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Abstract

We present the Polarizable Charge Equilibration (P-QEq) force field to include self-
consistent atomic polarization and charge transfer in molecular dynamics of materials.
The short-range Pauli repulsion effects are described by two body potentials without
exclusions. A linear self-consistent field solution to the charge transfer is proposed for
charge transfer in large systems. The P-QEq is parameterized for BaTiO3 based on
quantum mechanics calculations (DFT with GGA) and applied to the study of the
phase transitions, domain walls and oxygen vacancies.

Frozen phonon analysis reveals that the three high-temperature BaTiO3 phases
in the displacive model are unstable. Within their corresponding macroscopic phase
symmetries, the smallest stable phase structures are achieved by antiferroelectric dis-
tortions from unstable phonons at the Brillouin zone boundaries. The antiferroelec-
tric distortions soften phonons, reduce zero point energies and increase vibrational
entropies. A correct BaTiO3 phase transition sequence and comparable transition
temperatures are obtained by free energy calculations. The inelastic coherent scat-
tering functions of these phases agree with X-ray diffraction experiments.

BaTiO3 180° domain wall is Ba-centered with abrupt polarization switching across
the wall. The center of BaTiO3 90° domain wall is close to its orthogonal phase.
There are transition layers from the wall centers to the internal domains in the types
of domain walls. Polarization variation in these transition layers induces polarization
charge and free charge transfer. This effect causes a strong bipolar electric field in

BaTiO3 90° domain wall.



vi
Oxygen vacancies are frozen at room temperature, and mobile near the Curie
temperature. In the tetragonal phase, the broken Ti-O chains are frozen, reducing
switchable polarization. Due to charge redistribution and local relaxation, oxygen
vacancy interaction is short-range and anisotropic. Two oxygen vacancies can form
a stable pair state, where two broken Ti— O chains are aligned parallel. Oxygen
vacancy clusters can form dendritic structures as a result of local relaxation and

charge interaction.
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Chapter 1

Introduction

This thesis describes in detail the study of ferroelectrics I have pursued as a graduate
student at California Institute of Technology. Since ferroelectrics phenomenon is
related to small energy change (meV), large size (thousands to millions of atoms)
and long correlation time, direct application of the first-principles calculations is
not feasible. Hence, I first developed a quantum mechanics based force field (P-
QEq), which has a self-consistent description of the electronic polarization and charge
transfer while retaining a simple mathematical form. Then, I applied this P-QEq force
field to study various phenomena in a well-known ferroelectric perovskite, BaTiOj3. In
particular, I studied the phase structures and transitions, domain walls, and oxygen

vacancies.

1.1 Ferroelectrics and BaTiOs

Ferroelectricity is an example of cooperative phenomena. In a ferroelectric crystal,
due to the inversion symmetry break there is an electric dipole moment even in the
absence of an external electric field. Because of this spontaneous polarization and
its coupling with stress and electric field, ferroelectrics has three main technological
applications: data storage, transducers and capacitors.

Among them, barium titanate (BaTiOs) is a well-known system. Because of its
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high relative permittivity, this compound has become one of the most important
materials in the electronics industry. Recently, it has been extensively studied par-
ticularly for its application as a capacitor material in dynamic random access mem-
ory (DRAM) devices. In addition to these technological aspects, BaTiO3 has also
attracted much attention from the standpoint of solid-state physics and chemistry.
Since this compound has a simple common perovskite structure and shows successive
phase transitions, the relationship between the crystal structure and ferroelectricity
has become a major subject of research.

BaTiO3 goes through a series of phase transitions with increasing temperature:
rhombohedral (R, ferroelectric, Fig. 1.1a), orthorhombic (O, ferroelectric, Fig. 1.1b),
tetragonal (T, ferroelectric, Fig. 1.1c) and cubic (C, paraelectric, Fig. 1.1d). The
macroscopic polar axes of the three low-temperature ferroelectric phases align along
the (111), (110) and (100) directions respectively. These transitions occur at 183 from
R to O, 278K from O to T, and 393 K from T to C. Each transition is accompanied
with small atomic displacements, latent heats and macroscopic strains. Experimental
latent heats of these transitions [68] are 8 +2, 22 + 4, and 55+ 5 cal/mol, or 0.3, 0.9

and 2.2 meV.

1.2 Origin of Ferroelectrics

In the ferroelectric state, the inversion symmetry is broken. The origin of ferroelectrics
is related to their electronic structures. A well-known reason for the distortion of a

symmetric configuration of a system is the Jahn-Teller effect [39],

any non-linear molecular system in a degenerate electronic state will be
unstable and will undergo distortion to form a system of lower symmetry

and lower energy thereby removing the degeneracy.
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Figure 1.1: BaTiO3 Phase structures in the displacive model.
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In a crystal, such effects can give quite strong interactions between the filled and
empty bands. A detailed theoretical explanation of instability of BaTiO3 was given
by Bersuker |4, 5] and a numeric calculation within density functional theory (DFT)
with local density approximation (LDA) was given by Cohen [13].

Phase instability is related to unstable modes in the frozen phonon structure.
The phonon structure of BaTiO3 cubic phase was studied with DF'T/LDA in the last
decade. Among them, Zhong et al. [80] found giant LO-TO splitting in a series of
ABOj cubic perovskite compounds. Lattice dynamics studies show a two-dimensional
character in the Brillouin zone in the cubic phases of BaTiOj [27, 71| and KNbOj3 [79].
These calculations showed that there are unstable phonons in the BaTiO3 cubic phase
in the displacive model.

However a cubic phase structure with a stable phonon structure has not been
reported. The arguments of displacive mechanism vs. order-disorder mechanism have
lasted for decades.

In this thesis, a systematic study of the phonon structures of all the four phases is
carried out. With the analysis of the phonon structures, the local structures within

their corresponding macroscopic symmetries are obtained.

1.3 Charge Transfer and Electronic Polarization

To describe the ferroelectrics, two quantum mechanical effects must be considered in
the atomistic methods: charge transfer and electronic polarization.

Charge transfer is based on the electronegativity equalization of all atoms in a
system. The basic concept is that each element has an intrinsic electronegativity of
its own state plus a term from atomic interaction. The electrostatic energy reaches its
minimum when its first derivatives w.r.t. each charge variable (we call it electroneg-

ativity) equal to each other. There are two main schemes which have been used in
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the literature for calculating charges in this way, the Electronegativity Equalization
Method (EEM) [73] and the Charge Equilibration (QEq) [62] approach. The basic
difference between the two schemes is that in EEM Coulomb interaction takes the
unshielded % form, whereas in QEq these terms are calculated as the integral over
two s-type Slater orbitals.

The unshielded EEM gives too large interaction in crystals when atoms are too
close. QEq is slower than EEM because of its Slater type orbital integration. In
widely available codes, a simpler version of QEq is implemented. Namely, rigorous
Slater type orbitals are used for charge calculation and then unshielded interaction
of % form is used to evaluated energy and its derivatives. The inconsistency makes
errors which can not be used in ferroelectrics, because the phase energy difference
is much smaller than such errors. Further, computations of original EEM and QEq
scale as N3, which are inefficient in large scale MD calculation.

Electronic polarization is usually described by a shell model in force field. In
the shell model, each atom is partitioned into a positive point charge (core) and a
negative point charge (shell). Electrical attraction within each atom is then replaced
by a spring constant to avoid the collapse between the core and shell.

In this study a feasible self-consistent description of the charge transfer and elec-
tronic polarization effects is proposed and developed. The details are described in

Chapter 2.

1.4 Displacive, Order-Disorder, or Something Else

There are two canonical models commonly used to describe the structural phase tran-
sitions observed in BaTiOs, the displacive transition and the order-disorder transition
(Fig. 1.2). In a displacive transition, the potential surface in which the atoms rest

changes with increasing temperature. At low temperature, the atoms populate a po-
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tential minimum which is displaced from a point of centrosymmety. At high tempera-
ture, the potential minimum is the center of a centrosymmetry. In the order-disorder
model, the shape of the potential surface remains unchanged with temperature. As
the temperature is raised, the hopping rate between adjacent minima in the potential
surface increases, leading to a disordered structure. In the high temperature phase,
the hopping rate is so high that the equivalent sites are equally populated.

For BaTiOj3, early research regards its transition as a displacive type [11]. This
is supported by the observed soft mode in the cubic phase [51|. However, this soft
mode is overdamped and does not vanish at the transition point. An eight-site model
was first proposed by Bersuker [4, 5] with his electronic structure analysis. It was
then reformed with the chain concept by Comes [15] to explain the diffuse X-ray
diffraction pattern. However, Huller later [37] showed that a displacive model with
dynamic phonon correlation in BaTiOj3 can also explain these scattering experiments.

Since then the arguments continue. But more and more experiments revealed
that the local structure of BaTiOszcubic phase is polar. Among them are infrared
reflectivity measurements [26], X-ray absorption fine structure [63], and impulsive
stimulated Raman scattering [20, 19].

In Chapter 3, a systematic study of the phonon structures of the four phases of
BaTiOgj is carried out. The three high-temperature phases in the displacive model are
found unstable. Stable phase structures are achieved with antiferroelectric distortions.

