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ABSTRACT

The electromagnetic wave equations for the fields, potentials
and Hertz vectors are derived and a Lorentz gauge 1s giliven for
space~time dependent media. Electromagnetic wave propagation,
electric and magnetic dipole radiation, and Cerenkov and transition
radiation in sinusoidally space~time periodic dielectric, plasma and
uniaxial plasma are studied and numerous radiation patterns are
given. A special radiation effect in the unlaxial plasma is inves=-
tigated. Finally the study is extended to general space~time
periodic media (i.e., € = aoer[l + slf(Kz - Qt)] where f(§) is a

periodic function).
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I. INTRODUCTION

Considerable interest has recently been stimulated by
phenomena that involve the interaction between two waves in the
presence of liquids, solids or plasma, including such applications
as diffraction of light by ultrasonic waves [l], parametric processes
in nonlinear media [2], optical visualization of sonic waves [3,4],
Bragg scattering in plasma [5], and others. These processes usually
involve a stronger wave (of the elastic, electromagnetlc, or other
type) that produces a space-time periodic modulation of the properties
of a medium which in turn causes a diffraction of the weaker wave
(usually of the electromagnetic type).

The configuration which is customarily selected to represent
the two-~wave interactions expresses the perilodic modulation caused by
the strong wave as a traveling wave variation of the permittivity
along one particular direction in the medium (i.e., €(z,t) =
eoer[l + elf(Kz - Qt)] where £(§) is a periodic function); this
allows linearization of the problem. Two liﬁiting cases are also of
great interest: perlodically time-dependent media (i.e., K= 0) and
periodically stratified media (i.e., & = 0).

Plane waves in perlodically time-~dependent medla were studied
by Holberg and Kunz [6]. Plane wave propagation, dipole radiationm,
Cerenkov and transition radiation in sinusoidally stratified media
were extensively investigated in the last decade by numerous
authors [7-14]. For sinusoidally space-time periodic media, only the

plane wave and guided wave propagation problems in dielectric and
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isotropic plasma were studied [15-20].

In our present work, the problem of electromagnetic waves in
sinusoldally space~time periodic media is formulated in a compact form
such that the basic results and diagrams apply, with minor changes, to
different problems (plane wave propagation, electric and magnetic
dipole radiation, and Cerenkov and transition radiation), and to dif-
ferent media (dielectric, plasma, anisotropic and uniaxial media).

Our method is then extended to the generally space-time perilodic media
and all the analytic results obtained in the sinusoidal case are found
to be valid,with slight modifications, in the general periodic case.

A method using the Hertz vectors is also investigated, the
Hertz vectors wave eguations are derived, and a new Lorentz gauge is
given for space-time dependent media.

In most of our study no limit on the modulation amplitude El
is imposed (except that € > 0 for the dielectric and N > 0 for the
plasma density), and the analytic solutions are exact (approximations

are used only in the numerical computations).‘
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11. SPACE-TIME PERIODIC DIELECIRIC

The medium consteants are taken as

o= uo = free space magnetic permeability

™
]

e(z,t) = eoarLl + g€,cos(¥z - Qt)]

1

fi

where > free space electric permittivity

€_ = relative permittivity of the undisturbed dielectric

El = amplitude of the relative permittivity change due to
the disturbance

The disturbance is a plane wave propagating in the z direction with a

velocity vy = Q/K

A, Wave Egquations

1. Field equations:

Maxwell's equations for the current-free medium are:

o1
VXEs= —uo 5T (2A.1)
VxH= o [e(z,0F] (24.2)
VeH= 0 (24.3)
vV« [e(z,t)E] = O (24.4)

This set of equations gives the wave equation in a space-time

dependent media:

n2

VE = U =55 [e(z,0E] + IV E (24.5)
gt

2 K A8 wi N

VE = ou g lez,0) —a—€]+ =olE X V e(z,0)] (24.6)
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The electromagretic field can be subdivided into a T.E.
field (di.e., transverse electric where E=Ee and H=H e+ He),
- -y - X @z
and a T.M. field (i.e., transverse magnetic where H = H Ey and
E=E e+ E e ) relative to the z-direction (Fig. 1). For the T.E.
- % z—z

field the vector E is normal to Ve(z,t), then equation 2A.4

becomes

Ve [e(z,t)E]

#

€(z,t)V-E+ E- Ve(z,t) = €(2,t)V*E= 0

and the wave equation reduces to

n2
VE - § —2 (eE) = 0 (24.7)
o 2
ot
where E = E gy . For the T.M. fileld, no such simplification is pos-

sible.
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The electromagnetic field can be described by the electric
Hertz vector Il , and magnetic Hertz vector ¥ which are defined by

(see Appendix A):

1 oM
E:-EVXVX§+VX—5—: (2A.8)
1 &
_13=—i—~\7><v><g—v><oa——t- (24.9)

"The Hertz vectors have the properties that, in our problem,
their wave equations are scalar equations. In fact, as the vector
currents considered in this study are parallel to the z-axis, the
e.n. field can be determined completely from the z components of the

two Hertz vectors. Outside the source volume, we get:

T = Ie M = Me (24.10)
= -z - r
2 5 1l o
VZH + € Py Cg-gz) -HE—5 = 0 (2A4.11)
Jt
2 3 oM
V™ - My 52'(8 oyl 0 (24.12)
2 2

5 . See Appendix A for the detailed computation.

B. General Solution

1. Transverse electric waves:

a. Dispersion equation and wave vector diagran.

The electric field E = E(x,z,t)gy is a solution of the

equation



VZE - U

5 (€E) = O (2B.1)

Using Floquet's theorem in conjunction with the principle of

superposition, the solution for the electric field can be written

.y D= . _
E(x,z,t) = eiéxﬁ-i(Kz - Wt) Z £ e1n(Kz Qt)
n:—OO n
or
e ik 4+ ik + 1K)z - i(w + o)t (2B.2)
E(X,Z,t) - Z Ene x K nK)z W I, .
n:-m

where: En = amplitude of the harmonics which are generated by the

interaction with the disturbance
§ = x~component of the wave vector

K = z-component of the wave vector for the mn = 0 harmonic:

§ 41is fixed by the incident wave in the half-space problem or the wave-
guide geometry for the wavegulde problem. K is determined from the

dispersion equation.

s

The dispersion equation 1s found by replacing, in the wave equa-

tion 2B~1, E by its expression from 23-2. We have

f1 iz - Qo)

e(z,t) = Eoer[l + Elcos(Kz - qt)] = Eoer[l + =

€
+ 7% e—i(Kz - Qt)]

S0

i8x + ik + oK)z - i(w + o)t
eE=ce ] E e

4

3 o N
vec 1 z E elﬁx + i(k + nK + K)z i(w+ al + 0t +
or 2 b
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- S 1. 1i8x + ik + nK)z - i(w+n)t
gg e By T By T E e

2 € €
O EE _ _ 2, 1 1 idx+i(k +nK)z - 1 (w+nQ)t
uo 3 2 Z Bn(nn + 2 En-l * 2 En—i-'l)e
t n
where B = e e (0 + aQ)?
n oo r
and
V2E . 2 [62+ (k + nK)ZJEnei6x-+i(K +nK)z - 1 (w +nfd) t

et

Putting these expressions into the wave equation, we get

c £
2 1 1

2 2
L a1 l) -0 E - (x + nK) En]

n—

y eiﬁx + i(c + nK)z - i{w+nd)t

= 0

To satisfy this equation for all values of x, z and t , the

variables E_1 must be the solution of the infinite set of homogeneous

IS

equations
€ €
2 2 2 1 .2 1 .2 _
[Bn - 8§ - (k + nk) ]En + 5 BnEn+l+' > BnEn—l = 0 (2B.3)
or
DnEn -+ En+l + En—l = 0 (2B.4)
where 2 8% + (k + ax)?
D= = [1~ ]
R c,l 82
ol

This system of equations will have a nontrivial solution if
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its deternminant A4{k,§,w) wvanishes, so
AK,5,0) = O (2B.5)

an¢ this 1is the dispersion equation. Solving 2B.5 we can plot the
corresponding wave vector diagram.
In order to have an insight on the wave vector diagram
without any numerical computation, let us study the limit when
-0 .
&

If the modulation (i.e., disturbance) amplitude goes to zero,

then from 2B.3 we get

Bi-ﬁz—(K+nK}2= 0
orT

2 2 2
§° + (kK +nk) " = uoeoer(w + nf)

which can be written

Y2 + (X + n)2 = i-CQ + n)2
R2 9]
where Y = §&/K ‘

X = x/K
B = wvYyece

(e} [e BN oI o
K = M€ ¢

(o] O T

R = K/X

o

This is the equation of a family of circles centered at X = -n with

radius -%(% + n) . For g = 0 only the n =0 harmonic has physi-

cal meaning.
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Figure 2 gives the wave vector diagram for €, - 0, R= 3.5

1
and w/Q = 2.5 . On this diagram we see that there are intersection
points between two modes, so when €1 # 0, strong interactions will
occur around these points.

Solving the dispersion equation and plotting the wave vector
diagram for g = 0.25, R = 3.5 and w/{ = 2.5, we get stop bands
near the intersection points (Fig. 3). 1In these'bands the solution
for k 1is complex and Kk = Kr + iKi .

A very important result which comes from this diagram is that,
for a fixed value of ¢ , there is an infinite number of solutions for
K which satisfy the dispersion equation, so we have K = Kq where
q represents all integers €]-=,+°[ and the Kq are real, imaginary
or complex. The expression of the field, using the principle of

superposition has now to be written

-0 o
T

E(x,z,t) = ) ) E

eiéx*—i(Kq+nK)z -1i(w+nf)t
1= =0 q:.oo nq

(2B.6)

where Eq is the amplitude of the nth harmonic of the qth mode. The

nq
properties of Kq will be studied later.

To be able to see some of the effects due to the motion of the
disturbance, let us compare the wave vector diagram of Fig. 3 to the
diagram on Fig. 4 which corresponds to a stationary disturbance (i.e.,
Q=0 or v,=0).

Let A = wavelength of the disturbance

A ‘= wavelength of the e.m. wave in the undisturbed
medium

v_ = e.m. wave velocity 1/ YU ELE.
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the diagram is
symmelric relative
to this axis

Fig. 3. Dielectric wave vector diegram: €, = 0.25, R = 3.5,

s

w/Q = 2.5 , Dashed line corresponds to g * 0

Fig. 4. Dielectric wave vector diagram:

g = 0.25, Ve 0,

A/AM= 1.4, R = @, Dashed line corresponds to El +0 .



= disturbance velocity

= K/Ko = vo/v

v

Va

d

el
u
= >

In both Figs. 3 and 4 we have €, = 0.25 and A/A = 1.4 . Three in-

1

teresting effects caused by the motion of the disturbance appear:

L

2)

In Fig. 3 the diagram envelope is an oblique straight
line with an inclination angle o = sin_l(vd/vo)

In the stationary disturbance case Kq = iKo + gK where
Ko 1s the value of k for the fundamental mode, and the
field expression is

+ -
= eiéx -+ i(_Ko+ nK + gK)z - iwt

B~

g °
i8x + 1i(dk + mKk)z - iwt
e o

=2I;Em

where m=n+qg and E = Z E .
m o~ o n,m-a

As soon as there is a motion of the disturbance, the
relation between the different Kq is lost, degeneracy
and shifting of the stop-bands occur. This implies that
for a fixed value of § some modes will propagate, some
will be attenuated and some will be cut off. This is a
major change relative to the stationary case where all
modes behave in the same way, they are all propagating,
all attenuated or all cut off, depending on the value of

§ .
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3) TFor the fundamental mode the two solutions for K are
not any more equal in absolute value, as in the stationary
case, because of the dissymmetry introduced by the motion
of the disturbance in one direction. Also, the two solu-
tions for each of the other modes are not any more
symmetric relative to the center of the corresponding
circle in the wave vector diagram.
In both moving and stationary cases, for El # 0 there are
inflection points in the wave vector diagram. These points will play

a major role when we study the dipole radiation.

b. Harmonic amplitudes

The infinite system of linear equations 1B.4 has now to be writ-

ten
an Enq + En+l,q + En-l,q = (2B.7)
where 2 62+ (k + nK)2
g
D == [1 - ]
ng €1 82
n Ed

As we take Kk = Kq » this system has a nontrivial solution, but since

it 1s homogeneous we only can determine the values of C = E /E .
nq ng  oq

It is straightforward to find that (see Appendix B)

o

En
E = = - for n>0
n-1,q D -

5]
[




ng__ _ _ 1 - for n <0
n+l,q an - 1
n-l:q
Then we have
E E E E
= 4 1,9 e-l,g L, L . g for n> 90
ng E E E E
0,4 n"l:q n-2,q °,9
E E E E
L _n,q . ng , »otl,a ., ., .. _=l.q for n <0 (2B.8)
nq Eo,q n+l,q En+2,q Eo’q

and the values of qu will be determined by:

-- the boundary conditions for the half-space;

-— the source condition for the dipole.

c¢. Convergence

A last factor to complete the solutilon is to study the conver-
gence of the system 2B.7.

