequency p = 3, then expressions (2.112) and (2.116) yield a

maximum radiated pressure at a hundred nozzle radii of

\F'HA;( ‘ﬂf Rawoob = 2| Newtons /m’-

and the corresponding sound pressure level is

SRL ot R=100b = 120 db Pre} = 2 \0 3 N|m*

This example shows that entropy non-uniformities in the stream a-

head of the nozzle may produce large external noise levels.
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APPENDIX 2-A

Acoustic Radiation from a Supercritical Nozzle.

It is difficult to obtain an exact solution for the problem of
acoustic radiation from a supercritical nozzle in a stationary medium,
principally because of the complex structures of the jet and shear
layer. Even if the jet is represented by an infinite cylindrical region
of uniform supersonic flow with the shear layer reduced to the cylin-
der surface, the radiation problem remains complex.

A simple model is therefore developed here and will provide
an approximate solution and an order of magnitude for the sound
pressure level at a distance from the nozzle. The model is based on
the assumption that the pressure fluctuations which reach the nozzle
end section are propagated along the jet on some effective length Xg
after which they disappear by breaking in smaller turbulent eddies.
Only the radiation from the region of length Xg will be calculated:
it should be noted at this point that the value of Xg is not known
but is of the order of a few nozzle radii. Similar assumptions were
used in a note by Kramer [2.5] to compute the noise emitted by
supersonic jets.

For convenience we choose the origin of the ¥ axis so that
the nozzle end section is at X =-x°/2 . The pressure fluctuation in

this section is

P’(“) “X"/z ) -t) = A a—i“‘t (2A-1)

where A is the amplitude of the pressure fluctuation. The pressure

pulsation at the nozzle discharge section produces a pressure wave
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along the jet surface, convected by the jet with a velocity U

(b5, t) = A BT il

o] +Xo/2 <X or x<-Xof2 (2A-2)

and the wave number in the X direction is

ke = @/ +u) (2A-3)

where Cy and u|\ are the sound speed and velocity of the jet in
the neighborhood of the exhaust section. Outside the jet (V‘ > b)

the pressure perturbation is solution of the Helmholtz equation

Vipw + (W/c) po= O (2A-4)
and satisfies Sommerfeld's radiation condition at infinity

lim, R ( - ul(lp) (2A-5)
R0

where R= (X + r*") and kz = LU/C.". . The solution
of the boundary value problem (2A-2), (2A-4), (2A-5) may be easily
obtained by Fourier transform methods and only the main steps are

given here. We define the Fourier transform of the pressure fluc-

tuation by
+00
~ LY X
Po (1, «) L\ Pw () X) e"dx (2A-6)
(2m)
- 00
where
x = C + L3 (24-7)

~
Then P&, is solution of the ordinary differential equation obtained
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by transforming (2A-4)

ﬁa’ L+ L dby + (ki -o?) Fﬂ: =0 (2 A-8)
dr* r dr

As usual, \(z is assigned a small positive imaginary part, which
will help to settle questions about the position of the branch points,

path of integration, and behavior at infinity

.
ke = kar + Ulop , ket >0 (2A-9)
Then we define

kK = (k&-«3)¥ (2A-10)

and use the branch of K such that JIm (k) >0 for - \(zj, <6 <‘<Zl'.

Transforming the boundary condition (2A-2)

rf)‘,u (b,o\) - AXo S&'V\L(kx+°()x°lz] (2A-11)
em* [y +a)x0/2]

Then the solution of (2A-8) satisfying (ZA-ll)ﬂrand bounded when

r—00 for X in the strip — sz, <'G < \(z{. is

F:u (ra) = _A% sin[(kxﬂ)"cvll-] Holk 1) (2A-12)
@m"™  [hkerx)%o/2]  Ha(KD)

~
The inverse of P:n is given by
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+°0+;;Q:
~Lax
PQ (r,x) = —, 2 pw(r,oc) dx (2A-13)
(2“’). 00+ a4

where the path of integration is situated in the strip

-~k < a < ki

To evaluate (2A-13) in the far field we first require Kr>>»| so that

the following asymptotic expression for H\o may be used:

2 (Ke =M
e : (2A-14)

H;(kh) r\,( 2
Tk

Then the saddle point of the integrand in (2A-13)is Qo= -kz cos &
where @ designates the polar angle of the propagation direction with

respect to the X axis

0 = 'tan“‘(r‘/,x) (2A-15)

A straightforward application of the saddle point method to (2A-13)

yields

P.(R,G,t) ~ Axo sw{(kx kzcose)xa/z] ‘
2Th  [Ckx-ko0s8)%o2] HS(kebsin®)

&LL‘Q R ~w't) Cbl R) A 16)

for

k,Rsin® >>|
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R = (x2 +hz.)‘/2- (2A-17)

It is then convenient to define the following quantities:

o) = sin [(ke= kzc058)x%0/2] I (2A-18)
((kx - koCos@) %of2] | He(kebsine)|

]

G Meqx G©) (24-19)

the normalized angular distribution
9@ = G®)| Gm (2A-20)

and the amplitude

Q = _AXe Gy (2A-21)
2rb
Then

Pl = Q g6) (b/R) (2 A-22)

The pressure amplitude is given as a product of three factors:
the third factor is the usual R-\ decay of t};e acoustic field at in-
finity; the second factor is an angular distribution function which ,
because of its definition, is of order one; the first factor Q contains
the essential information about the radiated pressure. The factor Q
is proportional to Xolb and GH . Thus, the radiation efficiency
for the present model increases with the effective length Xg . For
numerical applications we shall assume that Xgo ™ 2b . The
value of GM depends on the reduced frequency ﬁ: wx*la* ’

the ratio of the nozzle radius to the length of the subsonic section
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blx"' and only weakly on Xo/X® . For a nozzle with Blx¥*= 2
and [3 =3 thevalueof Oy =3 , then QN A
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im(¥")

.07 0.43 -

M= 0.22/

Re ('Y

1.0

4.60

for isentropic

Fig. 2-1.. Dlmensm'nless pressure fluctuation ‘P!
At the

condition at the nozzle entrance ( Q= . ).
throat P'({) is assigned the value one.
Reduced frequency B wx/ao"= 5.0
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lm(:ff)

.49

.26

.02 Re(¥)

. ~t
Fig. 2-2. Dimensionless pressure fluctuation ¥ for an-entropy
fluctuation at the nozzle entrance ;= | . At the throat
(1) is assigned the value one.
Reduced frequency - B zwx/7a*=5.0
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CHAPTER III

A TECHNIQUE FOR TRANSFORMING CERTAIN ACOUSTICAL
BOUNDARY VALUE PROBLEMS IN A SUBSONIC MOVING MEDIUM

TO APROBLEM INVOLVING ASTATIONARY MEDIUM
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3.1 INTRODUCTION

In numerous situations of current interest acoustical propaga-
tion occurs in a moving medium with fixed boundaries. Because this
feature changes the acoustic problem in an essential manner, such
problems have been discussed more extensively in non-steady aerody-
namics than in acoustics.

The early work by Blokhintsev [3. 1] which discusses acoustic
fields in a moving inhomogeneous medium considers boundaries only in
relation to sound excitation problems (vortex sound). In recent years
interest in turbofan noise abatement has stimulated a number of studies
of acoustic propagation in a moving fluid contained in an infinite cylin-
drical boundary.

Morfey [3.2, 3.3] discusses the change in cutoff frequency,
the energy propagation and sound generation in an infinite duct contain-
ing a uniform flow.

The cutoff frequency of duct modes has been studied experimen-
tally by Mason [3.4]. The change in the acoustical lining properties is
examined by Rice [3.57, Eversman [3. 6], Kurze and Allen [3.7].
Some refinements have been introduced by Pridmore-Brown [3.87,
who considers a nonuniform mean flow and by Munger and Gladwell
[3.97 and Munger and Plumblee [3.107] who in addition take the vis-
cous effects into account.

References [3.27] to [3. 107 all study problems involving a moving
medium and an infinite boundary. Acoustical propagation in a moving
medium in the presence of boundaries with end edges ({inite and semi-

infinite boundaries) are rarely discussed.
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Carrier [3. 117 studies the reflection coefficient of a plane
wave at the end of a duct immersed in a uniform flow. He shows that
the reflection coefficient R when the medium flows uniformly may
be obtained from the reflection coefficient Rg corresponding to a
stationary medium. Carrier does not evaluate the pressure radiated
outside the duct and also limits his discussion to plane wave propaga-
tion.

Kaji and Okazaki [3. 12, 3.137, Mani and Horvay [3. 147,
Amiet [3.157 study the reflection and transmission coefficients of a
plane wave incident on a blade row set in a uniform flow. References
[3.12, 3.13, 3.147 use épecialized methods and fail to single out the
effect of the uniform flow from the basic transmission and reflection
characteristics of the blade row in a stationary medium. The method
of matched asymptotic expansions usedin [3. 157 seems to provide only
the flow induced acoustical field.

The present work is concerned with a class of acoustical prob-
lems involving finite or semi-infinite boundaries and a moving medium.
When the flow is subsonic we show that such problems may be treated
by simply transforming the known solution of an associated problem in
a stationary medium. The simplicity of the results obtained by Car-
rier [3.11] suggested the present method.

The ideas leading to this transformation are most easily intro-
duced by considering a specific problem. It is convenient to start
with the Sommerfeld problem of diffraction of a plane wave by a semi-
infinite hard plane. This problem in a stationary medium is formu-

lated by Section 3.2. The solution (Po representing the pressure or
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the velocity potential is given in several forms. The problem for the
half plane immersed in a uniform flow is then described. There is an
essential difference between positive and negative directions of flow.
In the positive direction ( M>0 ) the plane has a trailing edge, the
velocity potential is discontinuous, but the pressure P is continu-
ous and is used to describe this case.

When the flow occurs in the negative X  direction ( <O )s
the plane has a leading edge, the velocity potential C? is continuous
and is best suited to describe this case.

In Section 3. 3 these two problems are then expressed as a
unique boundary value problem for a function ¢ replacing the pres-
sure (when M > O ) or the velocity potential (when M< O A
solution is then obtained by transforming the solution Cbo of the dif-
fraction problem in a stationary medium.

The results are discussed in Section 3. 4.



-60-
3.2 ANALYSIS OF THE PROBLEM

Stationary Medium

The problem of diffraction of a plane wave by a hard plane
originally solved by Sommerfeld [3.167] has been treated by numerous
techniques; a particularly relevant presentation utilizing the Wiener
Hopt technique is given by Noble in [3.17]. We shall use this text as
a constant reference and we adopt most of its notations.

A plane wave propagating in the direction @ is incident on a
half plane —00< X L0, ¥= O. The incident wave has a potential of

the form

2 = exp (-ikxws® -ikysin ©) (3.1)

v

where

o< O <™
k = w/c (3.2)

The complete potential may be written as the sum of the incident wave

potential and an induced potential
e = T+ ¢° (3.3)
where (Po is a solution of the Helmholtz equation

w e O e kPG =0 (5. 4)
Equation (3. 3) must sa’cisfy the following conditions.

On the rigid wall there is no displacement:

X2 - O
3y

or
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3% . (ksin® exp (~ikxcos ®) (3.5)
3y

3#’: /’Ay and hence 'a¢°/'ay are continuous on

-0 <X <+00 | 7:0 (3. 6)

Q .
Qt) CD are continuous on

4

o
Cb satisfies one of the following edge conditions:

@) P°(x, Oy) - &° (x, O-) ~ x'? (3. 8)

O X < + ®© O (3.7)

i

when X———00. on y = O
) 3N[3y  ~ x~'2 (3.9)

when X—20, on Y= 0.

We shall discuss the physical meaning of these edge conditions
when we state the moving medium problems. It can be shown that the
solution of the boundary value problems (3.4 - 3. 7) with either (3. 8)
or {3.9) is unique. For this, consider equatiori’ (2.29) of reference
[3.17] and use (3. 8) and then (3. 9) to find that they lead to the same
conclusion concerning the behavior of J (‘X) at infinity, namely that

d(O() ~ 0(—‘ when \06\———t>oo . As d(o() is analytic in
the whole plane, by Liouville theorem we have \J(O() = O , and
thus the solution of (2.29) is unique. '

This unique solution -Ot CX))‘ 3 k; @) can be expressed

as
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#(r, 95 k,0) = T

_ikrcos (8- 0Q) \a.
J F [~k “cos Le- @]

-tkros (@+0 /2
v o s )F[(ka)/cosé_(e+@)]} (3. 10)

for =T 6 T
0O <O T

where F(V) is the complex Fresnel integral defined by

00
F(v)

T

A

Q.‘M' dae (3.11)
v

Expression (3.10) is very well suited for numerical computation but
does not allow an easy physical interpretation. To facilitate the discus-
sion of our results we give below the very useful description of ¢°~t
as a sum of a geometrical optics field and a diffracted wave. Other
expressions and details may be found in Morse and Inyard [3. 18],

Bowman and Senior [3.19], Noble [3.17].

The complete field may be decomposed as follows:

CP?C = %+ ¢F + Y M-O<O<T  (3.12)

]

o) OHE + (PEL O-TTSC 8 <M-0 (3,13

?t ¢ZL - <O<KO-T 3.14)

i
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(+]
‘where ¢{_ is the incident wave

¢t = exp (-tkrcos(e-@)) (3.15)
q’?a is the reflected wave
% = exp (-tkrcos(6+®)) 3. 16)
¢2 is the diffracted field which may be expressed, for instance,
as
+ ©C
o L©ait) ot krchl
Pl = ! gn @ 5‘"2(eﬂ+‘) e dt (3.17)
w 2 cos(B+it) + Cos@®
-0

When ©O is sufficiently far from ®- T and - © the integral

(3.17) may be expanded asymptotically for K3 | | to give

% Tk 2840 SO T

Cos® + Ccos ®

The complete field can be recast as a sum of a !'geometrical optics’
°
%,o, field and the diffracted field ¢a,

% = Pia + gL S (3.19)
where

@5.0. = ¢°¢h(e—@+_ﬁ) -+ Cb‘;. \1(6 -+ ©) (3.20)

h(’() is the Heaviside step function
Y\CX) = | when X > Q
he() = QO when X < QO

(3.21)
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The diffracted field ¢CCJ:L is given by (3. 17) or by the asymptotic
expression (3. 18) and compensates for the discontinuities of the ''geo-
metrical optics'' field at O= @—T\' and T-© .

After this brief exposition of the classical Sommerfeld dif-
fraction problem we may start to examine the diffraction problem in

the presence of {flow,

Moving Medium > M> 0

Consider the similar problem, but where the medium flows in
the positive X direction with subsonic velocity. The half plane
then has a trailing edge. The problem is most conveniently expressed
in terms of the perturbation pressure P in order to avoid treating
in detail the vortex sheet which extends over O § X <+0&0 VY= o

The conditions to be satisfied by P are:

no displacement at the rigid wall

_B_.E.(X) O) = 0 for =00 <X £ @) (3.22)
dy

Across the vortex sheet O x <""°0, 7": O the pres-

sure and displacement are continuous

P(x,O+) = p(x,0.) (3.23)

.%5. (x,04) = %E(x, O-) (3. 24)

Near the edge, at a distance much smaller than a wavelength,. the flow

is similar to the potential flow of an incompressible flow past a trail-

ing edge. The Kutta-Joukowski condition applies, the potential func-
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_tion may be found easily [3.207, and the associated pressure jump

across the wall behaves like:

2
pix,0.) —p(x,0) ~ x " (3. 25)
as x—-—-bO___ on )(::O .

Moving Medium, -i< M Y @]

Similarly, the problem may be formulated for the case where
the medium flows in the negative X direction with subsonic veloci
ty. Now the half plane has a leading edge and the problem may be
written in terms of the velocity potential. The conditions to be satis-
fied by the velocity potential are:

at the rigid wall there is no displacement
%Cg (%, O) =0 for —-0<Xg0, )r' =0 (3.26)

on the wall continuation the velocity potential and the velocity

are continuous across the X = axis.

@(x,0+) = @(x, O.) (3.27)

%% (%, 04) = %_;E (x,0-) (3.28)

The edge condition is obtained now by considering the potential
flow of an incompressible fluid near a leading edge, with a stagnation

point

3¢ (%,0) ~v x'I? (3.29)
oY
as x‘_""°0+ on Y:: o .

i
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The similarity of conditions (3.22 - 3.24) and (3.26 - 3.28) is evi-

dent. The two edge conditions (3. 25) and (3.28) differ, but as was
remarked above, they yield a unique solution.

We can therefore write a unique boundary value problem for
a function ¢ representing the pressure perturbation P (when

M>0O ) or the perturbation velocity potential ¢ (when
M<O).
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3.3 SOLUTION OF THE GENERAL HALF PLANE PROBLEM

IN A MOVING MEDIUM

A plane wave with a normal direction @ is incident on the

half plane. The incident wave has the potential

P = exp (.. tkxcos®  _ ckysin® ) (3. 30)
|- Mcos © -Feos@

0 @ T

k = wc

The total potential is (bt = Cb(' -+ d) where ¢ is solution of

the convective wave equation

P (1-M7) + Byy +2Mk Py k2P =0 (3.31)
On the rigid wall, = 00 <XgO ,y=0

°3® - O

oY

3P _ (ksin® oy (__ tkxcos® ) (3.32)

dy  I-Mcos©® i-Mcos @

Conditions (3. 6), (3.7), and either (3. 8) or (3.9} given for ¢° also
apply to the present general potential ¢

If an attempt is made to solve the above problem by a trans-
form method similar to the one used by Noble [3. 17, pp. 49-57], it
is found that much work can be spared by introducing the following

transformed quantities:
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X = X[ (1-mH)2 (3.33)
ko= k[ (-m2)"? (3. 34)
s @1 = (cos@-M)[(I-Mcos @) (3. 35)
¢ = e"ik'm‘ Y(xi,y3 ki, &) (3. 36)

The function ‘P is then the solution of the following boundary value

problem:
Yx\x‘ + q’yy + k\z Y=20 (3.37)
Y _ Ck‘sin 0} QXP(—- tky Xy cos 90) (3.38)
dy

on =0<xgO0, y=0

The four other conditions (3.6), (3.7), (3.8), or (3.9) remain
unchanged. The boundary value problem for W is identical to the

problem for CDO .  Thus,
Y= d>°(x\,7; ki, ©) (3.39)

and then from (3. 36)

-t‘ k| MX|
e

Sy (%,y 5 k,0, M) = Ox (%,Y 5 k1,0,) 3.40)

Thus, to solve the diffraction problem in a subsonically moving medi-

um for a plane wave (k; @) one associates the solution for the
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Q(H G‘) in a stationary

diffraction problem for a plane wave

medium. The solutions of these two problems are related by (3.40).
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3.4 RESULTS

By using the transformatioh procedure described above, the
pressure field and diffraction patterns may be obtained for the mov-
ing medium quite easily.

