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ABSTRACT 

The integral near wake analysis of Reeves and Lees developed 

for supersonic laminar base flows is extended to the case of fully 

turbulent separated adiabatic flow behind a rearward facing step at 

both subsonic and supersonic speeds. A turbulent eddy viscosity 

model is formulated for the shear stress scaling of the dissipation 

integral in the mechanical energy equation. It is shown that the eddy 

viscosity can be described simply by one incompressible constant 

(valid for both shear layers and wakes) and one reference density p • 
r 

Using a compressibility transformation, theoretical solutions for the 

spreading rates of free shear layers are found to agree with experi-

ment when the reference density is chosen to be the centerline density 

for the wake flow. 

Two alternate methods are presented for joining the wake flow 

solution to the body: fir st, through a turbulent free shear layer mix-

ing solution, and then through the use of a two parameter family of 

velocity profiles valid near the body. A simple conservation model 

is presented to relate the viscous sublayer after expansion to the ini-

tial boundary layer ahead of the step. 

For free stream Mach numbers M 1 :5: 2. 3, the integral theory 

is found to give good estimates for the length scales and centerline 

pressure variations measured experimentally for both wake flows and 

step flows (where reattachment is to a solid surface). 
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ABSTRACT (Cont'd) 

An iterative method of solution for the incompressible wake 

flow problem is presented as an extension of the work of Green. 

The calculation proposes the proper criteria for obtaining a con­

vergent solution. The base pressure coefficient is found to be equal 

to the difference between the momentum thicknesses in the far wake 

and at the base. 
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I. INTRODUCTION 

Numerous experimental and theoretical studies ( 1,2,3) in recent 

years have been directed toward obtaining a better understanding of 

the mechanism of flow separation and reattachment behind blunt and 

slender bodies at both subsonic and super sonic speeds (see figure 1 ). 

Initial interest centered on the prediction of base pressure. Design 

of hyper sonic re-entry vehicles has led to the consideration of the 

base heating problem and the correlation of wake observables with 

the flow field in the near wake. 

For free stream Reynolds numbers (ReL) greater than 1 to 

5 x l 06 a boundary layer approaching a cavity or base is in mo st cases 

fully turbulent. These conditions apply to almost all separated flows 

in the subsonic and low to moderate super sonic flight regimes. 

As well as their direct engineering importance, turbulent 

separated flows provide a basic flow situation against which many 

theories for free turbulent flow may be tested and evaluated. 

The initial theoretical work of Korst ( 1 ), Nash ( 2 ), 

McDonald ( 3 ) and others on the supersonic turbulent base flow prob-

lem was concerned mainly with the prediction of base pressure, 

through the use of various reattachment criteria. 

While pointing out the important role of the separated shear 

layer, Chapman ( 4) and Kor st ( 1 ) essentially disregarded the me-

chanics of the reattachment process in order to calculate the base 

pressure. They assumed that the total pressure along the dividing 

streamline (separating the recirculating flow from the external flow) 

is completely converted to the static pressure downstream of 
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reattachment, Ptot = P 
00

• Nash ( 2 ) points out the rather fortuitous 
d. s. 

cancellation of errors in the Chapman-Korst analysis, i.e., the in-

correct assumption of isentropic recompression coupled with the 

neglect of the initial boundary layer. However, he, too, treats the 

recompres sion process as a "black box", by using an empirical factor, 

N = (Ptot - Pb)/(P 
00 

-Pb) R::. 35, to relate the total pressure on the 
d. s. 

dividing streamline, Ptot , to the freestrearn static pressure, 
d. s. 

p . 
00 

McDonald ( 3 ) obtained a unique solution for the base pressure by re-

quiring that the "shape parameter of the reattached boundary layer 

should be of the flat plate type" ("R:: 1.2-1.6). 

Starting with an initial mixing profile, McDonald employed a 

stream tube approach (assuming is entropic flow along streamlines) 

to determine the integral thicknesses e and 6* at the rear stagnation 

point. He totally disregards the effect of the viscous mixing and the 

interaction with the outer flow and uses an empirical equation to re-

late the development of the reattaching shape factor "to the velocity 

U at the edge of the boundary layer. He iterates on the base pressure e 

until" = " • oo flat plate 

All of the above theories are incapable of predicting such im-

portant wake characteristics as the length of the recompression region 

(of the order of 4-8 step heights), the location of the rear stagnation 

point, the growth rate of the wake boundary layer and the longitudinal 

pr es sure variations in the reattachment region. These theories can-

not determine the above mentioned quantities because they disregard 

the essential viscid-inviscid interaction which determines the reattach-

ment process and thus the whole turbulent base flow field. In 1952, 
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Crocco and Lees ( 5 } developed a theory for the supersonic near wake. 

The effect of viscous-inviscid interaction was included through the use 

of the integral continuity equation, which equates the angle Gl induced 

at the edge of the inner viscous flow to the angle of the inviscid outer 
-1 Ve 

flow tan - While a crude semi-empirical model was used for the u 
e 

viscous mixing, it was established that a unique value of the base 

pressure (in the supersonic case} could be obtained through the re-

quirement that the integral conservation equations produce a solution 

curve which passes smoothly through a saddle point singularity down-

stream of the rear stagnation point, referred to as the "critical point". 

This singularity is analogous to the "throat" at Mach I in a converging-

diverging nozzle, since the subcritical boundary layer (subsonic in the 

mean} becomes supercritical (supersonic in the mean} after passing 

through the critical point. Experimental evidence of the existence of 

such a point for base flows was presented by Carriere in reference ( 6 ). 

The theoretical model of Reeves and Lees (7) and Webb, Golik 

and Lees ( 8 ), developed for the laminar near wake, has improved on 

the Crocco-Lees solution through the use of multi-moment integral 
\ 

equationst with suitable wake profiles for the hypersonic laminar 

near wake behind blunt bodies. It was shown that solutions at low 

wake Mach numbers (M ~ 3) and at high Reynolds numbers employing 

single parameter Stewartson wake profiles gave results which were 

in good agreement with experiment. 

t The semi-empirical "mixing rate" law of the Crocco-Lees theory 
is replaced by the use of the integral mechanical energy equation for 
the wake. 
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Recently Green ( 9 ) attacked the incompressible turbulent 

reattachment and base flow problem using integral methods and thin 

airfoil theory for the viscous-inviscid interaction. Unfortunately a 

complete solution was not obtained in the reverse flow region upstreain 

of the rear stagnation point or in the far wake. It appears, though, 

that the incompressible problem can be properly handled by coupling 

the viscous integral equations developed for supersonic flow to the 

proper incompressible inviscid outer flow field. 

With the above theoretical studies as a foundation, the purposes 

of this present investigation are: 

( 1) to extend the integral inviscid-viscid solutions developed for 

the laminar supersonic wake of a blunt body to the analysis of turbu­

lent base flows at moderate supersonic speeds behind a rearward 

facing step. 

(2) to improve on the work of Green and obtain a more rigorous 

method of solution for the incompressible turbulent near and far wake. 

It has also been suggested that reattachment to a solid surface can be 

treated by a wake type solution, since the reattaching boundary layer 

has a large steadily decreasing wake component downstream of the 

rear stagnation point. It is thus possible as an extra feature of inter­

est to determine by comparison of the wake theory with experimental 

data whether or not the axis shear stress in the reattachment region 

can be neglected in the calculation of separated flows which reattach 

to solid surfaces. It would then, it is hoped, be possible to treat both 

wake and solid surface base flows by the same theory. 
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The adiabatic supersonic turbulent base flow field is examined 

in sections II- VIII. Some of the methods developed in these sections 

are then used in section IX in order to formulate the method of solu­

tion for the incompressible case. 
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II. DESCRIPTION OF 1HE SUPERSONIC FLOW FIELD 

The principal objective of this study is to try to understand 

the gross effect of the turbulence and dynamics on the important 

length scales and pressure levels in the near wake. Thus, in order 

to formulate a simple model for the two-dimensional turbulent base 

flow field, it is most necessary to make use of the available experi­

mental measurements so as to delineate, if possible, the most im­

portant features of a highly complex flow pattern. 

II. 1. The Two-Dimensional Turbulent Base Flow Field 

Several important regions in the super sonic turbulent base 

flow field behind a rearward facing step have been clearly established 

by the investigations of Larson et al. (10 ), Ham a ( 11), Hastings ( 12), 

Roshko and Thomke (13), Badrinarayan (14), and many others. Using 

the Schlieren photograph of figure (2), the schematic flow field sketch 

of figure (3), and the experimental results of the authors above, it is 

possible to discern certain distinct features of the base flow in the 

vicinity of the step. 

Along the upper surface of the step an undisturbed fully devel­

oped boundary layer with adjacent inviscid supersonic flow approaches 

the corner; with edge Mach number M
1 

and static pressure P 
1

. In a 

small region near the corner, of the order of a boundary layer thick­

ness, pressure signals from the separated flow downstream of the 

corner are propagated upstream through the subsonic portion of the 

boundary layer. The resulting effect is a rapid expansion of the 

boundary layer. This produces a drop in pressure just upstream of 

the step and a "diving in 11 of the sonic line in the boundary layer toward 
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the wall. 

The boundary layer and adjacent outer inviscid flow initially 

undergo an expansion to a pressure somewhat lower than the base 

pressure. Since a pressure rise is required in order to separate an 

attached boundary layer, a compression is generated near the end of 

the expansion fan. This compression gives rise to the characteristic 

lip shock seen in figure 2 which separates the outer (almost inviscid) 

part of the expanding boundary layer from a new viscous sublayer 

which is formed just below the edge of the step. This sublayer 

(10-20% of the thickness of the initial boundary layer) then develops 

as a free shear layer into a region of recirculating flow at nearly 

constant pressure. Actually there exists a slight pressure rise to­

ward the base, along the centerline, due to the stagnation of the inner 

reversed flow on the base. In the initial mixing region the velocity on 

the shear layer dividing streamline increases rapidly as mass is en­

trained from the dead air region. 

As the mixing layer approaches the axis, the outer flow is 

turned back toward a direction parallel to the centerline and the pres­

sure rises because of the interaction of the shear layer with the ex­

ternal flow. The velocity on the dividing streamline drops to zero at 

the rear stagnation point as the dividing streamline dives in to the 

axis at an angle of 90° 1 thus closing off the region of recirculating 

flow from the developing downstream wake. 

The centerline pressure continues to increase downstream of 

the rear stagnation point as the pressure recovers to approximately 

the pressure ahead of the step. The compression waves generated by 
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the reattaching viscous flow coalesce to form the familiar wake shock. 

The shock acts to turn the nearly inviscid (but rotational) outer portion 

of the expanded boundary layer and adjacent inviscid flow back parallel 

to the axis. 

All of the features noted above have been found in experiments 

for both turbulent and laminar approaching boundary layers. The 

basic difference in the two types of flow is largely due to the fact that 

the turbulent mixing rate (""' ~~ ) is of the order of ten times the lam­

inar value. This results in higher velocities on the dividing stream-

line for the turbulent shear layers as opposed to the laminar layers, 

with the consequence of a lower base pressure for turbulent flow. A 

further result of the difference in mixing rates is that the length scales 

involved in the laminar interaction are somewhat greater than for the 

turbulent interaction. The wake profiles measured by Badrinarayan 

(14) show that there is little difference in the basic shapes of the lam-

inar and turbulent wake profiles. Thus one might conclude that an 

integral analysis of the turbulent near-wake can be carried out by 

using any suitable set of wake profiles, provided that an appropriate 

length scale is adopted through the turbulent shear stress model. 

II. 2. The Lip Shock 

The presence of a lip shock near the end of the corner expan-

sion fan emanating from within the viscous portion of the flow has been 

the object of several recent papers (11, 15). Both the experimental studies 

of Hama ( 11) and Scher berg and Smith (15) have indicated that the flow 

in the vicinity of the corner undergoes an overexpansion and then a 

pressure recovery through an oblique shock of varying strength. Hama 
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has shown that the lip shock strength (P
2/P ) can be correlated o. e. 

with the overexpansion ratio (P /P
1

) and that this ratio varies o. e. 

with the Reynolds number of the flow approaching the step. 

Two basic reasons have been set forth to explain the lip shock 

phenomena. In the fir st instance the lip shock is considered to be a 

separation shock, the jump across which is just sufficient to separate 

the attached boundary layer approaching the base. The separation 

shock is generated from disturbances fed upstream from the base 

through the subsonic portion of the boundary layer. 

A second cause of the lip shock can be traced to the reflection 

of the boundary layer rotational expansion waves from the free jet 

boundary formed in the base region. In actuality the lip shock may 

result from a combination of these two effects, with a small separa-

tion compression emanating from within the viscous layer being re-

inforced by a coalescence of the rotational expansion waves. 

The experiments of Haina show that the lip shock can inter-

sect the wake shock, thus producing a reflected expansion fan which 

can seriously change the shape of the static pressure rise profile along 

the centerline of the wake. However, for Mach numbers M ~ 2, the 
00 

pressure profiles of Roshko and Thomke, Hastings, and others tend 

to show no appreciable evidence of this shock- shock interaction. 

The measurements of Hastings on the lip shock strength of 

base flows near Mach 2 with moderate to thick initial boundary layers 

(o
1
/.h = • 2-5. 0), indicate a negligible (less than 10%) pressure jump 

across the shock. The over expansion ratio for this range of initial 
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conditions also indicates a low shock strength if the correlation plot 

of Hama is used. 

Thus it appears that the effect of the lip shock, as it influences 

the development of the wake flow field, may be neglected at Mach 

numbers of approximately 2 or less provided that the overexpansion 
p p p 

ratl.0 
o. e. base . 11 ( o. e. ~ O. 4 _0 . S). 
pl ~ pl is not too sma pl 

Since complicated characteristics calculations would be re-

quired to simulate the lip shock and its attendant interactions and 

because a simple base flow model is sought in order to bring out the 

essential features of the turbulent viscous-inviscid interaction, the 

validity of a model which assumes an isentropic inviscid flow field 

is necessarily limited to those regions listed above where the lip 

shock strength is small. 
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III. FORMULATION OF THE SUPERSONIC PROBLEM 

A statement of the theoretical wake problem [that one would 

like to solve] is as follows: Given an initial turbulent boundary layer 

with thickness o1, edge Mach number M 1, and static pressure P 1 
approaching the corner of a rearward facing step of height h; deter­

• mine the development of the overall wake flow features (e.g., u , p 
e o, Me, PI, @, ~) as a function of the normalized axial distance 

from the base, x/h (see figure 3 ). 

In practice, the inverse problem provides the most direct 

means of obtaining a solution, since there is no Reynolds number 

scaling to consider for the turbulent wake flow problem.t For a given 

downstream edge Mach number M , a normalized wake solution down­oo 
stream of the rear stagnation point is determined which passes 

smoothly through the Crocco-Lees critical point. This solution is 

made independent of the initial boundary layer thickness by normali­

• zation of all length scales (x, o , etc.) by the displacement thickness 

* at the rear stagnation point o. (0). The wake solution is then directed l 

upstream into the reversed flow region (see section V). For any given 

* free shear layer, the velocity on the dividing streamline u is initially 

zero at the base, and increases rapidly in the initial region of constant 

* pressure mixing. u continues to increase until it reaches a maximum 

* value (0 ~ u ~ .587) at the point where the wake flow field begins to 

interact. It then begins to decrease until it goes to zero at the rear 

t No Reynolds number scaling appears in the solution provided that 
a turbulent eddy viscosity is employed which is proportional to a char­
acteristic thickness of the wake, e.g .• e: ,...., e. 
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* stagnation point. By considering any value of u along the wake solu-

* * * tion curve u = u (x/o. (0), M ) in the reversed flow region as the 
1 00 

* maximum u possible, for a given set of initial upstream conditions, 

then it is possible, 

* * (.e,mix 
umax = u h 

by a suitable matching with a mixing solution 
62 
h , Me) near the base, to determine the initial 

sublayer thickness o 2/h necessary to produce that maximum value 

* of u • By matching the distance to the upper edge of the sublayer 

mixing solution with the height of the wake boundary (see figure 4) 

and requiring continuity of M , u *, and mass flow at the joining pointt e 

one can then not only determine 6
2
/h at the corner, but the mixing 

.e, . ~ mix .,. / length -h- and the wake scaling parameter oi (0) h as well. Thus 

the wake solution is joined in this inverse manner to a step of height h. 

