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Summary

In this thesis, three parts of my work are reported. The first part of the work was done
with Prof. Rudy Marcus, the second and third parts of the work were done with Prof.
Bill Goddard. Here I would like to summarize the results from each part briefly.

In the first part, we propose doing Scanning Tunneling Microscopy(STM) current calcu-
lations with a new model in the spheroidal coordinate system. The tip is modeled as a
hyperboloid. The electrostatic potential part of this model is solved exactly. The free
electron model of the whole system is also solved exactly.

In the second part, we found that the Nose Canonical Molecular Dynamics, the most
commonly used CMD method, leads to the wrong heat capacity for the system and
hence is inconsistent with the thermodynamics. To solvé this problem, we propose Two
Nosé variable Dynamics by changing the dimensionality of the Nose variable s and its
conjugate ps from one- to two-dimension.

In the third part, The exact expression for the quantum statistical partition function in
the canonical ensemble is given. The physical interpretation of each term for N-particle
system is discussed. The new formula is applied to the weakly degenerate quantum ideal
case. By analyzing each term in the expansion, it is possible that this canonical partition
function can be applied to cases where both quantum correlation effects and particle

interactions are important.
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I. A STM model in the spheroidal

coordinate system

Abstract

Scanning Tunneling Microscopy (STM) provides a real-space view of the atomic
structure and electronic states of the solid and of the adsorbate. It has had a
great impact on the developement of the surface science and the materials science.
Some theoretical work has been done to try to interpret the imaging process using
serqi-inﬁnite and spherical models. In this report, we propose doing STM current
calculations in the spheroidal coordinate system, which features the tip as the
hyperboloid. This model is still mathematically-solvable. Intuitively we feel this

model might be more realistic due to it symmetry.

1 Introduction

The invention of the Scanning Tunneling Microscope(STM) has revolutionized the surface
science(1,2,3]. For the first time, individual atoms on the surface become directly percep-
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tible. Not only the topographical information is provided by STM but also a rich body
of information on the electronic states and energy spectra can be obtained by varying the
bias voltage between the tip and the sample. This method is providing us an increasingly
large amount of information on the details of the electronic states of various surfaces. To
date, the most widely used theoretical approach for the interpretation of STM images
is that of Tersoff and Hamann [4,5], which is based on the transfer Hamiltonian theory
due to Bardeen [6]. In the limit of the small bias voltage, low temperature, and an
s-wave modeled tip, the transfer Hamiltonian approach gives the direct proportionality
between the STM current and the local density of states (LDOS) at the effective center
of curvature of the tip and at the Fermi energy. The interpref:ation of the STM current
is then straightforward: it represents the contour of the constant Fermi level LDOS of
the unperturbed sample surface.

There have been different ways to model the tip [4,5,7]. However, we should take the
geometry into consideration, and so try to go further beyond the semi-infinite chain and
the spherical model. We believe that a natural and more realistic model is a hyperboloidal
model for the tip which is also mathematically-solvable one. In this report, first we
model the tip with a hyperboloid aﬁd the sample surface with a plane, apply the bias
voltage between the tip and the sample surface and solve the electrostatic potential
problem in the spheroidal coordinate with the physical boundary conditions; Second we
will solve the free-electron model in this spheroidal coordinate system as the unperturbed

sytem. Later we will add the adsorbate on the surface and calculate the dipole moment



contribution from the field-polarized adsorbate to the potential. Finally, we will use the
time-independent perturbation theory and solve the Schrédinger equation to calculate
the contribution of the adsorbate to the matrix element and to the tunneling current. It
is hoped that this will give us a good guidance on explaining the various experimental

phenomena, of STM due to the adsorbate.

2 The calculation of the electrostatic potential

As noted above, to describe the Scanning Tunneling Microscopy more realistically, we
propose the following model. The tip is modelled as a hyperboloid and the sample surface
is as usual a planar surface. Mathematically we know that the spheroidal coordinate will
give us a convenient Vdescription of this model. Hence, we first solve for thia electrostatic
potential in the spheroidal coordinate system [8,9].

Figure 1. shows the spheroidal coordinate system. Utilizing the symmetry , the point
charge g of current is placed along the z-axis. Now we have a model which has a point
charge ¢ moving between the hyperboloidal tip and the planar sample surface under the
bias voltage V5. (Contributions of charges "off-axis” would be treated by pertubation
theory.)

To simplify the calculation of the potential for this model, we separate the potential
into two parts: one is due to the bias voltage V5, the other part is due to the image and

multi-image effects of the point charge under the boundary conditions for the electric



potential being zero on both the tip and the sample surface. It is the image term which
is calculated using the point charge and described above. We graphically show the idea
in Figure 2.