When i>M 2 O the function CD represents the
pressure 'P and therefore:

by (675 k@ M) = &2

(%,75 ki,®1) .41
where ¢° represents the corresponding solution for a stationary
medium.

When O>/ M> "'l the function d} represents the ve-
locity potential @ . The pressure may be deduced from CP as

Py = ~P(-wP + uf%.l’lt) (3. 42)
X

which becomes, by introducing (3. 36},

--L' k|M X :
Q
Py = ek ((D + LM __@1) (3. 43)
L M )UZ.
This is the complete pressure field for an incident velocity potential

wave of amplitude unity

~ Uy Mx . . :
Y= o~ 'exp (~tkix; cos Oy - L(f\ys‘n@t) (3. 44)

The corresponding incident pressure wave is

FC = f—%)—‘ﬁ (1+ Mcos®,) P¢ (3. 45)
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To obtain the complete pressure field for a unit pressure

wave we divide (3.43) by the amplitude of Fé in (3.45);

Pt

i

| (9% + LM 29F)HM
| + Mcos ©, ks ?x.

o
Using expression (3. 10) for ¢'t and (3.46) we get
—kiMxy Lo .
?‘t = £ cb-t CV‘U@;J l(;, @|)

-LlﬂMXQ Lk."’.-&-tm V‘) ZV]SMJ-@ISLHJ-GI
|
|+ Mcos®;

(3.47)

Comparing expressions (3.41) and (3.47) we observe that an
additional diffracted wave appears when the medium flows in the

negative X direction.

Fd.q. _ e- vl Mx, 0 vhan + (T

_”z R ,
(2Tk, n) 2M 5‘”‘2‘._‘_‘ O\ sih 'é.f ©, (3. 48)
|+ Mcos @,

This expression is valid for the whole space. (Actually, Pd,q. is

proportional to a well-known solution of the Helmholtz equation
;,kr- Y
(kv) / sinle (3. 49)

which has a jump discontinuity across the wall, ©= xT ). The
source strength of the additional diffracted wave is

M Siﬂ-é—re| St’ﬂ-é_—@.
| + Mcos @,

(3.50)
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and vanishes for M=0Q

The usual diffracted wave appears for both flow directions;
its asymptotic expansion for k\rl >> \ and ©1 far from
- @ and @~ TT rhay be obtained by transforming (3. 18):

N é-u(. My, ‘Qck.r. + Ty

@Tkm)"lz zs{h%e‘ S(hi.@‘ (3. 51)
cosQy + Cos @,

Its source strength is
sing & sint+ @,
cos O + cos O

(3.52)

A trailing edge and an edge in a stationary medium behave in essenti-
ally the same way when impinged by a plane wave, while at the lead-
ing edge the flow induces additional sources. A typical diffraction
diagram is shown on fig. 3-1. The amplitude (in decibels) of the
pressure field is represented for a constant value of \(h . The in-
cidence angle @ and the apparent incidence angle O are
shown. The diagram may be decomposed in three angular regions
corresponding to the decomposition of the complete field given by
(3.12), (3.13), (3.14).

Region 1, - @t < e\ < 'ﬂ' , is a reflection region
where incident, reflected, and diffracted waves coexist. In Region
2, @\ - < @; < .“-""' @; , the incident wave and the dif-
fracted field are present. Region 3 is in the shadow with only the dif-

fracted wave propagating.
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The boundaries between the three regions correspond to polar
angles SH» = 'TT"G‘ and Sl- = ©-T . The angles 8‘ and

%) are related by

tan & = tan (3. 53)
| - )T

From (3.35) and (3. 53) it is easy to obtain

tan &+ = = sin® (3. 54)
M - Cos®

This relation gives the actual polar angles for the boundary A4 be-

tween the direct propagation and reflection zones, and A_ between
direct propagation and shadow zones. Figure 3-2 is a graphical repre-
sentation of (3. 54) for several values of the Mach number.

It is possible to justify (3.54) by a simple geometrical argu-
ment. Figure 3-3a shows a plane wave propagating in the ® direc-
tion in a stationary medium. The wavefront |J travels with speed
Cc to I'd' and the information from Q is carriedto R in
the same (@ direction.

The information received by Fthe half plane edge is transmitted
in a direction parallel to @R . A shadow region therefore appears
for angles beyond 8_ = O-T . Comnsider now fig. 3-3b
which shows the same plane wave propagating now in a medium mov-
ing in the X direction with velocity W = C M . The motion brings
the wave front W to prgn , while the information from Q
is carried to S . The angle of QS8  with the X direction is @),

given by

tan @ = csin @ [(ccos © -cM) (3. 55)
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The information arriving at the edge will propagate parallel to Qs

thus defining the new polar angle S_ for the shadow boundary:

Tan &, = Tan (@-T)= - _5nO
‘ M- Cos ®

A similar argument may\be given to obtain the value of S+ . The
propagation features of the '"geometrical optics' field are thus simply
explained.

To be complete, we have shown graphically on fig. 3-4 the
relation (3. 35) between @\ and © . When M s positive,
the aﬁgle @‘ is superior to @ , while the opposite is true when
M is negative.

Additional diffraction patterns are shown on figs. 3-5a,b,c,d
for several constant values of k?‘ and three values of the free
stream Mach number. It can be seen that the flow acts on the acousti-
cal field roughly like an increase in frequency and a change in the
wave impingement angle @ . When M s positive, the shadow 3

broadens, while the opposite occurs when M 1is negative.
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3.5 CONCLUSION

The half plane diffraction problem was solved when the plane
is immersed in a uniform subsonic flow \M\ <} . The solution
was obtained without effort from the well known solution of the M =0
diffraction problem, by a simple transformation. The framework of
acoustical theory was used (inviscid non-conducting flow, small per-
turbations). The boundary layer effect on the edge condition was thus
not considered. This might be justified when the wavelength is suffi-
ciently large compared to the boundary layer thickness. The con-
vected wave equation was also used, and this implies that the term

Q" Nz) Cbxx is not of second order.
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Fig. 3-1.

Diffraction of a plane wave by a semi-infinite hard plane.
Incident, reflected, and diffracted waves in region 1. In-
cident and diffracted waves in region 2. Diffracted wave
only in region 3. kr = 20.,(d = 90°, M = 0. 8.
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Fig. 3-2. Polar .angle 6+ defining the boundary of the reflection
region. The boundary of the shadow region is at 6- = - &+.
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_HALF_PLANE

Fig. 3-3a. Plane wave impinging on a half plane in a stationary

medium.

HALF PLANE

Fig. 3-3b. Plane wave impinging on a half plane in a medium moving
in the x-direction with velocity u= cM.
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Fig. 3-4. Relation between the actual (M # 0) incidence angle G
and the transformed angle @. of the associated M =0
problem. cosl = (cos@ - M)/ (1-M cos@ ).




M=0

@
M=-08

Fig. I 5a. Diffraction patterns of a plane wave by a semi-infinite o
hard plane, The plane wave incidence angle is © =90 s
kr = 2. o



Fig. 3-5b. Diffraction patterns of a plane wave by a semi-infinite o
hard plane. The plane wave incidence angle is © =90%
kr = 5. ‘



=-0.8

Fig. 3-5c. Diffraction patterns of a plane wave by a semi-infinite

hard plane. The plane wave incidence angle is @ = 900;
kr = 10. . :



Fig. 3-5d.” Diffraction patterns of a plane wave a semi-i
hard plane. The
kr = 50. '
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CHAPTER IV
DIFFRACTION OF A PLANE WAVE BY A HALF PLANE

IN A SUPERSONICALLY MOVING MEDIUM



37~

4.1 INTRODUCTION

We treated in Chapter 3 the diffraction of a plane wave by a
half plane in a subsonic stream. The solution was obtained by trans-
forming the solution of an associated diffraction problem in a station-
ary medium. In the present chapter we study the diffraction of a plane
wave by a half plane immersed in a supersonic stream. The nature of
the diffraction problem changes strongly when the medium flows super-
sonically; the associated boundary value problem, of elliptic type in the
subsonic case, becomes hyperbolic in the supersonic situation. As a
consequence, characteristic lines appear, discontinuities may occur
along these lines, zones of silence (undisturbed) or of pure reflection
are possible.

Because of this essential change we were not able to find a
simple transformation between the diffraction problem in a stationary
medium and the present supersonic situation. However, applying the
same ideas as those of Chapter 3 we were able to relate all the super-
sonic diffraction problems to a unique reference problem. The solu-
tion of this problem once developed may be simply transforme‘d to
provide the solution for a specific Mach number.

We analyze separately the negative (section 4. 2) and positive
(section 4. 3) flow directions, because the physical situations and the
corresponding boundary value problems are different. Our procedure
remains the same in both cases. We first write the boundary value
problem for a given Mach number. By a suitable transformation we
obtain the reference problem. This problem is then solved by Fourier

transform methods. The inversion of the transformed solution may be
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performed in various ways. We give first the solution obtained by the
convolution theorem. This solution does not contain much informa-

tion on the physics of the problem and, moreover, it is not very suit-
able for numerical computation. We then give an expression obtained
by a change in integration contour in the complex plane. This pro-

vides a solution in the form of a sum of a geometrical optics field and
a diffracted wave. This solution has more physical meaning and per-
mits a partition of space in regions of different propagation character.
Remarkably, the diffracted wave may be expressed for both flow direc-
tions by using the same function GCAIP) . Because of its
central role, the properties of G are studied in some detail in

Appendix 4-B and summarized at the end of section 4. 2.
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4,2 THE MEDIUM FLOWS IN THE NEGATIVE DIRECTION, M<-1

Formulation of the Problem

A plane wave propagating in the @ direction impinges on
the half plane =060 <X so, y= Q . The wave has a potential of

the form

P = exP(-—'kacosG - Lk)r'sih@) (4.1)
i-Mcos@® \-MCos @

k = w/c

It is convenient to assume that k has an arbitrary, small, posi-

tive imaginary part

k = k. + Ukt ki >0 (4.2)

J
This is equivalent to introducing a small damping term in the partial
differential equation which governs the problem and thus will help us
settle questions concerning the position of branch points, branch cuts,
choice of integration path, and behavior at infinity.

The wave (4. 1) will reach the half plane if
| = Mcos©@ > © (4. 3)

We define the angle Oy = COS-‘(UM) and require that
0< © < 8y (4.4)

to satisfy condition (4. 3).
Because the medium flows supersonically, the half plane will
Wz
only influence the region D where X -(Mz'-l) \)" ,

limited by the two characteristic lines originating from the leading

edge of the half plane (fig. 4-1la).
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Outside D  in the region R where X > — Q" "l) ‘Y‘ ,
the only disturbance is the incident wave ¢;’,
We maynow formulate the boundary value problem to deter-
mine the field in region D . As usual, we write the complete po-

tential as a sum of the incident wave potential and an induced potential

Qt = P + & (4.5)

The potential b is solution of the convective wave equation
"¢xx (Nz"l) + (b)()l ~+ 2”\:k¢x -+ k2¢ = O (4. 6)

Equation (4.5) satisfies the following conditions:

no displacement at the hard wall

3% _ o on —00<X£0,y=0

oy

3¢ - _iksin® exp -ikxcos© (4.7)
(4 |- Mcos® | - MCos @

347{,_ /'ay and hence 3@/37 are continuous across

-~ <x< 00 , y=0 (4. 8)
$(x,0)= O on O$X<%0,¥Y=0 (4.9)

We shall not solve this problem as stated above, but first seek a

reference problem. For this we define the transformed quantities

W(XU)’} kl))ob) _ Q—-UﬂMXI ¢

X, = X/ 0’\2-‘)"2' (4.11)

(4.10)
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k, = k/(mz-\)‘/" (4.12)

Equation (4. 6) becomes
Wyy - \&))ﬁx‘ - kiz Lk = O (4.13)

and (4. 5) yields
/Y _ ey (M=) %5in @ exp(- Lkyx M-cos® )

(% |- Mcos©@ \—MCos@
on
-00<x£0 , y=0 (4. 14)

As a consequence of condition (4.3) and of M <~|

M- Cos @ -\ (4.15)
<
| = Mcos @
It is natural then to define the real hyperbolic angle }& such that

ch = - _M-cos® > 0 (4.16)
)& Il -Mcos© ? )& g

(In the subsonic case, at this point we introduced a new angle @
defined by CO0s = (Cos®@~M)](1-Mcos®) . ) The definition (4.16)
allows us to write (4. 14) as

v _ Uk Sh}b exp ({kx ch)A.) (4.17)
R4

on
-<Xi§0 , y= 0O

The two conditions (4. 8) and (4. 9) set on 4) apply also to L

To solve the above boundary value problem we are g0ing to use com-
plex Fourier transform methods. We shall need, in the course of

this solution, some information on the behavior of \Y(x., Y) at
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infinity.
In region R| the only disturbance is Y , and thus

Y(x,y) =0 for x > -yl (4.18)

In region D,+ where X} <-—- |)/] and Y>O (the part of region
DI above the half plane), Y consists of a diffracted wave and

a reflected wave.

In region D). where Xy <- ‘)’l ) y> O , be-
low the half plane, a diffracted wave and the opposite of the incident
wave will constitute \‘Y . Let
D = (x* __72)"" (4.19)

From results in the theory of nonsteady aerodynamics in supersonic
flow (see, for instance, Miles [4.1]), we infer that the diffracted

wave behaves like

Yy ~ Ci Jolki D) as  h—o00 (4.20)
Wy~ O as H—e0 (4.21)

The reflected wave in D;.y. is ,
Yo = exp (iLkixy Chj»b -+ Lkn)’sh}b) (4.22)

From the above discussion we finally deduce

Wi < Cz exp (= kiixichyn - ki lyl Skf*')

for —o00 <X < ~{y| (4.23)

WVl =0 for Al <x <+ oo (4.24)

Solution by Fourier Transform Methods

We seek a solution to the boundary value problem for \‘Y
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- we delete the index 1, but keep in mind that X, k are transformed
quantities. We adopt Noble's [4.27 definitions for the complex Fourier
transforms.

The Fourier variable ¢ 1is complex and has a real part

and an imaginary part G

X = & + LG .(4-25)
Then
~ o0 1
Y, (x,y) = | Y (xy) e “Vx (4.26)
(2wy*
O
o
) = L1 Wiyy) e dx (4.27)
@)™
T’(q,y) = % (x,y) + q’: (097:) (4.28)
or o
Vixy) = | & Y0 y) euxxdx (4.29)
@m“ )

We know that W(X,Y):.O for X > — \Y‘ ; therefore,

~
\V.‘. (0(,)/) = O . If we suppose that WV s sufficiently
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- smooth (i. e., \‘Y satisfies the conditions of theorem A, p. 11, in
Noble [4.27), then we can deduce from conditions (4.23) and (4. 24)
that w.. (%)’) is analytic for

Im(x) < - Im (kchp)

or

T < - kL Ck)uu (4.30)

~J
We can also deduce the behavior of L‘V(“) )') when t)" tends to

infinity: voo
| P, y)| g |W e ™ dx
(ZW)UL
2lyl 4
g G dx @xp {_‘(ﬁ + kcd\)\&«)X- H\y\s\'\}xl (4.31)

“~4
This shows that ‘W(C\',)/)l is bounded as \Y‘ tends to infinity
d
when & is in the region of analyticity for \V@b)/) . We now ap-
ply the Fourier transform to the partial differential equation (4. 13)

and obtain

Wy)r (0(/3,) — KZW(“,Y)= (@) (4.32)
with
¥ = (kz'-f?(‘)'lz' (4. 33)

and we use the branch of §  such that RLQY) <0 for
Im@&) <-Im(k) or & <-ki
A solution of (4. 32) bounded when ]}" tends to infinity has

the form



| \V((X,Y) = AX) QKY , Y20 (4.34)
= Al & y ¥y<O (4.35)
The continuity of d q;(o(;)/) / dy across 7‘-'- O requires
AG = -A (%) = AE) (4.36)
and we can write
d¥y) - iGZ(“-;Y) - ¥YA®) (4.37)
dy y
From (4.17) we get (under the condition G < = l(( Ck}b )
d¥ @,v) = kshpu (4.38)
dy @MY o + kchu

and then (4. 37) yields

A(x) = k sh (4.39)
@m)™ ¥ (s kchp)

The inverse Fourier transform is

+oo+i.a \
¥iyl—Lax
Y(x,y) = sqn(y) _1__\, Al) e doc (4. 40)
2
Q'TU —00 4 LG
S%Y\ (Y) represents the sign of ¥ ; the path of integration is
chosen so that
a <-\<ch/~1. <-l<{, (4.41)

Only the absolute value of )/ appears in the integrand of (4.40).

