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ABSTRACT

In this thesis a method is developea for calculating supersonic
wings with curved subsonic leading edges. The linearized theory is
used throughout the thesis,

The wing with the curved subsonic leading edges is trans-
formed into a wing with straight subsonic leading edges by means
of a transformation as used by Coene for quasi-homogeneous approx-
imations to the solution of this problem. The Mach cone is invariant
under the transformation.

The solution of the transformed Prandtl-Glauert equation is
expressed in terms of Fenain's solutions for the delta wing., In
general the solution is an infinite sum of terms, each term related
to a solution for the delta wing, However, a condition is formulated
under which certain families of wings with curved leading edges pos-
sess solutions in closed form. It is shown that any boundary value
problem for such wings can be solved by the superposition of these
exact solutions of the Prandtl-Glauert equation. The problem is thus
reduced to determining the number of terms necessary to approxi-
mate the given boundary values within satisfactory bounds, and
within a satisfactory region of the wing.

One family of wings with curved leading edges that has a
solution in closed form is found. The flat plate with these leading
edges is studied in detail. In order to find a reasonable approxi-
mation to the flat plate, in a satisfactory region of the wing, up to
five solutions are superposed. It has been found that the curvature

has a considerable effect on the perturbation velocity and the leading
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ABSTRACT (Continued)

edge suction force. The leading edge suction force thus found is

compared with that calculated by some other approximate methods.,
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I. INTRODUCTION

In the initial stages of the development of aircraft, it is often
required to gain qualitative insight in the characteristics of possible
configurations. This is needed in order to choose the optimal con-
figuration which meets the requirements of the design. In this process,
the wing plays obviously a very important role, i.e. what can be gained
by changing the wing planform, the shape of the leading edges, sweep,
etc,

It is in this stage of the development that the linearized theory,
with its powerful property of the superposition principle, in general
is a very useful concept,

In this thesis, we study the linearized theory for supersonic
wings with curved subsonic leading edges, that is, wings where the
pressure distribution on the upper and lower surface of the wing are
influenced by each other, We want to study the influence of the curva-
ture of the leading edges, so that for simplicity we assume that the
trailing edge is supersonic and that the wing is symmetric.

Insofar as the linearized theory is concerned, Germain, [8]
Fenain, [7] Stewart [13] and others give the solution for straight
leading edges (delta wings) Evvard,[5] Etiua and Woodward [47] and
Stewartson, [15] give implicit solutions in terms of integrals over
singularity distributions, which can be used to obtain approximations
to the solution for curved leading edges by an iterative process.
Coene, [1], [2] and [3] gives approximations to the solution for

curved leading edges in terms of the solutions of the homogeneous
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flow theory of Germain and Fenain. This method is quite straight-
forward, but gives no guarantee that the successive approximations
converge rapidly enough to be useful. However, this method is
systematic enough that it can be used to calculate the properties of
wings on the computer.

In this thesis we try to find the solution of this problem as a
superposition of exact solutions to the Prandtl-Glauert equation. This
implies that we don't consider the boundary conditions in the first
place, but satisfy these by the superposition of exact solutions, We
will employ the same methods as Coene, that is, expressing the
solution in terms of the solutions of the homogeneous flow theory.

Another possible way to investigate this problem is to find
transformations which make the Prandtl-Glauert equation separable
in its variables and which are such that the curved leading edges be-
come simple in the new coordinate system. Robinson [12] considered
in this context the socalled hyperboloido-conal coordinates and solved
the problem of the lifting flat delta wing in this way (see also Stewart
[147). Miles [11] finds a number of such transformations to the un-
steady case by modifying the classical transformations which make
La Place's equation separable. Neither these transformations, nor
similar modified ones for the steady case, seem to yield coordinate
systems in which some family of curved leading edges is represented
by a simpler curve,

In Chapter II we derive the Prandtl-Glauert equation and discuss

the boundary conditions. In Chapter III we give a review of the results
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of the homogeneous flow theory. Chapter IV is devoted to a special
family of curved leading edges, for which exact solutions are con-
structed. Chapter V gives a possible generalization to other families

of leading edges with exact solutions.
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II. THE EQUATIONS AND BOUNDARY CONDITIONS

II.1 The governing equation

In supersonic wing theory, it is customary to make the
following assumptions:
-~ The influence of body forces (gravity) is negligible.

-- Viscosity and heat conduction are negligible. Omne can account

indirectly for the effect of viscosity by applying the Joukowski
condition at the trailing edges and by adjusting the wing thickness

for the displacement thickness of the boundary layer on the wing

surfaces.
-~ Air is considered to be an ideal gas.
~-- The flow is isentropic; i. e. no shocks are present.
With these assumptions the equations of motion reduce to

Dp

or pdivu = 0 {continuity) (2-1)
Du
P t gradp = 0 {momentum) (2-2)
y _2_,dp Po : : :
p~p’; ag = ( 3 ) =y — (isentropic relation) (2-3)
Po Po

In the linearized theory it is assumed that the velocities, in-

duced by the wing at small angle of attack, are small compared with

the velocity of the undisturbed flow,

Consider therefore perturbations on the undisturbed flow:

u=U+u’ p

[i]

Py + P

p=rpyte (2-4)
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Substitution into the equations of motion gives then:

8p', . Bp' .
st Ut diva = 0 (2-5)
w oy ol

at Uk = o, grade

where terms of second order in the small quantities are neglected.
Since we are considering inviscid, irrotational flow, we may intro-

duce a velocity potential, defined as

u = grad? (2-7)

This can be written as the sum of the velocity potential for the un-
disturbed flow (in the x-direction) and the perturbation potential @,

so that

? = Ux+9(x,vy, 2)

Substitution into (2-6) gives us then:

2
a
grad{g—?--f U-g-—i‘%+-—-§—(—)—p’} = 0

From this we can express p' as a function of ©®:
Po
pl = - — {cpt + qux} (2-8)
20

Substitution of (2-8) into (2-5) leads to the governing equation for the

linearized supersonic wing theory:

2 1 U _ )
P chx"pryumzz +a2 qgt;‘calhz_‘;—'éhq)xt =0 (2-9)
0 0
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For the steady case, we obtain the Prandtl-Glauert equation

2 ‘ :
B CPXX"pry-CPZZ = 0 (2-10)

This is a hyperbolic second order linear partial differential equation
for the perturbation velocity potential, From (2-8) we obtain the

expression for the pressure perturbation p':
p' = - pp(UQ +0) (2-11)

II.2 The boundary conditions

In cartesian coordinates (x,y, z), with the origin at the apex
of the wing, the envelope of the disturbances is given by the equation

of the Mach cone,
x% - pi(yZ4z%) = 0, %20 (2-12)

For wings with subsonic landing edges only, ahead of the Mach cone
no perturbations are present, so that on the Mach cone ® = 0. For
the boundary conditions on the wing, we have, in the absence of

blowing or suction,

uen = 0 on S (2-13)

where n is the normal to the wing surface S (see Fig. 1). Suppose
that the wing surface is given by

+

z £ (x,v)

£ (x,y)

on S

Z

where the + and - denote the upper and lower surface respectively.