First, we calculate the potential which is due to the bias voltage Vo. To begin the

analysis, the prolate-spheroidal coordinate system is given by [8,9],

2 = c¢sinh asin F cos ¢
y = csinh asin Bsin ¢ (1)

2z = ccoshacos B

where c is the one half of the distance between the hyperboli foci; 5 corresponds to the
hyperboloid surfaces and « corresponds to the prolate-spheroidal surfaces. Starting with
the above set of equations, we introduce the transformations £ = cosh o, 7 = cos 8 and

obtain another set of equations which will be useful later on

T = c\/§2 - 1\/1—7720034)

Y= c\/§2 — 1\/1 —n?sin¢ (2)
z=cfn

The region of the physical interest is : £=[1,00],7=[n0, 0] , ¢=[-7, 7]. Here, 1o corresponds

to the hyperboloid surface associated with the tip and n=0 corresponds to the planar



sample surface. In this coordinate system, the Laplacian operator is

2 1 1 0 gl 1 8, 50 1 1 &
= c2{sinh2a+sin2ﬁ}{ sinh a—+— sin 8

sinh a da Oa  sin 3 08 3_[3“*_{ sinh? +sin2 I} } 0¢? }
(3)
Next, we calculate the part of the potential which arises from the bias voltage. Because

that potential is only dependent on 3, we reduce the Laplace equation to the following

one-variable ordinary differential equation

1
smﬁdﬁ — sin ’B_/—B-(I)l (4)
The solution is given by [11]
147
) = Vot ®)

Next, we consider calculating the electric potential which arises only from the image
and multi-image effects with the boundary condition that the resulting potential is zero
at both the tip and sample surface. We denote the potential due to the image and

multi-image effects by ®,. Poisson equation is
V2@, (T, re) = —4mqd(F — 1) (6)

where r, denotes the coordinate for the point charge ¢q. Realizing that ®, is the Green’s
function G(¥,r.) which represents the exact potential at the point ¥ in the presence of

the charge g at ry, we can write the following

Oy(r,re) = G(F, 1) = + ®3(T, re) (7)

9
| — re|



where ®3(F, re) satisfies
V2&3(F, ) = 0 (8)
By separating the variables in the spheroidal coordinate system, we obtain the following

set of equations,

D3(r,re) = A() B(B)¥ () (9)

gj—/)\lz—' +m*¥ =0 (10)

sin;ab% sinh ag%/l — ﬁ;—a—A =v({v+1)A (11)
“'s'irlTBE% sin ,65%13 + ;—;:—;—B—B =v(v+1)B (12)

Due to the symmetry of the electric potential, ¥ is a constant and so we can reduce the
above set of equations to the following two Legendre equations without losing generality,

(where £ = cosh and 1 = cos §)

@3 = A(€)B(n) (13)
d . d -

Eé(g - 1)25A—y(y+1)A—0 (14)
;.7.7.(1 - 172)%3 +v(v+1)B=0 (15)

Since ®3 must converge when ¢ goes to infinity, we find that v has to be —% £ 47
(T > 0) by using the integral representation for B,(¢) [9],

@ cosh (v + 3)0

2
(&) =2 [ —— 2 16
B¢) wJo +/2{ —2coshf f (16)
A brief explanation is given in the following. First, if v were real, the integral would

diverge(become infinite). Second, to make the formula converge, the 1 in the numerator
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of the intergrand has to be cancelled by the real part from the complex v, namely, v has
to be — 4. From now on, we introduce X, (¢) = P_ 140 (€)- K- (€) is called the conical
function. The Legendre function of the second kind Q,(¢) diverges when « approaches
0%, and hence we discard that term. Thereby, we do not have a term K, (~¢). (K,(—¢)
is a linear combination of Q_1.-(§) and K,(¢).)

We consider next the solution of the 1 equation, Eq.(15). For mathematical conve-
nience, comparing Egs. (14) and (15) we see that the general solution for the 7 equation

is C,.P_

Ly (M) + DrQ_1.4.- (). We can reconvert the latter as A, K, (n) + B- K, (-n)[8].

Hence the general solution for this electrostatic potential is

@5 = [ (ALK (n) + B Ko (Ko (€)dr (17)

To determine the coefficients A, and B,, we note that at n = 1, and = 0 the
electrostatic potential ®2 = 0 and hence from Eq.(7) @3 is -F_q;:c—l(r'; is the coordinate
for the point charge, 7 is the coordinate describing the tip or the surface.). The Green’s

function in the prolate spheroidal coordinate is [10]

q _  gqm [~ Ttanh(nwT)
e / s K K FO) () dr (18)

where the upper and lower signs correspond to n < 7. and > 7., respectively. By
equating Eq. (17) and Eq. (18) for both 5 = 7 > 7. and 7 = 0 < 7, cases, we obtain

_ Qf_"’tanh(ﬂ’r) KT(TIO)KT(_"UC) - KT(TIO)KT(UC)

Ar = ¢ cosh(wr) K. (o — K- (—m0) (19)
_ gr 7tanh(nT) K7 (o) Kr(=nc) — Kr(10) K- (ne)
By = "¢ cosh(nr) K. (m0) — K+(—no) (20)



Now we have solved the electrostatic potential ® given by &, + &, for this hyperboloidal

model of STM ezactly. We summarize here

= By + &, (21)
In $2

¢, = %E—%? (22)

o, l_, 7 + &3 (23)

