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ABSTRACT

The integral near wake analysis of Reeves and Lees developed
for supersonic laminar base flows is extended to the case of fully
turbulent separated adiabatic flow behind a rearward facing step at
both subsonic and supersonic speeds. A turbulent eddy viscosity
model is formulated for the shear stress scaling of the dissipation
integral in the mechanical energy equation. It is shown that the eddy
viscosity can be described simply by one incompressible constant
(valid for both shear layers and wakes) and one reference density P
Using a compressibility transformation, theoretical solutions for the
spreading rates of free shear layers are found to agree with experi-
ment when the reference density is chosen to be the centerline density
for the wake flow.

Two alternate methods are presented for joining the wake flow
solution to the body: first, through a turbulent free shear layer mix-
ing solution, and then through the use of a two parameter family of
velocity profiles valid near the body. A simple conservation model
is presented to relate the viscous sublayer after expansion to the ini-
tial boundary layer ahead of the step.

For free stream Mach numbers M1 < 2.3, the integral theory
is found to give good estimates for the length scales and centerline
pressure variations measured experimentally for both wake flows and

step flows (where reattachment is to a solid surface]j.
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ABSTRACT (Cont'd)

An iterative method of solution for the incompressible wake
flow problem is presented as an extension of the work of Green.
The calculation proposes the proper criteria for obtaining a con-
vergent solution, The base pressure coefficient is found to be equal
to the difference between the momentum thicknesézes in the far wake

and at the base.
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I. INTRODUCTION

Numerous experimental and theoretical studies (1,2,3) in recent
years have been directed toward obtaining a better understanding of
the mechanism of flow separation and reattachment behind blunt and
slender bodies at both subsonic and supersonic speeds (see figure 1).
Initial interest centered on the prediction of base pressure. Design
of hypersonic re-entry vehicles has led to the consideration of the
base heating problem and the correlation of wake observables with
the flow field in the near wake.

For freestream Reynolds numbers (ReL) greater than 1 to
5 x 106 a boundary layer approaching a cavity or base is in most cases
fully turbulent. These conditions apply to almost all separated flows
in the subsonic and low to moderate supersonic flight regimes.

As well as their direct engineering importance, turbulent
separated flows provide a basic flow situation against which many
theories for free turbulent flow may be tested and evaluated.

The initial theoretical work of Korst (1), Nash (2 ),
McDonald (3 ) and others on the supersonic turbulent base flow prob-
lem was concerned mainly with the prediction of base pressure,
through the use of various reattachment criteria.

While pointing out the important role of the separated shear
layer, Chapman (4) and Korst (1) essentially disregarded the me-
chanics of the reattachment process in order to calculate the base
pressure. They assumed that the total pressure along the dividing
streamline (separating the recirculating flow from the external flow)

is completely converted to the static pressure downstream of
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reattachment, Py, = Poo' Nash (2 ) points out the rather fortuitous

. 8.
cancellation of errors in the Chapman-Korst analysis, i.e., the in-
correct assumption of isentropic recompression coupled with the
neglect of the initial boundary layer. However, he, too, treats the
recompression process as a ''black box'", by using an empirical factor,
N = (Ptc.)ts. - Pb)/(Poo—Pb) ~ .35, to relate the total pressure on the
dividing streamline, Piot » to the freestream static pressure, Poo'
McDonald ( 3 ) obtained 'as;mique solution for the base pressure by re-
quiring that the '"shape parameter of the reattached boundary layer
should be of the flat plate type' (¥ ~ 1.2-1.6).

Starting with an initial mixing profile, McDonald employed a
stream tube approach (assuming isentropic flow along streamlines)
to determine the integral thicknesses 8 and 6* at the rear stagnation
point. He totally disregards the effect of the viscous mixing and the
interaction with the outer flow and uses an empirical equation to re-
late the development of the reattaching shape factor ¥ to the velocity

Ue at the edge of the boundary layer. He iterates on the base pressure
until Noo - Nﬂat plate’

All of the above theories are incapable of predicting such im-
portant wake characteristics as the length of the recompression region
(of the order of 4-8 step heights), the location of the rear stagnation
point, the growth rate of the wake boundary layer and the longitudinal
pressure variations in the reattachment region. These theories can-
not determine the above mentioned quantities because they disregard

the essential viscid~-inviscid interaction which determines the reattach-

ment process and thus the whole turbulent base flow field. In 1952,
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Crocco and Lees (5 ) developéd a theory for the supersonic near wake.
The effect of viscous-inviscid interaction was included through the use
of the integral continuity equation, which equates the angle ® induced
at the edge of the inner viscous flow to the angle of the inviscid outer
flow tam"1 g—i . While a crude semi-empirical model was used for the
viscous mix?ng, it was established that a unique value of the base
pressure (in the supersonic case) could be obtained through the re-
quirement that the integral conservation equations produce a solution
curx-re which passes smoothly through a saddle point singularity down-
stream of the rear stagnation point, referred to as the "critical point",
This singularity is analogous to the "throat' at Mach lin a converging -
diverging nozzle, since the subcritical boundary layer (subsonic in the
mean) becomes supercritical (supersonic in the mean) after passing
through the critical point. Experimental evidence of the existence of
such a poiqt for base flows was presented by Carriere in reference (6 ).

The theoretical model of Reeves and Lees (7) and Webb, Golik
and Lees ( 8), developed for the laminar near wake, has improved on
the Crocco-Lees solution through the use of multi-moment integ\ral
equations_r with suitable wake profiles for the hypersonic laminar
near wake behind blunt bodies. It was shown that solutions at low
wake Mach numbers (M < 3) and at high Reynolds numbers employing

single parameter Stewartson wake profiles gave results which were

in good agreement with experiment.

T The semi-empirical "mixing rate'' law of the Crocco-Lees theory
is replaced by the use of the integral mechanical energy equation for
the wake. o
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Recently Green ( 9 } attacked the incompressible turbulent
reattachment and base flow problem using integral methods and thin
airfoil theory for the viscous-inviscid interaction. Unfortunately a
complete solution was not obtained in the reverse flow region upstream
of the rear stagnation point or in the far wake. It appears, though,
that the incompressible problem can be properly handled by coupling
the viscous integral equations developed for supersonic flow to the
proper incompressible inviscid outer flow field.

With the above theoretical studies as a foundation, the purposes
of this present investigation are:

(1) to extend the integral inviscid-viscid solutions developed for
the laminar supersonic wake of a blunt body to the analysis of turbu-
lent base flows at moderate supersonic speeds behind a rearward
facing step. )

(2) to improve on the work of Green and obtain a more rigorous

method of solution for the incompressible turbulent near and far wake.

It has also been suggested that reattachment to a solid surface can be

treated by a wake type solution, since the reattaching boundary layer
has a large steadily decreasing wake component downstream of the
rear stagnation point. It is thus possible as an extra feature of inter-
est to determine by comparison of the wake theory with experimental
data whether or not the axis shear stress in the reattachment region
can be neglected in the calculation of separated flows which reattach
to solid surfaces. It would then, it is hoped, be possible to treat both

wake and solid surface base flows by the same theory.
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The adiabatic supersonic turbulent base flow field is examined
in sections II-VIII. Some of the methods developed in these sections
are then used in section IX in order to formulate the method of solu-

tion for the incompressible case.
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II. DESCRIPTION OF THE SUPERSONIC FLOW FIELD

The principal objective of this study is to try to understand
the gross effect of the turbulence and dynamics on the important
length scales and pressure levels in the near wake. Thus, in order
to formulate a simple model for the two-dimensional turbulent base
flow field, it is most necessary to make use of the available experi-
mental measurements so as to delineate, if possible, the most im-
portant features of a highly complex flow pattern.

II. 1. The Two-Dimensional Turbulent Base Flow Field

Several important regions in the super sonic turbulent base
flow field behind a rearward facing step have been clearly established
by the investigations of Larson et al. (10), Hama (11), Hastings (12),
Roshko and Thomke (13), Badrinarayan (14), and many others. Using
thé Schlieren photograph of figure (2), the schematic flow field sketch
of figure (3), and the experimental results of the authors above, it is
possible to discern certain distinct features of the base flow in the
vicinity of the step.

Along the upper surface of the step an undisturbed fully devel-
oped boundary layer with adjacent inviscid supersonic flow approaches

the corner; with edge Mach number M

and static pressure P In a

1 1’
small region near the corner, of the order of a boundary layer thick-
ness, pressure signals from the separated flow downstream of the
corner are propagated upstream through the subsonic portion of the
boundary layer. The resulting effect is a rapid expansion of the

boundary layer. This produces a drop in pressure just upstream of

the step and a ''diving in'' of the sonic line in the boundary layer toward



the wall.

The boundary layer and adjacent outer inviscid flow initially
undergo an expansion to a pressure somewhat lower than the base
pressure. Since a pressure rise is required in order to separate an
attached boundary layer, a compression is generated near the end of
the expansion fan. This compression gives rise to the characteristic
lip shock seen in figure 2 which separates the outer (almost inviscid)
part of the expanding boundary layer from a new viscous sublayer
which is formed just below the edge of the step. This sublayer
(10-20% of the thickness of the initial boundary layer) then develops
as a free shear layer intoc a region of recirculating flow at nearly
constant pressure. Actually there exists a slight pressure rise to-
ward the base, along the centerline, due to the stagnation of the inner
reversed flow on the base. In the initial mixing region the velocity on
the shear layer dividing streamline increases rapidly as mass is en-
trained from the dead air region.

As the mixing layer approaches the axis, the outer flow is
turned back toward a direction parallel to the centerline and the pres-
sure rises because of the interaction of the shear layer with the ex-~
ternal flow. The velocity on the dividing streamline drops to zero at
the rear stagnation point as the dividing streamline dives in to the
axis at an angle of 90°, thus closing off the region of recirculating
flow from the developing downstream wake.

The centerline pressure continues to increase downstream of
the rear stagnation point as the pressure recovers to approximately

the pressure ahead of the step. The compression waves generated by
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the reattaching viscous flow coalesce to form the familiar wake shock.
The shock acts to turn the nearly inviscid (but rotational) outer portion
of the expanded boundary layer and adjacent inviscid flow back parallel
to the axis,

All of the features noted above have been found in experiments
for both turbulent and laminar approaching boundary layers. The
basic difference in the two types of flow is largely due to the fact that

the turbulent mixing rate {~ g—g—l—) is of the order of ten times the lam-
inar value. This results in higher velocities on the dividing stream-
line for the turbulent shear layers as opposed to the laminar layers,
with the consequence of a lower base pressure for turbulent flow. A
further result of the difference in mixing rates is that the length scales
involved in the laminar interaction are somewhat greater than for the
turbulent interaction. The wake profiles measured by Badrinarayan
(14) show that there is little difference in the basic shapes of the lam-
inar and turbulent wake profiles. Thus one might conclude that an
integral analysis of the turbulent near-wake can be carried out by
using any suitable set of wake profiles, provided that an appropriate
length scale is adopted through the turbulent shear stress model.

II.2. The Lip Shock

The presence of a lip shock near the end of the corner expan-
sion fan emanating from within the viscous portion of the flow has been
the object of several recent papers (1], 15). Both the experimental studies
of Hama (11) and Scherberg and Smith (15) have indicated that the flow
in the vicinity of the corner undergoes an overexpansion and then a

-pressure recovery through an oblique shock of varying strength. Hama
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has shown that the lip shock strength (PZ/PO. e.) can be correlated
with the overexpansion ratio (Po. .. /Pl) and that this ratio varies
with the Reynolds number of the flow approaching the step.

Two basic reasons have been set forth to explain the lip shock
phenomena. In the first instance the lip shock is considered to be a
separation shock, the jump across which is just sufficient to separate
the attached boundary layer approaching the base. The separation
shock is generated from disturbances fed upstream from the base
through the subsonic portion of the boundary layer.

A second cause of the lip shock can be traced to the reflection
of the boundary layer rotational expanéion waves from the free jet
boundary formed in the base region. In actuality the lip shock may
result from a combination of these two effects, with a small separa-
tion compression emanating from within the viscous layer being re-
inforced by a coalescence of the rotational expansion waves.

The experiments of Hama show that the lip shock can inter-
sect the wake shock, thus pr oducing a reflected expansion fan which
can seriously change the shape of the static pressure rise profile along
the centerline of the wake. However, for Mach numbers Moo < 2, the
pressure profiles of Roshko and Thomke, Hastings, and others tend
to show no appreciable evidence of this shock-shock interaction.

The measurements of Hastings on the lip shock strength of
base flows near Mach 2 with moderate to thick initial boundary layers
(Gl/h = .2-5.0), indicate a negligible (less than 10%) pressure jump

across the shock. The overexpansion ratio for this range of initial
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conditions also indicates a low shock strength if the correlation plot
of Hama is used.
Thus it appears that the effect of the lip shock, as it influences
the development of the wake flow field, may be neglected at Mach

numbers of approximately 2 or less provided that the overexpansion

P P P
9-€: & base is not too small ( AL
P P P

1 1 1
Since complicated characteristics calculations would be re-

ratio

2 0.4-0.5).

quired to simulate the lip shock and its attendant interactions and
because a simple base flow model is sought in order to bring out the
essential features of the turbulent viscous-inviscid interaction, the
validity of a model which assumes an isentropic inviscid flow field
is necessarily limited to those regions listed above where the lip

shock strength is small.
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1II. FORMULATION OF THE SUPERSONIC PROBLEM
A statement of the theoretical wake problem [that one would
like to solve] is as follows: Given an initial turbulent boundary layer
with thickness 61, edge Mach number Ml’ and static pressure P1
approaching the corner of a rearward facing step of height h; deter-

E
mine the development of the overall wake flow features (e.g., u,

5, Me, ;——?—, e, u(g) as a function of the normalized axial distance
from the base, x/h (see figure 3).