From here on, we shall consider the region >I>O only. To obtain
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the field for Y <O , we take the opposite of W(X/ ‘YD

Consider now the region D4 where X <"‘Y\) Y >0 .
we close the path of integration by a big semi-circle rﬁ, in the
upper half plane (fig. 4-2). The contribution of this path integral can

be easily estimated:

AL ¥ M u ) < {A@)I{e,_w“w}nd x|
oY &
§ Mox|A®)) %ch«vY)‘dq" (4. 42)
TR
R

A classical estimation of the integral in (4. 42) yields

oy
Alr) e 4 u’mc:ioc € T Max | AG) (4. 43)
Ix+yl &
'y
As Mq)‘(_ ‘A(O()\ tends to zero as }&) goes to infinity, the
R

contribution of r'g vanishes as the radius R tends to infinity,

and we can write for the region D+

¥y —LXX
/ d« (4. 44)

2
em™ )~
In the same way, we can write for the region R+ where x>-y ,

y>o0
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Yy- LAKX
vix,y) = _| Al) e 4 do (4. 45)

U3
@m) -

The integrand in (4. 45) is analytic inside the integration contour.
Cauchy's theorem yields WCX/Y)E- O in the region R4 ,

which was to be expected.

Inversion by the Convolution Theorem

We start from (4. 39) and (4.40) and suppose >/ positive

~+00+ia

Yix,y) = I kshao  ¥7~ Cw{d & (4.46)
2w ) o (@+kchp)Y
From Appendix 4-A,
+00 +1q
'Fl xy) = _1 Y”L exy B c“xdo(
2T ) e |

- B [ k(x%=y)"™]  x <y

o , XD>=Y (4.47)

H

and we have, by the residue theorem,
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{2 (% y)

]

+90+1q
‘ J' ksh}o &..L‘X)(d“
27

) +9&+ kchu

®

i

Cheshpu exp(ikxch) | x <o

0 ) X >0 (4. 48)

Then the convolution theorem yields

~Y
. L ke (x-
Y(,y) = -| ds ikshw e’ 4 wﬁhfi[ﬁﬂ‘-y‘)"‘]
X
for X(-y} )/>O
= @) for X >-Y, Y >0 (4.49)

Inversion by Change of Integration Contour

We now start from (4.39) and (4. 44), which expresses Y as
a contour integral. We work in the region D4 ( XL=Y,”> O )

where we can define the following set of polar hyperbolic coordinates
x:-p&% (4.50)
Y= bshg (4.51)

with
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OCs p<+w
O\(S <+ &0

The form of the exponent in the integrand of expression (4. 44) drives
us to replace the integration contour C} by the elliptical contour

E defined in the & -plane by
X = k ch(%-it) (4.52)
where -—-'-“< t <T

When ¥ >O (as in the present case) the ellipse E is

described in the clockwise direction. The ellipse E  has its focuses

at the two branch points k of the integrand of expression (4.44).
When 00 > % > )-b , all the singularities of the inte-

grand of (4. 44) which are situated inside Q are also con-

tained inside [E (figure 4-2). Then

Yy-tax

L G . Al) 77 Y (4.53)

@™ e,
When }A;) Q@ > O  the pole o Qg kd\,}-b , which is inside
Q , 1s outside E. (fig. 4-2) and thus its contribution must
be added

¥y-L XX

Y = - _| 0 P dx

@Tr E}

Xy-(xx
+ AK) e 4 do (4. 54)

m oy
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where C  is a small contour around the pole &= - k Ch)b . Then

-ix
Yo oo | Ame T

em™ Je,
. e},kxch).b + Lkysh

(4.55)

We now evaluate the contribution ‘Vg of the integration on contour

E .

Y= -tk sh(9-¢t) (4.56)
¥y- lax = (kpcost (4. 57)
Thus

T
ckycost
Ye = - s\mg_. E—L Dees dt (4.58)
2T ) o ch(%-it) +chpl

Consider now

B = sh i (4.59)

ch(g-(t) + ck,).u

The imaginary part of B is odd and thus does not contribute to the
integral in (4. 58). The real part of B can be written after some

algebra

Re(B) = W2)sh(%+1)  _ ) sh(8-p 4
cost + ch(g-;. M) cost -+ Ck(“ﬁ- )4,)
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We then define the function

v'k cost
G-().,p) = 1|9 sha dt (4.61)
2 A cost +ch )

which enables us to write (4. 58) as

Ye = - G‘(‘S‘*}&,D) + G(‘S-}b,p) (4. 62)

Assembling results (4. 53), (4.55), and (4. 62) we have, in the re-

gion D+ s

v ) eikxckju. + tkysho h (-

_G-(‘g-p-/u.,g) + G(§-M,p) (4. 63)

where h(x) is the Heaviside step function

{ X>Q0
h(x) = (4. 64)
O X <O

Before we discuss the physical significance of expression

(4. 63), it is useful to study the function G’()\) D) in some detail.

Properties of G‘(A; D)

The integrand in expression (4. 61) defining the function G
has a singularity at A=0 . Apart from the neighborhood of
A = O, the function G‘();, 9) may be easily computed. The
modulus of G is shown on fig. 4-3, while the real and imaginary
parts of G  are represented 6n fig. 4-4.

Some properties of & are summarized below; the proofs
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are given in Appendix 4-B.
Lemma 1

G’(A) 9) is an odd function of M\
GEMb)= - G(N, p) (4. 65)

Lemma 2

The function G’(A)p) converges uniformly for ). be-
longing to f_)\o, -+ OO) and p belonging to [ 90) + 00)
where Ao and ya are arbitrarily small but different from QO

(4. 66)

Lemma 3
The function G’()/ 9) converges uniformly to (IIZ)Jo(ky)

when >\ tends to infinity

\;m GQp) = (V2) Jolkp) (4. 67)
Lemma 4

The function G‘(X,y) converges to W2 when Y tends

to O and A tends to infinity

lim G,p) = V2 (4. 68)
A0, DO

Lemma 5
The function G‘(A) D) has a jump discontinuity at A= Q .
When A tends to QO by superior values

\\ wm CJ’()) p) = Q/Z.) 2:- Lkp uniformly (4. 69)

X—D O+

Lemma 6

When ‘(p (C"‘LA —-‘) >> | , then G(X}p) has
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an asymptotic expansion of the form

~tk '
S [eshy T
Wkp

Gyp) ~ 2
Ckp -l'.'ﬂ'/"r ]

+ th

e ‘ ] (4.70)

kp (chi-1)

A
2
The modulus of & given by the previous asymptotic expression
is shown on fig. 4-5; the real and imaginary parts of & are repre-
sented on fig. 4-6.

A comparison of figs. 4-3 and 4-5 and of figs. 4-4 and 4-6

shows that the function G’(A) 9) is closely approximated by expres-
sion (4.7) when kp > 20 and ) > 0.2

Lemma 7

When ky(C"lX~ \)<< V and kp >\ , an asymp-
totic expansion for G’(A)p) is

G-(),,p) ~  sgn(r) (\/2) Q-.Lkp
+ o{[ky(dh\'-.l)]'/zj + O[(kp)‘w']

The consequences of these lemmas follow. We consider the
field in the region Dy .
From Lemma 4 we obtain immediately
lim WYe (x,¥) = O (4.72)
Y

X -
Using L.emma 5 it is easy to show that the field expression (4. 63)
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has no discontinuity across the line g =)A¢ . The jump intro-

duced by the Heaviside function is compensated by an opposite jump

in Ve
*(%4,p) = - 6z, p)+ L 12)
v(s,p) = €% _epp) -1t T wm
i s
Y(%,p) = Y(e_, p) (4.75)

Lemma 6 yields an asymptotic expression for Wg in the region

\(9 [C"\ ( g-—)A,) - \1)) \ {(i. e., sufficiently far from the line
-2

€= }U ). In this region Wg is of order (kp) J

has the form

-L LT y -
Ve ~ __..,&_Sh [ Q‘L <+ T _ e"'kp tmu}
@rkp)? L chyg - C‘mju.— ch& +chu
+ O0{ 1 /[y (chig-p) -1} (4.75)
In the transition region around the lines ‘g:}.\, , for
kp CCL\(E --N,) - ‘\(( | while kp > | , Lemmas 6 and

7 vield the following asymptotic expansion for

Ve ~v San(%—-},u) (Vz2) g,"“‘p

-ka -HTU‘I
S N th
(QWk )Vz[coﬂ\.)u. thue
+ O} [ky(ch(8-40- ‘)U + O(l/kp)  (a77)

L kp.—i.mq:\
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Results
Using expression (4, 63) the complete field in D, may be

written as a sum of a '"geometrical optics' field
¥9.0. = Wi + h«(}&‘ DY (4.78)

and the field g given by (4. 62)

YV, = \Vaf.o. + Ye (4.79)

The asymptotic expression (4. 76), the fact that \V; compensates
for the discontinuity in the geometrical optics field at 3=/w ,
and the form of (4. 79) leads us to consider \V!.'. as a diffracted

wave., We write in D+

Ya = W (%,m) (4. 80)
Y, = q’a o, + W | (4.81)
and in D.

Yg.0 = Yo h([%l- ) (4.82)
Ve = -Ye (\2\))4,) (4.83)

The total field takes the form (4.81).

Expressions (4. 78) and (4. 82) for the geometrical optics field
show that the line L=+ )&« is the boundary of the reflection
region in D+ , while ‘g = -}4, is the boundary of the shadow
region in D. . 1Itis interesting at this point to seek the polar

angles 81 corresponding to these lines. We have
2 W2
th® = -vy/x, = (M=) y/k (4. 84)

= - (M* )" fan & (4. 85)
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Consider, for instance, (S*-: )AJ

‘Hn.S = 'th.}b = - (ML",)ULSW‘@ (4. 86)
M- Cos®

and then from (4. 85)

tan 8, = sin® (4. 87)
M -cos®

This expression was encountered in Chapter 3, and a simple kine-

matical explanation was given. The polar angle 8+ is représented
on fig. 4-7 for subsonic and supersonic Mach numbers. It is now
evident that the '"geometrical optics'' part of the field in the super-
sonic case behaves essentially in the same way as in the subsonic
case, while the diffracted wave contains the main differences. All
the characteristics discussed above may be found in the diffraction
patterns of fig. 4-8a,b. Their general appearance is substantially

different from the subsonic diffraction patterns.
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4,3 THE MEDIUM FLOWS IN THE POSITIVE DIRECTION, M>1

Formulation of the Problem

We consider a plane wave having a potential of the form (4. 1).
This wave reaches the half plane if (4.3) is satisfied. We define
again the angle ©OpM = CO&—‘( I/M), but now to satisfy (4.3) we re-
quire
M <O <KW (4. 88)
The medium flows now in the positive X -direction and the half
plane edge will only influence the region D where X),(Nz-l)‘/z\YK ;
the region D is bounded by the two characteristic lines originating
from the edge (fig. 4-1b). In the region R4 where X < (M{‘)vz)'/
and )’70 , the incident and reflected waves <b£ and (b‘. propa-
gate , while ° R. where X < (Mz- l)VZy and )’(O remains
unperturbed.

The preceding results will come out from the solution of the
boundary value problem which we now formulate.

As usual, we write the complete poten’gial in the form (4. 5),
¢ is the solution of the convective wave equation (4. 6) and satisfies
(4.7) and (4. 8), but now (4. 9) is replaced by ¢'b and thus ¢ are

continuous across

O §X<00 , ¥=0 (4. 89)
As in section 4.2, we define the transformed quantities \V) XU k|
but now the condition -GM < @ < 1)) and M>} lead to

- C
| -~ MCos©®

and we have to replace the definition (4. 16) of }b by
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hw = _M-Cos© (4.91)
e -~ Mcos @

Then expression (4. 14) becomes

%_;_,V__ = ik Shjb QXP(-Ckl’h Ck}&)

for

-0 <Xg0, ¥y=0 (4.92)

The function ¥ is solution of equation (4. 13) and satisfies the con-
ditions (4.7), (4.8), (4.89) given for P

We also need some information on the behavior of ¥ at in-
finity. This will help us to determine the transformed solution, the
regions of analyticity of this solution, the integration path for the in-
version formula.

In region RH’ s the complete field W’t consists of an incident

and a reflected wave

Yo = exp(-tkixichp - ikyshuw) (4.93)
Yy = E.xp(~t"<|¥a CH/UL. +L'l(.ysh/u) (4. 94)

In region R|- there is no disturbance %E O , and thus Y is

the opposite of the incident wave
Y = -exp (——l:kl)hdl)& -L"(;)/.sk/.c..) (4.95)
From (4. 94) and (4. 95) we deduce

Y < &xp (ki Xicho - kiclyl show) (4.96)
for Xy < ‘)’l

In region Ds s V'  reduces to a diffracted wave when X, tends
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to infinity; the results of section 4.2 and various results in nonsteady

aerodynamics of supersonic flow suggest that

Vg ~ Cx Jo (kip) (4. 97)
with p = (x¢ -)/2‘)‘/'z

Then

N” < Cy QXP [kai()(lz")’z)vl] (4. 98)
for X > |yl

The behavior of ¥ near the half plane edge will also be
used and may be found very easily from the discussion at the begin-

ning of the present section,
and X;—c 0. on Y= (0]

Solution by Fourier Transform Methods

While the solution ¥ may be obtained in other ways, it is
convenient to use the framework of the Wiener-Hopf technique, more
specifically using D. S. Jones' approach as treated by Noble [4.2].

In this method the Fourier transform is applied directly to the partial
differential equation to obtain a complex variable equation which is
then solved by analytic continuation.

We delete the index 1 and use the definitions (4. 25) through
(4.29). We suppose that W is sufficiently smooth, in the sense of
theorem A, p. 11 in Noble [4.27, then we deduce from condition
(4. 96) that N (0(/ )’) is analytlc in the half plane G < k d‘\}L
while condition (4. 98) shows that LV (0(,)/) is analytic in the
half plane k; T
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~
The behavior of \V(q) )’) as ‘YI tends to infinity can

be deduced from (4. 96) and (4. 98) as follows:

Wl < 1| |we ™) dx
(2“’)”1}..00
Ayl v
< H’E'r’x‘dx « : lWe.'uxidx
(2-“-)!/2.}“” (ZTT) /o i
S \\Vll -+ \“Val | (4. 100)
with
i\
Wl < cof exp[(kichu-a)x-kilylshpldx (4101
Ml < o exp [ ke le-y®*”-gx] dx (4. 102)
y\

d
Expressions (4. 100), (4.101), (4.102) show that \ W(W) Y)‘ is
bounded when \Y\ tends to infinity with
ki < © < k¢ C"LM- (4. 103)
o
Hence, \V(o() )/) is analytic and bounded in the strip {4. 103).

7
The Fourier transformed differential equation for \'P(Q', )/)

is (4. 32) with X defined by (4. 33), and we use the same branch of
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x as in section 4. 2. This branch is such that Re..(Y)>O in the
region ki <G
A solution of (4. 32), bounded when \)/\ tends to infinity and

having a continuous derivative with respect to )l across the line
Y" O , is
Y(x,y) = A®) Pl , Y>>0

= -A(x) ¥ ) Y <O (4.104)

To find A(“) we use D. S. Jones' method and write the following

identities:

%(0(,0) + \T{(tx, Q,) = A(x) (4. 105)
‘T{..(K,O) -+ q’:(o&, 0.) = -AX) (4.106)
d"\’+(0<¢0) L d¥(0) . _y AX) (4.107)
dy dy

From (4. 105) and (4. 106)

2 A(D() = q’{.@b O+) ha "V- (0(; O..) (4.108)

The right hand side of (4. 108) is analytic in the half plane G < kbCth,
and will therefore be called ZD @() d q/ (ql O)Idy is known

from (4.92),

dw_.(o(,o) - Lk shp (4.109)
dy @) (- kch)

for G < ki C"L)L .
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Expression (4. 107) may then be written as

K“M + ksh = - D.&) | (4.110)
dy @) ¥ (x- kche)

This equation holds in the skip kl: < G <K l(f C"L)-(,
The first term of this equation is analytic in the upper half plane
| &3 > kc , while the third term in analytic in the lower half plane

G < kc Ch.fb . The second term may be decomposed as follows:

ksh - ke shy { | o
@R ¥x- kchp)  @MYe{ar-kehp)l (Eat)”® (k& k’tk),gj’%

-+ k sh Mo
@-Tl')‘lz. (x- kck?u) ( k2. k"d’l.'};)v"'

= Hi(x) + Ho®) (4.111)

It is easy to see that H+ (0() does not have a pole at
X = kC}\.}b and is therefore analytic in the upper half plane.
H.,_(O() is analytic in the lower half plane, and equation (4. 10) can

be rearranged as

J(x) = Xa‘%_q’:i_.(.m) + Ho@&) =-D(x)-H(x) (4.112)
Y

This defines a function J-(,W) regular for G > k( and also for
© < kl: Ch—}b , and consequently \T(D() is regular in

the whole ©O( -plane. The behavior of \'V near the edge (4. 99)
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yields
-1
D.&) ~ & as X —00 (4.113)
o |
Thus, J@) A~ X as X tends to infinity, and we conclude

from the Liouville theorem that J@)E O . Then D_@() = - H.(x)

or

A) = - be shy (4.114)
@-TI')V" (“-kck}&)(ki. kzck‘ﬂ.)‘/z

and ‘V(X,y) may be found by taking the inverse transform of (4. 104)

with A(X) given by (4. 114)

*mﬂ'q«x ¥yl
YY) = sgniy) L | e
2T¢C O(-kckﬁ.,

- +i{a

d o (4.115)

where @ is chosen in the strip kf, < Q< k\', CLL}A./
As y enters in the integral in (4.115) through its absolute
value, we shall only consider the region y >0 . As in section

4.2, we can formulate W using closed contour integrals:

for X<Y , Y>O

-LXX - Y |
vV = | L 4 da (4.116)

2T I~ «—kck)x..

for X >¥ ))’)O

~ XX~ By
Y = ‘ 2 do (4.117)
2T o N-kck/uu
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The integrand is analytic everywhere inside the contour of integration

of (4.116}) except at the pole & = ka . Thus, by the residue
)-b

theorem | .
v - e...;.kx chyr + Lkyshu
for X&LY , ¥Y>O (4.118)

We have now to invert (4. 115) or (4. 117) in the region XDV, y>0.