@ = [ (A KL (0) + B, K (=n) K, (€)dr (24)
_ gm 7 tanh(r1) Kr(1c) K- (—10) — Kr(=n) Kr(10) ‘

Ar = "¢ cosh(nr) K. (no) — K+ (—m0) @)
_arT tanh(n7) K (10) Kr (=7c) — K7 (m0) K- (nc)

Br="¢ cosh(nT) K. (no) — K. (—np) (26)

3 Free-electron Model in the spheroidal coordinate

system

Here, we solve the free electron model in the spheroidal coordinate. The Schréndinger

equation for the free electron model in the spheroidal coordinate is,

(V2+ k)T =0 (27)
where
. 1 1 9 0, 130 1 1o
~ ¢2(sinh? o + sin® B) “sinh a da sinh %% T sm ﬁ ap 1n,8 (smh2 P B ) 3(,02}
2mE
k= 2



By separating variables, we reach the following set of equations

¥ = A(a) B(B)2(v) (28)
& =cosha

7 = cosf3

d dA 2

Z€ -0 - Eé-‘i_—-l-A = (v +1)A (29)
d dB 2

=g — B =1+ B (30)
&e + (BE+pHd=0 (31)
dp? #

where p and v are the parameters for the associated Legendre equations.
From Eq.(30), we obtain the energy eigenvalues for the tip and the sample by using

the condition that ®(p + 27) = ®(p).

2 2

D F g (32)

E =
" 2me?

where n is an non-negative integer which describes the energy level of the system. The

wavefunction is

¥ = A(§)B(n)2(v) (33)
A€) = m K2 (§) (34)
B(n) = b.K% (n) + b2 K7 (—) (35)
®(p) = c1exp (ng) + c exp (—nyp) (36)

with v = —2 + 27 and K#(\) = P4()) = Pf% +or(A)-(K#(—n) is a linear combination of

Q% ., (1) and K2 (x).)



The coefficients in the wavefunction can be obtained from the normalization of each
part of the wavefunction. For the tip and the sample, we have a fixed 1 value for each of
them. That means the 7 part of the wavefunction can be treated as a constant. Hence,

we only need to find out the coefficients for the £ and ¢ part. We obtain

S EICHE e o
ca=c= 55-_7; (38)

4 Summary

~ We have shown briefly the work has been done in the past few months. This is only the
beginning stage of the work. There still is much work to be done in the futiire. The next
thing is we need to place the adsorbate on the substrate and calculate the perturbation
due to the dipole moment of the adsorbate. From there, we can begin with the real-time

calculations and see how the model works for the real systems.
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II. Canonical Molecular Dynamics with Two Nosé Variables

Abstract
A new era in molecular dynamics (MD) was initiated by S. Nosé in 1984 who showed
how to modify the Lagrangian to obtain a new equation of motion with the property that

the states sampled by the trajectories lead to a Boltzmann distribution of state
P(p,q) = Ae™?F (1)

Such canonical molecular dynamics (CMD) methods have rapidly become the standard for
modern MD. However, Nose CMD leads to a temperature dependence of A and hence an
incorrect heat capacity. In order to make Nosé more fully consistent with thermodynamics
we change the dimensionality of the heat bath variable s and its conjugate momentum
ps from one- to two-dimensions. This leads to a modified CMD which is consistent with
the heat capacity. Part II and III were performed under the guidance of Professor. W.
Goddard.
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1.0 Introduction

Molecular dynamics (MD) computer simulations have become a very important tool
for modern materials research. In the 1980’s a revolution occured in which the standard
Newtonian dynamics was extended to include the effects of a temperature bath (Noseé
or NVT molecular dynamics), a pressure bath (Andersen-Rahman-Parrinello or NPH dy-
namics), or both (Gibbs or NPT dynamics). In principle, these various types of canonical
molecular dynamics (CMD) lead to the standard distributions functions of thermodynam-
ics, allowing us to use thermodynamics relationships in predicting properties from the
calculated dynamical distributions. Here we will focus on the Nos¢ (NVT) and Gibbs
(NPT) dynamics.

Nose in 1984 extended the application of molecular dynamics from the microcanonical
ensemble to the canonical ensemble by introducing a pair of additional variables (s and
ps). Later, Hoover modified this formulation by transforming the virtual time coordinate
of Nos¢ to real time, changing the equations of motion such that the conjugate pair (s
and p;) is replaced by a single variable { = p;/s. We show that in either case the Nose
formulation leads to a heat capacity differing slightly from the correct value for a canonical
ensemble. We show how to remove this problem by adding one additional Nose degree of

freedom.

Section 2 reviews the Nose and the Hoover formulations. Section 3 points out the
difficulty with these formulations, and Section 4 shows how to modify the formulation
to eliminate the problem. Section 5 presents the new formulation. Finally, Section 6
compares the new formulation with the standard Nosé-Hoover formulations and discusses

applications.