In practice, the inverse problem provides the most direct
means of obtaining a solution, since there is no Reynolds number
scaling to consider for the turbulent wake flow problem.T For a given
downstream edge Mach number Moo’ a normalized wake solution down-
stream of the rear stagnation point is determined which passes
smoothly through the Crocco-Lees critical point. This solution is
made independent of the initial boundary layer thickness by normali-
zation of all length scales (x, 6*, etc.) by the displacement thickness
at the rear stagnation point 6:‘ (0). The wake solution is then directed
upstream into the reversed flow region (see section V). For any given
free shear layer, the velocity on the dividing streamline u=v= is initially
zero at the base, and increases rapidly in the initial region of constant
pPressure mixing. u* continues to increase until it reaches a maximum

*
value (0 < u < .587) at the point where the wake flow field begins to

interact. It then begins to decrease until it goes to zero at the rear

T No Reynolds number scaling appears in the solution provided that
a turbulent eddy viscosity is employed which is proportional to a char-
acteristic thickness of the wake, e. g., € ~. 8,
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. . k3 *
stagnation point. By considering any value of u along the wake solu-
%* x 3¢ ‘
tion curve u = u (x/{ii (0), Moo) in the reversed flow region as the
3
maximum u possible, for a given set of initial upstream conditions,

then it is possible, by a suitable matching with a mixing solution

* * Imix 92 . c s
u =u (———, +—, M ) near the base, to determine the initial
max h h e

sublayer thickness 62/}1 necessary to produce that maximum value
of u*. By matching the distance to the upper edge of the sublayer
mixing solution with the height of the wake boundary (see figure 4)
and requiring continuity of Me’ u*, and mass flow at the joining pointf
one can then not only determine 62/11 at the corner, but the mixing

mix . *
length A and the wake scaling parameter 6i (0)/h as well. Thus

the wake solution is joined in this inverse manner to a step of héight h.
By using a simple integral conservation model (see section VII)
to determine the relation between the thickness (61) of the undisturbed
boundary layer approaching the step and the viscous sublayer thick-
ness (62) after expansion about the corner, the wake solution is then
identified with a properly determined set of initial conditions (61/h,

Ml’ Pl).

¥ A similar matching technique was employed by Grange, Klineberg
and Lees (16) for the laminar near wake behind a blunt body, however
a double iteration procedure was required in order to obtain a solution
due to the Reynolds number scaling and the fact that the separation
point was not known 4 priori.
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IV, TURBULENT SHEAR STRESS MODEL
If a set of integral conservation equations are employed in
order to analyze the near and far wake flow fields, the only major
difference between the laminar and turbulent flow solutions will be
in the length scale introduced into the problem through the viscous
dissipation integral fé T g—;}- dy. Thus, if one is able to obtain an ex-
pression for the magxolitude and approximate variation of the turbulent
shear stress throughout the viscous layer, by use of an appropriate
semi-empirical hypothesis, it should then be possible to obtain a good
estimation of the important length scales and pre ssux;e levels for the
turbulent base flow problem.
In the absence of any other acceptable theoretical model, the

important assumption is made that the turbulent Reynolds stress

L A . .
T=-puv is of the Boussinesq form, i.e.,

T:pe-a—y_— | (4'1)

where ¢ is the well-known eddy viscosity coefficient.

IV. 1. Incompressible Wake Eddy Viscosity

Townsend, (17) in his experiments on the low-speed wake be-
hind a cylindrical rod, found that near the wake axis, the shear stress
could be expressed by an equation of the form of (4. 1). This behavior

is evident when one notes that near the centerline

u'vi~y

because of symmetry. In addition, since 8u/8y is zero on the wake

axis
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Bu
ay Y
Therefore TReynolds = - p u'v’ ~ p g—;-} and if € = €(x) is chosen as the

constant of proportionality, then

T~e§3
R - P* %y

Furthermore, if the mean flow and the correlation coefficient of veloc-

ity fluctuations are self-preserving, as found experimentally by Town-

send far from the body (x/d > 500) then one may write

u -u

S = fy/b) | (4.2)
U,IV’

=- = gly/b) (4.3)
u

where b is a measure of the wake width and Au is the maximum veloc-
ity difference across the wake = (ue—ug).

Near the wake axis g(y/b) ~ y/b because of symmetry. Town-
send's measurements also indicated that near the centerline the inten-
sity of turbulence m is proportional to the wake velocity defect

(Au), i.e.,

w’® o A (4. 4)

Therefore, from equations (4.3) and (4. 4) one obtains the following ex-

pression for the Reynolds stress based on the fluctuation measurements
T 2
TR = P u'vi ~-p(Au)”(y/b) (4. 5)

In addition, the velocity gradient of the self-preserving mean flow

from equation (4. 2) is
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Ju _ 1 )
u - - Lians

9y

Using the Boussinesq form for the shear stress

Te du _ (Au) .
B = peg-};-— -pe'--b—”f

and near the axis of symmetry £’ ~ b. Thus T assumes the form
Yy y Yy B

T~ -pe Bl (X, (4.6)

B

Equating expressions (4.5) and (4. 6), one finds that the eddy viscosity

has the following form for self-preserving flow
€ ~ Au. b
or e = Kb(Au)b (4. 7)

where K is a "universal'' constant for 2-d incompressible self-
preserving turbulent wakes, which must be found experimentally.
The constant of proportionality K is simply the reciprocal of

Townsend's experimentally determined ""universal' Reynolds number

dub 2.5 (4. 8)

2

where b is the width of the mean velocity distribution

u ~-u
eAu = exp [-%‘ yz/sz (4.9)

defined by the condition

ue-u(b)
Au

L
-z .

= e = 0.605
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This constant was determined by matching Townsend's experimental

mean velocity profile to his theoretical solution

R e ST M p
- o d o

Lees and Hromas (18), in their study of turbulent diffusion in
the wake of a blunt-nosed body, pointed out that the characteristic
length for their study is not the body diameter but the momentum
thickness, 8, which is essentially the drag coefficient of the inner
wake.

It is possible, then, to redefine a new ''universal'' Reynolds
number ReT which has as its characteristic length, the momentum

thickness 06 defined by the relation

8 ~ -E--l-;‘;-(l--)dy (4. 10)
0 Pe Ye e

which for the case of an incompressible wake with a Gaussian profile,

(equation 4.9), becomes

Nb—-

GNS 1-«-——)dy bS

Evaluating the Gaussian integral one finds

- ™
= /2- Mub (4. 11)

Thus the turbulent momentum thickness Reynolds number is given as

a

= < - /T
R = 5 R

= = 15,7

T

and the proportionality constant Ke = (R eT)_l
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K = ,064 and ¢
W

5 K.u 8 (4.12)
wake

ake B e

IV.2. Incompressible Turbulent Boundary Layer Eddy Viscosity

Clauser (19), in his experimental study on the turbulent equilib-
rium boundary layer with pressure gradient, determined that the outer
portion (~ 80%) of the boundary layer could be calculated from a Falkner-
Skan like family of solutions, provided that an eddy viscosity model of

the form
€ = K u 6 (4.13)

was chosen.

For the case of reattachment to a solid surface this result
implies that a large portion of the boundary layer can be considered
wake-like and thus amenable to a wake-type analysis.

IV.3. Incompressible Free Shear Layer Eddy Viscosity

Goertler(20) also employed the eddy viscosity model given by
equation (4. 7),T in order to calculate the similar solution for the veloc-
ity profile of a constant pressure free mixing layer (see figure 5). He
assumed the width b of the layer to be proportional to the mixing dis-

tance x, thus

Cfree Kx(Au)x (4. 14)

shear

The first approximation to his solution

T = #l+ert (@] (4. 15)
e

T Equation (4.7) is generally referred to as Prandtl's free mixing eddy
viscosity hypothesis.
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has been used extensively by many researchers to determine the

1

2K,

pressible free shear layers. Reported experimental values of ¢

spljeading parameter o (= ), for both incompressible and com-
range between 10 and 12 for incompressible flow, with a value 0&11.0,
usually used in most incompressible numerical computations.

Both the free shear layer spreading rate near the body and the
growth rate of the far wake downstream of the body are, perhaps, the
most important elements for determining the length scales in the tur-
bulent base flow problem. One is then led to ask whether or not it is
possible to prescribe a single eddy viscosity model which (based on
the experimental data) can be used to determine the growth rates in
both the free shear layer and far wake regions.

If one uses the Prandtl eddy viscosity model (equation 4. 7) and
selects as the representative thickness the physical wake or shear layer
thickness [6 = (YU.-'-‘-O. 99 = Yu=o0. 01)] then one finds a considerable dif-
ference in the values of the proportionality constant K required to
match the experimental viscous layer growth in each region. If the

eddy viscosity has the form

€g = KAud (4.16)

then one finds that K = ,043 and K6 = ,007. The constants
wake shear

layer :
differ by a factor of 6. Thus if (4. 16) were used for ¢, it would then
be necessary to adopt some arbitrary sliding scale for K in order to

determine the eddy viscosity in some area of the flow in between the

shear layer and far wake regions. The displacement thickness
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5 = Smu B Yy gy
0 Pe Ye

would be a poor choice for ¢ since its value goes to infinity for a free
mixing layer.

Perhaps the most appropriate width, which is finite for the
free shear layer (for finite x), is the shear layer momentum thickness
8. The eddy viscosity thus assumes the form previously considered

for the far wake,
€g = Keuee (4. 17)

Using the error function profile (equation 4. 15) to determine 8

o0
gﬁzg 2 (1-2)d (&)=, = .39844
x u u X

0 "e e

and equating expressions (4. 14) and (4. 17) for ¢, we findf

-1 2 =
Ky = goc = :057forg=1L0 (4. 18)

shear 1
layer

In comparison, the value for the far wake was found to be

KG = .064
wake

Thus, within the range of experimental error, the eddy viscosity
coefficient KB for the similar free shear layer and far wake can be
considered identical (K.e = .06 £.004) provided that the characteristic

thickness for ¢ is chosen to be the momentum thickness 8 of the vig~

cous layer.

Note Kx = 1/402
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Even though similarity is never fully achieved, for the free
,'shear layer with finite initial boundary layer, and likewise is obtained
only in the wake flow far downstream of the base, the important as-

sumption is made that the eddy viscosity assumes the form

€incomp = 06 U8 (4. 19)

throughout the entire incompressible base flow field.1~ This formula-
tion implies that ¢ instantaneously takes on the value corresponding to
the eddy viscosity of a locally similar flow.

IV.4. Comparison of Incompressible Eddy Viscosity Shear Stress
Experimental Base Flow Data

Experimental measurements have been made by Tani, et al.
(21) and Mueller (22) of the turbulent fluctuations and shear stress
variations in the low-speed flow field behind a rearward-facing step.

Their data make possible a comparison of the measured maximum

7 7

turbulent shear stress 2w v and dissipation integral
U Imax
6 )
—-—1—-3— j T -g-—ui dy at some point in between the free shear layer and far
pU o y

00
wake regions. The data at the measured rear stagnation point is best
suited for a comparison with the theory, since all that is required in
addition to the eddy viscosity model of equation (4. 19) is some appro-
priate r.s.p. velocity profile, such as the § = -. 1988 Stewartson pro-
file ( to be used later in the integral analysis of section V).

The non-dimensional maximum turbulent shear stress 'T/-Zl—p Uoi

as deduced from the eddy viscosity model is simply

T In sections IV.5 and IV. 6 the effects of compressibility on the eddy
viscosity formulation 4. 19 are considered.
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8 au/Uao ”
= 2K, <?‘> (..._5.);.._>max= 2R NF" (4. 20)

where & = .248 and F’ = , 860 for the B = -. 1988 Stewartson r. s. p.
velocity profile. The experimental values of Mueller and Tani are

as follows

r_ 7
-2u 5 =.024 - .034 Step height
U —_—
® "Mueller h=,25-,75 inches
expt.
r.s.p. @x/h~7.0
~2u’v’ -
UZ "M h=.5-6.0cm
) Tani
expt. r.s.p. 8 x/n= 6.0

The mechanical energy dissipation integral, I., as mentioned previ-
ously, is the only term through which the turbulent scaling is intro-
duced into the integral flow conservation equations. This quantity is

given simply by the theory as

&
_ T 9 (U )
Isy = S 2 sy \T /Y
oP Uoo %
= 3 KR = 9.55 x 107 (Theory) (4.21)
where
.263‘e 6 du 2
R = (=) dy = 1.260 from the Stewartson profile
y 29 0y

o0
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The experimental values found by Mueller are

3 3

5.5 x 102 - 11.0 x 107 h=.25-.75 inches

Id|Mueller =
expt.

As one notes from a comparison of the values above, the eddy viscos-
ity model provides a good prediction of the magnitude of the shear
stress and dissipation integrals obtained from the incompressible
flow measurements made at the rear stagnation point,

Thus we may proceed with some conviction that the scaling in
the non-similar regions of the flow will be adequately predicted by our
choice of the eddy viscosity model (4. 19).

In the next section we will attempt to extend this model for ¢
to compressible flows using the available compressible free shear
layer measurements as a guide.

IV.5. Transformation of the Free Turbulent Compressible Boundary
Layer Equations

The equations of mean motion of the free steady two-dimension-
al turbulent compressible boundary layer of a perfect gas with variable

density p(x, y) are given in the form:

Continuity:
0 ] _
pe (pu) + -a—}-; {pv)=0 (4.22)
Momentum:
du du dp , o7

pu % +pv-5-§- = "‘5}’*'?}?
{4.23)
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By considering the turbulent Prandtl number equal to unity
(PRt = 1) and assuming no heat transfer at the boundaries, the flow
is adiabatic, T in which case
Energy:
1 1 2

2
CpT t>u T constant = CpTe t > u, (4. 24)

The external flow at the edge of the boundary layer is assumed
isentropic. The external conditions far downstream of the body
(ve = 0, u, = uoo) are characterized by the subscript . If it is re-
quired that the compressible free turbulent boundary layer equations
(4.22-4.24) transform into an equivalent incompressible form and that
the shear stress obey the Boussinesq law (4. 1), then one finds in

analogy with laminar flow that such a transformation can be obtained

by employing a modifiedTt Stewartson tr ansformation

p

a a

a_ p a_ p

0w "o aoo 00 (4. 25)
Y=y U = ;‘fu

and by assuming that the compressible transformation of the eddy

viscosity is of the form

The quantity P, is a reference density in the real flow which will be

determined by comparison of the theoretical spreading rates of the

T This study is limited to the simple case of adiabatic wake flows.
The much more difficult case of non-adiabatic wake flows will be
dealt with in a future study.

The transformation of the x variable is changed from the laminar
orm dX = ae/ag Pe/Py dx, in order to scale the eddy viscosity term
properly.
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compressible free shear layer with experiment (see section IV. 6).
Using the incompressible correlation of ¢ (equation 4.17) as a guide,

the compressible eddy viscosity is thus assumed to have the form
2

Pr
€ = ——-——pz KeuEG (4. 26)

Using the modified Stewartson transformation (4. 25) and the eddy
viscosity model (4. 26), the transformed boundary layer equations

then become

U ov
5t 57 = O (4.27)
dU 2
UauU aU _ e . ~08°U
2x "VeyTUeax t° 2 (4. 28)
”~5 pr 2 P
where ¢ = (——) K U 8 (4. 29)
Pe B e

9 is the transformed momentum thickness defined as

83 a
T = SO -g; (1 - %)dY = a°e°§°° 5 (4. 30)
With the constant Ke essentially determined by the incompress-
ible flow correlation, the effect of compressibility on the turbulent
scaling is relegated to determining the ratio of the reference density
to the density at the edge of the free boundary layer. For an adiabatic
wake flow, one may write this ratio in the form
g.z. = [Hg(Y:Zl_)MZ( -_ui)z} (4.31)

€ u
€

where g is a constant to be determined experimentally. One notes

that for g=0 p_=p

r €

and for g=1 p.= p@
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Thus the reference density can be determined in a manner similar to

the Eckert reference enthalpy for turbulent wall boundary layers.