Inversion by the Convolution Theorem

We are going to apply the convolution theorem to expression

(4.115). Using the methods of Appendix 4-A, it is easy to show that

+%+ia
~XX-¥y
L) = L | ¢ do
27 .
- 004\,
= - ky 3\[‘<(X?‘-Y?’)uz] for X>Y
Q(z__yz_)\lz.
- O ' for X<Y (4.119)

The residue theorem vyields

+ao+t'ﬂ.
| e-uxx da
27| ({x-kc
..Oo-t-‘q( "L)‘L)

e:.ckx ck)u.

{'2("))’)

i

for X >»Q

O for X<O (4.120)

i
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Then
00

Y0y) = —ky | do & DM S[ kst y)*]
X c2-y9)™

for X Y (4.121)

This expression contains an infinite limit of integration and is there-
fore not well adapted to numerical computation. To obtain a better

expression with finite limits we write \V(x) Y) as follows:

00
YY) = ~ky| do & HEDM T, [k(styy¥]
7 (-62-_,)12)‘/2.
x '
+ ky| do e"‘k@'b)ch}‘ I L ke yy)"”]
s (Gl.yl)‘/l
= 1\ -+ Iz_ (4.122)

Some algebra and formulas 2.13 (49) and 1. 13 (54) of the Bateman

Manuscript Project [4.3] yield the following expression

Y%, y) = __z-tlk@(-y)ch).u+ e—-t’kxtk;.p-f-ikys‘w_

X
ey de &€ DR k(e yi]
@L_Yz)‘lz-

(4.123)

Y
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The second term has the form of a reflected wave; the other terms
are hard to interpret in their present form. It is interesting to com-
pute \V(X, )’) near the characteristic line 'x-a y

lim Yy = -1 + Y% (y+, y) (4. 124)

X-—-»—v)/.,.
Expression (4. 118) shows that

lim Y0y) = Y (y-,Y) (4.125)

x—-—b)’..
and thus \YCX,)’) has a jump discontinuity across the characteristic

line Xay
(‘V-l);_" = - (4. 126)

This type of discontinuity is allowed because the type of the partial
differential equation used in our mathematical model is purely hyper-
bolic. If viscous terms were added to this equation, this sharp dis-
continuity would be replaced by small zones of strong continuous

change.

Inversion by Change of Integration Contour

The procedure is the same as in section 4.2. We therefore
outline only the main steps. We work in region D+ where X> Y ,
y > O and define the set of polar hyperbolic coordinates
x = pch¥ (4.127)
Y = pshd (4. 128)
with
Og H<ow
08 <»
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We start from expression (4. 117); the integration contour in (4.117)
is represented on fig. 4-9. We want to replace this contour U
by the ellipse E  defined by (4.52). The ellipse contains the
branch points -k and +k which are the only singularities of the
integrand of (4. 117) inside the initial contour

When ‘g),-&. the ellipse encloses the pole &= kdyg which

does not belong to the interior of the initial contour < and its

contribution must be subtracted. We have
O<E< 0

Y
&y(xl y) = ] e Y do (4.129)
2Ti & - kchu

)u.<‘£ <00

YY) = dikxck)p-\-ukysh}.t,

-xXx- Yy
- 2 do - (4. 130)
2T o - kck}k

E)

The ellipse contribution may be evaluated as in section 4.2 and leads

to the remarkable result

Ye = - G(‘S*')*-}D) - G’(?—)&.)p) (4.131)
where the function G(A,D) has been defined by (4. 61) and certain

of its properties summarized at the end of section 4.2, expressions

(4. 65) through (4. 77).
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Using the Heaviside step function we can assemble (4. 129)

and (4. 130) into

v - Q’.kachp_ +Lkyshy [.\( % - M

~6(3+p,0) - G(%-p,0) (4.132)

in region D+
Using expression (4. 69) it is easy to show that VY is con-

tinuous across the line (& =}-&, . The Heaviside function jump is

compensated by a jump in G (9—)-&,?) :
-tk

Y(%+,9) = 77 —e2pmp) -

Y (%4,p) = W(%,0)= }_Le-ukp_ G(2m,p) @133

Expression (4. 68) provides the limit of \V near the line X=Y in

the region D+

lim W(X;)’) = - - Wr()/.uy) (4. 134)
X—

We found this limit previously, expression (4. 124), and we showed
that W(X) )’) had a jump discontinuity across the character-
istic line X = y

An asymptotic expression for LVE may be found by using
(4.70):
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e_ikp“m«o ~ ef'k9~ TG
chg +chy chg -chpw

\VE A W) /5\'\ ? [
@rwkp)V*

o [ kp(dl('g.),\,)-\)] (4.135)

From (4. 132) we can write the complete field in D... as a sum

of a geometrical optics field

\'Yg,.o. = W + \Vr\"\((s-fb) (4. 136)

and the field g of expression (4.131). We call Wi diffracted
wave because of its properties.

Then in D+ we have
Ya = Y& (‘S))L) (4. 137)
while in D-

\\’%.o. = W h (M-8l ) (4.138)
Ya = —-vwe(igl, ) (4.139)

with these definitions

Y& = W%.o. + Y4 (4.140)

The form (4. 140) is by now familiar, separating the complete field in
a geometrical optics field and a diffracted wave compensating for the
discontinuities of the geometrical optics field. The line g = ).L,
boundary of the reflection region has a polar angle S+ determined

by (4. 87). The meaning of this expression was discussed in Chapter 3.
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The geometrical optics field behaves like in the subsonic situation:
it is the diffracted wave which,while present for the same physical
reasons, propagates differently.

A region of complete silence appears under the half plane in
R.. , while R+ is a region of pure reflection; in both regions
\\/d = O . At the boundaries of these two regions, the character-
istics originating at the half plane edge, the diffracted wave has a
jump discontinuity. Near the downward characteristic the diffracted
wave propagates only and the value of the field oscillates strongly,
the number of oscillations increasing with the value of kr' . The
mathematical explanatidn lies in the fact that when A becomes large
G(A, p) is asymptotic to QIZ) JO ( kp) ; then when V
tends to O from some finite value, the Bessel function oscillates
around zero. Diffraction patterns are shown on fig.4-10 for several
values of l(\“ . They show all the properties described above and
a general appearance different from the subsonic case diffractic

patterns.
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APPENDIX 4-A

400 4 \Q '
~\XX
Inversion of I = _1 8"‘ eX\Y‘ - dQ’
2N |
- 90 +1Q

To apply the convolution theorem to expression (4. 46) we need

-+ 00 + {q
~1 ¥y — t&X
I = ] ¥ e "y« (44 1)
2N .
-0+ iq

where
¥ = (k*-a?)
a <-kichp <-ki

When XD -y ) )’ > O  we close the integration path by a circle

F‘R in the lower half plane. As Max X-‘ tends to Q as R
tends to infinity, this circle does not gir:e any contribution to the inte-
gral

I - | ¥ By X de - (4A. 2)

27 <

The integrand is analytic inside < and thus I= O for X>->/ .
When X <~Y ) Y} @) we close the integration contour in (A4. 1)
by a big circle in the upper half plane, whose contribution to the in-

tegral also vanishes

-l Q‘G'Y"-“x dx (4A. 3)

I = L Y
2N )

We define the set of hyperbolic coordinates
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X= -—pc\r\,g
Y= psk?,

(4A. 4)
with

0g % <
O&p < 0

and replace the contour D

by the ellipse E defined by

x = kch(g-Lit)

(4A. 5)
~-T<t ™

which contains all the singularities of the integrand in (4A. 3).

For >0 and T going from =W to W , the ellipse is
described in the clockwise direction. Introducing (4A.5) in (4A. 3)
we obtain

" ikpcost
I = -1 Q+ 7 d,t = -Jo(kp) (4A. 6)
20 ) w )
and then
o - Jo[kocyy)] « <yl
= O

Xx>-lyl  a
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APPENDIX 4-B

Properties of the Function G(’VD)

The function G‘(X,p) is defined by

Tr .k .t
G()\, V) = __L_ Q/L pws th d.-t (4B. 1)
Al cost + ch )

°

and was seen to play a central role for both positive and negative
flow directions. We give here the proofs of the Lemmas 1 -7 of the
end of section 4. 2.

Lemma 1

G’(A) 9) is an odd function of )\
G- P) z - c,()\)p) (4B.2)

Proof. The integrand of {4B. 1) is odd with respect to /\ and
s0 is G’(/\) 9)

Lemma 2

The function G’(.\, 9) converges uniformly for A belonging
to [Ao)i- 00) and p belonging to [yo,—roo) where Ag and
90 are arbitrarily small but different from zero.

Proof. To show that G’()\)p) converges for any A  and
V in the intervals given in the lemma, we write the following in-

equalities:
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de

w .
oo ¢ 1 f ket
o ch) -~ cos¥

Ll
< (shh/ch\) ‘ de
2W | | —(os¥/cha)
o
|z w
< _ de +.1 d¢
20 ) 1o (oselchd)  2m)
< L wothdo 4 L (4B. 3)
2 4

This shows that for a given )\O'-* O , G’C)\, p) is bounded and thus

converges.

Lemma 3
The function G‘()) p) converges uniformly to QIZ) Jo(kp)

when A tends to infinity

lim G(NMv) = (2) Bo(ky) (4B. 4)

A— 00
Proof. J’aQ( 9) may be represented by the integral ex-

pression
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n .k t
T (kp) _L[ E,b peos dt (4B. 5)
™
(]
then
L
6Oy p) - (R Siky)| g L e° ws _shd _ t)‘d‘c
2T o COST-th
ckx sh) +cost| dt
2 o ch) +cost
K, (4B. 6)
Thus,
im G(Mp) = (/2) Teky)
A0

uniformly with respect to 7

Lemma 4

The function GOUD) converges to % when 7 tends to 0
and A\ tends to infinity
lim G(yp) = V2 (4B.7)
A% ) Do

This is a direct consequence of Lemma 3.
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Lemma 5
The function G‘(A, p) has a jump discontinuity at A =0

When A tends to 0 by superior values

_Lkp

im G(», v) = 2 | (4B. 8)

4
Mo 04 2

Proof. We decompose the interval lo) Tﬂ in two parts

€

-tkpcos @
Gy = P sh) __ de
2 ), ch) - cos?
(™ _ikpeost
| e v shA  dy
2T | ch) -cos
c
= I, + I, (4B.9)
We apply to I‘ the mean value theorem-
©_ikpeos?
L, = _L Q-L Pt 3'\). d¥
2% chA —cos
0
with o< ‘P\ <€ and use the change of variable = tdh ¢
to get 8
' ¢
I - o Q-LkDCOS i 'tqw'i[ Tan(ef2) (4B. 10)
- :

th (A [2)
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Then

L 8 h A (4B.11)

From (4B. 10) and (4B. 11) we conclude

-~k
\'IM Iu — Q’Z)Q 'L p
A—> O
e 0

A— Oy
e 0
and thus

| im c(yp) = (2) e,"“"

Ao 0+

Lemma 6 |
When k p(ck)« —l))}\ , GU')D) has an asymptotic expan-

sion of the form

+ tha Qt'.kﬂ-ﬂl'l'*] N 0‘: :h )] (4B.12)
Kp (chA-1

Proof. A simple application of the method of stationary phase
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(Copson [4.47, p. 27) to expression (4B. 1) whose stationary points

are t:: O and tsz gives

o Lkn + LTy

G(hy) ~ L (X "2 _gha
21 2kp’ ch)-

4 (TT )"Z sh) eikp-ﬂm + O

2m ‘2kp’  chi+i kp

but does not yield the condition kp(ch)«- |) >> |\ . To obtain

this information we proceed as follows. .
ckpch)
We multiply the definition of G (M) by &
and differentiate with respect to y

w
. 1 h
.."_l_‘_. aukp(cas‘t+c As)hk dt «B.13)
27 A

d {_G(\, 0) eikpckz\]
dy

The integral on the right hand side converges uniformly for

A E (0, ""00) and p € (o; + oo) . According to Lem-
ma 2, the integral defining G(A; y) also c67nverges uniformly in
the same intervals. The differentiation is thus justified.

Then (4B. 13) yields
a‘.l_.. [GQ; p) e Lkﬂd‘u\] _ MQLkpCh/\ A (kp) (4B. 14)
V] 2.

which, together with

lm G h) =0 (4B.15)
p—c 00
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gives

G(\p) = - ikshh e

Jo(ky) ds  (4B.16)
2

o.kpoh)»[ Qi.kc.ch)s
9

We now consider L(? sufficiently large and use for JQCkG)

asymptotic expansion
Jo(kt) ~ ( ) % cos (ko -TH) (4B.17)
Tko

Introduction of (4B. 17) in (4B. 16) and changes of variable of the

form Vza. ks CCL‘.A— ‘) and Vz'z ko CC‘\.X + ‘) yield

&\ ) ~ -_.é:‘_ sh ) Q-Lkpc‘\é )‘IL&

+00

v 1 '
(Ch’\_‘)_\lz [ ‘QLV +tTI’I#dV
[ky(ch)-l)]m'

<+ 20

v
+(Ch)\+\)-‘ll }, eLV-l'LW‘ldv}q O(l’kp) (4B. 18)
[Wp (chr-D"*

When ky (C}\A - ‘) >\ we can evaluate the two integrals by

integration by parts, and this finally yields (4B. 12).

Lemma 7 _
When k Vj (c\r\X - ‘) <X!| and k 9 >>|  an asymptotic -
expansion for C‘r(),v) is
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G(M D) ~ sqn(A) (12) e’“‘p + O{[kp(ch)—l)}"‘}

+ 0 [ “"7)"12] (4B.19)

Proof. We start from expression (4B. 18) but now the first

integral gives

[ v - ;_v__‘j%f"’% o} [ kp(cha-1]"%
ky (cha-1]"2 2

The asymptotic expansion (4B. 19) follows immediately.
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Fig. 4-3. Modulus of the function "G'Os, y)
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Fig. 4-4. Real and irnagiﬁary parts of the function G'O\, p)
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Fig. 4-7. Polar angle S+ definiﬁg the boundary of the reflection
region.' The boundary of the shadow region is at -=-S+
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Fig. 4-8a. Diffraction pattern of a plane wave impinging on a half
plan€ in a supersonic moving mediugn, M= -1.2. The
plane wave incidence angle 0 = 407, kr = 30.
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Fig. 4-8b. Diffraction pattern of a plane wave impinging on a half
plane in a supersonic moving medium, M = -1. 2. The
plane wave incidence angle | ©® =407, kr =40,
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Fig. 4-9. Integration contours in the complex' a plane for M>0 .
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Fig. 4-10a. Diffraction pattern of a plane wave impinging on a half
‘ plane in a supersonic moving mediun% M=1.2. The
plane wave incidence angle © = 130°, kr = 20.
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Fig. 4-10b. Diffraction pattern of a plane wave impinging on a half
' plane in a supersonic moving ediu.mé M=1.2. The
plane wave incidence angle = 1307, kr = 30.
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Fig. 4-10c. Diffraction pattern of a plane wave impinging on a half
plane in a supersonic moving rgedium, M = 1.2. The
plane wave incidence angle = 1307, kr= 40,
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Fig. 4-10d. Diffraction pattern of a plane wave impinging on a half
plane in a supersonic moving mediumb M=1.2. The
‘plane wave incidence angle () =100, kr = 20.
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CHAPTER V

ACOUSTIC RADIA:I‘ION FROM A TWO-DIMENSIONAL DUCT.

EFFECTS OF UNIFORM FLOW AND DUCT LINING.
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5.1 INTRODUCTION

In the present high bypass-ratio turbofan engines the internal
noise associated with the turbomachinery has become a major prob-
lem. The fan, which is the largest element, displaces the greatest
amount of air and is most exposed to ground observation, is a strong
noise generator. The noise produced consists of three types: broad-
band turbulence-generated noise, discrete tones generated by rotor
blade passage and wake impingement on the stator vanes, multiple
pure tones at lower frequencies associated with rotating shock patterns.

The discrete noise genei‘ation by axial compressors has been
described by Tyler and Soffrin [5.1]. This noise is produced at the
blade passage frequency and its harmonics and excites various propa-
gating and attenuating duct modes. This discrete tone noise is prom-
inent in present day engines with pressure levels reaching up to 160 db
in the inlet duct and frequencies situated in the range 2000 to 7000 Hz
of greatest sensitivity for the human ear (Marsh, et al. [5.27).

Recently, Mather and Savidge [5.3] have suggested that what
is considered as broadband noise might be identified, by a more de-
tailed spectral analysis, as a series of discrete tones associated with
the shaft rotation frequency and the stator guide vane number. They
also show that these tones propagate like plane waves.

An important aspect of the transmission of sound generated by
a turbofan is the radiation from the duct end section into the surround-
ing space.

The angular distribution of acoustic energy flow directly in-

fluences the sound pressure level at various positions with respect to
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the aircraft and is of particular importance on the ground and on the
sideline. In usual practice, the distribution patterns are computed
by replacing the duct by an infinite wall with an aperture, neglecting
the flow presence, and applying the Fraunhofer approximation of op-
tics (such computations may be found, for instance, in reference
[5.1]). These are strong assumptions and some doubt should be cast
on the resulting radiation patterns and, in particular, on the predic-
tions for the sideline radiation.

In the existing literature, the possibility of changing the radi-
ation pattern by modifying the aperture field (i. e., by modifying the
types of propagating modes) has received little attention. The prob-
lem of turbofan noise reduction is usually approached in two ways. In
a first approach, a better aerodynamic design is sought which mini-
mizes the noise generation by the fan. In a second approach, various
acoustic devices, absorbing lining or resonator arrays, are inserted
in the duct to attenuate the pressure modes before their radiation into
the surrounding space.