Withn = (nx’ny’ nz) and u = (U + u, v,w) (2-13) becomes



(U + u)nX + vny + an = 0 (2-14)

The linearized theory will give reasonable results for plane wings at
small angle of attack; for such wings we may assume that n_ and n
<<n, sothat n ~ 1
4 Z
nX
== - a(x, y) (¢ = angle of attack)

b4

Then we can write (2-14) as

w
Y TR T T (2-15)

In the linear theory this condition is applied at z = + 0,

In order to solve the boundary value problem for a given wing
or for a given pressure distribution, we make a distinction into four
possible cases. By the superposition principle we are allowed to do
so and thus simplify the problem considerably.

Write the equations for the wing surface as the sum of a

symmetric and an asymmetric part:

S 7 LY S Y T LA o YRR M

where k is the asymmetric and § the symmetric part,

i) The direct lifting problem (D. L. P).

For this it is given that § = 0; k £ 0 —g—i—% # 0 so that

+ ak
Zi = k(x,y) and o = S
and with (2-15)
+
e = uk (2-16)

p A ox

ity



From this it may be seen that
sz is even in z

o, CPX are odd in z: e. g, ¥ = -cp+

Since outside the wing the pressure must be continuous, we have

¢ = Cpx = 0 outside the wing for z = 0

There exists then a discontinuity in the ¥ across the wing, which
strength is related to the circulation around the lifting surface and

gives rise to the lift,

Summarizing: Given CPZ = CDZ" on the wing and @ = CPX = 0 outside

the wing for z = 0, calculate ©® and ¢, on the wing. .

ii) The direct thickness problem (D.T.P.)

For this it is given that k = 0; § # 0; g-}-i- 40 so that

zi = * §8(x,y) and ot = %f;

and with (2-15):

I gé_ _
©. = Uz (2-17)

From this it may be seen that
(‘QZ is odd in z

®,9  are even inz;e.g. P = cp+

so that outside the wing for z = 0 ®, = 0. We now have a jump in

the P, across the wing of strength
+ -
A(;ozzU(a ~-a )=2TUea.

Summarizing: Given Cp: = —CPZ_ on the wing and ®, = 0 outside the wing

for z = 0, calculate ¥y and ¥ on the wing.



-9-

iii) The inverse thickness problem (I.T.P.)

For this it is given: Cp:: = Cp}; on the wing

i

©®

2 0 outside the wing for z = 0

- +
Calculate: ®, on the wing; ¢, = -9,

iv) The inverse lifting problem (I. L. P)

X + - .
Given: ®_ = -0O_ on the wing
X x

® = C’Ox = 0 outside the wing for z = 0

. + -
Calculate: ¢, on the wing; v, =9,

II. 3 Additional conditions

In addition to the boundary conditions on the Mach cone on the
wing and outside the wing in the plane z = 0, we have the following
conditions:

-- At subsonic trailing edges the Joukowsky condition must be applied.

-- Near rounded leading edges the angle between the normal to the
wing and the z-dire‘ction is no longer small, so that (2-15) is no
longer valid. It is assumed that this region of nonlinearity is
relatively small and does not influence the linear solution further
away from the leading edge.

-- Near sharp leading edges, the velocity will go to infinity in
case the leading edge is subsonic, The assumptions of small
perturbations is locally violated there. It turns out that one can
account for this by admitting a square root singularity at the

leading edge and taking into account a suction force.
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I1. 4 Methods to solve the problem of linearized theory

There are four methods to solve above sketched boundary
value problems for the Prandtl-Glauert equation, with which there
are found solutions

i) Analogy with the 2-dimensional wave equation

XX vy tt

»__t¢ = lf ®
a
This was studied by Volterra and Hadamard; applications of their

theory lead to the acoustic analogy

ii) La Place transform

Most applications are found in the "slender body!" theory

iii) Conical and homogeneous flow

The concepts of homogeneous flow are mostly applied to wings
with straight leading edges and to a lesser extent to wings with slightly
curved subsonic leading edges.

iv) Distribution of singularities

In this method one makes use of the analogy of the Prandtl-

Glauert equation with La Place's equation,

(x' = x,y' = iy, z'=1ipz)

and makes use of the fundamental source and doublet solutions of this
equation to define their supersonic counterparts.

In general this will lead to integral equations for the perturba-
tion velocity potential. For wings with supersonic leading edges these

equations can easily be solved, but for wings with purely subsonic
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leading edge this is impossible in the D. L. P. and I.T. P,

Since in this thesis the results of the homogeneous flow theory
are used quite extensively, we will study the theory of this approach

in the next chapter.
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III. RESULTS OF THE HOMOGENEOUS FLOW THEORY

III. 1 Introduction

Germain [8] generalized Busemann's conical flow theory into
the theory of homogeneous flow., The solutions to the boundary value
problems, as described in the previous chapter, are found by con-
structing analytic functions. Fenain [7] carried out many systematic
calculations with Germain's theory, and found that the solution can be
expressed in terms of functions which are independent of the boundary
values, The problem is thus reduced to an algebraic one.

In this chapter we give the results for the direct lifting
problem. For the other problems, the reader is referred to [7] or
(31.

A flow homogeneous of degree n is defined as a flow for which
the perturbation velocity potential is a homogeneous function of degree
and x,,.

2 3
n -
f()\xl, )\xz, )\x3) = A f(xl, X, x3) (3-1)

n in the cartesian coordinates Xl’ X

Upon differentiation of (3-1) with respect to X and putting A = 1, we

obtain the Euler relation

1 Bxl 2 8X2 3 8x3

nf (3-2)

From (3-2) we conclude that, since f is homogeneous of degree
n, the first derivatives of f are homogeneous of degree n-1, Differ-

entiation of (3-2) with respect to Xy gives us the Euler relation

2 2 2
x f o7 f 0°f of
x., =3 4+ L 44 = (n-1) = (3-3)
1 BXZ 2 8x18x2 3 ax1 8x3 Bxl

1
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In general, we obtain from (3-2):

i+l i+l i+l
Xla i+§)~p-c§ <P 554 +XZ i-?)-q fp+1 q +X3 i~p?q ; g+l =
x1 ) > 8x3 8X1 E)xz 8x3 8x1 8x2 8x3
; (3-4)
= () i—;-qf P 50
%] axz 8x3

For a wing with a general planform, it is not expected that the per-
turbation velocity potential satisfies (3-1). However, the ''delta-like"
wing with proper boundary values may exhibit the character of the
homogeneous flow (see Fig., 2).

In the next section we give the solution, as evaluated by

Fenain,[ 7] for the delta wing with leading edges

_lle ¥ (3-5)

X =

3

It is assumed that the wing lies in the x, = 0 plane, and that ¢ satisfies

3

s %y and X350 We treat only elementary problems,

that is, problems for which the boundary values are given as a homog-

the PG-equation in Xq

eneous polynomial in Xps X and X3

I11.2 The solution for the D, L. P,

For the D.L.,P. we have given as the boundary values

+ - * n-1-s s

X
2
n-1-s,s 1 T

for Xy = 0
and Ile < Txg (3-6)

1
un=¢n=0 for x3=0 and ’Tx1<lx2‘ = E;Xl
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The solution is then expressed as below:

"+ - n-1 8 % *
wo=-u o =--Tx P§1 an np(§)
x, =0
+ - 2. n-13% % % 3
= -v_ = +=x 2 £}y ; for 3-7)
< Vn v w1 p=1 TP np(b) lxz| <Tx (
n
+ -_ 2 n % %
L ATl Sl S pZ:I )\np Fn+1,p(g)
*
The function an(g) satisfies the differential equation
ag ¥ ~2-n
+ g
—5E = (7P N TE: (3-8)
ag™ (1 - g5P*2
3 x
and G satisfies E = 2
np EEN
a"g 1-n
—IP = ()P R (3-9)
ag® (1 - g%)P+z

In Appendix B we evaluate F:p and G:p in more detail,
¥*
The )\np‘s in (3-7) are found by solving a system of n equations for

n unknowns:

n
1P AF 2% = m-1-s)tst

1 np p n-~1l-s S; 5 = O! 1,-..,1‘1-—1 (3—10}
p= ,

S .. .
where ap is given as

M
2m 2 R-1 p+m-j-2 m-1 ptm-j-2
(M= 2|5 ( J )hd 2 ( J )N .| ; m#0
I 2j =0 p-1 2j
2m-2t, , 2t 2p+em-2t
G2mil_ 1 -t )0 207 50 ) K2t
(p+m~t)
P

(3-11)

; mz20
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where k=78 .