IV.6. Similar Solution of the Compressible Constant Pressure Free
Shear Layer

In this section we seek to determine the reference density by
comparing a theoretical solution for the constant pressure compress-
ible free shear layer spreading rates with those obtained by experi-
ment. We will first investigate a mixing solution far enough away
from the point of separation for a similarity solution to apply, i.e.
x/eo = 0. Starting with the transformed equations (4.27-4.29), we
employ the stream function { which satisfies the continuity equation,
where

v = U_ E(X)i(n)

The similarity variable n is simply

n= Y/&(X)

Substituting in the momentum equation (4.28), with dUe/dx = 0, we find

£ 4 E(X) U dE(X) =0

~ e dX
€
. . . . ¥ U ¥4 .
For similarity, i.e., {" = T = f7(n) only, we require
e
g dg _ -
";: Ue Ix = constant = a

Without loss of generality we set a = 1 thus obtaining the familiar
Blasius equation of laminar flow
77 + ff" =0 (4. 32)

with the following boundary conditions
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s
~
—
i
8
~——
H
[en

f(0) = 0 impliesn =20
fi{+0) = 1 corresponds to the dividing

streamline § = 0

Solutions of the equation above have been provided both by
Goertler ( 20) and Chapman (23). Thus it is noted that the shape of
the similar velocity profiles in both laminar and turbulent flow are
identical, provided that an eddy viscosity model of the Prandtl form
is used. The only difference in the two cases is the length scale §(X).
For the transformed eddy viscosity as given by equation (4.29) we
obtain

p_\2
EdE = <_PE> Ke"ng (4. 33)

e

For similarity the following relationship between 8§ and £ exists

oG
9 = F,S £7(1-f") dn = EC
=00
where
o0

C - S £/(1-£") dn = .8756

- o0

Thus upon integration of (4. 33) we find

P\ 2
T
E = (-‘-)—-> KeCX
© (4. 34)
and therefore
Pry\2 2
6= F= () K,Ix T
e
i = § and x = X for a constant pressure shear layer provided the

flow conditions at «w are taken to be the same as those at the edge of
the mixing layer, i.e. Pl = Peer
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While dimensional analysis can independently show that similar
turbulent shear layers spread linearly with X, equation (4. 34) in
addition implies that if the reference density is less than the edge
density in compressible flow, then the magnitude of the linear spread
will be smaller in compressible than in incompressible flow. Such
a trend has been noted by many experimentalists.

This points to the selection of the density in the quiescent
zone (g = 1) as a likely candidate for the reference dentity. In addi-
tion if it is required that the transformation reduces to itself in a
region of the real flow where the density is incompressible, i.e.,
in the quiescent region, then in order that the local shear stress in
the vicinity of this region correspond to that of an incompressible

flow, we must place

Pze “92‘3
w0 r o
or Pr = Py=o = Po

While Coles (33) correctly points cut that such a requirement is not

at all necessary for a compressibility transformation of the equations,
we will assume the reference density to be po(g = 1) and then check
this assumption with the experimental results.

For the case g =1 and u_ ~ u 0, equation (4. 31) yields

(ff) . Po ““-‘II‘““Z (4. 34)
Pe’ const Pe 1+-Y-2——— Me

press
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Comparison with Experimental Data

The evaluation of the spreading rate for the turbulent half jet
has been the object of numerous experimental investigations over the
past 40 years. The early experimental work of Tollmien (24),
Reichardt (25) and Liepmann and Laufer (26), helped to establish an
approximately constant value of the mixing coefficient g (~ 1/K) for
the incompressible flow of a half jet (o0 ~ 11.0). The usual method for
determining the spreading rate was to compare measured velocity
distributions in the nondimensional form of gy/x vs. U/Ue with some
known theoretical velocity distribution, such as that derived by
Tollmien (based on Prandtl's mixing length hypothesis) or Gdertler's
velocity profile, or the previously mentioned error function profile

(GOertler's first approximation). The incompressible jet spreading

b3
parameter (o0 = OM=O) is related to our mixing coefficient Ke by the
relation
¥ 01
9 = IR (4.33)

While the incompressible value of ¢ appears to be well estab-
lished (within a range of 10 to 20%), the attempt to extend the measure-
ment of the mixing coefficient to cases where compressibility effects
are important (Me 2 1.0) has resulted in a great discrepancy between
the reported values. For example, experimental values at Mach 2 as
reported by McDonald { 3 ) differ by almost a factor of 2. The most
common experimental method (27, 28,29) for obtaining a quasi-two
dimensional-turbulent mixing zone is the investigation of the velocity

profiles in the potential core regime of an axisymmetric jet exhausting
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from a nozzle into a quiescent atmosphere (see figure 5). Since the
shear layer width is small in comparison to the nozzle radius, axi-
symmetric effects are generally neglected. Other experiments, such
as those of Charwat and Yakura, Sirieix (30) and Bailey and Kuethe
(31), have used two dimensional step configurations and made probes
of the constant pressure free shear layer regime.

Outside of common experimental errors (such as those caused
by probe calibrations, etc.) there appear to be two major causes for
the discrepancies in the reported values of g. The first cause may
be attributed to the fact that, in many of the cases, the flow Had not
reached a similarity state, (i.e., where x/eo - o0 and u./ue = f'(n) )
because of the presence of a sizable initial boundary layer prior to
separation. This problem is particularly true in the cases of pure
base flow setups such as in the experiments of Charwat and Yakura
at Mach 2 and those of Larson, et al. (10) at Mach 3 where recom-
pression began before similarity could be achieved. Since the rate
of growth in the initial non-similar region is greater than that of the
asymptotic (x/eo = o) linear growth, low values of ¢ are reported.

As will be shown later, a good criteria for judging if similarity has

been reached is that

X/GO
> 10 (4. 36)
o*(1+Y—5i 1\4;‘)Z

We note from equation (4. 36) that as the Mach number of the external
flow increases, the longitudinal distance along the mixing layer (x)

at which a similar profile may be expected must also increase. Thus,
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for example, if experiments at I\/Ie = 1 just satisfy the criteria above,
then at Me = 3 the distance at which similarity may be expected is
increased by more than a factor 5, for the same initial value of 80.

The second cause of experimental discrepancy may be attrib-
uted to the various techniques adopted by the many experimentalists
in order to determine the parameter o. The most common technique
employed, even at Mach numbers of 2 or more, is to find the value of
0 which allows the best fit of the measured velocity profile with some

well-known incompressible profile. Different authors have used

different profiles, resulting in additional confusion. In several of

the cases reported, how a best fit is obtained is not always clear.
While some authors place emphasis on the upper -portion' of the profile,
where u/ue = 1, others treat the middle portion of the profile as the
important region of interest, One technique which has recently re-
ceived attention, is to match the slope of the measured velocity pro-
file, at a point where u/ue = .5, with the slope of the error function
profile, u./ue = 21- (1+erf %X). Using the compressibility transformation
in a manner similar to that used by King and Denison (32) we can theo-

retically determine the effect of compressibility on a ¢ defined by

this matching technique. The following relation results.

o o (p./ )Z
slope _ S _ Pe/Pqo (4.37)
o Lo Pe u 2 '
Z 1+ (== 1)1- (=)

Po Ye u
—= , 5

u

e

where pe/po =1+ —Y-z-—- M for adiabatic flow
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While equation (4. 37) could be used as a means of comparison
between the compressibility transformation and the data on ¢, sucha
comparison still suffers from the fact that an arbitrary point in the
velocity profile is selected to provide a value of 0 supposedly valid
as a scale factor for the entire profile. It is clear from equation
(4.37) that different values of 0 could be obtained by matching slopes
at different points in the profile, i.e., at points other than u/ue = 5,

A test of the compressibility transformation which would be
more meaningful, particularly for an integral method of solution,
wouid be one based on the spreading rate of an integral parameter of
the velocity profile, namely the momentum thickness §. This test
would eliminate the confusion arising from the use of various curve-
fitting methods. Based on the compressibility transformation the

expression for the momentum thickness is:

_ )
: = (p/p)" K,C

If we define the momentum thickness spreading parameter Og as

(de/dx)incompressi’ble *® c/2

= g =
o (de/dx)compressible ‘ (d8/dx)

o (4. 38)

compressible
then we note that the rate of spread of the momentum thickness de-

creases as the square of the density ratio, or that

o P \2 2
0 _ ( e> _ y-1 2
== G2 - (1+%2 M) (4. 39)

Values of the momentum thickness were calculated from all available
shear layer velocity profiles by simple numerical integration. A

typical result of this technique is shown in figure 6 where a plot of
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§ vs. x from the data of Maydew and Reed (28) is presented. The
constant slope of the curve (de/dx) is easily determined and a value
of 9 readily calculated from equation (4.38). A plot of the values
of Oq against pe/po for the data ‘of Maydew and Reed (Me = 0.70, 0,85,
O‘. 95, 1.49, 1.96) shows excellent agreement between theory (equation
4. 39) and experiment, thus confirming the 4-priori choice of g=1
and Py @S the reference density. King and Denison previously found
the same result based on a least squares fit of experimental and the-
oretical profiles. Extrapolating the theoretical curve to pe/po =1
along a line of slope 2 (in a log-log plot) results in a value of G* = 9.42.
This value of c=Pc corresponds to a value of Ke = . 0606 which is in good
agreement with the average magnitude of KO (= .06) determined solely
from incompressible shear layer and wake experiments.

A final plot of the data and theory for oe/cr* VS, pe/po is pre-
sented in figure (7) along with a comparison of the experimental
values of the spreading parameter Oslope with the theory of equation
(4.37). One notes that both sets of curves show good agreement be-
tween experiment and theory up to Mach 3, with the data of Sirieix at
Mach 4 falling somewhat below the theory. It is possible that simi-
larity may not have been reached, based on the criteria of equation
(11a), in the measurements at Mach 4; accounting for the lower value
of 0. The somewhat lower value of 0* (9.42 as opposed to a nominal
value of 11 for incompressible flow) is not considered to be a serious

=, 06)

discrepancy since its use is essentially as a scale factor (K

8

in the compressibility transformation, valid for both free shear layer
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and wake flows. The important point to be established here is the
prediction by the transformation of the correct effect of compress-
ibility on integral quantities. This objective is believed to have been
met, at least insofar as the low Mach number compressible similar

free shear is concerned,
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V. INTEGRAL WAKE FLOW SOLUTION METHOD
The turbulent wake flow solution, for the region of near wake
interaction not too close to the base, follows the same integral tech-
nique adopted by Lees and Reeves { 7) for the laminar near wake; the
only difference being that the kinematic viscosity Voo in the transformed
dissipation integral j T ~5-— dy is replaced by a transformed eddy

viscosity of the form

T = — K, U B (5. 1)

V.1l. The Wake Reference Density

In order to make use of the eddy viscosity model, it is neces-
sary to specify a reference density for the wake. For the free shear
layer portion of the flow, it was determined (section IV) that the den-
sity p in the recirculating region was the appropriate reference den-
sity for scaling the overall spreading rate of the adjacent shear layer.
Far behind the body, where the density throughout the wake approaches
the free stream density P oo it is clear that conditions in the recircu-
lating region cannot be of importance in determining the local far wake
growth rates. It appears therefore that an appropriate reference den-
sity might be one that varies with the local flow conditions. The den-
sity along the centerline of the wake satisfies both the condition that
it equal the density in the quiescent region near the body, and that it
approach the free stream density far from the body. Thus the impor-

tant assumption is made that

(5.2)
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For adiabatic flow we therefore have the relation

o -1

i = [1 + \—/—Z—l- eZ <l - UQZ/uj)] (5. 3)
It would be difficult to ascertain experimentally if this choice of P
indeed scales conditions in the far wake: as ug/ue =+ 1 there is little
to distinguish the centerline density from any other local density. At

the rear stagnation point the axial pressure gradient is just balanced

by the tangential shear stress gradient, i.e.,

¥}

2
dp _ T 0" u _
a-;c-—— *‘—~€-——--2 \lq;—- ] (5.4)

oy

<

Using this fact, one can determine the suitability of the selected ref-

erence density as a scaling parameter for the compressible reattach-~

ing wake flow by comparing the theoretical solution for the axial pres-

sure gradient at the r. s. p. g;lz—fv %)2] with the appropriate experi-
e

mental data. Such a comparison is carried out in section VIII.

V.2. Integral Equations for Wake Viscous-Inviscid Interaction

The interaction of the viscous or dissipative flow in the near
wake with the external inviscid flow is but one example taken from a
family of viscous fluid-mechanics problems in which the outer flow
field is not known &-priori (in contrast to usual boundary layer theory),
but must be determined by the interplay between the dissipative and
inviscid flow fields.

Because of the complexities of the interaction phenomena,
integral or moment conservation equations have been developed in

order to bring out the essential gross features of the flow, such as
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length scales and pressure levels. The integral approach of Reeves
and Lees (7 ) as applied to the problems of shock-wave boundary layer
interaction and the laminar near wake, has demonstrated that the over-
all features of the interaction can be adequately described, provided
that the velocity profiles, from which the integral quantities are de-
rived, exhibit the correct qualitative behavior. For the particular
case of wake flows, not too close to the base, we follow Reeves and
Lees in adopting for the velocity profiles in the integral equations the

Ste;wartson wake solutions [U/Ue = f'(n)] of the Falkner~Skan equations
£ 4+ 87 + 8 [1 - (£)%]=0 (5. 5)
with the boundary conditions
£(0) = £7{0)= 0  {'{0) =1

These profiles display the correct qualitative behavior noted of base
flows (see figure 8), i.e., a series of reversed flow profiles with zero
shear on the axis for use upstream of the rear stagnation point
(-. 1988 <B < 0) and a series of zero shear profiles downstream of
the rear stagnation point with positive axis velocities (-.50<p <-. 1988},
They also exhibit the exact behavior near the r.s.p., of the full Navier-
Stokes equations as found by Reeves ( 7 ) in a series expansion about
that point.