The phase transitions and dynamic structures are studied.

1.5 Domain Wall Structures

The domain switching in ferroelectric materials is accompanied by a small energy,
which makes them promising material for data storage. However the domain wall

structure is subject to long-term effects: electric fatigue, retention loss, imprint and
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Figure 1.2: Displacive model vs. order-disorder model.

aging. It is argued that such long-term effects are related the heterogeneous struc-
tures, e.g., domain walls and oxygen vacancies.

Single domain structure is most stable with the short-circuit electric boundary
condition and zero stresses. In practice, under the electric and stress fields ferroelectric
materials develop multiple domains to reduce the free energy. In BaTiOj3 tetragonal
phase, there are 6 equivalent polarization directions. The interfaces between these
domains form the 180° walls and the 90° walls.

BaTiO3 180° domain wall was studied by Landau theory [55, 42, 43| and by an ef-
fective Hamiltonian method based on the first-principles calculations [58]. The former
calculations lack atomistic resolution while the latter study is on a very small domain
system. The detailed structure of the BaTiO3 90° domain wall has not been studied.
Here P-QEq has the advantage to make prediction based on the first-principles ap-
proaches. In Chapter 4, the energies and structures of the two types of domain walls

are analyzed.



1.6 Oxygen Vacancies

Oxygen vacancies are common defects in oxides. In ferroelectrics, these defects are
closely related to polarization fatigue, which is a main problem in commercialization
of ferroelectric memories. However a vacancy structure in these materials is not
available in theory.

In Chapter 5, the structures and energies of single vacancies, vacancy pairs, and
vacancy clusters are studied. The effects of oxygen vacancies on long-term behavior

are discussed.



Chapter 2

Polarizable Charge Equilibration
Force Field

2.1 Introduction

Ferroelectric (FE) materials have been utilized for many important applications rang-
ing from sensors, actuators to memory devices [48]. Despite many years of research
and development on these systems, there remain many questions, such as the domain
wall energies for various planes and their migration, the role of defects and impurities
on switching behavior and mechanical strength, the structure at surfaces and grain
boundaries and their effect on the mechanical and electrical properties. These funda-
mental properties are needed to understand the hysteresis in the sequential response
to fields and stresses involved in various applications. Attempts to understand these
effects have been hindered by the large size of the domains and small size of the energy
effects controlling the phenomena. Thus, there is a gap between our understanding
of the atomic level phenomena and the properties of the macroscopic systems.

The basis for first-principles predictions about these systems is quantum mechan-
ics (QM), and the practical methods available today for QM studies are based on
density functional theory (DFT) [35, 44| as extended with generalized gradient ap-
proximations (GGA) [59]. With current software it is practical to solve the ground

state wave function for periodic cell with 50 to 200 atoms, depending on the system.
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But, for FE, it is essential to examine the dynamics of systems large enough to con-
tain domain walls and normal concentrations of defects and to study these systems
for time scales of picoseconds and temperatures up to 400K. This is not practical for
the current QM methods today. However, we need to base our simulations on QM
because the information available from experiment is inadequate to include sufficient
empirical data into the simulations. Thus our approach is to develop a force field
(FF) with the flexibility needed to describe FE, with parameters can be determined
using QM.

The ferroelectric behavior in oxides with the perovskite structure and the nature of
ferroelectric phase transitions have been the subject of extensive research for several
decades. Earlier density functional computations on BaTiO3 were carried out by
Weyrich [76] in 1985. Since that time, ab initio calculations have contributed greatly
to our understanding of the origins of structural transitions in ferroelectrics |28, 25,
38]. However, direct application of such ab initio methods to dynamical behavior at
finite temperatures is not feasible.

An alternative approach to studying phase transitions in ferroelectrics is based on
constructing the effective Hamiltonians from ab initio calculations [82, 81, 83, 29].
This approach includes only the dynamical variables appropriate to the transitions of
interest, with parameters fitted to reproduce ab initio results in a given material. The
four phases of BaTiO3 have been studied in this way. The transition temperatures
calculated using this method are considerably lower than experimentally observed.
Since increasing the volume favors instabilities, this failure may be ascribed to the
lack of thermal expansion within this approach.

Another approach that has been widely applied to the study of dynamical proper-
ties of ferroelectrics is based on atomistic models. Modeling inter-atomic forces allows
us to study properties related to departures from perfect crystallinity. Atomic-level

simulation methods involving force fields with shell model have long been used, with
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varied degrees of success, to describe the finite temperature and defect properties of
ionic systems as well as the ferroelectrics. For instance, the calculations reported by
Lewis and Catlow [46] reproduce the lattice spacing, elastic and dielectric properties
for BaTiO3 from molecular mechanics. More recently, Khatib et al. [41] proposed
an anisotropic shell model with a fourth order correction to describe the perovskites.
Tinte et al. [71] refined the anisotropic shell model to study phase transitions in
BaTiO3 and predicted the correct phase transition sequence, but the transition tem-
peratures were significantly lower than those experimentally observed. Sepliarsky et
al. [66] have used shell model in molecular dynamics simulations to study various
ferroelectrics.

For describing FE, a fundamental requirement is that the FF allows the charges
to polarize and transfer, because the local distortions in the symmetry lead to local
electric moments that result in the observed macroscopic fields. In this paper, we
presented a general and consistent way to treat both of these effects.

This chapter is organized as follows: in Section 2.2, we present the the total
energy expression and each term contributing the total energy: electrostatic and
Van der Waals terms. Here, we especially focus on the electrostatic energy. We
describe the charge equilibration method for the model. In Section 2.3, we derive
the expressions for polarizability, dielectric constants and effective Born charges. In
Section 2.4, we present the force field parameters for BaTiO3 using ab initio results

only. In Section 2.5, we summarize the applicability of the force field.

2.2 Polarizable Charge Equilibration Force Field

We consider an ionic system of NV atoms. Each atom ¢ has a core charge ¢;. at position
r;. (i-e., r;), and a shell charge ¢;5 at position r;;. The total charge of atom i, ¢;, is

the sum of g;. and ¢;;. The displacement of shell ¢ w.r.t. its core, ris ., is Tjs — Tc.
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The charge densities of the cores and shells are Gaussian functions characterized by

range parameters ;. and q;:

w

e\ 2
Pic (I‘) = (f) ’ Gic €XP (_aic ‘I‘ - ric‘Q) ) (21)
3

s\ 2
Pis (I') = (#) ? q;s €XP (_ais |I' — I'Z'5|2) . (22)

In conventional shell models, atomic polarizability is accounted for by defining a core
and a shell for each ion which interact with each other through a harmonic spring
(with a force constant that characterizes the ionic polarizability) while interact with
the cores and shells of other ions via Coulombic interactions.

In our model, the charge on each atom is partitioned into a Gaussian-shaped core
with positive fixed charge (nucleus and inner electron) and a Gaussian-shaped shell
with negative variable charge (valence electrons). Shell charges can flow from atom
to atom based on the Charge Equilibration scheme [62]. The shells can be displaced
from the cores, with the restoring force between a core and its shell given by the
electrostatic interaction between the two charge distributions; no harmonic springs
are required. Fig. 2.1 shows the partition of a two-atom system in this model, where

there are C%, i.e., 6 pairs of Coulombic interaction between all cores and shells.

2.2.1 Total Energy

The total potential energy of a system E? is a function of atom coordinates. It

consists of electrostatic energy, E¥%, and Van der Waals energy, EVPW.

EP ({I‘}) = {1{21:2} EPO ({ric: Tis, Qis} ): (23)
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core A core B

shell A shell B

Figure 2.1: Partition of a two-atom system in the model.
where

EPO ({rica ris, QZS}) = EES ({rica ris, QZS})

+ EYPY ({ri}), (2.4)

2.2.2 Electrostatic Energy

For an isolated single atom system, the electronegativity x; and idempotential J? are

defined as

aEiES(ris,ica QZ)

X? = oq; |ris,ic:07%’:0’ (25)
is
PEFS (xiyie, 4,
Jz'o = : a(;;s,w QZ)|ris,ic:()sQi:0' (26)
is

The electrostatic interaction energy between two Gaussian-shaped charges [7] is

ik ji1(Tik j1)Gikgj1, where ji. ;1 is a basic coupling function,

) 1 QL Ol
Jik,j1(r) = ;erf (‘ /70“9:_217“) , (2.7)
i i)



14
i and j represent the atoms, and & and [ represent the core (c) and shell (s). In the
case of Ty, = Iy, jik,jl takes the limit:

2 aikajl

Jikgr = li_r)%jik,jl(r):ﬁ P (2.8)
? J

Let us consider the form of ES({r., i, ¢is}). The classic electrostatic energy

for this system can be divided into two parts: within each atom and among atoms.

N

EES ({riw Tis, qw}) = ZEiES(ris,ica QZ)

1

1 :
+§ ;Jik,jl(rik,jl)%k%l- (2.9)
1£]

The interaction within each atom, i.e., the first term on the right-hand side of

Eq. (2.9), is a function of the atom’s electronic polarization and total charge.