The MZj's and sz's in (3-11) can be expressed in terms of
complete elliptic integrals of the first and second kind, by means of

the following recurrence relations:

. 2 . 2 2 .
[(Zﬁl)(l-k )sz = [(2j-1)(1-2k )+1ﬁv[2j_2+(23-3)k sz_4;J > 2
2 1 2 1
M, = E . sz - (2-kE -Zk K (3-12a)
3(1-k%)
[ 2it1)N.. = [@2] 1)(1+%%) +(1-k%)IN (23 3')k2N 322
< J Zj - ( J - - 23_2' J= 2j_4’3
N, = E' -k°K'; N, = (I-kK°)M (3-12b)
\ 0 ’ 2 2

In (3-12a) and (3-12b), E' and K' are the complete elliptic integrals
1
of the second and first kind respectively, with modulus (1 -kz)"‘

w/2 .
E' = [ [1 - (1-k%)sin®872 d9
0 0sk=l (3-13)
w/2 L
2, . 254-5
K'=[ [1-(1-k")sin“0]724d6
0
A table of E' and K' can be found in any book of transcendental
functions,
In the following section we apply the above results to the
problem of the lifting flat delta wing.
In the calculations in Chapter IV we use the results of this
chapter quite extensively. The results can be simplified further for

numerical calculations. These are not given here, but can be easily

derived from the formulae (3-10) and (3-11).
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III. 3 Application
The flat delta wing

This is the simplest direct lifting problem; the boundary

conditions on the wing are
W]. = Wl = WO = COO (3“14)

(3-14) implies that the perturbation velocity potential is homogeneous

of degree one, From (3-7) it follows that the solution can be ex-

pressed as

+ - 2k
U= -y = - TTAG
(3-15)
+ - 2 .k %
Py = -9 T - A R
From (3-10):
% s *
)\11 a; = {-s)tst s, s ; fors=0 (3-16)
With (3-11) and (3-12a) we find from (3-16):
w
* . oz 9
)Lll = 3 o (3-17)
TX
# *
From Appendix Bl: F11 = A = 1
2,2 .2
SRS s U
21 ~ - Txl

So that the solution for the flat delta wing with leading edges

Ixz‘ = TX is:
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( TZX W
u1+ _ 1 %o
Eyréxf-x]
\ | g lx, | = 7x, (3-18)
oF - Yo 2 2
1 - - T Xl —XZ
" K

From Appendix A it is easily calculated that

W
CL = E.Tf. ._..9
E' U
20T ( Wo>2
Cp = me— | —
E' U

The drag coefficient is reduced by the leading edge suction force as
given in (A-10), so that

2w (Y0)? pf1oifr (Voy?

tot. E' U E! U

Cp

2wt (2

_._0>2 [1 P ALLS ‘kz]
E U 2 E

For k = 0 (''slender body'): Cph is reduced by 50% by the suction
force.
For k = 1.0 ("sonic' leading edges): suction force is zero,.
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IV. THE SOLUTION FOR A SPECIAL FAMILY

OF CURVED LEADING EDGES

IV.1 Introduction

In the scope of the linearized theory, no exact solution has
yet been found for wings with curved subsonic leading edges. How-
ever, for slightly curved leading edges, Coene [3] attacked the
problem by constructing transformations which transform the leading
edge into a straight one.

It is shown in [3] that in order to straighten the leading edge

i

ilyl“(’*) into RS (4-1)
z

0 x3=0

i

it is sufficient to stretch the x-axis only. This implies that the trans-

formation has the form

xl = x + {xz - Bz(y2+zz) }F(x, Vs Z)
XZ =y (4"2)
Xy = 2
where F(x, y, z) satisfies
fx) -Tx=7 {xz - 52 fZ(x)} F(x, f(x), 0) (4-3)

It is assumed that the Jacobian of (4-1) is nonvanishing in the region
under consideration.
The Mach cone
x2 - Bz(y2+z2) =0 transforms into
2 2, 2, 2
% - B (x2+x3) =0,

In the (Xl’ X5 x3) space we have now the same geometry as in the
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case of the straight leading edges. If it is possible to express the
perturbation potential ® in the physical (x,y, z) space, which satisfies
the PG-equation (2-10), into terms of solutions of the homogeneous
flow theory M(xl, %55 x3), which satisfies the PG-equation in the
(5 %,

Therefore, we try as solution

X3) space, the solution can be determined.

q
© = 2 M G (Xl’ X, x3) . (4-4)
gq=0 axlq 4

For slightly curved leading edges, it is shown in [3] that upon
expansion of Gq in (4-4) and F(x,y, z) in (4-2) and substitution into
(2-10), a system of equations is found for the coefficients in the power
series expansion for Gq' It is an a priori assumption that the so
introduced expansions are convergent in some neighborhood of the
origin.

In this thesis we circumvent this problem of convergence by
finding the differential equations Gq satisfies and solving these for
one special case in closed form. This special case corresponds to
F = constant in (4-2). Coene [3] noted that for this case the first
term in (4-4) is sufficient for finding a solution, which subsequently

was obtained as a power series,

IV.2 The hyperbolic leading edge

In this chapter we study the most simple transformation (4-2):

X, = x+ {xz - Bz(y2+z2)}a
X, =y : a = constant (4-6)
X, = Z



~20-

The leading edge which is straightened by (4-6) follows from (4-3):

Iyl

z = 0 (k =1B)

1]

—Z-;-I—B—E—[—l +\ll + 4axk2(1+ax)] -7y

(4-7) corresponds to hyperbolae in the z = 0 plane, going through the
origin. It is seen from (4-7), that a is not a real parameter of the

problem, but may be regarded as a scaling factor. By introducing

5

we eliminate a in the problem.

ax : x20 <
? a 0 4.8
ay ; y20 g (4-8)

For X < 0, the leading edge (4-7) becomes a trailing edge for X = -%.
*
For X > 0, the leading edge becomes at most sonic. So we have:
—% L X<ow

(4-9)
ly| <x

as the region where the solution is required.

It turns out that in R the Jacobian is positive, and becomes
zero at X = -3, In Fig. 3a and b the leading edge is shown for dif-
ferent values of k.