The convergence condition for a system of difference equations

Dnvn -+ Vﬁ+l + Vﬁ—l = 0
is given by
[lim D [ > 2 (Poincare theorem [16,21])
noe O
This gives
Z 1 - Rzl > 2
€1
>
or - R>¥Yl + ¢ for R !



R < 1 -¢ for R<1

So the solution will converge for all values of R or V4 outside of

the region

1 - 1
or
v v
o] < Vd -<- Q
T+, o

This divergence region is called the sonic region, in which
there is a blow up of all the harmonics. This condition of conver=-
gence excludes from our study the case of a disturbance created by an
e.m. wave in the dielectric. (This last remark is valid only for an
isotropic dielectric; for plasma and anisotropic media, see the cor-

responding chapters).

2. Transverse magnetic field

&. Dispersion equation

We have Ems pe +Ee
- paansd =z

H=He
=

The field can be found from the electric Hertz vector wave
equation 2A.11, or directly from Maxwell's equations. Here, the
second method is used.

The field equations are:

3H 3E.  OE

= X z oH
VHES Mo T o T T T T Mo % (28.9)
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od 9 -
. -5 = 3T (e LX) (28.10)
VX H =< (gE) =
-ooet T SE 3
= = 5T (g EZ) (28.11)
oK
Ved=0 = = = ¢ (2B.12)
2= 3y
BEX 3
Ve () =0 = ¢ -—-é;{—"i"é—z- (EEZ) = 0 (2B.13)

Using Floquet's theorem and the superposition principle, as we did in

the T.E. case, the field expressions can be written:

H = z Hneiéx-fi(K + nK)z - 1{(w +nfd)t
n

E = Zgnen‘ﬁx + 1(k + nK)z - 1(w + o)t
n

(E e +E e)e16x+i(K+nK)z~ i(w+nt
nxX—x nz—=z

1
3t~

Putting these expressions in 2B.9, 2B.10 and 2B.11, and follow-
ing the same procedure as in the T.E. case (i.e., equating the elements

corresponding to the same harmonic), we get

(x + nK)Enx - dEnz = uo(w + nQ)Hn

£ €
. 1 1
-{K + nK)dn eoer(w +nf?) (Enx+ 5 En+l,x+ > En-—l,x)

€l El
SH = - Eoer(w‘-"ﬂm (Enz+ ) En+l,z+ 7 En-—l,z)

Eliminating Hn the sbove system reduces to



Dn nx n+l,x nn-l,x+ GnEnz =0 (2B.14)
¥ =
DnEnz * En+l,z + En—l,z+ GnEnx 0 (28.15)
where 2 K + n¥k,2
Dna_E—.[l_( 3 )]
1 o
2 § .2
Dl = &= [1 - 7]
1 n
2 8(xk + nkK)
Gn T e, 2
1 Bn
From 2B.15 we have
Dl
n L, 1
Enx e En,z e r"n-i'-l,z G En—l,z
n n n
?
n+l 1 B 1 B
n+l,x G‘+l n+l,z Gn+l n+l,z Gn+l N,z
T
E _ Dn—l 1 E _ 1 E
n-1,x G .1 B 1,z Gn—l n,z n-1 n-2,z
Putting these expressions in 2B.14 gives
2
DD' -G !
I 1 1 n o+l
[t 2 + 1E  + [2+ ] E
Gn Gn+l Gn-l nz G Gn+l ntl,z
a . Pa-1 1 1
+ [+ =21 E + ——E + —=— E = 0 (2B.16)
Gn Gn—l n~1l,z Gn+l at+2,z G -1 n-2,z
or in a matrix form
] - fe,l = 0

(2B.17)
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where

iEZ] is a colum vector with elements Enz

HM[I is a matrix with elements:
DnD’ - G2 1 1
Mn n nG =+ G + G
’ n n+l n-1l
1
M _ EE.+ n+l
n,n+l G G_.
n n+l
D D!
Mn n-1 =+ Gﬁ“—l
’ n n-1
1
M —
n,n+2 Gn+l
1
M =
n,n=2 Gn-2

and all the other elements are equal to zero.
To get a nontrivial solution for lEzl the determinant of

][M}lmust vanish
A'(8,k,w) = Det ||M|| = O - (2B.18)

This equation 1s the dispersion relation and it gives the wave

vector diagram for the T.M. case.

In the limit g, - 0 , taking the highest order of 1l/e

equation 2B.16 reduces to

l ’

D D! - G
22 5, - 0

and the corresponding dispersion equation becomes DnD; = Gi , and for

B #0
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Z 2

(< + )% + & - 8

which 1s the same as in the T.E. case. This is to be expected
because the dispersion equation for T.E. and T.M. waves in homogene-

ous isotropic media (i.e., when = 0) 1is unique.

1
The wave vector diagram in Fig. 2 applies for the T.M. wave

when el + 0 . TFor el # 0 the T.M. wave vector diagram is similar

to the T.E. diagram in Fig. 3 (but not exactly the same), and K 1is
multivalued. Then the field expression 1s

an eiOX + i(Kq+ nK)z - 1{w + o)t

s
]
B~
Eal ot

. )eiﬁx-%i(Kq+ nK)z-—i(w-%nQ?t

(E e + E
ngx—x nGz—2

g

"

Hal |

The values of Kq are determined from the dispersion equation or the
corresponding wave vector diagram.
The same remarks made about the effects of the disturbance or

its motion on the T.E. field apply to the T.M. field too.
b. Harmonic amplitudes

E
Equation 2B,17 gives the ratios C&q = 24z ; then using 2B.9

quz
and 2B.15 we get .
E 1
1 1
B! ,__Ilq.}_‘:.g - [_..._.r.’;g- oMl + - o ' ]
nq quz Gnq ng Gnq ntl,q Gnq n-1,q
an Eown e e, (28.19)
! = . T - 1 — t —_— '
Anq quz é [qu + 2 Cn+l,q + 2 Cn-l,q]

where w =W + nll and the set quz is determined by the
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boundary conditions or the source conditions.
For § = 0 (i.e., normal incidence), equations 2B.19 are not

valid and we must use 2B.14 and 2B.15.
c. Convergence

When n - © equation 2B.16 becomes

AEnz + BEn+l,z + BEn~l,z + En+2,z N En-—2,z =0

where

A=2+2 1 -1YH
€

B=-§——<2-R2)
1

This is a fourth-order difference equation, and from Poincare

theorem {18,21] the divergence or sonic region is given by

-2(B + 1)

A
[N
A

2(B - 1) for B > 4

~2(B +1) < A < B4 +2 for B <4

IA

or replacing A and B by their expressionsJin terms of R :

l-¢e, <R 1+ € for Rz < 2(1 - El)

O__<_R2_<_l+sl for R2>2(l—€l)

These Inequalities can be written in one relation as

l1-g < R <

1 + € for all R

1

| .

So the sonic region for the T.Z. and T.M. fields is the same.
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C. Reflection and Transmission: Half-Space

We assume a wave is incident upon a semi~infinite medium where

- Xz - §
e(z,t) eoer{l + Elcos(Kz it) ]

with an incidence angle Gi . The reflected and transmitted waves will
contain harmonics with frequencies w = w + nf , because of the inter-

action with the disturbance in the dielectric (see Fig. 5).

€% €q &y [M’@, ces{Kz-at)

Fig. 5. Half space case
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1. T.E. incident wave (Fig. 3):

The normalized incident wave is

i(Bisin Gix + Bicos Giz - wt)

Ejme e
i(Bisin Qix + Bicos Giz - Wt)
H, = -cos 8, Ye /u_e (2¢.1)
ix i o "o
i(Bisin Qix + Bicos Qiz - Wt)
Hiz = sin Oi ¢€O7uo e

2 2
where Bi uoeow

The x component of the wave vector is the same for the inci-

dent wave and all the components of the transmitted and reflected

waves.
The reflected wave can be written:
_ i(Bisin Oix - Bincos Grnz - wnt)
ET = o X Rn e
 n (2€.2)
i(B,sin @,x-B, cos 8 -w t)
i i in m n
H VEOZuO g R cos 6 e .
where
Bin = uoeown
We must héve (B.sin © )2 + (R, cos © )2 = 82 therefore
i 1 in rn in °?
coszg +(&Lf%in29 = 1
m W i
n
or
sin Gi
sin an = —a (2C.3)
l+mn %

The transaitted wave is



~2 3

RPN T . —
;(xq+ nk)z + 1Bisin Gix w t

Et = gy Z tG Enq e
nq (2C.4)
K + K i S i -
i Z ;5 n . e;(Kq+ﬁK)z-+1Bisin Gix wnt
= a Ho¥n 9 mg

The values of Kq are determined from the wave vector diagram with
§ = Bisin Gi .

At the boundary (z = 0) the continuity of E and Hx gives

~-iw t -iw t
e iwe + z R e " = E z tE e O
n ¢ nq
n n q
and

e 1w /€, ; -iw t P T K_+nK -iw t
- a cog @, - f— R cos @ e = At E e

uo i uo a B ngq Mo q nq

These equations must be satisfied for all values of ¢t ,
therefore the terms with the same frequency must be equal. This gives

the set of equations:

§(a,0) +R_= ] t Eq . (2€.5)
q
K _+nK
§(n,0) cos Oi - Rncos an = g —%;;~ tq Enq (2C.6)

where 6(1,3) is the Kroenicker delta

|
Pt

§(1,1)

|
o

§(1,3) for 14 j

Eliminating R.n we get
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K 4nK
- s 5L
§(n,0)[cos 9i+ cos ern] cos Grn Z thnq Z 5 thnq
q q in
but
§(n,0) cos grn = §(n,0) cos gro = §(n,0) cos Oi
80
K 4nK
26 (n,0) cos Gi = 2 (cos grn + —%———0 tq Enq
q in
This equation can be written
) Bnq Tq = 28{(n,0) cos o,
q
where
KC'*‘nK sin?‘e)i K _+nkK \
B = {cos B + —= YC = 1 - +
nq m Bin nq (1+n g?z Bi } nq
E
= 29
ng qu
T = teE i
q q ©q
or in a matrix form
Usll « Iz = |v| (2¢.7)
where
18] =

matrix with elements Bn

|T| = column vector with elements T
‘ V =2 cos 8, forn=20
n i

|v] = column vector with elements{:vn = Q for n# 0
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Equation 2C-7 gives

[l = (Bl v
and the transmitted field is completely determined by

i(Kq+ nk)z -+ iBisin Qix - iwnt

E = Z Z C T e

Writing 2C.5 in a matrix form, we have

vl + IR = el -

d

then

H

&) = ~[v] + lc]

il Tt

vl (2¢.8)
where

lfC]}= matrix with elements Cn

, V=1 forn=20
|V'| = column vector with elements
V=0 forn #0

iRl = column vector with elements Rn
This equation gives all the reflection coefficients.

a. Reflection angle

The reflection angles are given by 2C.3

sin ©
i
sin © =
m 1-+n Q
w

The high frequency harmonics (n > Q) will be reflected near the
normal, the low frequency harmonics (n < 0) will be reflected near the
boundary, and the harmonics with n <'%(—l + s8in Gi) will not be

reflected at all. So in reality, the reflected fleld will contain only
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the harmonics with frequencies

W>w = Wsin @
co i

(see Fig. 5).

b. Transmission angle

The transmitted wave is
i(Kq+ nK)z + iBisin Gix - iwnt

ey Ll Ty

and the wave vector components are

kx = § = Sisin Qi = Vuoao w sin Gi

kz = Kq(@) + nk = Kq(w) + K

The group angle Yy (di.e., angle between the group velocity
vector v_ and the vector e ) is different from the phase angle 6
-2 A £
(i.e., angle between the wave vector k and Ez)' These two angles

are given by:

x

tg_gtnq = kz = Kq(w) + nk
Vs oK

tgwnq EAvgz Y

For a certain mode ¢q all the harmonics n will have the
same group angle, which can be found from the slope at the correspond-

ing point on the wave vector diagram.
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¢. Transmitted wave vector

The incident wave fixes the value of &

§ = Bi sin Qi

or
) Bi A
Yi = < = X sin Qi = /E; N sin Qi
where

A = disturbance wavelength

A = e.nm. wavelength = 2W1’quo€O€r

In Fig. 6 the mode ¢q = 0 is represented by the curve
ABCDEFGH, and the dotted line corresponds to a complex K .