2.0 The Nosé and Hoover Formulations of Canonical Molecular Dynamics

In 1984, Nosé proposed a new molecular dynamics which extended the description
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from that of a microcanonical system to a canonical system. This has greatly extended
the domain for applications of molecular dynamics simulations methods. Most experiments
are carried out under conditions in which the system is in a constant temperature bath,
leading to fluctuations in the energy of the system corresponding to a canonical ensemble.
This contrasts with the description of Newtonian mechanics which conserves the total
energy of the system, leading to a microcanonical ensemble. To do this Nose introduced
an additional variable s and its conjugate momentum ps. These two variables describe the
heat bath and the energy exchange between the system and the heat bath. The variable
s is a time scaling variable. When the system is hotter (colder) than the heat bath, s
increases (decreases), slowing (accelerating) the velocities and thereby cooling (heating)
the system. We denote the physical system coupled with the heat bath as the extended
system. The extended system is considered as isolated, so that the total_ Hamiltonian is
conserved, leading to a microcanonical ensemble. Thus we use Newtonian mechanics to
solve the equations of motion.

In terms of these two additional variables, (s and p;) Nos¢ introduced the virtual
variables @, p and t for the 3N coordinates and momenta and the time. These are to be

related to the real variables (g, p, t) as follows:

=7 1)
_P
=3 ®)
{ —_—
dt
The Hamiltonian of the extended system is postulated as,
p?
H;=Ho+ == +gkpgTlns (4)
2Q
where
2

Ho =§:2£;32 +6(7)
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and the Lagrangian is correspondingly supposed to be
1
L, = gimzs 72 — ¢(q) + Qs ~gkpTlns

where ¢ is the multibody potential energy of the physical system.

(5)

Then it is assumed that Hamiltonian formalism works in the virtual time with the

virtual variables, namely,

A
ds OH p;
@t ops Q
=2
dp.  oH (X7 - gksT)
dd ~  8s s

Thus
0

Z OH dp; 6H§_(j_i +8Hdps+8Hds
dp: dt qu dt Ops dt = Os dt

(6)
(7)
(8)

9)

so that the total Hamiltonian is conserved. Similarly in the Lagrangian form we obtain

d?g; 1 9¢ 2dsdy;

a2~  mis29g  sdt df

and

=2
4 Q_d_s _ Zimir — 0ksT
dt \“dt ) s

Since H is conserved the partition function for the 3N + 1 coordinates is

3N
1
Z3N41 = NIRGNTD /d}r)sdS H dpidq;6 (Hs — E)
1=1

Substituting (4) into (12) leads to

2

Z3Ny1 = /dps/ds/Hdpqu, [Ho( ) ZQ £ 4 gkpTlns— F
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Integrating over ps and s and using the mathematical properties of the Dirac é-function,

the expression (13) leads to

Z=C / 1_Idpquz exp[ ko (5,’ Q)} (14)

Thus we obtain the standard canonical partition function if the parameter g is set to
g=3N+1 (15)

The above description is a brief review of the Nose¢ dynamics. Now we consider how
Hoover changed the formulation from the virtual time to the real time. With the equations
(6)-(9) Hoover substituted the differential form of (3) dt = dt/s, changing from Nose time

t back to the real time, t. This leads to the following equations in the real time

P~ sh() an
%j- = %ﬁ : (18)
d(Zs =2 —miig — gkpT (19)

1
= 5 2
Di sz ( O)
¢ =G (21)
1ds
il 2
sdt (2 )

so that the new p is back to the real world momentum, he also replaced the Nosé parameter

g = 3N +1 in the ¢ equation by g = 3N and reached the following equations

dg; D
dt - my; (23)
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% - Rl - (24)

> B — (3N)ksT
Q

In the Hoover formulation, the dynamical equation (24) has a momentum dependent force

C‘:

(25)

corresponding to a thermodynamic friction, . This is due to the energy transfer from the
N particles to the Nosé coordinates. The Nosé formulation and the Hoover formulation
are essentially equivalent. The only difference is that the Noseé formulation is in virtual
time and the Hoover formulation uses real time. From practical point of view, the Hoover
formulation is more convenient than the Nosé formulation, because it is easier to carry out

fast Fourier transforms over the time coordinate to obtain properties.

3.0 A Problem with the Nosé and Hoover Formulations
A problem with the Nose formulation is that it leads to a heat capacity that is kg /2 less
than that from standard canonical partition function. To see this consider the derivation

from (13) to (14) in more detail.