Ef5(visie, @) = EF5(0, ¢;)
+ (EiES(riS,ica Qz) - E’LES(O: QZ))
1
= (Ezo + X579 + EJZ?%'Z + O(Qf))

+ (jic,is(ric,is) - jzgc,is) Giclis

Q

4 -0 2 o -0
Ei + Jic,is%ic + (Xz - ]ic,iSQiC)Qi

1 .
+§quz~2 + Jicyis (Ticyis ) QicGis- (2.10)

O(q}) is ignored in the final step in Eq. (2.10). Substitute Eq. (2.10) into Eq. (2.9),

we obtain the electrostatic energy of the system

N
o e o -0 1 o
EES ({Tic, Tis, qis} ) = Z (Ez +]ic,z’5qz'20 + (Xi - ]ic,z’SQiC) g + iJi qf)

i

1 :
+§ Z Jit,j1 (Tikj1) ik (2.11)
ik#jl
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The second term on the right-hand side of Eq. (2.11), %Zik#l Jik,ji(Tik j1) Gk Qit, 18
the interaction energy between all cores and shells, EF52. In a periodic system, E#52

can be summed as per Eq. (2.12), using the Ewald method [23].

1 47r ;
EFS? = Z G~ Z Gir exp(— ) exp(iG-ry)
G;éo
X Zqﬂ exp(— )eXP(ZG Tig)

D) Z Z Z]le Tikgi + L)qingji
ik
9 Z Z Zjik,ew(rik,jl + L)girg;i

ik jl L

20y ik
- Z — G (2.12)

where G, L are the reciprocal lattice vectors and real space vectors, and subscripts
ew in Qey and Jix e denote the Gaussian parameters included in the Ewald method.
Eq. (2.11) has a single general form for both non-periodic and 3D-periodic model

systems,

N

-0 o -0 1 o
EES ({I‘z’ca Tjs, QZS}) = Z <Ezo +]Z-C,Z~qu~26 + (Xz - ]ic,isqm) q; + 5:]1 qf)

i

1
+§ ; Jik 1 (Tik 1) Qik G- (2.13)
(Y

where
Jikjt(Tik 1), 1k # jl;

Jik ji(Tik j1) = (2.14)
0, ik = gl
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for non-periodic systems and

2

47 B G? G+ .
ik gt(Tin 1) = _VE G2 exp(—~ _—4Oj_ll)eXp(lG'rik,jl)
ew j

G0
+ Z (Jik,gi(Tikgi + L) = Jik,ew (Tingi + L))
L
™ 1 1

QOéik
- . (2.15)

for periodic systems. In Eq. 2.15, g, is the range parameter of the Ewald screening

charges, i.e.,

a’ew

) = (=

3
) ’ qix €XP (_aew r — rik|2)

and Ji.ew 15 the basic coupling function between two charges with range parameters

Jikew(r) = Lopp ([ _CikOew
e r Qi + Qey .

2.2.3 Charge Transfer

o and apy, i.e.,

The charge flow from shell to shell is described by an extension of the Charge Equi-
libration Method of Rappe and Goddard [62]|. In the following subsections, we only

describe those features unique to the new polarizable charge model.

2.2.3.1 Exact Solution

The shell charges of the system transfer from shell to shell until the chemical potentials

x; of all shells equal to each other. Let x denote the equilibrium value. Then for
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1=1---N,
OE"S
Xi =
’ aQis
+ Z(Jis,jc%'c + Jis,jsqjs)a (216)
J
and
Xi = X- (2.17)

Combining Eq. (2.16) and Eq. (2.17), we get

D (Jisgs + 65T 0js — X = = Y (Jisje + 0:T0)Gje — X5 + 55 35ics (2.18)

J J

where j = 1---N. Besides Eq. (2.18), we have the condition of charge conservation,

Z —Gis = Zqzc - Qtot7 (219)

where the total charge of the system ();; can be non-zero value for charged non-
periodic systems but must be zero for 3D-periodic systems to converge the electro-

static energy. Eq. (2.18) and Eq. (2.19) can be solved by linear algebra,

(CIls\ ( - Z]’(Jls,jc + 51ij)Qjc - X(l) + jfc,ls‘]lc \
G2s - Zj(JQs,jc + 02503 )djc = X3 + Joe 2542

cl...| = .. , (2.20)
gns - Zj(JNs,jc + (5NjJ]0V)Qjc - X?V + j&c,lsqNC

\ X / \ Zj Qjc — Qtot
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where C is the electrostatic coupling matrix,

(Jls,ls +J7? J1s.2s s Jis,Ns -1 \
J25,ls J25,25 + JQO Tt J25,Ns -1
C = (2.21)
INs,1s INs,2s e Insns I —1

\ -1 1 ~1 0 )

2.2.3.2 Large System Solution

The exact method requires computation memory of O(N?) and computation time
of O(N3). For conventional MD simulations today, N is about 1,000 to 1,000,000
and thus solving Eq. (2.20) is not feasible. Therefore for the large systems, we use
the following self-consistent field method to reduce the computational cost. From

Eq. (2.16) we can get the idempotential of atom i:

gz ey g (2.22)

X 32Xz'
di = dQ's+ 7dQ'sdQS+"'
X J aqjs / % ansans ! g
~  Jidgs, (2.23)

where we ignored the second term and thereafter on the right-hand side of Eq. (2.23)

and assumed gqi_i is negligible for ¢ # j. Since the total charge of the system conserves,
js

Sdg ==Y XX (2.24)



the chemical potential of the system is

g
S

X = (2.25)
T
From x;, J;, J and qf , we can predict
. . . X p— X.
gt =q¢ +dg=q + Tl (2.26)
3

Starting from an initial guess of charge distribution {q{ }, we can obtain the atomic
chemical potentials {x;}, idempotentials {J;} and the system chemical potential x
from Eq. (2.16), Eq. (2.22) and Eq. (2.25). Then, the new charge distribution {¢/™'}
can be obtained by Eq. (2.26). The above steps are repeated until all charges converge,
i.e., self consistency field is achieved

The self-consistent field method is both memory and speed efficient. Single step

calculation is close to O(N). Further, x; and J; can be evaluated with forces during

MD and cause negligible computational overhead.

2.2.4 Shell Relaxation

According to Eq. (2.3), we need to relax the shell coordinates for each configuration of
the core coordinates. We use the Steepest Decent Method or the Conjugate Gradient
Method to perform shell relaxation based on the first derivatives and/or the second

derivatives of energy w.r.t. the coordinates.

2.2.5 Derivatives of EZ5

For many applications, 1st and 2nd derivatives of the energy are required to describe
the system: forces, stress, Hessian and elastic constants. Under the condition of

charge equilibrium and shell relaxation, all these quantities have analytical forms.
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See Appendix A.4 for details.

2.2.6 Fourth-Order Correction to Core-Shell Interaction

When a core and its shell are separated far away from each other during MD simu-
lations, the restoring force between them from the purely electrostatic interaction is
not sufficient to keep the shells bond to the core. Thus, for large polarization in ions,

4

isics 1O correct the force.
b

we need a quadratic energy term, K;r

2.2.7 Van der Waals Energy

The classic electrostatic model should be corrected for two quantum effects: Pauli
repulsion due to the antisymmetry of the total electronic wave function and London
dispersion due to electronic fluctuation. For the interaction between two cations or
two anions, both effects can be ignored because electrostatic repulsion dominates. For
the interaction between a cation and an anion, a term to correct the Pauli repulsion
must be included. In this case, no London dispersion term is needed, as electrostatic
attraction dominates. For simplicity, we describe Pauli repulsion between shells by

an exponential potential

EVPW = ST EYPW (riy50) = 3Dy eXp(_%), (2.27)

r
i>j i>j K

where s ;s = rjs — 5.
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2.3 Dielectric Properties from Molecular Mechanics

2.3.1 Polarizability and Dielectric Constants

When the electric field frequency is very low, all cores and shells relax under the
external field. In the case of a high frequency electric field, all cores are frozen while
only shells relax under the the external field. These two polarizabilities are called

static and optical, respectively, and can be written as

0 _ . -1 .
amy - E :E :qzkHikw,jlqul

ik gl

@(m 8 (5 e

jlz

i Z o aq“ (2.28)

and

Z Z Gis (Hss)i;pl,ijjs
i
aqis ss
D) (z gt ) (S0 e
Jz m

i

n Z i g a%s (2.29)

where H is the Hessian matrix for all cores and shells and H?*® is the Hessian matrix

for all shells. Appendix A.6 gives Eq. (2.28) and Eq. (2.29), Appendix A.4 describe

94qis 6‘]15

the electrostatic component of Hessian, and Appendix A.3 describes B and
Jtz

The corresponding dielectric constants are

Eoy = 5wy+7a;y, (2.30)
4
£ = Gpy+ 0. (2.31)
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2.3.2 Born Effective Charges

The Born effective charge for an atom characterizes the dynamic charge effects, and

has the form of

Oty
aT'icac

Oris 0qQis OTgsy
- Z (st 87"J~ t+ Z : . Tjgy) + OayGic; (2.33)
j 1CT

& arksz aricw
z

i ay (2.32)

where ¢ represents the atom, x and y represent the directions, f, is the dipole moment

in y direction 94is g the derivative of the atom j shell charge w.r.t. the x-component

? Oica

Orjsy

o is the derivative of the y-component of the atom

of atom ¢ core coordinates, and
j shell coordinates w.r.t. the z-component of the atom 7 core coordinates. The forms

of these derivatives are given in Appendix A.3 and Appendix A.5.