By using a simple integral conservation model (see section VII) 

to determine the relation between the thickness (6
1

) of the undisturbed 

boundary layer approaching the step and the viscous sublayer thick-

ness (6
2

) after expansion about the corner, the wake solution is then 

identified with a properly determined set of initial conditions (o 
1
/h, 

t A similar matching technique was employed by Grange, Klineberg 
and Lees (16) for the laminar near wake behind a blunt body, however 
a double iteration procedure was required in order to obtain a solution 
due to the Reynolds number scaling and the fact that the separation 
point was not known a priori. 
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IV. TURBULENT SHEAR STRESS MODEL 

If a set of integral conservation equations are employed in 

order to analyze the near and far wake flow fields, the only major 

difference between the laminar and turbulent flow solutions will be 

in the length scale intr educed into the problem through the viscous 
6 

dissipation integral J T ~ dy. Thus, if one is able to obtain an ex­
o y 

pression for the magnitude and approximate variation of the turbulent 

shear stress throughout the viscous layer, by use of an appropriate 

semi-empirical hypothesis, it should then be possible to obtain a good 

estimation of the important length scales and pressure levels for the 

turbulent base flow problem. 

In the absence of any other acceptable theoretical model, the 

important assumption is made that the turbulent Reynolds stress 

I I 
"f :: - p u v is of the Boussinesq form, i.e., 

T = au 
p € ay 

where € is the well-known eddy viscosity coefficient. 

IV. 1. Incompressible Wake Eddy Viscosity 

( 4. l) 

Townsend, ( 17) in his experiments on the low-speed wake be-

hind a cylindrical rod, found that near the wake axis, the shear stress 

could be expressed by an equation of the form of (4. l). This behavior 

is evident when one notes that near the centerline 

-.,--, 
u v ,..,,, y 

because of symmetry. In addition, since ou/oy is zero on the wake 

axis 



au 
ay,..... Y 
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I I OU 
Therefore TReynolds - - p u v ,..., p By and if e: = e:(x) is chosen as the 

constant of proportionality, then 

Furthermore, if the mean flow and the correlation coefficient of veloc-

ity fluctuations are self-preserving, as found experimentally by Town-

send far from the body (x/d > 500) then one may write 

u -u 

~u = f(y/b) 

I I u v 

u'z 
= g(y/b) 

(4. 2) 

(4. 3) 

where b is a measure of the wake width and !::.u is the maximum veloc-

ity difference across the wake = (ue -~). 

Near the wake axis g(y/b),...,, y/b because of symmetry. Town-

send 1 s measurements also indicated that near the centerline the inten­

sity of turbulence J;l2 is proportional to the wake velocity defect 

(!::.u), i.e., 

-;z 2 
u """"6u ( 4. 4) 

Therefore, from equations (4. 3) and (4. 4) one obtains the following ex-

pression for the Reynolds stress based on the fluctuation measurements 

( 4. 5) 

In addition, the velocity gradient of the self-preserving mean flow 

from equation (4. 2) is 
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au = - .!. (M)f' ay b 

Using the Boussinesq form for the shear stress 

ou (tiu) f' = pe: 8y = -pe: -b-

and near the axis of symmetry f',...., y/b. Thus TB assumes the form 

Equating expressions (4. 5) and (4. 6), one finds that the eddy viscosity 

has the following form for self-preserving flow 

e: ,...., tiu • b 

or ( 4. 7) 

where K is a "universal" constant for 2-d incompressible self-

preserving turbulent wakes, which must be found experimentally. 

The constant of proportionality K is simply the reciprocal of 

Townsend's experimentally determined "universal" Reynolds number 

R = (tiu)b ~ 12. 5 
T e: 

where b is the width of the mean velocity distribution 

u -u [ 2 2] ~u = exp -t y /b 

defined by the condition 

u -u(b) 
e 

(4. 8) 

(4. 9) 
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This constant was determined by matching Townsend's experimental 

mean velocity profile to his theoretical solution 

1 - u = 
u 

e 

1 1 

R 2 C 2 
T d 

lO 
2(2'1T)" 

d [ ,-;- RT y2 J 
( x::x-) exp -V 2 C.d (x-x=Td 

0 0 

Lees and Hromas (18 ), in their study of turbulent diffusion in 

the wake of a blunt-nosed body, pointed out that the characteristic 

length for their study is not the body diameter but the momentum 

thickness, 8, which is essentially the drag coefficient of the inner 

wake. 

It is possible, then, to redefine a new "universal" Reynolds 

number R eT which has as its characteristic length, the momentum 

thickness e defined by the relation 

e R:I S
00 

.L ~ < 1 - ~ ) dy p u u 0 e e e 
(4.10) 

which for the case of an incompressible wake with a Gaussian profile, 

(equation 4. 9), becomes 

Evaluating the Gaussian integral one finds 

( 4. 11) 

Thus the turbulent momentum thickness Reynolds number is given as 

ue e r:rr 
R ST = -e- = V 2 RT = 15. 7 

and the proportionality constant K
8 

= (R 9T)-l is 



-17-

K
9 

= • 064 and e: k = K
9

u 8 
wake wa e e 

(4. 12) 

IV. 2. Incompressible Turbulent Boundary Layer Eddy Viscosity 

Glauser ( 19), in his experimental study on the turbulent equilib-

rium boundary layer with pressure gradient, determined that the outer 

portion (,..., 80%) of the boundary layer could be calculated from a Falkner-

Skan like family of solutions, provided that an eddy viscosity model of 

the form 

* e: = K u o b. J,. b. J,. e (4. 13) 

was chosen. 

For the case of reattachment to a solid surface this result 

implies that a large portion of the boundary layer can be considered 

wake-like and thus amenable to a wake-type analysis. 

IV. 3. Incompressible Free Shear Layer Eddy Viscosity 

Goertler(ZO) also employed the eddy viscosity model given by 

equation (4. 7),t in order to calculate the similar solution for the veloc-

ity profile of a constant pressure free mixing layer (see figure 5). He 

assumed the width b of the layer to be proportional to the mixing dis-

tance x, thus 

8 free 
shear 

= K (6u)x 
x 

The fir st approximation to his solution 

u 
u 

e 
= -k [l + erf (£.I) J x 

(4. 14) 

(4. 15) 

t Equation (4. 7) is generally referred to as Prandtl 1s free mixing eddy 
viscosity hypothesis. 
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has been used extensively by many researchers to determine the 

spreading parameter a (= 1 ), for both incompressible and com-
2/Kx 

pressible free shear layers. Reported experimental values of a 

range between 10 and 12 for incompressible flow, with a value CJR:Jl 1. 0, 

usually used in most incompressible numerical computations. 

Both the free shear layer spreading rate near the body and the 

growth rate of the far wake downstream of the body are, perhaps, the 

most important elements for determining the length scales in the tur-

bulent base flow problem. One is then led to ask whether or not it is 

possible to prescribe a single eddy viscosity model which (based on 

the experimental data) can be used to determine the growth rates in 

both the free shear layer and far wake regions. 

If one uses the Prandtl eddy viscosity model (equation 4. 7) and 

selects as the representative thickness the physical wake or shear layer 

thickness [o = (yu=O. 
99 

- yu=O. 01 )] then one finds a considerable dif­

ference in the values of the proportionality constant K required to 

match the experimental viscous layer growth in each region. If the 

eddy viscosity has the form 

(4. 16) 

then one finds that K
0 

= • 043 and K
0 

= • 007. The constants 
wake shear 

layer 
differ by a factor of 6. Thus if (4. 16) were used for e:, it would then 

be necessary to adopt some arbitrary sliding scale for Kin order to 

determine the eddy viscosity in some area of the flow in between the 

shear layer and far wake regions. The displacement thickness 
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would be a poor choice for e since its value goes to infinity for a free 

mixing layer. 

Perhaps the most appropriate width, which is finite for the 

free shear layer (for finite x), is the shear layer momentum thickness 

e. The eddy viscosity thus assumes the form previously considered 

for the far wake, 

Using the error function profile (equation 4. 15) to determine e 

x ~
00 u u cry = - ( i - - ) d (-) = c 1 = • 39844 
0 

u u x e e 

ae 

and equating expressions (4. 14) and ( 4. 17) for e, we findt 

K8 
shear 
layer 

1 = = 4crC 1 
• 057 for a = 11. 0 

In comparison, the value for the far wake was found to be 

Ke 
wake 

= • 064 

Thus, within the range of experimental error, the eddy viscosity 

( 4. 17) 

( 4. 18) 

coefficient K
9 

for the similar free shear layer and far wake can be 

considered identical (Ke= . 06 ± • 004) provided that the characteristic 

thickness for e is chosen to be the momentum thickness e of the vis-

cous layer. 

t 
Note K = l/4cr

2 
x 



-20-

~ven though similarity is never fully achieved, for the free 

, ·shear layer with finite initial boundary layer, and likewise is obtained 

only in the wake flow far downstream of the base, the important as-

sumption is made that the eddy viscosity assumes the form 

E:. = • 06 u 8 in comp e ( 4. 1 9) 

throughout the entire incompressible base flow field.t This formula-

ti on implies that e: instantaneously takes on the value corresponding to 

the eddy viscosity of a locally similar flow. 

IV. 4. Comparison of Incompressible Eddy Viscosity Shear Stress 
Experimental Base Flow Data 

Experimental measurements have been made by Tani, et al. 

(21) and Mueller (22) of the turbulent fluctuations and shear stress 

variations in the low-speed flow field behind a rearward-facing step. 

Their data make possible a comparison of the measured maximum 

1 

0 p 00 

-Zu'v' . . . . turbulent shear stress 2 and d1ss1patlon integral 
U I max 

0 00 J T :u dy at some point in between the free shear layer 
0 y 

and far 

wake regions. The data at the measured rear stagnation point is be st 

suited for a comparison with the theory, since all that is required in 

addition to the eddy viscosity model of equation (4. 19) is some appro-

priate r. s. p. velocity profile, such as the 13 = -. 1988 Stewartson pro-

file ( to be used later in the integral analysis of section V). 

/
1 2 The non-dimensional maximum turbulent shear stress T zP u 00 

as deduced from the eddy viscosity model is simply 

t In sections IV. 5 and IV. 6 the effects of compressibility on the eddy 
viscosity formulation 4. 19 are considered. 
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= ~8 (au~U 00 ) 

oo Y max 

= 2K (8 ) (au/U 00) = 2K_UFH 
8 ~ ay 8'c max 

u max 

= • 0255 (Theory) 

(4. 20) 

where U = • 248 and F 0 = • 860 for the j3 = -. 1988 Stewartson r. s. p. 

velocity profile. The experimental values of Mueller and Tani are 

as follows 

-2u I I v 
. 024 - • 034 Step height 

uoo21 
= 

h = • 25-. 75 inches ; Mueller 
expt. 

r. s. p. @ x/h ~ 7. 0 

-2u I I v 
• 020-. 030 = 

uoo 21 
h= .5-6.0 cm 

Tani 
expt. r. s. p. @ x/n = 6. 0 

The mechanical energy dissipation integral, Id, as mentioned pr evi­

ously, is the only term through which the turbulent scaling is intro-

duced into the integral flow conservation equations. This quantity is 

given 

where 

simply by the theory as 

Id = 

= 

R = 

0 

~ ~2 
a ( g )dy ay 

0 p 00 00 

1 
K 8uR -3 

(4. 21) 2 = 9. 55 X 10 (Theory) 

* 0 2 20 \ (au) dy = 1. 260 from the Stewartson profile U-Z Jo ay 
00 
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The experimental values found by Mueller are 

-3 -3 
IdjMueller= 5.SxlO -11.0xlO h:::.25-.75inches 

expt. 

As one notes from a comparison of the values above, the eddy viscos-

ity model provides a good prediction of the magnitude of the shear 

stress and dissipation integrals obtained from the incompressible 

flow measurements made at the rear stagnation point. 

Thus we may proceed with some conviction that the scaling in 

the non- similar regions of the flow will be adequately predicted by our 

choice of the eddy viscosity model (4. 19). 

In the next section we will attempt to extend this model for e 

to compressible flows using the available compressible free shear 

layer measurements as a guide. 

IV. 5. Transformation of the Free Turbulent Compressible Boundary 
Layer Equations 

The equations of mean motion of the free steady two-dimension-

al turbulent compressible boundary layer of a perfect gas with variable 

density p(x, y) are given in the form: 

Continuity: 

a o ax (pu) + ay (pv) = 0 (4. Z2} 

Momentum: 

OU + OU op + a,. pu ox pv 8y ::: - ax FY 
(4. 23} 

ap 
0 = - ay 
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By considering the turbulent Prandtl number equal to unity 

(PRt = 1) and assuming no heat transfer at the boundaries, the flow 

is adiabatic, t in which case 

Energy: 

C T + .!.. u
2 

T constant= C T + .!.. u 
2 

p 2 p e 2 e (4. 2.4) 

The external flow at the edge of the boundary layer is assumed 

isentropic. The external conditions far downstream of the body 

(v = 0, u = u ) are characterized by the subscript oo. If it is re-e e oo 

quired that the compressible free turbulent boundary layer equations 

(4. 22-4. 24) transform into an equivalent incompressible form and that 

the shear stress obey the Bo us sine sq law (4. 1 ), then one finds in 

analogy with laminar flow that such a transformation can be obtained 

by employing a modifiedtt Stewart son transformation 

a a Pe 
dY e ...£._ dy dX e dx = = --a p 00 a poo 00 00 

a 
( 4. 25) 

1Jf = t u = 00 - u a 
e 

and by assuming that the compressible transformation of the eddy 

viscosity is of the form 

2 
p 8 

2 = f(x) = p e 
r o 

The quantity p is a reference density in the real flow which will be 
r 

determined by comparison of the theoretical spreading rates of the 

t This study is limited to the simple case of adiabatic wake flows. 
The much more difficult case of non-adiabatic wake flows will be 
dealt with in a future study. 

+t The transformatio,P.; of the x variable is changed from the laminar 
form dX = ae/a00 Pel P 00 dx, in order to scale fhe eddy viscosity term 
properly. 
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compressible free shear layer with experiment (see section IV. 6). 

Using the incompressible correlation of e (equation 4. 17) as a guide, 

the compressible eddy viscosity is thus assumed to have the form 

2 
Pr 

e = - 2- K 9 ue 9 (4. 26) 
p 

Using the modified Stewartson transformation (4. 25) and the eddy 

viscosity model (4. 26), the transformed boundary layer equations 

then become 

au + av 0 (4. 27) aY = ax 

uau + v au= 
dU ,..., a 2 u 

u e 
( 4. 28) ax dX + e ::=2 ay e oY 

where 
...... 