Let us examine the characceristics of the transmitted wave
for different values of the incident angle (see Fig. 6):

—Yi_= Yl ¢ This corresponds to /E; sin Gi > 1 . The modes
q = 0,-1,-2 are cut off and the major contribution comes from the
mode q = 1 .

Ed

—Yi = Y2 : The mode q = 0 gives a backward propagating wave
(negative slope on the diagram) and an exponentially attenuated for-
ward wave (intersection with the dotted line in the stop band). This
possibility of hafing only a propagating backward wave for a certain
mode is due to the motion of the disturbance. The modes q = -1,-2
are still cut off.

--Yi = Y3 : The mode q =0 gives a propagatigg forward wave

but an exponentially attenuated backward wave.
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2. T.M. incident wave (Fig. 5)

The normalized incldent wave 1s

i(B.sin 8,x + B ,cos 0.z) - iwt
- . i i i i

E= (cos 6,e =~ sin B.e ) e

- == i

i(Bisin 0.x + Bicos Giz) - fwt
H=+Ve /U e e +
= o' "o —y

the reflected wave is

1(B.s8in B ,x+B, cos 8z~ w t)
E = 2 (Rcos 8 e +Rsin 6 e Je . 1 in m n
'S n Tm—x n =z

n
€, 1(8151n Gix + Bitcos Grnz - u%F)
Ef = -e z — Rhe
Y ay Mo
where
sin Qi © .
sin 6 =°“”““’“’Q‘=a—sin9i
l+n-&)~ n

and the transmitted wave is

iB.sin O x + + -

] 2 Z @ . ye BIS n 8, x i(Kq nkK)z iwnt

-t an"‘X nqz—-—z
nq

iBisin Gix + i(Kq+ nK)z - iwnt
Bo=e [IE e

nq
(a slightly different notation than in the T.E. case 1s used.)

At z = 0 -the boundary conditions give, after equating the

terns with the same frequency,

/uo
§(o,n) - R.n =Jz g an {(2C.9)

o}

§(o,n)cos Gi + Rncos an = é nnqx (2C€.10)

Eliminating Rn , We get



26(o,n)cos 6, = ZNn

i
q q 4
where
T = E
q oqz
= u! ' ' ' W 2
N =3B8B' -A'"cos 6 =2B' -4 \/l—(——-sine)
nq nq ng n ng ng wn 1
En
B' = 29X (see 2B.19)
ng E
0qz
H
Al = 24 (see 2B.19)
nq E
0qz
§(o,n) = Kroenecker delta
Using a matrix form, we can write
N[ ol = |v] (2€.11)
and
tasl ""1 |
lt] = [inj] ™" v (2€.12)
where :
lin|| =

matrix with elements Nn

|T] = column vector with elements Tq

Vn- 2 cos Qi for n=0
column vector with elements

=)
u

Vn==0 forn# 0

The reflection column vector ]Rf , wailch has the different

reflection coefficients Rn as elements, 1s given by

IR| = - Ve Ylatl] o+ sl e qv) - (v (2€.13)

ouo
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and the transmitted field is completely determined by

i(B,8in 8 )x+1i(x +nK)z -dw_t
E =)) (B'e #C' e)Te - * 4 n
-t a ng=x ng—z’ q

18isin Qix-+i(Kq+ nK)z - iwnt

D. Guided Waves

Let us consider a cylindrical wavegulde with axis parallel to
the z-direction, filled with a dielectric which is submitted to a

raveling disturbance such that

€ = g(z,t) = €o€r{l + g,cos(Kz - Qt)]

1

The value of § 1s fixed by the geometrical characteristics

of the waveguide.

For a rectangular waveguide of dimensions L and & ,

. [ EE L o0y
S =/ P 0]

where m and p are Integers representing the mode excited in the

waveguide by the source, not the modes caused by the disturbance.

For a circular wavegulde of radius R , we have
- ' -
Jm(dmpR) 0 or Jm(GmpR) 0

depending on the exclted mode.

Having the values of & , we follow the same methods used in

the half space problem to determine the values of Kq » the cut-off
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frequencies, the behavior of the forward and backward waves, and the

amplitudes of different harmonics.

E. Transnission and Reflection:

Slab (El << 1)

In this section we take € << 1 (see Fig. 7). As e, << 1,

the electric field expression is

1(kz~wt) + 18x

IRz =Qt) e—i(xz -sz:))e

E= (& +E E 4 (2E.1)
where we neglect all the other harmonics.
Let us consider the T.E. case where E = E Ey . The system
of equations 2B.4 becomes
&1 1
doEo -+ > El -+ - E-—l = (2E.2)
“1
dlEl + “E-Eo = { : (2E. 3)
1
where
€ _ 62+ (< + nK)2
d =—4—D = 1 =~
n 2 "n B2
n

From 2E.3 and 2E.4 we see that usually El and E—l-<< Eo

and to satisfy 2E.2 we must have

d
o

[
o

which gives the dispersion equation in the homogeneous medium



Perallel
intercction
w=-8

i

— NN

Antigeralicl
inferaction

-33-

L o
L1
NN
I
T
Lo |
L1
§ ! ﬁ — N\ W
T
IR
TR )
Ll
MR
TN
TN

Pig. 7. Transmission and reflection from a slab
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2 2 2
§% + k¥ = Bo

But 4f do = 0 , and at the same time dl or d__l = 0 , then there is

energy conversion,

1. Up-conversion

Let us suppose the parameters in the problem are such that

d 20 => 52+»<2=s§

and
= 62+ (K+K)2 = Bi(l + %)2

[a¥
4
o

This occurs 1f

K® + 2K /si - 5% = Kg + 2K B (2E.5)

where

K =¥ ee. .
[o NN I o

<

In this case we still have E-l << EO”, but we cannot say any

more that El << Eo , and the system of equations becomes

€1

dpEo +—5E = 0
€1

dlEl -+ —i— EO = (

This system solution 18 not trivial 1if
2

€
-dodl = = (2E.6)

Solving equation 2E.6, we get



K =k =¢ "1F 20 (2E.7)
z0 - %1%k VE *X .
Z0 20
I —
kZO B0-“5

1
El LWt Q €20
E W k + K
o Z0

: -

where

and this gives

20
k_ +K
zo

*dl*d
bt

- (w + Q>2

(2E.8)

By
E
Q

W

(o}

We see that El is of the order of Eo and this up-conversion

effect occurs only when 2E.5 is satisfied.

For normal incidence (§ = 0), the up-conversion condition

becomes

but as 80 is posditive, then X mnust be negative (i.e., the disturb-
ance must propagate opposite to the e.m. wave) and it must be such

that !KI > Ko ,» then

x| - K,
Bo N 2

Three Interesting remarks must be mentioned:
1) The condition of up-conversion, 2E.5, is exactly the first-
order Bragg condition with moving disturbance, This can be shown from

Fig. 8.
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2) Tor oblique incidence, up-conversion can occur for all
angles of incidence Gi (Qi = angle between the e.m. wave vector and

the disturbance wave vector) such that

$ <6, < T

-

where cos ¢ = Ko/K = vd/vo

3) The power: conversion ratio is

El_ - (w + Q)Z [ kzo
P w ik +K
o z0

Po and Pl are power densities. To get the total power we must

multiply by the cross sections of the incident and reflected waves.

From Fig. 9 we have

S L cos ©
Si Li cos Qi
but
[k + K]
Z0
cos Qr = ————??—-—
1
Z0
cos B, =
i BO
So
P15, - (w-%ﬂ)z %20 Cég) kzo+ K . Wt
P S w k + XK B k w
o 1 zo 1 Z0

and this is the Manley~Rowe relation.
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For a slab of thickness L (see Fig. 7), if we write the
field expressions Iin the two media and satisfy the boundary conditions,

we get for the normzal incildence

P
]

reflection coefficient
] -
Xy AL
W ' A 2

T = transmission coefficient

1

e, L K (JK; = K)
cosh { i v/o 5 ° )

The reflected wave frequency is w + {1 and the transmitted wave fre-
quency is w .

When L =+« , then

T = 0
R = i w+ 0 .
w
: +
and ERIZ . ow * 9]

2. Down-conversion

Let us suppose the parameters of the problem are such that

62+ Kz = B

l

o.
H
o
}
(o)
N
+
Py
s
1
-~
~
N
]
™

This occurs if
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2 5% - 2xB (2E.9)
Q Q O

K% - 2K \/60

Then E-l will be of the order of Eo and following the same method

used in the up-conversion case, we get

€=k + e BoB—l kzo
zo ~ "1 4k k -K
Z0 20

zo}

and for the slab at normal incidence (Fig. 7)

/K + K e, L
0 1 /.2 2
R=1 m‘;tanh(—é— K-KOJ

1

e.L

cosh [-%—— K°- Ki]

T =

&

For K < KO the reflection and transmission coefficients

X+ K e.L
_ / o i~ /2 .2
R=.1 i;:—i— tang . Ko X

1
e L

cos Q—%— Ki - Kz)

become

and if the slab thickness is such that
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1 2 .2 1
5 KO—I\ Tr(p-t-z)

where p is an integer, then R and T + «® . This means that there
is auto~ogcillation and the slab will radiate, on one side, a wave of

frequency w and on the other, a wave of frequency of w - § .

F. Dipole Radiation

We assume a disturbance propagating parallel to the dipole

moment in the z-direction (Fig. 10).

1. Magnetic dipole

The magnetic dipole will radiate a wave with an electric field

parallel to the disturbance wave front

E = E(p,z,t) 24

therefore the wave equation is identical to the T.E. equation 2A.7

2
2 0°¢ E -

at

outside of the source volume.

Using the separation of variables method, we have

E(p,z,t) = X(p) Z(z,t)
and
2 2
d 1 dpX o7z 3 E Z
2~ =) +x &2 o ux =~ a 0
dg [p dp] 822 uo at2

which can be separated in the two equations
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L

—— o — — Magnetic dipole

E=Egq

H=Hpep+H,e,

Electric dipole
H=Hey
E=Bpgp +E; &,

Fig. 10. Dipole in a space-time periodic medium
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d 1 dpX 2

— = + 6 = .

W [p dp] X 0 (2F.2)

A n2

“Lou %= o0 (2F.3)
o 2

dz ot

where § 41s the separation variable.

The solution for X which satisfies the radiation condition

at infinity and the finiteness condition at the origin is

X = B,(p)

where _
Bn(ép) = Jn(GQ) for p < a

B_(6p) = Hél)(dp) for p > a

Using Floquet's theorem the solution for 2 is

i(k+nK)z - i(w+n)t
Z(z,t) = E Ene
n

with kK = xk(8) . So

- i(k+nK)z - i(w+n)t
Xz g EnBl(Gp) e

Here & dis not fixed as it was in the half space problem,
and to get the field we have to integrate over all the values of &
using a weighting function (or, we can integrate over K , because K

and § are related by the dispersion equation). So the electric field

expression is

E=| W) ] E_B(3p) LkFnK)z = dupe (2F.4)
n

'l
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Putting the expression of E into the wave equation 2F.1
we get the same dispersion equation 2B.5, and wave vector diagram
(Fig. 2.3) as for the T.E. wave studied previously. So for each
value of K , there are many values for & and the field is finally

given by

< i(f+nK)z-iwnt
f wq(z) Enq(K) Bl(qu)e di (2F.5)

E=e, ] ]
—$ -

e

with Gq = 6q(K) . The magnetic field can be determined from

o
VHE T
and we find
“dwt 1 (k+nK) z
L yTe P [ Ey 60 () B, (5 pe ax
" = Moo o w, g nq 1'q
d ~ (2F.6)
— e W (k) E () B (6 pe dk
z uo qn B wn q ng o' q (2F.7)

All the Gq(K) are known functions-of K and can be found
from the dispersion equation or the wave vector diagram. The weighting
functions Wq(K) are determined from Ampere's law at the source (i.e.,
dipole).

At the source we have

[ (p>a) - B (p<a)] = - I8(z) e 4" (2F.8)

pra
where Io = current in the loop of radius a , and w 4is 1its frequency.

Also

™

E,|

| is continuous
$'p>a



bl
The field expressions are

=]

-ilw t §
Z “o qn B g ©ng o q
-iw t f 8
e =Ll T gm0 w
Y g o ] w, "a TnaTe g
-ttt
E¢(p:>a) E z e j wq Eanl (aqo)e i
qn o
&P g n q ng "1°¢°

and the weighting functions are not the same for p > a and p < a .