2.4 Force Field Optimization and Verification for BaTiO3

BaTiOg is, to date, the most extensively investigated ferroelectric material. Thus,
we take it as a touchstone. We optimize the parameters of our force field from ab
initio DFT calculations reported earlier [72] on different phases of BaTiO3 and various
molecular clusters [31]. The force field is optimized to reproduce static and dynamic
charge properties as well as equation of state for different phases of BaTiO3. The
optimized electrostatic and Van der Waals parameters are summarized in Table 2.1
and Table 2.2.

The static charge properties include Mulliken charges (Table 2.3) and polarizations
(Table 2.5). Mulliken charges account for the electron population on each atom, while

polarizations characterize the displacements of the electrons from their nucleus.
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Table 2.1: Parameters of the electrostatic terms for BaTiOs.

1 Xz “ J? Gic 2\/1@ b 2\/10@ K; ¢

V) (Vvoe) (& A A (ev-ATH
Ba -24.0033 18.9960 2.8780 0.3978 0.3978 100.0
Ti -47.1251 30.5478 5.7730 0.2947 0.2947 100.0
O 18.5565 30.3158 2.0951 0.3571 0.3571 100.0
H 0.8232 21.5643 1.0000 0.0001 0.1500 100.0

%Negative for accurate description of electronegativity of Ba and Ti in BaTiO3 where Mulliken
charges of Ba and Ti are around 1.57 and 1.60, respectively

YHere we keep ;. = ;s except for H to reduce the degree of parameter freedom for simplicity.
We expect better description if we release this constraint.

¢K; can be set in a broad range, from 50 to 400. Here we set all of them to be 100 for simplicity.

Table 2.2: Parameters of the Van der Waals terms for BaTiO;.

Ba— 0O 1.0667E+7 0.153630
Ti— O 2.8246E+3 0.247883

The dynamic charge properties included Born effective charges (Table 2.4) and
optical dielectric constants (Table 2.5). Born effective charges describe the electron-
nucleus coupling in the low frequency limit. Optical dielectric constants give the
electron-nucleus coupling in the high frequency limit.

The lattice parameters(Table 2.5), phase energetics (Table 2.6), soft mode energies

(Fig. 2.2) and bulk moduli (Table 2.5) are used to determine the equations of state.

2.5 Conclusions

We have developed an elaborate classical force field model for materials systems (in
particular for ferroelectrics) that properly characterizes charge transfer and atomic
polarization. This approach reproduces the correct phase transition sequence, tran-

sition temperatures, and spontaneous polarization in BaTiO3. The method replaces



24

Table 2.3: Mulliken charges.

Molecule Atom q (QM) * q (P-QEq)
Ti(OH), Ti 11.92 12.35
O -0.89 -1.08
H +0.41 +0.48
TiO(OH), Ti 175 12.28
01 -0.94 -1.09
02 -0.68 -0.97
H +0.40 +0.44
BaO Ba +0.90 +1.14
O -0.90 -1.14
01 -1.10 -1.16
02 -1.00 -1.13
H +0.33 +0.21
BayO, Ba +1.02 +1.24
O -1.02 -1.24
BaO,Ti(OH),  Ba T1.25 157
01 -0.95 -1.14
Ti +1.81 +2.26
02 -0.96 -1.10
H +0.38 +0.32
BaTiOs(periodic) Ba +1.57 +1.74
Ti +1.62 +2.16
0 -1.06 -1.30

2Density functional theory calculation with PBE functional [59]by SeqQuest package

Table 2.4: BaTiO3 Born effective charges.

atom q* (QM1) [80] q* (QM2) [28] g (P-QEq)

Ba 12.75 1277 277
Ti +7.16 +7.25 +4.83
of -2.11 -2.15 -1.42

Oy -5.69 -3.71 -4.76
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Table 2.5: Properties of BaTiO3 phases.

Phase Properties EXP QM ¢ P-QEq
cubic a=b=c (A) 4.012 [40]  4.007 4.0002
(Pm3m) B (GPa) 167.64 159
€ 6.05 ° 4.83
tetra. a=b (A) 3.99 [45] 3.9759  3.9997
(P4mm) c (A) 4.03 [45] 4.1722  4.0469
P, (uC/cm?) 15 — 26 [40, 52, 54, 77] 17.15
B (GPa) 98.60 135
ortho. a=b (A) 4.02 [45] 4.0791 4.0363
(Amm2) ¢ (A) 3.98 [45] 3.9703  3.9988
7 (degree) 89.82 [45] 89.61  89.42
P, = P, (uC/cm?) 15 — 31 [40, 52, 54, 77| 14.66
B (GPa) 97.54 120
rhomb. a=b=c (A) 4.00 [45] 4.0421 4.0286
(R3m) o= =1 (degree) 89.84 [45]  89.77  89.56
P, =P, =P, (uC/cm?) 14 — 33 [40, 52, 54, 77 12.97
B (GPa) 97.54 120

“Density functional theory calculation with PW-91 functional by CASTEP [72]
bBased on €° = n? for materials with low magnetic susceptibility, where n is the refractive index.

Table 2.6: Energetics for BaTiO3 phases (eV /unit cell).

Phasel Phase2 AFE;; (QM) ¢ AE;, (P-QEq)

tetra cubic 0.0427 0.0324
ortho tetra 0.0100 0.0163
rhomb ortho 0.0020 0.0093

%Density functional theory calculation using the PW91 functional and CASTEP
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Figure 2.2: The energy change in cubic phase with soft mode shift in direction (001).

point charge based models with Gaussian distributions and allows charge transfer
between shells by extending the widely used charge equilibration scheme from point
charges to charge distributions. This P-QEq model allows us to describe variations of
charges and polarization effect as a function of configuration of the ions, mimicking
the quantum mechanical phenomena appropriately. As the distances or coordinations
of atoms/ions change, so do the partial charges and atomic polarizations, enabling
the model to reproduce the phase transformations correctly. The handling of electro-
static interactions through this method is general and applicable to ceramics, oxides,
covalently bonded systems such as ferro electric polymers, and organic and biological
systems with and without chemical reactions.

The P-QEq model is general; if the Gaussian shape parameters @ — oo the model
reduces to a point ion-shell model without harmonic springs. Hence, the force fields
developed earlier by us for oxides such as MgO, SiO,, and can also be handled by the
P-QEq approach.

With the P-QEq model it should be practical to consider simulations of large unit
cells to study domain boundaries, surface reconstruction, defects, and the effects of

temperature, stress, and applied electric fields. When combined with valence terms,
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the model could describe heterogeneous covalent systems. The P-QEq model is thus

useful for developing improved materials and devices.
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Chapter 3

Local Structures and Phase
Transitions

3.1 Introduction

Ferroelectric materials have broad applications in the fields of data storage, transduc-
ers and capacitors. Among them, BaTiOj is one of the most studied system. However,
even sixty years after its discovery, there are controversies between theories and exper-
iments about this material. One remaining big puzzle is the transition type, whether
it is displacive (microscopically nonpolar in paraelectric phase) or order-disorder (mi-
croscopically polar in paraelectric phase).

Early theoretical work took a displacive model. Cochran [10, 11] proposed that
in the paraelectric phase, Ti atoms are located in cubic symmetry centers. During
cooling, some modes around I' point get soft and one mode freezes during each of
the three consecutive phase transitions. These temperature-dependent lattice modes
are usually called "soft modes". However, although soft modes are found in BaTiO3,
they are heavily overdamped |78, 33|.

Bersuker [4] proposed an order-disorder eight-site model based on ligand field
theory analysis. In this model, Ti atoms are located in one of its eight potential
minima along the [111] directions. A similar model with chains was proposed by

Comes et al. [15] to explain the diffuse scattering of X-rays |34, 16] and electrons |36].
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However, Huller [37] later showed that a displacive model with dynamic phonon
correlation in BaTiOj3 can also explain these scattering experiments.

Since then arguments between the two models continues. A lot of experiments
can not be well explained by the displacive model. Among them are the strong
unexpected Raman excitation observed in cubic phase [61], overdamped soft mode in
tetragonal phase [20, 19] and local distorted structure for all phases [63]. The major
difficulty of the order-disorder theory is the small latent transition heat during phase
transition |68].

In this study, we resolve this problem with a first-principles approach. In Sec-
tion 3.2, we summarize the calculation methods in this study. Then in Section 3.3,
we study the phonon structures with the smallest unit cells for all four phases of
BaTiO3 with P-QEq. We analyze the unstable phonons and check anisotropy of
phonon modes. In Section 3.4, we propose the FE-AFE local structures for the three
high-temperature phases, and calculate their corresponding phonon structures. We
calculate the thermodynamic functions of these FE-AFE phases and determine their
transitions in Section 3.5. In Section 3.6, we analyze the diffuse diffraction. In Sec-
tion 3.7, we discuss the FE-AFE structures with the Extended X-ray Absorption
Fine Structure (EXAFS) and Raman experiments. Finally in Section 3.8, we give our

conclusion on transition mechanism.

