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ABSTRACT

Wave development behind circular cylinders at Reynolds numbers
from 40 to 10,000 was investigated in & low speed wind tunmel. Stand-
ard hot-wire techniques were used to study the wvelocity fluoctuations.

~ The Reynolds number range of periodic vortex "shedding" is di-
vided into two distinct sub-ranges. At R = 40 to 150, ocalled the sta-
'ble range, regular vortex streets are formed and no turbuleirt motion
is developed. R = 150 to 300 is & transition range to & regime called
the irregular range, in which turbulent velocity fluctuations accompany
the periodic formation of vortlces. The turbulence is initiated by
laminar-turbulent transition in the free layers which spring. from the
Separation points on the oylinder. This transition first ococurs in the
rangs R = 150 to 300.

Spectrum and statistical measurements were made to study the ve-
locity fluctuations. In the stable range the vortices decay by viscous
diffusion. 1In the irregular range the diffusion is turbulent and the
wake becomes fully -!:pr‘nulent in 40 to 50 diameters downstreanm.

Tt was found that In the stable range the vortex street has a
periodic spanwise structure.

| The dependence of shedding frequency on velocity was suscessfully
used to measure flow velocity.

Meagurements in the wake of a ring showed that an "annular" vor-

tex street is developed.
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I. INTRODUCTION

It is always difficult to determine precisely the date and author
of a discovery or idea. This seems to be the case with the periocdic
phencﬁena associated with flow about a cylinder. Although the effect
of wind in producing vibrations in wires (Aeclian toneg) had been known
for some time, the firet experimental observations are dus to Strouhsal
(Ref. 1) who showed that the frequency depends on the relative air ve-
locity and not the elastic properties of the wires. Soon af‘#er, Rayleigh
(1879, Refs. 2 and 3) performed similar experiments. His formulation
of the Reynolds number dependence demonstrates his remarkeble insight
into the problem. |

These earliest observations were concerned with the relations be-
tween vibration frequency and wind velocity. The periodic zﬁature of
the wake was discovered later, although Leonardo da Vinci in the 15th
century had already drawn dome rather accurate sketches of the vortex
formation in the flow behind bluff bodies (Ref. 4). Hdwever, Leonardo's
drawings show a symmetric row of vortices in the mke.ﬂ The first modern
pictures showing the alternating arrangement of vortices in the wake
were published by Ahlborn in 1902 (Ref. 5); hié visualization techniques
have been used extensivély since then. The importance .of this phenome-
non, now known as the Kirman vortex street, was pointed out by Benard
(1908, Ref. 6). |

In 1911 Esrman gave his famous theory of the vortex street (Ref.
7), stimulating & widespread and lasting series of investigations in
the subject. For the most part these concerned themselves with experi-

mental comparisons of real vortex streets with Karmen's idealized model,



caloulations on the effects of various disturbences and configurations,
and 8o on. It can hardly be sald thet any fundamental advance in the
problem has been made sinoe Karmen's stability papers, in which he also
cleariy outlined the nature of the phenomenon and the unsolved problems.
Outstanding perhaps is the problem of the periodic vortex shedding meche
anism, for which there is yet no suitable theoretical treatment.

However, the results of the many vortex street studies, especially
the experimental ones, are very useful for further progress in the prob-
lem. Attention should be drawn to the work of Fage and his associates
(1927, Refs. 8, 9 and 10), whose experimental investigations were con-
ducted at Reynolds numbers well above the ranges examined by most other
investigators. Their measurements in the wake close behind a-oylinder
provide much useful information about the nature of the shedding. More
recently Kovasznay (1949, Ref. 11) has conducted a hot-wire investiga-
_tion of the stable vortex street (1ow Reynolds numbers), to which fre-
quent reference will be made. ’

Vortex street patterns which are stable and well definod.fbr long
distances downstream actually occur in only a small range of cylinder
Reynolds numbers, from about R e 40 to 150, and it is to this range
that most of the attention has been given. On the otﬁef hand, as is
well knowmn, periodic vortex shedding also occurs at higher Reynolds
numbers, up to 10° or more, but the free vortices which move downstream
are quickly obliterated, by turbulent diffusion, and a turbulent wake
is established.

The present interest in the vortex street is due to some guestions

arising from the study of turbulent flow behind cylinders and grids.



Such studies are usually made at Reynolds numbers for which periodic
vortex shedding from the cylinders or grid rods is known to occur.
However, the measurements are always taken downstream far enough to en-
sure that the periodic veloscity fluctuations are obliterated and the
flow 1s completely turbulent. There are several important consequences
of this limitation.

First, the energy of the velocity fluctuations is quite low com-
pared to the energy near the oylinder, and especially low compared to
the dissipation represented by the form drag. In attaining the devel-
oped downstream state there is evidently not only a rapid redistribu-
tion of energy among the spectral components but also a la.rge dissipa-
tion. BSecond, the theories which describe these downstream s%;ages do
not relate the flow to the initial conditions except very loosely in
terms of dimensionless parameters, and it is usually necessary to de-
| témine an origin empirically (for example, mixing length theory, simi-
larity theories).

On the other hand, there is evidence that some features are perma-
nent, so that they must be determined near the beginning of the motion.
One such feature is the low wave number end of the spectrum which (in
the theory of homogeneous turbulence) is invariant. |

Another is the random element. It has been pointed out by Dryden
(Refs. 12 and 13) that in the early stages of the decay of isotropic
turbulence behind grids the bulk of the turbulent energy lies in a

spectral range which is well approximated by the simple funotion
A4
/+B%p*
14) has suggested that such a random process may be found in the

, characteristic of certain random procesa‘e's. Liepmann (Ref.



shedding of vortices from the grids.

In short, there has been no desgoription, other than very qualita-
five, of the downstreanm devélopnent of wakes which, over a wide range
of Reynolds number, exhibit a definite periodicity at the beginning.
The measurements reported here were undertaken to help bridge this gap.

The main results show the downstream development of the wake, in
terms of emergy, spectrum, and statistical properties. 'Thi.s develop-
ment is qulte different in %wo Reynolds number ranges, the lower one
extending from about 40 to 150 and the upper from 300 to 104 (and prob-
ably 105), with a transition range between. The lower range is the re-
gion of the olassio vortex street, stable and regular for a long dis-
tance downstream. The fluctuating energy of the flow has a d-iscrete
spectrum and simply decays downstream without transfer of energy to
other frequencies. Irregular. fluctuations are not devel‘opéd. In the
ui)per range there is still & predominant {shedding) frequency in the
velocity fluctuations near the oylinder, and most of the energj is con-
centrated at this frequency; however, some irregularity is already de-
veloped, and this corresponds to a continuous spectral distribution of
some of the energy. Downstream, the discrete énergy,. at the shedding
frequency, is quickly dissipated or transferred to othér frequencies,
so that by 50 diameters the wake is completely turbulent, and the energy
gpectrum of the velooity fluctuations approaches that of isotropic tur-
bulence.

All other features of the perlodio shedding and wake phenomena may
be classified as belonging to one or other of the two ranges. This

viewpoint allows some systematization in the study of wake development.



In particular it is felt that the possibilities of the vortex
street are by no means exhausted. A study of the interaction of per-
lodic fluctuations with a turbulent field seems to be 2 fruitful ap-
proach to the turbulent problem itself. It is plammed to continue the
present work along these lines.

From a more immediately practical viewpoint an understanding of
the flow close to a bluff cylinder is important in at least two prob-
lems, viz., structural vibrations in members which themselves shed vor-
‘cioas, and structural dbuffeting experienced by members placed in the
wakes of bluff bodies. Many of these are most appropriately treated by
the statistical methods developed in the theories of turbulence and
other rendom processes (Ref. 15). These methods are easily éxtanded to
include the mixed turbulent-periodic phenomena associated with problems
such as the two mentioned above.

The research was conducted at GALCIT under the sponsorship of the
National Advisory Committee for Aeronautics, as part of a long;range

turbulence study direocted by Dr. H. W. Liepmann.



I1. GENERAL CONSIDERATIONS

Except for the parameters directly related to the shedding fre-
quency, the gquantities measured were essentially those that are stan-
dard in turbulence investigations (of. Refs. 12, 13 and 14). ' These are
briefly reviewed below with some modifications required to study the

periodic features.
1. Reference Axes

The origin of exes is taken at the center of the cylinder (Fig. 1).
% 1is measured downstream in the direction of the free stream velocity,
Z 1is measured along the axis of the cylinder, which is perpén&icular
to the fres stream velocity, and 4 1s measured in the direetion per-
pendicular to (x,y), that is, ¥y =C 1is the center plane of the wake.
- The free stream velocity is (;, and the local mean velocity in the
2 «direction is ¢ . The fluctuating velocities in the x, ¢y s Z dirsc-
tions are «, v, w, respectively. The flow is considered to be two-
dimensional, that is, mean values are the same in all planes =z = con-

stant.
2. Shedding Frequenoy:

The shedding® frequency is usually expressed in terms of the di-
mensionless Strouhal number S- n,o/ ¢, , where s, is the shedding

frequency (from one side of the cylinder), <& is the cylinder diameter,

*The term "shedding™ is used throughout this report, for convenience;
it is not meant to imply anything about the mechanism of the formation
of free vortices.



and ¢, is the free stream velocity. J may depend on Reynolds number,
geometry, free stream turbulence level, cylinder roughness, etc. The
principal geometricel parameter is the cylinder shape (for othei' then
circular cylinders, J is an appropriate dimension). However, cylinder-
tunnel configuration must be taken into account, for example,i blockage
and end effects. In water ochemnel experiments surface effects may have
an influence. TUsually the geometrical configuration is fixed, and then
S is presented as a fumction of Reynolds number, 4 .

Instead of Strouhal number it is sometimes convenient to use the
dimensionless parameter /[ = nldz/z) , where 7 is the kinematic viscos-
ity.