(:r)2 Ke ue 9 (4. 29) e = 
e 

9 is the transformed momentum thickness defined as 

Q. 

tr = ~ i g ( l - uu ) d Y = : ocl oo e 
0 

e e epe 
( 4. 3 0) 

With the constant K
9 

essentially determined by the incompress-

ible flow correlation, the effect of compressibility on the turbulent 

scaling is relegated to determining the ratio of the reference density 

to the density at the edge of the free boundary layer. For an adiabatic 

wake flow, one may write this ratio in the form 

= ( 4. 31) 

where g is a constant to be determined experimentally. One notes 

that for g = 0 

and for g = 1 Pr= p~ 
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Thus the reference density can be determined in a manner similar to 

the Eckert reference enthalpy for turbulent wall boundary layers. 

IV. 6. Similar Solution of the Comoressible Constant Pressure Free 
Shear Layer 

In this section we seek to determine the reference density by 

comparing a theoretical solution for the constant pressure compress-

ible free shear layer spreading rates with those obtained by experi-

ment. We will first investigate a mixing solution far enough away 

from the point of separation for a similarity solution to apply, i.e. 

x/8 -+ oo. Starting with the transformed equations (4. 27-4. 29), we 
0 

employ the stream function t which satisfies the continuity equation, 

where 

t = U s(X)f(ri} e 

The similarity variable 11 is simply 

Tl = Y /s(X) 

Substituting in the momentum equation {4. ZS}, with dU /dx = 0, we find e 

f '" + ff" s(x> u ds(x) = o 
,..., e dX 
€ 

For similarity, i.e., f 1 = UU = f'(ri) only, we require 
e 

i u ,.... e 
dt; -dX - constant = a 

€ 

Without loss of generality we set a = 1 thus obtaining the familiar 

Blasius equation of laminar flow 

f 111 + ff" = 0 (4. 32) 

with the following boundary conditions 
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f ( 0) = 0 imp lie s T) = 0 f 1 (-oo) = 0 

f'(+oo) = 1 corresponds to the dividing 

streamline 't = 0 

Solutions of the equation above have been provided both by 

Goertler ( 20) and Chapman (23 ). Thus it is noted that the shape of 

the similar velocity profiles in both laminar and turbulent flow are 

identical, provided that an eddy viscosity model of the Prandtl form 

is used. The only difference in the two cases is the length scale s(X). 

For the transformed eddy viscosity as given by equation (4. 29) we 

obtain 

For similarity the following relationship between 11 and s exists 

where 

8 : fS ~OO f I ( 1- f I) d11 : SC 
-co 

C : ~OO f I ( 1-f I} d1'] : • 8 7 5 6 
-co 

Thus upon integration of (4.33) we find 

and therefore 

(4.33) 

( 4. 34) 

t e = e and x = x for a constant pressure shear layer provided the 
flow conrlitions at oo are taken to be the same as those at the edge of 
the mixing layer, i.e. p a = p a . 

oo oo e e 
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While dimensional analysis can independently show that similar 

turbulent shear layers spread linearly with X, equation (4. 34) in 

addition implies that if the reference density is less than the edge 

density in compressible flow, then the magnitude of the linear spread 

will be smaller in compressible than in incompressible flow. Such 

a trend has been noted by many experimentalists. 

This points to the selection of the density in the quiescent 

zone (g = 1) as a likely candidate for the reference dentity. In addi-

ti on if it is required that the transformation reduces to itself in a 

region of the real flow where the density is incompressible, i.e •• 

in the quiescent region, then in order that the local shear stress in 

the vicinity of this region correspond to that of an incompressible 

flow, we must place 

2 l p € 
u .... 0 

or Pr = Pu= o = Po 

While Coles (33) correctly points out that such a requirement is not 

at all necessary for a compressibility transformation of the equations, 

we will assume the reference density to be p (g = 1) and then check 
0 

this assumption with the experimental results. 

For the case g = l and utf. R::I u
0 

R::I 0, equation (4. 31) yields 

(Pr) 
Pe const 

press 

= = 
l 

l+y-1 M 2 
2 e 

(4. 34) 
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Comparison with Experimental Data 

The evaluation of the spreading rate for the turbulent half jet 

has been the object of numerous experimental investigations over the 

past 40 years. The early experimental work of Tollmien ( 24), 

Reichardt ( 25) and Liepmann and Laufer ( 26), helped to establish an 

approximately constant value of the mixing coefficient cr ( ...... l/K) for 

the incompressible flow of a half jet (cr ~ 11. 0). The usual method for 

determining the spreading rate was to compare measured velocity 

distributions in the nondimensional form of cry/x vs. U/U with some e 

known theoretical velocity distribution, such as that derived by 

Tollmien (based on Prandtl' s mixing length hypothesis) or Goertler 's 

velocity profile, or the previously mentioned error function profile 

(Goertler's first approximation). The incompressible jet spreading 

* parameter (cr = crM=O) is related to our mixing coefficie~t K
8 

by the 

relation 

* cr = 
l 

2K
8
C ( 4. 35) 

While the incompressible value of cr appears to be well estab-

lished (within a range of 10 to 20%), the attempt to extend the measure-

ment of the mixing coefficient to cases where compressibility effects 

are important (M ~ 1. O) has resulted in a great discrepancy between e 

the reported values. For example, experimental values at Mach 2 as 

reported by McDonald ( 3 ) differ by almost a factor of 2. The most 

common experimental method (2 7, 28, 29) for obtaining a quasi-two 

dimensional-turbulent mixing zone is the investigation of the velocity 

profiles in the potential core regime of an axisymmetric jet exhausting 
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from a nozzle into a quiescent atmosphere (see figure 5). Since the 

shear layer width is small in comparison to the nozzle radius, axi-

symmetric effects are generally neglected. Other experiments, such 

as those of Charwat and Yakura, Sirieix (30) and Bailey and Kuethe 

( 31), have used two dimensional step configurations and made probes 

of the constant pressure free shear layer regime. 

Outside of common experimental errors (such as those caused 

by probe calibrations, etc.) there appear to be two major causes for 

the discrepancies in the reported values of a. The first cause may 

be attributed to the fact that, in many of the cases, the flow had not 

reached a similarity state, (i.e., where x/8 -+ oo and u/u = f / (ri) ) o e 

because of the presence of a sizable initial boundary layer prior to 

separation. This problem is particularly true in the cases of pure 

base flow setups such as in the experiments of Charwat and Yakura 

at Mach 2 and those of Larson, et al. (10) at Mach 3 where recom-

pression began before similarity could be achieved. Since the rate 

of growth in the initial non- similar region is greater than that of the 

asymptotic (x/9 -+ oo) linear growth, low values of a are reported. 0 

As will be shown later, a good criteria for judging if similarity has 

been reached is that 

x/8 
0 ~ 10 

CY*( 1 + y~ l Me2)2 
(4. 36) 

We note from equation (4. 36) that as the Mach number of the external 

flow increases, the longitudinal distance along the mixing layer (x} 

at which a similar profile may be expected must also increase. Thus, 
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for example, if experiments at M = l just satisfy the criteria above, e 

then at M = 3 the distance at which similarity may be expected is e 

increased by more than a factor 5, for the same initial value of 8 • 
0 

The second cause of experimental discrepancy may be attrib-

uted to the various techniques adopted by the many experimentalists 

in order to determine the parameter a. The most common technique 

employed, even at Mach numbers of 2 or more, is to find the value of 

a which allows the best fit of the measured velocity profile with some 

well-known inc om pr es sible profile. Different authors have used 

different profiles, resulting in additional confusion. In several of 

the cases reported, how a best fit is obtained is not always clear. 

While some authors place emphasis on the upper portion of the profile, 

where u/u .... 1, others treat the middle portion of the profile as the e 

important region of interest. One technique which has recently re-

ceived attention, is to match the slope of the measured velocity pro-

file, at a point where u/u = • 5, with the slope of the error function e 

profile, u/u = -2
1 

(l+ erf £l). Using the compressibility transformation e x 

in a manner similar to that used by King and Denison (32) we can theo-

retically determine the effect of compressibility on a a defined by 

this matching technique. The following relation results. 

a slope 

* a 

where p / p = l + y-l M 2 
e o 2 e 

(pe/po)
2 

l Pe ( u Z~ l+(--1)1-(-) 

po ue l : = • 5 
e 

for adiabatic flow 

( 4. 3 7) 
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While equation (4. 37} could be used as a means of comparison 

between the compressibility transformation and the data on a , such a 

comparison still suffers from the fact that an arbitrary point in the 

velocity profile is selected to provide a value of a supposedly valid 

as a scale factor for the entire profile. It is clear from equation 

(4. 3 7) that different values of a could be obtained by matching slopes 

at different points in the profile, i.e., at points other than u/u = 5. e 

A test of the compressibility transformation which would be 

more meaningful, particularly for an integral method of solution, 

would be one based on the spreading rate of an integral parameter of 

the velocity profile, namely the momentum thickness 8. This test 

would eliminate the confusion arising from the use of various curve-

fitting methods. Based on the compressibility transformation the 

expression for the momentum thickness is: 

e 2 2 
- = (p /p ) K 8C x e o 

If we define the momentum thickness spreading parameter a 6 as 

(d8/dx). .bl incompress1 e 

(de/ dx) compressible 
* = C/2 0 

(d 6/dx) . com pre ss1ble 
(4. 38) 

then we note that the rate of spread of the momentum thickness de-

creases as the square of the density ratio, or that 

ae (Pe)2 ( y-1 2)2 
~ = p = 1 + -2- Me 
0 0 

( 4. 39) 

Values of the momentum thickness were calculated from all available 

shear layer velocity profiles by simple numerical integration. A 

typical result of this technique is shown in figure 6 where a plot of 
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e vs. x from the data of Maydew and Reed (28) is presented. The 

constant slope of the curve (de/dx) is easily determined and a value 

of a e readily calculated from equation (4. 38 ). A plot of the values 

of 0
8 

against p /p for the data of Maydew and Reed (M = O. 70, 0. 85, e o e 

O. 95, 1. 49, 1. 96) shows excellent agreement between theory (equation 

4. 39) and experiment, thus confirming the ~-priori choice of g = 1 

and p as the reference density. King and Denison previous! y found 0 

the same result based on a least squares fit of experimental and the-

or etical profiles. Extrapolating the theoretical curve to p / p = 1 e o 

* along a line of slope 2 (in a log-log plot) results in a value of a = 9. 42. 

* This value of a corresponds to a value of K
8 

= • 0606 which is in good 

agreement with the average magnitude of Ke (~. 06) determined solely 

from incompressible shear layer and wake experiments. 

* A final plot of the data and theory for 0 8/cr vs. p /p is pre-e o 
sented in figure (7) along with a comparison of the experimental 

values of the spreading parameter a 1 with the theory of equation s ope 

(4. 37). One notes that both sets of curves show good agreement be-

tween experiment and theory up to Mach 3, with the data of Sirieix at 

Mach 4 falling somewhat below the theory. It is possible that simi-

larity may not have been reached, based on the criteria of equation 

( l la), in the measurements at Mach 4; accounting for the lower value 

* of a. The somewhat lower value of a (9. 42 as opposed to a nominal 

value of 11 for incompressible flow) is not considered to be a serious 

discrepancy since its use is essentially as a scale factor (Ke= • 06) 

in the compressibility transformation, valid for both free shear layer 
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and wake flows. The important point to be established here is the 

prediction by the transformation of the correct effect of compress­

ibility on integral quantities. This objective is believed to have been 

met, at least insofar as the low Mach number compressible similar 

free shear is concerned. 
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V. INTEGRAL WAKE FLOW SOLUTION METHOD 

The turbulent wake flow solution, for the region of near wake 

interaction not too close to the base, follows the same integral tech-

nique adopted by Lees and Reeves ( 7) for the laminar near wake; the 

only difference being that the kinematic viscosity v in the transformed 
0 00 

dissipation integral J
0 

'f ~ dy is replaced by a transformed eddy 

viscosity of the form 

2 
Pr 
-z K8Ue tr ( 5. 1) 
Pe 

V. 1. The Wake Reference Density 

In order to make use of the eddy viscosity model, it is nece s-

sary to specify a reference density for the wake. For the free shear 

layer portion of the flow, it was determined (section IV) that the den-

sity p in the recirculating region was the appropriate reference den­o 

sity for scaling the overall spreading rate of the adjacent shear layer. 

Far behind the body, where the density throughout the wake approaches 

the free stream density p , it is clear that conditions in the recircu­oo 

lating region cannot be of importance in determining the local far wake 

growth rates. It appears therefore that an appropriate reference den-

sity might be one that varies with the local flow conditions. The den-

sity along the centerline of the wake satisfies both the condition that 

it equal the density in the quiescent region near the body, and that it 

approach the free stream density far from the body. Thus the impor-

tant assumption is made that 

= (5. 2} 
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For adiabatic flow we therefore have the relation 

(5. 3) 

It would be difficult to ascertain experimentally if this choice of p 
r 

indeed scales conditions in the far wake: as l\£/ue -+ l there is little 

to distinguish the centerline density from any other local density. At 

the rear stagnation point the axial pressure gradient is just balanced 

by the tangential shear stress gradient, i.e., 

dp 
dx 

oT o2u = -R:je --oy 8Y2 ~ = 0 (5. 4) 

Using this fact, one can determine the suitability of the selected ref-

erence density as a scaling parameter for the compressible reattach-

ing wake flow by comparing the theoretical solution for the axial pres­

sure gradient at the r. s. p. [~""' (:r) 
2

] with the appropriate experi­
e 

mental data. Such a comparison is carried out in section VIII. 

V. 2. Integral Equations for Wake Viscous-Inviscid Interaction 

The interaction of the viscous or dissipative flow in the near 

wake with the external inviscid flow is but one example taken from a 

family of viscous fluid-mechanics problems in which the outer flow 

field is not known ~-priori (in contrast to usual boundary layer theory), 

but must be determined by the interplay between the dissipative and 

inviscid flow fields. 

Because of the complexities of the interaction phenomena, 

integral or moment conservation equations have been developed in 

order to bring out the essential gross features of the flow, such as 
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length scales and pressure levels. The integral approach of Reeves 

and Lees ( 7 ) as applied to the problems of shock-wave boundary layer 

interaction and the laminar near wake, has demonstrated that the over -

all features of the interaction can be adequately described, provided 

that the velocity profiles, from which the integral quantities are de-

rived, exhibit the correct qualitative behavior. For the particular 

case of wake flows, not too close to the base, we follow Reeves and 

Lees in adopting for the velocity profiles in the integral equations the 

Stewartson wake solutions [U/U = f
1 (11)] of the Falkner-Skan equations 

e 

(5. 5) 

with the boundary conditions 

f ( 0) = f n ( 0 ) = 0 f'(oo) = l 

These profiles display the correct qualitative behavior noted of base 

flows (see figure 8), i.e., a series of reversed flow profiles with zero 

shear on the axis for use upstream of the rear stagnation point 

(-.1988 ~{3 ~ O} and a series of zero shear profiles downstream of 
t 

the rear stagnation point with positive axis velocities (-. 50 ~ ~ ~ - • 1988). 

They also exhibit the exact behavior near the r. s. p., of the full Na vier-

Stokes equations as found by Reeves ( 7) in a series expansion about 

that point. 

Even in those turbulent base flow cases where reattachment 

occurs on a solid surface, the profiles of the reattaching turbulent 

t Note that as f3-+ -. 5 the velocity profile approaches the far wake 
Gaussian solution 
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boundary layer exhibit a strong wake-like quality which, except in a 

region very close to the wall, makes the boundary layer appear to have 

a finite slip. This wake-like character, which is particularly domi-

nant near points of separation and reattachment, was effectively dem-

onstrated by Coles (33) when he proposed the "law of the wake" for 

the turbulent boundary layer. 