3.2 Calculation Methods

3.2.1 Dynamical Matrix

Long-wave (LO) modes in polar materials introduce depolarization field. The depo-

larization field results in a non-analytic term D" in addition to the analytic term
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D" in the dynamic matrix and causes LO-TO splitting at [" point [6, 12|, i.e.,

D*(q) + D"*(q), q— T}
D(q) = (3.1)
D**(q), else.

The analytic part of the dynamic matrix D*" [21] for phonon wave vector q is

given by

Dan (q) — DCC(q)

~D%(q) - (D**(q)) " - (D* ()" (3.2)

De¢¢, D% and D® are the core-core, shell-shell and core-shell dynamic matrices,

2 Heo 155 X exp(iq - [rlcj —r5;])

Dia,j[)’(q) = (mimj)1/2 )
Df;,jﬂ(q) = Z H(S)fa,ljﬁ x exp(iq - [rlsj —15,]), (3.3)
l
s 2 HEo 158 ¥ exp(iq - [rfj —r§;])
Dia,jﬂ(q) = 1/2 )

m;

where H®®, H% and H®® are the core-core, shell-shell and core-shell Hessian matrices,
[ indexes the unit cell, 7 and j index atoms in a unit cell, &« and 3 are the directions
in Cartesian coordinates, and rlc]/ * is the position vector of the core (c) or shell (s) of

atom j in the I'th unit cell.

The non-analytic part of the dynamic matrix D™ [30] is given by

4re? (Z; - q)o(Z5 - q)s
D = : J 4
za,jﬁ(q) 1% qT S . q ! (3 )

where Z* is the Born Effective Charge, € is the optical dielectric constants, e is the
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electronic charge and V' is unit cell volume.
The vibrational frequencies w and polarization vectors e for wave vector q are

obtained by solving the equation of motion,

D(q) - e(q,v) = w’(q,v)e(q,v). (3.5)

3.2.2 Thermodynamic Functions

Within the harmonic approximation, the thermodynamic functions are calculated

from the vibration modes. From the Bose-Einstein statistics, we have

ZPE = %Zhw(q,v), (3.6)
B = Eo—,i-;ghw(q,v)coth(h;kf’;)), (3.7)
F = Eo—i-kBJ;%U:ln[Qsinh(hg]ff;’;))], (3.8)
S = qZhw <;, coth(%)

—kB,Zln[Zsmh fwlg,v)y, (3.9)

2kgT

q,v

3.2.3 Scattering Function of Diffuse Diffraction

Let’s consider the inelastic X-ray or neutron scattering function. Suppose an X-ray
or neutron beam with incident wave vector K is scattered by a crystal of N unit cells.
The scattered wave vector is K’ and the scattering wave vector is Q (=K — K'). 7
is a reciprocal lattice point of the crystal. f; is the X-ray atomic scattering factor or
neutron scattering length of atom 7 in the unit cell.

The partial differential cross section due to single-phonon scattering processes
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is [21, 50|

9% \~* K’ )+ 3 14 )
(aszaw) = Yk Z/ 2w (a,v )
X|F(Q,Fq,v)|*5 (w F w(q,v))

X0 (QFq—7). (3.10)

F(Q,q,v) is the dynamic structure factor,

F(Q,q,v Z =exp(—Wi(Q) +iQ - )
(Q ez(q, v)), (3.11)

where W;(Q) is the Debye-Waller factor,

N =

wi(Q) = {(Q-w)?)
1 2
= mZ((Q -u;(q,v))”)

q,v

_ k1~ (n(a,v) +35) (Q-ei(a,v)”
= SN o) , (3.12)

q,v

and n(Q,v) is the phonon excitation number given by Bose-Einstein statistics,

n(q,v) = (exp(%) — 1) : (3.13)

Integrate Eq. (3.10) over all phonon frequencies and sum over the phonon absorp-

tion and emission processes, we obtain the differential cross section,

(%) = v

X|F1(Qa_Qa/U)‘2' (314)
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So the corresponding scattering function S;(Q) and dynamic structure factor

F{(Q,v) are

5.0 = 3 "BV L) g0

v

and

@) = 3 eea(-W(Q)+iQ 1)

i

x(Q-€;(Q,v)). (3.15)

3.3 Phonon Structure

BaTiO3 phonon structure were studied by the first-principles approaches with the
DFT/LDA approximation in the last decade. Among them, Zhong et al. [80] found
giant LO-TO splitting in a series of ABO3 cubic perovskite compound. Lattice dy-
namics studies reveals two-dimensional character in the Brillouin zone in the cubic
phases of BaTiO;z [27, 71] as well as KNbOj3 [79]. These calculations showed that
there are unstable phonons in the cubic phase of the displacive model. However di-
rect first-principles phonon calculation is not feasible for larger systems. In this paper
we calculated the phonon structure with PQEq field obtained from DFT/GGA calcu-
lations. The PQEq force field was developed to reproduce the energies and structures
of the quantum calculation.

We study the phonon structures of the four phases using the smallest primitive
cell. Subject to this constraint, the cubic, tetragonal, orthogonal and rhombohedral
phases have the symmetry groups of Pm3m, P4dmm,Amm?2 and R3m, respectively.

phonon structures are closely related to phase stability. Generally speaking, if all
phonon frequencies in the Brillouin zone are real, then the static structure is stable.
Otherwise, the structure will transform to another symmetry by following the motion

of some of its unstable phonons.
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For BaTiO3 Pm3m phase, there are 12 optical phonon branches. At I' point,
symmetry analysis showed that there are 3 polar F}, and 1 nonpolar F3, modes, each
of them triply degenerated.

In the frozen phonon structure of Pm3m phase (Fig. 3.2), two F}, modes are
unstable along I'-X direction. The modes at the I' point give homogeneous ferro-
electric distortions with in-phase motions between neighboring cells. These modes
cause macroscopic polarization and break cubic symmetry. The modes at the Bril-
louin boundary give antiferroelectric distortions with out-phase motion in neighboring
cells. These distortions give macroscopically non-polar but locally polar structure.
The modes in the middle between zone center and zone boundary gives an structure
with domains, cubic symmetry in each domain breaks and the lattice parameters of
the resulting unit cells are larger than 2a. So the distortions which can give a smallest
stable cubic structure (with a larger unit cell) are from the phonon modes at zone
boundaries. Further analysis shows that this structure can be achieved by the joint
motions of the three TO modes at the side-centers of the first Brillouin zone, i.e.,
(011), (303) and (310). The same structure can also be obtained by six TO modes
at three face-centers. These antiferroelectric distortions result in a stable cubic struc-
ture with symmetry I —43m. In this structure, Ti atoms do occupy one of eight [111]
sites as in the order-disorder model. However the occupation is always ordered in an
antiferroelectric configuration. Thus there is no configuration entropy contribution
from the dynamic disorder. This is consistent with the small latent heat during phase
transition [68].

Phonon dispersion at the I" point in P4mm phase is highly anisotropic. Along the
I' — X3 direction, we see two TO are unstable as in P4mm phase. Thus, the anti-
ferroelectric distortion can exist between each pair of neighboring unit cell in x or y

direction. Along the I' — X direction, only one TO with y-polarization is unstable.

Following the two unstable TO modes at X3, the unstable P4mm structure changed



Figure 3.1: Dispersion points in Brillouin zone.

into stable I4cm.

Similarly, following the joint motion of the unstable phonon modes at M; and Ms,
Amm?2 phase will change into Pmn21 within its orthogonal symmetry.

In R3m phases, all phonons are stable throughout the whole Brillouin zone and

the local structure is stable.

3.4 Local Phase Structures

Sec. 3.3 shows that by the antiferroelectric distortions, the symmetry of the three
high-temperature phase reduces and the number of atoms in prime cell increases.
The result is summarized in Table 3.1. We refer these structures as FE-AFE phase
structures.

An FE-AFE phase structure can be described by three sets of —O — Ti — O—

chains. Each chain is polar and has two possible polarizations along the chain direc-
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Figure 3.2: Frozen phonon structure of BaTiO3 Pm3m cubic phase.
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Figure 3.3: Frozen phonon structure of BaTiO3; P4mm tetragonal phase.
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Figure 3.4: Frozen phonon structure of BaTiO3 Amm?2 orthorhombic phase.
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Figure 3.5: Static phonon structure of BaTiO3 R3m rhombohedral phase.
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Table 3.1: Symmetry and number of atoms in prime cell before and after the antifer-
roelectric distortion.

Phase  Symmetry 1 N; Symmetry 2 Ny

cubic Pm3m 5 I —43m 40
tetra. Pdmm 5 I4em 40
ortho. Amm?2 5 Pmn21 10
rhomb. R3m 5 R3m 5

Table 3.2: Order Parameter S;, S, and S,.