Even in those turbulent base flow cases where reattachment

occurs on a solid surface, the profiles of the reattaching turbulent

¥ Note that as B = -. 5 the velocity profile approaches the far wake
Gaussian solution
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boundary layer exhibit a strong wake=like quality which, except in a
region very close to the wall, makes the boundary layer appear to have
a finite slip. This wake-like character, which is particularly domi-
nant near points of separation and reattachment, was effectively dem-
onstrated by Coles (33) when he proposed the 'law of the wake' for
the turbulent boundary layer,

The Falkner-Skan profiles are again 'unhooked' from the pres-
sure gradient parameter B, by making the normalized integral quan-
tities (e.g., & = 9/6*) functions of a single independent parameter a(X).
For flow downstream of the rear stagnation point the independent param-
eter a(X) is the normalized centerline velocity

U@‘ U(E
a(X) = v for o > 0 (5.6)
e e
In the reversed flow field just upstream of the rear stagnation point,
a(X) is the velocity on the dividing streamline
U
a(X) = (U/U) = u ng_ <0 (5.7)
y=0 e
The work of Webb, Golik, and Lees ( 8 ) has shown that single param-
eter Stewartson profiles appear to work quite well downstream of the
rear stagnation point, and provide considerable improvement over
polynomial profiles in the region immediately upstream of the r. s. p.

Single parameter reversed flow profiles, while adequate in
the region near the r.s.p. cannot properly describe the flow in the
region near the base where two independent length scales are impor-

tant, the thickness of the separated shear layer and the height of the
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reversed flow region, which must be equal to the base height (h) at
the body (u@= u;?e = 0).

In this section, we consider only that portion of the flow which
is adequately described by single parameter profilesj’

To describe the wake flow properly we require, in addition to
the parameter a(X), at least two additional independent quantities
(for adiabatic flow); the Mach number at the edge of the boundary layer
Me’ and a suitable thickness variable such as 61* (the transformed
displacement thickness).

The three integral equations necessary for a solution of the
three unknowns a(X), Me(X), and 6i*(X) are chosen to be the integral
forms of the conservation equations of (1) x-momentum, (2) mechani-
cal energy, and (3) continuity.

Using the transformed continuity equation (4.27), the trans-
formed momentum equation (4. 28) is integrated across the boundary

layer to obtain the integral momentum equation with zero shear on

the axis,
MOMENTUM
a6 5° dM
i * dy da i e _
where
9 x (9 U
¥(a) = —¢ and 6i = S (1 - U—) dY
5. 0 e

1

Integrating the continuity equation (4. 22) across the layer in modified

¥ In section VII various schemes for joining the reattaching wake
flow to the body are set forth and evaluated.



-39.

Stewartson coordinatesj yields the following equation relating the

v
local outer inviscid streamline angle, @ = 'can“'1 a_e_ , to the normal
: e
velocity induced by the inner flow.
CONTINUITY
1 ds. 57 aMm
[N+ e P, raxda, % M tano (5. 9)
mo @t T = .
e e e
where >
M -1
_ 3y-1 v+l Me e
£ = v+ 1 +y-—l I+ ¥t melI+me$ 2
o
and  z=—5 \ P oay (5. 10)
6 0 e

Since the flow at the outer edge of the wake is assumed isentropic,

the Prandtl-Meyer relation can be used to link the inner and outer

flow. Thus,

®= v(M_)-v(M) (5. 11)

where
I SRS B ey ull -t NS O
V(Me) = Jm tan [ m Me -1 tan Me -1 (5- 12)

Multiplying the transformed momentum equation (4. 28) by U and inte-
grating provides us with the third equation needed for solution of the
% . ..
three unknowns 6i s Me’ and a. This equation is the only one con-
taining the eddy viscosity term, which can be considered as the scaling
ou

6
function for the wake dissipation integral g T oy dy. The mechanical
0

energy equation thus may be written as:

T The outer flow field is assumed isentropic.
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MECHANICAL ENERGY

;98 s dd da o0 dM, _( T )251 1 (8U>2 .
% | 32 T iV = S
ida dX M, dX Uéi Uj 0 oY
p@. 2
= K <—-> ¥R (5.13)
8 Pe
where
% 5. ‘ ' * g,
8. 3 i 2 26, i 2
J=._E§<ei=g ﬁU—-<1-UZ>dYandR= gg(g.%) 4y
61 0 e Ue Ue 0

For a given value of the profile parameter 'a'" the non-dimen sional
quantities #, J, R and Z are numerically evaluated by integrating the
Stewartson similar wake flow solution (figure 8) corresponding to a
particular value of 'a' [-é—]—- = f'(n, a):l. These quantities are then
curve-~fitted as a function o? "a' to facilitate differentiation and numer-
ical integration. The functions (as previously listed by Lees and
Reeves) are the following

Upstream of Rear Stagnation Point

*
a(X)=u =(U/U ) 0.54<a<o0
ewzo 5
& = .2482 - .435la - .0366a
J = 0376 - e 5823 (50 14)
R = 1,260 + 2.280 + 30.4a°
Z =1.034 - 1,38a

Downstream of Rear Stagnation Point

a(x) = Ug/U, 0<a<.75

¥ = .2492 + .880a - . 1585a°

I =.376+1.177a + . 427a° (5. 15)
R = .020 + 2.39 (a-.72)%

Z = 1.034 + 2.932a + 12, 65a%
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V.3. Numerical Integration of the Differential Equations

Equations (5.8), (5.9) and (5. 13) represent a system of three
‘ dM
first order differential equations, linear in the derivatives -c-&-e—- s

dx * dx°
By employing Cramer's rule, a simultaneous solution of this

system may be written as

3¢

T. dM N,(M_,a)
s e éMe’ ) (5. 16)
e dx ( e’a
N,(M ,a)
*dy da _ "2V e’
’S‘i Y ;1-%- = DVLE (5.17)
@& N,(M ,a)
P 3 (5. 18)
& D(Me, a) :

provided that the determinant of coefficients D does not vanish.

* *
We note that by normalizing X and 61 by the value of 6i at the
rear stagnation point

X = X/5.(0) 3= 5, /5, (0)

we can determine a solution which is independent of the size of the
wake boundary layer. Thus we see that the initial boundary layer on
the body determines only the stretching of the interaction length scales
but does not affect the pressure levels at and downstream of the rear
stagnation point.

Noting the coefficients of the derivatives in the conservation
equations, the numerators and denominators in equations (5. 16-5. 18)

are found to be the following
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14+m

_ tan® dJ e '
N,(M_,a) = . (o & " J] + ( e )K AR
N,(M ,a) = tan@'J[l 1+ KR [¥f (zzz+1)w+1+me)]
27’ ™ T Tm s B m_
(5. 19)
_ tan® dJ F
N,(M_,a) = = [37 - g7 (X+1)] + KR [(2w+1)-£ ]
_ dJ l+m dJ
DM,a) = Wgm- i+ w-1)7+ ¥+ m:J BJ - (w+1) 7 ]

2

' -~

where K’ = Ke(p@/pe)

Webb, Golik and Lees (8 ) have shown numerically (using polynomial
profiles) that the denominator D possesses four real roots in the region

¢

-1 < e < 1. The two upstream singularities are not of practical inter -~

e
est because of the fact that the centerline velocities required at these
u
points are much greater than the maximum value o = 18435 ob-
e

tained for the Stewartson family of solutions. The singular point at
ug/ue = 1.0 is approached only infinitely far downstream of the rear
stagnation point and is thus unimportant to the solution. The singu-
larity immediately downstream of the stagnation point is shown to
possess a saddle point behavior with the solution curve corresponding
to that asymptote through the point which has the appropriate wake

behavior. At the saddle point we require that N1=NZ=N =D=0, T in

3
order to provide a continuous transition from '"'subcritical’ to "super -

critical' flow. D. Ai (34) performed a rigorous mathematical inves-

tigation of all the singular points of the laminar flow integral equations

T Note that if N; and D are both = 0, this implies that N, = N; = D
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by studying the phase space solution trajectories in the vicinity of
these points. His analysis confirmed the existence and behavior of
the singularities found previously only by numerical integration.

The location of the critical point, which is unknown é-priori,
is found in the following manner: starting at the rear stagnation point
(5?: 1.0 a= 0), atrial value of the edge Mach number Me(O) is
selected for a given Moo. Equations (5.16-5.18) are then integrated

numerically on an IBM 7090 computer using a Runge-Kutta technique.

The resulting integral curves are evaluated until either N
dM

1 ™ 0, cor-
responding to dxe > 0, or until D = 0, corresponding to dug/dx < 0.

Since neither of these two conditions is physically acceptable for a
recompressing wake flow, it is concluded that the solution cur ve lies
between these sets of integral curves, i.e., along the solution asymp-
tote of the saddle-point singularity. D. Ai showed that, while numer-
icéi integration toward a saddle point is inherently unstable, the solu-
tion trajectories found by using large high-speed computers can be
made to essentially coincide with those found in a Taylor series ex-
pansion about the critical point provided that the margin of error for
the initial eigenvalue is kept small [e, g. (MenﬁMen)/Menz O(10-8)] .
Since the solution curves only depend on the initial choice of
the parameter Me(O), for a fixed value of 'a', it is clear then that
Me(O) represents the proper initial eigenvalue for the problem. A
plot of a typical set of solution curves in the D vs. "'a' plane is seen
in Fig. 9. Differences in values of Me(O) as small as 10'8 are seen

to be sufficient to distinguish between the two types of integral curves
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(dMe/dx > 0 and da/dx < 0). Since the critical point could not in prac-
tice be approached arbitrarily closely, the solution downstream of the
critical point (Ni = D= 0) was obtained by extrapolating across the
critical point and resuming the integration with the new set of starting
conditions. There is little error involved in this technique, since the
critical point is quite close to free stream conditions; pe/pQo at the

critical point was found to be near unity (. 75 Spe/poo <1 for Moosl}).

crit

The wake solution in the reversed flow region is easily obtained
once the value of Me(O) is known. Equations (5.16-5.18) are integrated
upstream from the rear stagnation point (6:‘ =1, a=0, Me = Me(O) )
with the appropriate reverse-flow curve fits used for the integral quan-
tities (equations 5. 15).

The results of a typical numerical calculation (Moo = 2.0) are
shown in figure (10), where the edge Mach number Me, normalized
wake thickness 6/6:‘(0)1., and dividing streamline velocity u* are
plotted as a function of the normalized axial distance from the rear
stagnation point x/6i*(0).

Far upstream of the r.s.p. the edge Mach number distribution
is nearly flat, indicating that a region of constant pressure is being
approached. As the wake flow proceeds toward the r.s.p., Me begins

to decrease rapidly as the effect of the interaction becomes more pro-

nounced, dMe/dx reaching a maximum at the r.s.p. Downstream of

From the compressibility transformation

N
66(0) ic:z: . [-6%1?5;] i [me(lw) +1+ z:l

*i
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the r.s.p., dMe/dx again decreases as the edge Mach number ap-
proaches the constant downstream flow conditions (Me - Moo)'
The wake thickness 6/61*(0) decreases rapidly from its large

value in the reversed flow region, reaches a minimum near the critical
1

point and then increases slowly. In the far wake region § ~ x?

as given
by simple scaling arguments.

The velocity on the dividing streamline u* in the reversed flow
region increases rapidly from zero at the r.s.p. and approaches a
limiting value of .58 infinitely far upstream. Any u* along this curve
(x/éi*(O) < 0) can be considered the maximum u* possible for a given
initial boundary layer at the base. In the following section we will
discuss two possible methods for connecting these wake flow solutions
to a base with a particular initial boundary layer thickness §_ after

2

the turn.
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VI. FLOW FIELD MODEL NEAR THE BODY

In the region near the base, from the separation point to the
start of the interaction pressure rise, the base height h and the shear
layer thickness 6 are independent length scales. The Stewartson
single parameter reversed flow profiles are inadequate in this region
not only because & and h’ (the height of the reversed flow region)
are directly related, but because the limiting profile shape ugﬂ 0
B - 0 corresponds to the Chapman constant pressure solution for a
free mixing layer, u* = ,587. Since u* = 0 at the separation point,
for a finite initial thickness 62, it is clear that the flow near the body
cannot be represented by the B = 0 solution.

One means of representing the flow field near the base, in
which the shear layer thickness is independent of the geometry, is to
assume that the flow can be represented by the development of a con-
stant pressure mixing layer, with finite initial thickness,downstream
of a semi-infinite step [see figure (11)]. As noted in section IL 1,
numerous experimental investigations of the base flow region have

shown that the static pressure is nearly constant in the initial mixing

region ['e'm;lix = 0(1)]. Theoretical solutions for the mixing of a free
shear layer with finite initial thickness at sef)aration have been devel-
oped by Kubota and Dewey (47) and Denison and Baum (48) for laminar
flows. The application of the integral theory of Kubota and Dewey for
the case of a turbulent free shear layer is considered below in section
VI.1. This solution is then connected up with the wake solution devel-
oped in section V, by a suitable set of joining conditions, which are

presented in section VI, 2.

3
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An alternate method for joining the single parameter wake
flow solution to the base is to construct a family of two parameter
wake profiles, where § and h’ are independent, and employ them in
an appropriate set of moment equations to find wake solutions near
the body. This solution scheme is presented in section VI. 3 and the

results compared with the more simple free mixing layer solution.

VI.1. Non-Similar Turbulent Free Shear Layer
| In order to join the wake flow solution with the body flow field,
and thus provide a length scale for the problem, it is necessary to
determine the development of the velocity on the dividing streamline
and the rate of growth of the separated shear layer. After expansion
of the wall boundary layer about the corner, the initial sublayer sep-
arates from the wall and begins to entrain mass from the ''dead water
region' in the base (see figure 11). In the initial mixing region the
rate of growth follows that of a wall turbulent boundary layer and the
initial momentum thickness 92 is the dominant length scale in this
regime. Momentum from the outer flow increases the velocity on the
dividing streamline as the shear layer profiles are transformed from
boundary layer like profiles to those of the Goertler-Chapman type far
downstream (thé similar mixing region). Since in a real base flow
problem the flow begins to reattach before the asymptotic profiles can
be attained, it is most important to properly determine the effect of
the initial layer on the mixing process.

Using polynomial profiles in the momentum integral method

developed by Kubota and Dewey (47) for the constant pressure laminar
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free mixing layer, allows us to determine a simple closed form solu-

tion for the corresponding turbulent mixing layer. Assuming that the

continuity and momentum equations (4.27) and (4. 28) are valid for the

constant pressure mixing process in the non-similar region, we inte-

grate the momentum equation first from the dividing streamline to the

outer edge of the shear layer and then from the dividing streamline to

the inner edge of the shear layer (see figure 11) to obtain the following

two integral equations:

1 ~

d 15 = £ &L

I [61 SO f(1-1) dn] = Ue??l (817?,1:0 n>0
O ~

d [+ 2 _ _€ 9g

where

fm) = g— n = ?sl' Y>o0
e 2

sm= - e <o
€ 2

The solution for an initial quadratic profile is as follows:

(6. 1)

(6.2)

The velocity profile is broken into two layers, joined at the dividing

streamline by the requirement of continuity of velocity and shear, and

fitted to the boundary conditions at the shear layer edges

f =1 = 0
1"]:1 g[ §=~1
£'= 0 g =0

Thus the velocity profiles may be written as

1 - (1-u") (1-m)?