The PG-equation in the Xqs %, and X4 coordinates can, with

(4-6), be written as:

2 2
B o - - + 6aB . +4aB”(x,0 =0 4x.0

X1X) XX, T XgXg X ey xy 727 %%, 73 %,
(4-10)

)=0

In the X, X,, X5 space we have now the same geometry as in the case

of the homogeneous flow. As solution to (4-10) we try therefore:

Cp(xll Xz) X3) = M(Xlt Xz: XS)G(Xl, < (4"‘1 1)

20 X3)

*fOI'X"-POO
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where M is homogeneous of degree m in X5 X, and X, and assumed

to be a solution of the homogeneous flow theory, so that M satisfies

the PG-equation

(4-12)

Also, we may utilize formulae (3-2), (3-3) and (3-4). With this we

obtain for (4-10):

aM[z zm+1)ap G+2(1+2ax, )52 oG, 4(x 1+2ap)f32 aG]
*1

2 2
293G 297G 298G 297G
+M[2(2m+3)aﬁ F + (1+4ax )ﬁ —- 4(m+1)B 5p -40B -—-——+8 ﬁax Bp]
1 Bxl Bp
=0 (4-13)
Sufficient conditions for (4-13) to hold are:
8G G %G %G %G
2(2m+3)a-8—;c—-—4(m+1)-é-5-+(1+4ax1)—-——z + 8ap —4p——-—-—2- =
3G aG -
(2m+l)a G + (1+Zax1)-é—}—{—1—+ 2(x 1+2ap) 3o =0
In (4-13) and (4-14) we have defined p as
2, 2 2 2, 2 2
P = By, +x3) = By +27) (4-15)
With
E = 1+ 23.x1 1 (4-16)
n = [1 +4ax1+4a pl?
(4-14) becomes:
2 2 2
9 "G
(2m13) & g +(28-1) 28 426,28 -
8g o€ an an (4-17)
oG 9G =0

(m+2)G+§—E- + ﬂé‘ﬁ"
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The second equation in (4-17)has as general solution any
function homogeneous of the degree -(m+3) in £ and . This implies

that (Euler relation):

2 2

9G 9
-mt3) 5 = £55 4 n 26 (4-18)
ot g an
Using (4-18) in (4-17) yields the one-dimensional wave equation:
o’ _o%c _ (4-19)
8n2 agz
So that the general solution of (4-17) is:
—-(m+d) —m#])
G = Cl[l + Zax1 +J1+4ax1+4a p‘] +C2B1+2ax1)-«ﬁ+4axl+4a p:l
' (4-20)

The solution as represented in (4-20) contains two arbitrary constants
C1 and CZ’ which will be determined below.

In the (%, vy, z) space (4-11) is now:

1
Py, 2) =51' I\'7I{Xl(x,p),y,z} « [(1+2ax) + az(xz-ﬁz(y2+z2)) 1~ (m+3)

. (4-21)
~ o~ 2 - 1

+ Sy Rilx, (%, p), v, 2} [x°-p2 (y%427) ]~ (@F2)

Since M and all its derivatives up to mth derivatives are zero at the

Mach cone, the two terms in (4-21) correspond to a supersonic source

at (- i—, 0, 0) and (0, 0, 0) respectively. In the following we choose

(o}
(of

1

. ]
(4-22)
2 = 0

By this choice there are no singularities in the function G in the region

(4-9). Furthermore ® becomes M for the limit a = 0.
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The solution is now:

P(x,y,2) = M {Xl =, p) v, z}e [1+2ax+a2(xz-p)]~(m+%) (4-23a)

1
wix,y) = @ (x,y, 0+) = {Nvm' [1+2ax+a2(x2—ﬁzy2)]_(m+2) (4-23b)

1
uley) = Cpx(x, s 0+) = ?’:m' [1+2ax+a2(x2-pzyz)]"(m+z)

< 2 2 22 7tm+3)
-a[M] (Cm+I{l+ax)[l+2ax+a (X -P yz):f
z=0 (4-23c)
In this section we obtained an exact solution to the PG-equation,
for a wing with hyperbolic leading edges. The boundary value problem
is reduced to a boundary value problem of the homogeneous flow theory.

For a direct lifting problem, we have given
0%y, 0+) = f(x,y) ; on the wing (4~-24a)

From (4-23c) we have, that f(x, y) should be expanded as

m-1 m-1-s
© 2o ¥ ! [X+a(xz-ﬁ2y2)] |£1°
flx,y)= 2, S=2.m=’°5S — (4-24b)
> Y 2. 2 22 -mis
m=1 [1+2ax+a”(x"-p7y )] 2

so that the solution can be written as

~ 2 -
P [xta(x -ﬁzyz), Y, 0*]
2

o0
Olx,v,0) =

; on the wing (4-24c)
m=1 [1+2ax+a

2 2 2 2
x“-py e

where Cpm(xl, X5 0+) is given in (3-7). The perturbation velocity
follows from (4-24c) or from (4-23c) by summation over m.

Note that each term in (4-24c), say for m = N, is an exact
solution of the PG-equation, which satisfies boundary .conditions given
in

o
in (4-24b) for m = N, This implies that for any choice of Cn-1-s. s

(4-24b) we have an exact solution.
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In the neighborhood of the origin, that is for

2

2 22
|2ax + a“(x"-°y“)| < 1 (4-244)

the denominator in (4-24b) can be expanded in a convergent power

series, By this we can write (4-24b) as

0 o0 %* m s
flx,y) = 2 bm ¢ X !yl
m=1 s=0 ?

¥ . . *
where b is a function of ¢

m, S m-l-s, s

*

Expanding f(x, y) in the same way, we determine the € hol-s. s for any

m and s, In the range (4-24d), (4-24e) will be a convergent series,
so that by analytic continuation (4-24e) is valid everywhere in the aft
Mach cone for a > 0 and for x < - -2-15- for a <0,

This implies that any boundary condition £(x, y) can be written as

in (4-24b), so that the solution is known for any f(x, v).

IV.3 Flat plate with hyperbolic leading edges

The flat plate has as boundary condition on the wing:

wix,y) = W, = constant (4-25)

From (4-24b) we obtain therefore
i-1
% 2 2 2.4i-1-
N S[x+a(x -7y )y st%‘s

2 c,

w. = z s=0 "i-1-s, Nyl <£00)

= T 3
o & [1+2ax+a’ (x*-poy%) ]2

(4-26)
In (4-26) there are _12: N(N+1) coefficients to be determined, where N

denotes the order of approximation

C*
Ne1: w0 - ©
0 [1+2axta’(x®-p2y%)]?
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(1) _

It is convenient to choose 00 such that w = Wy at the

origin, so that

CZO = W (4-27a)
% 2 .2 2.4, %
N=2: w®) - )y ¢ glxtalx”-By ) lreq, |7 ]

0 [14+2ax+a’(x>-p2y°)]2

*
We have 3 ¢ 's to determine. This can be done in many ways,
for instance W( ) - W at 3 points, etc, We choose here
a method that corresponds with the Taylor series expansion

of the right-hand side of (4-26)., For N = 2 this means that:

o T~ Yo
for (0, 0, 0)
‘6% and 5%— of \?/0(2) are zero
N=3, etc. Similar conditions for W(N)
2 N-1
—(N) 9 _ 9 _ 97 _ _ 9 =0 . .
W = Wy, BT T s S5 T ee-- T —m— = at origin,
0 ox y aXZ ale
The result is given below:
¥ % ¥ 2 * 3
<50 = Yo Cig 3aw0 Cr9 = 6a W €39 = 10a W
* % %
Co1 ° 0 ¢y = 0 o1 =0
¥  53.22 % 15 ,2 3
Coz = zKa Wy | ¢ =5 katw,
x
€o3 = 0
(4-27b)

(continued)
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(4-27b) continued

N=5
rcio = 15 a4""o
°§1 =0
(e, = 22.5 K2atw, K=Tp
0?3 = 0
v, = Lemsxtaty

.