Phase Sz Sy S,
I—-43m -1 -1 -1

Idem -1 -1 1
Pmn21 1 1 -1
R3m 1 1 1

tion. Two neighboring chains can have parallel or antiparallel polarizations, corre-
sponding to ferroelectric or antiferroelectric distortions. In Fig. 3.6, the cubic phase
is described by three sets of antiparallel chains, and the rhombohedral phase is com-
posed of three sets of parallel chains. In another word, the polarizations (P, P,, P,)

at two lattice sites, (z, vy, z) and (z +dz, y+ dy, z+ dz), are related by,

Po(z+dz, y+dy, z+dz) = (S))" “Py(z, y, 2) (3.16a)
Py(z +dz, y+dy, z+dz) = (S,)"**Py(, y, 2) (3.16b)
Pz +dz, y+dy, z+dz) = (S,)™ P, (z, y, 2), (3.16¢)

where S, Sy or S, is 1 (ferroelectric) or -1 (antiferroelectric). The phase structure is
described by (Sy, Sy, S), which is tabulated in Table 3.2.
The chain itself is stable against a single site flip. This stability gives quite long

chain correlation length. We performed constant temperature and constant pressure
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molecular dynamics (NPT MD) simulations for each phase with super cell of 12 x 12 x
12 at 100 K, 200 K, 300 K, 400 K and 500 K. Each phase keep their chain structures
during the whole MD run of 40 ps. This indicates a large thermal hysteresis during
phase transition.
If only the chain interaction between the first nearest neighbor is considered and
the difference between an FE and AFE interactions is AF(T) per lattice parameter

along chain direction, then for two neighboring chains with length of na, the ratio

nAF(T)
EgT

a transition, AF(T) is in the order of meV (Fig. 3.8). kg7 is about 10 to 40 meV.

of probability of AFE vs. FE states are exp(— ). Unless the phase is close to
For n > 100, the free energies of two states are well separated, thus disorder between
chains in the so-called order-disorder model is not dominant unless the structure is

close to a phase transition.

3.5 Phase Transitions

The phase transitions are studied within the harmonic approximation. We mini-
mize each FE-AFE phase structure and calculate its frozen phonon density of states
(Fig. 3.7) with a mesh of 20 x 20 x 20. Then zero point energy (ZPE) correction,
energy, free energy and entropy are obtained by Egs. (3.6), (3.7), (3.8) and (3.9).

The AFE configuration moves the DOS of frozen phonon to lower frequencies.
This causes an lower ZPE and higher vibrational entropy than the FE configuration.
Table 3.3 shows that the energy stability of FE state is canceled by half with ZPE at
OK. Further entropy effect cause AFE state more stable than FE state with increasing
temperature, as show in Fig. 3.8.

The free energies of BaTiO3 four phases are calculated according to Eq. (3.8) and
are ploted as functions of temperature in Fig. 3.8, where the rhombohedral phase

is take as the reference. From the free energies of the four phases, a correct phase
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Figure 3.7: Frozen phonon DOS of BaTiO; FE-AFE phase structures.

transition sequence (R — O — T — C) is obtained and the corresponding phase
transition temperatures are determined. Further, transition entropies are calculated
from Eq. (3.9) and shown in Fig. 3.9. From these calculations, it is found that each
BaTiOj3 phase transition is an ferroelectric to antiferroelectric transition in one crystal
direction. The phase transition temperatures and entropy changes are summarized in
Table 3.4. The phase transition temperatures are close to expemimental values. The
first transition entropy is close to experiment. While the other two transition entropies
are underestimated in our calculation comparing to experiments. This is partially due

to an underestimated transition temperatures and ignoring the anharmonic effects.

3.6 Diffuse Scattering

An interesting property of BaTiOj is the presence of the diffuse lines along nonpo-

lar direction observed in the inelastic X-ray [16] or neutron diffraction experiments.
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Table 3.3: 0 K energies and ZPE’s of BaTiO3 FE-AFE phases (kJ/mol).

Phase  E(0 K) ZPE E(0 K)+ZPE
Rhomb. 0 22.78106 22.78106
Ortho. 0.06508 22.73829 22.80337
Tetra. 0.13068 22.70065 22.83129
Cubic 0.19308 22.66848 22.86156
06 ] ] ] ] ] ] ]
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& 02F[ | [ -
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Figure 3.9: Entropies of BaTiO3 calculated from the DOS within harmonic approxi-
mation.

Table 3.4: Transition temperature and entropy change of BaTiOs.

Transition  Experiment [68] This Study

T (K) AS (J/mol) T (K) AS (J/mol)
R—0 183 0.17 + 0.04 228 0.132
O—-T 278 0.32 £ 0.06 280 0.138

T—C 393  0.52 £ 0.05 301 0.145
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There are diffuse lines besides the normal Bragg spots in the X-ray diffraction pat-
tern of BaTiOj3 cubic phase. Certain series of diffuse lines vanish when BaTiOj3 goes
through consecutive phase transitions with decreasing temperature. In BaTiO3 rhom-
bohedral phase, such diffuse lines almost vanish. The relation between these diffuse
lines and the phase structures attracts a lot of attention. Comes [15] proposed chain
structures to explain these diffuse lines in BaTiO3 and KNbO3. He attributed such
diffuse lines to the disorder of chains. But such explanation is not consistent with
the fact that unexpected weak diffuse lines are observed in orthorhombic phase be-
sides the expected strong diffuse lines. Later Huller [37] argued that these lines are
from dynamic structures, i.e., phonon structures. He further proved that dynamic
structures of a displacive model can also give such diffuse diffraction lines.

Here we show that such diffuse diffraction lines can come from the dynamic struc-
ture of an ordered AFE configuration with anisotropic phonon structures. We cal-
culate the inelastic coherent scattering functions of the four phases as discussed in
Section 3.2. For simplicity, we only consider the scattering by Ti atoms.

The scattering functions of all four phases agree well with the diffuse X-ray diffrac-
tion experiments [16]. In the (001) zone of BaTiOj cubic phase (Fig 3.10), two series
of very strong diffuse lines along (100) and (010) are observed. These strong diffuse
lines are caused by the soft phonons along the crystal axis around the I" point. In the
(010) zone of BaTiO3 tetragonal phase, there are a series of strong diffuse lines along
(001) and a series of weak diffuse lines along (100). However, for the orthorhombic
phase, such intensity order is reversed. In the (001) zone of BaTiOsrhombohedral
phase, the diffuse lines almost vanish. The relative intensities of these diffuse lines
in the tetragonal and orthorhombic phases show that the transverse phonons with
phonon polarization vectors along the nonpolar directions are stronger than the polar

directions. The study shows the phonon structure is highly anisotropic.
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Figure 3.10: Coherent inelastic scattering function of BaTiOj3 cubic phase.
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Figure 3.11: Coherent inelastic scattering function of BaTiOj3 tetragonal phase.
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Orthgonal Phase, T=250K, Diffraction Zone (010)

Figure 3.12: Coherent inelastic scattering function of BaTiO3 orthogonal phase.
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Table 3.5: Optical phonon modes at I' for the four phases in the displacive model.
For simplicity, splitting due to long-range force is ignored.

Phase  Mode(Degeneracy) No. IR Raman
Pm3m F1.(3) 3 Active

F5,(3) 1

Piamm A (1) 3 Active Active

By (1) 1 Active

E(2)(2) 4 Active Active

Amm?2 Ay (1) 4 Active Active

Ay(1) 1 Active

B (1) 3 Active Active

By(1) 4 Active Active

R3m A (1) 3 Active Active
Ay(1) 1

E(2) 4 Active Active

3.7 Discussion

A major difference from the order-disorder model is that the latter has to assume
a certain correlation chain length and chain disorder to explain the small entropy
change during phase transitions [15]. We found that is unnecessary; the entropy
change during transition can be recovered by the vibrational phonon softening.

Because the inversion symmetry breaks in I — 43m group, the phonon are Ra-
man active, which is confirmed by intense Raman spectrum [61] in the cubic phase.
The displacive model, in which the cubic phase (Pm3m) has a inversion symmetry,
contradicts this experiment.

In the tetragonal phase, the vector from the center of oxygen octahedral to the Ti
atom, d is displaced 5.63 ° from (111) to (001) (Fig. 3.14). This is confirmed by the
EXAFS experiment [63], where the vector rotates 11.7° in the same direction.

As discussed in section 3.4, with mean field of the remaining sites of a chain,
a single site does not have double potential as usually mentioned in ferroelectrics.

The double well potential picture should be applied to each chain, corresponding two
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Figure 3.14: The displacement of vector d from (111) to (001) in the tetragonal phase.

possible polar directions.

3.8 Conclusion

From the observed phonon instability of BaTiO3, we have proposed FE-AFE phase
structures of BaTiO3. Each phase transition corresponds to an FE to AFE transition
in one crystal direction. We find that the AFE configuration has lower ZPE and higher
vibrational entropy than the FE configuration. The long correlation length along AFE
chains keeps the AFE in order. The phase sequence, transition temperatures, local
and dynamic structures agree with experiments.

These AFE phase structures should help us understand structures of domains,
oxygen vacancies and surface. The application of the above approach should also be

applicable to ABOj3 perovskite materials like KNbOs.
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Chapter 4

Domain Walls

4.1 Introduction

BaTiO3 tetragonal phase is stable at room temperature. In this phase, 180° and
90° domain walls (Fig. 4.1) were observed by Kay and Louden [40], Forebear [24],
Merz [53, 55|, and Little [49]. These domain walls attract great interest in technolog-
ical applications. The switching of the 180° domain is used in ferroelectric memory
to store information [2|, and the 90° domain switching is used to achieve large dis-
placement.