Z = C/dpdqdpsd -9 (E 24 )+ 20 +ngTlns—E)
(26)
= C [ dpdgdp,d, - s*N - 59-—5-‘12
/ paqap f'(So)
where ( ) )
Ho+ 35~ E
= — 27
S0 = exp kaT (27)
and
'p‘?
Hy = Z '2'7#;5 + Q(q) (28)
and
kgT
f'(s0) = =2 (29)
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2
. (BN +1) (Ho+ 2 — E)
=C.—— [ dpdgdps - -
Z=C ngT/dpqp exp{ oinT (30)

To satisfy canonical distribution, we need to use g = 3N +1

12 4
zZ=C - g- (29—> : -2-\/-77- eﬁE/dpdqe'ﬁH"

T BN+1) 8 (29)
=C'.ePE .51/2 - Zean
where
Q%C T
1 _ N
C=6NTDV2 (30)
;From thermodynamics we have
_ﬁAnose == 111 Z (31)
aQA ose
Cv,nose =-T (’_a:'z%—)v (32>
This leads to
1
C'v,'n,ose = Cv,can - 'ékB (33)

That is, the specific heat is too small by Zkp. In the next section we will consider how to
solve this problem.
Considering the Hoover formulation, we see that ¢ = 3N 41 should be retained rather

than using ¢ = 3N.

4.0 Reformulation of the Canonical Molecular Dynamics

We start by considering two Nosé variables s; and s, in the virtual time. The virtual
variables (coordinates §, momentum p, time f) and real variables (coordinates g, momen-
tum p, time t) are related by

(33)

U3 e~ TR
Il
)

(34)

{
3



& gt
s

(35)

The Hamiltonian of the extended system of the particles and the variables s; and sg in

terms of the virtual variables are postulated as

1
22”* 9@+ ot P Loin (64 )

2Q2
where
§* =53 4 52
This leads to
di _ OH _ _p
dt - 81—7—,, - ’l’l‘?,,,.S'2
dn _ _OH _ 0%
dt o 0
dsi _ P ds2_ Py
dt N dt Q2
dps, OH s | p? ] 281 g
P 22 i gkgT| =2 |KE-2 kpT
dt as1 s2 ;mi 2 9B 52 [ kp ]
dps, _ OH _ 53 [~ P | _ 28 g
dt ~ Os; 2 E;m,- gkeT| = 52 [KE kBT]
where
1 p?
KE = :
277%,32

In the Lagarangian formulation, these are

1 _ 1. 1. 1
=3 > &P mit} — ¢() + §Q18% + '2'Q23§ — 59ksTIn (s1+3)
i

d 245\ _ 99
@t (m’s df) T

281 1 - 231
Q131 = = [2 E;s mU2 — —ngT} — [KE— -—ngT}
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37)

(38)
(39)
(40)

(41)

(42)

(43)

(44)

(45)



. 2
22__8_2 Zs m,'u —-—gk T]=&SE[KE——ngT:|

These equations are in the virtual time domain.

Now we consider the dynamics in the real time domain.

a3, _ P
dt mis
d“‘.
.(_i.s_l_ - SP_S_L d82 — p52
dt Q' dt QQ
dps; _ 591 g
=25 [KB - S|

Now we have the set of the dynamic equations in the real variables.

s=1/s*+ 2
= (81 + as;
= (82 + Bs2

=2 [KE - }jngT} /@1

g = [K E - —ngT] /@2
KE = Z lm,'s217-2 = —I-,z—
7 2 v 3 2m,~
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(47)
(48)
(49)
(50)

(51)



g=3N+2

5.0 Discussions and Comparisons with the Nosé and Hoover Formulations

In the new formulation, both the s variable and its conjugate momentum p, have
two degrees of freedom. This leads to a heat capacity which is the same for the canonical
ensemble. If we assumed that s has three degrees of freedom, we would obtain the heat
capacity of Cy nose = Cu,can + kB/2 and a g parameter of g = 3N + 3. Thus considering s
as1-— D, 2— D, or 3— D leads to Table 1.

Considering a 2 — D Nosé variable leads to the Nos¢ masses @J; and Q2 which pre-
sumably should be allowed to be different. There is a great deal of work left to be done.

The big question is whether the new formulation changes any results.
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Table 1. Relation between Nose variable and heat capacity.

Dimensions for the Noseé Variables 1 2 3
g 3IN+1 3N +2 3IN+3

Cv,nose — Lay,can "kB/z 0 ](73/2
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ITII. Quantum Statistics in Canonical Ensembles Of Identical Particles

Abstract

The exact expression for the quantum statistical partition function in the canonical
ensemble is given in this report. The physical sense of the new expression is discussed.
The new formula is applied to the weakly degenerate quantum ideal case to calculate its
thermodynamic properties. It is analyzed in terms of the nature of the coherent correla-
tions among the quantum particles, to obtain the origins of quantum correlation effects
both mathematically and physically. This method produces the same virial coefficients as
previously derived in the infinite /V limit from the grand canonical emsemble, but also leads
to the value for the finite clusters. Details of these derivations of the quantum canonical
partition function are given. The expressions are applied only for the mean field case. It
is also possible that this canonical partition function can be applied to cases where both

quantum correlation effects and particle interactions are important.
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1.0 Introduction

For collections of identical particles, it is necessary to properly correct the quantum
statistics for the boson or fermion character of the particles. Usually such corrections
are derived from considerations of the grand canonical ensemble and are valid only in the
large N limit. We are interested in the properties of clusters of identical particles. We
present a new derivations of the quantum statistics for finite canonical ensembles. Using
the recursion formulae of Borrmann and Franke,! we derive analytical formulae for the
canonical partition function. This canonical partition function is analyzed in terms of
the physical origins for each term of the quantum corrections. The quantum statistics
is expressed in terms of classical Boltzmann statistics plus additional terms where the
difference between Bose-Einstein statistics and Fermi-Dirac statistics shows up in the form
of signs for each many-body correction. These canonical partition functions should be
useful for considering nucleation of identical particles.