3. Energy

The experiments to be described are concerned mainly with the ve-
locity fluctuation in the wake, and especially wi‘bh the corresponding
energy.

The energy of the velocity fluctuation at a point in the fluid is
—é— pl u?+ v2+ w?) per wnit volume, where ( u, v,w) is the fluctuating
velocity and the bar denotes an averaging (see Seotidn 1I.5). In these

experiments only the component « was measured, and the term "energy”

is used to denote the emergy in that component only.

The energy intensity is defined as (u/Uo)z « Since the mean flow
is two-dimensional the intemsity does not vary in the z -direction. At
any downstream position in the wake it varies in the y -direction, nore
mal to the wake. The integral of the intensity over a plane normal to

the free stream (per wmit span) is called the wake energy, £ @



o __
£=—§<7 (%0)2 d (9‘1) (3-1)
The velocity fluctuation in the wake of a shedding cylinder dis-

plays & predominant frequency (as well as harmonios) which is the shed-
ding frequency. However, except in a small Reynolds number range, the
fluctuation has random irregularities "superimposed” on it, that is,
it is not purely periodio, in the mathematical sense. However, it is
convenient to speak of the "periocdic" and "random" or turbuleﬁt parts
of .tha fluctuation.™ The energy may be written

Ut = ul + e} | | (3-2)
where (;;z is that portion of the energy contributed by the random
(turbulent) fluctuationm, 4;? is contributed by the periodic flﬁcfbua-
tion at shedding frequency s, , and :z% corresponds to twice shedding
frequency, »r, = 25, - (The center of the wake feels the influence of
vortices from both sides and #, is prominent there, at least near the
"beginning™ of the wake. Higher harmonics are found to be negligible.)
Eq. (3-2) is & kind of spectral resolution, in which « 2 and uf
are the energies at the specific frequencies », and »n,. This type
of resolution 1is called a diserete, or line, spectrum. But {,z_,? is not
8 discrete spectral compc:nent for it is the energy in the turbulent
part of the fluctuation and contains "all"™ frequencies. It has a con-

tirmuous frequency distribution of energy, for which a slightly differ-

ent definition of spectrum is appropriate. This is postponed to the

*A turbulent fluctuation is an irreguler variation, with respect to
+ime, which is characterized in particular by its randommess and ab-
sence of periodicity {cf. Refs. 13, p. 9).



following section.
Corresponding to Bq. (3-2), an equation may be written for the
wake energy £ and its turbulent and periodic components:
£ =£,+ £ + £, (3.5)‘
Of particular interest will be the fraction of discrete energy,

(£,+£,)/£, at various stages of wake development.
4. Correlation Functions; Spectrum

{a) Definitioms

The time correlation function of the fluctuation « (%) is defined

by
wl(t) wlt+7)
£y (1) = oz (4-1)
where 7 is a time interval. The time scale is then defined by
7= X £, dT . (4-2)
o
The Fourier transform of R; defines another fimotion
Fin)= 4 g R, (T)cos 2r nt 4T (4-3)
. o
Then, also
£, (’zj) = % Fn) cos Zr nT dT : (4-4)
o
For 7=0, Egs. (4-1) and (4-4) give
@, (o) = S Ftn) dn =/ (4-5)

F(n) is defined as the energy spectrum, that is, #m)drn is the frac-
tion of the energy in the frequency interval » to s +dy . It is

the fraction of energy "per umit frequenoy", as contrasted with the
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discrete energy spectrum discussed in Section II-3.
In studies of isotropic turbulencs, at Reynolds numbers correspond-
ing to those in the present experiments, it is foumd that the energy

spectfum is well represented by the form
A :
Fln) = YTy _ (4-8)

or, what amownts to the same thing, that the correlation Motion is of
the form

KT

£(7)=e (4-7)

If the normalizing factor A= ¢,/ is used in Eq. (4-7), / being a

characteristic length, then Eq. (4-3) gives

Y Fir) _ 4 (4-8)
2 /+ 42 (L2nY YR)

which may be conveniently written in terms of the dimensionless para-

meters
o= 17 Lf/n) |  (4-8a)
and
7= Ui ” (4-9b)
Then
. o= 7;7:7412_?72_ (4-8b)

It is clear from Egs. (4-2) and (4-7) that £ is a Mlength scale”
related to the time scale by

L=4 T (4-10)

Eq. (4-8b) is used as a convenient reference ourve %o compare the

measurements reported below.
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(b) Periodic Functions

The energy spectrum 7/») is particularly well suited to twrbu-
lent fluctuations, for which the energy is contimuously distributed
over the frequencies. For periocdic fluctuations the disore-be,_ or line,
gspectrum is more appropriate, but in the present "mixed" case jit is
convenient to write the discrete energy, also, in terms of 7/») . This
may be done by using the Dirac delta-function, S(») . Thus the energy

at the shedding frequency #, 1is
u? = u? % 5(n-n) dn - (a-11)
o
that is,
Fn)= 8(n-p) (4-12)
Then the mixed turbulent-periodic fluctuations in the wake of a shed-

ding cylinder are considered to have an energy spectrum which is made

_up of continuous and discrete parte (¢f. Eq. (3-2) and Appendix B):

=] oo . o0 o0
u* S Fnydn = urz g ]F (n)dn +./.t,2 S F(n)dn » u; S F (n)dn (4"15)
[#] o 4 ° .
that is,
< —_— -—
Ur w,® az
Fin) = = P tm)+ j d(rn-1,)+ —fz— d(n-ny) , {4-14)

(c) Space Correlation Fumction; Phase Relations

The correlation function defined in Eq. (4~1) describes the time
correlation. Another correlation fumotion which is useful in the pres-
ent study is one which relates the veloeity fluctuations at two points
in the wake, situasted on & line parallel to the cylinder. This is de-

fined by

Z
£, (7) = ulz,t) u(z+g,7) (4-15)

w?
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where £ is the distance between the two points. The corresponding

scale is

Ly = S PrdZ (2-16)
2

#, should be particularly suited to studying turbulent development.
Close to the cylinder it should reflect the regularity connected with
the periodic shedding, especially in a regular, stable vortex street,
in which there are no turbulent fluctuations. When there are turbulent
fluctuations and, especially, far downstream where there is no more
evidence of pericdicity, £, should be typical of a turbulent fluid,
that is, the correlation should be small for large values of T.

P, may be obtained by standard techniques applled to the two sig-
nals «(z,Z) end « (z+3,%2) « Ome well-known visual method is to ap=
ply the signals to the vertiocal and horizontal plates, respectively,

- of an oscillescope and to observe the resulting "correlation figures"
(or ellipses) on the screen (Ref. 16). If the w« (#) are turbulent
fluctuations then the light spot moves irregularly on the screen, form-
ing a light patch which is elliptic in shape. The correlation function
is given by

at- b*

P (4-17)

£z =
where a and 4 are the major and minor axes of the ellipse.

If u«(z,¢) is & periodic fumotion, in both time and space, then
the correlation figure is an elliptical loop (Lissajou figure) whose
major and minor axes again give #; eccording to (4-17). Such a case
would exist if the wake had a spanwise periodic structure. Then £, (7)

would be periodic. A special case of this iz #,(Z) =/ , as would be
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expected in a vortex street, provided the vortex filements are straight

and parallel to the cylinder, and do not "wobble".
5. Distribution Functions

(a) Random Functions

‘The probability density p (Z) of a rendom function u,(?) is de-
fined as the probability of finding «, in the interval (%, % +J%) .
It may be found by taking the average of observations made on a large
number (ensemble) of samples of «,(Z) , all these observations being
mede at the same time ¢ . This is called an ensemble average. I1f
«,(t) is a stationary process, as in the present case, then appeal 1s
made to the ergodic hypothesis and the ensemble average is replaced by
the time average, obtained by making a large number of observations on
a single sample of «, (7). The probability demsity o(%) is the num-
ber of times that «, is found in (T, f +dg) divided by the total
number of observations made. In practice, time averages are more con-
venient than ensemble averages. The averaging time .7 must be large
enough so that a statistically significant number of observations are
made. This imposes no hardship ~ it is sufficient tﬁat 7 be large
compared to the time scale 7 . If necessary, the error can be computed.

Experimentally /(%) may be determined by the principle illustrated

l}_.t,t-:[h-tz Z,., —= wtn}—-

belows
u

£+A%
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n
plE) = — (5-1)
A% ,
s ————— §5-2

The most elementary application of this principle is a ‘gr.aphi.‘vcal one
using a photographic trace of «,(7) . More conveniently, electronic
.counfing apparatus is employed (see Section III-8). |

The statistics of «,(?) are usually described in terms of the mo-
ments of p(%) and certain functions derived from the moments. The mo-

ment of order 4 1s defined as

oQ
M=\ 50 a5 (5-3)
Another useful definition is
N, = % |64 pee) dE (5-4)

-0

)1//< is equal to 4/, for even values of & . If p(%) is symmetricel

then M, is zero for odd values of ¢ but 4, is not.

From the definition of p (%) it follows that /4 = S PEIIE =/,

% will be normalized by requiring W, = //z , that is, the mean square

value « /=12 .

Thres useful functions derived from the moments are

(1) ce 2o L M (5-5)

(i1) Skevness ¢ = — (5-6)

(iii) Flatness = = (5=7)
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{(b) Periodic Fumctions

The above defianitions may be extended to the case of a periodic
funetion «,(7) . The probability density can be completely determined
from a single wave length of «,(Z) , that is, it is sufficient to take
J equal to the period. This complete a priori information i;s a basic
difference between periodic and reandom functions.

If «,(¢) is measured experimentally then the ¢, (Z) in Eqg. (5-1)
can also be measured. If ¢, (#) 1s given in analytic form then the

Z (%) may be caloulated from Eq. (5-2). Thus the distribution densi-
ties for simple wave shapes are easily calculated. Table I gives the
probability densities and moments for the triangular wave, sine wave
and square wave. Also included is the Gaussian probability dénsity,
which is a standard reference for random functions.