The continuity equation gives
L N
W' H, § & = W J,{(¢ a

and from Ampere's law (equation 2F.8) we get

£

T (1) $ 1(k+nK)z - iw t
lim )} f [WH ™/ (8 p) - W!J (6 0)] -HE e dKk
pra qn 7 1 4 d q n !
= ~iwt
= inIOG(z)e

Replacing W& by its expression function of Wq , and taking

the limit p =+ a , we obtain

(1) _ wll) e -
Ho (an)Jl(§g§) Hl (oqa)Jo(qu) s Enq ei(K+ nk)z iwnt

W
q .Jl (6qa) q W

W 3
I~

= iuolod(z)eniwt
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This reduces to

W E ik +nK) - iw_t

ZZIJ((SQ rdKn——%-TmaI(S(z)e Lwe
g n

where we used the following properties of the Bessel functions:

1 D, -
Ho Jl Hl Jo i(YOJ1 YlJo)
£ 1
Jl Jo
2 '
Yl Yo
21
Bessel equation Wronskian = =
Finally, taking a +~ 0 we get
5 W i' '
f (k+nK)z - lw T U om {wt (27.9)
| 5" ‘
o 4

L)
qn

where m = ﬂaZIo = magnetic moment.
To solve this equality for Wq we write &(z) in an integral

form

§(z) = f eiKz dx

Then equation 2F.9 becomes

< W , _ rm 1(Kz - wt)
[ [ Z 2 gﬂ'Enq eln(KZ at) +<~%—Q]e d« = 0
o qn q

and this 1s satisfied if
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<t
<

Q in(Xz - Qt)_ Mo
X z § Enq € T MG
qn q

This relation must be true for all values of =z and ¢t

50 we must have

) Cog % = © for n# 0
q
B om
z oq %~ ~ 040
q qQ q
where we took
WG
= ——=E
% 5q oq
B
nq = Eii (defined by equation 2B.8)
or in a matrix form
el + Jal = (=]
and (2F7.10)
-1
la] = [ic]|™" ¢ [n]
where
matrix with elements C

. (@]
]

|a| = colum vector with elements «

m = 0 for n#0
column vector with elements Lo
mﬂ—
n 4

£l
L}

for n=0

Equation 2F.10 determines |o| and the field expression is

completely determined by



7=

-iw t

E(p>a)=JJe P f & () 8 (k) ¢ () B (5 pyel KKz 4
q q nq 1 q
qn oo
(2F.11)
The integral can be evaluated in the far field by the
steepest descent method (see later).
2. Electric dipole (Fig. 10)
The field has the components
H = He
®
E = Ee 4+ Ee
- 0 z—z
Maxwell's equations outside of the source volume give
dEE 9z ot
VXE= e (2F.12)
9 € E
1 9 z
> 30 (pH) T
ok - JE oE
ey — > —2% .0 . o
VxE Mo Bt > ap 3z Ho Bt (2F.13)

Using Floquet's theorem, and following the same method used

for the magnetic dipole problem, we can write

i(k+nK)z - iwnt

J W EH H(l)(dqp)e dx

H= e 2 2
-——¢qn qnqg 1
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(1)
§ + E H )
( qp)_cf—2 ago 1 ( qp)_e_:p)
i(k+nK)z -iw t
X @ o di

Putting these expressions in 2F.12 and 2F.13, equating the terms with

the same frequency, and eliminating Hﬂq we get
IS

D E + E + E + G E
nq nqp ntl, gp n-1,qp ng nqz

1

+
ngq Enqz En+l,qz + En—l,qz * Gnq Enqp

where D_ , D' and G are defined by 2B.14 and 2B.15. These
nq’ nq n

equations are identical to the equation obtained for the T.M. field
in Section II-B.Z.
The weighting functions are determined by the source condition
lim 27mp H¢ = I
p+0

wt

where 1 = ~iwp §(z) e-i , and p = dipole moment. This condition

gives
o]
’ (L i(k+nK)z - iwnt:
lim  27p ) ) JWH /(8 pYe dx
-0 qnqgl “'q
p qn o
= —-iwp §(z) e-iwt
Taking the limit p + 0 we get
[es]
W 1(k+nK)z - iw t
q n 1 ~iwt
) j s—nﬂnq e de = 7 wp §(z) e
gn « 4

o
Writing 6(z) = f eiwz d< , this equation becomes

-0
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" W
[

) [

-0

Z E_g__Hnwem(Kz - Qt) _ %_wp] el(Kz - wt)dK -0
n °q ™

0t~

This relatlon 1s satisfied for all 2z and ¢t if

Yo Al = 22

o} 4

q q q
o A' = 0 for n# 0
2 q nq ?
q
where

W
@ = T By,
<Q q q

£
A' =8~ (defined by 2B.19)
nq E

0qz

and
i 1
ol = fat[T . e
P =0 for n # 0
where ‘Pl is a column vector with elements
P = wp/4

Having [aI, the field is completely determined by

< (1) i(k+nK)z - iwnc
H= g¢ g g J qu(K) aq(K) 6q(K) Hl (dqp)e dx
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3. Asymptotic evaluvation of the ilntegral

Only the magnetic dipole field is studied in this section. The
same method, using the corresponding dispersion equation, can be used
for the electric dipole field.

The electric field is given by 2F.11

o2}
-iw t
E=j Je @ J a8 ¢ 5 (s pyet ¢RIz 4
qn q9qgngl "gq
When p + <
§p~-1i u
(1) s 2 + q 4
Hl (qu) -+ -i Wpﬁq e

therefore, in the far field we have

v [e]

-1 - irF (k) -diw_t

2 4 1/2 q n

E=-i/—F—F e ) f 8 "l e dx
qn _g

where Fq(K) = (ktnK)cos 6 + Gqsin e

r2 = pz + 22
and

= £
tgd -

Using the steepest descent method when r + « | we find (see

Appendix C)

8
21 gs 1/2
E T ein e L1 (15" ]> qs
jqn qs
-iw_t + irF -1 -g-(l-~ sign & )
x € (ke S qs
ng' s
where aqs = aq(Ks) . Fqs = Fq(KS)
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the index s mcans the value at the saddle point, and the summation
over j means summation over all the saddle points (it is possible to
get more than one.)

The saddle points are determined by

dFG

| =0
K=K

or

dé

—E% § = = -cotgh
q (s
K=K

From the wave vector diagrams in Figs. 3 and 4 which correspond
to a moving and a stationary disturbance, we computed dﬁq/dK and
plotted © function of Ks/}{ in Figs. 1l and 12. These plots give,
for each value of © , the corresponding values of K = Ks , and then
we get the éq = 6qs from the wave vector diagrams,

From these plots we see that:

1) Statilonary disturbance )

--For a given @, there is one common Gs for all the modes
and the values of Ky differ by a multiple of K
--There is symmetry relative to © = 90°
--The ﬁumber of saddle points per mode is the same for all

modes. For instance, in Fig. 12, there 1s one saddle point per mode

when 6 < 620, and three saddle points per mode for 62° < 0 5_900.

2) Moving disturbance

--For a gilven 8, each mode has a set Gs’ Ks unrelated to

the other mode sets
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~=-The symmetry, relative to @ = 90o,is lost

—--The number of saddle points per mode is not the same for

all modes.

4, Caustics

A very interesting effect appears wnen El # 0 and this is
the existence of inflection points, near the interaction region
between two modes (i.e., the stop band), in the wave vector diagram.
This corresponds to extremas on the curve d&/dg .

At an inflection point ¢" = 0, and the field given by equation
2F.14 1s very large. This is a focalization and radiation enhancement
effect, due to the inhomogeneities of the medium, on a certain surface
called "Caustic'". 1In our problem the caustics are conical surfaces.
For a detailed physical explanation, see Appendix C.

The slope of &(x) at the point where &" = 0 gives the

caustic angle Gc

Ed

as

dk

tang Oc =
at inflection point

From Figs. 4 and 12, which correspond to a stationary distur-

bance we find
GC = 62o and Qc = 118° for all the modes

If A/A or £y changes we may get more or less caustics.

For -2 moving disturbance (Figs. 3 and 11) we find

Gc = 120° for the mode ¢q = -1
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6 = 37° and o, = 93° for the mode q = 0

0 =56°, 6 = 82° and o, = 120° for q=1

5. Field amplitude and radiation pattern

The magnetic dipole field expression is

-21 8
E= & Tom® §§§ (ﬁs—ﬂ © 6 Cag(Ky)

T 1
—iwnt + irFqs- i 7 (1 - sign 68)

Let us take

-1
i = el

then from 2F.10, we get
B e --—l 1
a 4 uomo C

So, for the nth harmonic we get

g2 uomo 2 2
lEnI = (Zr sin G} g g [6” ' Cog? T

( LR }2 z 2 Z Z ( quﬁms ]1/2 ' ir(F s- ms)
G Prair sy 7 c'c'C C e
2r sin © g3 ui I@' s" 0g om ng nm
The second term in the expression of lEnIZ is oscillatory and

. \ th
we can drop it if we average over r . So the average of the n har-

monic field is
Ko 2.1/2

lEn1 = 7t sin 6 [ z Z 5” (Céq nq> ]

or
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L om 2
2 2 00 as 2
e %) I ( 0 i) (Cgq Cogd
q J qs

If sl -+ 0 then

qu = for n# 0

cC = 1

oq

c' C = 1

oq 0q

s 2 4
Ts—n-r UOEOErw sin @
and there is only one mode and one saddle point. So

2 _ “ 2

o

E ) u € £ m231v29

=“|g|
el +0

If we want to normalize the pattern such that for € - 0 we

2 2 2 th
get T ]Enl = sin 6 , then the n~~ harmonic pattern for €, # 0 must

1
be multiplied by a normalization factor equal to

pm_ g
o) 2.-1
¢ 5 ) BB Eu ]

Then we get the pattern

0.2 2
G (8) = (™ EZ )
n w Ki sin 9 q 3 qsl oq nq

Figure 12'gives the dipole pattern for a stationary disturbance
with

= Q.25 and %-n 0.8
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In Figs. 13 and 14 we present the patterns of the fundamental
wave and the w+{ harmonic for

o v
€, =0.25 , ==2,5 and R=—>= 3.5
1 § v
d

The pattern for the w-{ harmonic is very small and was not plotted.

Let us examine the features of these patterns:

1) Stationary disturbance
For A/X = 1.25 (Fig. 12), there are four caustics at

Gc = 430, 1470, 82° and 980, and the pattern is symmetric relative to

8 = 90°.

For A/A = 0.71 (wave-vector diagram on Fig. 4), there are
only two caustics at Qc = 62° and 118°.

For larger values of A/A we get more caustics, and for
smaller values of A/A we might get no caustics. In fact, if

A > A, the e.m. wave will not see the disturbance, and no focusing

effect occurs.

2) Moving disturbance -

In Fig. 13 we present the fundamental pattern for
€ = 0.25, A/A =10.71 and R = 2.5

The caustic anglés are Gc = 94° and OC = 37°, Comparing these
values to the corresponding stationary disturbance caustic angles
(i.e., QC = 118° and QC = 620), we see that the moving disturbance
pushed both caustics upward in the +z direction.

The fundamental mode contributes mostly to the fundamental

wave (i.e., frequency w) pattern. The other modes contribute less
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Fig.‘lZ'. Radiation pattern of & dipole in a disturbed dielectric
w/Q = 1000, R = ¢, vy = 0, A/A = 1,25, €
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The dashed line correspcnds to €1 = O
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Fig. 13.-

Fundazmental radiation pattern of a dipole in a disturbed

dlelectric: /G = 2.5, R = 3.5, € = 0.25 . The dashed

line corresponds to €} = 0

>y



~60-

it 1 .

‘Stﬂ:r:m:mwm{:?:f;:

3k

mestly from mode =1 -~ 1.4 mostly from moce =0
<@ e =

i

VAN e

from .

W

: mode
from q=0
modae

cr-’?

ag/\\figﬁox TZ0 S~ 1
O0l0 30 5C 70 €S0 {0 130 150 170

Pig. 14, Harwonic (wW+ Q) radiation pattern of a dipole in a disturbed

dielectric: w/f0 = 2.5, R = 3.5, e = 0.25
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except near a caustic, and at this angle the fundamental pattern has
a peak.

In Fig. 14 we give the pattern for the harmonic w + & . The
mode ¢q = 1 gives the peaks at © = 56° and 82°, and the mode q = 0

gives the peaks at ¢ = 94° and 37°.