=Y
]

a (E+1)%

i}
i

(6.3)

(6. 4)



-49-
e
where u is the normalized velocity on the dividing streamline. The

matching conditions for the two profiles require that

3 ]
2 u
= = 5
61 l-u
or
& kY
%

= Lo (6. 5)
61t6, 6

Substituting (6.3), (6.4) and (6.5) into (6. 1) and (6. 2) yields two first

x -
order ordinary differential equations for the unknown u (X) and §(X)

dg(lu) [ lu)g _9__
dX e g

* 3 0 _ (6. 6)
4 3<u> sl - (__e)K_@_
dX 10 Pe 5
F
u = 0
-8' = '6— at X =0
o
Since the form factor -g— varies little over the entire mixing process

we will assume that the right hand sides of equations (6.6) are con-~-

stant, (—E—)“"s 125. After integrating and combining the equations we

5 4
obtain the rather simple solution for the velocity on the dividing
streamline

%3
19.7 u
s = = = % (6. 7)
99 9% 2-u - 4u"‘2

and the growth of the momentum thickness

$ . 00 (6. 8)
*3
Ge(“ )

X .
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2
note: 08 = -—(ff—;—%?-)——— = (1 +X%£ M:)Z U*
90 is the initial momentum thickness at the beginning of the mixing
region ( ~ 62 in figure 4).

Equation (6.8) demonstrates that the rate of growth of the shear
layer will be greater than linear if the velocity on the dividing stream=
line is less than the asymptotic value, since the growth 8/x is inverse-
ly proportional to the curve of u*. Thus, measurements of Oq {(or some
equivalent o) for a high Mach number base flow, such as reported by
Larson (10) at M = 3, will usually be much lower than the actual value
because u* < .587 for a finite 90.

Equation (6. 7) is plotted in figure (12). This relation gives us
the important length scale for this isobaric compressible turbulent
shear layer S = x/cr9 eo, i. e. the mixing distance x divided by the pro-
duct of the initial momentum thickness 90 and the momentum thickness

5
spreading parameter 0 We note that as x/cr9 90 “ o, u —,593 a

5°
quantity quite close to the theoretical value of u* = ,587 for the
Chapman-Gdaertler solution. Figure (12) also indicates the previously
mentioned criteria for similarity [equation (4.36)], namely that the
velocity on the dividing streamline does not approach its asymptotic
value until X/Oe 90 S 10. By a suitable conversion of the variables,

the solution of King and Denison (32) for an initial Blasius profile is
also shown in figure (12). The turbulent solutions for the two initial
profiles are quite similar, as was to be expected from the good agre€-

ment noted by Kubota and Dewey (47) for the equivalent laminar solu-

tions. Also included in figure (12) is an integral solution using a
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simple sine wave profile and the results of a linearized calculation by
Nash (49) using a 1/7 power profile. The basic similarity of all the
solutions indicates that the shape of the initial profile does not effect
the fundamental character of the solution but only shifts it slightly
depending upon the initial profile chosen., The solution for the quad-
ratic profile was used in all subsequent calculations for the constant

pressure free shear layer,

VI.2. Joining Conditions

g
Instead of trying to determine the value of u for some
match
initial sublayer momentum thickness to step height ratio (Gz/h), which
would require the use of an iteration procedure, the inverse problem

. . x
is solved; namely given a value of u

match find the value of Gz/h which

satisfies the proper matching conditions. The latter technique re-
quires no iteration. The four conditions required for matching are:
continuity of Me’ of u*, and of mass flow above the dividing stream-
line, and in addition an important geometric constraint which requires
that the height of thek free shear layer at the joining point be equal to
the height of the wake boundary layer. This last condition, illustrated
in figure (4), in essence ties down the shear layer solution (in an infi-
nite domain) to a physical reversed flow wake profile with a reference
axis, i.e. the centerline. From the four matching conditions we can
thus determine not only the length of the mixing region (£) which deter-
Amines ez/h (91%- = gzl_u—*s . 6—% : f’_n_%}zg_) , but also the length scale for the
wake flow, 6:‘ (0).

T 5™ = 8/0g 0
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The geometric matching relation is as follows [see figure (4)]:
b= 6 ake
sin (- Q) = —_— (6.9)
mix
where ® is the streamline inclination at the outer edge of the wake
3 %
determined by the wake integral solution at u = u join? the mixing

distance £ . 1is given by the expression
mix

%

6. (0)

x i

b, 1-6/6.(0) ———

n;:x - i h (6. 10)
sin (- 8)
. . * o *

in terms of the wake functions ®{u join) andm (ujoin ) The trans-

formed rear stagnation displacement thickness Gi* is determined from
the requirement of continuity of mass above the dividing streamline at
the joining point.

The mass flow above the dividing streamline for the wake is

simply *
._Frh . o Paopx ._.h_._éi o (6.11)
peue ae pe t

The mass flow for the shear layer may be written as [see equations

(6. 3)'(6. 8)]
[ ‘_6.. 1 - X *
m _ i _ 6 (l-u ) (2+u )
fuh - F SO fdn = ¢ 3
e e (6.12)
672 Pmix (1-u)) (24u0))
- *3 h
oglu’)

Equating the mass flows of equations (6.11) and (6. 12) and substituting
%
the geometric relation (6. 10) determines the length scale 6i (0)/h .

Substituti'ng this value in equation (6. 10) gives the length of the mixing
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region. The distance xo/h from the st’ep to the beginning of the inter-

action is

x
-Hcl = -5 cos (- @) (6.13)

The usual expression for zmix/h used by many authors (McDonald,
Korst, etc.) is Emix/h = 1/sin 6. They assume that the constant pres-
sure region extends to the axis. This assumption can lead to over-
estimating Xo/h by almost 100%. Thus we see that it is necessary to
consider both shear layer and wake flow solutions to obtain even such
a fundamental quantity as the length of the constant pressure region.

Figure (13) shows the effect of the upstream boundary layer
thickness 61/}1‘r on the length of the constant pressure region for the
case, M_ = 2.0. One notes that xo/h is nearly constant (Xo/h ~ 1.6)
for initial thicknesses less than the step height (6l/h< 1.0). As 61/}1
is increased beyond a value of 1.0, xo/h is seen to fall off rapidly, so
that for boundary layer thicknesses greater than twice the step height
h, the length of the constant pressure region is nearly zero.

In the following section xo/h will be calculated using the results

of a two-parameter integral solution near the base.

VI.3. Two Parameter Reversed Flow Wake Solutions

Golik, Webb and Lees (8) attempted to find a set of two param-
eter reversed flow profiles for use in a multi-moment integral method
which would allow a continuous integration of the integral wake equa-

tions from the rear stagnation point to the base. By disconnecting the

The relation between 62 and 61 is developed in section VII,
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axis velocity from the Stewartson reversed flow velocity profiles, an
extra degree of freedom was produced. These normalized Stewartson
profiles were then represented by two independent parameters,

Uo = ucg/ue and a shape factor N(= 5*/5lU0=0). Starting at the rear
stagnation point with a prescribed value of N, the moment equations
were integrated upstream. The absolute value of the centerline
velocity IUO] first increases and then decreases back to zero. At
the point where U0 = 0 again, this may be considered the location of
the base. While this solution has qualitatively the correct behavior
noted of base flows, the present author noted two distinct limitations
associated with this calculation procedure. First, it was found that
solutions could only be found for a narrow range of initial sublayer
thicknesses .37 < 6z/h < .66, corresponding to a boundary thickness
ahead of the step 2 < 61/h < 4, For most practical cases we are inter-
ested in initial thickness one order of magnitude smaller. The second
problem associated with this 2 parameter solution is that while the
base pressure becomes constant near the base (without any prior
assumptions) the length of the constant pressure region is almost

5 times longer than the value of xo/h found using the free shear layer
matching analysis of the previous section. This slow approach to the
base is believed due to the use of the Stewartson profiles, which al-
though normalized, still retain the behavior of the Chapman constant
pressure solution. While the flow in the recirculating region is quite
complicated, it may basically be thought of as resulting from the

interplay between two distinct stagnation flow fields; (1) a reattaching
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wake-~like flow at the rear stagnation point; and (2) a stagnating low
shear low velocity reversed flow at the base bounded above by a
small region of high shear. It appears that it would be difficult in~
deed to find one set of profiles which would possess these two widely
diver se features. Therefore, a set of profiles was sought which has
the correct two parameter behavior near the base, but not necessarily
the appropriate behavior near the rear stagnation point (where the
single parameter Stewartson profiles can be employed). Such a set
of profiles was suggested by J. E. Green (9) in his study of the in-
compressible turbulent base flow problem‘r [see figure (14)]. This
family of profiles is characterized by the two independent parameters,
P (a measure of the axis velocity), and h/4 (the ratio of the height of
the region of constant reversed flow to the thickness of the shear
layer). The profile has the characteristics of a free shear layer
(given by a simple cosine shape) bounding a region of constant re=

versed flow velocity. The equation of the profile is as follows:

2 = 1-2P 0<Y<h (6.14)
ue
G‘L = 1-P[1+cosn(y—;’—1-l-)] h<Y<h+4 (6. 15)
c

From figure (14), one notes that when P = 1/2 u@ = 0 and the profile
has the character noted of a shear layer initially separating from the

edge of the base,

U Green was unable to obtain a solution upstream of the rear stag-
nation point with these profiles because they do not exhibit the proper
single parameter behavior needed at the r. s.p.
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As in the case of the matching of the constant pressure mixing
layer with the single parameter Stewartson wake flow solution, the
joining point is unknown 4-priori, but is determined by a suitable set
of joining conditions. No geometrical relation is required in joining
the single and double parameter solutions, since the integration
proceeds along the same axis coordinate system. We require at the
joining point continuity of Me (or @), 6:, u*, and mass flow above the
dividing streamline. The last two joining conditions are sufficient to
establish initial values for the two profile parameters P and h’ = h/ 4.

The initial values of P and h’ are determined by simultaneously solv-

ing the following two equations

e

1
y=0 h"(l-ZP)+~11-(1—P)cc>s-1[1;;1 »l:l---1-[(1-\J.*)2'+2(1~-1J.*)P]2 = 0
on d.s. T
, (6. 16)
1-P}+h"(1-2P x
Zop = gy ot (, b=z
* P(1+2h") Stewartson

In order to solve for the four unknowns Me’ 6*, P, and h’ we require
a fourth equation in addition to the integral equations of continuity,
x-momentum, and mechanical energy (first moment of momentum).
Rather than adopt an additional second moment of momentum to de-
scribe the flow, which heavily weights the outer portions of the wake,
the momentum equation along the centerline was selected as the fourth

governing equation

dy dU 2
ug —£ -y, —= 43 (2Y) (6. 17)
dX dX oY v=0
In the region close to the base the shear gradient near the wake axis
2

is quite small. The term _3___1_12 is identically zero at the wake axis
' Y
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for the Green two parameter profiles.. We therefore neglect the vis-
cous term on the far right hand side of equation (6.17). This equation
then implies that the velocity gradient on the axis is determined solély
by the static pressure gradien;t along the axis and vice-versa. Thus
upstream of the joining point were U@‘ = must be positive for the
flow to stagnate at the base, Ue %gf must also be positive indicating
that the pressure must rise toward the base (é phenomenon noted in
many experiments). Thus we can expect a slight discontinuity in the
pressure gradient at the joining point, indicating the change over from
one type of stagnation flow to another. In an actual experiment this
change in pressure gradient is continuous but takes place in a very
sho.rt distance, of the order of 1/10 h, Equation (6. 17) also implies
that at the base, 'U@' = 0, the pressure gradient vanishes. Thus the

shape of the pressure profile in the reverse flow region will have the

form indicated in the sketch below

2 parameter
“solution

1l parameter
| solution

Joining Point

x/h

The complete set of differential equations employed in the two param-

eter region are as follows:
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5 (2-4p) 4P +6>‘c dMe4P1P-—O
(2-4P) 7% - M_ TdX (1-P) =
¥ ) ¥ dM
s a7l dP . .*Cav 7| dh 5 e _
¥ 3% +GT“dT] ax to [ETE'] x Pt ax il =0

[¢]

ds" , .*[ar | dP , .*[daJ ] an’ |, & M. PQZ
1+m , * dM
r e:ldé *[dg{]dp *[:da( dh’, & e 1
F* =, Jax *0 laplax * e lawlex tw ax o M s el
where |
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These equations are numerically integrated as in section V, until
P= %— s u@. = 0 which corresponds to the base. The pressure rise
from the joining point to the base is found to be of the order of 1%,
which agrees well with the assumption of a negligible pressure varia-
tion in this regime. Figure (14) presents a comparison of the length
of the constant pressure region determined by the two parameter in-
tegration with the results found using the constant pressure mixing
solution, Both solutions agree quite closely up to 61/h ~ 1.0 and are
seen to diverge somewhat at the higher values of 61/h’ while main-
taining the same qualitative dropoff in xo/h with increasing 61/h.
Thus, for most cases, the simpler mixing solution appears to give
approximately the same length scales as the more complex 2 param-

eter solution. However, the two parameter solution can be used to

obtain estimates of the effects of base heat transfer and base bleed
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which the shear layer calculation does not make possible. For ex-
ample, the heat transfer coefficient at the base h = qw/(Tw—Tr) could
be predicted from laminar stagnation point theory (in the region near
the axis) as suggested by Larson et al. (10), by using the gradient of

the centerline velocity C = d uq/dX in the equation

hoo= A/—% (;R‘%W)Jt‘ (6. 18)

One notes that if the 2 parameter solution is continued upstream of the
point where ug: 0 the velocities of the inner flow region become posi-
tive. Stopping the solution at any positive u@ would correspond to the

case of mass injection at the base, the mass flow being simply

Preliminary calculations indicate the correct trend of increas-
ing base pressure with increasing bleed rate, but the relative increase
of Pb seems to be a good deal smaller than experiments suggest. Non-
isentropic effects coupled with the simplicity of the cosine profiles may
account for the discrepancy between theory and experiment.