The Falkner-Skan profiles are again 11 unhooked" from the pres-

sure gradient parameter 13. by making the normalized integral quan­

* tities (e.g., 'JI= 8/6 ) functions of a single independent parameter a(X). 

For flow downstream of the rear stagnation point the independent pararn-

eter a ( X) is the normalized centerline velocity 

a(X) 
U~ Ult 

= -U- for U- > 0 (5. 6) 
e e 

In the reversed flow field just upstream of the rear stagnation point, 

a(X). is the velocity on the dividing streamline 

a(X) = (U/U } 
e t=O 

* (5. 7) = u 

The work of Webb, Golik, and Lees ( 8) has shown that single param-

eter Stewarts on profiles appear to work quite well downstr earn of the 

rear stagnation point, and provide considerable improvement over 

polynomial profiles in the region immediately upstream of the r. s. p. 

Single parameter reversed flow profiles, while adequate in 

the region near the r. s. p. cannot properly describe the flow in the 

region near the base where two independent length scales are impor-

tant, the thickness of the separated shear layer and the height of the 
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reversed flow region, which must be equal to the base height (h) at 

* the body (~ = u = O). 

In this section, we consider only that portion of the flow which 

is adequately described by single parameter profilesf 

To describe the wake flow properly we require, in addition to 

the parameter a(X), at least two additional independent quantities 

(for adiabatic flow); the Mach number at the edge of the boundary layer 

* M , and a suitable thickness variable such as 6. (the transformed e i 

displacement thickness). 

The three integral equations necessary for a solution of the 

* three unknowns a(X), M (X), and 6. (X) are chosen to be the integral e i 

forms of the conservation equations of (1) x-momentum, (2) mechani-

cal energy, and (3) continuity. 

Using the transformed continuity equation (4. 27). the trans­

formed momentum equation (4. 28) is integrated across the boundary 

layer to obtain the integral momentum equation with zero shear on 

the axis. 

MOMENTUM 

* do1. * ,::i~,. d 
IJ.I' s: ....... ~ + 
1"4- dX + ui da dX 

where 

* 6. 
[2U+l J Mi 

e 

dM 
e 

dX = 0 

!/(a) = e 
* 6. 

>i< ~6 u and 6. = ( 1 - U-) dY 
1 

0 e 
l 

(5. 8} 

Integrating the continuity equation (4. 22) across the layer in modified 

t In section VII various schemes for joining the reattaching wake 
flow to the body are set forth and evaluated. 
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Stewartson coordinates,t yields the following equation relating the 

-1 v e local outer inviscid streamline angle, tBl = tan - to the normal u , 

velocity induced by the inner flow. 

CONTIN"UITY 

where 

* l+m 1 do. 
_m ej l 

dX e 

>:e di{ 
+ o. -d 

l z 

e 

* d o. dM c a i e _ tan l!)I 
dX + f M dX - Iil 

e e 

m 
f = 2')/ + 3y-l + x±l_ e 'JI+ 

y-1 y-1 l+m 

M
2
-l e 

m (l+m ) Z 
e e e 

and 

(5. 9) 

(5. 10} 

Since the flow at the outer edge of the wake is assumed isentropic, 

the Prandtl-Meyer relation can be used to link the inner and outer 

flow. Thus, 

tBl = v(M ) - v(M ) 
oo e (5. 11) 

where 

(5. 12) 

Multiplying the transformed momentum equation (4. 28) by U and inte-

grating provides us with the third equation needed for solution of the 

* three unknowns o. , M , and a. This equation is the only one con-
1 e 

taining the eddy viscosity term, which can be considered as the scaling 

~Oi au function for the wake dissipation integral T a dy. The mechanical 
0 y 

energy equation thus may be written as: 

The outer flow field is assumed isentropic. 
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MECHANICAL ENERGY 

where 

* * 
J d6i + 6 ~ dJ da + 3J ~ dMe = 

d.X i da dX M CfX 

J = 
* e. 

l 

~· 6. 
l 

e 

* 6 r e )~ ~ i (au-)2 ,-___,~.,...( 2 ay d y 
u 6. u 0 e i e 

(5. 13) 

* 6 
26i \ i au 2 

R = -u-2 Jo (-ay> dY 
e 

For a given value of the profile parameter "a" the non-dimensional 

quantities 'JI, J, R and Z are numerically evaluated by integrating the 

Stewartson similar wake flow solution (figure 8) corresponding to a 

particular value of "a" [ i} = f 1 (71 1 a)]. These quantities are then 
e 

curve-fitted as a function of "a 11 to facilitate differentiation and numer -

ical integration. The functions (as previously listed by Lees and 

Reeves) are the following 

qpstream of Rear Stagnation Point 

* a(X) = u = ( u /u ) o. 54 < a < o 
e tjr= 0 

'JI = • 2 48 2 - • 4 3 5 1 a - e 0 3 6 6 a 2 

J -- • 3 76 - • 582a 

R = 1. 260 + 2. 280 + 30. 4a5 

Z = 1. 034 - 1. 38a 

Downstream of Rear Stagnation Point 

a(x) = u(f./ue 0 <a<. 75 

2 'JI = . 2492 + .880a - .1585a 

J 2 = • 3 76 + 1. l 77a + • 427a 

R 2 = • 020 + 2. 39 (a-. 72) 

4 z = 1. 034 + 2. 932a + 12. 65a 

(5. 14) 

(5. 15) 
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Numerical Integration of the Differential Equations 

Equations (5. 8), (5. 9) and (5. 13) represent a system of three 
dM 

order differential equations, linear :j.n the derivatives F , 
da 

• dx • 

By employing Cramer's rule, a simultaneous solution of this 

system may be written as 

7/• dM N 1 (Me• a) 
1 e 

M = D(M , a) 
dx e e 

(5. 16) 

i* au da N 2 (Me, a) 
- = D(M , a) i da dx e 

(5. 17) 

* db. N 3 (Me,a) 
1 = D(M , a) dx e 

(5. 18) 

provided that the determinant of coefficients D does not vanish. 

* * We note that by normalizing X and o. by the value of o. at the 
1 1 

rear stagnation point 

,...... I * x = x o. (0) 
1 

* * * 'b. = o. /o. (O) 
1 1 1 

we can determine a solution which is independent of the size of the 

wake boundary layer. Thus we see that the initial boundary layer on 

the body determines only the stretching of the interaction length scales 

but does not affect the pressure levels at and downstream of the rear 

stagnation point. 

Noting the coefficients of the derivatives in the conservation 

equations, the numerators and denominators in equations (5. 16-5. 18) 

are found to be the following 
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l+m ) = tan@ [~ dJ _ J] + ( e K 'UR 
m · dU' m e e 

l+m 
= tane. J [ 1-~] + K'UR[U'f-(ZU-+l)W+ __ e )] m m e e 

(5. 19) 
N

3
(Me, a} = t:ine [3J - ~ (z:t.t'+l} J + K'UR [(W+l)-f] 

e 

D(Me, a} = W ~ - J)f + W-l)J + [V + l:m~ (3J - (ZV+l) ~] 
e 

w her e KI = Ke ( Pef./ p e) 
2 

Webb, Golik and Lees (8 ) have shown numerically (using polynomial 

profiles) that the denominator D possesses four real roots in the region 

-1 ~ ~ ~ 1. The two upstream singularities are not of practical inter -u e 
est because of the fact that the centerline velocities required at these 

u 
points are much greater than the maximum value ~ = -. 18435 ob­u 

e 
tained for the Stewartson family of solutions. The singular point at 

~/ue = 1. 0 is approached only infinitely far downstream of the rear 

stagnation point and is thus unimportant to the solution. The singu-

larity immediately downstream of the stagnation point is shown to 

possess a saddle point behavior with the solution curve corresponding 

to that asymptote through the point which has the appropriate wake 

behavior. At the saddle point we require that N 
1
=N

2
=N

3
=D=O, t in 

order to provide a continuous transition from "subcritical" to "super-

critical" flow. D. Ai ( 34) performed a rigorous mathematical inve s-

tigation of all the singular points of the laminar flow integral equations 

t Note that if Ni and D are both= 0, this implies that Nj = Nk = D 
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by studying the phase space solution trajectories in the vicinity of 

these points. His analysis confirmed the existence and behavior of 

the singularities found previously only by numerical integration. 

The location of the critical point, which is unknown .{-priori, 

is found in the following manner: starting at the rear stagnation point 
;;c 

(b. = 1. 0 a= 0), a trial value of the edge Mach number M (0) is 
i e 

selected for a given M • Equations (5. 16-5. 18) are then integrated 
00 

numerically on an IBM 7090 computer using a Runge-Kutta technique. 

The resulting integral curves are evaluated until either N 
1 

-+ 0, cor­
dM 

responding to dx e > 0, or until D ..... 0, corresponding to d~/dx < O. 

Since neither of these two conditions is physically acceptable for a 

recompressing wake flow, it is concluded that the solution curve lies 

between these sets of integral curves, i.e., along the solution asymp-

tote of the saddle-point singularity. D. Ai showed that, while numer-

ical integration toward a saddle point is inherently unstable, the solu-

tion trajectories found by using large high-speed computers can be 

made to essentially coincide with those fo'..lnd in a Taylor series ex-

pansion about the critical point provided that the margin of error for 

the initial eigenvalue is kept small [e.g. (Me -Me )/Me = 0(10-
8
)]. n+1 n n 

Since the solution curves only depend on the initial choice of 

the parameter M (0), for a fixed value of 11 a 11
, it is clear then that 

e 

M (0) represents the proper initial eigenvalue for the problem. A e 

plot of a typical set of solution curves in the D vs. 11a" plane is seen 

in Fig. 9. Differences in values of Me(O) as small as 10-8 are seen 

to be sufficient to distinguish between the two types of integral curves 
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(dM /dx > 0 and da/dx < 0). Since the critical point could not in prac­
e 

tice be approached arbitrarily closely, the solution d01Nnstrea:m of the 

critical point (N. = D = O) was obtained by extrapolating across the 
l 

critical point and resuming the integration with the new set of starting 

conditions. There is little error involved in this technique, since the 

critical point is quite close to free stream conditions; p /p at the 
e oo 

critical point was found to be near unity (. 75 ~ p /p ~ 1 for M ~ 4). 
e 00 crit 00 

The wake solution in the reversed flow region is easily obtained 

once the value of M (0) is known. Equations (5. 16-5. 18) are integrated 
e 

* upstream from the rear stagnation point (o. = 1, a= 0, M = M (0) ) 
i e e 

with the appropriate reverse-flow curve fits used for the integral quan-

tities (equations 5. 15). 

The results of a typical numerical calculation (M = 2. 0) are 
00 

shown in figure ( 10), where the edge Mach number M , normalized 
e 

* t * wake thickness o/o. (0) , and dividing streamline velocity u are 
l 

plotted as a function of the normalized axial distance from the rear 

* stagnation point x/o. (0). 
l 

Far upstream of the r. s. p. the edge Mach number distribution 

is nearly flat, indicating that a region of constant pressure is being 

approached. As the wake flow proceeds toward the r. s. p., M begins 
e 

to decrease rapidly as the effect of the interaction becomes more pro-

nounced, dMe/dx reaching a maximum at the r. s. p. Downstream of 

t 
From the compressibility transformation 

0 
~ 
0. ( 0) 

l 
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the r. s. p., dM /dx again decreases as the edge Mach number ap­e 

proaches the constant downstream flow conditions {M .... M ). 
e oo 

* The wake thickness o/o. (0) decreases rapidly from its large 
l 

value in the reversed flow region, reaches a minimum near the critical 
1 

point and then increases slowly. In the far wake region o,..., x 2 as given 

by simple scaling arguments. 

The velocity on the dividing streamline u in the reversed flow 

region increases rapidly from zero at the r. s. p. and approaches a 

* limiting value of • 58 infinitely far upstream. Any u along this curve 

* * (x/o. (0) < 0) can be considered the maximum u possible for a given l 

initial boundary layer at the base. In the following section we will 

discuss two possible methods for connecting these wake flow solutions 

to a base with a particular initial boundary layer thickness o
2 

after 

the turn. 
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VI. FLOW FIELD MODEL NEAR THE BODY 

In the region near the base, from the separation point to the 

start of the interaction pressure rise, the base height hand the shear 

layer thickness o are independent length scales. The Stewartson 

single parameter reversed flow profiles are inadequate in this region 

not only because o and h
1 

(the height of the reversed flow region) 

are directly related, but because the limiting profile shape ~-+ 0 

13-+ 0 corresponds to the Chapman constant pressure solution for a 

* * free mixing layer, u = .587. Since u = 0 at the separation point, 

for a finite initial thickness o 2 , it is clear that the flow near the body 

cannot be represented by the 13-+ 0 solution. 

One means of representing the flow field near the base, in 

which the shear layer thickness is independent of the geometry, is to 

assume that the flow can be represented by the development of a con-

stant pressure mixing layer, with finite initial thickness, downstream 

of a semi-infinite step [see figure (11)]. As noted in section II. 1, 

numerous experimental investigations of the base flow region have 

shown that the static pressure is nearly constant in the initial mixing 

[

J, . 
. mix 

region h = 0(1)]. Theoretical solutions for the mixing of a free 

shear layer with finite initial thickness at separation have been devel-

oped by Kubota and Dewey (4 7) and Denison and Baum (48) for laminar 

flows. The application of the integral theory of Kubota and Dewey for 

the case of a turbulent free shear layer is considered below in section 

VI.I. This solution is then connected up with the wake solution <level-

oped in section V, by a suitable set of joining conditions, which are 

presented in section VI. 2. 
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An alternate method for joining the single parameter wake 

flow solution to the base is to construct a family of two parameter 

wake profiles, where o and h' are independent, and employ them in 

an appropriate set of moment equations to find wake solutions near 

the body. This solution scheme is presented in section VI. 3 and the 

results compared with the more simple free mixing layer solution. 

VI. 1. Non-Similar Turbulent Free Shear Layer 

In order to join the wake flow solution with the body flow field, 

and thus provide a length scale for the problem, it is necessary to 

determine the development of the velocity on the dividing streamline 

and the rate of growth of the separated shear layer. After expansion 

of the wall boundary layer about the corner !j the initial sublayer sep­

arates from the wall and begins to entrain mass from the 11dead water 

region" in the base (see figure 11). In the initial mixing region the 

rate of growth follows that of a wall turbulent boundary layer and the 

initial momentum thickness 8
2 is the dominant length scale in this 

regime. Momentum from the outer flow increases the velocity on the 

dividing streamline as the shear layer profiles are transformed from 

boundary layer like profiles to those of the GOertler-Chapman type far 

downstream (the similar mixing region). Since in a real base flow 

problem the flow begins to reattach before the asymptotic profiles can 

be attained, it is most important to properly determine the effect of 

the initial layer on the mixing process. 