The moments of the probability densities of these wave shapes are
shown in Pig. 2. The moments for the random function increase much
faster than those for the periodic functions. This results from the
fact that the maximum values of a periodic funotion afé fixed by its
amplitude, while for e random function all values are possible.

The probablility density of a function which is partly pericdic
and partly random is expected to display the transition from. one type
to the other. The tendency toward the random probability density
should be strong. For instance, random fluctuations in the amplitude
of a sine wave result in a large increase in the higher moments. It
is interesting to study the relation between probability fumctions and
spectra, particularly the case where most of the energy is discrete
but the fluctuation amplitude is "random”.
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III. EXPERIMENTAL DATA
le. Wind Tummel

The experiments were all made in the GALCIT 20- by 20-inch low
turbulence tumel {Fig. 1). The turbulence level is about 0.03%. The
wind velocity may be varied from about 50 cm./sec. (1 mph) to 1200 om./

sec. (25 mph).
2. Cylinders

The cylinders used in the experiments varied in diamster from
0.0235 cm. to 0.635 cm. Music wire or drill rod was used. The dia-
meter tolerances are about 0.0002 cm. The cylinders spanned the tun-
nel so that the length in all cases was 50 om. (20 inches); the cylin-

ders passed through the walls and were fastened outside the tummel.
3. Rings

Some studies were made of the flow behind rings. These were made
up of wire. Each ring was supported in the tunmnel by 'bhreé thin sup-
port wires, attached to the ring circumference at 120° intervals.
Table II below gives the dimensions of the rings used { 4/ = wire dia-

meter, 0 = ring diameter, (; = diameter of support wire).

Ring | o o | ds |o/d
/ O0./68cm| 159 | 0.030| 95

2 0.08len| 0.8/ | 0.0/8 | /0.0

0.079cmi 040 | 0.0/8 | 5./

Table II. Ring Dimensions
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4. Velocity Measursments

Velocities higher than about 400 cm./sec. were measured with a
pitot tube, calibrated against a standard. The pressures were read on
a precision manometer %o an accuracy of about 0.002 cm. alecohol. Ve-
locities lower than 400 cm./sec. were determined from the aheciding fre-
quency of a reference cylinder (0.635 om.), as explained in Section
IV-5.

Fluctuating velocities were measured with a hot-wire anemometer
(1/20 mil. platinum). Only « (¢), the fluctuating velocity in the flow
direction, has been measured so far. The hot-wire was always parallel

to the cylinder.
5. Traversing Mechanism

The hot-wire was mounted on a miorometer head which allowed it to
be traversed normal to the wake and positioned to 0.001 om. The head
was mownted on a horizontal lead screw which allowed traversing in the
flow direction, in the center plane of the tunnel. Thé positioning in
this direction was accurate to about 0,01 em. The horizontal lead
sorew could be turned through 90° to allow traﬁersing parallél to the
cyiinder, for correlatién or phase measurements (Section II-4c¢). For
this purpose, & second miorometer head with hot-wire could be set wp
in a fixed position along the line of traverse of thé first hot-wire.
Then corrslations could be measured between this point and the moveable

one.
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6. Electronic Equipment

The hot-wire output was amplified by an amplifier provided with
compensation up to 10,000 ¢.pes8. The amplifier output could be ob-
served on an oscilloscope soreen or measured on & Hewlett-?ac,k:a.rd Bodel
400¢ vacuum tube voltmeter. Values of % were obtained by feading
the r.m.s. voltage on the voltmeter. (This voltmeter is aofua‘lly a
.peak-to-peak instrument and reads true r.m.s. only for # sine wave. A
fevi of the indicated r.m.s. wvalues, for turbulent velocity fluctuations,
were checked against true r.m.s. values as obtained from the statisti-
cal analyzer (see Section III-8); these may differ up to 10%, depend-
ing on the wave shape, but, at present, no corrections have been made,
since the absolute values were not of prime interest.) Usually only
relative values of «? were required, but absolute values could be de-
termined by oomparing the voltage with that obtained by placing the
hot-wire behind a calibrated grid.

The frequencies of periodic fluctuations were determined by ob-
serving Lissajou figures on the oscilloscops, that is , the amplifier
output was placed on one set of plates and a known frequency on the
other. This reference frequency was taken from a HewlettePé.ckard lHodel
202B audio oscillator, which supplied a frequenoy within 2% of that in-

dicated on the dial.
7. Prequency Analyzer

Spectra were measured on & Hewlett-Packard Model 300A harmonic
wave analyzer. This analyzer has an adjustable band width from 30

0.peSe t0 145 0.pes. (defined in Appendix B) and a frequency range
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from 0 to 16,000 cycles. The output was computed directly from read-
ings of the voltmeter on the analyzer. It was not felt practicable to
read output in the frequenoy range below 40 cycles, therefore <the con-
tinuous spectrum was extrapolated to zerc frequency.

To determine the discrete spectrum in the presence of a éon‘cimxous
background some care was required. | In such cases the analyzer reading
gives the sum of the disorete spectral energy and a portion »ofv.g that in
the continuous spectrum, the proportions being determined by tiae reo-
sponse characteristic of the wave analyzer. The value in the continu-
ous part was determined by interpolation between bands adjacent to the
discrete band, and subtracted out to give the discrete value, as out-

lined in more detail in Appendix B.
8. Statistical Analyszer

The statistical analyzer, designed to obtain probabil.ity functions,
operates on the principle described in Seotion II-5; here «(Z) is a
voltage signal. A pulse train (Fig. 3) is modulated by w(t) and is
then fed into a discriminator which "ﬁfes" only when‘ the input pulses
exceed a certain bias setting, that is, only when u(vt) > %, Por each
such input pulse the discriminator output is a pulse of céns‘han‘b axpli-
tude. The pulses from the discriminator are counted by & series of
electronic decade counters terminating in a mechanical cownter.

The complete analyzer consists of ten such discriminator-counter
channels, each adjusted to count above a different value of £. It
wiil be seen that the probability function obtained is the integral of

the probability density described in Section II-5, that is,
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P(E) = probability that wry¢)> £
= S Plu)dp
Z
It 1s possible to rewrite the moments (Section II-5) in terms of p (%),

& more oconvenient form for caloulation with this analyzer. These are

also shown in Table II.

More complete details of the analyzer and computation.mathods may

‘be found in Refs. 17 and 18.
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IV. RESULTS
l. Shedding Frequency

Since Strouhal's first measurements in 1878 (Ref. 1) the relation
between the shedding frequency and the welooity has been of ﬁtarest
to many investigators. Rayleigh (Ref. 2, Vol. II, p. 413) pointed out
that the parameter »,d/(, (now called the Strouhal number, S5 )} should
be a function of the Reynolds number. Since then there have been many
measurements of the relationship (Ref. 19, p. 570). Ome of the latest
of these is the measurement by Kovasznay (Ref. 11), whose determination
of S5(R) covers the range of £ from O to 10%, Kovasznay also made de-
tailed investigations of the vortex street flow pattern at 1oiv Reymolds
numbers. He observed that the street is developed only at Reynolds
numbers above 40 and that it is stable and regular only at Reymolds
| mimbers below about 160.

The present measurements of S5(#) are given in Figs. 4 and 5. Ex-
cept at Reynolds numbers between 150 and 300, the scatter is small, and
the measurements agree with those of Kovesznay. The large number of
cylinder sizes used results in overlapping ranges of velocity and fre-
quency so that errors in their measurement should be "smeared” out.

It is believed that the best-fit line is acourate to 1%. .

The measurements are corrected for tunnel blockage but no attempt

is made to account for end effects. With the cylinder sizes used no

systematic variations were detected.
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2. Nature of the Velocity Fluctuations

It was observed, as in Kovasznay's work, that a stable, regular
vortex street is obtained only in the Reynolds number range from about
40 to 150. The velocity fluctuations in this range, as detected by a
hot-wire, are shown on the oscillograms in Pig. 6, for a Reyﬁolds N
ber of 80. These were taken at two downstream positions, X/ = 6 and
48, and at several values of ¢/J . {(The relative amplitudes are cor=-
reoct at each value of %/J , but the oscillograms for 2/J/ = 48 arse to
& larger scale than those for X/7/ = 6.) The frequencies and ampli-
tudes are quite steady; it is quite easy to determine the frequencies
from Lissajou figures (Section I1II-6), which, of course, are kalsc
steady.

Another example, at R = 145, is shown in Fig. 7a. (The double
signal was obtained for correlatlon studies, and is referred to later,
in Section IV-9. The dotted nature of the trace is due td the method
of obtaining two sigmals on one screen, using an eleotronic switoh.)

At Reynolds numbers between about 150 and 300 thére are irregular
bursts in the signal. An example is shown in Fig. 7b, at R = 180 and
x/d = 6. The bursts and irregularities become nore violeni: as £ in-
oreases. It is rather difficult to determine the frequency. The
Lissejou figure is unsteady due to the irregularity, but in addition,
the frequency, &8 well as it can be determined, varies a little. This
is the reason for the scatter in this Reynolds number range. Two sep~-
arate plots of 5(#) obtained in two different runs are shown in Fig.
8. They illustrate the "erratic” behavior of s5¢@) .in this range.

At Reynolds numbers above 300, signals like that in Fig. 70 were
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obtained (near the begimming of the wake). This is typical of the ve-
locity fluctuations up to the highest value of £ investigated (about
10,000). There are irregularities, but the predominant (shedding) fre-
quency is easy to determine from a Lissajou figure. The Lissajou fig-
ure in this case is not a steady loop, as it is at R = 40 %o iso, but
neither is it as capricious as at R = 150 to 300, and the matching fre-
‘quency is quite easlly distinguished from the nsarby frequencies.
At x/d = 48, in this range, all traces of the periodicity have

disappeared and the fluctuations are typically turbulent.
3« Regular and Irregular Vortex Streets

The above observations show that there are three oharacf.eristic
Reynolds number raunges, within the lower end of the shedding range.