In the following section, a model is presented which will link

the sublayer flow after the turn with the initial boundary upstream of

the step.
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VII. CORNER EXPANSION OF THE UPSTREAM BOUNDARY LAYER

The expansion about a sharp éorner of a viscous-rotational
boundary layer is an extremely difficult fluid mechanical problem
(as yet unsolved in full detail) due to the fact that both longitudinal
and transverse, pressure and shear gradients, are equally present
in the process. In order to obtain the salient length scales involved
in the wake flow problem (e.g. wake width and recompression length),
the most important feature required of our analysis of the boundary
layer expansion process is not the detailed velocity and shear varia-
tions, but the thickness of the viscous layer, after the turn, which
serves as an initial condition for the free shear layer. After a short
region of constant pressure mixing, it is this inner layer which is
joined to the wake solution. Thus it is the initial thickness of the
viscous sublayer AZ after expansion which will be an important feature
in determining the length scale of the problem.

The turbulent base flow schlierens of Hastings [figure (15)]
over a wide range of initial boundary layer thicknesses (.1 <le- < 10)
indicate that as the upstream boundary layer undergoes the expansion
process, a new viscous sublayer is formed immediately after the turn,
approximately 10-20% of the thickness of the original layer. This sub-
layer then grows downstream of the corner as the free mixing layer.
While the thickness of the total initial layer may have increased 50%
due to the corner expansion (i.e. 62 ~ 1.5 61), it is asserted that the
length scale of the problem is determined only by the inner layer or
sublayer (A2 ~. 15 61) and that the outer portion of the expanded bound-

ary layer merely acts as a weak inviscid field of external vorticity.
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VII.1. Viscous Sublayer Model

The flow model for the corner expansion process is shown in
figure (16). The total boundary layer upstream of the corner (station
1) is characterized by the quar;tities 61 and Mel. For an initial tur-
bulent boundary layer we assume the well known 1/7th power profile

for the velocity distribution
4 7
L= (L) (7.1)

Let us consider a small inner region, of the initial layer, of thickness

Al‘ The Mach number at the upper edge of A, is denoted as MAI' We

1

assume that as the pressure at the wall drops from Pl to PZ(::Pb)
during the corner expansion process, that shear stresses will only
be important inside a stream tube WL\) which expands from an initial
thickness Al to a final thickness AZ. The flow along the bounding

streamline \;/A is assumed isentropic. Therefore, we can easily deter-

mine the sublayer edge Mach number My from the isentropic relation

[1 + 151 MAgl _ (i)xi}l'

P
y-1 2 2
[1 +-——-—-—-2 MAI]

At station 2 we assume that the velocity profile of the sublayer is the

(7.2)

same quadratic profile chosen for the constant pressure free shear

layer analysis T

. [S 2 _ Y
Station 2 U-—A—Z = 2n -1 n= 5 (7.3)

+ The flow is considered adiabatic and the Howarth-Dorodnitsyn
transformation is assumed valid at station 2.
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Since the sublayer thicknesses A, and B, at the beginning and
end of the streamtube are unknowns, we require two equations to re-
late these quantities, These relations are supplied by a stream tube
balance of the mass and momentum entering and leaving a ''black box"
situated near the corner. The conservation of mass for the stream-
tube is

MASS

) &
g Py uzdy-g Py % dy = 0 (7. 4)
0 0

Applying the momentum theorem to the control volume gives us the

following approximate expression

MOMENTUM
o SH .
So p, U, dy-g pywdy + &,(p, - py) - T, bx= 0 (7. 5)
o

Equation (7. 5) introduces into the problem, through the shear force
term "FW 0x, the unknown average shear stress ?w and the unknown
length Ax of the corner interaction. In order to estimate the magnitude
of the quantity ‘—r_w Ax in terms of the known parameters of the problem
(e.g. AZ’ PZ/PI’ etc, ), we use the differential form of the momentum
equation to note that at the wall the viscous and pressure terms just

balance, i.e.

oT _ dp
at the wall 5—; = T

For an accelerating boundary layer, the shear stress gradient

decreases away from the wall
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( = < (-57) (7. 6)
Y

Mellor and Gibson (50) have obtained solutions of the equations of
motion for the velocity profiles and shear stress distributions of
equilibrium turbulent boundary layers where the pressure gradient
parameter, f = 6*(-%—2—)/70 is held constant. Using Prandtl's mixing
length theory in the overlap layer (¢ ='K2 yz‘-g-%l ) and joining this with
an eddy viscosity in the outer layer which is considered constant with
respect toy (e = KU 6*), defect solutions of the form (U-u)/uT=f'(n)
were found+ for various values of the parameter B. Solutions were
found for B in the range -0.5 <B <w. The B = -0.5 solution corre-
sponds to the development of a turbulent equilibrium boundary layer
undergoing the maximum acceleration possible. The distribution of
shear stress for the B = -0.5 case is shown in figure (17). One notes
that 8T/8y decreases away from the wall, as noted in equation (7. 6).
The assumption is now made that we can employ the p = -0.5 solution
in order to estimate the relative magnitude of shear and pressure

forces throughout a highly accelerated turbulent boundary layer.

We define an average shear stress gradient as follows

(8’1’) . (ﬂ)
Y ave B N0y /Jan
@n 8 n=0
where
os 2 6]
B Z L\dy 9y /__ using
N n=0 = ~0.5 solution
+
Ct Cy 1y
m= —‘—(Z) A typical value of y= [/ == = .04 n=~ = £
" 2 6* pJ 386
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. aT _ dp . .
Since = == , then we estimate the difference of the pressure
oy n=0 dx

and shear forces in equation 7.5 as follows

A

A, (P,-P;) - Tr'w Ax 2(P,-P,) - 1) [AZ(PZ~P1)]

L]

A, (P,-Py) [1-r (7.6)

5]

Substituting equation (7. 6) into the momentum equation (7. 5) yields
AZ 2 ’Al 2
SO py u, dy - s pyu; dy+ AZ(PZ-PI)[I-rAZ] =0 . (7. 7)
0

Equations (7.4) and (7. 7) represent two equations for the two unknown

quantities Az/as1 and 4,/6,.

VIL 2. Sublayer Solution Method and Results

Solving equations (7.4) and (7. 7) for the initial mixing sublayer

thickness Az/él yields the following two equations

MASS
%
. :
L (A)/AT)h) (upp/ug) [1-(87/0), ]
MOMENTUM

5= = P(8/)){ —
5 /61722F"<u/u [(—5—)(—)J

-1 - rAZ)’Cp (7.9)
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where
A/d
(L) / £ d( y) (of -———----2—-1 pz/pl
Q = haiy o =
173 0 pel e; 9 P Y M,
A/a1
= deg’-)
P, | =
1 E.I 0 pel \le
and for adiabatic flow
Pe
1 = 1+l 2 [1 - )]
p 2 ey uel
For a given Me and base pressure ratio pz/pl, a trial value of MA
1 1

is assumed and a value of L\z/ﬁ1 is calculated from each of equations
(7.8) and (7.9). In general, these two values will not be equal, and a

new value of IvIA is then selected. We iterate on MA (using a high
1 1
speed computer) until AZ = AZ‘ within a given degree of
mass momentum
accuracy.,

Typical results for a pressure ratio pz/p1 = .4 are given in

the table below

M MAl /:;1/51 A2/61
1.5 1.01 .12 .25
2.0 1.18 . 08 .18
3.0 1.36 .05 .12
6.0 1.55 . 03 .08

These results indicate that the thickness of the sublayer after the turn
AZ is approximately 10-20% of 61 as suggested by the Schlieren photo-
graphs of Hastings.

Also one notes that the effective edge Mach number before the

turn MA is close to unity, even for an outer edge Mach number Me
1 1
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as high as 6.0. Recently some investigators of the turning problem
have made the assumption that the inner viscous layer is formed by
the expansion of the flow below the same line (I\/J’.,fs_\1 = 1.0). These re-
sults indicate that such an assumption may not be grossly in error.

This low effective edge Mach number (MAl ~ 1. 0-1,5) indicates
that if the initial boundary layer is relatively large compared to the
step height [Gl/h ~ 0(1)], then no matter how high the freestream Mach
number Mel’ the viscous interaction in the near wake will be influenced
only by the low Mach number portion of the flow. The base pressure
data of Hastings (12) shown in figure (18) illustrates this effect most
clearly., For initial values of el/h << 1, the base pressure shows the
familiar trend of a decreasing base pPressure with increasing step Mach
number (Ml = 1.56 - 3,10 in Hastings' experiments). But as the ini-
tial thickne ss is increased above the point where el/h > 1, the meas-
ured base pressures of all the Mach numbers tested increase and tend
to merge with one another, and appear to be approaching some upper
limit, This limit is easily obtained from the integral theory of sec-
tion V,

The maximum value of the base pressure corresponds to the
pressure at the rear stagnation point (zero constant pPressure mixing)
of a wake flow with a free stream edge Mach number near unity
(the inner edge Mach number limit), This limiting base pressure was

found to be
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The base pressures for Mach numbers as high as 3. 10 are seen to
approach this limit, as one notes in figure (18).

Of course it should be pointed out that when the step size be-
comes so small that no definable inner boundary layer exists, as is
required in the model, then this limiting value ceases to be of signif-
icance.

On the other end of the boundary layer spectrum, that is for
Gl/h << 1, we are led to ask: what is the effective edge Mach number
for the wake? In this case the initial Mach number at the edge of the
sublayer after the turn is relatively low. But due to the entrainment
of mass by the shear layer at its outer edge, it engulfs more and more
of the high Mach number portion of the initial boundary layer. There-
fore, if Gl/h is small enough, then a short distance downstream of the
corner, the Mach number at the edge of the shear layer will correspond
to that Mach number produced by an inviscid expansion of the flow from

the upstream outer edge Mach number M Thus, for the wake calcu-

e1*
lation we would set Moo = Mel'
Figure (19) presents a plot of the fraction of the mass flow in
the initial boundary layer that is entrained by the shear layer and wake
flow up to the end of the constant pressure mixing, and up to the criti-
cal point,as a function of the boundary layer thickness ahead of the step.
The plot indicates that for initial values of 61/11 less than ~ .2, that
almost all of the mass of the initial boundary layer is entrained by
mixing in the near wake, and thus the effective value of Moo A Mel.

For values of 61/h > 5,0, less than 10% of the initial boundary layer
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is entrained, and thus we may set MoO A MAI' In the intermediate
region .2 < 61/h <5, the effective edge Mach number is continually
changing as mixing proceeds downstream of the base. As an outer
characteristics program is not embodied in this study to account for
the crossing of the various rotational outer flow streamlines by the
viscous inner flow, the present analysis used the criteria that for

§,/h<.5 M _~M_ and for 61/h>2.0 MszAI.

The major pcl)int to be gleaned from this section as far as the
overall wake flow analysis is concerned is that the viscous sublayer
which serves as the initial condition for the free shear layer mixing
is only a small portion of the initial boundary layer., It is this thick-
ness A, and not the large thickness 61 s Which determines the maxi-
mum value of u"e and thus the base pressure, and it is AZ alone which
will determine by geometrical matching the length scale for the wake
interaction.

The combined results of sections V-VII are presented in the

following section (VIII) in which the theoretical base flow solution is

compared with the existing experimental data.
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VIII. NUMERICAL SOLUTIONS FOR THE SUPERSONIC TURBULENT
WAKE AND COMPARISONS WITH EXPERIMENT

VIIL. 1, Pressure and Wake Thickness Distributions

An example of the complete base flow solution from the sub-
layer constant pressure mixing region to the reattached wake flow
downstream of the rear stagnation point, where pe/i)oo - 1, is shown
in figure (20). The case considered is for Moo = 2.0 and Bl/h = , 038,
The general trends of the results are evident in this figure. We note,
from the graph at the top of figure (20), that the mixing region is con-
fined to a thin layer which extends over an axial distance of some 1%
step heights. For this case, which is typical of the experimental val~
ues of el/h, the initial boundary layer height is approximately 50% of
the step height. The size of the sublayer at the start of mixing, after
undergoing expansion, appears to be quite a bit smaller, of the order
of 20% of the step height, growing to about 40% at the joining point. The
height of the wake boundary layer & is seen to decrease, after the
joining point, to about 30% of the step height at the critical point.

Turning to the second curve of figure (20) for the distribution
of static pressure along the centerline, we find that the pressure is
constant initially at about 45% of the free stream value for the first
13 step heights, followed by the reversed flow region of recompres-
sion where the pressure rises to about 65% of p, at the rear stagna-
tion point, at a distance of about 3% step height from the base. Down-
stream of the rear stagnation point, the static pressure continues to
rise and recovers to over 90% of the free stream pressure in less than

6 step heights. This region (-E) < 6) thus constitutes what we may call
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the turbulent near wake.

The bottom curve of figure (20) demonstrates how the velocity
on the dividing streamline u’}t varies throughout the near wake., As
noted earlier, u* increases rapidly from zero to a maximum at the
Joining point, and then decreases to zero again at the rear stagnation
point. Downstream of the r. s.p., u* increases once again as the veloc-
ity along the centerline of the wake approaches unity far downstream.
An additional quantity of interest, the total pressure variation along
the dividing streamline, is easily deduced from the static pressure
and u* distributions of figure (20). In the constant static pressure
region, p: increases due to the initial rapid increase of u*. In the
reversed flow interaction region the total pressure at first decreases
a little due to the drop in u*, but passes through a minimum and in-
creases again due to the increasing static pressure in the reattachment
region. Thus, the total pressure at the rear stagnation point
(= Pit%tig ) is not much different than the total pressure at the begin-
ning of the interaction, verifying an assumption used by Nash (2 ) in
his base pressure theory. Unfortunately, Nash chose to relate the

incremental increase of static pressure from the base to the rear stag-

nation point, (Prsp-Pb)’ to the overall pressure rise, (Poo-Pb), by the

factor
3 k]
N - FrepPp _ Fojoin Py Foi/P-P/Py (6. 1)
F_-F, P_-P, I- P /P

He assumed that this factor was a constant for all wake flows (~ . 35).
E
While Po /Peo is nearly constant, for a given Mach number 1\/100
join
one notes that P'b/Poo varies with the upstream value of Gl/h. A better

»
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correlating parameter might have been

R = P /P =~
Oj (>}

P s P. /Poo (8.2)

which is a function only of Mach number Mw. Needless to say, it is
felt that while such parameters may be used to correlate the base
pressure, they do not reflect the essential interaction mechanism in-
volved in the near wake base flow., The principal means for establish-
ing the validity of the integral interaction solution and eddy viscosity
model rests not so much on determining a better correlation for the
base pressure, although this is an important parameter, but upon the
comparison of the theoretical length scales and pressure distributions
with experiment,

Figures (22, 23 and 24) present a comparison of the theoretical
centerline pressure distributions with the data of several experimental-
ists [Hastings (12), Roshko-Thomke (13), Thomann (51), Fuller-Reid
(52), Badrinarayan (14), Rom (53)] for a range of Mach numbers
MQ0 = 1.5-2.30 and initial momentum thicknesses Ol/h = ,008~-.075.