These domain walls also draw a lot of attention since they are related to the

properties in applications. BaTiO3 subjects to long-term effects,

e fatigue, the decrease of the ferroelectric polarization upon continuous large-
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Figure 4.1: Domain walls in BaTiOj3 tetragonal phase. (a) A mixture of 90° and 180°
domain walls; (b) 180° domain wall; (¢) 90° domain wall .



52

signal cycling,
e retention loss, the decrease of the remnant polarization with time,
e imprint, the preference of on polarization state over the other,
e aging, the polarized material trying to relax to its prey-poled state.

Generally, these long-term effects are considered major failure mechanisms. It is
argued that the domain wall pinning by charged defects within the bulk of the crystal
attributes to such effects.

The energy and thickness of BaTiO3 180° domain walls were studied with various
methods. Merz [55] modified the well-known model of the Bloch wall in ferromagnet’s
for the case of BaTiO3. He found a the 180° domain wall to be one lattice constant
wide and 7 erg/cm?. Kinase et al. [42, 43| did dipole field calculations and estimate
that the energy of BaTiO; 180° domain wall is about 1.4 erg/cm?. Padilla et al.
applied the Monte Carlo method with effective Hamiltonian to BaTiO3 180° domain
wall, and reported an energy of 15 to 17 erg/cm?. They gave an thickness of 1.4
unit cell [58|. In all of the above calculations, a detailed atomic structure is missing.
Besides, the two walls in the effective Hamiltonian [58| calculation are separated by
only 8 nm, which is too small.

A molecular treatment of the 90° wall is not available to date. The problem is
much more complicated than for the 180° wall because the lattice distortion at the
wall involves a noticeable contribution of elastic energy. Moreover, the spontaneous
polarization may change its direction gradually. In experiments, Little [49] estimated
the thickness of 0.4 um from his direct optical observation. However such a visual
estimation may easily be affected by the reflection of the light at the boundary.

In this paper, we study the two types of domain walls with the P-QEq force field.
The force field describe charge transfer and electronic polarization in an self-consistent

way. Parameters are optimized from a first-principles DF'T/GGA calculation. We find
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that there are layered structures in both walls and the 90° domain wall is strongly

charged.

4.2 180° Domain Wall

A 2 x L x 2 super cell of tetragonal phase is used in this calculation. In the right
half of the super cell, the z component polarization is flipped by moving Ti atoms

downward (Fig. 4.2). The forces and stresses of the super cell are minimized to obtain

a stable 180° domain wall.

The domain structures and energies o are studied as a function of domain modu-

lation period L, where L = 2™ and m = 1,2...10. For 64 < L < 1024, the domain

Figure 4.2: 180° domain wall.

wall has three layers from the wall center to the domain center (Fig. 4.4):

e Wall center: polarization and displacements switch abruptly on the wall. The

atomic displacements are antisymmetric to the center Ba atom.

e Transition layer: polarization converges quickly from the wall center to domain,
whereas the atomic displacements take a long distance to relax. In this layer,

the regions close to wall center are slightly expanded in y direction while the
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Figure 4.3: BaTiO3 180° domain wall energies.

remaining regions are slightly contracted in that direction. This layer is about
6 nm for L=512. This means that the domain size is too small in the effective

Hamiltonian calculation [58].

e Domain structure: both polarization and atomic displacements are converged

and constant.

For 4 < L < 32, only the wall center and the transition layers appear. For L = 2,
we can see polarization switching between neighboring unit cells. This is in fact an
antiferroelectric structure in the modulation direction.

The domain wall energies also show such transitions. In the Fig. 4.3 there are
three segments corresponding to the above three types. The three types of domain

structures have domain wall energies of 0.05, 0.17 to 0.19, and 0.26 to 0.30 erg/cm?.
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o6

0.001 0.1
0.08
0.0005 0.06
— - 0.04
€
S 0 § 002 e
k7 k7 0
< <
~ -0.0005 = -0.02
> N
) T .0.04
-0.001 -0.06 X
-0.08 - i
-0.0015 W 1 1 1 1 1 1 1 01 L 1 1 1 1 P — —
850 900 950 10001050110011501200 850 900 950 10001050110011501200
y (Anstrom) y (Anstrom)
(a) Atomic displacement dY'. (b) Atomic displacement dZ
15 T T T T T P T T 1.6e-06 Ip T T
X . f i
— 10k 4 Py ”””” . 1.4e-06
€ ; 1.26-06 -
(\2 5 1 % 1e06 -
= 1 2 8e07 e
s 0 T [}
= ! > 6e-07 B
N : s
g ot | 41§ 4e07 a
& 10 L ! | 2e-07
0 -
45 L 1 1 1 1 1 1 1 -2e-07 1 1
850 900 950 10001050 1100 1150 1200 850 900 950 10001050110011501200
y (Anstrom) y (Anstrom)
(c) Polarization P, and P. (d) Free charge density py.

Figure 4.5: Local structure around the BaTiO3 180° domain wall with L = 512.
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4.3 90° Domain Wall

Polarization change across the domain wall induces polarization charge,
VP = p.

Thus the configuration of 90° domain usually form a head-to-tail structure in order
to avoid discontinuities in the polarization at the domain boundary.

We start from a cubic phase super cell of 2 x 2L x 2L and switch the polarization
in y-z plane in an zig-zag pattern (Fig. 4.8). Then we redefine the super cell along
(100), (011) and (011) and rotate it anti-clockwise for 90°. The new defined super
cell has a small size of 2 x v/2L x 21/2. In the new defined super cell, the polarizations
are along (010) and (010) in the left and right part, respectively. A 90° domain wall
structure is obtained by fully minimizing the forces and stresses of the super cell.

For L < 64, the super cell changes into an orthogonal phase during minimization;
the 90° domain wall is stable only for L > 64. Fig. 4.9 shows a layered structure of
the 90° domain wall with L=128. The corresponding domain wall energy is about
0.67 erg/cm?. The wall center layer is about 2 nm with a structure similar to the
orthogonal phase. The polarization aligned to (011) crystal direction. Besides the
center layer there are two opposite charged transition layers of about 5 nm. These
transition layers bridge the tetragonal structure in the domain and the orthogonal
structure at the wall center. The center and the transition layers have a larger lattice

spacing in the direction perpendicular to the wall than the domain.

4.4 Polarization Charge and Free Charge

The polarization change cause macroscopic charge, i.e., polarization charge. Beside,

there is free charge transfer between atoms. We found both effects in the 180° and 90°
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Figure 4.8: 90° domain wall.
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Figure 4.9: Structure of the BaTiO3 90° domain wall.
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domain wall structures. We found that free charge transfers in both wall structures
to compensate the heterogeneous polarization charge.

In the 180° domain wall (Fig. 4.4), the polarization charge and free charge have
symmetric structures about the domain wall center. Polarization charge is negative
at wall center and positive in the transition layers. After partial neutralization from
charge transfer, the center is slightly negative charged.

The charge density has an antisymmetric structure in the 90° domain wall (Fig. 4.9).
The center of 90 ° domain wall has a structure similar to the orthogonal phase. Since
the orthogonal phase has a much larger polarization component along the (011) di-
rection than the tetragonal phase, large free charge redistribution is observed in the
90° domain wall.

Both the polarization change density p, and free charge density p; contribute to
the macroscopic electric fields.

Under the periodic boundary condition, the electrostatic potential U of the BaTiOj3
90° domain wall is a function of y. Thus the general 3-D problem is reduced to the

following 1-D equation set,

d*U p
= _r 4.1
dy? € (4.1)
p = pptps (4.2)
dP
— = 4.3

with the boundary condition U(0) = U(v/2L). Here, the first equation is the Poisson’s

equation. The solution to Eq. (4.1) is

Uly) =~ ( / " P(€)de - / ’ / 5 pf(n)dndf) oy, (4.4

where C is a constant to match the periodic boundary condition. The solution is
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Figure 4.10: Polarization and free charges at the BaTiO3 90° domain wall.

shown in Fig. 4.10.

The transition layers have strong polarization charge density due to the polar-
ization difference between the wall center and the domain. However a free charge
transfer in the opposite direction cancels most of this polarization charge. This effect
cause a strong bipolar structure around the wall, which attracts and traps charged
defects at the transition layers (Fig. 4.10). A relative smaller effects is also found in
the 180 ° domain wall.

Fig. 4.10 shows that a strong bipolar structure at the 90° domain wall, with the
electric field of about 0.2 V/A. These strong local fields can cause redistribution of

charged point defects. It can be a possible reason for the retention loss, imprint and
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aging. During cycling, the domain walls transport point defects while sweeping the
crystal. These point defects further reduce the mobility of the domain walls, causing

electric fatigue.