For N = 5 for example we have 15 coefficients, but it turns out that

% £ 3 %* * a
30°°°°2 %032 20°°*°2 02> S10° o1 2"

¥
c, are the same as calculated at N =4, 3,2 and 1. In Fig. 4a and b

in the method we use here c¢

we have plotted the successive approximations to the flat plate, up to

N = 5. From this we see that for ax small, the flat plate is quite well
approximated, but that for larger positive ax w — 0, and for ax — -1

w diverges to values of w >> We The flat plate is well approximated

within the range

-0.15 < ax < 0.3 (4-28)
In the following we denote wings with inward curved leading edges
(a < 0) by gothic, and wings with outward curved leading edges (a > 0)
by ogee.

We can conclude from Fig. 4 that the employed method is more
promising for the ogee wing than for the gothic one.

The perturbation velocity potential is given by
N
i=1 [1+2ax+a’(x’-poy%) T2

2 22 -4 - i -
[x+a(x”-p°y™)] p};l Xfp Fitl,p(g)__' (4-29)
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where £ = b >33 }f satisfies (3-10) and F’il (8) is
Tlxta(x"-py")] P i, p

found in Appendix B.

In Fig. 5a-d we have plotted the perturbation velocity poten-
tial (4-29) for two values of the parameter k., In this we use the c*‘s
as given in (4-27b), up to N = 5, For the ogee wing there is a rapid
convergence, even beyond the range as given in (4-28), Due to the
alternating behavior of the successive approximations the question
of convergence is more difficult for the gothic wing.

In Fig. 5e, we compare the results of the approximation for
N = 5, with the result for the flat delta wing, as a function of k., From
this we see that the potential for the ogee wing is greater and for the
gothic wing is smaller than the potential for the delta wing, all at the
same point on the wing, and at the same k.

The perturbation velocity u is given below:

S 2 .2 i-1
u(x, v, 0+) - __21}_ TZ (1+2ax) [x+a(x"-B v )7 [2_3 1;) lp( )]

21 D+zaxta®(x®-p2y%)1ite
1= (4-30)
2 o (Zi+1)a(l+ax)[x+a(x2—ﬁ )] * (§)]
+;TZ 5% ]i+" P 1 ip 1+1:P

i=1 [1+2ax+a (x -8y

In Fig. 6a-d we have plotted the perturbation velocity for the
successive approximations, upto N = 5, The same remarks can be
made about the velocity as about the potential above. In Fig. 6e we
compare u+ for N = 5 with u+ for the flat delta wing (= const. along
the centerline of the wing) for different values of k.

Note that only the first term in (4-30) contains a singularity at the

leading edge, the second term vanishes at the leading edge.
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IV.4 The leading edge suction force

From Appendix A, we have for the leading edge suction force

per unit length in the chordwise direction:

Z = wV1-m® (4-31)

where m = X local slope of the leading edge, i.e.

o - __Kk(l+2ax) . 32)
Jl+4k2ax(1+ax)
md Gy = Hm o ujkexpp
LE
For x - X B (4-30) behaves like i
N 2 2 2.4 M
u(x y, 0F) ~ - 2 72 (1+2ax)[x+a(2 ~?{3 b )1 5 (21-12“‘0‘9.2 —
sy Yo 5 1 N
T o1 [1+2ax+a”(x“-B"y )12 [14 xta(x By -y“ 12
i . aPy . 2.2 2
so that with R T Sa [-1 +J1+4( 1 a By )]

we find for C_: (a > 0)
x *

1
1-‘5—2

3 e 1Y [-1+J1+4k2ax(1+ax)] - 7—-1—.}7-,-]
C_ = ./-a—_(l-l—Zax)zz T (2i-1)1!

T e——

x S

. l --‘
i=1 [2k2(1+ax)-1+A/1+4k2ax(l+ax) ]1+2 a' 1
(4-33)

The leading edge suction force per unit length in the streamwise
direction is obtained by substitution of (4-32) and (4-33) into (4-31).
For a < 0, a similar expression as in (4-33) can be obtained for Cx'
Upon integration of the so found expressions with respect to x (from
0 to x) and multiplication by 2 (for both leading edges), we obtain for

any a:
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. ¥
N N 2 i 2 M .
2 e e U ~itj+2 ~i+j
o - TeK ZZ -3 o 1)':)(1?(21 1)u)_v1_3 +(1k? 13"
a2 2 (1_k2)1+3+§ 1+3 -2 it+j+e i+j .
i=1j=1 (4-34)

- (1+2k ax) + V}?{+4k ax{l+ax)

[-1+ /1+4k ax(l+ax) ]

{4-34) gives the thrust or suction force due to the square root
singularity at the leading edges, For a = 0, (4-34) yields the thrust
for the delta wing, as given in Appendix A.

It is of practical interest to compare the above results for
%{- and T with some intuitive approximations (Fig., 7).
The approximations we consider here are:

i) Delta wing, with a swecep, such as the initial sweep of

the wing with the hyperbolic leading edges.

Tt=T; k'=7T8 = k. (4-35)

ii) Delta wing, with a local span, such as the local span of the

~wing with the hyperbolic leading edges.

. W[ 1+ 1 4dx? ax(l+ax)]
(4-36)
k* = T*ﬁ = k*(ax)

iii) Delta wing, with 2 sweep, such as the local sweep of the

ogee and gothic wing, but a translated apex.

TM - T(l+2ax)
/1 +4k2ax(1+ax) (4-37a)
F LS Hek

kK= T B =k (ax)
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The (iI) is calculated at
dx

*ok l:-l +A/1+4k2ax(1 +ax) ] A\/l +4k2ax(l+ax)

x

5 (4-37b)
2ak " (1+2ax)

The leading edge suction force per unit length in chordwise direction
for a flat delta wing, as in i), ii) and iii) may be calculated using the
formulae of Appendix A, For T itself we have to use numerical inte-
gration techniques in case ii) and iii). For i) T is obtained from
Appendix A immediately.

In Fig. 8a-h, the results are shown for the successive orders
of approximations N=1,..., 5 and for the cases k', 1<>}< and k**. From
these figures it is seen once more that the approximation is good for
the ogee wing, but less satisfactory for the gothic wing. We may
conclude that in the range (4-28) both the k* and k*:g< methods are in
good agreement with the results for N = 5 for k < 0.6, but fail for
k> 0.7. For greater x than in (4-28) it may be predicted from Fig, 8a
that the k', k* and kM< methods all fail to approximate the solution

for N - oo,

IV.5 Other matching procedures

The calculations in Sections 3 and 4 were done with the co-
efficients in the boundary conditions for M chosen in such a way that
the upwash on the wing is matched with that for a flat plate at the
origin, There are other ways to match the right side of (4-26) with
its left hand side.