The data shown in figures (22) and (23) were based on experi-
ments where reattachment was to a solid surface.T Estimations of the
location of the rear stagnation point by floor oil flow patterns and (in

Thomann's work) by surface shear measurements show good agreement

T A question may arise as to the validity of the comparison of a wake
theory with data obtained from reattachment to a solid surface. The
measurements of Hama (11), in the vicinity of the rear stagnation point,
showed that the axial pressures in flows reattaching with and without
splitter plates differed by only a few percent. Thus, we feel that in-
sofar as pressure distributions and other overall wake quantities are
concerned, the wake analysis may be applied to splitter and non-splitter
flows with equal confidence. We are in essence assuming that surface
shear forces are negligible in the reattachment zone when compared
with inertia forces.
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between theory and experiment. For the wake study of Badrinarayan,
figure (24), the location of the rear stagnation point was determined
by finding the axial location where static and Pitot pressure readings
were identical.“ The experimental location of the rear stagnation point
found using this technique is about one-half base height upstream of
the location determined by the theory.

For Mach numbers up to 2.3, there appears to be excellent
agreement between the theoretical and experimental pressure profiles.
The theoretical values of base pressure, while generally higher than
the experimental values of Pb’ differ by less than 15%. In addition,
the lengths of the constant pressure region xo/h are quite closely pre-
dicted by the theory.

‘ For Mach numbers of 3 and above, the theory was found not to
give the steep pressure rise noted in the experiments of Larson (10)
and the measured base pressures were almost 50% smaller than the
corresponding theoretical values.

In the experiments of Rom, et. al. (53) at Moo = 2.25, as noted
in figure (24), the strength of the lip shock was found not to be of neg-

ligible strength, (PZ/PI)L p. = 1.48. Thus, it is felt that the pres-

shock
ence of a noticeable lip shock and the accompanying non-isentropic

phenomenon in the vicinity of the corner, at the higher Mach numbers
Moo 2 3, are responsible in large measure for the differences between
the experimental data and the theory (which is based on the assumption
of an isentropic outer flow). But for approach Mach numbers of 2 or
less it appears that the theory predicts the turbulent near wake pres-

sure distribution and length scales quite well.
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As to the effect of the initial momentum thickness el/h on the
base pressure, a comparison between theory and the base pressure
data of numerous experimentalists is shown in figures (25) [Moo= 1.50]
and (26) [Moo = 2.00]. The trend of the theory is in excellent agree-
ment with the data (although 10-20% higher) even when the value of Gl/h
varies over an order of magnitude. For the case of M00 = 1.50, one
notes that the base pressure varies only from about . 45 to . 7 over a
large range of initial thicknesses.+ For the case of very large initial
boundary layers (Gl/h >> 1), the base pressure approaches a maximum
value as noted in section VII. In the limit as el/h - o0, the maximum

. sosoqs . ¥
value of the velocity on the dividing streamline goes to zero, Uoax 0.

el/h"oo

In addition the effective freestream Mach number Moo tends toward
unity, due to the fact that only the inner sublayer participates in the
near wake interaction. Thus the base pressure corresponding to the
case 91/}1 — o0 is the pressure at the rear stagnatibn point for a sonic

base flow

Pb Pr sp

—p

Folo Peo |
o /h"oo ©IMas1.0

~ .78

As shown in figure (18), this appears to be the maximum base pressure
for all base flows, no matter what the value of the freestream Mach

number is,

T It should be noted that contrary to the practice of many authors

the 6/h axis in figures (25) and (26) is plotted on a logarithmic basis
rather than a linear basis to: (1) avoid the temptation to extrapolate
the results to the completely fictitious value of 8/h = 0; and (2) to
emphasize the region of small §/h where a gradual drop in the base
pressure takes place over a large range of §/h, rather than, as in the
linear plots, showing a rapid drop in py/p,, as 6/h - 0.
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Conclusions about the supersonic wake flow solution, based on
the comparisons made herein between the integral theory and the ex-

perimental data are discussed in section X.
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IX. FORMULATION OF THE INCOMPRESSIBLE PROBLEM

Nearly all of the recent studies on the problem of the viscous-
inviscid interaction of separating and reattaching flows have been
confined to the supersonic or hypersonic flow regimes., Studies of
the low-speed separation problem have generally been divorced from
the more fashionable high-speed investigations. However, Roshko
and Lau (35) ‘and Tani, Iuchi and Komoda (21) in their studies of low=~
speed separation have pointed out that many of the ideas developed
for supersonic separation problems can be adopted for use in studying
some of the outstanding unsolved problems in the incompressible flow
domain, In addition, experiments which are more easily performed
in large low-speed wind tunnel facilities, can give added insight into
the basic phenomena of viscous-inviscid interaction, no matter what
the external flow speed may be.

Recently Green ( 9 ) formulated an integral wake method of
solution for the incompressible turbulent reattachment problem. The
great similarity of Green's method to the moment method developed
herein. for supersonic turbulent flow, makes it clear that the moment
equations developed in Section V can be applied almost directly to the
incompressible flow problem, provided that an appropriate incom-~
pressible inviscid solution of the external flow field is employed.
Green suggested the use of the solution derived for thin airfoil theory,

namely

(9. 1)
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An integral equation of this form can be used to link the viscous and
inviscid flow of the incompressible wake problem, just as the isen-

tropic Prandtl-Meyer relation
8x) = v [M(x)] - V(M) (9. 2)

was used to link the viscous and inviscid flow, through the continuity
equation (5.9), in the supersonic wake problem.

The basic difference between the subsonic and supersonic
viscous-inviscid interaction phenomena can be clearly seen if one
examines the form of equations (9. 1) and (9. 2).

For the case of supersonic interaction (equation 9. 2) one notes
that the edge Mach number Me is determined solely by the local
streamline inclination ® In contrast, the edge velocity Ue’ in the
low-speed problem (equation 9. 1), is determined by the distribution
of @ throughout the entire flow field. The full elliptic nature of the
incompressible wake problem, requires that all "source' contribu-
tions to the integral in equation (9. 1) from the front of the body, to
the base, to the rear stagnation point, to the far wake must be prop-
erly included in order to obtain a valid solution.

While Green's study of the incompressible problem produced
many helpful suggestions (e.g. his selection of the two-parameter
cosine profiles, and his use of thin airfoil theory for the external
flow) he (1) did not properly employ the viscous integral equations to
obtain a stable solution; (2) was unable to integrate the full set of
equations into the reversed flow region; and (3) did not matcl'fx his near

wake to the proper far wake asymptotic solution.
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In this section an attempt is made to correct the difficulties
noted above, by making use of some of the techniques developed ear-
lier for the supersonic base flow problem, and by properly formula-
ting a stable iteration scheme for the solution of the resulting integro-

differential equations.

IX,1., The Two-Dimensional Incompressible Turbulent Base Flow

Field

The general features of the turbulent incompressible flow field
behind a rearward facing step are readily seen if one examines the
measur ements of the mean longitudinal velocity field and plate pres-
sure distribution obtained by Tani, et. al., shown in figure (27).

Even though reattachment is to a solid surface, the mean velocity
profiles downstream of the rear stagnation point appear to have an
increasing finite slip, such as would be the case for a reattaching
wake flow, The low speed separation behind a body without a splitter
plate along the centerline does not have the steady behavior of the flow
noted above, due to periodic vortex shedding from the body. However,
if a splitter plate with a length of about 10 step heights were employed,
then the vortex shedding could be suppressed and the flow downstream
of the splitter plate would then develop as a ''steady' (in the mean)
wake flow. Thus a theoretical wake model might be related to an
actual wake flow field provided that a splitter plate was used to stabi-
lize the flow near the body.

The pressure distribution (figure 27b) obtained by Tani indi-

cates several important features of the flow, some of which are quite
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similar to those of the supersonic case., The pressure in the region
immediately behind the base is approximately constant, with a slight
rise toward the base due to the stagnation of the reverse flow. The
length of the constant pressure region is approximately twice that of
the supersonic quiescent region. At about 3 step heights, the pres-
sure begins to rise as the shear layers begin to interact with the outer
flow. Cp continues to increase until about one step height downstream
of the reattachment point (x/h ~ 6. 8) where it reaches a maximum and
then begins to decrease toward the pressure level far downstream of
the step.

Roshko and Lau (35) studied the reattachment pressure distri-
bution at low speeds behind bodies of various shapes. Figure 28 re-
produces their results for the ordinary pressure coefficientT

c = 2%

p 1 2
Z P Y%
as a function of the normalized distance from the base x/h. One notes
that there exists a wide range of base pressuresfor the various models
and that the distance to reattachment is considerably different for each
case. While the pressure profiles appear to be quite uncorrelatable
in the form Cp vs. x/h, Roshko and Lau found that they could reduce

the measured pressure distribution to nearly a single curve (Fig. 29)

provided that a pressure coefficient Cp defined as

P - P’base

Cp = 5 (9. 3)
5p U
2 e base

T o refers to conditions upstream of the body.
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is plotted against the distance X defined as the axial distance divided

by the distance to the rear stagnation point, i.e.

% = x/xrsp (9. 4)

In finding a correlation in terms of the pressure coefficient T
(equation 9, 3) the base pressure is essentially removed as a param-
eter which influences the reattachment process, and thus it acts only
to alter the level of the pressure field. It will be seen in the follow-
ing section, by considering the integral interaction equations, that it
is the conditions in the far wake (as affected by model and tunnel
geometry) that determine the base pressure level and that the dynam-
ics of the near wake reattachment process are influenced basically

by the local reattachment mechanism as suggested by Roshko and Lau.

IX.2. Differential Equations for Incompressible Interaction

The integral momentum, mechanical energy, and continuity
equations for the single parameter portion of the incompressible wake
flow are easily deduced from equations (5.8), (5.13) and (5.9) by

taking the limit as Me - 0, hence

ch* * ay 6* clU(»3
No— *6 a-}-§-+[.25&/+1]-[-J-;--di-;{—-~o (9. 5)
J%-‘; +6*§% %"’;+3J%Zi% = K MR (9. 6)T
Eia_g -zg.z. _(_i;g = tan @ (9. Tt
T Green uses Head's entrainment equation ﬁl—- %r:{‘_}.: F(a)= el;t::;ﬁ:::

e
3
Tt Green makes the error of equating tan ® and d6 /dx
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‘We have a system of three equations for the four unknowns, & , ¥(a),

v
Ue’ and @ (the induced angle tan 1 —u—g at the edge of the viscous layer).

e

In addition we require an inviscid flow relation between ® and Ue'
Assuming the external flow is inviscid and irrotational, then we may

use potential theory. Thus, if the analytic complex function F(2Z) is

defined as
F(Z) = & +1iy

where ¢ is the velocity potential (u = V&) and ¥ the stream function,

then differentiation of the above expression yields

dF .

37 = u-iv
where u and v are the horizontal and tangential components of the 2-d
velocity vector u. Since dF/dZ is also analytic, this indicates that
u and -v are harrmonic conjugates.

Using the Cauchy integral formula for analytic functions, it is
easy to find the following integral relationship between the harmonic

conjugates u and -v [see Morse and Feschbach (36) p. 371].

o

= 1 (x8vE,0)
ulx,y) = = Soo )2y ag (9.8)
O '
vix,y)= 3\ EEEE0) g (9. 9)

=00 (x-8) " +y
Let us introduce the freestream velocity U00 as an additive constant
in equations (9.8) and (9.9) and assume that u(x, y) denotes a small

perturbation from Uoo’ i.e. U(x,y) = Uoo + u where ﬁ‘-"-— << 1. Thus
)
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v{x, &)

[§)

V/Ue o v/UO0 and denoting tan ® (x, §) =
e

s v(x, 6)/Uoo then
equation (9. 9) becomes

o (x-B)[1- 5 (§,0)]

tan © (x, ) = % . — :;z ae (9. 10)

From the condition for the asymptotic matching of the boundary layer

and outer inviscid solutions

im U im U] e
y0 T ¥ y=w U S s
®outer oundary
layer

Then the required relation between ® and Ue may be written

U
o (x-E)[1 - 5% (€, 0)]
tan © = 1 S o, de (9.11)
%00 (x~-E)" + &

From Bernoulli's equation we have the following approximate relation

for the pressure coefficient C

c, ~pU Nz[:l-v-:l | (9.12)

for

IX.3. Integration of the System of Equations

Due to the extrem ely complex nature of the non-linear differ -
ential equations (9.5), (9.6), (9.7) and (9. 11), an iterative procedure
appears to be the only practical method of solution. We may consider
this as a two-point boundary value problem where the solution must
satisfy conditions both upstream of the base (x = -0) and in the far

wake (x = +w). It is necessary that the iteration scheme adopted be
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both stable and convergent.
It appeafs that instabilities in the iteration procedure can be
avoided provided that the full set of equations( (9.5-9.7) are simul-
taneously integrated for some assumed distribution of tan ® The

following iteration scheme is thus suggested: T

(1) Assume a distribution of tan @ vs. x/ﬁi*(O) which has the
proper asymptotic form as x = ooTT

(2) Starting at the r.s.p. (gi* =1 a= 0) with an assumed
value of the pressure coefficient Cp (which will later be obtained by
application of the momentum theorem to a control surface enclosing
the body) integrate the full set of equations (9.5)-(9.7), first down-
stream and then upstream of the r.s.p. to some u* = u?oin’ using
single parameter Stewartson profiles. Since there is no way of know-

%
ing 4-priori the correct location [X(O)/6i (0)] of the rear stagnation

T Green suggested an iteration method in which the wake problem
is solved as a straight forward boundary layer calculation with a
known pressure distribution, C,, being determined from the thin
airfoil theory equation (9. 1). Using the integral momentum and

erétrainment equation, 6 and ¥(a) are calculated for a given
d
H—XP « The continuity equation is used to obtain a new distribution of

tan ® and (9. 1) is then used to obtain a new pressure distribution. The
calculation procedure is then repeated with the new Cp distribution.
This method yields unstable solutions in the reverse flow region
because the determinant of the subsystem of equations D=y g—é -4
not only passes through a zero just downstream of the r.s.p. but is
quite small in the region upstream of the r.s.p. Any discrepancies

in the assumed pressure gradient are greatly amplified in this region,
thus leading to unstable solutions.