Lowson [5.47] discusses the effect of th:; mode number on the
radiation efficiency and angular distribution. Experimental results
given by Copeland and Crigler [5.5] show reduced power and im-
proved radiation patterns (less side radiation) for the lowest mode
numbers.

While the attenuation properties of acoustical lining have been
extensively studied, its effect on th;z external radiation also seems to

be overlooked.

The purposes of this chapter are several. First we discuss
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the validity of the approximations of the standard Fraunhofer compu-
tational scheme. For this we have developed in Appendix 5-A an ex-
act solution by the Wiener Hopf technique, and in Appendix 5-B an
approximate solution for the radiation problem for a simple duct made
of two parallel semi-infinite plates. After comparing these solutions
the effects of a parallel uniform gas flow are studied by using the
simple transformation introduced in Chapter 3.

Finally, we discuss some aspects of the sound radiation from
a duct with sound-absorbing lining or "soft walls.' It is also shown
that the same general technique may be used to solve the radiation
problem in the presence of a uniform flow and absorbing walls.
These results are of technological interest because they give an upper
bound to the effects we can expect to obtain by installation of absorb-

ing material on the duct walls.
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5.2 ANALYSIS OF THE PROBLEM

Radiation Problem in a Stationary Medium

Consider a semi-infinite cylindrical duct parallel to the x-axis,
its end section at X= Q , normal to the x-axis. Suppose for the
moment that the duct has hard, or perfectly reflecting, walls.

Because the medium is stationary the pressure perturbation
and velocity potential are proportional and may be used interchange-
ably to describe the boundary value problem. The problem will thus
be stated in terms of a general potential ¢o .

All waves are considered steady with a time factor QXF (-Mt)

and satisfy the following boundary value problem:

®ix + Pyy + 0%,3 + k¥9°=0 (5. 1)

with i( = C&J,C

) q> = O as the cylinder surface D . (5.2)
dIn

The boundary condition expresses that the displacement vanishes at the
o ,
hard wall. We decompose the complete field *"(b't into an incoming
°
wave cbl'. travelling along the duct in the positive X direction and
© e
a field ¢ induced by the incoming wave cp(. when it radiates

from the duct end

i

3 P + ¢° (5.3)
o
The total field (bt must satisfy one of the edge conditions:

¢t (x, Ri(8),8) - P3(x, R(8), 8) ~v x'~ (5.4)



-151-

(5.5)

as X——o0_ on the duct surface, or
©
- Y2
PR N |
Ry
as X —-——-—>0+ on the continuation of the duct.

The physical meaning of conditions (5. 4) and (5. 5) was dis-

cussed in Chapter 3.

(+)
In addition to (5.1) and (5.2), the induced potential ¢ must

satisfy Sommerfeld's radiation condition at infinity,

lim (391’.. ¢k¢°) =0

r—e00 " Jn

(5.6)

We suppose that some generating mechanism has excited one of the

duct modes which propagates unattenuated in the positive X direction

towards the duct end. This constitutes the incoming wave and the

corresponding potential has the form

OL - e(kxx {(7,3)

This potential satisfies (5. 1) and (5. 2) and thus

3

eigenfunction of the problem
2
frr + 435 + Wf =0

3f . o
on

on the duct surface, with )A/ defined by

Wz ko ky

(5.7)

-F()’,bv) is an

(5.8)

(5.9)

(5.10)

Non-trivial solutions of the problem (5.8), (5.9) occur only for the

eigenvalues )A‘Wm of /A« . We wish to consider a propagating
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mode as incoming wave, that is, a mode with a wave number
real.

From (5. 10),

kx = k [I - (}blk)‘]v?’ (5.11)
then kx is real if )&2 < l(Z . The factor [‘-9&[‘()2]‘,2

appears very often and is therefore given a specific symbol

D = Ly - (}le)z]u (5.12)

In order to discuss the effects of free stream flow and wall
absorption we need a reliable computation scheme for radiation pat-
terns in a stationary medium. Consider a duct formed by two parallel
semi-infinite plates (Fig. 5-1); an exact solution for the radiation
from this duct may be obtained utilizing the Wiener-Hopf technique (a
good exposition may be found in Noble [5.67, pp. 105-110). This so-
lution is arranged in computable form in Appendix 5-A.

Radiation problems are most generally solved by an approxi-
mate method developed in Appendix 5-B. In this method the duct is
replaced by a plane screen with an aperture and the Fraunhofer ap-
proximation is used. This leads to a simple relation between the far
field radiation and the Fourier transform of the field in the aperture,
(5-B.19) or (5-B.26). This method may therefore be applied to any
cylindrical geometry for which the Wiener-Hopf solution is intractable.
It also provides a useful tool for analytical study of the influence on
the radiation pattern of a change in the aperture field.

Consider now an incoming wave of pressure amplitude A

travelling in the duct of Fig. 5-1
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Chex
e

| pL= A xCO&)A.N(y-. b) (5.13)

where

Mn = NTT | 2kb (5.14)

and N is an integer less than ZkB/TT .

The pressure far field outside the duct has the form
V2
Pt ™ Ah(e; kb, N) (b/r) (5.15)

We call the function h (65 kb) N) the pressure angular dis-
tribution. The function\ h is dimensionless, of O(\) and de-
pends only on the reduced frequency k b = wb/c‘ and on the
mode number N . (When a uniform flow is present h depends
also on the Mach number M ).

We also define |
D(e; kb, N) = 20 log, h(0;kb, N) (5. 16)

the value of \'\ in decibels.  The sound pressure level in the far

field may then be obtained from (5. 15),

i We have taken some care in defining the angular distribution
function, because this is not a standard quantity. As can be seen,

h(9; kb,N) conveys information on both amplitude and angular distribu-
tion and permits a direct computation of the SPL using relation (5. 17).

The directivity index and directivity factor commonly used in
acoustics (Beranek [5.7], p. 109) and taking the field of a unit source
radiating in free space as a reference are more difficult to handle,
and moreover the radiation of a unit source in free space has no
physical meaning for the present application.
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SPL = 20 \03‘0 Px/Preg ) Pref = 2 0% N|m?

or

SEL

i

20 log,, h(e; kb, N) + 20 log, (A]Pref)
+ 20 ‘°3|o (b/v) 2

thus
SPL = SPL(dudh) + DE;KBN) + lologe(blr) (s.11)

Using both exact and approximate techniques, D(QJ kb ,N)
has been calculated for several values of \(b and N . A few
typical patterns are shown on Figs. 5-2a-e, M= O . The ex-
act patterns appear on the left while the approximate patterns are on
the right.

The patterns D(_Q) obtained by the two methods are very
similar both in amplitude and angular distribution. The largest dif-
ferences occur near the normal to the duct axis. This is to be ex-
pected because the duct is replaced in the approximate method by an
infinite screen that lies in this plane. The difference between exact
and approximate pressure fields does not in general exceed 7 db.
Despite the major assumptions it involves, the approximate solution
is remarkably close to the exact solution. The approximate method
may thus be used with confidence for cylindrical geometries for which

the exact solution poses computational difficulties.
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Radiation Problem for a Cylindrical Duct Immersed in a Subsonic Uni-

form Flow

It was noted in Chapter 3 that an essential difference exists
between positive (exhaust) and negative (inlet) flow directions. In the
first case the duct has a trailing edge, the Kutta-Joukowski condition
applies, and the pressure is continuous across the duct continuation.
In the second case the duct wall has a leading edge, and the velocity
potential is continuous in the upstream region.

We proceed as in Chapter 3 by describing the general
problem by using a function 4) which represents the pressure per-
turbation P when  M> O  and the velocity potential ¥ when

M<O

All the waves are now solutions of the convective wave equation
‘?xx(\- M2) &+ 47)7 + ¢a,b, + Zﬂﬁkcbx +k2$ =0 (5.18)
and satisfy the no-displacement condition at the rigid wall

B_?L - O - - (5.19)
on

Near the duct edge the complete potential q satisfies one of the
conditions (5.4) or (5.5). The induced potential ¢ must satisfy
Sommerfeld's radiation condition (5. 6) at infinity. The incoming
wave potential ¢L has the form (5.7) where 'FC)’; '8) is an eigen-
function of the boundary value problem (5.8) (5.9), but in the present
situation cbf, satisfies the convective wave equation and thus the

expression for kx is modified
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ke = % [V~ & 1-m2) ] (5. 20)
-m*) Q ""‘)
Guided by Chapter 3 we define
ky = k /Q—-M’-)Vz (5.21)
Xy = | (\-—M’)Vz (5.22)
The incoming wave may then be written simply as
;= Q_CR‘MX\ eCk\D;X\ "F(Y)}) 5. 23)
where the symbol )}  designates the transformed 1)
p, = [\ - (/u,[k.)z]\lz (5.24)
Now define the new function ¥ such that
¢ = -LkMx' q}(xi,)', k\)}“\{) (5. 25)
Y is then a solution of the boundary value ptoblem
Yax, + Yy + Wyp + kTY =0 (5. 26)
d¥/[3n =0 (5.27)
on the duct surface. Wt  satisfies one of the edge conditions

(5.3) or (5.4) and W satisfies Sommerfeld's radiation condition

(5.6).

The incoming wave potential \PL may be found from (5.23)

and the definition (5.25)
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%= e L0y 1) (5-28)

o
This problem is completely identical to the problem for ¢ stated

by equations (5.1) - (5. 6); thus,
Y = cb°(x‘,>/3 k.j),«.) (5.29)

and then
cbt CX)y J ))*/, M) --lk;M)ﬂ ¢> (X\} ) k\/}k) (5.30)

The complete field corresponding to an incoming wave (k}}L) in the
uniform flow case may be obtained from the complete field in the
stationary case for an associated radiation problem for an incoming
wave (k))}k«) and a stretched X coordinate, X; . This so-
lution for the general potential ® permits calculation of the pres-
sure field.

When \ > M) o we have from the definition of ¢ and

(5.30),

.-Lk| X; 40 . l(
Pt(X Y5 k, M, L) = & Cbt(xy)) ‘W') (5.31)
When =-1< M $ O , Cb represents the velocity potential @

and the perturbation pressure may be found through the relation
Ax

which becomes

= pecu LM
R
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This is the pressure corresponding to a unit velocity potential in-

coming wave

-l ki Dy
\ﬁ - 2‘\. Mx, eb 1 DXy -‘?(7: _a’) {5. 34)

The associated incident pressure wave is

pi = _EL“'_(!—Mp‘) a f (5. 35)
(1-M%)

The complete pressure field corresponding to a unit incident pressure

wave is then

) ki Mx
= ‘ Y'Cb" + M _le (5. 36)
Py = L [
I=Mp, ki 9x
This expression contains both ¢-; and ’a ¢; /BX\ . To get

a better idea of the effect of a negative Mach number (inlet situation)
Q

we may use the integral expression for ¢.t for the special duct

formed by two parallel semi-infinite plates.

°
The expression for ¢t in this case has the general

-

form (Noble [5.67, expressions (3.34) or (3.37))

ot oyl
b-lyl)=-tax ;
$1 = 4{x) " de (5. 37)

-%0 +(a

where

¢=(x*-k)" | Re()>0 for -ki<o<ki

The application of (5.36) to (5.37) gives



-159-

+00+La_

Pt = %(‘x‘l} L“ﬁ.‘.ﬂ.l_l‘_‘.

—so+ia ' ~MD

b- .
QY'( \)") LD“X'CLO(‘ (5. 38)

To obtain the far field pressure, the integral in (5.38) is evaluated
using the saddle point method. The saddle point is at

Xy = - ‘(g Cos 9;

and we may write

Py = |- Mcos 4’;("!,)/5 \(‘}}4,) e,”““”x' (5.39)

I-Mp,
A comparison of (5.39) and (5. 31) shows that when the Mach

number is negative, the pressure field contains an additional factor

| =Meos &) | (5. 40)
‘ b M D|
This factor is of order one, larger than one when
-}
6 < Cos D

We have derived previously expressions for the pressure field
from which we can get relations for the a.ngula;r distribution functions
defined by (5. 15).

In two dimensions, the far fields corresponding to incoming

waves of amplitude A take the forms

for M=0
' V2
Pt ~ A h, (9, k, ) (bJr) (5. 41)
for

Pt ~ A h (85 k, Mo M) (b/r)"z (5. 42)
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When 1> M>0 expression (5.31) leads to

v \n(e; ke, o, M) = % he (6u ki, ) (5. 43)
where

N o= (X;L + )’2')‘/2'

or

N = h( - M2 )”2‘ (5. 44)
| = M%sin’®
and
tan e = Y - l_q_mz)\lz .
Xy X
or
fan 61 = Q-Hz‘)"z tan © (5. 45)
then
\[l.p .
h(e; k, u,n) =(— |-+ \ﬂo(e‘ 3 ki, ) (5. 46)
| - M%sin "6
When -~}<M&O0O , expression (5.39) combined with (5. 41)

and (5. 42) yields

I
h(ejk, i M) =(_l=M> " |-Mces®y
(e k, s M) ( M"sme) Mp,

\n(@;} kv, po) (5. 47)

For a three-dimensional space, the exponent 1/4 in (5.46) and (5. 47)

should be replaced by 1/2.
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5.3 RESULTS

The method given above may be applied to any cylindrical duct.
We shall specialize it to study the radiation from the duct of Fig. 5-1
formed by two semi-infinite parallel plates. It would be more ap-
propriate to study the radiation from a duct of circular or annular
cross section since this would more closely represent an actual turbo-
fan. However, the exact Wiener-Hopf solution for such geometries
presents computational complexities, and actually the radiation pat-
terns are qualitatively similar to those from the two-plate duct (see
Tyler and Soffrin [5.17).

Before starting our discussion, it is worth giving some of the
characteristics of the discrete tone noise generated by a typical turbo-
fan. Marsh, et al. [5.2] describe in detail the noise of a JT3D-3B
Pratt and Whitney engine. The JT3D develops a thrust of 18, 000 1b.
at sea level on a standard day. Its bypass ratio is 1.4 to 1. The
sound pressure level reaches 150 to 160 db (620 to 2, 000 N/mz) in the
inlet and exhaust fan ducts. The fundamental frequencies are between
1800 and 3700 Hz. A complete noise spectrmn;may be found in [5.27,
Fig. 16.

The inlet duct diameter in the JT3D is about D = 50 inches.
For a frequency of 3000 Hz the parameter kD/Z. which is similar to
l(b (for the two parallel plate duct) is approximately 30.

Reference [5.2] does not provide any information concerning
the type of pressure mode which carries the acoustic energy. An up-
per bound for the mode number may be found by using the theory de-

veloped by Tyler and Soffrin [5.1] for the cutoff frequencies of duct
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modes. Consider for instance that the inlet is a circular duct with

hard walls. The eigenmodes for this duct have for expression

with
) -
d'wm (MmqgD/2) =0 (5. 49)
ﬁ is the radial mode number and remains generally low. The in-
teger W is the lobe number of the spinning pressure pattern which
excites the mode (5.48). This number is related to the number of

rotor blades B and guide vanes v by the relation

m = nB+ ‘v ) \: .O’—.‘,ol.’.‘ll-o

For a reduced frequency kD/Z. - = 30 the modes (5.48) will
propagate without attenuation if W & 20. While there is no one-to-
one correspondence between \(E and k D,Z- and between )
and N . l(b and N were chosen in the ranges discussed
above.

We have calculated radiation patterns fer multiple values of
kb and N . Some typical patterns are shown on Fig. 5-2a,b, c,
d, e. The effect of the uniform flow has been included both for an inlet
{ ML O ) and exhaust ( M>0 ) situation. The basic radiation pat-
tern ( M= 0 ) is also given. When the reduced frequency \(b is in-
creased, the radiation pattern shows a larger number of lobes, a
greater peak pressure, and the angular distribution is displaced to-
wards the duct axis.

At constant frequency an increase in the mode number N re-
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sults in a greater side radiation. A good discussion of the basic ra-
diation patterns and their relation to the physical parameters of the
fan (tip speed, blade and vane numbers) is given by Lowson [5.47.
The radiation efficiency and angular distribution are discussed, and
it is concluded that it is desirable to have lower mode radiation for
reduced power and improved angular distribution (less side line ra-
diation).

The presence of a uniform flow has roughly the same effect
as an increase in frequency. Most visible is an increase in the num-
ber of lobes, while the amplitude is mostly affected near the normal
to the duct axis.

To see this more clearly, it is easy to obtain a full analytical
expression for the angular distribution h (85 k))b’ ﬂ) by using
the approximate method of Appendix 5-B. From (5-B. 32), (5-B.33)
or (5-B. 34) expressions of the basic angular distribution ho and
the relation between h and ho (5.30) for M> 0 or
(5.38) for M <O we obtain h

Consider, for example, N  even and different from zero

and M positive; then

h(e; kM) = @I Cb) p

( - M2 _)\I# \ (2/kb) sin 6 sin(kbsin®) (5. 50)
|~ M2sin?g (Mnlk) ) - sin2e)

We separate this expression into two factors. The first is the am-

plitude
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-2

G = (2m)

V4
( k\b)l’zy. |- M* \ (5.51)
| - M%sin*@

The second is a normalized angular function

%’(e) - ! (Zlkth) sin 9\ Sin (klbs‘ne!) (5. 52)
(}LNI k;)z - S‘nzel

such that MGGX %,(8) = |, Ifwe compare & to Qg (cor-

responding to M=0 )s

Q_ o5 (\- M’-sin‘@)'"‘"  (5.53)

Qo ¥

?| does not depend strongly on M , and thus & shows a
weak dependence on ™M  and is most affected near © = 90°,
If we consider now expression (5. 52) for %(@) we see that

the flow presence increases the reduced frequency from kb to k!b .
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5.4 SEMI-INFINITE DUCT WITH ABSORBING WALLS

While the noise suppression properties of acoustic lining
set on the duct walls have been studied extensively, its effect on the
radiation pattern has been overlooked.