These will be called as follows:

Stable Range 40 < R <150
Transition Range 150 < R < 300
Irregular Range - 300 < R < 10,000+

As noted above, the actual limits of these ranges are gomewhat in
doubt and may depend on configuration, free stream tﬁrbulence, eto.
Alsc the upper limit of* the irregular range is undoubtédl& higher than
10,000. (Periodic fluctuations in the wake have been observed up to
the critical Reynolds number, about 200,000, but the present measure-
ments did not extend beyond 10,000.)

In addition to the differences in the nature of the velocity fluc-
tuations, the ranges are characterized by the behavior of the Strouhal

numbers in the stable range J5(#) is rapidly rising, in the irregular
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renge it is essentially constant, and in the trensition range it is
“unstable".

It will be seen in the further results presented below that all
phases of the wake development are different in the two ranges, stable
and irregular, and that they are indeed two different r_egimas"of perio-

dic wake phenomensa.
4. Relation of Shedding Frequency to Drag

The relation between the Strouhal number, S/(g), and the drag co-
efficient, ¢,(@) , has often been noted (Ref. 19, p. 421). Roughly,
rising values of 5(#) are accompanied by falling velues of (,(#) and
vice versa. ‘

The relation to the form drag is even more interesting. The total
dreg of a cylinder is the sum of two contributions: +the skin friction
| aﬁd ‘the normal pressure. At Reynolds numbers in the shedding range
the skin friction drag is dissipated mainly in the cylinder 'boﬁndary
layer, while the pressure drag (or form drag) is dissipated in the wake.
| It may, then, be more significant to relate the shedding frequency to
the form drag, both of which are separation phenomenav. The £ -depen-
dence of the pressure drag coefficient (y, , teken from Ref. 19,

p. 425, is shown on Fig. §. It has several interesting features:

(a) ¢y, is practically constent, at the value Cop =/ »

(b) The minimum point "A"™ is at a value of # close to that at

which vortex shedding starts.

(¢) The maximm point "B" is in the transition range.

(a) In the irregular range (p, (@) is almost a "mirror reflection”
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of 35(8).
Since the drag coefficient is an "integrated" phenomenon it is
not expected to display as sharply detailed a dependence on # as does
the Strouhal mumber, but these analogous variations are belleved to be
closely related to the position of the boundary layer s_eparat:ion point,
to which both the shedding frequency end the pressure drag are quite

sensitive.
6. Use of Shedding Frequency for Velocity Measurements

The remarkable dependence of the shedding frequency on the veloc-
ity and the possibility of acourately measuring S5(£) make it possible
to determine flow velocities from frequency measurements in the wake
of a cylinder immersed in the flow. At normal velocities the accuracy
is as good as that obtainable with a conventional manometer, while at
velocities below about 400 om./sec. it is much better. (For instance,
at a velooity of 50 cm./sec. the manometer reading is only abcﬁt 0.001
om. alcohol.) In fact, in determining 5/(#) in the present experiments,
this method was used to measure the low velocities by measuring the
shedding frequency at a second reference cylinder of large diameter.
The self-consistency of'this method and the agreement with Kovasznay's
results is shown in PFig. 4.

For velocity measurements it is convenient to plot the frequency-
velocity relation in terms of the dimensionless parameter / {see Sec-
tion II-2) as has been done in Figs. 9 and 10. The points on these
plots were taken from the best-fit line on Fig. 4. They are well

fitted by straight lines
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F=022R-4£5 50 < R < /50 (1a)
F=02/2FR-27 300 < R < 2000 (1v)
whioh correspond to

‘ 5=0.2/2(1-20.2/f) 50 < @ < /50 (22)

s=0.22(1-172.7/#) 00 <R < 2000 5 (2v)
The line (2b) has been plotted on Fig. 4 to compare with what is con-
sidered the best-fit line. The agreement is better than 1%. If (2b)
1s extended wp to R = 10,000 the maximum error, relative to the best-
it line, is 4%.

The plot of F/#) 1s used as follows: the shedding frequency is
observed and £ =7, d%Y7 is caloulated ( 7 is easily determined). #
is found on the ~(#£) plot and the velocity is calculated from
RP=(,d/? . Sometimes, as in the present experimemnts, only # is re-
quired.

6. TWake Energy

From the velocity traces on the oscilloscope (Fiés. 6 and 7) it
is clear that in the regular range the fluctuating velocity «(Z) is
purely periodic while in the irregular range some of the fluctuations
are random. This difference is illustrated in Fig. 11 whioh shows the
distribution of energy intensity ( ;—/;a_)z across the wake at two Rey-
nolds numbers, one in the regular range, at R = 150, and one in the ir-
reguler range, at R = 500. Only half the wake is shown for each case;
the one at R = 150 is plotted on the left side of the figure and the

one for R = 500 on the right.

The total energy intensity («/ Ua)z at each point was determined
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directly from the reading on the r.m.s. voltmeter (see Section III-8).
The components at the frequencies », and 7, were determined by pass-
ing the signal through the wave analyzer. The ocurves in each half of

Fig. 11 satisfy the equalities

(%2 - .@2 ; [-f:f—)z R =150
o
(T (T (T e

The values of (u/¢)% » (u,/t,)* ond (az/é{,)z were obtained by meas-

urement (and at R = 150 are self-consistent) while («,/l,)° was ob-
tained by difference. The absolute values indicated are somewhat in
doubt since the vacuum tube voltmeter is not a true r.m.s. meter, but
are believed accurate to about 10%.

The particular feature illustrated in Fig. 11 (already obvious
' ﬁom the oscillographs) is the absence of turbulent enargy.‘at R = 150
as contrasted with the early appearance of turbulent emergy at R = 500.
This contrast is typlecal of the regular and irregular ::ra.nges..

The measurements shown were made at 6 diam_eters downstream, but
the same features exist closer to the cylinder, In ﬁot, fluctuations
in the flow can be detedted ahead of the cylinder. Théy display the

typical characteristics in the two ranges.
7. Downstream Wake Development

The downstream development for the ocsse of Fig. 11 (but R = 500

only) is shown in Fig. 12. The distribution of total energy intensity

(a/ (/‘,)2 is shown on the left of the figure and the disorete energy
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intensity («,/¢,)? , at the shedding frequency, is shown on the right.
Traverses were made at 6, 12, 24 and 48 diameters downstream. The dis-

crete energy deoays quite rapidly and is no longer measurable at 48

diemeters. (Note that the plot of (4, /¢,)* at 24 diameters is shown

magnified 10 times, for clarity.) A plot of (4, /U,)° has not been in-

cluded since it can no longer be measured at even 12 diameters. The

distribution of («, /Uo)z may be obtained from these curves by dif-
ference.

Fig. 13 presents the downstream wake development in another way.
The wake energy, £ , was calculated by integration of ocurves like those

in Fig. 12 (cf. Section II-3), that is,

(=]

£= N (2) 4(2)

-0

Fig. 13 is a plot of the emergy retio (£,+£,)/£ , that is, the ratio
of the discrete energy relatlve to the total emergy. |

' In the irregular range the energies were computed in this.way at
R = 500 and 4000 (two cylinder sizes in each case) and R = 2900 (one
cylinder). Fig. 13 shows that the deoay in all these cases is similer
and the wake is completely turbulent at 40 to &0 diaﬁeters.'

The value of z// ‘for which £, /£ becomes zero was determined
for a variety of cylinders, varying in size from 0.06 to 1.3 cm. and
at Reynolds numbers from 200 to 10,000. The value was found to lie be-
tween 40 and 50 in all cases, but closer to 40. A precise determina-
tion is difficult (and not important) due to the asymptotic approach
of £,/f to zero. £, 1s already zero at less than 12 diameters.)

In contrast to this, the stable range {R = 50 and 100 on Fig. 13)
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| has no development of turbulence before 50 diameters. The plots for
R = 150 and 200 illustrate the rather spectacular transition from the
stable range to the irregular. |
For R = 50 and 100 the energy ratio remained constant at unity up
to %/d = 100. Beyond that the energy intensity is so low that the tun-

nel turbulence cannot be neglected.
8. Measurements of Spectrum

Fig. 14 shows spectrum measurements at €, 12, 24 and 48 downstream
diameters at a Reynolds number of 500, in the irregular range. The
lateral position (y/o/) chosen for the messurement at each (x//) is the
‘one for which (u,/¢,)? is a maximum (cf. Fig. 12). The method of
plotting is as follows. The curve through the experimental points is
the continuous speotrum 7,.(»), plotted in normalized coordinates. The
disoreta energies, 7 = J(n-n,) end 7,- S(n-rmp) éré indicated
by narrow "bands®™ which should have zero width and inf;nite height, but
are left "open” in the figure. The relative energies i'epresen'bed by

the areas under the continuous curve and under the "5 ~-functions™, re-

spectively, are marked on the figure with values of «,7«’ and ¢, ¥/«%,
“22/ ut, ¢ |
To normalize the continuous spectrum the dimensionless parameters
o =—U£ Fon) end p= —;—n are used. In each case the curve
yA ]
g= 7—:?2:;7 is included for reference. The normalizing coeffi-
cient, - , was determined as follows:

() F.(o) was found by extrapolation of the measured values to

n=20,
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(b) #.(o) eand the other values of 7.(») Were normalized to meke
Sﬂ(ﬂ) on="1~ .

(6) L was found from -i—/o- Flo) =4 .
In shdrt, the measured curve and the reference curve were made to agree
in ¢.(0) and in area. This requirement determines / . |

In these coordinates the shedding frequency shows an apparént in-
crease downstream; this is because the normelizing parameter / in-
creases. For %/J/ = 48 the shedding frequency (that is, 5, ) is marked
with a dash; it contains nc discrete energy at this value of %//.