7T The asymptotic form of tan @ is determined in section IX. 4.
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point for a given initial bounda‘mry layer, 61/h, different initial starting
locations must be chosen until the wake solution satisfying the con-
ditions a = 1, Cp - 0 as x/6i* ~ o0 is obtained,
(3) At the joining point the profiles are changed over to the
Z-parameter cosine profiles (valid near the base) and the integration

is continued to the base by adding the extra equation along the center-

line
du
u@ ____% -+ _.]_'- i[-.]_e = 0
dx Ue dx

as outlined for the supersonic case in Section VI. The value of

%
) is adjusted so that at the point where u(g = 0 (the base) tan ®

u. ..
joining
is equal to the value assumed for it at the base.
U
(4) With the distribution of Cp <= 1 - TIE') and 6 obtained in
o0
steps (2) and (3) a new distribution of tan ® is determined from the
integral equation for the external flow
1 ) C /2
tan © = S dg (9. 13)
+ 6
Steps (2)-(4) are then repeated with this new distribution of tan ® as
an input until a suitable numerical convergence is obtained. An ex-
x*
ample of a typical integration is shown in figure (30) where & /h, 8/h,
S
u , and Cp are plotted as a function of x/h. Note that this is not a
final solution but only the result of an integration for a given distri-
bution of tan @ The assumed curve of tan @ vs. x was calculated

from one of Tani's experimental pressure distributions by means of

equation (9. 13).
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The integral thicknesses 6*, and § shown in figure (30), both
approach a constant value at the base corresponding to some initial
boundary layer thickness at the corner (61/h ~ 0.5). One notes that
6"\t decreases away from the base and tends toward a constant value
(equal to the drag of the body) in the far wake. The momentum
thickness rises from its minimum value at the base and likewise
approaches the same asymptotic drag value as does 6* in the far
wake.

The dividing streamline velocity has the same general appear-
ance as in the supersonic case, increasing from zero at the base to a
maximum at the joining point and then dropping to zero again at the
rear stagnation point. Beyond the r.s.p., the centerline velocity
increases rapidly and approaches unity in the far wake.

The centerline pressure distribution shows some of the fea-
tures noted of incompressible flows. The length of the constant pres-
sure region is approximately one-half the distance to the rear stag-
nation point. This was approximately the ratio found by Roshko and
Lau in figure (29). Also the characteristic peaking of the pressure

curve is evident at a distance X/Xr s.p = 1.3. The maximum pres-
C - ® @ L
Pmax PBase
1-C
PRase »
as opposed to a value of . 34 cited by Roshko and Lau as the maximum

sure rise C =
Pm

is only about .21 in this calculation

value of Cpm based on the Chapman-Korst theory. Theydid note, how-
ever, that the value of Cp tends to decrease as the initial boundary
m

layer thickness increases. Values as low as . 109 have been meas-

ured [see Moore reference (37)].

The numerical integration discussed above was only a sample
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of the type of solution possible. It did not properly include all the
source and sink disturbances which affect the induced vertical com-
ponent of velocity Ve In the next section we discuss the effect of the
asymptotic solution in the far wake, and the influence of tunnel and
flow geometry on determining the base pressure level and how con-
sideration of these effects is essential to obtaining a properly con-

vergent solution for the base flow problem.

IX.4. The Asymptotic Far Wake Boundary Conditions

In the compressible supersonic wake flow solution, the base
pressure is essentially determined by the requirement that the solu-
tion curve of the integral equations pass smoothly through the critical
point, downstream of the r.s.p. The wake flow downstream of the
critical point is "supercritical' and thus, any gross disturbances in
this region are not propagated upstream to the base. However, for
the case of incompressible flow, the wake is always "'sub-critical",
and a correct solution for the base pressure must depend upon satis-
fying the conditions at downstream infinity;

We can use the integral momentum and mechanical energy
equations to determine the form of the far wake solution, and then
use the continuity equation to ascertain the asymptotic form required
for tan ® To simplify the calculations and to insure a simple cloged
form solution, we will assume that the velocity profile for the viscous

layer is a simple cosine profile of the form +

T This form was used by Green in his integral analysis.
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2 = 1-P(l+cosi)) (9. 14)
u 8

where 1 - 2P = u@‘/ue = a

4,
—

y
I =
)
¥

‘4.3._,‘2

The integral parameters then have the simple form

3P - 9 5 2
N: 1-—-—2-— J = Z‘TP-*'-ZP
(9. 15)
2 .3 1-P
R = P Z—T
ap 1 9Ye

Goldstein (38) has shown that the pressure gradient term =T Ox
can be neglected in the first approximation to the far wake solution as
being of higher order in x~! than is required.

The momentum and mechanical energy equations (9.5) and (9. 6)

may then be written as

%
dd RO
;74 T + 6 = - 0
x : (9. 16)
3 ‘
7L 45 E kg
dx : x dx
Solving for the derivatives
W _ raw P KR
dx dP dx dJ
ifa.z(- - J
‘ (9.17)
3 :
daé _ - K¥R
xSy

dy
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If we now assume that for x large, U(g—* Ue i.e. a = 1 then we may

make the approximation that

P = l%i << 1 (9. 18)
therefore,
aJ _ 10
=1 J=2 W - 3--§—P 3

The dissipation integral retains the form R = 1r2 P3 in this first order
approximation.

The application of the momentum theorem to a control surface
which encloses the body and extends far enough downstream so that

P ~P gives
e 00

2 ® D
D = pUOOS 7 (1-g)dy Cp= —2— (9. 19)
o o0 o —Z-Uoo he
+C.h= 9 % 1- Yydyms = t
or 2 Cphh = o NSO ( "ﬁ;) y~8 = const.

3
Thus 6 is to first order constant and is equal to one-half the drag
- coefficient of the body. But the drag of the body is just equal to the

base drag + the initial momentum thickness at the base, hence

C 9

-G
BNEE A PBase | “Base (9. 20)
P R 2 k :

Thus the base pressure may be determined by subtracting the momen-

0

tum defect in the far wake Tlo—g (found from the integral solution) from
the base momentum thickness Bise

Substituting (9. 18) and (9.19) into (9.17) produces the following

expression for the rate of change of the centerline velocity defect,
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dP 4 2 K 53
dx - 3" T
D
integration yields
1

po= (3 )2 “p

81r2 Kx

. § L (9.21)

s _ Cp 1+ ( 27 >’~’—” ©p
h ) 2 32w x|

To first order, the continuity equation for the far wake has the constant

pressure form

3¢

dé
tan ® = -a—;{-

From equation (9.21), we find that the induced normal velocity com-
3
ponent is of order x 2, i.e.

Cp \#

wne = (2T (E2) (9. 22

Therefore in performing the wake iteration scheme it is necessary

that the assumed distribution of tan ® have the asymptotic form given
by equation (9. 22), for a given initial guess of the drag coefficient (CD),
in order to produce a convergent wake solution.

In addition to the self induced pressure field of the wake itself,
additional pressure contributions can be linearly added to the wake
solution to account for the effects of the body.

1

Since the velocity defect P is of order x 2 and the wake thick-
i

2
ness 8 = § (1+Z) ~ x?, then aside from the freestream velocity Uw,

there is a finite inflow along the wake toward the body. But this
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inflow must be balanced by an outflow of fluid from the body of equal

strength, as shown in the sketch below U

=

Thus the external potential flow may be thought of as resulting from
a source of strength Q = D/p Uoo at the nose of the body, and a distri-
bution of sinks produced by the wake interaction. The velocity along

the axis due to a source of strength Q is

- Q - CDUoo (9. 23)
source 2T x 4mx ’
The added pressure term due to the body is therefore
C;D
= >
C 5—— x/h>> 1 (9. 24)

PBody

If for a given test setup, the induced velocity at some point in
the far wake is altered due to the surrounding tunnel geometry, this
will effect the level of the base pressure. These tunnel and model
effects are not negligible and can produce a considerable variation in
the base pressure as the experimental results of Roshko and Lau
(figure 28) have shown. It may be possible to include these geometry
effects by using additional image sinks beyond the tunnel walls in

order to balance the sinks produced by the free wake.

.f

see Prandtl-Tietjens Hydro and Aeromechanics, p. 124.
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In conclusion, we have indicated the direction in which an
integral analysis of the incompressible base flow region should pro-
ceed. An outline of what appears to be a convergent iteration scheme
has been set forth based on the techniques developed for supersonic
flow, along with some relevant discussion of the appropriate boundary

conditions necessary to establish the level of the base pressure,
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X. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

In reviewing the theory as presented in this paper, we note
that the following broad assumptions were required in order to obtain
a solution to the turbulent base flow problem: (1) an eddy viscosity
law and compressible transformation [pz € = f(x)] can be used to de-
scribe the scaling effects of the turbulent shear stresses; (2) single
parameter Stewartson profiles are adequate to describe the velocity
profiles in the turbulent near wake not too close to the base; (3) the
boundary layer assumption 8p/8y ~ 0 can be used throughout the near
wake flow field within the viscous sublayer region; (4) the outer flow
- can be considered fully isentropic; and (5) flow perturbations in the
vicinity of the corner do not affect the downstream solution.

While the assumptions above are clearly open to question and/or
improvement, it is felt that any turbulent base flow solution must in-
corporate the essential feature of viscous~inviscid interaction. For
the case of supersonic flow,any solution must acknowledge the exist-
ence of the Crocco-Lees critical point. Theories which are based on
matching conditions far downstream of reattachment can be considered
only as sophisticated correlation procedures without the proper physi-
cal foundation.

As to the five assumptions listed above we can make some
imporfant conclusions based on the results obtained so far.

First, it’appears that for the free shear layer the use of the
eddy viscosity model of equaiion {4.26) with the reference density equal

to the density in the quiescent region, gives good agreement with
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experiment for overall growth rates,such as the momentum thickness.
While the eddy viscosity model was verified for the asymptotic or sim-
ilar shear layer (and far wake), it has not been fully established that
this model is completely valid in the non-similar mixing regime. A
thorough experimental and theoretical investigation of the mean flow
quantities and turbulent fluctuations in the non-similar shear layer is
considered important. Further, there is essentially no direct verifi-
cation of the eddy viscosity model used for the compressible reattach-
ing (pr = pq: ). No present experimental fluctuation data exist against
which a compressible near wake eddy viscosity model can be compared,
as has been done for the data of Tani and Mueller (21, 22)for the incom-
pressible case. This would be a difficult, but most necessary, exper-
imental Atask to be undertaken if we are to learn more of the essential
~features of separating and reattaching turbulent flows.

Such an experimental investigation of the details of the wake
profiles would also aid in determining the validity of the Stewartson
profiles near the rear stagnation point and the two parameter cosine
profiles near the base. Even with the relatively simple eddy viscosity
model and velocity profiles presented in this study, the results of the
integral solution indicate that the basic length scales and pressure
gradients in the near wake are well described by this analysis (at least
for those cases where non-isentropic outer flow field effects are un-
important).

The last three assumptions, (3)-(5), can actually be considered
as one problem, which is directly attributable to events occurring in

the immediate vicinity of the corner. As pointed by Golik et. al. ( 8)
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(for the case of supersonic expansion), within the distance (xe) re-~
quired for expansion of the boundary layer (61), both vertical and
horizontal pressure gradients are of the same order within the rota-
tional layer. This distance can be estimated from the sketch below,
which denotes a simple Prandti-Meyer expansion of the initial bound-

ary layer,

<§5Z
tan U«2= — (10. 1)
e
plulﬁlmpzuzﬁz {10. 2)
Therefore
y+1
x. & 1+ X M2 ey JMZ-I
E 1 2 1 2 )
= — M ——e (10. 3)
B TR LT 2 M, |
Z 1

One notes that the expansion distance will be small only if the upstream
boundary layer thickness and initial edge Mach number are also small.
As the results of section VIII indicate, the isentropic boundary layer
solution diverges from the data for approach Mach number of the order
ofi 3 or more,for initial values of 61 of the order of the step height. But
when the approach Mach number was sufficiently low (Mw < 2) good
agreement between theory and experiment was obtained.
1 = 3) the effect

of the corner expansion process becomes very important. Therefore,

Thus we conclude that at high Mach numbers (M

in order to adequately handle the near wake flow field analysis, an

¥ For laminar flow, equation (10.3) implies that the expansion length
is proportional to the hypersonic interaction parameter ¥ = M /JRE;L
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outer rotational characteristic calculation procedure must be used to
properly account for the entropy gradients and lip shock formation in
the outer flow field. Such a calculation procedure is beyond the scope

of the present analysis.

X.1l. Summation of the Major Conclusions

1. Assuming that the turbulent shear stress is of the Boussinesq
form it was shown, for incompressible flow, that the proportionality

constant (K) for the eddy viscosity model ¢ = T %% is essentially

3
identical for both similar free shear layers and self preserving wakes
{based on the experimental data) provided that ¢ scales only with the

momentum thickness 6, and edge velocity u, i, e,

2o Employing the compressibility transformation pze = pr2 K u, 8
- and a modified Stewartson t‘ransformation of the coordinates, it was
found that the spreading rate of the compressible similar free shear
layer momentum thickness is inversely proportional to the square of
thé reference density. The value of P which scales the compressible

experiments is the density in the quiescent region bounding the shear

layer, Pr= Py ™ p@.,

3. The length of the constant pressure mixing region xo/h was
found to be nearly constant for base flows with initial thicknesses

éi/h <1, but xo/h decreases rapidly as 61/h increases above 1. This
result was confirmed for both a free shear layer model and a 2 param-

eter set of wake profiles which were used to join integral wake solu-
tion to the base.



-95.

4, Using a simple conser;/ation model to relate the viscous sub-
layer, after the corner expansion,to the initial boundary layer approach-
ing the step, it was shown that the thickness of the sublayer Az is
approximately 10-20% of 61. The initial edge Mach number of the
sublayer ahead of the turn is always near one, no matter how high

the freestream Mach number. This leads to a maximum base pres-
sure ratio Pb/Pw ~ .78 , for all initial Mach numbers, for the case

of very thick initial boundary layers (61/h >> 1),

5. For free strearn Mach numbers Ml < 2.3, the combined super-
sonic theory gave good estimates for the length of the constant pres-
sure region, the distance to the rear stagnation point, the distribution
of centerline pressure during reattachment, and the trend of increas-
ing base pressure with increasing Gl/h, for the cases of both wake and

splitter plate reattachment.

6. An outline of what appears to be a convergent iteration scheme
for the incompressible case was presented in section IX. It was shown
that the techniques developed for the supersonic integral analysis could
be adopted for the low-speed problem, provided that the normal veloc-
ity field in the far wake is of order x 3. It was also pointed out that
the low-speed base pressure coefficient is simply the difference be-
tween the momentum thickness in the far wake and the value of 8

approaching the base.
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