As an example we consider matching at several points on the

%
centerline of the wing., In (4-26) for a > 0, we determine the ¢ 's by
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imposing the following conditions:

N=1: w(0,0) =w

0
N = 2: w(0, 0) = w(a, 0) = w,
ow _ _
~~§-y—— 0 fOI'y-O
N = 3: w(0,0)zw(%,O)zw(a,O)zwo
2 2
?.}_.N= 9w = 8 w = 0 fory:O
oy Ix 0y ayZ
( a 2a
N = 4: W(O,O)=w(—3—,0):w(—§—,0):w(a,0)=wo
<8w_82W_82w_83w_83w__0 g -0
8y ~ oxdy 2 - 27,3 °ory=
LYY dy oxdy”~  dy
_ ( a _ a _ 3a., _ _
N=5 w(0,0) =w(7,0)=w(5,0)= () =w(a, 0) =w,
Cow _ 93w _otw _ o* o atw
Fo = -mmo- = = —3 = = = s =0
LY 8y~ 98x 9y 9xdy~ 9xdy” Iy

fory=0.
*
For a < 0 similar conditions, give different values for the ¢ 's in

(4-26), i.e. on the centerline:

N=1: w:woatax=0
N=2: w=w,atax =0 and --1-
: 0 2
N = 3: w=w,atax =20 1 d L
= 3: =Wy x=0, -gyand -3
- 4. - - 11 1
N = 4. w-woatax_O,—é, 3and-2
_ - - .1 3 1
N = 5) w-woatax_O,-é,—4, 8,and-——2~

The result of this method is shown in Fig. 9a and b. It looks quite
promising for the gothic wing, however the cross-section is still far

from flat.
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IV.6 Concluding remarks

In this chapter we derived the exact solution to the PG-equation
for wings with "hyperbolic'" leading edges. The solution satisfies
non-trivial boundary conditions on the wing. It is expected that by
superposition of a sufficient number of solutions any boundary condi-
tions can be satisfied up to a satisfactory order of approximation.

For the boundary value problem, obtained by any order of approxima-
tion, the solution is exact.

For the flat wing, the perturbation potential and velocity and
the leading edge suction force were calculated up to the 4th order in
the parameter a, which denotes the deviation from straight. It was
shown that the flat plate can be well-approximated in a certain region.

The sign of the curvature (ogee or gothic) has a significant
effect on the leading edge suction force. None of the "intuitive"
approximations for finding the leading edge suction force give good
results for wings with "near-sonic' leading edges.

The solutions derived in this chapter clearly have advantages
over the solution in powerseries as given in [3]. In the next chapter
we derive the differential equations from which the solutions in [3]
may be derived. Furthermore, we formulate the (sufficient) condition
for finding exact solutions similar to those for the 'hyperbolic™

leading edges.
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V. A POSSIBLE GENERALIZATION
In Chapter IV we obtained an exact solution to the PG-equation
for one family of curved leading edges. In this chapter we derive
(sufficient) conditions for leading edges that lead to exact solutions.,
We employ the same method as in the previous chapter,

Consider the transformation

p
X, = X + {xz - 52(y2+zz)}F{x, 52(y2+ zz)}

¢ % =y (5-1)

L X, =z

{5-1) has the same properties as the transformation (4-2). The leading

edge that is straightened by (5-1) is:

lyl = fx), (5-2a)

where f(x) satisfies

£x) - x = T(x7-p )] F {x, 6%x)) (5-2b)

The PG-equation in the (x, y, z) space becomes in the new coordinates:

B o - - + g® +g. 0 +g. (x,9 +x.0 +x_© )=0
xlxl XZXZ x3x3 1 X].Xl 2 X 371 xlx1 2 XIXZ 3 X1X3
(5-3)
, o ) 2+ 2(8x1 2 <8x1>2 <8x1 2+Zx1 8x1
where: } g) = -P 4P x/ “\xy/ "\oz X, 0y
8% 8%x 8°
- - 52 i e W
‘ 2 © 9x° Byz 9z (5-4)
S T W R
L 3 X, y x; Oz
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(5-3) is a linear partial differential equation of the second order.

With (5-1):
2
X, =x+ (x™ - p)F(x, p) = X (%, p)
X, =Y (5-5)
2, 2 2
X3 = Z p = By +z)

(5-4) can be written as:

%, \ 2 9x.\2 ox
2 ( 1 1) ( 1)]
{ - —] o e e
g1 ~ P 1+ 3% / 4p<8p +4Xl dp
2 82x1 ale Bxl
g, = B —F - 40— -4 (5-6)
< 2 axz 5 2 ap
ax
_ 2 1
. &3 -4 9p

From (5-6) it can be seen that the only transformation under which

(5-3) is the PG-equation again, is the transformation

Xl = =x 4 const.
x2 =y
x3 = z

Now we have to relate © with the solutions of the homogeneous

flow theory. We set:

ol
N ENEIR =R Gy, p) (5-7)
J:

Bxf

In (5-7) M is homogeneous of degree m, and a solution of the homo-

geneous flow theory, i.e.
™™ - M -M =0 (5-8)

M also satisfies the Euler relation:
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£ £+1 £4+1 2+1
"M o] 9 0
Bxl axl axl axz axl 8x3

In (5-7) Gj(xl’ p) is unknown for the moment. It is our purpose to
find those transformations for which (5-7) is a series with a finite
number of terms. Substitution of (5-7) into (5-3) gives with (5-8) and

(5-9):

N AT
0 ax jte gl ]
=0 "1
B pitly, ac; aG
+) |2 . ¥ o, Hmei- gy L2 Yrog i g+ 5oL (4p +2pg3)}
j=o~ x
2G, BZG
+ .~ J {ax g2+(m 3)g3)— 5p 4{3 (m- 3+1)+ 5 3 (B +g1+xlg3)
:20 %1
J 2
- 22G, 82G,
o 2P 8574 p-——iapz =0 (5-10)

Define now three partial differential operators as:

2 2 2

)
(1) 2 9 i) 2
L '=(@"+g,tx,8,) =5 + 2pg, 55 - 4 p—
q 17 %183 axlz 3B%,9p I
0 2 0
+ (g, + (m-q)g,) 55;1 (B g tx;2,) Er ‘
{ | (5-11)
2) _ 9 2 )
L) = (2p +2g1+x1g3)5-—x1 + (48%x, +2pg3) 5 + (g,#(m-q-1)g;)
(3)
L = g
. 1

The sufficient conditions for satisfying (5-10) are that the expressions

which multiply

MM , M <. ? etc,
*1 *1M
vanish identically.
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The system of partial differential equations we obtain from this, can

with (5~11) be written as:

(1)

Ly Gog = 0

(1) . _1(2)

Ly "Gy = -Ly " Gy

(1) _ . (2) _ (3 _
Ly’ G, = -L17 Gy - Ly Gy (5-12)
) 2) (3)

L G = -L G - L G : =2,3, ~--~

q q q-1%g-1""gq-2 Ygq-2 7 ¢

(5-12) is an uncoupled system of linear partial differential equations.
Each can be solved with the solution of the two foregoing ones., The

coefficients that appear in the differential operators are functions of

)

m and of the transformation. It can be shown that Lél is equivalent

to:
2 2
(1) 2| o ) 9 :]
L = —_ - 4p = - 4(m+]l-q)5— 5-13a
q B 8x2 Y 8p2 ( q)ap ( )
and also that ng) in the (x, y, z) coordinates is:
2 2
1,07 9 x ox
2 2 1 1 1
L( ) = ﬂ { 5 -4p 5 -4(rn—-q) -—-é-—- +
q 9x 9p P
ox ox
1 0 1,0
I S PR T (5-13b)

The first equation in (5-12) is, according to (5-13a), independent of
the transformation (5-5). Since there are no boundary conditions
specified for the G's, the system (5-12) will have an infinite number

of solutions.