G. Different Approach

The problem of e.m. waves in a sinusoidally space-time periodic
nedium. canbe.solved by a different method which deserves mentioning.
This method will be studied in this section and compared to the one
used up to now.

We use the Hertz vector~wave equations 2A.12 and 2A.13

2
2 9 1 3l 3 Il
VZH«P8 0z QE Bz> - Lloe 2 0
at
2 9 oM
VM - Ho ot (e at 0

Making the following changes in the ipdependent and dependent

variables
9] Kz K |-
Emz-xt n -@--ﬁ'jf(@w
0
2
1 1/2 1/2
ne FEp e ne ottt
K-k K™= k
where
2
. K
£9) = =

k%~ 1% (4)



e y.
K2(9) = ue(o) o

Qt
€(¢) = eoer[l + €, cos Ké] (¢ stands here for z--i—)

we get
2 4 2 2 2
g"lzl‘g‘z' zk§€> 2“§+ 2K2 V§P+F(E>P- 0 (26.1)
of Q7 (K™= k(&))" on K™= k"(&)
2 A 2 2 2
.?._lij._l?.i 2k§5> 29§+ sz V§N+G(£)N- 0 (26.2)
9 Q7 (X"= k(&))" on K™= k(&)
where
k k" + k‘2 k k' (2
K= % K- k
2
3,e'.2 , 1,e" k k' €' k'"+ k k" k k' 2
F(E) m = +(=)" + 5(=) - ———5 — + + ( )
4 g 2'¢e KZ_ kz £ Kz_ k2 KZ_ kz

and a prime means derivation relative to §
The equations for ? and N are similar, and we will study
only the N equation. ’
The separation of variables method can be used to solve the

N equation (this is the objective of all the above transformations).

Writing

N(E,n,x,y) = Yl(n)‘Yz(x,y) Y3(£)

and using Yy and & as separation variables, we get

v,

dn
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2 2
V2 Y, + $ Y, = 0 (2G.4)
2
d Y3
5+ J(3) Y3 = 0 (2G.5)
a8
4 2
; 2 .2 X 2
shere 3(8) = 55 (ot vP - 6 4 e
Q7 XK'=k K™= k

and J(§) = periodic function of ¢

KE _ Kz - Qt

Taking Y = 2 5 , equation 2G.5 becomes
d2Y3 0
—5+(a+2 ] acos 2y Y,= 0 (2G.6)
o n 3
day n=1

where we took

[ee]
4 .
5 J@) ao+ 2 Z a_cos 2ny
X n=1

This is Hill's differential equation and its solution is Hill's func-

tion uw(Yy;v,8) . So
Ty o= u(ys;v,8)

where VY 1s the independent variable and Y and & are parameters.
The solutions for Yl and Y2 are straightforward, and N

is given by

N o= uy;y,s) &% T I

in Cartesian coordinates with no y dependence, or

N o= u(ysv,6) ¢ B_(6p)
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in polar coordinates with axial symmetry (BO = Bessel function).

Hill's fuaction can be written under a Floquet form [22]

@ 211 !
u;d,y) = [ ¢ (a) SV E 12

n=0

where Cn are parameters and P 1s the Hill exponent which is given

by
ma_
stn” B = 4(0) stn® -
where
A(0) = Det||al]l
Lt if mmn
mn B
||4]] = matrix with elements —B0 {f mgn
A = 2

mn a - 4m
o

a m coefficlents in Hill's equation (2G.6)

l. ZRalf Space

N is given by

i6x+ 1 =i (2n+ + + 16
N(E,%) = u(Usy,6) MM o T ¢ (g tL(ZHRIY F N+ 16
o
or 8
t{n(Kz-0t) £ 1 S(Kz~
N(x,z,t) = z Cn(B)e In(Rez-Gt) £ 1 F(Kz-Qt) + 18x + iyn
n
Developing eiyn in a Fourler series, and as the time depen-

dence must be of the form ei(wﬁ-QQ)t’ we get

(e )z - 1(w+ At + 16x
N(X,Z,t) = z Z AQ, e q
q & 1

where
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Y o+t Ww

and Yq ie determined from the system of equations

y r?
:’:-B-z—q‘éw-i-qﬂ-{- S
\/(Rz—l)z—eyi
(2G.7)
2 ma
sin §§-= A(Q) sin 7 2

From these two equations we can eliminate B and get Yq(G) or

Kq(&).

2. Dipole Radiation

For the magnetic dipole we have
N = u@iv,8) e B (80) = u(wiB)e YN B_(s0)

This is an elementary solution and we must integrate over all values

of B to get the total field, so *
N = f w(B) u(w;B)eiY<B)n B (8p) dB

where w(B) 1is a weighting function and & = §(R) . The magnetic

field can be found from

The magnetic field must be such that:

- Hp is continuocus at p = a (see Fig. 10)
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— [H,(p>8) - H(p<a)] , = - I, 6z~ z)e "

-- H finite at the origin

-- H satisfies the radiation condition at infinity

where z, 1s the dipole position on the z=-axis (zo = 0 1f the dipole
is at the origin).

From these conditions, after long computation, we can determine
w(B) and we get finally

2 2
SR
1 )

[T
6m 00 V2 20k _i u (W 58) uld;e)

where Y = '% 3

o
Kz K
n,* 5 - j ﬁ'f(¢) do
0

m

o dipole moment

and we used the Hill's functions orthogonality relation

L
A

b s

u*(xo;B) u(x;B) df = G(x-xo)

If v

a ™ 0 (2~ 0), we get

k() = O
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Lk oM
2 A
TTZO

wo T TA

w
mZz
M= -g-% A f u*(-f-;ﬁ) u(Fj\z-;B) Hén(ﬁp) d8
o0
which is the result found by Casey [11], with a difference of a fac=
tor iWw because of the Hertz vector definition.
The Hertz vector method gives the field in terms of Hill's

function, but it is rather a long method and it does not give a clear

plcture of the modes and the harmonics. This led us to use the first

method in our study.
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ITI. SPACE-TIME PERIODIC ISOTROPIC PLASMA

In this chapter we conslder an isotropic plasma submitted to

a propagating sinusoidal disturbance, which leads to a plasma density
N(z,t) = No[l + Nlcos(Kz - Qt)]

A. Wave in Infinite and Half-Space

l. TE waves (Fig. 1)

Maxwell, Newton and the continuity equations are

0H 9E
VXE--uo'é-E VXEI_-EO—B-E‘PNCL!
VeH= 0 VeEm—2p
A e €
(e}
dv
. . =
v (Nqv) + ~e 0 iy qE

and for the TE wave

E= E(x,Z.t) &

Taking E = 3A/9t it is straightforward to get the wave equation for

AQA=A gy)

2
2 o A 2
V°A - M€, atz - uosowp(z,t) A 0 (3A.1)
where '
wz(z t) = w2 [1 + N,cos(Kz - Qt)] (3A.2)
p po 1
and
2
2 Noq
w =
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Using Floquet's theorem and the superposition principle as we
did in Chapter II, we can write
N0 {(k+nK)z + 18x - iwnt

A= Z Ane

et L

where

W= W+ afl
n

Putting the expression of A in equation 3A.1 and equating

the elements of the same frequency, we get the system of equations

N
2 2 L2 o2 1,2
(67 (ctnK)” ~ B + B0l At 3 Boolhnsy ¥ A4,_1) =0 (3A.3)
or
DA *A L +tA =0 (3A.4)
where
L2 1 g2 2 _ a2 p2
D, N, 2 [6%+ (i)™ - B + 87 ] (3A.5)
pPo
2 2
Bpo = UOEpro

2 2 2
Bn M E W, = uoeo(w + nfl)

To have a nontrivial solution, the determinant A(S,k,w) of

this system must vanish

A(S,k,w) = Det(sg’ﬁ% = 0 (3A.6)

This is the dispersion equation.
Solving the dispersion equation we get the wave vector diagram

(k) , or the Brillouin diagram Kk(w) .
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In Fig. 15, we plotted the wave vector diagram correspond-

ing to
Nl = (0,25 , w/ = 2.5 R
W .
2. 0.75 Re = S m 3.5
W K v
o d
where

c = e.m. wave velocity in vacuum

vp = disturbance velocity

The modes with index n , such that w + nfl < wp , are cut off.

In Fig. 15, this corresponds to

Ww - W
n < -P—Q—--—o.51

or

The wave vector diagram envelope 1s a hyperbola. Its

analytic expression can be found by taking the limit Nl -0 .

If N1 + 0 , the dispersion equation becomes (from equation

3A.3)
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2 2 2 2
8%+ (k+nkK) -8n+8p0- 0

or 2 2
2 2 u)n'-wo
Y4+ (X+n)° = “”2T?TJL' (3A.7)
9)
where Y=5 and x=X
K K

This represents a family of circles centered at X = -n with radius

: 1/2
1¢(,2 2 ,
Yy - wpo _+» The envelope of this family can easily be found to be
W2 2
¥ - X - - “5o
R%- 1 r%?

which is the equation of a hyperbola centered at

with an asymptote

Y = 1 (X - %?
2
R=-1

»

For each value of § (or k) there is an infinite number of
values for K (or ) which are not related by any simple relation because
of the disturbance motion. So the expression of A must be

i(Kq+ nK)z + 16x ~ iwﬁt

A= g g Anq e

dA
and as E = 3¢ ? then

ik + uK)z + 18x -~ iw t
q n

with
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P

§O = - 1WA
nn

aq q

and the relative amplitudes of the different harmonics are

E w A w

ng . _n_ng _ aa

E w A W nq
oq o “oq

where qu is defined by 2B.8 with

2 2 2 2
[§% (k+nK)® - B + Bpo}
Finally, the convergence conditiocn

lim [D [ > 2 (Poincare's theorem)
n
n r *®

is always satisfied and there is no sonic region of divergence. This

is a major difference from the dlelectric case. Therefore, for the

plasma, our study is valid even if the disturbance is due to an elec-

tromagnetic wave.

2. TM waves (Fig. 1)

Here we start directly from Maxwell, Newton and the continu-
ity equations. Following the same method used in Chapter II for the
dielectric, we can write

Q00 1(kmK)z + 18x - iwnt

H= ¢ Z H e
- 4 LS w0 o

n=-+4w 1(ktnK)z + 16x = iwnt
A= Z (A e + A e)e
- nx =% nz —2z

Qim0

and we get the infinite system of equations
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2
DD' -G o D!
1 1 n n+1
R E LS + 1A + [ +-222]4
Gn Gn+l Gn—l nz Gn Gn+l nt+l,z
D D'
n n-1 1 1
+ [— +—=] A + —— A + —— A = 0 (3A.8)
Gn Gn-l n-1,z Gn+l at2,z Gn-l n-2,z

This system is identical to 2B.16 except here we have

2 2 2 2
Dn = N‘Bz [(k4nK)© = Bn + Bpo]
17po
. 2 2 _ p2 2
Dn N B2 (s Bn + 8po]
1"po
G = 28 (k+nK)
n N 82
1 po

The dispersion equation is

system) - 0

A'(S,k,w) = Det( 34.8

The characteristic equation of the system 3A.8 when n -+

is
2
p-+ Ap+1l = O
where . 2
A= 22 EE_(KZ_ KZ) nz
- N.8 X o)
1"po "o

and the convergence condition

lim |A] > 2

n-o®

is always satisfied. (Even if X = Ko it can be shown that the
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convergence condition is satisfied.) Therefore, for the TM wave too,

there 1s no sonic region.

3. Reflection and transmission: half-space

The problem can be treated as in the case of the dielectric.

The only differences are:
1) We have to use the corresponding an in all the expressions.
2) The solution of the system 3A.8 gives Ahq and we have

E = - jw A .
nq n nq

B. Dipole Radiation

The method of solution is identical to the method used in
Chapter II for the dielectric, and only the final results and patterns
for the magnetic dipole are given here.