In Section 2 we present the exact expression for the quantum statistical partition
function in the canonical ensemble and discuss the physical sense of the n(;w expression.
In Section 3 we consider the weakly degenerate quantum ideal case and apply the canonical
partition function to calculate thermodynamic properties. This is analyzed in terms of the
nature of the coherent correlations among the quantum particles, to obtain the origins of
quantum cérrelation effects both mathematically and physically. This produces the same
virial coefficients as previously derived in the infinite N limit from the grand canonical
ensemble, but also leads to values for finite clusters. Details of these derivations of the
quantum canonical partition function are given. The expressions are applied only for the
mean field case. It is also possible tha this canonical partition function can also be applied

to cases where both quantum correlation effects and particle interactions are important.

2.0 Exact Formula for the Canonical Partition Function
Recently Borrmann and Franke! derived the exact recursion formula for the canonical

quantum statistical partition function for quantum systems of N independent particles.
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The results is

Q(N) = -le i 1)K g Q(N - K) (1)
K=1
where
Q0)=1 (2)
and
ax =3 kP (3)
Y

is the single-particle Boltzmann partition function with the original energy levels, ey,
K -times amplified. The upper and lower signs represent Bose-Einstein and Fermi-Dirac
statistics, respectively. Thus the partition function of the quantum systems having (K +1)
particles is obtained directly from the canonical partition functions for quantum systems
having 2 to K particles. However it would be useful to have a unified formula with which
to compare the different statistics and to relate them to the classical case. That is, we
would like a formula in which both Bose-Einstein and Fermi-Dirac statistics go to the same
classical Boltzmann statistics as the quantum correlation effects become negligible; The
first difference between the two quantum statistics appears in the second order which is
plausible since two-body quantum correlations have opposite signs and the same absolute
value for the two statistics.

We consider here that N particles can be distributed over the available energy state
{¢;} in a number of ways. Thus we could put all N particles together in one state; this
would be denoted as P =1, K; = N, l; = 1. Or we could have every particle in a different
state; this would be denoted as P = 0, K = 0. Or we could have M particles together
in one state and N — M particle in another; this would be denoted as P = 2, K; = M,
Ky =N-M,Il; =1, and I = 1 (assuming M > N/2). Or we could have two particles
in one state, two particles in another state, and all others singly compared; this would be
denoted as P = 1, K; = 2, l; = 2. For the general case we partition the N particles into

classes as follows. The multiple occupations numbers K; are defined as

Ki>Ko>-Ki>---Kp>2 (4)
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and the number of times each occurs is defined as
Li=1,2,-- | (5)

The total number of particles in multiple occupations is then

P
S = Z K;L; (6)
i=1
This leads to
N>§8>2 (7)

The total class number K is defined as
P
K=1+) (Ki-1)L (8)
i=1

which corresponds to 1 plus the excess populations (over 1) summed over all states. This
leads to

N>K>K >2 (9)

As derived in Appendix A, the partition function for N particles can be written as

N
Q) = 57" (1 + 2(¢1)K+IXK(N>) | (10a)
: K=2
where
QW) = a" (100)

is the classical partition function. The quantum corrections are

N(N - 1)

X3(N) = 5 b2 (10c)

-2
b= (10d)
wazNW-?W—m%+MN~M%~MN—%€ 100
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by =8 (10£)

and the general case is
P .
X (V) = fe(N)ox+fr-12(N)bxc—1bat- ot fyep gepa | gens | gcze (V) [[ok+ (1)
=1

where the coefficient in the general term is

N! 1
fK{II?K§27"',K1‘.Li"“’K£FP (N) - (N - S)! Hz}::l L"'!KiLz

Li
b = (g%) (13)

[S is given by (6)]. The terminal term is

(12)

XN(N) = fn(N)by

with

IN(N) = (N -1)!
Thus for any N, the partition function Q(NN) is analytically expressed in terms of Xg (N),
the summation of K —order quantum effects. Each term in (11) has an f coefficient, which

combines all combinational factors.