Using polynomial profiles in the momentum integral method 

developed by Kubota and Dewey (47) for the constant pressure laminar 
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free mixing layer, allows us to determine a simple closed form solu-

tion for the corresponding turbulent mixing layer. Assuming that the 

continuity and momentum equations (4. 27) and (4. 28) are valid for the 

constant pressure mixing process in the non-similar region, we inte-

grate the momentum equation fir st from the dividing streamline to the 

outer edge of the shear layer and then from the dividing streamline to 

the inner edge of the shear layer (see figure 11) to obtain the following 

two integral equations: 

:x [11 s; £( !-£) driJ 
,..,., 

(~) e: 
= 

Uetl a11,,= o 
11 > 0 ( 6. l) 

~ C6
2 s~ g2 d s] 

,....,, 

(2£) e: --
ue 61 ai;s=o 

s < 0 (6. 2) 

where 

f(11) 
u y 

Y>O = u- 11 = 
e 62 

g(T]) = u s y 
Y<O u- = 

e 62 

The solution for an initial quadratic profile is as follows: 

The velocity profile is broken into two layers, joined at the dividing 

streamline by the requirement of continuity of velocity and shear, and 

fitted to the boundary conditions at the shear layer edges 

f = l} 
£' = 0 

11 = l g,= 0}s=-l 
g :: 0 

Thus the velocity profiles may be written as 

f * 2 = l - ( 1- u ) ( 1-11) 

g = u* (s+l)2 

(6. 3) 

(6. 4) 
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* where u is the normalized velocity on the dividing streamline. The 

matching conditions for the two profiles require that 

= 

or 

= 

* u 

* 1-u 

* = 1-u (6. 5) 

Substituting (6. 3). (6. 4) and (6. 5) into (6. 1) and (6. 2) yields two first 

* -order ordinary differential equations for the unknown u (X) and &(X) 

~ ( 1-u ) f) [ 1 _ ( 1-u ) J = (po) K &_ l *2 * ! 2 -
dX · 2 3 5 \'p 'b e 

(6. 6} 

* u = 0 

r; 6 at X = 0 
= 

0 

Since the form factor S varies little over the entire mixing process 6 

8 
• 12 < T <. 13 

we will assume that the right hand sides _of equations (6~ 6) are con­

stant ( e) """'. 125. After integrating and combining the equations we 
' & . 

obtain the rather simple solution for the velocity on the dividing 

streamline 

s = x 
0 e 80 

= 19.7 u* 3 

* .2 2 - u - 4u 

and the growth of the momentum thickness 

e 
= x 

(6. 7) 

(6. 8) 
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note: = ( 1 Me2)2 * = 1 + .Yy- cr 

8 is the initial momentum thickness at the beginning of the mixing 
0 

region (,..,,, 6
2 

in figure 4). 

Equation (6. 8) demonstrates that the rate of growth of the shear 

layer will be greater than linear if the velocity on the dividing stream-

line is less than the asymptotic value, since the growth 8/x is inverse­

* ly proportional to the curve of u • Thus, measurements of cr 
8 

(or some 

equivalent cr) for a high Mach number base flow, such as reported by 

Larson (10) at M = 3, will usually be much lower than the actual value 

* because u < • 58 7 for a finite 8 • 
0 

Equation (6. 7) is plotted in figure ( 12). This relation gives us 

the important length scale for this isobaric compressible turbulent 

shear layer s = x/cr 8 e o' i.e. the mixing distance x divided by the pro­

duct of the initial momentum thickness 8 and the momentum thickness 
0 

* spreading parameter cr e· We note that as x/cr e 8 
0 

- oo, u - . 593 a 

* quantity quite close to the theoretical value of u = • 58 7 for the 

Chapman-Goertler solution. Figure (12) also indicates the previously 

mentioned criteria for similarity [equation (4. 36}], namely that the 

velocity on the dividing streamline does not approach its asymptotic 

value until x/cr 
8 

8 
0 
> 10. By a suitable conversion of the variables, 

the solution of King and Denison (32) for an initial Blasius profile is 

also shown in figure (12). The turbulent solutions for the two initial 

profiles are quite similar~ as was to be expected from the good agree-

ment noted by Kubota and Dewey (47) for the equivalent laminar solu-

tions. Also included in figure (12) is an integral solution using a 
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simple sine wave profile and the results of a linearized calculation by 

Nash (49) using a 1/7 power profile. The basic similarity of all the 

solutions indicates that the shape of the initial profile does not effect 

the fundamental character of the solution but only shifts it slightly 

depending upon the initial profile chosen. The solution for the quad-

ratic profile was used in all subsequent calculations for the constant 

pressure free shear layer. 

VI. 2. Joining Conditions 

* Instead of trying to determine the value of u t h for some mac 

initial sublayer momentum thickness to step height ratio (8
2
/h), which 

would require the use of an iteration procedure, the inverse problem 

* is solved; namely given a value of u match find the value of e2/h which 

satisfies the proper matching conditions. The latter technique re-

quires no iteration. The four conditions required for matching are: 

* continuity of M • of u , and of mass flow above the dividing stream-
e 

line, and in addition an important geometric constraint which requires 

that the height of the free shear layer at the joining point be equal to 

the height of the wake boundary layer. This last condition, illustrated 

in figure (4), in essence ties down the shear layer solution (in an infi-

nite domain) to a physical reversed flow wake profile with a reference 

axis, i.e. the centerline. From the four matching conditions we can 

thus determine not only the length of the mixing region (.t) which deter-

82 1 1 .tmix t 
mines 8 2/h (-,:- = ~ • - : h ) , but also the length scale for the 

. n S(uJ cr9 

* wake flow, o. (0). 
1 

t 
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The geometric matching relation is as follows [see figure (4)]: 

sin (- @) = 
h - 0 wake 

J, • 
mix 

(6. 9) 

where e is the streamline inclination at the outer edge of the wake 

* * determined by the wake integral solution at u = u .. 1 the mixing 
JO in 

distance J, . is given by the expression 
mix * 

* oi (O) 
I - o/oi (O) h 

= (6. 10) 
sin (- 9) 

in terms of the wake functions B(u *. . ) and ft (u ~ . ). The trans-
JOm Oj_ *(O) JOm 

formed rear stagnation displacement thickness o. * is determined from 
i 

the requirement of continuity of mass above the dividing streamline at 

the joining point. 

The mass flow above the dividing streamline for the wake is 

simply 
• m 

p u h e e 
= 

a 
00 

a 
e 

* p 00 1{ .* z 0 i ( 0) 
p i h 

e 
(6. 11) 

The mass flow for the shear layer may be written as [see equations 

(6. 3)-(6. 8) J 

• 6. SI 6 * * m l 
f d Tl 

(1-u ) (2+u ) 
ptlh = h = Ii 3 e e 0 (6. 12) 

J, * * • 672 mix ( 1-u ) (2+u ) = * 3 h 3 
cre(u ) 

Equating the mass flows of equations (6. 11) and (6. 12) and substituting 

* the geometric relation (6. 10) determines the length scale oi (O)/h • 

Substituting this value in equation (6. 10) gives the length of the mixing 
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region. The distance x /h from the step to the beginning of the inter­o 

action is 

x 
0 

11 = 
J, • 
mix 

h cos(-9) (6. 13) 

The usual expression for J, . /h used by many authors (McDonald, mix 

Korst, etc.) is t . /h = 1/ sin e. They assume that the constant pres­mix 

sure region extends to the axis. This assumption can lead to over-

estimating x /h by almost 100%. Thus we see that it is necessary to 
0 

consider both shear layer and wake flow solutions to obtain even such 

a fundamental quantity as the length of the constant pressure region. 

Figure (13) shows the effect of the upstream boundary layer 

thickness o 
1
/ht on the length of the constant pressure region for the 

case, M = 2. O. One notes that x /h is nearly constant (x /h ~ 1. 6) 
00 0 0 

for initial thicknesses less than the step height (6
1
/h < 1. O). As o 1/h 

is increased beyond a value of I. 0, x /h is seen to fall off rapidly, so 
0 

that for boundary layer thicknesses greater than twice the step height 

h, the length of the constant pressure region is nearly zero. 

In the followiilg section x /h will be calculated using the results 
0 

of a two-parameter integral solution near the base. 

VI. 3. Two Parameter Reversed Flow Wake Solutions 

Golik, Webb and Lees (8) attempted to find a set of two param-

eter reversed flow profiles for use in a multi-moment integral method 

which would allow a continuous integration of the integral wake equa-

tions from the rear stagnation point to the base. By disconnecting the 

t 
The relation between o 

2 
and o 

1 
is developed in section VII. 
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axis velocity from the Stewarts on reversed flow velocity profiles, an 

extra degree of freedom was produced. These normalized Stewartson 

profiles were then represented by two independent pararreters, 

* U
0 

= ~/ue and a shape factor N(= o /ojU
0

=0). Starting at the rear 

stagnation point with a prescribed value of N, the moment equations 

were integrated upstream. The absolute value of the centerline 

velocity I U I first increases and then decreases back to zero. At 
0 

the point where U 
0 

= 0 again, this may be considered the location of 

the base. While this solution has qualitatively the correct behavior 

noted of base flows, the present author noted two distinct limitations 

associated with this calculation procedure. First, it was found that 

solutions could only be found for a narrow range of initial sublayer 

thicknesses • 3 7 < o 2/h < • 6 6, corresponding to a boundary thickness 

ahead of the step 2 < o 1/h < 4. For most practical cases we are inter­

ested in initial thickness one order of magnitude smaller. The second 

problem associated with this Z. parameter solution is that while the 

base pressure becomes constant near the base (without any prior 

assumptions) the length of the constant pres sure region is almost 

5 times longer than the value of x /h found using the free shear layer 
0 

matching analysis of the previous section. This slow approach to the 

base is believed due to the use of the Stewarts on profiles, which al-

though normalized, still retain the behavior of the Chapman constant 

pr es sure solution. While the flow in the recirculating region is quite 

complicated, it may basically be thought of as resulting from the 

interplay between two distinct stagnation flow fields; ( l) a reattaching 
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wake-like flow at the rear stagnation point; and (2) a stagnating low 

shear low velocity reversed flow at the base bounded above by a 

small region of high shear. It appears that it would be difficult in-

deed to find one set of profiles which would possess these two widely 

diverse features. Therefore, a set of profiles was sought which has 

the correct two parameter behavior near the base, but not necessarily 

the appropriate behavior near the rear stagnation point (where the 

single parameter Stewartson profiles can be employed). Such a set 

of profiles was suggested by J. E. Green (9) in his study of the in­

compressible turbulent base flow problem t [see figure (14) J. This 

family of profiles is characterized by the two independent parameters, 

P (a measure of the axis velocity). and h/ /, (the ratio of the height of 

the region of constant reversed flow to the thickness of the shear 

layer). The profile has the characteristics of a free shear layer 

(given by a simple cosine shape) bounding a region of constant re ... 

versed flow velocity. The equation of the profile is as follows: 

u 
u 

e 

u 
u 

e 

= 

= 

1 - 2P O~Y~h 

1 - {1 +cos 1T (y~h>] h~Y~h+t 

(6. 14) 

(6. 15) 

From figure {14), one notes that when P = 1/2 ~ = 0 and the profile 

has the character noted of a shear layer initially separating from the 

edge of the base. 

t Green was unable to obtain a solution upstream of the rear stag­
nation point with these profiles because they do not exhibit the proper 
single parameter behavior needed at the r. s. p. 
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As in the case of the matching of the constant pressure mixing 

layer with the single parameter Stewartson wake flow solution, the 

joining point is unknown !-priori, but is determined by a suitable set 

of joining conditions. No geometrical relation is required in joining 

the single and double parameter solutions, since the integration 

proceeds along the same axis coordinate system. We require at the 

* * joining point continuity of M (or ®). o. , u, and mass flow above the e i 

dividing streamline. The last two joining conditions are sufficient to 

establish initial values for the two profile parameters P and h 
/ = h/ J,. 

The initial values of P and h / are determined by simultaneously solv-

ing the following two equations 

(l-P)+h 1 (1-2P) 

P(l+2h 1
) 

(6. 16) 

* = Z(u ) 
Stewarts on 

* I Jn order to solve for the four unknowns M • o , P$ and h we require e 

a fourth equation in addition to the integral equations of continuity, 

x-momentum, and mechanical energy (first moment of momentum). 

Rather than adopt an additional second moment of momentum to de-

scribe the flow, which heavily weights the outer portions of the wake, 

the momentum equation along the centerline was selected as the fourth 

governing equation 

dU 
u 

e 
e 

(6. 17) 
dX 

Jn the region close to the base the shear gradient near the wake axis 
2 

is quite small. The term ~ is identically zero at the wake axis 
ay 
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for the Green two parameter profiles. We therefore neglect the vis-

cous term on the far right hand side of equation (6. 17). This equation 

then implies that the velocity gradient on the axis is determined solely 

by the static pressure gradient along the axis and vice-versa. Thus 
dU 

upstream of the joining point were U'f. ~ must be positive for the 
dU dX 

flow to stagnate at the base, U __ e must also be positive indicating 
e dX 

that the pressure must rise toward the base (a phenomenon noted in 

many experiments). Thus we can expect a slight discontinuity in the 

pressure gradient at the joining point, indicating the change over from 

one type of stagnation flow to another. In an actual experiment this 

change in pres sure gradient is continuous but takes place in a very 

short distance, of the order of 1/10 h. Equation (6. 17) also implies 

that at the base, . U'f. = 0, the pr es sure gradient vanishes. Thus the 

shape of the pressure profile in the reverse flow region will have the 

form indicated in the sketch below 

p 
p 

00 

Joining Point 

x/h 

l parameter 
solution 

The complete set of differential equations employed in the two param-

eter region are as follows~ 
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* dM 
o*(2-4P) ~ + _£__ e 0 dX 4P(l-P) = M e 

* 

o*[~J * [ d?/ J dh I 
* dM 

"~ + 
dP 

+ 
0 

dXe [ ZW + 1 J 0 
dX + 0 dh 1 dX M = dX e 

2 
* * dM 

J do + 0*[dJ J dP * [ dJ J dh' 0 e [3J] K (PCf.)?tR + 0 dh 1 dX + M dX = <IX' <IP dX Pe e 

r: l+me]do* *[d?/JdP *[d?/]dh
1 

o* dM ~+ ri1 <IX" + 0 dP dX + 0 d.11' d.X + M dXe [f] 
e e 

where 

1 
=-tan@ 

m e 

(l- 3p) + 2h 1 (1-ZP) 
. SP I 

(1-P)(Z- -z)+4h (1-ZF}(l-P) 2 
J = " = l+Zh 1 l+Zh' 

z = (1-P + h 1 (1-ZP) 
R = 'TT'z P3 (1+2h') 

P( 1+2h I) 

These equations are numerically integrated as in section V, until 

P =-}, ~ = 0 which corresponds to the base. The pressure rise 

from the joining point to the base is found to be of the order of l '%, 

which agrees well with the assumption of a negligible pressure varia-

tion in this regime. Figure ( 14) presents a comparison of the length 

of the constant pressure region determined by the two parameter in-

tegration with the results found using the constant pressure mixing 

solution. Both solutions agree quite closely up to o
1
/h ~I. 0 and are 

seen to diverge somewhat at the higher values of o 
1
/h, while main­

taining the same qualitative dropoff in x
0
/h with increasing o 1/h. 

Thus, for most cases, the simpler mixing solution appears to give 

approximately the same length scales as the more complex 2 param-

eter solution. However, the two parameter solution can be used to 

obtain estimates of the effects of base heat transfer and base bleed 
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which the shear layer calculation does not make possible. For ex­

ample, the heat transfer coefficient at the base h = q /(T -T ) could w w r 

be predicted from laminar stagnation point theory (in the region near 

the axis) as suggested by Larson et al. (10), by using the gradient of 

the centerline 

h = 

velocity C = d ~/dX in the 

k 
w 

F w 

(~)JC 
',/Re w 

equation 

(6. 18) 

One notes that if the 2 parameter solution is continued upstream of the 

point where ~ = 0 the velocities of the inner flow region become posi­

tive. Stopping the solution at any positive ~would correspond to the 

case of mass injection at the base, the mass flow being simply 

= Pb Ur.' h 
"'base 

(6.19) 

Preliminary calculations indicate the correct trend of increas-

ing base pressure with increasing bleed rate, but the relative increase 

of Pb seems to be a good deal smaller than experiments suggest. Non­

isentropic effects coupled with the simplicity of the cosine profiles may 

account for the discrepancy between theory and experiment. 