The magnetic dipole electric field is found to be
>+]
(1) t{knK)z - iwnt
E = a {K)C_ (x)§ (K)w H § ple dg
mey 11 [ a6 @uae e
[ o]

i

and the normalized average power pattern is

5

G (0) = (ng “n 1 Z Z _Eﬂﬁ_ (c' ¢ )2
n W gl W K* sta’e a3 18" | °d nq
P o gqs

where the notations are the same as in Section IIF-3, except that

laf = e[ ™+ |l

The factor i/w. appears because the source condition applies to E ,

not 4.
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In Fig. 16 we plotted the curve O = - arctan %% function of
K/K which corresponds to the wave vector diagram of Fig. 15. This
curve gives, for each radiation angle @ , the corresponding modes and
saddle points,

In Figs. 17 and 18 we give the radiation patterns for the
fundamental wave (frequency w) and the first harmonic (w + ). As

in the dielectric case, there are caustics and no symmetry relative-

to 6 = 90°, The harmonic (w~-82) 1is cut off because w={ < wpo .
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Fig. 17. Fundemental radiation pattern in a disturbed isotropic
plasma /@ = 2.5, R = 3.5, w_?&ﬁw- 0.75, N

The dashed line correspomds to N; ~ 0 .
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Fig. 18. Harmomic (w+Q) radiation pattern in a disturbed plasma
W/Q = 2.5 R= 3.5 w /w=0.,75, N, = 0.25 .
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IV. SPACE-TIME PERIODIC UNIAXIAL MEDIA

The electric permittivity tensor of a uniaxial medium can be

written

g' 0 0 |
e =leff =ljo e 0
l O O el"

in a Cartesilan coordinate system, where the z axis is parallel to the
optical axis. For the uniaxial plasma, the static magnetic field is
taken parallel to the z-axis (Fig. 19).

We assume the medium to be perturbed by a sinusoidal distur-

bance propagating in the z-direction, such that

€' = €' (z2,t) = eos;[l + €, cos(Kz =Qt)]

1

g = g™ (z,t) = EQE;' [1 + e, cos(Kz~-Qt)]

3

for the dielectric, and

Kl

N(z,t) = No[l + Nlcos(Kz - Qt)]

for the plasma.
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Fig. 19. TE and TM waves in unaxial media

A. Wave in Infinite and Half-Space

1. TE wave (Fig. 19)

We find for the electric field wave equation

2
VZE - W —éf (e'E) = 0 (for the dielectric)
ot
2 3%E
V°E - u € = 0 (for the plasma)
oo .2
ot
with E = E &, - "These equations are to be expected because, as E

is in a plane normal to the anisotropy axis, it does not see the
anisotropy, and we get the same equation as for the isotroplc medium.
For the umiaxial plasma, as BO 1s infinite, only the electric field
z-component, if it exists, can interact with the plasma (see next sec-

tion).
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2. TM wave (Fig. 19)

Here

E=Ee +E

e and H = He
- X=X z—2z - =y

and the electric field sees the anisotropy of the medium.
to drastic changes relative to the lsotropic case.’
a. Uniaxial dielectric

Maxwell's equations are

9 3E_ BE -
VXE= Mo T T T e T o B
91 d
- === ==(¢'E )
v x E_:-%E dle - E)=> g z ot
oH _ 0

L 3 = 3cCEEY)

This leads

(4A.1)

(4A.2)

From Floquet's theorem and the superposition principle we can

write

H = Z Hn eti + i(kmK)z - 1i(wnl)t i
n

ei(K-PnK)z + 16x - {1 (W)t

= B g
Ex L (Bue *Ee)

Putting these expressions in 4A.1 and 4A.2, equating the components

with the same frequency, and eliminating Hn and Enx as we did in

the isotropic dielectric problem, we get

| 1
{DnDn GnGn 1 1

G +
n

D D'
n + n+l] E

1
Gn+l

o to Bt g
n~-1 n

a+l nt+l,z
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—T + H — t 1 - o (4A- 3)
Gn Gn—l n~-l,z Gn+l n+2,z G 1 B 2,z
where
T P Yl S BT
noogg B,2 noe, 5"
n n
¢ =L Slchn) ¢t = 2 8(cnx)
noog 8;2 no €, B"vz
12,_ v 2 nvzs ne 2
Bn HoEofr Yy B Hoofr %n
or in a matrix form
| Ez] = 0 (4A.4)

which is similar to 2B.17 but with different elements, and

pet ||M|| =0 (4A.5)

is the dispersion equation.
From equation 4A.4 we can compute the relative amplitudes
E_ _/E and then from Maxwell's equations we get E /E and
nz’' oz nx' “oz
To get an idea about the wave vector diagram, let us take the

limits €, -0 and ¢, + 0 . At these limits, equation 4A.3 becomes

1 3
s' 2 W
(MK) + m 52 = L ("—I'}')z
2 8
€ R
r
or
e' W
SR L A .
e R
T

where



X = k/X Y= &/K
R'..S‘.'.a....._l_.___..
Vd v YU e €'
d "oorx

This is a family of ellipses centered at X = ~n with axes ratio

<€’r/€;'> . The envelope of this family of ellipses is a straight

line

x -9

R'z— 1

So the wave vector diagram for a uniaxial dielectric looks like the
isotropic dielectric diagram (Fig. 3), with the circles replaced by
ellipses.

The characteristic equation of the system 4A.3 is

94+ Bp3 + Ap2 +Bp+1= 0

where
A= E—%-[l - R'2] + 2 .
~173
B=-2é—-(l—R'2)+-§-—-
1 3
Rla._(:::_
v

d

c' = speed of light in the X direction

From Polncare' convergence Theorem [18,21], the sonic region is found

equal to

€
<rR?<1+¢ for R'Z <1+ —=- 2

1-¢ - 1 - € 1

1



€
0 < R'Z < 1+¢ for R'Z > 14 % - 2¢
- - 1 € 1
3
Remarking that
1 - 2¢ +f—l—=1~e +e(~}—-l)>1-e
1 EB 1 1 83 -— 1

then the sonic region is given by

1-¢ 5R'2 2

1 < 1+ ¢, for all R'

1
and the value of €, has no effect on the sonic region.
b. Uniaxial plasma

Maxwell, Newton and the continuity equations are

oH
VHES M3
2o}
VxH=¢ =—+J
- o dt -
VeH = 0

at
dv
SRR Ui L
4 = Nqv

and B = B e = static magnetic field.
o o=z

From 4A.8 and 4A.9 we have

(4A.6)

(4A.7)

(4A.8)

(4A.9)
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£ - — x
R m TR Y (44.10)
where W == B .
-5 m-o
Let J, = Jxe , then |J X g%} = JT wp 3 but, as the
medium is uniaxial (BO - o) then we must have JT =~ 0 and
J= Je
- z—z
24
Taking E = 3T equation 4A.10 reduces to
J= € wz(z t) A e
- op z =z
and equations 4A.6 and 4A.7 become
X T .
Vxa uo_}i (4A.11)
524 )
VXH = € =~=>+ew Ae (4A.12)
- o 3t2 op zvz

Using Floquet's theorem we can write

i{knK)z + 18x - iwnt

'§_= e X H e
0 n

-7
i(k+nK)z + 18x - iwnt

Ae L e+ 4, ge

Putting these expressions in 4A.11 and

it

with E -iw A
nx/z n ‘nx/z

4A.12, then equating the elements with the same frequency, we find
~8A_ + (x4K) A= iu H

- (k+nK) H = it wz A
ol on  nx



2 2 3 N
-8 =de w A ~dew [A +-—=4
n on nZ (o]

po' nz 2 “ntl,z + 2

Solving this system we get

§ (x+nK)

A A
nx Bi _ (K+nK)2 nz
1606 wi
H = - A
n 82 _ (K+nK)2 nz
n
DnAhz + An+l,z + An-l,z =0
where
2
D = 2 [1 J L (1 - 52 )]
n Nl 82 B2 _ (K+nK)2'
po n

or in a matrix form

el - Jal = 0

and

A(S,c,w) = Det ||M|]| = 0O

is the dispersion equation.

A'n--l,z

(4A.13)

(4A.14)

(4A.15)

In the limit N1 + 0 the dispersion equation reduces to (from

4A.13)
2
6%+ (1 - —22) (erx)? = 82 - 82
n po
wn
or 2 2 2
wl “oo 2 @y~ w 0
LS o BV
w_ RQ

where

(4A.16)
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This 1is & family of conics, and the wave vector diagram will consist
of

-- hyperbolas for n such that w + nfl < wpo
-~ ellipses for n such that w+ al > wpo

All the speclal and interesting properties encountered in a

uniaxial plasma are studied in the following three cases:

Case (1): Nl = 0,25, Q=0, w =~% W >w

The wave vector diagram shown in Fig. 20 is a family of
ellipses which interact strongly near thelr intersection points and
lead to the apparition of stop~bands. As the group propagation angle
is given by Qy = —arc cotg %% » then there is propagation for all

values of 6 , which is to be expected because w > wpo'

Case (2): Nl =0,25, =20, w ; 0.8 wpo< wpo

For this case we get the diagram of Fig. 21 which consists of
a family of hyperbolas with stop-bands near the interaction points.
For the limit Nl + 0 we know that there is group propagation only

. LW
inside a cone with half angle ¢ = arc sin = . In fact, we see on

Fig. 21 that, at this limit, the slope of the curves is

| asymptote slope| = < |slope|l < o

But for Nl # 0 the slope near the stop-bands goes to zero, and this
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allows propagation for all angles 6 . This is a special effect due
to the presence of the disturbance and it will be explained physically

in a later section.

N, = = = = -li
Case (3): hl 0.25 , R=3.5, w=25, w 3 wpo

Here there are hammonics at frequencies uw+n{l , and the plasma
frequency wpo will be in the middle of the spectrum. Therefore, we
expect to have a mixed wave vector diagram which contains ellipses and
hyperbolas. Also, there is the disturbance motion effect. In Fig. 22
we plotted the corresponding wave vector diagram, and we remark the
following factors:

-- The modes (q > 0) are ellipses because w+qfl > wpo

-- The modes (q < 0) are hyperbolas because w+ gfi < mpo

-~ Because of the disturbance motion, the ellipses are not
equal and the hyperbolas'asymptotic slopes are not the
same.

In this case too, all the modes propagate for all 6 , even
the modes which, in the limit Nl =+ 0 , were limited to a certain cone
of propagation.

Finally, the relative amplitudes of the harmonics can be com—
puted from equation 4A.l4, and from Polncare convergence theorem we
find that there is no sonic region. TFor the reflection ccefficients

from a half-space, we can use the results of Section II.C with an

given by equation 4A.13.
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E. Dipole Radiation

The dipole moment, the optical axis (or §0 for the uniaxial
medium), and the disturbance propagation vector are supposed to be
parallel to the z-axis.

For a magnetic dipole, the electric fleld is in a plane
normal to the z-direction, and it does not see the anisotropy as we
showed for the TE wave, thus:

-= In a unlaxial dielectric the radiation pattern is iden-
tical to the pattern in an isotropic dielectric with
e = ¢e'(z,t). )

-- In a uniaxial plasmea, the radiation pattern is
identical to the pattern in vacuum (i.e,, € = EO);

therefore, only the electric dipole is studied in detail.

1. Electric dipole in a uniaxial dielectric

The wave-vector dlagram for a uniaxial dielectric is the
same as the isotropic dielectric diagram (Fig. 3) with the circles
replaced by ellipses, because 8; # E;'; therefore, all the results

found in Section IIF.2 are valid here 1f we use the corresponding Dn

and diagram.

2. Electric dipole in a uniaxial plasma

The wave vector diagram is given in Fig. 22, and the fileld
expression and radiation pattern are found in the same way as for the
isotropic plasma. We get caustics, but also there are the cones of
radiation on which surface the field is very large (see Appendix D).
The cones of radlation appear only for some modes (with q such that

whgQl < wﬁo)’ but because of the inhomogeneity created by the
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disturbance, the radiation is not limited any more to the inside of-
the cone.

Let us consider two phase rays, 1 and 2, inside the phase
cone angle (Fig. 23); then if at a point A we take the vector sum of
the rays 2 and 1' (which is the reflected part of 1 from an inhomo-
geneity surface), we find the resulting ray outside the phase cone,

in the previously forbidden region.

W REE el Gl

WhARE 0 GRS GeeEe e

RS e e e

L TR Y ]

L T B

b S o TR B TR o S S —

Fig. 23. Radiation in the cut-off cone
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This was verified by computing and plotting the radiation

pattern for a case where we expect to have cones.
K
In Figs. 24 and 25 we plotted O = f(—%) and the radiation

pattern of an electric dipole in a unlaxial plasma with stationary
disturbance ({.e., N(z) = No(l + Nl

difference with the isotropic case occurs.

cos Kz)) and w > wpo' No major
K

In Figs. 26, 27, 28, 29 we plotted € = f(—%} and the pat-
terns for the hammonics (w, W, w-N) of an electric dipole in a
perturbed uniaxial plasma with

Re<-=35, wQ=25, w=2w , N, =0.25
Vi 3 po 1

The harmonic (w-{)) pattern contains caustics and cones
because the mode q = ~1 in Fig. 22 has a hyperbolic wave vector
diagram (i.e., w-2 < wpg. The disturbance motion has an effect only
on the caustic angles, but not on the cone angle (the cone angles are
53° and 127° = 180°-53°).