The coefficient in (12) is a product of two factors:

N
SI(N = 8)!

is the number of ways for picking S particles from the total of N while

S!
I, K7
corrects for the number of equivalent ways of grouping these particles specifically into
(I; x K;) sets and



corrects for the indistinguishibility among the groups with the same number of particles.
(From the above conditions, we see that we can organize the f coefficients for any
Xk (N) in the following way:
(i.) the first term has all K particles in one state leading to fx(N)bx
(ii.) The second term has all K — 1 particles in one state plus 2 in another leading to the
term fr_12(N)bk-1b2
(iii.) the third term has K — 2 in one state with 3 in a second while the fourth has K — 2
in one state and 2 in each of 2 others.
(iv.) This process continues as illustrated in Table 1.
Now we discuss the leading terms in (10)
i. the first term represents classical statistics. There are no quantum correlations since
every particle is in a different state.
#. The second term X,(N) = 1 N(N — 1)b, is the two-body quantum correlation;
iti. The third term X3(N) has two terms: 1 N(N — 1)(N — 2)bs is the ‘Ehree-body cor-
relation, while 2N (N — 1)(N — 2)(N — 3)b3 is the quantum correlation between two
groups, each already having two-body quantum correlations. These éwo terms are
grouped into X3(NN) because both are 1/¢* order (if we assume that gk is about the
same order as g as shown later for the case of an ideal quantum gas case).

iv. Similarly, X4(N) has three terms, all of which have order of 1/¢3.

3.0 Application to the Quantum Ideal Gas
Here we apply the above results to the calculation of the thermodynamic properties
and the virial coefficients for the quantum ideal gas. Consider the canonical partition

function Q(V) in (10) truncated at X3, namely up to the third order correlation.

QN = g™ [1 % Xo(N) + Xa(IV)]

N!
1 N 1 1 1 2
= 71? 1+ EN(N —1)bs + §N(N —1)}(N ~ 2)bs + -8—N(N —1)(N - 2)(N - 3)b;
we can write the single particle partition function as
|4
q= X?j,
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where

h2 1/2
- (27rkaT>
In addition we obtain
Q@ = ‘55175(1
1
3= -3-575‘1

In the ideal gas limit we can assume
X3(N) << Xo(N) << 1

hence
InQ(N)=In -—l—qN- +In[l+ Xo(N) + X3(N)]

=In r—%—qN. +In [1 + XQ(N)] +In [1 -+ XS(N) ]

1+ X,(N)
= In | gV | £ Xp(N) + Xo(N) — [Xa (V)] +0(A?)

N!
(1 N1 N(N=1)A3 N—2 N=27/A3\? o
=m0 | = =ga 7 TNV -0 |5~ | (7)) +0A)

The free energy becomes

F = —kgTInQ(N)

3 _ N — 3
F=Fclass:FN_(]_V_._L)A kpT ~ <N 2 _ - )N(N—l)(A> ksT

2572 35/2 vV
where N
P = —itin | ()|
The energy becomes
E= _?_125%@2

3 A3 N-2 N-} A3\ ?
SN - 1)-‘-/-1@1“—3,(35/2 ST )N(N—1)(V> kpT
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where

Eclass — gNkBT

oF
S=‘(5f)w

class N(N——l)A3 -3 A%\?
= Gelass 4 X~/ —57 (35/2 - 2 N(N - 1)( )kB

The entropy becomes

where

1 V N 3
class __ e
S =kgln [-—N! (—A3) ] + 2Nk3

The heat capacity becomes

_ OF class 3 A3 N -2 N — 3 A3 2
Cy = <8T) = Cy i-Z?/-gN(N—-l)T/—kB-FG 572 16 N(N-1) kg
where
Cios = gNkB
Thus the equation of state is
N-2 N-2
cla
P=2P ss:{:25/2N(N ) kBT 2<35/2 - 162>N(N ) kBT
o N(N - 1)kgT N(N

= pe S + Bo(T) ( V2) + B3 (T)-—(--——2k T

where

Pclass — ,OkBT,

p is the density, and

1 3
By(T) = F 5774

1 2
Bs(T) = (g - 5;/;) A®

are the corresponding second and third virial coefficients. These final results are just as
derived from the grand canonical ensemble.? However we believe that the physical origins
are clearer, this procedure allows any order virial coefficients to be calculated exactly by

keeping higher order terms.
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Appendix
Here we present additional details for deriving the canonical quantum statistical par-
tition function. The basic tool is mathematical induction on the basis of the intuitive guess

of the result. It works straightforward and elegantly. The Borrmann-Franke formula,*

N
Q(N) = % 3 (#1)E g Q(N - K) (A-1)
K=1
dK = Z C—Kﬁ€j (A - 2)

expresses the partition function for N particles into terms of a sum of partition functions

of fewer particles. We want to derive the expression

N
Q) = 370" |14 32 E1FH X (W) (4-3)
) K=2
where .
Q= 5" (A-4)

is the classical partition function and where Xg () includes all corrections involving

groups with K particles or fewer per state. The general form we derive for Xg (N) is

P
Xk(N) = fx(W)bk + fr-12(N)bx—aba + -+ frers 12 gs gre (V) 10k + -
i=1

(A-5)
where the general numerical factor is
N! 1
Tt i it otcr N = (N g [P LK “=0
and
L;
bl = (2’-{—)
Ki qKz
Here the general term involves S particles in multiply occupied orbitals
F
N>8=) KLi>2 (A=T)

=1

33



where L; is the number of cases with K; particles in the same level and where

N>K>K 2K, >.. 2K, >...>Kp>2 (4-8)

we can write P
K-1=) (Ki-1)L (A-9)

=1

where the L; are positive integers,

Li=1,2,.. (A -10)

The proof is carried out in two steps. First, we test the formula for the N = 1,2, 3 cases.