The introduction of acoustical lining in a duct replaces the no-
displacement condition of a perfectly reflecting wall by an impedance
relation between the pressure and normal velocity fluctuations.

If ZA = Rp + UXp is the acoustic impedance of the
lining, its specific acoustic impedance § is the value of ZA

normalized by the characteristic impedance of air

S = zifee = (Ralee) + i(kalgc) (.54
The specific admittance is defined by

B = \I3 (5. 55)

The condition at the wall becomes, when the medium is not flowing,

PP - ik (5. 56)
In ' ﬁP

This condition changes the type of the duct propagating modes; a
change in the aperture field and in the radiated field results.

Another, more physical, description is as follows. The ab-
sorbing walls focus the acoustic energy towards the center of the
duct, while near the walls the energy is absorbed and the pressure
oscillations are small. The amplitude of the pressure field in the
aperture is decreased towards the edges. Such a decrease is equiva-
lent to a reduction of the aperture area and would result in a broader
main lobe in the radiation pattern and thus a lower directionality.

However, the decrease in pressure amplitude also produces a large
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‘reduction in the side lobe amplitudes. Such phenomena are well known
in the theory of aperture antennas (for instance, Collin [5.87, p. 76).

To show the effect of such a change of the aperture field we
consider the ideal case of a perfectly absorbing wall ( ﬁ = 00 or
g = O ) where the perturbatibn pressure at the wall vanishes. We
consider this situation for the duct of Fig. 5-1. The pressure am-
plitude for this case is given in Appendix 5-A, expressions (5-A.24)

and (5-A.25) for a unit incoming duct mode

pi = €™ sin un(y-b) 5. 57)
where
pn = NT |2 kb (5. 58)

A few radiation patterns for N =2 are shown on the right side of
Fig. 5-3a, b, ¢, d for this "'soft wall' duct. On the left side, the radi-
ation patterns for a hard wall duct are given for comparison.

The effect of a uniform medium flow has also been included
without effort by applying the transformation of Section 5. 2 (this is
possible because the new condition at the wall ﬁ‘t): O and the new
edge condition ¢ ( XY, & ) ——0 C) as X— O, on the
duct continuation do not essentially affect the method of Section 5. 2).

The radiation patterns for the soft wall duct show a very weak
side radiation (generally 20 db between the main lobe and the first
side lobe); the main lobe as predicted is wider. For N= | (not
shown), the main lobe is centered on the duct axis. The ratio be-
tween the far field pressures is given in Appendix 5-A, expression

(5-A.38), which is reproduced below:
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o= (Pt = (i12) (NT[kb) (I+ p)"cdr(e/z) (5.59)
(Pt) hard

The ratio & is proportional to N “(b , thus sound absorbing
walls are most effective for high frequency and low mode number
duct waves. It is therefore advantageous to propagate the acoustic
energy by lower order modes. The ratio “© is represented graphi-
cally on Fig. 5-4 for N=l| and N=2

It is interesting at this point to make a small digression and
compare the diffracted fields for a plane wave (\() @) incident on a

hard and on a soft edge. The incident wave has a potential of the form

¢l = QXP(-Ckxco.SG - ikysin @) (5. 60)
We give here only the asymptotic expressions for the diffracted fields

valid for kY‘>>\ and © far from ©-NW and L) -®

The soft edge produces (Bowman and Senior [5.9])

" | . Y
$gs ~ (2Tkv) “ 2005 Oz cos Bl ef’w“m" (5. 61)
cosB + Cos ®

while the hard edge yields

Pan o~ (ﬂfkv‘).uz 2sinB)2 stnbfz 2&" + LTk (5. 62)
Cos8 + cos@

Then

$as A, cot®/a coto/2 (5. 63)

day
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The diffracted field corresponding to a soft edge is more prominent
in the forward direction; if the incidence angle is superior to qu-
the diffracted field is reduced by a factor COT O/Z . A
mode Q(_, N) in a duct may be represented as a combination of

plane waves with an incidence angie given by

© = T2 + Cos"(NTFIZkb) (5. 64)

(Morse and Ingard [5.10], p. 494).
Suppose N“}Zkb x| . Then

w0z ~ () (NT/2kb) (5. 65)

and

Expressions (5.63) and (5.59) are then identical. This simple com-
putation shows how the acoustical characteristics of the region in the
neighborhood of the edge (a few wavelengths) significantly modify the
diffracted field.

Until now we have only considered ideally soft walls ( '53 O).
This gave a qualitative picture of the influence of duct lining on the
radiation pattern. It was seen that acoustical lining in an engine na-
celle might significantly weaken the side radiation from the duct. As
the engines of a commercial airplane remain nearly horizontal during
takeoff, landing and flyby 0p'erations , the side radiation is important.
It is difficult at this point to predict the change in ground noise for a
real aircraft. A decrease in loudness would occur only if the radia-

tion pattern for the basic duct without lining does not present a
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prominent lobe near the duct axis. In any event, the reduction of sidé
radiation would cut by a factor of 1/3 to 2/3 the duration of maximum
loudness.
Finally, it is worth considering the extension of the method of
Section 5.2 to study the radiation from a duct with absorbing walls
(of finite impedance) in a uniformly moving medium. When there is

no flow, the boundary condition at the lining is

%ﬁ_ = ikﬁlv (5. 66)

where [3 is the material specific admittance. This new boundary
condition changes the eigenvalue problem (5.8), (5.9).

When the medium flows uniformly in the duct the condition at
the absorbing wall changes. At the present time there is some un-
certainty concerning the correct condition to apply.

If we assume continuity of displacement at the absorbing ma-
terial boundary as proposed by Ingard [5.117, i.e., if we suppose that
the specific impedance of the material represents the ratio of the

pressure to the time derivative of the displacerhent 3!/31.',

L -1 (5. 67)
33/t s

Then the momentum equation in the Q direction gives

- 2
/e (—% + W%;)g = - _%_YP‘_ (5. 69)

and together with the definition (5. 7) of the incoming mode, yields

the new boundary condition
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. 3
P - ik (1-mMkypp (5.70)
n k

If we suppose that the material impedance represents the ratio of the

pressure to the normal velocity, we obtain
oP o Lk(\_Mk&) Rp (5.71)
on k

In both expressions kx has the form (5.19), but as it enters in the
boundary conditions (5.70) or (5.71) it will be determined by an itera-
tive process.

The eigenvalues )A'W\V\ of the problem for -F will be
solution of a transcendental equation and will change when there is a
uniform flow. Therefore, in addition to the transformation (5.20),
(5.21) and (5.22), we must replace the admittance P for M=0
by a new admittance P\ to take the effect of the uniform flow

on the absorbing material into account.
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APPENDIX 5-A

Acoustic Radiation from a Duct Formed by Two

Semi-~infinite Parallel Plates. Exact Solution.

In this appendix we derive expressions for the amplitude of the
far-field radiated pressure for a duct made of two semi-infinite paral-
lel plates. We start from the exact solution for the radiation problem
obtained by the Wiener-Hopf technique and given in integral form by
Noble [5.6], pp. 107-108. The saddle point method is applied to the
path integrals to obtain the far field pressure,and the functions lLf(o()l
and \K+(0()‘ which arise in the final expressions are arranged in
computable form.

The duct is represented on fig. 5-1 and the plates are sup-
posed, for the moment, to be rigid, i.e., the displacement vanishes

at the plates

3% =0 (5A-1)
9y ly=xb
for XL 0O on 7’:1‘5.

One progressive mode travels towards the open end of the duct
o] »
®T = exp(ikx) cospuy(y-b) (54-2)

where ).LN is one of the eigenvalues of the problem (5. 8), (5.9) for
the duct under consideration, ).A,N= NTT/Zb and N is any integer
less than Zbk/“' so that

ke = k= kp = k(\ - ()&le)z'}vz' (5A-3)

is real.
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¢o
The expressions for the complete field 1+ associated to the
incident wave (5A-2) are given by Noble [5. 6] and reproduced here

o
for convenience. When N is even, q’t is an even function of )’

R = b ek L) ErRLE)
2T ,M+iq7f(0(+ K)
e_Xp [ ¥(B-yl) -lxx ] d« (5A-4)

for ‘Yl = b

When W s odd, @% is an odd function of
-+ 00+ LA

*% = sqn(n)-L (s kY k() @H(k)"" \;»(oc)
Y(&+ K (5A-5)

L-FY"- W

2xp [ ¥(b-iyl) —iax7] d

for \)’\ >b

where 53n ()’) is the sign of y
The definitions of the various symbols used in the previous ex-
pressiohs are given in detail in ref. [5. 6] and only summarized here.
The variable o is complex
X = & +1LT - (5A-6)
a small imaginary part is assigned to k
k = ‘(r +L kL ) k{, >0

and X is defined by

2 V2
¥ = (&*- k%) (5A-7)
and the branch of X which is used is such that RQ (X) 20 for

O\  in the strip k¢S 3 g k\', . A central step in the

Wiener-Hopf technique is the decomposition of certain functions L.(Q’)

in a product ;L("(): L+ () L__(O() , where bL+(&), L. (O()



-174-
are regular non-zero in the upper and lower half planes, respectively.
For the present problem the functions L-)_- @() ’ Kz (O()

may be written as follows:

0o

- b
L+ (o) = exp [7 X(0)- Teox)] —It(l- k)" by N 5als)

n
Ke() = exp [‘*'Xo@‘) _-&(oq —[[0“ klbn-—tlz)uzf'r Lo b""""} (5A-9)
hel + X bp-y2
&
with
T.(x)=T"b Xcos"(o‘/k) , T-&) = Te ) (5A-10)

X&) = -Lboﬂr"[\- C +ln(1rlzbk)] + (\IZ)O(b (5A-11)
Xo@) = ~iba W1 - ¢ +In@m/bk)] ~ (W2)x b (5A-12)

C = 0,5772

bn b/nm

(5A-13)

The expressions for L_-t(o() and K-_g(o() appear quite unwieldy, but
we shall see that the pressure amplitude expressions contain only
‘Lﬁ-(“)‘ and \k-l-(o()l which are considerably simpler.

The integrand in (5A-4) and (5A-5) seems to have a pole at

A= -K:-kp . Actually, &= - kp is also a simple zero of L,,_(‘X)
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and K.,. (Oﬂ) , and thus is only an apparent pole. To obtain the far
field \)" = b and kY“DOO‘we use the saddle point method.
We consider now expression (5A-4) for N even and different from
zero; the cases when W is odd or when the duct has soft walls may
be treated in the same way, and only the final results are given at the
end of this section.

The field CPSE has the form

+ 00 +a. K

. %)

= %@‘) e ) da (5A-14)
-0 +la

where

X= rcs® | y= rsinb

9x) = Lb (k+k) LK) G+l L) o vb (5A-15)

X(W+K)
{,@c) = - ¥Ylsinel —ixcoso (5A-16)

The function {-(O() may be developed in series around the saddle

point o
(@) = f@o) + @-xo)flXo) + -é-@‘-“o)zqc'(’afo)Jr... (5A-17)

]
where (g is a root of {(ﬁo) = (Q and is found to be

Xo = - Kk cos ©
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The far field for ‘(\“-—DOO is then

o3~ [oT/elf ) “g e T

or

8 ~ @M kb) l+p) L+ k) (1-cosB)

L+ (...kcose) al.(kh-kbsine ~Tlk) (B/r')‘lz
P —wsb

2

Then when N is even and different from zero

1031 2 @ Akb) A1+ p) | Lk )| (1 - cose)

\z

L+ (- 050 [(p-ces@)] (B/r)

When N is equal to zero

98] x> @ k)" 2 |L(0]|Ls (heose)] (b
When N is odd
8% = @) * (kb5 )" | ke k)] ({-wse)“’-

[ K+ (- kes) [(9 - cos8)] (b/r)"™

(5A-18)

(5A-19)

(5A-20)

(5A-21)

(5A-22)

©
For a "'soft" wall duct ‘bt = O on the plates and the inci-

dent wave has the form
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P? = QXP(kaX)\b*'H}&N()ﬂ-B) (5A-23)

with )\LN= NT/2b and N any integer less than 2kb)W
Applying the saddle point method to expressions (3.39) and

(3.41) of ref. [5.6], we obtain for N even
EARNG M COMODEN:
Ly (k)| | L+ Cheos@)f(n-cose) (bIM)™  (sa 24)
and when N is odd |
2]~ @2 kbY 2 ) (+ )" 2" cos of2)

‘k&‘ﬂ)\ \k+ (-kcgs@)l(\g%ose)\(b/ r')‘IZ (5A-25)

To proceed we need practical expressions for ‘ L.q,(o()‘ and ‘ k{(a()‘ .
Computation of ’L«i—(o()‘ and ’K-l»(q)l . ﬁ

When the arbitrary imaginary part of k is set equal to

zero,
ki=0
the arguments of ‘ L+@()l and ‘K+ @‘)‘ in the expressions for

‘(b%‘ , are real. Then we see at once that
Re {Xz@ﬂ)} = (/2)xb (5A-26)

When ‘O(l < k then X is pure imaginary and consequently
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Re {T.&)} =0 (5A-27)

When !O(‘> k , ¥ is real, but CDS.'(“/“) is pure imaginary,

and again (5A-27) is true. Thus, from (5A-8),

u——-l»@()! = QXP(-%(XB)W (1- kzb%)'lz-— Lo bn ‘ (5A-28)
n= i

We call J the integer part of kb/TT
I < kb/m < I+ (5A-29)

For \$ns3’

\(“' kzb%)\lz — (“ bn ‘ == kbn I pn +0(/k‘ (5A-30)
where
On = [ "(“W/kb)z]‘ll | . (5A-31)

For JL N < o0

|G- keb3)% - cwbn | = [I = (bl 0] sase)

The infinite product of expression (5A-28) is composed of terms of

two types, depending on the %osi‘cion of N with respect to J .

|La@)] = exp(%«b)kan\ph + o/k|

= |
[V- &\on)"(\»txl/kz)]uz (5A-33)

nzJ+|
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We also note that when = NJ/2

Dn = [1- (NWIZkb)"]”Z =D (5A-34)

and ‘L*@Ol has a simple zero at X = — ky and then

‘L-&-(‘)‘)/(y*'o(/k)l = “bﬂlz QXP(-.%cxb)

[T 19m m/k;ﬁ [1 - Cebnf-atk)]™ (535

n=i,nFN2 Nz T+

The function ‘K«v(«)‘ may be arranged in a form similar to

(5A-33) with J  now defined as the integer part of (kb/T) + 1/2 or

27-1 < 2kb/T < 27+ (5A-36)
and replacing bn by

bh- V2 = (n.l:/:)’ﬂ' (5A-37)

and p n by‘

Inve = {"‘ [%Ql]z_} " (5A-38)

Then

3
k@) = QXP('%'O‘E)WB""/Z \pn-t/z ‘HX/kl
ﬁ[ = (kbri,) (1 - “z/k")]vz (5A-39)

Nz J4
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Expressions (5A-33) and (5A-39) are well suited for numeri-

cal computation and also provide some qualitative information about

‘d)% ‘ .We consider again the N even case; then '¢%, vanishes when

| L4 (-kcos0) (p-cos)|= © (5 A-40)
and from (5A-35)we see that this occurs when
6 = cos (Dn) for N= 4,2 .0 T, N NJ2 (5A-41)

Thus, the radiation pattern will be composed of «J lobes in the
angular interval Q < © <TV . In the interval W/Z(e <T the
amplitude of the field ‘ ¢%‘ does not vanish, but decays exponentially
on the same lobe.

Comparison of the Far Fields Corresponding to Hard and Soft Duct

Walls.
From (5A-20) and (5A-24) or from (5A-22) and (5A-25) we

deduce the ratio of the far fields for a given angular direction

6 = 1B%hseir _ (2)(TIkb) (+ p) ' cot®/2) (54-42)
\P% e

This ratio is discussed in Section 5.4
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APPENDIX 5-B

Acoustic Radiation from a Duct.

The Fraunhofer Approximation.

The usual procedure for computing the acoustic radiation from
a duct is based on three major apprbxi:mations.

1. The duct is replaced by an infinite plane screen with an
aperture;

2. the aperture field and its normal derivative are assumed
determined only by the duct outgoing waves;

3. the field at any point is computed by Kirchhoff's formula
and the far field is obtained by applying the Fraunhofer approximation.

In this appendix we formalize this procedure to show how the
approximations are introduced and also to derive an important formula
relating the far field to the Fourier transform of the aperture field.
This relation is well known in optics (Goodman [5.127], Papoulis [5.137)
and in antenna theory (Collin [5.87), but is generally not recognized in
acoustics. We give this relation in a form directly applicable to the
acoustic radiation problems considered in Chap‘;er 5.

In the first step the duct is replaced by an infinite screen with
an aperture. This approximation will only be tested when we compare
the exact solution to the present solution for a specific duct (Chapter 5).
We note at this point that the field behind the duct aperture (for
TT/?. <6 < ™ ) cannot be computed.

Kirchhoff's formula is then used to compute the pressure at a
point Ho in a domain limited by the plane surface Z; parallel to

the screen and the large truncated sphere 22_ (fig. 5-5),
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P(Mo) = 7}11_r (’%ﬁ G - F )ds (5B-1)
Z\"’Zz-v

where n is the exterior unit normal and & is the Green's function

in free space for the Helmholtz equation:

Vie(gln) + k*G(min) = -4Wé(g-n) (5B-2)

HV‘o"\”‘

G(rln) = L______ (5B-3)
|t -5}
We then assume that the pressure field satisfies the Sommerfeld radi-

ation condition at infinity
£im. R( ~ ik ‘:) =0 (5B-4)
R-O0

so that (5B-—1) becomes

F(Mo) = L}lﬁ' ('%% G - p %.%’)dd.,e (5B-5)
Z\ ~ ~

An expression containing only the pressure field derivative (BP/‘an
may be obtained by using the alternate Green's function whose normal

derivative vanishes on Z|

%G-i- l = O (5B-6)
9n 'z,
The Cartesian coordinates of mo are x°'7°' zo , we call

F'io (-XO) 70 ) ‘30) the reflection of Mo . M, (X\, Yi, 51)
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is some arbitrary point. Then the Green's function which satisfies

(5B-6) is
G’+(L‘o\r|) = _explikvs) -+ CXP(CkEn) (5B-7)
Yoi Yo
where
2 2 2 - /2
oo = [(xc..x‘) + (Yo "7\) + ('3—0-'6'\) ] (5B-8)
B o= [ (erx) + oy (3o -‘301]"2 (5B-9)

On the surface 2.