-37-

We are interested in the case that (5-7) is a finite series,

i. e,
P q
J*M
P(x,, X,, X,) = > G (x4, p) (5-14)
1"72" 73 q=0 ax? a1

This implies that the system (5-12) consists out of p+3 equations for

(p+1) functions Gq. «« The last three equations are:

(1) _ _ 1 (2) _ 1 (3)
Ly Gp = Lp-l Gpo1 - Tp2 Gpo2
_ (2) (3)
0 = - - .
o (5-15)
0 = 13 g

P P

From (5-15) it follows that a necessary condition for having a finite

sum as solution (5-14), is that

9%, \2 0%, .2 ox
T+ (52 - 4o(52) v (5) ], -
B l:l + 5o 4p 5p + 4x1 3p Gp = 0

This means that unless Gp = 0, the transformation (5-5) has to satisfy.

Bxl 2 Bxl 2 Bxl
1+ () - we(5p) rex () = o0 (5-16a)

As "initial" condition we have the invariance of the Mach cone, which
gives:

X o= X% for p=x2. (5-16b)

(5-16a) is a first order nonlinear partial differential equation, which
is considered in more detail in Appendix C.
Note that the transformation in the previous chapter (4-6)

indeed satisfies (5-16a).
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If we are able to construct solutions to (5-16), the system

(5-12), (5-15) consists of (p+2) equations for (p+1) unknowns:

(1) _
L0 GO = 0
(1) _ 4 (2)
L1 Gl = LO GO
L(l) G, = L(Z) G (p+2) equations, (p+l1l) G 's (5-17)
2 2 1 1 P q > P q
1) _ (@)
L G =L
P p p—le—l
o = 1% g
P P

The difficulty of the over -determined (5-17) can be resolved

by breaking the system up as indicated below:

LWg <o

4 4 q=0,...,p (5-18)

Ll g
a q

(5-18) implies then that now each term in the summation (5-14) is a
solution of the PG-equation, and that as most simple exact solution

we have
P(x), X, X5) = MeGolx,, p) (5-19)

where GO satisfies (5-18) for q = 0,

In this chapter we showed that it is possible to construct
finite exact solutions of the PG-equation for the case of curved sub-
sonic leading edges. The actual construction of such solution

depends on the ability to construct solutions of one nonlinear 1st

order partial differential equation.
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We showed also that for a given leading edge, it is possible
to construct a solution, but in general this solution is the infinite
sum (5-7).

In conclusion we give below a few possible solutions of the

system (5-12):

H Ai = constant, q = 0, ---- (5-20)

It is easily checked that this is a solution of (5=12), With the con-

dition that (5-7) yields

» = M
(X-Xl)q
for X = X we find: G_ =
q!
So that (5-7) is now:
: j
o0 j (x-x.)
a
CP(XIJX2)X3) = ——1\4 1 (5-21)

j=0 ax] j!

(5-21) is the Taylor series expansion Coene [3] uses for the
quasi-homogeneous flow theory.

The first equation of (5-12) has as solution also

c

G, = T (5-22)
(5-22) is in fact the G from the previous chapter for o« = 0 and o = %——,
c = a—(2m+1).

Using (5-22) it can be shown that (5-12) also has as solution:

c:(x-—x1 )q 'E:J(x-a—xl )4 (5-23)
G = — + i -
+—~ —
T g [xPop]™E q! [(x-a)%-p] ™72
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Coene [1], [2] and [3] uses combinations of powerseries expansions
of (5-22) and (5-23) to construct solutions in the quasi-homogeneous

flow theory.
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APPENDIX A

FORCES ON A WING WITH SUBSONIC LEADING EDGES

The pressure distribution on the wing is given by (2-11).

For the steady case we write
P' = -paUP = p-pg (A-1)
For a lifting problem there exists a jump in the pressure across

the plane z = 0, so that there p+ £p

P-p
ct - 0 _ _2u (A-2)
P 1 1.2 U

2 pU

For a planar wing with a supersonic trailing edge we obtain the lift

coefficient CL by integration over the area of the wing, withu = —u+
we find:
2 .
CL. = -3 ffcpdxdy ; S = wing area
S
YLE *TE (A-3)
= - _ﬁ% f x‘[ ( )Cpxdx (for a symmetric wing)
0 LEY
Since for a lifting problem © = 0 at the leading edge, we find:
YLE
- 8 J' +

(A-4) shows that to find the lift coefficient, we only have to integrate
the perturbation potential along the trailing edge of the wing.

In the same way we find for the lift induced drag:

- .4 J' -
Cp = -55 ) ©,0, dxdy (A-5)
S



Yy
The drag is reduced by the suction force on the leading

edges. According to Jones and Cohen [10] :

dT 2 Ci ;T = thrust due to suction (A-6)

G - TP 1-m

where m = B/local sweep of the leading edge and

CX = lim X-XLE

X"’XLE

(A-7)

For the delta wing we have then:

{Iyl

sothat m = 78 = k

TX

0

ihon

The terms that contribute in (A-7) are the singular terms only, from

Chapter III: (for a2 D, L. P, )

)\*
+ 2 n-1 nn Tx
u(x,y,0') ~ -Tn_—'rx
~1) 1
(2n-1) ! /szz_yz
So that:
2 2 2 nn
C = =T
x T (2n-1)!1 1 (2n-1)!"!

So now from (A-6): (for the two leading edges)
2 #°  2n-l

T A
%;'Ic‘— = ép \/l—kz on (A-8)
™ (2n-1)11(2n-1)1!

Integrate from 0 to x:

T A x
T = 4 p/ 1-k% nn (A-9)
™ (2n) 1! (2n-1)1"
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% T 0
For a flat plate: A,, = 5 — (see 3-17). So that
117 2
2 2
T w
T = Zod1k° 20 x> (A-10)
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APPENDIX B

*
THE FUNCTIONS F* AND G
np np

Define the function fop as:

%
dnK T -n X
—_np _ tp__ 8 g 2 . f=n=21l )
ag™ —(-1f‘p(1_§2)p+é_, T JECPER e

¥, . . . _
an is obtained by putting r = 2 and an by putting r= 1.

From (B-1) we derive the identity

1 _r
d"K”® g
o g e -2
dg dg
and also
kT
T _ T _ d T _ _gntl _@_( n+1,p>
Knp -0 Kn+1,p 5 dg Kn+1,p = -5 dg gl
(B-3)
*2
Since § = = e derive from (B-3), keeping x, constant:
1
K <anr ) _ _.n-1_.r
9"; 1 "nt+l,p) = X Knp (B-4)

(B-4) could also be derived from (3-7), by
atpn _
3x1 n
Differentiation of (B-4) with respect to Xy keeping X, = constant,
using (B-4) yields
2
d ( n_r > _ .n-2 __r
2 \*1 Kn-H, p/ = % K

d:’c;l

Proceeding in this fashion gives:
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dm ( n T ) n-m r
dx™ *1 Kn+1, p/ - %1 Kn-m+1, P ;m>m (B-5)
1

With (B-4) it is now very easy to calculate any derivative of Py

In order to reduce the number of integrations that have to be
carried out to calculate K;p from (B-1), we derive two recurrence
relations for le;p'