The fundamental (w) pattern contains’zaustics but no clear
cones. But for 36° < 6 < 53° there is a slight increase in the field
due to the up-conversion from the mode gq=-1 which has a cone

(1.e., large field) in that region.
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zwff!/ ] i % | ! \r~AJ

C iI0 3¢ 80 70 <G HO 130
Fig. 25. Radiation pattern in a disturbed uniaxial plasma

v,=0,Q0=0, w /fw=0.75, N, = 0.25. The dashed line
d po 1

corresponds to the pattern in vacuum.
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\ caustic

— caustic
#6o
caustic of
mode q=0
i
| =~
ccustic of
moce q=-i .
region of
the cone of
mode g=-|
e 1 ] ! ! 1 l ﬁ
CI0 30 50 70 SO 110 130 150 170180

Fig. 27. Fundamental radiation pattern of a dipole in a

disturbed uniaxial plasma: R = 3.5, w/Q = 2.5,
mpém = 0,75, Nl = 0,25
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caustic
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i
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1q=0
|
|
3
|
o
1 il — 1 ]
O 30 350 SO IO 150 180

Fig. 28. Harmonic (w=-Q) radiation pattern in a disturbed uniaxial

plasma: R = 3.5, w/@ = 2.5, Jw= 0.75, N = 0.25
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Fig. 29: Harmonic (w+{) radiation pattern in a disturbed uniaxial

plasma: R = 3.5, w/Q = 2.5, wpéw = 0,75, Nl = 0,25
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V. CERENKOV RADIATION IN SPACE-TIME PERIODIC MEDIA

In this chapter we study the radiation from a moving electric
charge, with constant velocity, in sinusoldally space-time periodic
media. In a dielectric (Sections A and B), we get transition radiation
and, under some conditions, Cerenkov radiation. 1In a plasma (Section
C), there is only transition radiation. The charge is assumed to move

parallel to the disturbance wave vector ({.e., z-direction).

A. TFilelds

The current density due to the charged particle in cylindrical
coordinates 1s

ev
1= &, 528 8C - v, )

where
e = charge of the particle

v_ = velocity of the particle

The radiated electromagnetic fleld is transverse magnetic relative to
the z-axis, and most of the basic results found in the study of the
electric dipole are valid here., 1Two factors must be taken into
account

-=- the current expression is different

-=- the radiatec wave spectrum 1s continuous not discrete,

and we have to integrate over all the frequencies.

l. Fileld expression

The magnetic field can be written
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W (x,w) H EH
q( )nq

§;ﬁ8

o0

- 11|

nq o

with H = Hg¢ » and the source condition is

2mpH = ev 6(z - v_t)

Putting the expression of H in 5A.2, we get

[+] [++] A' W
Z Z f f ng q Eo . ei(K+nK)z-i(w+nQ)t dc dw
nq_o . q s
- —R 8- v o)

or

1r [ ".LQ v had
[ J R anAqei(KmK)z g - %—”- e Pt 4.
-0 oo D q
where
Hn
v B4 (determined in Section II.F.2)
ng E
oqz .
WE
q ogz
a =
q 6q

and we used the relations

§{ax) = S (x)

iwx
e

§{x) = dw

§--x8 o

This equation must be satisfied for all ¢t , therefore

2 2 j o A ei(K+nK)z - inQit e = if eiﬁw/vp)z
2 g q'nq
-l

£1)<5qp)ei(x+nK)z-i(w+nQ)t

dkdw

(5A.1)

(5A.2)
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and to have this relation too satisfied for all z and t , we must
have
K = w/vp (5A.3)
! =
y adl = 0 for n#0 (5A.4)
q
v ie
L oapl = 3 (5A.5)
q
or in a matrix form
Harf] < Jaof = |2 (5A.6)

where
P=0 foran#0
IP] = column vector with elements
P = ie/4

As K 1is related to w , then the, integration over K can be

deleted, and the H field is completely determined by

) & @
£-11 l a @ 8 @ a1 @ 1M 0

i(i?HFnK)z - 1(wnR)t
X e P dw (5A.7)

and in the far field

.3 ©
Ha/2 e *T7 J o Al 612 JIXT g, (5A.8)
0 5 q'nq q
9 % ,
where
X =38 sin 6+ ({—‘j—-+ aK)cos © ~ (wtnf) % | (5A.9)

P

p=r sin
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From the above expressions we see that a band of the spectrum

near the frequency winfl will propagate with a phase angle

= arctg —-§~ = arctg Er—fL——— (54.10)

The integral in 5A.8 can be computed by the steepest descent method.

For r »« with t/r staying finite, we get (see Appendix C)

Ty _ "
- = Z z $ < ixsr + i 4(l sign Gqs)
T sin @ qs nq 8 | @
6.l
qs

where the index s means the value at w = w, = saddle point, and

W, is given by

-z% 0 (5A.11)
W=
s
or
a6
sin 0 —2 4 08 6 - -i— = 0 (54.12)
qus P . :

2. Radiation cones

From equation 5A.12 we have

rcos @+ viE'(w) rsing = vt
PqQ s
or

z + vpéé(ws)p = vpt (see Fig. 30)

This is the equation of a cone with axis z , vertex at v t (which

is the position of the particle) and half angle ¢qs given by
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1

tg ¢ =
qs vpdq(ws)

Hence, for a given mode of radiation, the band of the spectrum
around W (and ws+ n{l) will be concentrated in space on the sur-

face of a cone attached to the particle.

bp

o Gauee SSRGS wasce
gy e gl G esocees

Fig. 30. Cerenkov and transition radiation
geometry
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3. Brillouln diagran

From Section II.F.2, where we studied the electric dipole radia-

tion, we have (the subscript q 1is omitted for clarity of notation)

DnEnp + En+l,p + En-l,p + GnEnz = 0
DéEnz * En+l,z + En-l,z * GnEnp =0
where
2 K+nkK, 2
D =—[1-( )]
nog 8n
2 § .2
D! == [1- (9]
n El Bn
c = 2 §(k+nK)
ng B2
n
or in a matrix form
o1+ [zl + lell+ 5] = o
1211+ [5,] + Hell - Is | = o
where
llGI] = diagonal matrix with elements Gn
i[DI! or ||D'll = tridiagonal matrix with dliagonal elements

Dn (or Dé) and off-diagonal elements equal

to 1

Solving this system for IEZ! we get

ol ™t - |

Cllell = 1lol p'lf)-le,l = o0
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and the dispersion equatioun is gilven by

pet( |||l - |Ip]] -+ ilell™* -

[p'{|) = © (54.13)

At the limit €. = 0 the dispersion equation becomes

1
D D' = G
n n n
or
6% + (k) = 82 (5A.14)
As K = w/vp , then
wnKv wtnKv
62 = ¢ dy2_ (B2 (5A.15)
v v
c P
o v2 - v2 (v,- v )2
Y2 - —P——é-—c- x2 = n2 g 5 (5A.16)
v v - v
c c P
where 2
A
x = Xt
v - v
c P
Y = &/K , X = w/K\;p

v = e.m. wave velocity

v, = disturbance velocity

v_ = particle velocity



~-108-

B. Radiation and Spectrum

In this section we study the angular distribution and the
spectrum of the radiated field using the Brillouin diagram, for dif-

ferent relative values of Vo vp and vy -

1. Stationary disturbance (vg = 0)

We assume a sinusoldally stratified media with

e =¢ € (1L + €, cos Kz)
or

1

then the limit dispersion equation 5A.16 becomes

2 "Z'Viz 2 v
X ""P“""z_’x = n "2—?”’2'
v v -V
c [}

with 5
VC

x = X+n 3 5

v =V

c p

In Fig. 31 we give the Brillouin diagram corresponding to dif-
ferent values of vp/vC and e > 0 . For v /vC < 1, the diagram
consists of a family of ellipses (only 2 ellipses are shown), and only
the modes q < O appear. For vp/vC > 1 the diagram consists of a
family of hyperbolas (for q # 0) with asymptotes parallel to the
fundamental mode branch (q = 0), which is a straight line.

For 61 # 0 strong interactions occur near the intersection

points (Fig. 32).

In Fig. 33 we plotted the radiation angle

1
v ¢!
P q

)

¢ = arctg (
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function of X = w/KVp » and 1in Fig. 34 we give the Brillouin diagrams
and the radiation angle curves for specific modes.

In Fig. 34a vp/vC <1 and ¢ = -1, The spectrum is limited

to
1 < X < 1
v v
1+-=2 1 ——L
v
c c
or
Kv v Kv v
-2 ¢, <—Pc
v+ v v -V

and there is radiation in all directions. This is a transition type
radiation and it is caused by the inhomogeneity of the medium.
In Fig. 34b vp/vC >1 and q =0 . Most of the radiation
is concentrated on the Cerenkov cone surface, with cone angle
Ve
¢ = arcsin —
c vp

but some parts of the spectrum are radiated inside the cone.

In Fig. 34c vp/vc >1 and q = -1 .~ The radiation spectrum

is
Kv v
w > ___R-E__
- v+ v
P c

The lower frequeﬁcies are radiated backward (i.e., ¢ = 0) and the higher
frequencies are radiated in the Cerenkov cone.

In all the diagrams an inflection point leads to a caustic in
the radiation pattern.

The ab&ve results, which are obtained by an elegant use of the

Brillouin diagram without involved computations, match perfectly with
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Fig. 31. Brillouin dlagram for €, ~ 0
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v. <V vd=O

<V

Fig. 32. Brillouin diagram for € % 0

xV
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Vg < Vg, vg=0

S0° -

30°

Fig. 33. Radiation angle ¢ function of X = w/Kvp‘
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LY 1604 ¢p(degrees)
a)mode g=-| 20— a)mode g=~I
Vp < Vc Vp <Vc
80
40 -
. X , _
Ve 3/2 Ve 3/2 X
VC+VP VC-.VP
)
4‘496 b)mode g=0
60~ Vp >V
P
SV
20
! i o i { .
172 | X /2 | X
AY e
c) mode q=-1 , c¢) mode q=-|
Vp >V Vp Ve
60
be i
40 F
20~
i1 ‘ | o 1 l o
Y F1/2 3/2 X 1/2 3/2 X

Vp+vc FPig. 34. Brillouin diagram and radiation angle for different
modes and different cases €] % 0
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the results of other authors [13] who used long numerical computations

of Hill's functions.

2. Moving disturbance (vgq # 0)

We assume v, X v

(a) v < v

The corresponding Brillouin diagram is a family of ellipses for
the modes q < 0 which are the only ones to radiate. Each mode has a

series of harmonic spectrum bands given by

(v./v)) -1 v v+
R o A R TR LR oy
for vp < vy <V,
(v /vy +1 (v /v -1

+ nll < w < + nfl
S W =

iQIQ (V /V)-l

+

lq|Q Yga?qi:r-—jf

for v, < v <vw
d P c

For a certain mode and harmonic the Higher part of the spec-
trum is radiated forward (¢ = 1800) and the lower part backward
o
(¢‘O)o

(b) v >v >v

The corresponding Brillouin diagram is a family of hyperbolas
for ¢ # 0 and a straight line for q = 0 .

The fundamental mode (q = 0) corresponds to the Cerenkov
radiation, and ghe other modes will radiate inside the Cerenkov cone

over a spectrum
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Ve Vg
W > gqKv Fea— for ¢ >0
P C

v+ v
c d

wg-qup _\;;T‘\‘r; for ¢ <0

For the special case vdvp = vi we get

v
w > lq]-;R Q for all q
c

C. Transition Radiation in Plasma

We follow the same procedure as in the previous section and
we use the relations obtained in Chapter III for the isotropic plasma.
Only the final results are given here.

In the limit N, - 0 the dispersion equation is

1
2 1’; 2 z(Vd" Vp) U.)poz
Y +(l“v2>x = q vz—vz -(KV)
C c P
where 2
v "‘VVd
x = X+ q—5—5=
v -V
c p
X = w/Kvp , Y = §/K

As always vp < v, in a plasma, then the Brillouin diagram is a

family of ellipses and only the modes

o, [ %

q £ -
Kv V.- v
d 'p

will radiate. The radiation is of the transition type.
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Each mode spectrum will consist of harmonic bands given by

-y +a +al < w < o +vy +n
9 q - nqg T g q

v

_ P 222, 2 _ 2,2 .2

q v - R \/q Kvelvgm vp)m = v = vp)
¢ p

Two special cases deserve more study: Ve Ve and vy = 0

1) vy =V,

The radiating modes correspond to

© vC + v
c P

and the radiation bands are

with

v v
S - —_P
afl + vF v (lq]Q - a) 5'wnq < nf + Vot v (quQ + a)

An interesting fact in this case is that the modes do not

intersect each other.