The "bumps” in the continuous spectrum, near s, and /,, indicate
a feedlng of emergy from the discrete to the continuous spectrum. The
portion of the spectrum near »=-¢0 , vwhich is established eariy and
which contains a large part of the turbulent energy, sesms to be unre=-
lated to the shedding frequenoy (e¢f. Fig. 16). As the wake develops
 the energy in the "bumps" is rapidly redistributed (part of it decays)

to smooth the spectrum, which, in the fully developed turbulent weke
e,
/+(2m2p )
In Fig. 15 the spectrum for z/J/ =12, 4/J = 0.8 is plotted to-

at 48 diameters, tends toward the characteristic curve ¢p=

gether with the one at y/d/ = 0. The curves are similar at low fre-
quencies (large eddies)‘and at high frequencies; they dﬁ.ffer only in
the neighborhood of the discrete band. (The slight discrepency between
this figure and Fig. 14 is due to the fact that they were measured at
two different times, when the kinematic viscosity 7 differed. This
resulted in different values of #, at the same #.)

A similar downstream development is shown in Fig. 16 for R = 4000.

Here the spectrum at x// = 6 1s smoother than in the previous example
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-(Fig. 14). This effect may be due not so much to the higher Reymolds
number as to the fact that the shedding frequency is oloser to the low
frequencies, that is, the shedding frequenocy is "embedded” in the low=-
frequency turbulent band. It seems to result, at 48 diameters, in a
mach closer approach to the reference curve. -

Fig. 17 shows the spectra at 48 diameters for three cylinders and
several values of ,// . It is remarksble that (R = 4000, 5 = 0.477 om)
agrees better with (R = 500, o = 0.190 em) than with (R = 4000, o =
0.953 em). This seems to bear out the above remark about the relative
influence of £ and 7, , for the respective shedding frequencies are
565, 440 and 144.

Finally it may be noted that values of .7° , which on Fig. 11
were obtained by difference, check well with the values computed from
ut = SJ,‘ (n) dn  (before normalization of 4. (»n) ).

N Spectra for the regular range are not presented, f‘oi they are

simple discrete speotra.
9., Spanwise Correlation and Phase Measurements

£, was not measured, but the main features of tine spanwise corre-
lation® are illustrated ‘in Figs. 7 and 18.

Pig. 7 shows three examples, in each of which simultaneous signals
were obtained from two hot-wires at 2// = 6, ¢/J = 1 and separated by

50 diameters spanwise. The two signals were obtained simultaneously

*In the remsinder of this section & distinetion is made between the
terms "correlation function™ and "correlation™. The former refers to
the function defined in II-4c¢ while the latter is used in a looser,
descriptive sense.
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on the oscilloscope soreen by means of an electronic switech. This ac-
counts for the dotted traces.

At R = 145 (Fig. 7a) the correlation is perfect but there is =
phase shift, At R = 180 (Fig. 7b) the correlation is still good but
the individual signals oceasionally bdbreak down. The brea]ndov@s are un=-
correlated at this distance of 50 diameters. At R = 500 (Fig. 7c) each
signal still shows a predominant frequency. There is some wvariation
in phase between the two signals. The amplitude irregularities appeer
to be uncorrelated.

Fig. 18 shows the correlation figures obtained by placing the sig-
nels of the two hot-wires on the horizontal and vertical plates, re-
spectively, of the oscilloscope.

For R = 80 and I/J = 100 a steady Lissajou figure is obtained,
showing that the periodic fluctuations at the two points (100 diameters
| apért) are perfectly correlated (but they are not in phasej.

For R = 220 and 500 there is good correlation only at small values
of ¢/d, that is, only when the two hot-wires are in the same Teddy",
80 to speak. For R = 500 the figures are similar to those obtained in
fully developed turbulence. |

In obtaining these ‘correlations a remarkable phenoinenon was ob-
served. The stable vortex street (that is R < 150) has a periodic
spanwise structure. This was shown by the phase shifts on the Lissajou
figure, as the moveable hot-wire was traversed parallel to the cylinder.
From the phase coincidences observed, the wave length parallel to the
oylinder was about 18 diameters at a Reynolds number of 80. It has

not been determined whether this periodic structure is due to a
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"waviness” in the vortex filaments or whether the vortex filamenta are

stralght but inclined to the cylinder axis.
10. Statistical Measurements

A few amplitude distribution fumctions were measured a.nd" are shown
in Fig. 19. One measurement is in the stable range; ﬁxe other shows
dovnstream development in the irregular range.

The table on Fig. 19 shows values of C and « computed from these
ocurves. The behavior, of course, is as expected, but the numerical
values are of some interest. These values {and the curves) show that
at R = 100 the signal was practiocally triangular, but had rounded
"tops". At R = 500 the downstream development of randomness is shown
by the tendency of ¢ and « %toward the Gaussian values.

The distribution is in fact not Gaussian, as may be seen on the

figure, for its skewness < is quite high.
1l. Vortex Rings

The flow behind wire rings was briefly investigated. The dimen-
sions of the rings used is given in Table II. |

With the rings of fiameter ratio 4/7/ = 10 vortices are shed from
the wire in almost the same way as from the straight wire, and there
is apparently an ammular vortex street for soms distance downstream.
The Strouhal number, measured from R = 70 to 500, is lower than for
the straight wire (about 3% at R = 500 and 6% at R = 100).

Fluctuating velocity amplitudes were measured in the wake at sev-

eral downstream positions. The results for the largest ring, measured
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along a diamster, are shown in Fig. 20. It should be noted that -J,.?2
rather than the energy has been plotted here (of. Fige. 11), and only
relative values are shown. Close behind the cylinder the wake behind
the wire on each side of the ring is similar o that behind the straight
wire, but the inside peaks are lower than the outside peaks. :This wmay
be partly due to the interference of the hot-wire probe, for a similar
_effect, much less pronounced, was noticed in the measurements behind a
straight wire.

Farther downstream there was some indication of strong interaction
between the vortices, for a peak could not be followed "smoothly” down-
stream. However, the investigations were not continued far enough to
reach conclusive results. At about 40 diameters downstream fhe flow
became unstable.

The ring with /7 = 5 behaved somewhat differently. The observed
ﬁequenoias gave values of Strouhal number az shown in Table IV below.
The table shows values of 5 and # based on the wire diameter; as well

as 95, and £, based on ring diameter.

R | 89 | 96 | 108 | 128 | 155 | 182 | 215 | 202 | 566 | 255

N 05/ | 032 | 052, OS7 | 060 | /47 | /B9 | .204 | .2/ .22

£p 450 490 | 525 | 650 &0

Sp| 26 | 25| zs5| .29 | .3/

Table IV

Between R = 153 and 182 there is a sudden increase in S, and at

higher Reynclds numbers, in what corresponds to the irregular range,
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the shedding is similar to that from a straight wire, while in the
stable range the shedding is at much lower frequency. From the obser-
vations made it seems likely that in the stable rangé the ring acts
like = disc, shedding the vortex loops observed by Stanton and Marshall
(Ref. 18, p. 578 and Ref. 20). Stanton and Marshall do not give their
frequency-velocity observations except at the critical 4&,, where shed-
ding first starts. They observed this to be at about £, = 200, with
a corresponding Jp of 0.12.

Again, these experiments were too incomplete to warrant definite
conclusions, but the difference in behavior for /0 = 10 and p/J = 5
is interesting. This behavior is similar to that observed by Spivack
(Ref. 21) in his investigation of the frequencies in the wake of a pair
of cylinders which were separated, normal to the flow, by a gap. He
found that when the gap was just smaller than one diemeter instability
occurred. For larger gaps the cylinders behaved like individual bodies,
while for smaller gaps the main frequencies were, roughly, those cor-
responding to a single bluff body of dimension equal to the combined

pair.
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V. DISCUSSION

The most significant results of this investigation may ve dis-
oussed in terms of the Reynolds number ranges defined in Section IV-3,
viz., the stable range from R = 40 to 150, the transition range from

R = 150 to 300, and the irreguler range above R = 300.
l. Stability

The transition range from R = 150 to 300 displays the character-
istics of a laminar~turbulent transition, and it is instructive to come
pare the stability of the flow arowmd the cylinder to boundary layer
stability. The flow in the irregular range has "turbulent” character-
istics, while in the stable range it is essentially "viscous".

The Reynolds number regimes may be described as follows: below
R = 40 the flow around the cylinder is a symmetric, viscous configura-
tion, with a pair of standing vortices behind the cylinder.. At about
R = 40 this symmetric configuration becomes umstable. It changes to a
new, stable configuration which consists of alternate ‘periodic break-
ing away of the vortices and formation of a regular vortex street. The
instability at R = 40 is not a laminar-turbulent instability; it di-
vides two different ranées of stable, “viscous” flow. In either range,
disturbances to the stable configuration will be damped out.

On the other hand, the transition range from R = 150 to 300 in-
volves a laminar-turbulent transition. To understand how this transi-
tion is related to the vortex shedding it is necessary to know some-
thing about the "formation™ of the vortices. Involfed in this forma-

tion is the circulating motion behind the cylinder. A free vortex
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layer (the separated boumdary layer) springs from each separation point
on the cylinder. This free layer and the backflow behind the cylinder
establish a circulation from which fluid "breaks away" at regular in-
tervals.

The laminar-turbulent transition is believed to cccur in the free
vortex layer, i.e., the circulating fluid becomes turbulent before it
breaks away. Then each vortex passing downstream is composed of tur-
bulent fluid. |

The point in the free vortex layer at which the transition occcurs
will depend on the Reynolds number. This transition was actually ob-
served by Schiller and Linke (Ref. 18, p. 555 and Ref. 22) whose meas-
urements were made at cylinder Reynolds numbers from 3500 to 8500. The
distance to the transltion point, measured from the separation point,
decreased from l.4 diameters to 0.7 diameters, and for given Reynolds
nﬁber these distances decreased when the free stream turbulence wes
increased. Dryden (Ref. 23) observes that at some value of # , depend-
ing on free stream turbulence, etec., the transition pdint in thé layer
actually reaches the separation point on the cylinder. This point then
remains fixed and vortex shedding continues, eésentially unchanged, up
to Reynolds numbers above 100,000 (that is, up to the value of £ for
which trensition begins in the cylinder boundary layer ahead of the
separation point).