In the following section, a model is presented which will link 

the sublayer flow after the turn with the initial boundary upstream of 

the step. 
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VII. CORNER EXPANSION OF THE UPSTREAM BOUNDARY LAYER 

The expansion about a sharp corner of a viscous-rotational 

boundary layer is an extremely difficult fluid mechanical problem 

(as yet unsolved in full detail) due to the fact that both longitudinal 

and transverse, pressure and shear gradients, are equally present 

in the process. In order to obtain the salient length scales involved 

in the wake flow problem (e.g. wake width and recompression length), 

the most important feature required of our analysis of the boundary 

layer expansion process is not the detailed velocity and shear varia-

tions, but the thickness of the viscous layer, after the turn, which 

serves as an initial condition for the free shear layer. After a short 

region of constant pressure mixing, it is this inner layer which is 

joined to the wake solution. Thus it is the initial thickness of the 

viscous sublayer 6
2 

after expansion which will be an important feature 

in determining the length scale of the problem. 

The turbulent base flow sch lier ens of Hastings 

over a wide range of initial boundary layer thicknesses 

[figure (15)] 

01 
(. 1 <11 < 10) 

indicate that as the upstream boundary layer undergoes the expansion 

process, a new viscous sublayer is formed immediately after the turn, 

approximately 10-20% of the thickness of the original layer. This sub-

layer then grows downstream of the corner as the free mixing layer. 

While the thickness of the total initial layer may have increased 50% 

due to the corner expansion (i.e. o
2 
~ 1. 5 o

1
), it is asserted that the 

length scale of the problem is determined only by the inner layer or 

sublayer ( 6 2 ~ • 15 o 
1

) and that the outer portion of the expanded bound­

ary layer merely acts as a weak inviscid field of external vorticity. 
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VII. 1. Viscous Sublayer Model 

The flow model for the corner expansion process is shown in 

figure (16). The total boundary layer upstream of the corner (station 

l) is characterized by the quantities o 1 and Me 
1

• For an initial tur­

bulent boundary layer we assume the well known 1/7 th power profile 

for the velocity distribution 

14 
u u = (fl) 

e1 
(7. l) 

Let us consider a small inner region, of the initial layer, of thickness 

ti1• The Mach number at the upper edge of ti 1 is denoted as Mtii • We 

assume that as the pressure at the wall drops from P 1 to P 2 (=Pb) 

during the corner expansion process, that shear stresses will only 

be important inside a stream tube (t 
6

) which expands from an initial 

thickness ti 1 to a final thickness ti2 • The flow along the bounding 

streamline t ti is assumed is entropic. Therefore, we can easily deter­

mine the sublayer edge Mach number M 6 from the isentropic relation 
2 

(7. 2) 

[ y-1 2] 
1 + -2- Mtil 

At station 2 we assume that the velocity profile of the sublayer is the 

same quadratic profile chosen for the constant pressure free shear 

layer analysis t 

Station 2 u 2 = 211 - 11 u ti2 
( 7. 3) 

t The flow is considered adiabatic and the Howarth-Dorodnitsyn 
transformation is assumed valid at station 2. 



-62-

Since the sublayer thicknesses f'.1 1 and f'.1 2 at the beginning and 

end of the streamtube are unknowns, we require two equations to re-

late these quantities. These relations are supplied by a stream tube 

balance of the mass and momentum entering and leaving a "black box" 

situated near the corner. The conservation of mass for the stream-

tube is 

MASS 

(7. 4) 

Applying the momentum theorem to the control volume gives us the 

following approximate expression 

MOMENTUM 

f).2 6 1 

~ P2 u22 dy - ~ P1 '1_2 dy + b.2(Pz - P1) 
0 0 

- T b.x = 0 w 
(7. 5) 

Equation (7. 5) introduces into the problem, through the shear force 

term T t:.x, the unknown average shear stress T and the unknown w ' w 

length D.x of the corner interaction. In order to estimate the magnitude 

of the quantity T 6x in terms of the known parameters of the problem w 

(e.g. D.2,P2/Pl' etc.), we use the differential form of the momentum 

equation to note that at the wall the viscous and pressure terms just 

balance, i. e. 

at the wall = dp 
dx 

For an accelerating boundary layer, the shear stress gradient 

decreases away from the wall 
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(7. 6) 

Mellor and Gibson (50) have obtained solutions of the equations of 

m.otion for the velocity profiles and shear stress distributions of 

equilibrium turbulent boundary layers where the pressure gradient 

parameter, 13 = 6 *(ddp )/T is held constant. Using Prandtl 1 s mixing x 0 

length theory in the overlap layer (e = K
2 

y
2 I~; I ) and joining this with 

an eddy viscosity in the outer layer which is considered constant with 

* I I .respect toy ( e = KU 6 ), defect solutions of the form (U-u) uT= f (T)) 

were found+ for various values of the parameter 13. Solutions were 

found for 13 in the range -0. 5 =:;; 13 =:;; oo. The 13 = -0. 5 solution corre-

sponds to the development of a turbulent equilibrium boundary layer 

undergoing the maximum acceleration possible. The distribution of 

shear stress for the 13 = -0. 5 case is shown in figure ( 17). One notes 

that 8T/oy decreases away from the wall, as noted in equation (7. 6). 

The assumption is now made that we can employ the 13 = -0. 5 solution 

in order to estimate the relative magnitude of shear and pressure 

forces throughout a highly accelerated turbulent boundary layer. 

We define an average shear stress gradient as follows 

(~) 
Y ave 

@ T) 

where 

+ 

r ::::: .!_ [(oT) + (~) J 
b. 

2 
oy T) oy ri= 0 I ;~i~i. 5 solution 

~ 
T) = v -t (;> 

6 

re; 
A typical value of y = V -y--- = • 04 I Y. 

T) ~ 3 6 
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Since (~) = ~~ , then we estimate the difference of the pressure 
y n=O 

and shear forces in equation 7. 5 as follows 

( 7. 6) 

Substituting equation (7. 6) into the momentum equation (7. 5) yields 
6 2 6 1 

\ 2 ~ 2 J P2 u2 dy - P1 ul dy + t.2(P2-Pl) [l-rtiz] = 0 0 0 
(7. 7) 

Equations (7. 4) and (7. 7) represent two equations for the two unknown 

VII. 2. Sublayer Solution Method and Results 

Solving equations (7. 4) and (7. 7) for the initial mixing sublayer 

thickness 6
2
/o 

1 
yields the following two equations 

MASS 

62 = (A2/A*)62 (pe
1

/Pt;. 1) 

bJ (A 1/A*)t:, 1 (u61/ue
1> 

MOMENTUM 

QI (6/o l) 

[I-(o*/6~ J 

l 

- (1 - r 6 ){'.; 2 p 

(7. 8) 

1

-1 

(7. 9) 
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where / 
6 61 

Q ( 6 } = ~ ....£._ u d( .1..) 1"011 p u 6 0 e1 el l 

6161 2 
pl (:-1) = \ ....£._ u dLY..) 

0 • Jo Pe ~ ~l l e1 

and for adiabatic flow 

= 

e = p 

For a given Mel and base pressure ratio p2/pl' a trial value of M
61 

is assumed and a value of 6
2/6 1 is calculated from each of equations 

(7. 8) and (7. 9). In general, these two values will not be equal, and a 

new value of M
6 

is then selected. 
l 

We iterate on M 
6 

(using a high 
1 

speed computer) until 6
2 = t::.2 within a given degree of 
mass momentum 

accuracy. 

Typical results for a pressure ratio p
2
/p

1 = • 4 are given in 

the table below 

M Mt::. 61/61 62/61 00 l 

1. 5 l. 01 • 12 • 25 

2. 0 1. 18 • 08 • 18 

3.0 1. 36 • 05 • 12 

6. 0 1. 55 • 03 • 08 

These results indicate that the thickness of the sublayer after the turn 

t::.
2 is approximately 10-20% of o

1 as suggested by the Schlieren photo­

graphs of Hastings. 

Also one notes that the effective edge Mach number before the 

turn M,. is close to unity, even for an outer edge Mach number M wl el 
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as high as 6. O. Recently some investigators of the turning problem 

have made the assumption that the inner viscous layer is formed by 

the expansion of the flow below the same line (Mt.
1 
= 1. 0). These re­

sults indicate that such an assumption may not be grossly in error. 

This low effective edge Mach number (M61 ~1. 0-1. 5) indicates 

that if the initial boundary layer is relatively large compared to the 

step height [8
1
/h ~ 0(1)], then no matter how high the freestream Mach 

number Me 
1

, the viscous interaction in the near wake will be influenced 

only by the low Mach number portion of the flow. The base pressure 

data of Hastings (12.) shown in figure (18) illustrates this effect most 

clearly. For initial values of 8
1
/h << 1, the base pressure shows the 

familiar trend of a decreasing base pressure with increasing step Mach 

number (M
1 

= 1. 56 - 3. 10 in Hastings' experiments). But as the ini­

tial thickne SS is increased above the point where 81/h > 1, the meas­

ured base pressures of all the Mach numbers tested increase and tend 

to merge with one another, and appear to be approaching some upper 

limit. This limit is easily obtained from the integral theory of sec-

tion V. 

The maximum value of the base pressure corresponds to the 

pressure at the rear stagnation point (zero constant pressure mixing) 

of a wake flow with a free stream edge Mach number near unity 

(the inner edge Mach number limit). This limiting base pressure was 

found to be 

( ppb) = • 78 
00 MAX 

M .... l 
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The base pressures for Mach numbers as high as 3. 10 are seen to 

approach this limit, as one notes in figure (18). 

Of course it should be pointed out that when the step size be-

comes so small that no definable inner boundary layer exists, as is 

required in the model, then this limiting value ceases to be of signif-

icance. 

On the other end of the boundary layer spectrum, that is for 

8
1
/h << 1, we are led to ask: what is the effective edge Mach number 

for the wake? In this case the initial Mach number at the edge of the 

sublayer after the turn is relatively low. But due to the entrainment 

of mass 'by the shear layer at its outer edge, it engulfs more and more 

of the high Mach number portion of the initial boundary layer. There­

fore, if 8 1 /h is small enough, then a short distance downstream of the 

corner, the Mach number at the edge of the shear layer will correspond 

to that Mach number produced by an inviscid expansion of the flow from 

the upstream outer edge Mach number Me 
1

• Thus, for the wake calcu­

lation we would set M
00 

= Me 
1

• 

Figure ( 19) pre sen ts a plot of the fraction of the mass flow in 

the initial boundary layer that is entrained by the shear layer and wake 

flow up to the end of the constant pressure mixing, and up to the criti-

cal point, as a function of the boundary layer thickness ahead of the step. 

The plot indicates that for initial values of cS 
1
/h less than R:J • 2, that 

almost all of the mass of the initial boundary layer is entrained by 

mixing in the near wake, and thus the effective value of M R:J Me • 
00 l 

For values of o
1
/h > 5. 0, less than 10% of the initial boundary layer 
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is entrained, and thus we may set M R:I M,. • In the intermediate 
00 u} 

region • 2 < o 1 /h < 5, the effective edge Mach number is continually 

changing as mixing proceeds downstream of the base. As an outer 

characteristics program is not embodied in this study to account for 

the crossing of the various rotational outer flow streamlines by the 

viscous inner flow, the present analysis used the criteria that for 

o 1/h ~. 5 M R:1 M and for o 1/h > 2. 0 M R:1 M1::, • oo e 1 oo 1 
The major point to be gleaned from this section as far as the 

overall wake flow analysis is concerned is that the viscous sublayer 

which serves as the initial condition for the free shear layer mixing 

is only a small portion of the initial boundary layer. It is this thick-

ness 62 and not the large thickness o 1 , which determines the maxi­

* mum value of u and thus the base pressure, and it is 1::,
2 

alone which 

will determine by geometrical matching the length scale for the wake 

interaction. 

The combined results of sections V-VII are presented in the 

following section (VIII) in which the theoretical base flow solution is 

compared with the existing experimental data. 
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VIII. NUMERICAL SOLUTIONS FOR THE SUPERSONIC TURBULENT 

WAKE AND COMPARISONS WITH EXPERIMENT 

VIII. 1. Pressure and Wake Thickness Distributions 

An example of the complete base flow solution from the sub-

layer constant pr es sure mixing region to the reattached wake flow 

downstream of the rear stagnation point, where p /p -+ 1, is shown 
e oo 

in figure (20). The case considered is for M
00 

= 2. 0 and 8 1/h = • 038. 

The general trends of the results are evident in this figure. We note, 

from the graph at the top of figure (20). that the mixing region is con-

fined to a thin layer which extends over an axial distance of some l t 
step heights. For this case, which is typical of the experimental val­

ues of e
1
/h, the initial boundary layer height is approximately 50% of 

the step height. The size of the sublayer at the start of mixing, after 

undergoing expansion, appears to be quite a bit smaller, of the order 

of 20% of the step height, growing to about 40% at the joining point. The 

height of the wake boundary layer o is seen to decrease, after the 

joining point, to about 30% of the step height at the critical point. 

Turning to the second curve of figure (20) for the distribution 

of static pressure along the centerline, we find that the pressure is 

constant initially at about 45% of the free stream value for the first 

l t step heights, followed by the reversed flow region of recompres­

sion where the pressure rises to about 65% of p at the rear stagna-
oo 

tion point, at a distance of about 3t step height from the base. Down-

stream of the rear stagnation point, the static pressure continues to 

rise and recovers to over 90% of the free stream pressure in less than 

6 step heights. This region {~) < 6) thus constitutes what we may call 
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the turbulent near wake. 

The bottom curve of figure (20) demonstrates how the velocity 

* on the dividing streamline u varies throughout the near wake. As 

* noted earlier, u increases rapidly from zero to a maximum ::i.t the 

joining point, and then decreases to zero again at the rear stagnation 

* point. Downstream of the r. s. p., u increases once again as the veloc-

ity along the centerline of the 'wake approaches rmity far downstream. 

An additional quantity of interest, the total pressure variation along 

the dividing streamline, is easily deduced from the static pressure 

* and u distributions of figure (20). In the constant static pressure 

* * region, p increases due to the initial rapid increase of u • In the 
0 

reversed flow interaction region the total pressure at first decreases 

* a little due to the drop in u , but passes through a minimum and in-

creases again due to the increasing static pressure in the reattachment 

region. Thus, the total pres sure at the rear stagnation point 

(= p static ) is not much different than the total pressure at the begin-
r. s. p. 

ning of the interaction, verifying an assumption used by Nash ( 2 ) in 

his base pressure theory. Unfortunately, Nash chose to relate the 

incremental increase of static pressure from the base to the rear stag-

nation point, (P rsp-Pb), to the overall pressure rise, (P 
00 

-Pb). by the 

factor 

N = 
p -P 

rsp b 
Poo-Pb 

* Po .. - Pb 
"""' JOln 

P -P 
00 b 

(8. 1) 

He assumed that this factor was a constant for all wake flows (~. 35). 

* While P /P is nearly constant, for a given Mach number M , o.. 00 00 JOln 
one notes that Pb/P 

00 
varies with the upstream value of 81/h. A better 
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correlating parameter might have been 

N' = * P /P ~ P /P o. co r. s. p. oo 
J 

(8. 2) 

which is a function only of Mach number M • Needless to say, it is 
00 

felt that while such parameters may be used to correlate the base 

pressure, they do not reflect the essential interaction mechanism in-

volved in the near wake base flow. The principal means for establish-

ing the validity of the integral interaction solution and eddy viscosity 

model rests not so much on determining a better correlation for the 

base pressure, although this is an important parameter, but upon the 

comparison of the theoretical length scales and pressure distributions 

with experiment. 