From (A-1) we have,

Q) =1 (A-11)
Q(1)=g¢ (A-12)
Q(2) = %q2 + %(h = -;-q2(1 + b7) (A-13)

where
b = g% (4-14)

1 1 1 1,

Q(3) = §Q(2)q + §Q2q + -3—(]3 = gq (1+£3b; + 2b3) (A - 15)

where
by = (51’% (4 - 16)

(From (A-3) we have,

Q(l)=¢q (A=17)

in agreement with (A-12). From (A-3) we obtain

Q(2) = -;—qQ (1+ X5(2)) (A —18)
and (A-5) leads to
|
X2(2)=-§—i---;—-b2=b2 (4 —19)
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Substituting (A-19) into (A-18) leads to (A-13),
1,
Q@) =39 (1£b)

(From (A-3) we obtain
QB) = 5¢* (1% X2(3) + X (3)

and (A-5) leads to
31
X2(3) = :—1—' . §b2 = 3b2

and

311
X3(3) = '(-)-" . gbg = 2b3

Substituting (A-22) and (A-23) into (A-21) leads to (A-15),

Q@)=%fﬂiﬁ@+2%)

(A — 20)

(4-21)

(A - 22)

(A — 23)

(A - 24)

Thus (A-3) with (A-5) is equivalent to (A-1) for N = 1,2,3 cases. Now we consider the

general case from (A-3) we want to prove

N+1
g1+ ) (EETI X (N + 1)
K=2

QN +1) = (N41~1)!

where
Xr(N+1) =fk(N + 1)bx + fe—1,2(N + 1)bg—1by + ...+
P
xeeoicir N+ 1) [T 05+

i=1

L L
fK1 1Kk

and
(N +1)! 1

Tt ackr W D) = S g [P LA
= it 1

For any M, where M < N + 1, we already have by induction that
1 LA
QQI) = 7a |1+ D1 X, (0)
_7‘_—
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(A — 26)

(A—27)

(A~ 28)



where

X.’I(M) =fj(M)bj +fj_1 Q(M) j— 1b2 + et

m (A —29)
Fyups 8 i ife (M) H bjm
and
M! 1
= ' A—30
1321 352 it (M) (M -=T) TI5_, Puljme ( )
with
G
T=7 jmPm (A —31)
m=1
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Thus substituting (A-28)-(A-31) into (A-25) leads to
1
N+1)= +Q(N -1 e
QN +1) = 5 Q)£ QWY - Daa +

+EDFHQWV +1 - K)gr + -+ + (1) 2qn ]

1 1 N ,
=N {.N.!.qNH [1 + Z(il)’“Xj (N)}

j=2
1 N-1
£ gVl |14 ) (FIYTIX(N - 1)
(N -1)! ;2 7
1 N+1-K
K+1_____ - N+1-K, 1)+l x. - K
oot E) T g |1+ ; (FY XN +1-K)

ook ()N 'QN+1}

+ Nb, [1 + Ig(il,)jﬂxj(N - 1)}

=2 =2

N
- (_Jv"ier)'!qNH{ [1 + ) (F1)HXG(N)

N+1-K
+oee+ (EDEFIN(N 1) (N +2- K)bg [1 + }: (1PN +1 - K)}
§=2
+-e (:i:l)N+2N!bN+1}

1
(N+1)!

qN+1{1 + [X2(N) + Nbg] + - - -

K
+ (£1)FH [XK(N)‘FZN(N“U“' (N“J"*‘z)ijK—Hl(N”j‘*‘l)}

j=2

+. 4 (:1:1)N+2N!bN+1}

= (Ni 1)!‘11”1{1+

N+1 K

> EEH iiXK(N) +Y NN -1)--- (N =j+2)bXg—ja(N —j+1) }
K=2 j=2

(A -32)
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Thus the induction is proven if
K
Xg(N+1)=Xg(N)+ ij N(N-1)---(N+2-j)Xg—j1(N—j+1) (A-33)
=2
or alternatively,
Fyem ke, ko, xir (N + 1) =frp gpe,.. k%, ki N+
P
EN(N -1 (N-Ki+ 2)fK1L1,K,‘%?,...,Kf"-l,...K{;P (N —HEi+
i=1
(A - 34)
Starting with the right hand side (RHS) of (A-34) we obtain

N 1 +
(N =S Hil LK}

RHS

P .
(N—Ki-i-l)! K;Li

_;_ N(N-1)---(N—-K;+2 .

= ( ) ( it )(N—Ki+1—S+Ki)! Hi:.l Lz'Kle

NI 1 {1_}_ S ]
- - P i —

(N - 9S) T, LKL N-S5+1
_ (N +1)! 1
- (N+1-39)! Hil Li!KiLi

This is exactly the expected f coefficient for Q(N + 1). For the last term, the original

formula leads to
v (N +1) =N

QED
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Table 1. Ilustration of the sequence of terms in (10).
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