In summary, vortex formation in the stable range occurs without
laminar-turbulent transition. The circulating fluid breaks away peri-
odically, and alternately from the two sides, forming free "viscous"

vortices which move downstream and arrenge themselves in the familiar
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vortex strest. In the irregular range transition ocours in the circu-
lating fluid before it breaks away, and the vortices are composed of
turbulent fluid. The transition range corresponds to the similar range
in boundary layer stability, and it displays a similar in‘termittenéy.‘
The values R = 150 and 300 used to define the range are expec‘éed to be
different in other experiments, depending on wind tumnel turbulence,

cylinder roughness, etc.
2. Shedding Frequency

The Strouhal number - Reynolds number dependence is differemt in
the two ranges. In the stable range 5/@) is rapidly rising, while in
the irregular range it is practicelly constant.

Fage and Johansen, who investigated the strueture of the free vor-
tex layers springing from the separation points on various bluff oylin-
 ders (Ref. 9), made an interesting observation on the relation of the
shedding frequency to the distence between the vortex layers. 'This
distance increases as the oylinder becomes "bluffer™, while the shed-
ding frequency decreases. In fact, if & new Strouhal number S’ is de-
fined in terms of the distance <’ between the free vértex layers (in-
stead of the cylinder dimension o), then & universal value S # 0.28
is obtained for e variety of (bluff) oylinder shapes. The measurements
of Ref. 9 were made at R = 20,000, but it is believed that the simi-
larity exists over the whole irregular range. It does not extend to
the stable range. To check this point the shedding frequency was meas-
ured in the wake of a half cylinder placed with the flat face broadside

to the flow. It was found that 5(#) was rising for Reynolds numbers
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below 300 and then became practically constant, at the walue 5 = 0.140.
For a similar case, at R = 20,000, Fage and Johansen found 5 = 0.143.

The universality of the comstant S’ is useful in systematizing
the shedding phenomena (at least in the irregular range). It indicates
that when the circulating fluid behind the cylinder is turbule;zt then
the formation of free vortices is similer for a wvariety of bluff shapes
and over a wide range of Reynolds numbers.

Finally, the relation between Strouhal number and form drag coef-
ficient has been mentioned in Section IV-4. 1In the irregular range the
slight variations in 5(#) reflect slight variations of Cp, end so,
probably of the separation point. However, constancy of ¢y, is not
enough to ensure fixed separaticn point. For instance (p, femains
practically constant down to Reynolds numbers below the shedding range,
but the separation point there is farther back than it is at higher
.Reynolds numbers. It would seem worthwhile, and fairly eé.éy, to meas-
ure the position of separation as a function of Reynolds number over
the whole shedding range, that is, to complete the data availsble in

the literature.
3. Downstream Development

(2) The way in which the wake develops downstream is guite dif-
ferent in the stable and irregular ranges.

When the circulating fluid breaks away before the occurrence of
transition in the free vortex layers (that is, below R = 150) then the
free vortices which are formed are the typical "viscous" vortices.

There is no further possibility for the fluid in them to become
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turbulent. The vortices simply decay by viscous diffusion as they move
downstream (see Appendix A-7).

When turbulent trangition does occur then the vortices which are
formed consist of turbulent fluid. They diffuse rapidly as they move
downstream, and are soon obliterated, so that no evidence of ’éhe shed-
ding frequency remains. This development to a completely turbulent
weke takes place in less than 50 diamesters. In terms of the "decay” of
the discrete energy (Fig. 13),the development is roughly the same for
Reynolds numbers from 300 to 10,000, This again indicetes a remarkable
similarity over the whole irregular range.

(b) Again, the stable and irregular ranges are characterized by
the difference in the energy spectra of the velocity fluctuations. It
has been pointed out that in the irregular range & continuocus, or tur-
bulent, part of the spectrum is established at the beginning of the
wake development. This turbulence s & result of the transition in the
free vortex layers, and might be expected to be independent (at first)
of the periodic part of the fluctuation, which results from the peri-
odic shedding. Indeed, most of the energy at first is concentrated at
the shedding frequency #, (some at 7#; ), and it may be represented as
a discrete ( 5 -function) part of the spectrum, within the acourscy of
the measurements (cf. Appendix B). However, the continuous and dis-
crete parts are not entirely independent, as shown by the "bumps" near
n, and n; (Fig. 14). This may be regarded as a result of energy
"feeding" from the discrete to the continuous parts of the spectrum,
and it proceeds in a way which tends to smooth the spectrum. Such

transfer of energy between spectral bands is a process depending on
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the non-linear terms of the equations of motion. The Mactivity" in
the spectrum, at any stage of its development, may be regarded as an
equilibrium between the non-linear and the viscous térms. It is an im-
portaht problem in the theory of isotropic turbulence. _

The spectral "activity"” near the frequency of discrete eﬁargy
mighf be loocked upon as a simplified case in which a single band has
an excess of energy and the spectral energy flow is wmidirectional,
that is, out of it into the adjacent bands. However, the non-homogene-
ous character of the field involved (the wake) reduces the simplicity,
for it is necessary to teke account of energy transfer across the weke.
One interesting possibility is to superimpose a homogensous (isotrapic)
turbulent fleld, by means of a screen ahead of the shedding cylinder,
and to study the effeot of this field on the spectral activity near
the discrete band. Although the weke will still introduce non-homo-

- géneity (not even counting the periodic part of the motibn) it may be
possible to arrange the relative magnitudes to give significant results
from the simplified model. |

To study such problems the technique for measuring the spectrum
(Appendix B) near the frequenoy of discrete enargy‘wiil be improved.

To summarize, it i8 suggested that the initial development of the
spectrum might be regarded as follows. The continuous and the discrete
parts are established independently, the one by the transition in the
vortex layers and the other by the periodic shedding. The turbulence
due to the transition is the "primary"™ turbulent field and its spectrum
is the typical, continuous (turbulent) spectrum. (It has been noted in

Section IV-8 that the low-frequency end of the spectrum is established



43

early; it would contain only energy of the "primary” field.*). The
discrete part of the spectrum is "embedded" in the turbulent part, asnd
it thereby is "excited" into spectral transfer. Some of its energy is
transferred to the adjacent frequency bands resulting, initially, in
the development of "bumps” in the continuous spectrum. Subseéuently,
as the spectral transfer proceeds, the spectrum becomes smooth.

_ The above is an abstraot way of saying that the vortices are dif-
fused by a turbulent fluid (instead of a visocous one). The diffusion
involves the non-linear processes typical of turbulence; the study of
these processes, in terms of spectrum, ls an important problem.

There 1s a similar case of turbulent-periodic structure in the
flow field between two oylinders, one of which rotates. G. I; Taylor's
discovery of the periodic structure of the flow is well known (Ref. 24).
When the inner cylinder rotates it is possible to obtain a steady, reg-
| uiar arrengement of ring vortices, enclosing the immer cylinder, and
having, alternately, opposite directions of circulation. Above a cri-
tlcal value of the speed of rotation this laminar, periodic structure
becomes unstable and the fluid becomes turbulent, but alternate, ring-
shaped vortices still exist at speeds several hundred times the oriti-

oal speed (Ref. 25). 4
4, Statistics

The probability distribution funotions (Fig. 19) display the

*In the theory of homogeneous turbulence it is shown that the low-
frequency end of the spectrum is invariant, a property related to the
Loitsianski invariant.



oharacteristics which are expected, from the other observations. The
contrast between the functions at R = 100 and R = 500, that is, in the

| stable and irregular ranges, respectively, is quite evident. In the
irreguiar range, even at %// = 6, where most of the energy is‘ discrete,
there is a marked irregularity in the fluotuation, as shown by the high
value of o .

However, these descriptions are little better than Quali’ca‘biva,
and 1t is hoped to obtain more interesting results by extending these
sta;bisti.oal methods. Of partioular interest in the development of rane
dom from periodic motion would be the relation between the probability
distributions and the speotra. For instance, it is plain that a purely
periodic function (discrete spectrum) will have a probability aistribu-
tion with finite cut-off, while development of random irregularities
in the function's amplitude is strongly reflected in (i) a "spreading”
‘of the distribution function to higher values of % end (ii) the ap-
pearance of a continuous spectrum. On the other hand, ‘the continuocus
spectrum could just as well develop from random phase ii'regularities,
in which case the distribution function might be (practically) unaf-
fected. That is, there is no umnique relation between the speoctrum and

the simple distribution fumction.

5. Future Investigations

Some further lines of investigation indicated by these experiments
are summarized below,
(a) The trensition from the stable to the irregular range should

be investigated with contrclled disturbances, for example, cylinder
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roughness and free stream turbulence. It is expected that the iimits
of the transition range {(roughly R = 150 to 300 for the equ;imental
conditions here) will be lower for higher free stream turbulence or
cylinder roughness. The oritiocal cylinder Reymolds numbers should be
related to corresponding numbers for the transition point in the free
vortex layers (based on distance from separation point or on the thick-
ness of the layer).

Such studies of stability to different disturbance smplitudes and
frequencies are well-known in the case ot the boundary layer. A wvaria-
tion of the experiments of Schubauer and Skramstad (Ref. 26), who used
an oscillating wire in the boundary layer to produce disturbances of
definite frequenclies, would be to use a second shedding cylinﬁer.

(b) A study of the spectral development in the neighborhood of
& discrete band, the effect of a turbulent field on its activity, etec.
(diacussed in Section V-3) may be the most fruitful continuation of
these experiments. So far, the problem has been approached only in the
theory of isotropic turbulence, where it has not advanced much beyond
the similarity considerations of Kolmogoroff, and very llttle is known
about the form of the spectral transfer function. '

Interactions betwedn discrete bands, for example, at slightly dif-
ferent frequencies, can be studied by the use of two or more cylinders
arranged to "interfere” with each other (some such studies have been
made by Spivak (Ref. 21), but not from this viewpoint), or possibly by
using one cylinder having diameter changes along its span.