Figures (22, 23 and 24) present a comparison of the theoretical 

centerline pressure distributions with the data of several experimental-

ists [Hastings (12), Roshko-Thomke (13), Thomann (51), Fuller-Reid 

(52), Badrinarayan (14), Rom (53)] for a range of Mach numbers 

M
00 

= 1. 5-2. 30 and initial momentum thicknesses 8
1
/h = • 008-. 075. 

The data shown in figures (22) and (23) were based on experi­

ments where reattachment was to a solid surface.t Estimations of the 

location of the rear stagnation point by floor oil flow patterns and (in 

Thomann's work) by surface shear measurements show good agreement 

t A question may arise as to the validity of the comparison of a wake 
theory with data obtained from reattachment to a solid surface. The 
measurements of Hama ( 11), in the vicinity of the rear stagnation point, 
showed that the axial pressures in flows reattaching with and without 
splitter plates differed by only a few percent. Thus, we feel that in­
sofar as pressure distributions and other overall wake quantities are 
concerned, the wake analysis may be applied to splitter and non-splitter 
flows with equal confidence. We are in essence assuming that surface 
shear forces are negligible in the reattachment zone when compared 
with inertia forces. 
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between theory and experiment. For the wake study of Badrinarayan, 

figure (24), the location of the rear stagnation point was determined 

by finding the axial location where static and Pitot pressure readings 

were identical. The experimental location of the rear stagnation point 

found using this technique is about one-half base height upstream of 

the location determined by the theory. 

For Mach numbers up to 2. 3, there appears to be excellent 

agreement between the theoretical and experimental pressure profiles. 

The theoretical values of base pressure, while generally higher than 

the experimental values of Pb, differ by less than 15%. In addition, 

the lengths of the constant pressure region x /hare quite closely pre-o 

dieted by the theory. 

For Mach numbers of 3 and above, the theory was found not to 

give the steep pressure rise noted in the experiments of Larson (10) 

and the measured base pressures were almost so% smaller than the 

corresponding theoretical values. 

In the experiments of Rom, et. al. (53) at M = 2. 25, as noted 
00 

in figure (24). the strength of the lip shock was found ~to be of neg­

ligible strength, (P2/P1)L. P. = 1. 48. Thus, it is felt that the pres­

shock 
ence of a noticeable lip shock and the accompanying non-isentropic 

phenomenon in the vicinity of the corner, at the higher Mach numbers 

M ~ 3, are responsible in large measure for the differences between ()() 

the experimental data and the theory (which is based on the assumption 

of an isentropic outer flow). But for approach Mach numbers of 2 or 

less it appears that the theory predicts the turbulent near wake pres-

sure distribution and length scales quite well. 
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As to the effect of the initial momentwn thickness 81/h on the 

base pressure, a comparison between theory and the base pressure 

data of numerous experimentalists is shown in figures (25) [M = 1. 50] 
00 

and (26) [M = 2. 00]. The trend of the theory is in excellent agree­oo 

ment with the data (although 10-20% higher) even when the value of 8
1
/h 

varies over an order of magnitude. For the case of M = I. 50, one 
00 

notes that the base pressure varies only from about • 45 to • 7 over a 

large range of initial thicknesses.t For the case of very large initial 

boundary layers (8 1/h >> 1), the base pressure approaches a maximum 

value as noted in section VII. In the limit as 81/h _. oo, the maximum 

* u -t o. 
max 

value of the velocity on the dividing streamline goes to zero, 

81/h->oo 
In addi.tion the effective free stream Mach number M tends toward 

00 

unity, due to the fact that only the inner sublayer participates in the 

near wake interaction. Thus the base pressure corresponding to the 

case 8
1
;h-> oo is the pressure at the rear stagnation point for a sonic 

base flow 

R::l • 78 

As shown in figure (18). this appears to be the maximum base pressure 

for all base flows, no matter what the value of the free stream Mach 

number is. 

t It should be noted that contrary to the practice of many authors 
the 8/h axis in figures (25) and (26) is plotted on a logarithmic basis 
rather than a linear basis to: ( 1) avoid the temptation to extrapolate 
the results to the completely fictitious value of 8/h = O; and (2) to 
emphasize the region of small 9/h where a gradual drop in the base 
pressure takes place over a large range of 9/h, rather than, as in the 
linear plots, showing a rapid drop in Pb/Poo as 8/h-> O. 
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Conclusions about the supersonic wake flow solution, based on 

the comparisons made herein between the integral theory and the ex­

perimental data are discussed in section X. 
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IX. FORMULATION OF THE INCOMPRESSIBLE PROBLEM 

Nearly all of the recent studies on the problem of the viscous-

inviscid interaction of separating and reattaching flows have been 

confined to the supersonic or hypersonic flow regimes. Studies of 

the low-speed separation problem have generally been divorced from 

the more fashionable high-speed investigations. However 1 · Roshko 

and Lau (35) 'and Tani, Iuchi and Komoda (21) in their studies of low-

speed separation have pointed out that many of the ideas developed 

for supersonic separation problems can be adopted for use in studying 

some of the outstanding unsolved problems in the incompressible flow 

domain. In addition, experiments which are more easily performed 

in large low-speed wind tunnel facilities, can give added insight into 

the basic phenomena of viscous-inviscid interaction, no matter what 

the external flow speed may be. 

Recently Green ( 9 ) formulated an integral wake method of 

solution for the incompressible turbulent reattachment problem. The 

great similarity of Green's method to the moment method developed 

herein: for supersonic turbulent flow, makes it clear that the moment 

equations developed in Section V can be applied almost directly to the 

incompressible flow problem, provided that an appropriate incom-

pressible inviscid solution of the external flow field is employed. 

Green suggested the use of the solution derived for thin airfoil theory, 

namely 

u 
e 

U (x) = 
co 

00 

l+~~ 
-co 

tan e (s) ds 
x - s ( 9. 1) 
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An integral equation of this form can be used to link the viscous and 

inviscid flow of the incompressible wake problem, just as the 

tropic Prandtl-Mcycr relation 

El(x) = v [M (x)] - v(M ) 
e e oo (9. 2) 

was used to link the viscous and inviscid flow, through the continuity 

equation (5. 9), in the supersonic wake problem. 

The basic difference between the subsonic and supersonic 

viscous-inviscid interaction phenomena can be clearly seen if one 

examines the form of equ,.tions (9. 1) and (9. 2). 

For the case of supersonic interaction (equation 9. 2) one notes 

that the edge Mach number M is determined solely by the local e 

Streamline inclination e. In Contrast, the edge Velocity u I in the 
e 

low-speed problem (equation 9. 1), is determined by the distribution 

of ®• throughout the entire flow field. The full elliptic nature of the 

incompressible wake problem, requires that all "source" contribu-

tions to the integral in equation (9. 1) from the front of the body, to 

the base, to the rear stagnation point, to the far wake must be prop-

erly included in order to obtain a valid solution. 

While Green's study of the incompressible problem produced 

many helpful suggestions (e.g. his selection of the two-parameter 

cosine profiles, and his use of thin airfoil theory for the external 

flow) he ( 1) did not properly employ the viscous integral equations to 

obtain a stable solution; (2) was unable to integrate the full set of 

equations into the reversed flow region; and (3) did not match his near 

wake to the proper far wake asymptotic solution. 
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In this section an attempt is made to correct the difficulties 

noted above, by making use of some of the techniques developed ear­

lier for the supersonic base flow problem, and by properly 

ting a stable iteration scheme for the solution of the resulting integro­

differential equations. 

IX. 1. The Two-Dimensional Incompressible Turbulent Base Flow 

Field 

The general features of the turbulent incompressible flow field 

behind a rearward facing step are readily seen if one examines the 

measurements of the mean longitudinal velocity field and plate pres­

sure distribution obtained by Tani, et. al., shown in figure (27). 

Even though reattachment is to a solid surface, the mean velocity 

profiles downstream of the rear stagnation point appear to have an 

increasing finite slip, such as would be the case for a reattaching 

wake flow. The low speed separation behind a body without a splitter 

plate along the centerline does not have the steady behavior of the flow 

noted above, due to periodic vortex shedding from the body. However, 

if a splitter plate with a length of about 10 step heights were employed, 

then the vortex shedding could be suppressed and the flow downstream 

of the splitter plate would then develop as a "steady" (in the mean) 

wake flow. Thus a theoretical wake model might be related to an 

actual wake flow field provided that a splitter plate was used to stabi­

lize the flow near the body. 

The pressure distribution (figure 27b) obtained by Tani;_ indi­

cates several important features of the flow, some of which are quite 
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similar to those of the supersonic case. The pressure in the region 

immediately behind the base is approximately constant, with a slight 

rise toward the base due to the stagnation of the reverse flow. The 

length of the constant pressure region is approximately twice that of 

the supersonic quiescent region. At about 3 step heights, the pres-

sure begins to rise as the shear layers begin to interact with the outer 

flow. C continues to increase until about one step height downstream p 

of the reattachment point (x/h ~ 6. 8) where it reaches a maximum and 

then begins to decrease toward the pressure level far downstream of 

the step. 

Roshko and Lau (35) studied the reattachment pressure distri-

bution at low speeds behind bodies of various shapes. Figure 28 re­

produces their results for the ordinary pressure coefficient t 

c 
p = 

p - p 
00 

1 2 -pu 2 00 

as a function of the normalized distance from the base x/h. One notes 

that there exists a wide range of base pressures for the various models 

and that the distance to reattachment is considerably different for each 

case. While the pressure profiles appear to be quite uncorrelatable 

in the form C vs. x/h, Roshko and Lau found that they could reduce p 

the measured pressure distribution to nearly a single curve (Fig. 29) 

provided that a pressure coefficient e 
p 

= 
p - Pb ase 

1 u 2 zP e 
base 

defined as 

t oo refers to conditions upstream of the body. 

(9. 3) 
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is plotted against the distance x defined as the axial distance divided 

by the distance to the rear stagnation point, i.e. 

x = x/x rsp 

In finding a correlation in terms of the pressure coefficient C 

(9. 4) 

p 

(equation 9. 3) the base pressure is essentially removed as a param-

eter which influences the reattachment process, and thus it acts only 

to alter the level of the pressure field. It will be seen in the follow­

ing section, by considering the integral interaction equations, that it 

is the conditions in the far wake (as affected by model and tunnel 

geometry) that determine the base pressure level and that the dynam-

ics of the near wake reattachment process are influenced basically 

by the local reattachment mechanism as suggested by Roshko and Lau. 

IX. 2. Differential Equations for Incompressible Interaction 

The integral momentum, mechanical energy, and continuity 

equations for the single parameter portion of the incompressible wake 

flow are easily deduced from equations (5. 8 ), (5. 13) and (5. 9) by 

taking the limit as M .... 0, hence e 

t 

tt 

* * dU 

"~ * d1{ 
[2$/+l] t e 

0 (9. 5) + 0 -- + dx = dx dx 
e 

* * dU 
J~ + o* dJ d:t( + 3J 6 e KtfR (9. 6)t u dx = dx dx dx 

e 

* * dU do - z 0 e tan lBJ (9. 7)tt 
dx u ax = 

e 

. 1 dm _ F(~' entrainment Green uses Head's entrainment equation Ue dX - °":a:. parameter 

* Green makes the error of equating tan lBJ and do /dx 
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* We have a system of three equations for the four unknowns, o • U-(a), 

U , and (8) (the inducl!d angle tan- l v e at the edge of the viscous layer). e ue 

In addition we require an inviscid flow relation between fill and U • e 

Assuming the external flow is inviscid and irrotational, then we may 

use potential theory. Thus, if the analytic complex function F(Z) is 

defined as 

F(Z) = ~ + i'f 

where~ is the velocity potential (ii = 'V~) and 'f the stream function, 

then differentiation of the above expression yields 

dF 
dZ = u - iv 

where u and v are the horizontal and tangential components of the 2-d 

velocity vector ii. Since dF /dZ is also analytic, this indicates that 

u and -v are harmonic conjugates. 

Using the Cauchy integral formula for analytic functions, it is 

easy to find the following integral relationship between the harmonic 

conjugates u and -v [see Morse and Feschbach (36) p. 371]. 

00 

u(x, y) = 1 ~ (x-~v( s. 0) dt; -
1T 2 2 -co (x-s) +y 

(9. 8) 

v(x, y) = 1 ~QO ( X. -s) U{ s I 0 ) dt; - - 2 2 1T 
-oo(x-s) +y 

(9. 9) 

Let us introduce the freestream velocity U as an additive constant 
00 

in equations (9. 8) and (9. 9) and assume that u(x, y) denotes a small 

perturbation from U , i.e. U(x, y) = U + u where ~ << 1. Thus 
00 00 u 

00 
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v/Ue ~ v/U
00 

and denoting tan @l (x, 6) = v(ti 6 ) ~ v(x, 6)/U
00 

then 
e 

equation (9. 9) becomes 

00 

1 \ tan tEl (x, 6) = - ..) 
1T -oo 

u 
(x-s)[l - u (s. o)J 

00 
(9. 10) 

From the condition for the asymptotic matching of the boundary layer 

and outer inviscid solutions 

(x, y) 
lim U 
y-0 u 

00
outer 

= u U (x, y) 

~oundary 
layer 

u 
e 

= u 
00 

Then the required relation between ®and U may be written e 

1 \Q() 
tan tEl = 1r j 

-oo 

u 
(x-S) [l - Ue (S, O)] 

00 ds 
(x-s)

2 + 6 
2 (9. 11) 

From Bernoulli's equation we have the following approximate relation 

for the pressure coefficient Gp 

for 

c 
p 

U -U 

= 

e oo 
u 

00 

p -p 
e oo 

1 u 2 
2 P e 

<< 1 

~] 
00 

IX. 3. Integration of the System of Equations 

(9.12) 

Due to the extremely complex nature of the non-linear differ-

ential equations (9. 5). (9. 6), (9. 7) and (9. 11), an iterative procedure 

appears to be the only practical method of solution. We may consider 

this as a two-point boundary value problem where the solution must 

satisfy conditions both upstream of the base (x-+ -oo) and in the far 

wake (x .... +oo). It is necessary that the iteration scheme adopted be 
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both stable and convergent. 

It appears that instabilities in the iteration procedure can be 

avoided provided that the full set of equations( (9. 5-9. 7) are simul-

taneously integrated for some assumed distribution of tan @. The 

following iteration scheme is thus suggested: t 

* ( 1) Assume a distribution of tan (fl) vs. x/o. (0) which has the 
l 

proper asymptotic form as x ... oo. tt 

* (2) Starting at the r. s. p. (b'. = 1 a= 0) with an assumed 
l 

value of the pressure coefficient C (which will later be obtained by 
p 

application of the momentum theorem to a control surface enclosing 

the body) integrate the full set of equations (9. 5)-(9. 7), fir st down-

* * . stream and then upstream of the r. s. p. to some u = u ..• using 
JOln 

single parameter Stewartson profiles. Since there is no way of know-

* ing ~-priori the correct location [x(O)/o. (O)] of the rear stagnation 
l 

t Green suggested an iteration method in which the wake problem 
is solved as a straight forward boundary layer calculation with a 
known pressure distribution, ~P' being determined from the thin 
airfoil theory equation (9. 1). Using the integral momentum and 
entrainment equation, o* and U'(a) are calculated for a given 

ddCxp • The continuity equation is used to obtain a new distribution of 

tan 8 and (9. 1) is then used to obtain a new pressure distribution. The 
calculation procedure is then repeated with the new Cp distribution. 
This method yields unstable solutions in the reverse flow region 

because the determinant of the subsystem of equations D = U' ~; - Z 

not only passes through a zero just downstream of the r. s. p. but is 
quite small in the region upstream of the r. s. p. Any discrepancies 
in the assumed pressure gradient are greatly amplified in this region, 
thus leading to unstable solutions. 

tt The asymptotic form of tan @is determined in section IX. 4. 
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point for a given initial boundary layer, o /h, different initial starting 

locations must be chosen until the wake solution satisfying the con-

* ditions a -+ 1, C .... 0 as x/o. -+ oo is obtained. p 1 

(3) At the joining point the profiles are changed over to the 

2-pararneter cosine profiles (valid near the base) and the integration 

is continued to the base by adding the extra equation along the center-

line 

= 0 

as outlined for the super sonic case in Section VI. The value of 
:>:< 

u. . . is adjusted so that at the point where Ur. = 0 (the base) tan ® JOmmg 't.. 

is equal to the value assumed for it at the base. 