§f = -GLE and G+(r¢‘,‘r|)= Z2e
] X o

where the point M| (r|) belongs now to Z, . Then (5B-5) be-

ck Yo

comes

P(Mo) = -1 .ap
27 A W,

de . (5B-10)

Consider now a duct travelling mode

pi = explked £ (v, 2) (5B-11)

where { ()’) 3) is an eigenfunction of the boundary value problem

,{,‘», + {3’5 + )A,"-F =0 (5B-12)
a[{l1=0 (5B-13)

Expression (5B-13) represents some boundary condition taking gener-

ally the form of an impedance relation at the duct wall:
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of - Lkpf

on

The wavenumber in the X direction, ‘(x , is given by
kx = k9 = k[ - (}L/k)z]”z

Then (5B-10) and (5B-11) yield

P(M") = - ?‘:L U “‘9 'F(yli}l) Qckm de (5B-14)
T e

erfure Moy

The computation of Pmo) is greatly simplified by using the
Fraunhofer approximation. We define

&+ ¢+ 33"
then

iz
i = (\”Oz - 2Y07'l "zévo él + ylz‘* é'%) (5B-15)

\j2
If the maximum diameter of the aperture D = max (le'*'é\z) /

2
is such that k D /\"' <\ » we approximate gy by

o1 = o - (Yo +%{3,)/r~o (5B-16)

and

P(Ha) - -——D- e ko [f {(75, 3,)
Ap

Z\Tl"o evfure
2Xp —ik(%‘e Y + %‘e 3.) dy; da‘ (5B-17)

We define the Fourier transform of ‘F
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F(%, 3):@_‘%“2 1,7 exp L(?)f, + 'Sz«,)d)’. dj  (5B-18)

\
where {-()’U }g) vanishes outside the aperture.

Then

. tkn |
(Mo) =~ - tkp o0 F(-kyw -k (5B-19)
F (.ZTsz Yo ( Yo ’ -\'%

To obtain (5B-19) we supposed that the aperture did not have an in-

finite direction. We consider now an aperture infinite in the 3 di-

rection and two-dimensional pressure modes travelling in the duct

Pl exp(iksx) +() (5B-20)

il

then
+°°k
Ly

P(Mo) = -4 LL(D .{(y‘)dy‘ e__,_‘;_:' dz, (5B-21)

21 o1

Apgr‘fum 00 -
It is easy to show that
+00

Y. )

K Yoy L .

e’ dgy = ) kethdt =T H;(kﬁ) (5B-22)
Yol

- 00 )

where

T2

2
L = {Xé -+ ()’a-)’g) ] (5B-23)
To obtain the far field from (5B-21) we use the asymptotic expansion

for Hé
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yz  Lk- 1Tk
L

Hy (k) ~( 2 (5B-24)
Tk

and the Fraunhofer approximation

L 2 - %i/n (5B-25)

Then

- —‘ Ll'
P(M") A k‘lzp \3"‘/2 e"kn’ L F(-ksine) (5B-26)

where

_ tap
F8) = (2-‘“-:)‘/2 J;()'t) e d-)’\ (5B-27)

Application to Particular Duct Geometries

)

1. Circular duct with hard walls. We define the polar co-

ordinates for the aperture

Y= P Cc?s‘P
The duct has a radius @ ; thus, Q¢ egq,
Then

(5B-28)

(03) = Tm (F’mn E/CL) {cosmq’}

simm9

where an are the roots of the eigenvalue equation
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Jm (Pmn) = O

When N 0O

1Pl = (12) (ka)*p Tm(Pmn) (afy)

.S.l“e [__le (“(03\"9) - J‘m«ﬂdfd.sche)] (5B-29)
Pf‘m ~(kasi 9)1

When mM=0, N=0 aplane wave propagates in the duct

fn d) = |

and

Ji(kasin®) (5B-30)
kasnmg

IpMa)l =~ (k) (af¥)

2. Duct formed by two parallel semi-infinite hard plates. This

duct is represented on fig. 5-1. The eigenfunctions are, in this case,

f(n) = cos M (%i-DB) (5B-31)
with
A NT|2b Nz O, ... < 2kb/T

When N is even and different from zero

=~ V2 Ve
~n b b - in “’Q‘b n )’ 5B-32
M)l = @) " (kb) 2y (Bly) i (; u?kj".si:"es | 532
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When N is odd

lp(Mo)| = (ZW).‘/z(_kb).‘th (b/\%)vz sinp coslcbsing) | (5B-33)

QLN'k)z -sin@
and when N= 0
Pla)| e @) (K b " 2 (i)' | st (kbsine) 55.54)
sind

3. Duct formed by two parallel semi-infinite soft plates. The

pressure perturbation vanishes at the duct walls; the eigenfunctions in

this case are

-Y—()’s) = S\'VI)AN(YVB) - (5B-35)
with
Mn= NT[2D , Ne= 1,2 ... < 2kb/mW

When N is even

It & @1 by P2y (b’ |_(Anlk)sintbsing) | (o s
| (unk)? - sin?e

When N is odd

Ip(Mo)l = @W)_‘Iz(kb)ﬂ‘lip (b/‘ra)‘lz' (pin]k) coslkbsing)l (55 57,
| (unli)? - sinze



-189-

|

o2b
¥

Fig. 5-1. Geometry of the radiation problem for a duct formed by
’ two semi- 1nf1n1te parallel plates.
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Fig. 5-2a. Radiation patterns D(6 ) kb) N, ™M) for a duct
formed by two semi-infinite parallel hard plates. The
exact Wiener-Hopf solution is on the left; the approxi-
mate Fraunhofer solution is on the right. kb = 4.N=|
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Fig. 5-2b. Radiation patterns D(ej kb, N,M) for a duct formed
by two semi-infinite parallel hard plates. The exact
Wiener-Hopf solution is on the left; the approximate
Fraunhofer solution is on the right. kb =38. N= i,
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rns D(©; kb, N;M)  for a duct formed

i-infinite parallel hard plates. The exact
tion is on the left; the approxim

is on the right. Kb = 16.

ate
N=\
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Fig. 5-2e. Radiation patterns ©0(®; kb, N, M) for a duct formed
by two semi-infinite parallel hard plates. The exact
Wiener-Hopf solution is on the left; the approximate
Fraunhofer solution is on the right. kb =20. N= |,

O DB -—39 -20

-10

—20

.._3 O

=20



-195-

Fig. 5-3a. Radiation patterns 0(93 kb, N,M) for a duct formed
by two semi-infinite parallel plates. Patterns corre-
sponding to hard plates are on the left, while the patterns
for soft plates are on the right. kb =8. N=2
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Fig. 5-3b. Radiation patterns D (93 kb, N, M) for a duct formed
by two semi-infinite parallel plates. Patterns corre-
sponding to hard.plates are on the left, while the patterns .
for soft plates are on the right. =12. N=2,

=10 O DB

-20

=10 o DB
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=30
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Fig. 5-3c. Radiation patterns D{©; kb, N, M) for a duct formed
by two semi-infinite parallel plates. Patterns corre- -
ndi rd ‘

are on the left, while the patterns
ht. kb =16. Nz 2,
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_Fig. 5-3d. Radiation patterns D(G} kb:N: M) for a duct formed
by two semi-infinite parallel plates. Patterns corre

sponding to hard plates are on the left, while the patterns
for soft plates are on the right. kb =20. N= 2,
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Fig. 5-4. Ratio T  of the far field radiation corresponding to a
soft wall duct to the far field for a hard wall duct. The
duct is formed by two semi-infinite parallel plates.



Fig. 5-5. Geometry of the approximate radiation problem.



-201-

CHAPTER VI

TRANSMISSION AND REFLECTION OF A PLANE ACOUSTIC WAVE

AT A COMPRESSOR BLADE ROW
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6.1 INTRODUCTION

The axial turbomachinery in a turbofan engine generates
acoustic pressure waves. These waves are transmitted and reflected
by various blade rows (stator guide vanes, inlet guide vanes, other
stages' blade rows), then propagate along the inlet and exhaust ducts
and radiate from the end sections. In this chapter we study the trans-
mission and reflection of a pressure wave by a single blade row. Our
goal is to solve this problem utilizing the transformation developed in
Chapter 3. This method is particularly suited to the present problem
because it will provide relations between the basic transmission and
reflection coefficients of the blade row in a stationary medium and the
corresponding coefficients for the blade row immersed in a uniform
flow. A clearer picture of the effect of the moving medium on the
basic acoustical characteristics of the blade row will result.

We use a simple model developed by Kaji and Okazaki [6. 1, 6.2
and by ManiandHorvay [6.37], where the blade row is represented as a
linear two-dimensional cascade with thin non-cambered blades. The
flow through the cascade is parallel to the blad;s, with a uniform
Mach number M (for instance, the average between entrance and
exit Mach numbers). The actual spinning pressure modes are repre-
sented in this model as plane waves incident on the blade row under
various inclinations. The incidence angle is related to the propagation
characteristics of the spinning mode.

Various techniques have been used to solve this problem.

Kaji and Okazaki [6.17] based their analysis on the semiactuator de-

scription in which the blades are chosen of finite chord but infinitesi-
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mal spacing. Only one transmitted wave propagating in the same di-
rection as the incident wave and only one "specularly' reflected wave
were considered. The blade row acts like a region of different im-
pedance, with a unique propagation direction. Matching the pressure
and mass flow on the blade row boundaries yields the transmission
and reflection coefficients.

In a second paper [6.2], the effects of finite blade spacing
were included. The incident wave induces a distribution of acoustic
doublets on the blades. The distribution which cancels the normal
velocity component on the blades is found and the pressure feld can
then be computed.

Maniand Horvay [6. 3 ] treated two separate problems: an in-
cidence problem where a plane wave impinges on an infinite set of
semi-infinite blades, and an emission problem where the blade channel
modes excited by the incident wave radiate at the open ends of a row
of semi-infinite blades. The Wiener-Hopf technique yields the two so-
lutions which are then combined to produce the transmission and re-
flection coefficients of the blade row. A basic as:suxnption of this com-
putation is that the blades are infinitely long, i.e., that the ratio of
the blade chord to the wavelength fl)\ is large. Actually, Mani and
Horvay showed that their solution yields results which compare well
with those of Kaji and Okazaki [6.27], even when fl)\ is small.

Amiet [6.47 used the method of matched asymptotic expan-
sions to compute the unsteady force distribution on the blades and the
resulting pressure field. An inner incompressible flow satisfying the

no-flow condition on the blades is matched to an outer flow governed
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by the wave equation, using a small parameter proportional to the

ratio of the chord length to the wavelength 2/)\ . This method
provides the flow-induced acoustic field, while the basic scattering
characteristics of the blade row are neglected under the assumption

{/)‘ << | . The results obtained by Amiet [6.4] compare rather
well with those of Kaji and Okazaki [6. 1] for a Mach number around
M = 0.5, but as the Mach number decreases, the transmission co-
efficient tends to unity while the reflection coefficient vanishes and
the differences become more pronounced.

References [6. 1] through [6. 3] do not separate the effect of
the uniform flow from the basic acoustic characteristics of the blade
row, while the method used in reference [6.4] altogether neglects
these characteristics and only provides the flow-induced acoustic
field. In an actual turbofan, the ratio {I/\ is of order one and both
fields flow induced, and scattered by the blade row must be accounted
for.

It was shown in Chapter 3 that a class of acoustical boundary
value problems in a subsonic medium could be solved by considering
an associated problem in a stationary medium and applyin'g a simple
algebraic transformation. The Sommerfeld diffraction problem in a
uniformly moving medium was solved in this way. The present prob-
lem where an infinite lattice of plates is immersed in a uniform flow
has a very similar structure. In fact, the transformation immedi-
ately converts the convective wave equation into Helmholtz' equation
and the boundary conditions on the blades into new boundary conditions

for a problem in a stationary medium.
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This would, at first glance, lead to the conclusion that the two

problems in a moving and in a stationary medium are equivalent
through the transformation and that the transmission and reflection
coefficients may be directly obtained through the transformation.
Unfortunately, this is not so. The difficulty lies in the fact that the
uniform flow creates a fundamental difference between upstream and
downstream regions.

In the upstream region, in front of the blade leading edges, the
velocity potential ¥ is continuous. Downstream, the blade trailing
edges produce vortex sheets, the velocity potential is discontinuous,
but the pressure perturbation P is continuous. (A more extensive
discussion may be found in Chapter 3. ) To solve the difficulty we
have adopted the following plan. We first describe in some detail the
problem in a stationary medium ( M=0 ) in terms of a potential Cp
representing the pressure or the velodity potential ( F= é{,wcf’ ) .
Then we deal with the case where the incident wave is downstream
(M >0 ). The problem is decomposed into an incidence problem
(downstream) described in terms of the pressuwre and a radiation
problem (upstream) described in terms of the velocity potential. The
solutions are obtained by transforming the solutions of associated
M= O problems. Simple relations for the transmission and reflec-
tion coefficients result. Finally, the case where the incident wave is

upstream (M < Q) is briefly discussed.
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6.2 TRANSMISSION AND REFLECTION AT A
BLADE ROW IN A STATIONARY MEDIUM
The geometry of the problem is shown on fig. 6-1. This

problem is decomposed into an incidencé and radiation problem fol-
lowing a procedure used by Mani and Horvay [6.3]. The incidence
problem is shown on fig. 6-2. A plane wave is incident on a set of
semi-infinite blades. The stagger angle is ﬁ , the distance between
the blades d , the 2™ blade extends from X= nd tan ﬁ to
X==00 .| All waves are steady with a time factor EXFG\:W‘t) .

The incident wave potential has the form

¢, = exp (—-'kaco.s O -kass'n ®r) (6.1)

k w/c (6.2)

The complete potential is as usual written as a sum of the incident

wave potential and an induced potential
¢ = P + P (6.3)
Equation (6. 3) satisfies the Helmholtz equation; and consequently

Poc + Py, + k2 =0 (6. 4)

On the blades the displacement vanishes

% =O “‘&9..)"2)““,0,1)-00 (6.5)
9Y In-th blade
or

’_62\ = LksinOp exp(-tkxcos ©; —iknds\'n@x) (6. 6)
2y 'nth blade Ne...,-2,-1, 0

Y ‘) “we
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We define the local set of coordinates originating at the nth blade
edge:

x“ = X - nq. (6.7)

Yo =y - nd (6. 8)
with

q = d tan B (6.9)
The problems (6. 1) through (6. 6) may be solved by the Wiener-Hopf

technique. The induced potential in the nthl blade channel is related

to the potential in the first channel by a simple phase relation

-tk
Pn(Xn,m) = € - n%d’o (Xn, Yn) (6. 10)
where »
g = qcosOr + dsin ©® 6.11)

g = d,stn(®z+5)/cos[6 (6.12)

The potential in the first blade channel is a su:;n of modes propagating
in the negative X -direction. The higher modes are exponenti-
ally attenuated; their contribution to the transmission is negligible

if the blade channels are sufficiently long. The potential in the first
blade channel (transmitted potential) has the form

L.
Lo, -tk
Pm= ) Golp)e 9e

¥=°

% cos(3Ty|d ) (6.13)
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where
/
[‘ - (3-”/ “d-)z] = (6. 14)

The integer L. is the greatest value of af for which 73, is

real and the corresponding mode propagates unattenuated:

L< kd <L+ (6.15)
k1)

LDA,

e is the transmission coefficient phase factor. ‘Ga(zc)

the modulus of the transmission coefficient

To(y) = Tal(y, Oz, k; p,d) (6.16)

The blade row produces a reflected potential in the region x'_,)} &)
which is a sum of plane waves. Again, we discard all the attenuated

waves from this sum:

._k ~Lkysin@
Preyt = ZRo(r) Fr grtincosOg -ty sinBe (6.17)

r=-N

Upper bounds for S and N are given in Appendix 6-A. It is
shown that O is the largest integer contained in

|+ sin (O + B) (ki) (6. 18)
Zcosp

while N is the largest integer contained in

| - sin{Or+B) (k¢) (6.19)
2 cosp ™
Q,L is the reflection coefficient phase factor. Ro(r) is the

modulus of the reflection coefficient and
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Ro(™ = Ro(r, Oz, k; p,d) (6.20)

We now describe the radiation from the end of the blade channels.
We consider now a set of blades with stagger angle ﬁ extending
from X = nd -‘—Qﬂp to X =4+ 60 (fig. 6-3). The in-
cident wave is one of the modes of the sum (6. 13). In the first blade

channel this wave has the form
ko, x
r cos(yTy/d) (6.21)

This wave produces a radiated potential consisting of an in-
finity of plane waves. We discard the attenuated waves from this

sums:

s
LV -ikxcos Og -ikysin®
Prad = Zeo(g,‘p) gl i, mtxes e LRI (22

r=~N
The values of & and N are also determined by (6.18) and (6. 19).

Ea(éf,r) is the modulus of the radiation coefficient for the jth chan-
nel mode and the rth radiated plane wave.
We can now assemble expressions (6. 13) and (6. 22) to obtain

the transmission coefficients

T°(?{l“": O, k; P, d) = Go (%, 0z ,k; pzd-)eo@/lr)(é.zz)

There are Lo+ | blade channel modes and N+S+| radiated
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plane waves resulting in a matrix U-"‘L)X(N“'s‘" D of trans-
mission coefficients. There are only N+S+ | reflection co-
efficients of the form (6.20).