(¢) Townsend has recently used the concepts of intermittently

turbulent flow and local isotropy in his investigations of the turbulent
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wake, and has obtained a new desoription of its structure (Ref. 27).
His studies were made at downstream distances of 80 diameters or more,
so that the wake was fully turbulent. Probably the structure he de
scribes is essentially the same up to the beginning of the fully de-
veloped wake (about 50 diameters), but then there is the quesfion of
how it is related to the earlier developments. The most obvious Mearly
developments”™ are the turbulent transition in the free vortex layers
and the periodic shedding. (Although the shedding frequency is no
longer distinguished far downstream, it is prominent in the early spec-
tral developments and thus has an influence on the downstream wake).
Such studies will involve considerably more detailed investiga-
tions of the wake structure than were made here, poseibly along the
lines of Townsend's experiments and the classical measurements of en-

.

ergy balance across the wake. The other two components of the energy,
F and n;/—z, will be needed. |

(d) The nature of the circulating flow behind the cylinder and
the formation of free vortices, that is, the shedding mechanism, should
receive further attention.

(e) The spanwise periodic structure of the vortex street should
be investigated, beyond‘the very cursory observations made here. In
particular, a study of the stability of single vortex filaments seems
important. .

(£f) Measurements of the fluctuating forces on the cylinder, due
to the shedding, would be interesting, and should have immediate prac-
tical applications. There seems to be very little information about

the magnitude of these forces. It might be obtained either by direct
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neasurement of forces (on a segment) or pressures (with pressure pick-
ups) or inferred from measurements of the velocity fluotwations close
to the cylinder. In addition to the magnitude of the force or pressurs

fluctuations, their spanwlse correlation is of prime importance.
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VI. CONCLUSIONS

l. Periodic wake phenomena behind bluff cylinders may be classi-
fied into two distinct Reymolds number ranges (joined by a transition

range). For a circular cylinder these ars:

{(a) Stable Range 40 < R < 150
(b) Transition Range 150 < R < 300
{¢) Irregular Range 300 < R < 10,000+

In the stable range the classical, stable Karman streets are formed; in
the irregular range the periodic shedding is accompanied by irregular,
or turbulent, wveloeclity fluctuations.

2. The irregular veloocity fluctuation is initiated by & laminar-
turbulent transition in the free vortex layers which spring from the
separation points on the cylinder. The first turbulent bursts ococcur
in the transition range defined above.

3. 1In the stable range the free vortices, which move downstream,
decay by viscous diffusion, and no turbulent motion is developed. In
the irregular range the free vortices oontain turbulent fluid, and dif-
fuse faster; the wake becomes fully turbulent in 40 to 50 diemeters.

4. An annular vor?ex street structure has been observed behind
rings having a diameter ratio as low as 10.

5. In the stable range & spanwise periodio structure of the vor-
tex street has beem observed.

6. A velocity meter based on the relation between velocity and

shedding frequency is practical.
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APPENDIX A

NOTES ON VORTEX STREET GEOMETRY AND SHEDDING FREQUENCY

The regularity of the vortex shedding and its sensitivity to ve-
loclty changes has undoubtedly intrigued everyone who has investigated
the flow past bluff bodies. However, as Karmsan pointed out in his
first papers on the vortex street, the problem is inherently difficult,
involving as it does the separation of the boundary layer from the
cylinder, and there is yet no adequate theoretical treatment of the
mechanism.

The following notes may be useful as a swmary of the interesting
featurss of the problem. They are hased largely on the literature, bdut
include some results obtained during the present experiments. Chapter

XIII of Ref. 19 has & very useful review and list of references.
" 1., The Idealized Karman Street

Karman's theory treats a double row of potential vortices, infi-
nite in both directions. The distance between the rows, 4 , and the
spacing of the vortices in each row, ./, are constants. The vortices
have strength (circulation), ,, which, with the geometry, determines
the velocity V of the street relative to the fluid. The theory shows
that the configuration is stable when the rows are staggered by & half
“"wave-length” and the spacing ratio is |

kit =0 28/ (1-1)
The circulation and velocity relative to the fluid are themn related by
rive= zgas | (1-2)

Two of the parameters ( 4/ , /,/’, v ) must be determined from some
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other considerations. In the real vortex strest they must be related

to the conditions at the cylinder.

2. The Real Vortex Street

The real vortex street, even in the stable range, differs from the

idealized one in the following points:

1)

(2)

(3)

The street 1s not infinite. It starts shortly downstream of
the cylinder and eventually loses its identity far dowmstream.
However, the classlcal vortex street patterns extending fbr
ten or more "wave lengths" should be a good approximation.
The vortex spacing is not constant. In particular, the lat-
eral spacing #/ inoreases downstream.

The real vortices must have cores of finite radius. These
grow downstream, so that the vortices diffuse into each
other and decrease thelr circulation. For thé same reason
the velocity V 1is expected to differ considerably from the
theoretical value, since it is strongly depéndex_rb on the con-

flguration.

Related to these considerations is the way in which the vortices

are first formed. At Réynolds numbers below the shedding range a sym-

metrical pair of eddies is formed at the back of the cylinder. As the

Reynolds number inoreases these two eddies grow and become more and

more elongated in the flow direction, until the oconfiguration is no

longer stable and becomes asymmetric. Once this occurs the circulating

fluid breaks a.way* alternately from each side to form free vortices

*Possibly the breaking away should be regarded as primary, resulting
in asymmetry.
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which flow downstream and arrange themselves into the regular, stable
vortex strest.
In the irregular range the process is similar, except that the

fluid is turbulent (due to the transition in the free vortex layers).
3. . The Downstream Vortex Spacing

In the flow past a stationary oylinder the frequency with wh'lch

vortices of one row pass any point is given by

Uy -V
7, = -
/ 7 (3-1)
This must be the same as the shedding fregquency
S .
Two useful expressions results
2z / v
e e - —
7507 | (-3)
or
V S
—_— = .=
0 7 (3-4)
In a real vortex street, — 0 far domstream and then. 7[ —»?/ .

Or, if 5//4 4is known from meé.surements then |//4, wmay be computed.

An example of measured values of /// is shown in Fig. 21. These
were taken from the streamline plot obtained by Kovasznay (Ref. 1l) at
R = 53 (for which 8 = 0.128). There is a little scatter but //o/ does
approach the constent value //5 = 7.8.

The scatter, while relatively unimportant in the case of /// ,
gives very low acouracy for values of V/(, oaloulated from Eq. (3-4).
These have also been plotted in Fig. 21. It 1s surprising that some
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of the values, near the cylinder, are negative (corresponding to values
of 4/c higher than //5 ); it is believed that this results from the
combined difficulty of estimating the vortex centers, espescially near
the oylinder, and the sensitivity of Eq. (3-4). (However, it must be
noted that negative values of V are not impossible. Negative V sim-
ply means that the vortex velocity is directed upstream relative to

the fluid, while it is still downstream relative to the cylinder. Such
a possibility exists at low values of %/J , where the mean velooity at
the edges of the wake 1ls considerably higher then (,.)

Another way to obtain V/¢, is to assume that the vortex oenters
move with the local mean veloclty. KXovasznay's paper includes measure-
ments of mean velocity profiles. From his results the mean vélocity
along the line of vortex centers, (/*, has been determined and from it

v u*

% A
Near the cylinder it does not agree with the values obtained by the

has been calculated. The result is plotted in Fig. 21.

previous method; it is believed that this is principally due to the
difficulties mentioned above, and that the determination of V/Uo from

/- (u*/t,) is more accurate.
4. The Lateral Spacing

The lateral spacing, at least initially, must be determined by
conditions near the cylinder. The way in which this 'spaoing increases
dowvnstream is discussed, for the stable range, in Section A-T.

In the irregular range, the dependence of the shedding frequency
on the distance between the free vortex layers, noted by Fage and

Johansen (Section V-2), leads to an interesting estimate of the initial
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lateral spacing of the free vortices. The maximum distance, J', be-
tween the free vortex layers, instead of the cylinder dimemsion <, may

be used to define a nsw Strouhal number

dl
.5l=/7

"4

(4-1)
Fage and Johansen found that, whereas S5 varies considerably with cyl-
inder shape, S ‘is practioally constant for a variety of bluff cylin-
ders. Now the initial lateral spacing, 4 ', of the free vortices will
be roughly the same as d/, possibly a little smaller:

1 4
e (4-2)

Then, comparing to Egs. (3~4) and (4-1),

4 s-€ y
Z - Toag ° (¢-3)

From the measurements of Fage and Johansen, S’ = 0.28. The factor
/- £
= (W)
ing ratio agrees with Kerman's value, at least close to the cylinder.

2/ « Thus Bq. (4-3) gives 4/ / = 0.28, that is, the spac-

S. The Shedding Frequency

There is yet no adequate theory of the periodic vortex shedding,
and it is not clear what is the principal mechanism which determines
the frequency.

The downstream spacing ratio is related to the shedding frequency
by Eq. (3-1) and to the lateral spacing by a stabllity oriterion (for
example, Karman's value of 0.28 for the idealized street). It might
be considered that the shedding frequenocy is determined by the spacing

requirement, or, conversely, that the shedding is "primery™ and



determines the downstream spacing. The latter viewpoint seems the more
plausible one, that is, the shedding frequency is established by a
mechanism which depends on features other than the vortex specing. It
is necessary to obtain a better understanding of the flow field near
the oylinder. Ome of the elements involves the problem of separation,
particularly the non-statlionary problem. Another that reguires more
study is the flow field directly behind the cylinder.