( 4) With the distribution of C ( = l - ~ e ) and o obtained in 
p 00 

steps (2) and (3) a new distribution of tan ®is determined from the 

integral equation for the external flow 

1 Soo (x-s) c /2 
tan ® = - P ds 

1T 2 2 -oo (x-s) + o 
(9. 13) 

Steps (2)-(4) are then repeated with this new distribution of tan ®as 

an input until a suitable numerical convergence is obtained. An ex­

* ample of a typical integration is shown in figure ( 30) where o /h, 9/h, 

* u , and C are plotted as a function of x/h. Note that this is not a p 

final solution but only the result of an integration for a given distri-

bution of tan ®· The assumed curve of tan @vs. x was calculated 

from one of Tani's experimental pres sure distributions by means of 

equation (9. 13). 
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* The integral thicknesses o , and 8 shown in figure (30), both 

approach a constant value at the base corresponding to some initial 

boundary layer thickness at the corner (o 
1
/h ~ O. 5). One notes that 

* o decreases away from the base and tends toward a constant value 

(equal to the drag of the body) in the far wake. The momentum 

thickness rises from its minimum value at the base and likewise 

* approaches the same asymptotic drag value as does o in the far 

wake. 

The dividing streamline velocity has the same general appear-

ance as in the super sonic case: increasing from zero at the base to a 

maximum at the joining point and then dropping to zero again at the 

rear stagnation point. Beyond the r. s. p., the centerline velocity 

increases rapidly and approaches unity in the far wake. 

The centerline pressure distribution shows some of the fea-

tures noted of incompressible flows. The length of the constant pres-

sure region is approximately one-half the distance to the rear stag-

nation point. This was approximately the ratio found by Roshko and 

Lau in figure (29). Also the characteristic peaking of the pressure 

curve is evident at a distance x/x = l. 3. The maximum pres-
C -C r.s.p. 

· N Pmax PBase · l b t 21 · th. l l t• sure rise '"'Pm = 1 _ C is on y a ou • in is ca cu a ion 
PBase 

as opposed to a value of • 34 cited by Roshko and Lau as the maximwn 

value of (j'Pm based on the Chapman-Kor st theory. They did note, how­

ever, that the value of e'p tends to decrease as the initial boundary 
rn 

layer thickness increases. Values as low as • 109 have been meas-

ured [see Moore reference (37)]. 

The numerical integration discussed above was only a sample 



-85-

of the type of solution possible. It did not properly include all the 

source and sink disturbances which affect the induced vertical com-

ponent of velocity v • In the next section we discuss the effect of the e 

asymptotic solution in the far wake, and the influence of tunnel and 

flow geometry on determining the base pressure level and how con-

sideration of these effects is essential to obtaining a properly con-

vergent solution for the base flow problem. 

IX. 4. The Asymptotic Far Wake Boundary Conditions 

In the compressible supersonic wake flow solution, the base 

pressure is essentially determined by the requirement that the solu-

tion curve of the integral equations pass smoothly through the critical 

point, downstream of the r. s. p. The wake flow downstream of the 

critical point is "supercritical" and thus, any gross disturbances in 

this region are not propagated upstream to the base. However. for 

the case of incompressible flow, the wake is always "sub-critical", 

and a correct solution for the base pressure must depend upon satis-

fying the conditions at downstream infinity. 

We can use the integral momentum and mechanical energy 

equations to determine the form of the far wake solution, and then 

use the continuity equation to ascertain the asymptotic form required 

for tan 8. To simplify the calculations and to insure a simple closed 

form solution, we will assume that the velocity profile for the viscous 

layer is a simple cosine profile of the form t 

t This form was used by Green in his integral analysis. 
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u 
u 

e 
= l - P( l + cos ~y ) 

where l - 2P = ll(f./ue =a 

y 
l. 0 

f u/ue 1 . I 
~a-.iz~ 

The integral parameters then have the simple form 

3P J 2 9 5 
'}{ = l -y = -y P+z-P 

R 71'2 p3 z 1-P = = -p 

(9. 14) 

2 

(9. 15) 

dU 
Goldstein (38) has shown that the pres sure gradient term ~~......, J dxe 

e 
can be neglected in the fir st approximation to the far wake solution as 

being of higher order in x-l than is required. 

The momentum and mechanical energy equations (9. 5) and (9. 6) 

may then be written as 

* 
'}{ 

do *~ 
dx + 0 - = dx 

* 
J 

do * dJ au: 
<lx + 0 - dx dx 

Solving for the derivatives 

* d~ 0 - = dx 

* do - rotR 
dx -

11
,. dJ 

,..,.d:il -J 

0 

(9. 16) 

= IDfR 

(9. 17) 
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If we now assume that for x large. u'f.-+ ue i.e. a-+ 1 then we may 

make the approximation that 

p = 1-a -z- << 1 (9. 18) 

therefore, 

1 J -+ 2 dJ = 'ii -+ d'il 

Th d . . t· . t l t . th f R 2 p 3 · h. f. d e 1ss1pa ion 1n egra re ains e orm ='Tr 1n t 1s 1rst or er 

approximation. 

The application of the momentum theorem to a control surface 

which encloses the body and extends far enough downstream so that 

P R:l P gives 
e oo 

D = 2 ~
00 

u u p u - (1 - - )dy 
00 u uoo 

0 00 

(9. 19) 

or 8 
00 ~00 u * 

~ (1 - u-)dy ~ 0 = 
0 00 00 

con st. 

* Thus o is to first order constant and is equal to one-half the drag 

coefficient of the body. But the drag of the body is just equal to the 

base drag + the initial momentum thickness at the base, hence 

1~ 8 
00 

= 11 = 
-Cp 

Base 
2 (9. 20) 

Thus the base pressure may be determined by subtracting the momen-
8 

tum defect in the far wake hoo (found from the integral solution) from 
8 

the base momentum thickness B~se 

Substituting (9. 18) and (9.19) into (9.17) produces the following 

expression for the rate of change of the centerline velocity defect, 
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dP 4 2 K p3 
dx = -3 1T c; 

integration yields 

p :::: ( 3 )*{:i ~ Kx 
(9. 21) 

* f ·~ 0 CD~+ ( 27 )
2 

CD 1 
h :::: 

2 32ir2 RX J 

To first order, the continuity equation for the far wake has the constant 

pressure form 

tan @ = * do 
dx 

From equation (9.2.l), we find that the induced normal velocity com-
3 

ponent is of order x --z • i. e. 

tan e = (9. 22) 

Therefore in performing the wake iteration scheme it is necessary 

that the assumed distribution of tan (8) have the asymptotic form given 

by equation (9. 22), for a given initial guess of the drag coefficient (CD), 

in order to produce a convergent wake solution. 

In addition to the self induced pressure field of the wake itself, 

additional pressure contributions can be linearly added to the wake 

solution to account for the effects of the body. 
1 

Since the velocity defect P is of order x -2 and the wake thick-

* .!. ness 6 = 6 ( l+ Z) """'xa, then aside from the freestream velocity U • 
00 

there is a finite inflow along the wake toward the body. But this 
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inflow must be balanced by an outflow of fluid from the body of equal 

strength, as shown in the sketch below t 

Thus the external potential flow may be thought of as resulting from 

a source of strength Q = D/p U at the nose of the body, and a distri­
oo 

bution of sinks produced by the wake interaction. The velocity along 

the axis due to a source of strength Q is 

u source = 
Q 

= 

The added pressure term due to the body is therefore 

= x/h >> 1 

(9. 23) 

(9. 24) 

If for a given test setup, the induced velocity at some point in 

the far wake is altered due to the surrounding tunnel geometry, this 

will effect the level of the base pressure. These tunnel and model 

effects are not negligible and can produce a considerable variation in 

the base pressure as the experimental results of Roshko and Lau 

(figure 28) have shown. It may be possible to include these geometry 

effects by using additional image sinks beyond the tunnel walls in 

order to balance the sinks produced by the free wake. 

t see Prandtl-Tietjens Hydro and Aeromechanics, p. 124. 
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In conclusion, we have indicated the direction in which an 

integral analysis of the inc om pr es sible base flow region should pro­

ceed. An outline of what appears to be a convergent iteration scheme 

has been set forth based on the techniques developed for supersonic 

flow, along with some relevant discussion of the appropriate boundary 

conditions necessary to establish the level of the base pressure. 
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X. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

In reviewing the theory as presented in this paper, we note 

that the following broad assumptions were required in order to obtain 

a solution to the turbulent base flow problem: (1) an eddy viscosity 

law and compressible transformation [p 2 e = f(x)] can be used to de­

scribe the scaling effects of the turbulent shear stresses; (2) single 

parameter Stewartson profiles are adequate to describe the velocity 

profiles in the turbulent near wake, not too close to the base; (3) the 

boundary layer assumption op,/8y i:::::1 0 can be used throughout the near 

wake flow field within the viscous sublayer region; (4) the outer flow 

can be considered fully isentropic; and (5) flow perturbations in the 

vicinity of the corner do not affect the downstream solution. 

While the assumptions above are clearly open to question and/or 

improvement, it is felt that any turbulent base flow solution must in­

corporate the essential feature of viscous-inviscid interaction. For 

the case of super sonic flow, any solution must acknowledge the exist­

ence of the Crocco-Lees critical point. Theories which are based on 

matching conditions far downstream of reattachment can be considered 

only as sophisticated correlation procedures without the proper physi­

cal foundation. 

As to the five assumptions listed above we can make some 

important conclusions based on the results obtained so far. 

First, it appears that for the free shear layer the use of the 

eddy viscosity model of equation (4. 26) with the reference density equal 

to the density in the quiescent region, gives good agreement with 
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experiment for overall growth rates, such as the momentum thickness. 

While the eddy viscosity model was verified for the asymptotic or sim-

ilar shear layer (and far wake), it has not been fully established that 

this model is completely valid in the non- similar mixing regime. A 

thorough experimental and theoretical investigation of the mean flow 

quantities and turbulent fluctuations in the non-similar shear layer is 

considered important. Further, there is essentially no direct verifi-

cation of the eddy viscosity model used for the compressible reattach-

ing (pr= p(f. ). No present experimental fluctuation data exist against 

which a compressible near wake eddy viscosity model can be compared, 

as has been done for the data of Tani and Mueller (21, 22) for the incom-

pressible case. This would be a difficult, but most necessary, exper-

imental task to be undertaken if we are to learn more of the essential 

, ,features of separating and reattaching turbulent flows. 

Such an experimental investigation of the details of the wake 

profiles would also aid in determining the validity of the Stewartson 

profiles near the rear stagnation point and the two parameter cosine 

profiles near the base. Even with .the relatively simple eddy viscosity 

model and velocity profiles presented in this study, the results of the 

integral solution indicate that the basic length scales and pressure 

gradients in the near wake are well described by this analysis (at least 

for those cases where non-is entropic outer flow field effects are un-

important). 

The last three assumptions, (3)-(5), can actually be considered 

as one problem, which is directly attributable to events occurring in 

the immediate vicinity of the corner. As pointed by Golik et. al. ( 8 ) 
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(for the case of supersonic expansion), within the distance (x ) re­
e 

quired for expansion of the boundary layer (6
1

)., both vertical and 

horizontal pressure gradients are of the same order within the rota-

tional layer. This distance can be estimated from the sketch below, 

which denotes a simple Prandtl-Meyer expansion of the initial bound-

ary layer. 

Therefore 

oz 
tanµ=-

2- x e 
(10. I) 

( 10. 2) 

One notes that the expansion distance will be small only if the upstream 

boundary layer thickness and initial edge Mach number are also small. 

As the results of section VIII indicate, the isentropic boundary layer 

solution diverges from the data for approach Mach number of the order 

of 3 or more, for initial values of o 
1 

of the order of the step height. But 

when the approach Mach number was sufficiently low (M s: 2) good 
00 

agreement between theory and experiment was obtained. 

Thus we conclude that at high Mach numbers (M 1 ~ 3) the effect 

of the corner expansion process becomes very important. Therefore, 

in order to adequately handle the near wake flow field analysis, an 

t For laminar flowi equation (10. 3) implies that the expansion length 
is proportional to the hypersonic interaction parameter X = M 3 / JREL 
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outer rotational characteristic calculation procedure must be used to 

properly account for the entropy gradients and lip shock formation in 

the outer flow field. Such a calculation procedure is beyond the scope 

of the present analysis. 

X. I. Summation of the Major Conclusions 

1. Assuming that the turbulent shear stress is of the Boussinesq 

form it was shown, for incompressible flow~ that the proportionality 

constant (K) for the eddy viscosity model e: = !. ~ is essentially P oy 

identical for both similar free shear layers and self preserving wakes 

(based on the experimental data) provided that e: scales only with the 

momentum thickness 9, and edge velocity u , i.e. 
e 

2. 

€. = 
l 

K u 9 9 e 

Employing the compressibility transformation p
2 e: 2 = p Ku r e 

and a modified Stewartson transformation of the coordinatesa it was 

found that the spreading rate of the compressible similar free shear 

layer momentum thickness is inversely proportional to the square of 

9 

the reference density. The value of p which scales the compressible 
r . 

experiments is the density in the quiescent region bounding the shear 

layer, Pr= Po~ P<f. • 

3. The length of the constant pressure mixing region x /h was 
0 

found to be nearly constant for base flows with initial thicknesses 

o 1 /h < l, but x
0
/h decreases rapidly as o 1/h increases above l. This 

result was confirmed for both a free shear layer model and a Z param-

eter set of wake profiles which were used to join integral wake solu­
tion to the base. 
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4. Using a simple conservation model to relate the viscous sub-

layer, after the corner expansion,to the initial boundary layer approach­

ing the step, it was shown that the thickness of the sublayer t::.
2 is 

approximately 10-20~ of o 1• The initial edge Mach number of the 

sublayer ahead of the turn is always near one, no matter how high 

the freestream Mach number. This leads to a maximum base pres­

sure ratio Pb/P 
00 

i::::l. 78 • for all initial Mach numbers, for the case 

of very thick initial boundary layers ( o 1/h >> 1). 

5. For free stream Mach numbers M
1 
~ 2. 3, the combined super-

sonic theory gave good estimates for the length of the constant pres-

sure region, the distance to the rear stagnation point» the distribution 

of centerline pressure during reattachment$ and the trend of increas­

ing base pressure with increasing e
1/h, for the cases of both wake and 

splitter plate reattachment. 

6. An outline of what appears to be a convergent iteration scheme 

for the incompressible case was presented in section IX. It was shown 

that the techniques developed for the super sonic integral analysis could 

be adopted for the low-speed problem, provided that the normal veloc­

ity field in the far wake is of order x -t_ It was also pointed out that 

the low- speed base pressure coefficient is simply tre difference be­

tween the momentwn thickness in the far wake and the value of 8 

approaching the base. 
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