The Wiener-Hopf technique also provides full expressions for
To and Ro but they are not needed here. Our goal is to
find relationships between To and RO for the blade row in
a stationary medium and T and R for the blade row in a
moving medium, indepéndent of the particular forms of Tg and Rq
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6.3 TRANSMISSION AND REFLECTION AT
A BLADE ROW IN UNIFORM FLOW
Consider an incident plane wave in the downstream region
(M>0 ). We describe this region in terms of the pressure. The

incident wave has now the form

Pt = exp (_kacos @ _ LkysnmO: ) (6.24)
I-Mcos O I-Mcos O

The complete pressure perturbation P«t = PL -+ P and con-

sequently F , the induced pressure perturbation, satisfy the

convective wave equation
Fxx (1-M* + Pry * 2MikFx + kzP =0 (6.25)

The displacement vanishes on the blade surfaces

@Ea\ =0 = ...,"2.)"1) O, 1)100 (6.26)
dy inth blade

or

EE. = Lk sin @y 2x _ikxcos® - Cknds(n@;-,) (6.27)
Ay In \-Mcos Oz I-Mcos@r |1-McCos Or

Guided by the results of Chapter 3, we introduce the following trans-

formation

kk = k/(1- Ml)‘lz (6.28)

X o= x/(V-m)r (6.29)
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cos ©r = (s Or -~ M)/ (1~ McosOx)

F _ P:L\(.Mx‘ F(x\)y)' \(, @;:)

The boundary value problem for F s

Fx,x, + F};/ + kKEF = O

JF = tksin®r exp (-Ukixcos @)
y In-th blade

expl tkind sinBz)
Thus,

F= ®(x,y; O, k,p,d)

where the new stagger angle ﬁ‘ is such that

tGV\[3| = 9 - _:i__, \
d d (1-M3y*”

or

tanpr = (-m97" tan

(6.

(6.

(6.

(6.

(6.

(6.

30)

31)

32)

33)

34)

35)

(6.36)

From expressions (6, 13), (6.31), and (6.34), we obtain the trans-

mitted pressure in the first blade channel
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(W)

P =) By, 0 ki3 B, d)

¥
oL - tkigpx, - LM

e Cos(4MWy/d) (6.37)

where yé, represents the transformed 96’

Dy = L —-(gz'IT/k.d)Z]VZ (6. 38)

The reflected pressure field may be found from (6.17), (6.31),

and (6.34)
S
Pref = Z Ro(\r',@},k.‘-’@”d)
r=~N
Lv; —Lk\ Xx,Cos @k - Lk;)’an @lp, - Llﬂ Myx,
e L (6. 39)

G;l is the reflection angle in the associated problem for a sta-

tionary medium, and is related to the actual reflection angle by

cos @ = (Cos@r =~ M)/(1~- Mcos@r) (6. 40)

Consider now the radiation problem in the upstream region. We use
the velocity potential ‘P to formulate this problem.
As an incident wave we take one of the modes from expres-

sion (6.37). In the first blade channel
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'Lk‘ pd’x‘ =i kM cos(4Ty/d) (6.41)

We write the complete potential (’P-t = cﬂ’. + , Where “P

satisfies the convective wave equation

Pux (1-M2) + Py + 2Mik &+ k*¢%-. 0 (6. 42)

We use now the transformation (6.28), (6.29) and the function \V

defined by
-tk Mx ‘
¢ e W(\XU)’} ki ) 3’) (6. 43)
Then
-Lk| D‘ Xy

Yme= e & Cos(aﬂr)//d) (6.44)
and

\YX|X| +'WY)’ -+ k%\'k':- O (6.45)

The problem (6.44), (6.45) is identical to the problem (6.4), (6.21)

for CP , andhthus from (6.22) and (6.43) we get
L'D' " -UQH)(.

y:@ | -L S
0" Sikixicos®L - Ly sin Og 6. 16)

Again, O‘E. is related to the actual emission angle @E by

Cos @‘g

(cos @ = M)|(1-Mcos O ) (6. 47)



-215-

From the velocity potential we compute the pressure by

p= Pc(ik® -M'_%i) (6. 48)
X

or

-Co'bk -Lk;MX;
P: perhi ((kﬁb— MM)Q (6.49)

okt %

For the incoming wave

Pine = ge ik (1+ ”Dé-) Pinc (6. 50)
Q-w2)'*

For the radiated waves

S
Prad = Z _'é&.'v_‘is_‘.n(\-y Mcos Oe) €oy,T)
o M)

. \ - \ Y ' ‘ -{ k Mx
_ - tkyysm® LKy
o Vo tkicos O - thiysinOs " (6.51)
and thus a unit incoming pressure wave produces
S
\
ot =) @S0 e
\+ M \g‘a,
rz-N ‘(
_ . T n @ - LkMx
2}\)&"\. Q‘-ukm‘cosGe Lk‘Ysm E v (6.52)

It is now possible to combine expressions (6.37) and (6. 52) to

obtain the transmission coefficient for a blade row immersed in a uni-
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form flow, the incident wave propagating downstream

T (g, O,k M58, d) =

|+ M cos @ 60(30 r, kxj @l)d.) Go(a»,ff)é,kx)'ﬁnd-) (6.53)
|+ Mps,

and then from (6. 23)
T(gr, O, k, My p,d) =

|+ MesO  To (4s1, O1 ki 5 Pu d) (6. 54)
I+ Mpy

The reflection coefficient is directly obtained from (6. 39)

R(r, @ ,k,M; B,d) = Ro(r, @1, ki y f,d) (6. 55)

To obtain the simple results (6.54), (6.55), we had to assume
that the blades were of infinite extent, i.e. {/A is large, so that
upstream and downstream regions could be treated separately. Ac-
tually, the procedure used in the above derivation seems to yield good
results even when {—/X is less than one (Mani and Horvay [6.37).
In an actual fan or compressor ?}/)\ ~ | and stagger angle
and spacing are such that blade channels are physically existent. In
view of all the other approximations used in the present model, the
infinite extent assumption seems therefore reasonable.

When the incident wave is in the upstream region, i.e., the

medium flows in the negative %X direction ( M <Q ), we apply
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the same techniques. The upstream region, where the incident wave
propagates, is described in terms of the velocity potential, while
the downstream region is described using the pressure perturbation,

and the following expressions are obtained:

I+ Mn) Ly
Prans = Z 2 Bo (%) &

\+ M cos @
T=0 .
exp (-lkiplxi = ikiMx) (6. 56)
: L,
Prej = 1+ M5Ok Ro(r) °° T
I+ Mcos @f
e -N

2xp Ckyxicos @) - tkyysin@k - Lkt X)) (6.57)

)
)

Praa = Z eolgir) e

Py N

exp(-tkx cos Of - tkyysm @k -tkiMi) (6. 58)

Then from (6. 56) and (6. 58) we obtain the transmission coefficients

T(4r, 0, k, My p,d) =

|+ M0 To(aq r, O, k\j By, d) (6.59)
\+MCOS@}.
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and from (6.57) the reflection coefficients

R(v@ k, M5 p,d) = tMeos O go(r, @2,k ; By, d) (6. 60)
I+ MeasOY
Under the assumptions used in the present mathematical

model, expressions (6.54), (6.55), (6.59), (6.60) are completely
general. They relate the acoustical characteristics of the blade row
in a stationary medium to the characteristics of a blade row im-
mersed in a uniform flow. The flow presence influences the trans-
mission and reflection coefficients like an increase in frequency,
from \& to k\ ; an increase in the stagger angle from ﬁ

ﬁl , a change in the incidence angle from @; to @1‘ (when
M>»O , then @£>®I ; when M KO | then @:‘r < @x ).
Some multiplying factors also appear; their effect is more difficult
to evaluate in the general case because they depend on the reflection
and emission angles.

It is therefore useful to consider a specific situation where the

expressions of To and Ro are known-and study the effect of
Mach number change on T and R

Application of the Results

The semiactuator theory yields simple analytical expressions
for the transmission and reflection coefficients Vle& and Ro of
a blade row in a stationary medium. Because the blade spacing in
this theory is supposed infinitesimal, i.e., d= © , only one
""specularly' reflected wave ({ r= Q ) and one transmitted wave

( P= 0 )exist. The transmitted wave propagates in the same di-
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rection as the incident wave. The emission and reflection angles
pertaining to the associated stationary medium problem are known.

Before we start to apply our results to this case, it is con-
venient to define the incidence angle & and the reflection angle
& with respect to the blade row normal direction x' . By

looking at fig. 6-1 we see that

x = O +R (6. 61)
& = Or + B -T (6. 62)

For the semiactuator blade row in a stationary medium

] ]
Qe = O (6. 63)

Y

- O, (6. 64)

or

O = T- Of - 28, (6. 65)

In the semiactuator theory, only one mode may propagate in the
blade channels. Thus, a, = O and 95": |

When the incident wave is downstream ( M) o ), expres-
sions (6.54) and (6. 55) yield

T(@:,k, H)' P, d) =

L+ Mcos@x To(Op, ki ;5 Puy d) (6. 66)
I+ M

and
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R(@)k) M;p)d)‘: RO(Q’I)k\jPle) (6.67)

When the incident wave is upstream ( M<O ) the expressions

(6.59) and (6. 60) give

T(6r,k,M; p,d) = 1+ M To(0, kiy P,d) (6.68)
I+ ™ Cos Of

and

R(Gx, k,M;p,d) =

\-M cos (@ +281) Ro(@{,k,3p,,d) (6. 69)
i+ Mcos O

The expressions for Vg and Ro are developed in Appendix 6-B

and reproduced here

-ij2
T, = [\+ sin'kd ( cosay _ ge_s_El_)" (6.70)
b COSPI Cosa
Ro = l.ﬁ-.?é.‘i@_ -~ Cos E!) sinkf| T, 6.71)
cos Ry Cos & 2,

It is interesting to write these expressions using the actual angles &

and ﬁ . From (6.36) we deduce
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1/2 :
cosﬁ; = (-M?) " cos p (6.72)

sinpP = s B ‘ (6.73)
(- MQCo"ﬁ)Iz

which, together with (6.30), produce

cosx, = (- M"‘)vz (cosx ~Mcos F’) (6.74)
(-Mcos 1) (1~ M2cos’p)'2

Then

cosdr Cosx - Mcos P 6.75)

-

Cos 3 COSP [\ - M COS(W"P)}

It is then easy to see that |  vanishes and R becomes unity

when
X, = =T|Z or Cos& = M c::sﬁ (6.76)
and that R vanishes for cos&, = Cos PJ , or in terms of

the actual angles
cosx - cosP + Mcos pleos(o-g) -11=0 .7

At & =ﬁ , T ds unity, while R= 0O and R will also
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vanish for the second root of equation (6. 77).

Kaji and Qkazaki [6.1]have used the semiactuator theory to
obtain directly the transmission and reflection coefficients of a blade
row in a moving medium. All the features of “T  and R dis-
cussed above may also be found in reference [6.1] (for instance,
equation (6.76), (6.77)). Plots of T and R obtained by the
present method are almost identical to those given in [6.1], a few
discrepancies occuring, for the case when the incident wave is up-
stream’ ( M <0 ), in the reflection coefficient R . Our R in

this case is generally higher than R . Reference [6.1] uses

Kaji
values of 'e.l)\ of the order of—lg' , while our theory is based on the
assumption that ‘E/)\ is large and thus would be expected to provide
somewhat larger values for the reflection coefficient R . we give
only two typical plots of T and R , fig. 6-4 for M>Q and
fig. 6-5 for M <KQO . Other plots covering a large range of pa-
rameters may be found in reference [6.17.

Other applications of the general expressions (6.54), (6.55),
(6.59), and (6. 60) are conceivable. They could, for instance, be used
to provide the transmission and reflection coefficients of a blade row
in a steady flow from measurements of the stationary medium acousti-
cal characteristics of the blade row. Such experiments in a stationary
medium are, of course, much easier than in the presence of a steady

flow.
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APPENDIX 6-A

The Number of Reflected and Transmitted Waves

The reflected waves at a blade row in a stationary medium are

of the form
exp (- LkxcosOp —~ikysin Or) (6A-1)
while the transmitted waves are proportional to

exp (-itkxcos @ - iky sin @) (6A-2)

It can be shown that the angles @p. and @g are determined by the

following set of equations:

s Or = Aw (6A-3)
Sin On = - [k2- @2]"™ | (6A-4)
cos @ = ap (6A-5)
sin @ = [ki-(ay )z.]\/?- (6A-6)

where &y and X& are the two roots of the.second order equation
ka,-o(ci-z:n‘p = =+ d(k2-a3)"? (6A-7)
The canonical form of (6A-7) is
x*(q*+ d?) ~2x4( l<8, ~2Tr)

+ [(kca,-z.'rrr)z—-d"k“] =0 (6A-8)

with
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q= dtan B (6A-9)
9 = dsin(Oc +p)/ Cosp (64-10)

The roots of equation (6A-8) are

o
Xy = ainpcoes - 2Ty
o peosp (& )

kd
s Cosp{ | - (.SE - ?.;13:‘)15051/3]"1 (6A-11)

It can easily be shown that if & 1is real its extremum values are

attained when

¥ . 2 _ tqnp (6A-12)

d kd

then

.‘?_\:) = =+ \ (6A-13)
K “Hiw

Thus, if &y is real, \O(v-\ S 1 , and the angles @R s ®E de-
termined by (6A-3) through (6A-6) are real, and consequently the plane
waves (6A-1) and (6 A-2) propagate unattenuated.

If & is complex the plane waves will be attenuated. The

N
roots 0(; will be real if the integer ¥ satisfies the double inequal-

ity
(Ll - F\kd 1 F) kd (6A-14)
(Cosﬁ: d )2.1\' s g(cosp i CL) 2w

We define the integers N and & by
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N = Inch:.v-pquo{( |- stn (Or+B) kd) (6A-15)
2cos b v
S= Tregerpart of (1 5nOref) _kd) (64-16)
2cos P L1
then
~-Ng r £ S (6A-17)

In actual fans the stagger angle ﬁ is generally less than 60°.

Thus, an absolute upper bound for N and § is

Max (N, 8) = 2kd . &Ld (6A-18)
1 A

For a particular engine like the Pratt and Whitney JT3D, A‘A ~ 0, 4
for the fundamental frequency 3700 Hz and only the waves correspond-
ingto ¥ =-1, 0, +1 would propagate unattenuated.

The waves corresponding to r= 0 alwairs propagate, the

corresponding roots may be found using (6A-11)

cxf = AnxsmP x cosxcosf (6A-19)
Thus,

& = Coslx-P) = cos @1 (6A-20)
and

Qe = Oz (6A-21)
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Xo = - Cos(x+p) = -cos(@r+2B) (6A-22)
and

Or

1]

- C¢ -Z.ﬁ (6A-23)

The transmitted wave propagates in the same direction as the incident

wave; the reflected wave propagates in the specular direction.
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APPENDIX 6-B

Transmission and Reflection by a Blade Row

in a Stationary Medium

We use the semiactuator theory to obtain the transmission
and reflection coefficients of a blade row in a stationary medium
( M=0 ). The blades have a finite chord E but the spacing is as-
sumed infinitesimal, i.e., the ratio d,)\ is small. Consequently,
only one-dimensional plane waves propagate in the blade row in a di-
rection parallel to the blades (the X direction). The geometry of
the problem is shown on fig. 6-1.

The transmission and reflection coefficients will be obtained by
matching the pressure perturbations and X'- direction displace-
ments on the blade row boundaries. A plane wave is incident on the

blade row in region I

pu
k

n

QXP(- CkXCoS o - Cl( )’SM @) (6B-1)

w/e (6B-2)

It is convenient to write this expression in terms of the Cartesian co-

ordinates \('l)/) and the angle &
P = LXpL vk xcosx - Cky’s\'nq) (6B-3)

It was shown in Appendix 6-A that when d/)‘ is small, only one re-

flected wave propagates in the specular direction

Pr= R 2xp (-tkxcosar - Vky'singg ) (6B-4)



-229-

Xg= NW—-&X (6B-5)

Then in region I

py = expl-tkx’cosa- Lky’sing)
+R ,prh-ikx’c.osog -L'ky"sin«) (6B-6)

Only one transmitted wave propagates in region III (GUA is small),

in a direction parallel to that of the incident wave

Pr = T expitkxosa ~ ikysina) (6B-7)

In region II, one-dimensional plane waves propagate in the positive
or negative X directions. These waves have the same phase in the

)ll direction as waves (6B-6) and (6B-7). Thus,

thx~ U by bing ~tkx - vkysing
Pnz Ae +~ B e (6B-8)

and the associated velocity in the X  direction.is

we L °PT ‘ (6B-9)
ew - DX

The matching relations at the blade row boundaries are

at X':‘.O :

Pz = Pr - (6B-10)

'%Eg_} COSP = AP1 (6B-11)
A

X=0 ?x’ix's0
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at x‘:'- —Je

Pz = Pm

oPE| cospP = &
3x Ixe - boosp b b

These four relations yield

A+ B = |+ R

A-B = - cosx (|-R)

cosp
Ae—LkQ v B e'ik& o T
A e:\.ke - Be ke = - Cosy T

CDSFS

and then

Tl = [l 4+ sin'ke (Cos . cosp )2-]’\/2

b Cos }3 Corsx

{ = cosﬁ)_s\'nkf s \Ti
Cosp cosq

(6B-12)

(6B-13)

(6B-14)

(6B-15)

(6B-16)

(6B-17)

(6B-18)

(6B-19)
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-Geometry of the Problem.

Fig.' 6-1.
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n

A ke

Fig. 6-3. Geometry of the Radiation Problem.
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