With a better knowledge of these, and possibly other, features it
may be possible to set up & model of the shedding mechanism. In the
meentime it is not clear whether the vortex spacing requirement ig de-

cisive in determining the frequenocy.
6. Destabilization™ of the Shedding

The following experiment i1llustrates the dependence of the peri-
odic shedding on “communication" between the free vortex layers, thet
is, on the flow field directly behind the cylinder. A thin fl.a't plate
was movnted behind the cylinder in the center plane of the wake (Fig.
22). It was completely effective in stopping the periodic shedding.
Spectrum measurements in the flow on one slde of the plate are showm
in Fig. 22. At R = 7500 no significant frequencies could be separated
out from the continuwous background. At R = 3200 there were several
predominant frequencies (all higher than the shedding frequency for the

cylinder), but by the time the flow reached the end of the plate,

*The stability considered in this seoction is not with respect to lami-
nar-turbulent transition; it concerns the stability of the periodic
shedding (cf. Section V-1).
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5 diemeters downstream, it was completely turbulent. (The shedding
frequency, s, , for the cylinder is marked on the figures.)

The important effect, on the shedding, of the flow field directly
behind the cylinder is apparent. Probably an even shorter length of
plate would be effective in destabilizing the pericdie ah'eddi:ézg, and
tharé may be a most effective position for such an interference ele-
ment. Kovesznay remarks that the hot-wire probe used in investigating
the vortex street must be inserted from the side, for if it lies in
the plane of the street it has a strong destabilizing influence.

A more complete study of the destabilization of shedding by such
interference devices may be quite useful from & practical ‘viawpoint.
Structural vibretions and failures are often attributed to 'bh\e periodie
forces set up on members exposed to wind or other flow (smokestacks,
pipe lines, structural columns, to mention a few). In many oases it
might be possible to destabilize the vortex shedding by addition of
simple interference elements or by incorporating them in the original
designs. In the case where one member is buffeted by the wake of an-

other the same principle might be applied.
7. Spread of the Vortex Street

It has been observed by most investigators that the spacing ratio
4/{ is Xarman's value (0.28) close to the cylinder but increases
rapldly downstream. The increase of 4// is mainly due to the in-
orease of 4 , since ./ changes very little (Fig. 21). In the stable
range this is the result of viscous diffusion of the real vortices.

Hooker (Ref. 28) has made an interesting analysis. First, a real
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vortex has a "core” of finite radius; its center 1s the point of zero
velocity and maximum vorticity. Hooker shows that in a vortex street,
where the velocity field of the other vortices must be taken into ac-
count; the points of zero velocity and maximum vorticity do not coin-
cide. The point of maximum vorticlty is wnchanged but the point of
zerc velocity is farther away from the center of the street. As the
vortex "decays", the point of zero velooity moves farther out, its dis-
tahce from the center of the street increasing almost linearly with
time. Thus the spacing based on vorticity cemters remains constant
while the spacing based on velocity centers increases linearly.
Hooker's ocslculation of the linear spread checks fairly well with some
pictures taken by Richarde (Ref. 29) in the wake of an ellipfical cyi-
inder having a fineness ratlio of 6:1 and the major dlameter parallel

to the free stream veloecity.

However, the spread of the wake is not always obser&ed to be
linear. Among the different investigators there is a large variation
of results, apparently dependent on the experimental drrangement. In
Richards' experiment the cylinder was towed in a water tank and the
vortex patterns were observed on the free surface,

In Kovasznay's expériment the oylinder was mounted in a wind tun-
nel, the arrangement being similar to the one used here (Section III).
On his plot of the streamlines at R = 53 the downstream spread of the
vortex street is parabolic rather than linear. It is possible to fit
his results by a somewhat different application of Hooker's idea, using
deoaying vortex filements.

Bach vortex in the street is considered to behave like a single
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vortex filament carried along by the fluid, its deocay or diffusion, be-
ing the same as if it were at rest. The decay of such a vortex is de-

scribed by a heat equation, whose solution is (Ref. 30, p. 592):

‘/"(/~e —f‘z/4z)f) (7.1)

7= Zrr
where ¢ 1s the tangential velooity at the distance r from the center
and at the time 7. The circulation is /". This is essentially a vor-
tex with a solid" core and potential outer flow joined by a transition
region in which the velocity has a maximwm value. This maximm veloc-
ity is

g*=072(r/2nr”) (7-2)

and occurs at the radial distance

)/z

r*= 224 (¢ (7-3)

r* is defined as the vortex radius.

Thus the radius inoreases as ¢ e and the maximum velocity de-

t—%e

oreases as » In the vortex street, time Z is replaced by down-

stream distence X . Since the vortices move with the '&elocity U
rather than /[, , the dimensionless time &= ZL//"% -
where {” also varies downstream (see Section AQ3).

is appropriate,

When a pattern of such vortices is superimposed oﬁ a uniform flow,
it is possible to calculate the velocity fluctuation at & point, due
to the pattern passing over it. '

Now the following hypothesis is added. It is assumed that the
vortex radius r* is equal to the width # of the street. Then the
width of the street increases as « & .

A second result follows. The maximum velocity fluctuation
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(observed by & hote-wire, ss.y) will ocour on the line of vortex centers
and will have the amplitude

wt-g* (7-4)
that is, the hot-wire encounters instantaneous veloclities varying from
v* (due to vortex centers passing over it) to &+ g* (due to the
fields of vortices on the other side of the street). Relations (7-2)
and (7-3) then give the downstream behavior of the maximum fluctuation
amplitude.
‘ The results may be summarized as follows:

(2) Weke width 4 ~ g 72 .

(b) The maximum amplitude of fluctuatiom «* occurs on the line
of vortex centers (so there are two maximum points across
the wake).

(6) u*~8~ Vz‘

(@) u*= 0.3 (r/znh),

A comparison of the above predioctions was made with caloulations
based on Kovasznay's measurements which include profiles of velocity
fluctuation amplitude (of. Fig. 11) as well as the streamline plot.
The following comparisons were obtained, item by itemv:

(a') The time varlation of 4/4 , determined from the vortex
centers on the streamline plot is shown in Pig. 21. The parabola
hld = 0.59 (6-6)% 1s shown for comparison.

(b') The line of maximum velocity fluctuation lies slightly in-
side the line of vortex centers, and is fitted by /%/d/= 0 57 /:9-6)” .

(c?) The time variation of & is also plotted in Fig. 21. (Ac-

tually Kovasznay's maximum r.m.s. values u,, are plotted, but these
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two would be observed in the profile of the velocity fluctustion
amplituds,
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APPENDIX B

EXPERIMENTAL ANALYSIS OF SFPECTRUM

These notes supplement the brief descriptions in Sections III-7
and IV-8.

l. Analyzer Response

Consider tne response of a spectrum analyzer, such as used in the
present experiments, to a mixed periodic-random input, and in particu-~
lar consider the problem of inferring the input from the output.

The input, an energy or power, has a random and & periodic com-

ponent s

Wl =us u? (1-1)

The corresponding spectra are defined by

Ftn)dn f : (1-2)

where
CFAmy= 3(n-n) | (1-3)
and JS(s) is tne Dirao delta-function.

The response characteristic of the analyzer may be obtained by
considering the effect of a periocdic input. When the analyzer setting
(ng) coincides with the input frequency (»,) the output is a maximum,
and when the setting is moved away from », the output falls off. The

response characteristic is



62

output at setting s,
output at setting ,, =/

Rin -nm) = = King-n) (1-4)

The output spectrum G(n,) of the analyzer is related to the input
spectrum 7(n) by (cf. Ref. 15)

Glr) = Fn) Bln-ny) dn (1-5)

N
”N'
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Bince A#(~- s,) is sharp, that is, almost a delta function (see Sec-
tion B-2), 7 (») may be considered to be constant over the significant

interval of integration in Eq. (1=8). Then

u R
Glm) = —5 7 (m) @+ = Rln,-1,) (1-7)
. where
- oI
] = gﬂ(ﬂ—ﬂ,,)dﬂ= Sﬂ(ﬂ‘”ﬁ)dﬂﬂ (1-8)
o .

a

is the area under the response characteristic.
Eq. (1-7) gives the output for & mixed periodiec-random input. It
is required to find the separate terms which make up this sum. The

procedure is outlined ir Section B-3.
2. Half Band Width

The resolution of the analyzer is determined by its half band
width, «. This is defined as the number of "oycles off resonance" at
which the output falls off %o 0.01%, that is

#ln, - )= 0000/ (2-1)



For an ideal analyzer the response characteristic would be a delta-
function, but even with half beand widths from 30 to 145 (which is the
range of the analyzer used here) the characteristic is quite sharp,
relative to the frequency intervals of interest. The values 30 t¢ 145
seem quite high, but they are a little misleading, due to the high at-
tenuation used to define «). For example, the response characteristic
half band width (<« ) is 30 c.p.s. and has a total width of only

6 oc.p.s. at 50% attenuation
3. Separation of the Discrete Energy

To separate the discrete energy, u,z s from the continuous spec-

trum the following procedure 1s used.

& »n,+2 end ,, -.) (see figure) the contribution from .2 is

/

@ Gna)-Q

—

Ez #g(nt'nA )

f, - s H+W fa
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only 0.01%, so the measured points there are assumed to lie on the
continuous spectrum. It is assumed at first that the continuous spec-
trum betwsen these points may be determined by interpolation, and its
value at #, is calculated. Then u-;—z is determined by difference and
the last term in Bg. (1-7) is calculated, since the form £/»n) is
known. The first term in Bq. (1-7) then gives the values of G(n,) in
the vicinity of #, ;3 these should check the measured values.

If, however, the continuous spectrum within the band width has a

“bump”, then the above calculation is not self-consistent, and the true

values can be determined by successive estimates of «,° .

In principle the method is satisfactory, but in practice the ac-
curacy is low because in the regions of interest, that is, near peak
frequencies, it depends on the differences of relatively large gquanti-
ties. Ome of these, #£(y), is known precisely, but the precision is
difficult to realize since the settings on the analyzer ocannot be read
accurately enough. For the spectral investigations discussed in Sec-

tion V-4 the technique will be improved.
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