From (B-1) we see that

dn _ r-n
Sl SUUNIETIN () ot S S R RS2
dgn 1'13P" (1 g )p+2
—fﬁ K’ L oo1 = (- 1)n+p———§———--—-r[(r—n+1)+(n+2p-—r-2)§2]
agh  Bh BT (1-5%)P
Combining this gives us then
r _ . r r
(.Zp—l)]iinp = -(n+2p-r Z)Kn, p-1 + Kn-l,p—l

forn=z2and pz2 (B-6)

and also for p = 1, it is easily verified that for n 2 4

% %
(a-1)(n-3)F ) = (2n-5)F__; |- (I- g? )F g, 13T, n =4

2 * * (B-7)
n-2) G, = (Zn“S)Gh-I, —(1e§ )G~ 2,10 = 1, n=3

Put together we have

(n+r-3)(n-r-—1)K = (2n- 5)K n-1, 1—(1 § ) n-2,1; forr =1or 2

(B-8)

* % % *
(B-6) and (B-7) or (B-8) don't include Fll’ 21 F3l’ Gll and G,yge

These functions are easily calculated from (B-1):
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% %* * %
Fyp = 4 Gy = B
%k 3 kS %
< F, = C G, = ED (B-9)
* %k *
Fyy = £C -3 %D
\

"
A = 1
1-g2
< BY - &
2
1-8 lg] <1 (B-10)
.
c* = /1-e2
] -
~ D = tanh 1 1—«‘::.2

*
For Fn we derive now the explicit form. From (B-7) and

*
(B-9, 6) it can be seen that an may be written as

-2 -
EC30) E(23)
%k %
Fr =a AT+ T EX®G cFy op g2(stl) 42(stl) *
P mp t=0 np $=0 P

(B-11)
* %
From (B-7) it may be seen that the A only appear in Fonr The co-

efficients a follow from
nn

(@n-lla, = 3, 1,n-15213 = !
sP
so that: anp = 0 ; 6P is the Kronecker delta (B-12a)
(2n-1)1!
The CZt 's satisfy:
np
@2p-1)c%t = -(2pin-4)cZt 4 2t a2
2 S (B-12b)
t _ - >
(11--1)(11.-3)(3nl = (211-5)Cn_1,1 Cn—Z, 1 +Cn-2,1 nz4
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C11 = 0 for all t
0 _ . ~2t _
C21 = 1; C21 =0 for t=1,---
¢l = HcZ 20 fort=1,---
and in general CnZIt) =0 for t> E(I—l—é—g-)
The dZt 's satisfy:
np
2r 2r 2r
- = - - 2
(2p l)dnp (2p+n 4)dn,p-l +dn-—1 p-1 nz=2
(B-12c¢)
2 (1‘-1) >
(a-1)@-3)a2] = @a-5)aT | |-, 4 n=4
0
dnp = 0 all nandp
2r 2r
dip 7 4 = 0
dgl = i dg{ = 0 forr=2,----
R 2r n-1
and in general d_ =0 for r > E(==).
np 2

It turns out that the recurrence relations (B-12c) can be solved

explicitly:
25 o (P 2pr2r-an 1
np -1 g ar -1yt 2y 127 -1y (B-13)
for r 1,2,...,E(-—5—); n=23
T = 0 for n<3 (B-14)
np

The results derived in this appendix are very useful for the

numerical evaluation of Cpn and u

in Chapter IV,
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APPENDIX C

THE DIFFERENTIAL EQUATION gy = 0

In (5-16a) we give the condition g = 0, which corresponds
to the condition of a finite sum as solution of the PG-equation for

curved leading edges.

8x1 2 axl 2 8x1
-1+ (2) '49(?;) tax) 5o = 0 (C-1)

2
X =X for p=x".

In Chapter IV we discussed one solution of (C-1):

X, = x+a(x2-p) (C-2)

We did not succeed in finding another solution than (C-2), nor did we
succeed in proving that (C-2) is the only possible solution. In the
following we give some of the calculations we carried out.

It is possible to simplify (C-1) considerably by a change in

variables,
1, 35 = x
2
n=x-p

The equation and '"initial' condition become:

Bxl 2 Bxl axl axl 2 axl
1 () vasar el g -y = 0 (C-3)

x) = € for 1N=0
2. Change dependent and independent variables:

x; =%;(6,M to n= n(xl,g)



_ o oy Bn . 9.11 ]
LR ¥ 4[ % (C-4)
n =0 for Xy = g
3. u = x; +§
vo= %) - g
I -} m (3 \/on -
n=mu ou + Vv * <8u>(8v> (C-5)
n = 0 for v=0
4, Put 1 = -uv +hy, v)
oh 8h _ |
Ja v - h (C-6)

h =0 for v=0

Note: -~ (C-4) and (C-5) are both in the form of the Clairault-

equation.

~-- The Jacobian of the transformation for (C-3) and (C=5
never vanishes,
-~ The initial curve always lies on the singular integral of
each equation, This also implies that the initial curve is
a characteristic of the equation.
-~ No uniquely determined solution of the equation.
In the following we demonstrate the method of characteristics for
(C-6):

Write (C-6) as

u u = u; u=40 for y=0 (C-7)
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With p = u,, 9= uY and s a parameter, the characteristic equations

of (C-7) are:
dx  _ .
ds a
dy . _
ds P
_C_I_E_ 3 -2 (C"S)
ds - Pq
dp . . da _ _
ds Pi Fs 4
(C-8) can be integrated quite easily:
X = (x,-9,) + e S
= ™9/ T 9p
-8
y = (yg-Pg) tp,e
u = 28 (C-9)
-8
P = Po €
-
qQ = qg°¢
In (C-9) uo - poqo =0
The characteristics are:
Po
(Y'Yo) = —EE(X—XO)
p (C-10)
- 9
(a-ug) = 3o bemseg) Lleoseg) + 2q,]

The integral conoid, that is the surface on which all the character-

istics through the point (xo, Yo uo) lie, is the surface
2
4 uo(x"xo)(Y"Yo) - [(u"uo)'(x‘xo)(Y'YO)] = 0 (C"ll)

Near the origin this is a hyperbolic paraboloid, From (C-10) it is

seen that the initial curve is a characteristic, From (C-7) it is seen
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that u = 0 is the singular solution of the equation. This means that
the initial curve u = 0; y = 0 is a characteristic and lies on the
singular surface. According to Forsyth [6] this problem is singular
and the method of characteristics fails in this case. The only non-
trivial solution of (C-7) we have found is the solution u = y(x+a*),

which corresponds to the transformation
2
X = x+ a(x -p) {c-12)

and this is the transformation for the hyperbolic leading edge.
Expansion of X, as a powerseries in x and p in (C-1) or in a
powerseries in € and n in (C-2) indicates, however, that there are

more solutions than that given in (C-12).
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Fig. 1 The Coordinate System
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Fig. 2 Delta wing with subsonic leading edges
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Fig. 3a Hyperbolic leading edge, a < 0



0 < ® *o3pe Burpes] orjoqisdiyd qg "81q

x no ——e e e

9T ¥ Y o7 -Xe) 90 #0
i O'% Kv— 1 i I 1

to
I

“56-

A

1




57~

XD

N.N‘- 0..“. %.Q Q.Q %G Noo
I | | I I I
/m -
II..W =N
oo =N
9930
0°0 = 4de ‘ajerd ey
03 suonyewixoaxdde aA1ss200ng ey By
(4]
M

ud




-58-
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ax = const,
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Fig. 5a Successive approximations to potential,

ogee wing, apfy = 0.0
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Fig. 5d Successive approximations to potential,
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Fig. 5e Comparison of potentials for flat plate
with straight and hyperbolic LE
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Fig., 6a Successive approximations to perturbation --

velocity', ogee wing, afy = 0.0
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Fig. 6d Perturbation velocity, gothic wing, ax = const,
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