2) vy = 0

The radiating modes correspond to
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wo V2
2 -2 f1-D
P C

and the spectrum bands are

va VV2
lalk 5= -1b < u_ < ldx S5+
v -V q v =V
c p c p
with
2
qKv v w
b - {‘“"—Pﬂ “:r‘p‘?‘z*}
V. -V v =V
c P c

These results (for vd = 0) which were obtained with a minimum amount
of computation compared very well with the results obtained by other

authors [14] for Nl = 0.4 and different values of vp, wpo,--- at

the expense of long numerical computations.
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V1. WAVES IN GENERAL SPACE-TIME PERIODIC MEDIA

Most of the results found in our study of the sinusoidally‘
space~time perilodic media are extended, in this chapter, to general
space~time periodic media.

We assume a medium submitted to a propagating periodic dis=-

turbance, such that
e = e(z,t) = anr[l + elf(Kz - Qt)] for a dielectric

N = N(z,t) = NO[l + le(Kz - 2t)] for a plasma

where f£(n) 1s a normalized periodic function which can be developed

in a Fourier series

S 1
£ = ] ae™

mﬂ-—w

A. Dielectric

1. TE waves (and magnetic dipole)

The electric field wave equation is

2
ot
with E = E gy . Using Floquet's theorem we can write
o« N .
E = z ~En eiox + i(k+nK)z - 1i{wmfdt
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(for the dipole eicsx is replaced by Hil)(ﬁp)). Putting the expres-

sion of E in the wave equation with

. v im(Kz-Qt)
e=ece [l+e ) ae ]

ms=s -

we get

VE = = 7 (6% (k4ni)?] E e

n

i8x + 1(K+nK)z - iwnt

16x +1(k+nK) z -iwnt
€E = €€ g (E+ € g a E e

a2E E ti-Fi(K+nK)z-iwnt

2
uo n, 2 =T z Bn(En+ El 2 am En-m)e
ot n o}

and, equating the terms with the same frequency

DE + ) a_y Eg= 0 (6A.1)
£#n
where
1 8%+ (c+nk)?
D =[] = ]+ a (6A.2)
n € 2 0
1 Bn

or in a matrix form

[IM[] <|E] = o0 (64.3)

where

M. =a, ., for 1i4]
lIM|| = matrix with elements 1 J

Mii i

The dispersion equation 1is given by

pet ||M]] = o0
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the ratios Cn - Er/Eo are found from equation 6A.3, and all the

results of Chapter II can be used here.

2. TM waves

We take

1(k+K)z + 18x - iwnt
H = H e

idx+1(k+nK)z = iwnt

Putting the expressions of E and H in Maxwell's equations, equat-

ing the terms with the same frequency, and eliminating Hn' we get

DnEnx + Z an—l Elx + GnEnz =0
L#n
' =
DnEnz + Z an-l E!Lz + GnEnx 0
#n
where
1 (K+aK)2
D = [] = il 4 g
n el B2 o)
n g
pp =1+
1 n
¢ = § (x+nX)
n € B2
1l ™n
or in a matrix form
lIoli « 1e_| + llell - 5| = o

(6A.4)

Il Izl + fell - lg ] = o
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where IIDII, llD'll and ]lG]f are matrices with elements
Di_‘j = Dij = ai-j for 41 # j
Dig = Dy
Dy = Dy
Gii = Gi and Gij = 0 for 1 # j

Solving 6A.4 for Ez we find

el] -

Ezl = 0 (6A.5)
where

lhl] = llell = lioll - [lel|™* «[|n"]|

Having the expression for [[M||, we can apply the results found in

Chapter II and Chapter V.

3. Sonic region ‘ -

For the TE wave we have the infinite order difference equation

DE + ) a_ E = 0 (6A.6)
L#n
If we suppose a = 0 for lm] > r , the characteristic equa-

tion becomes

r
a_rp + ces F DpT ok e a._1P + a. 0

From Poincare theorem, the sonic or divergence
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region 1s equal to the regions where two roots have the same amplitude.

B. Plasma

l. TE wave
The A wave equation is

2

2 3”A 2 _
VA-uoaoaz-uoeowp(z,t) A = 0
t
This leads to
DA + | a ,4,= 0
nn 4in n-% &
or
[ - [a] = o0
where
1 Brzl - 62- (n<+nK)2 '
D -——-—[l" ]+a
n N 2 o]
1 8
po

2. T™M wave

From Maxwell's and Newton's equations wé get

DnAnx + 2§n qh-2 Alx + GnAhz = 9
(6A.7)
A =
DnAnz + z ah~2 AQz + GnAhx 0
L#n
where

1 BT - (K+nK)2
Dn=ﬁ~[l— 2 ]+ao

1 B

po

1 8§'62
D'=-I\-X—'[l- 5 ]+ao

1 B
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NlB
1(k+nK)z + 1dx - iwnt
A=) (A_e +A e)e
- n nx -« nZ —z
CEN
E= 3¢

The system 6A.7 can be written in a matrix form and the general
results of Chapters III, 1V, V are valid here.

No sonic region exists in the plasma.
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VII. CONCLUSION

In this work we investigated the problem of electromagnetic
plane wave propagation and source radiation in different media (diel-
ectric, plasma, uniaxlal plasma) submitted to a traveling sinusoidal
or general periodic disturbance. The sources considered were:
electric dipole, magnetic dipole and uniformly moving charged particle.

The basic method of solution consists In using the Floquet
theorem in conjunction with the principle of superposition to solve
the wave equation or Maxwell's equations. The wave vector diagram and
the Brillouin diagram were used extensively to study and explain some
special effects without involved mathematical computations. Many
interesting effects were studied in detail: parametric conversion and
interaction for TE and TM waves, Manley-Rowe relation for oblique
incidence, caustics in the dipole patterns, disturbance motion effect
on the radiation angles, radiation in the cut-off cone of a uniaxial
plasma, Cerenkov and transition radiation and the generalization to
any space-time periodic disturbance. ’

Many dipole radiation patterns are given for different media
and different cases.

Finally the potentials and Hertz vectors in space-time depen-

dent media were studied and a Lorentz gauge for these medlia was given.
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Appendix A
POTENTIALS, LORENTZ GAUGE AND HERTZ VECTORS IN A

SPACE~TIME DEPENDENT MEDIA

Maxwell's equations in a space-time dependent media are

%3
VX_E_=-'§—E (1)
3D
VX§-=—§E+_I- (2)
v.g: p (3)
Ve«B= 0 (4)
and D=¢e(r,t) E , B = uoﬂ~ (5)

The field can be expressed in terms of a scalar, and vector
potential ¢ and A , equations 1 and 4 being satisfied by

54

B= Vx4 E= -V - 5 6)

These potentials are not unique, in fact if (¢B’éb) is a set of poten-

tials representing a certain field, then

‘ )
= ! = A -
A= AtV 6 =9 7)

where ¢ 1s any scalar function, will represent the same field also.

Equations 2, 3, 5, 6 lead to the coupled equations

Q>
=

V><V><_1_k_+uo-g—£(€

l

)+uog-g(e Vo) = u L (8)

[o¥)
ct

34
Ve(e V9) V(e 5 = -0 (9
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By an appropriate choice of VY , we can choose a gauge which

uncouples one of the above equations. We take

¢
v A+ (uoe ¢ = 0 (10)
(This gauge reduces to Lorentz gauge for € = constant)
then equation 8 becomes
P 1
vax§+“o§E(€’é'£)°"a'E e:V(E-jV°_A_) =ML (11)

t

So the electromagnetic field can be determined by finding the scalar
and vector potentials (i.e., four scalar functions); but since they
are related by equation 10, only three functions are necessary and
this is where the Hertz vector comes in.

The electric Hertz vector is defined by

oll 1
T bmevrl
Equation 10 is automatically satisfied and, from equation 1ll, we get
2 oI Ve ’
VI- pye—s~=V el —m=- J I (12)
- o at2 ~ € =

t

with the fleld outside the source volume given by

L )

E= g - VGV D = -2V Xl
ot
oIl

_}i=<—vx-é—€

If e(r,t) = e(z,t) and I = ng , then equation 12 becomes



This implies Il = I e, and the problem reduces to the determination

of one scalar function II from the wave equation

2
2 o 1 oIl 2 1l
4o o (=) - S = -
VZH € dz <€ Bz) uoﬁ 2 I
ot
t
2
2 2
where V, = V™ = 8
2 2
9z

For the magnetic potentials we start with Maxwell's equations

with magnetic sources [23, p.12]

D
VXE: T ' (13)
2B
VXE=—Jm--§-t—:* : (14)
V._D-B O (15)
VeB= o (16)

From 13 and 15 we can write

28,
D=7Vx4, B=Vou + 5

where ée is an'electric vector potential and ¢m is a magnetic.sca-
lar potential. These potentials are not unique and two sets of

potentials (¢§,AZ) or (¢w’Ae) will represent the same field if they

are related by

A=A WY an
0y = 0 - 2 (18)
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where VY 1s any scalar function.
Taking the gauge

A 09

Ve +u p o= 0 (19)

the é@ wave equation is found as

2

1 = Ay
VX(Eng_e)+uo at?_—VV-(E——)=--gm (20)

We define a magnetic Hertz vector by

Y

A =en o = -=—7V M (21)

Equation 19 1s automatically satisfied and equation 20 gives

52 e oM
VM -u = (e 529 - f vV x Q;r x 3?0 = J Qm (22)
t t

Let us suppose €E(r,t) = €(z,t). Writing equation 22 for the

three components of M we get

2 3 x93 ,ve M o
LR e re "3;<|?"§z>“mex
t
oM oM
2y —u e =Xy 9 ¥ _yy .
v My Mo 3t (€ at) 9z (| el St) J me
t
oM oM oM
2y~ O (e —zy _Ye3d T x_ _yy_
VM, M5t B30 m T e Che T oy ijz
t

If the source is such that
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then M =Me because there is no source term to induce the two

other components, and the M wave equation becomes

M
E: VX—B—E
oM
1 0 - 1
H ---ﬁ;vv _-bi'*'at (eat) T Vx V x M
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Appendix B

AMPLITUDE RATIOS

We have the difference equation

DE +E  +E _ = 0

which can be written too

Dn—l En—l + En + En—Z = 0
These two equations give
En+l - T En—l =D En
En =‘-En-Z Dn—l n-1
and
n+l =T En—l + Dn En-Z * Dn Dn--l En-l
So
E E
ntl D + 3 i—l - Dn - 1
n n-2 n-1 n~1 n-2
n-1 En—l
and
En - - 1
En+1 D -~ 1
n En-2
Dn—l + E
n-3

Making the same computation for En—Z/En—B , and so on, we get

(1)

(2)
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Appendix C
STEEPEST DESCENT METHOD

Let us suppose we have to compute the integral

I= f g(t) eiXh(t) dt

for large x , where h(t) and g(t) are analytic, and h(t)

real on the real axis.

Let t, be defined by h‘(to) = 0 , then we have two cases:

1) h"(to) # 0 ; then we have

(t -t )

B(t) = h(t) + —

B"( )+ ee

and we get

1/2 1xh(t )+ 1 %-Sisn(h")

Tl see

L= [x!h"(to)

to is called the saddle point.

2) h"(to) = 0 ; then

3
(t - to)

h(t) = h(to) + 3]

hll' <to)

and

1/3 ixh(t )

1= /—T(-') ["W] g(to)é
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Appendix D
CAUSTICS

The caustic effect can be explained from the wave vector
diagram without any mathematical computations. This diagram shows
directly the group and phase velocity directions. For instance, in
Fig. a, the radiated wave which corresponds to the point A has a
phase velocity vector Xp such that ¢ = (yp,g) and a group velocity
vector Xg such that 0 = (gg,gg .

Inversely, if we want to find the points on the wave vector
diagram which radiate in the direction © , we have to find the
points on the diagram where the normal to the tangent makes an angle
6 with the kz axls.

For the diagram b, there are three points which radiate in the
00 direction, therefore we get a large field in that direction.

If there is an inflection point in the diagram (see Fig. c¢),
then all the section around that point will radiate in one direction
Oc and this gives a very large field for 0 = Oc . This is the
caustic effect.

The caustic effect can be compared to the cone effect in a
uniaxial plasma which has the diagram in Fig. d. We see that a large
section of the diagram radiates in a direction Op which 1is the cone

angle, and that is why the field i1s very large on the cone surface.
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tangent to the
curve at A

Fig. b

inflection point
ch

Akt

Fig. d
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