4.5 Discussion

The domain wall energies and structures of BaTiOj are quite different from those of
PbTiOj3 calculated by Meyer et al. [56]. They reported a larger domain wall energy
for the 180° wall than for the 90° domain wall. Furthermore, they found a decrease
of polarization perpendicular to the domain wall at the wall center. One possible
reason for the differences is that the structure and energy difference between cubic
and tetragonal phases in PbTiO3 are much larger than in BaTiO3. The 180° domain
wall can be treated as a mixture of the two phase, thus the 180° domain wall has
a much larger wall energy and width in the former. As for the 90° domain wall,
BaTiOj3 has a stable orthogonal phase in its phase sequence, so the domain wall takes
a transition layer similar to orthogonal phase. In the orthogonal phase, polarization
perpendicular to the wall is larger that the polarization component of the tetragonal
phase. In PbTiOj3, such an orthogonal phase is not stable and does not appear in its

phase diagram. Thus a direct polarization transition is favored in PbTiOs.

4.6 Conclusion

In this chapter, we analyzed the structures of both 180° and 90° domain walls of
BaTiO3. The 180° domain wall is symmetrically charged with wall center being
negatively charged. The 90° domain wall is antisymmetrically charged with opposite
charges in the transition layers besides the center. These charged structures are

important to understand the deterioration of the ferroelectric properties.
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Chapter 5

Oxygen Vacancies

5.1 Introduction

Ferroelectric perovskites are promising materials for nonvolatile memory applications.
Ferroelectric memories have comparable read and write access-time with the most fast
flash memories, and their overall energy efficiency is one thousand times higher [67]
than flash memories. A major problem in commercialization of ferroelectric mem-
ories is polarization fatigue, the decrease of switchable polarization during normal
operation conditions.

The polarization fatigue is attributed to the accumulation of defects in the ma-
terials. A lot experiments have been carried out to study the mechanism of this
process. One proposed mechanism is near-by-electrode charge injection [57], where
electrons and holes injected from the electrodes into the ferroelectric film are trapped
at deep levels in a so-called passive layer and cause a simple charged defect. The
existence of such passive layers have been confirmed via the size effect of thin films
in experiments [70]. However the fatigue process given by such mechanism is not
plausible [69].

Another popular mechanism [22, 17, 18] is the oxygen vacancy redistribution
mechanism. This mechanism attribute the reduction of switchable polarization to

the oxygen vacancy concentration. It is supported by the positive donor doping ef-
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fects [9], improved polarization fatigue by oxide electrode [1], and observed oxygen
redistribution by Auger analysis [65]. Dukie et al. [22] modeled this mechanism by
Monte Carlo simulation. The model predicts three regimes of fatigue - a rapid decay
to equilibrium (about 10° cycles), followed by a long plateau of constant P, (about
108 cycles), and finally a logarithmic or more rapid degradation. Besides it also pre-
dicts the frequently observed shorting. The oxygen vacancy mechanism was later
generalized into an analytic expression by Dawber et al. [17, 18]. He et al. found a
favorable pinning energy of oxygen vacancy to the 180° domain wall in PbTiO3 by a
density functional theory calculation.

However, there are unclear physics in the above oxygen vacancy models. The
first is the transition barrier for the oxygen vacancy diffusion. This determine the
kinetics of polarization fatigue and are important in applications. The second is the
interaction between these oxygen vacancies. Such interactions are simplified in the

Duke’s model [22] without a proof. In this paper, we address the two questions in

BaTiOj.

5.2 Vacancy Energy and Transition Barrier

Oxygen vacancies in BaTiOj3 tetragonal phases can occupy two types of oxygen posi-
tions, where two neighboring Ti atoms are perpendicular or parallel to the polarization
direction #z, respectively. The two types are refereed as V, (V},) and V, in this paper.
Correspondingly the transition states between two neighboring V, and V), states, and
neighboring V, and V, are called T'S;, and T'S,,, respectively.

We calculated all these states with P-QEq force field within a 4 x 4 x 4 super cell.
Vi, Vy and V, are fully minimized with both forces and stresses. Transition states are
found by a local Hessian method, with zero forces and stresses. Zero point energy

and entropy effect are considerable small compared to the barrier. They are ignored
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Figure 5.1: Energy profile of oxygen vacancy in BaTiOj3 tetragonal phase.

in the calculations.

The calculations (Fig. 5.1) showed that oxygen vacancies prefer the V, and V
sites over V, sites by 0.01 eV. The transition barriers AE between two neighboring
V. states is 0.96 eV. This barrier is close to the oxygen vacancy barrier 1 eV in
SrTiO3 [74].

For the diffusivity, here we consider a simple case of random walk in the x-y plane.
The diffusivity is given by

D— Yot AE

9 eXp(_kB—T)a

where 7, is the attempt-to-jump frequency and a is the lattice parameter. In BaTiOs,
Y, is between 3 to 20 THz. We take the value of 10 THz. The mobility is given by

the Einstein relationship,
_ Do
kT’

where ¢* is the charge of oxygen atom (-1.30 from P-QEq).
Figs. 5.2 and 5.3 show the calculated diffusivity and mobility. At T = 300 K,

oxygen vacancies are almost frozen with a diffusivity of 6.3 x 1073 A? /s and a mobility

of 0.3 AQ/SV. Around the Curie temperature (393K), D and p increase by 10, the
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Figure 5.2: Oxygen vacancy diffusivity (d) in BaTiOj tetragonal phase.

oxygen vacancies are mobile. This is consistent with the fast aging effect just below
the transition temperature [64].

The oxygen vacancy is accompanied by large relaxations of local forces and stresses.
Here we minimize a perfect crystal with forces and stresses, remove a oxygen atoms,
and calculate the energy F;. Then we relax both forces and stresses of that structure
and calculate the energy E5. The energy difference, E; — F,, is defined as relaxation
energy AFE,;,. The relaxed structure is shown in Fig. 5.4. The polarization of the
lower part of the chain switches. Short and long bonds in the lower part change to
their opposite. The local relaxation causes two neighboring Ti atoms move back-
ward and the distance between them changes from 4.05 A to 4.44 A; the polarization
along the broken chain switches from head-to-tail to the tail-to-tail configuration at
the oxygen vacancy position. A large relaxation energy, 1.52 eV, makes the chain
difficult to switch.

The polarization reduction due to the oxygen vacancy is calculated. We calculated
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the polarization difference between two opposite polarization state (up and down) for
the V, vacancy within a super cell of 4 x 4 x 4. The vacancy causes a reduction of
7.07% in the switchable polarization: the broken chain among 16 chains is frozen and

not switchable.

5.3 Oxygen Vacancy Pair

The oxygen vacancies are positively charged. However during cycling, these defects
can be concentrated by electric field or domain wall switching. At higher concen-
trations, the defects have a preference to associate with each other to minimize the
lattice energy. The network is thus rearranged.

We first analyze the interaction energy of a oxygen vacancy pair. The distance
from Vacancy 1 (V1) to Vacancy 2 (V3) is referred by the vector (dX, dY, dZ) in
units of lattice parameters, as is shown in Fig. 5.5, where V] is fixed at a V}, site. The
interaction between a V, and a Vj, in an (001) plane is calculated in a 8 x 8 x 4 super
cell. Table 5.1 gives the interaction energy of vacancy pairs. The reference state is
(4,4,0), where all vacancies distributed evenly. The highest two energy configurations
are (1, 0, 0) and (2, 0, 0), where two vacancies align in one chain. The next two
high energy configurations are (%, %, 0) and (3, 0, %), where two vacancies share a
Ti atom.

It is interesting to find that configuration (0, 1, 0) is of very low energy (Fig. 5.6).
This is a configuration of two V, vacancies separated by a in the y direction. Further,
E(0, 1, 0) < E(0, 2, 0) < E(0, 3, 0) and it means that such two V, vacancies
are attractive along (010) direction. Thus a divacancy structure with broken chains
aligned parallel is stable. This stability is helped by a large local energy relaxation

(Table 5.2). The single and double Ti — O bond in O = Ti(OH), are 1.83 A and 1.62

A, respectively. The average Ti — O bond in BaTiOs is about 2 A. Thus removing



Figure 5.5: Schematic diagram of an oxygen vacancy pair in the x-y plane.

an O atom from the —Ti — O — Ti— chain relaxes the neighing Ti — O bonds. This
relaxation energy is 1.52 eV for single vacancy in this study. For two vacancies, this
energy is much relaxed if we remove the two neighboring O atoms in the same plane

perpendicular to these chains.

5.4 Oxygen Vacancy Cluster

Sec. 5.3 shows that the oxygen vacancy pair has a stable structure in the plane
perpendicular to the broken chains. When more vacancies join the pair to form
clusters, there are two possible structures: 1-D (Fig. 5.7) or 2-D (Fig. 5.8) clusters.
Direct electron bombardment experiment by Bursill and Lin [8] clearly showed that
oxygen vacancies can form a 1-D dendritic structure. This 1-D dendritic structure
plays an important role in the development of electric fatigue. It is also related to

current leakage, causing material failure. In this 1-D cluster, most vacancies have
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Figure 5.6: Energies of two vacancies in the x-y plane. V; is fixed and Vj; is allowed
at different positions. Ti atoms are not shown and energy is in eV.

Table 5.1: Divacancy interaction energy (eV) in BaTiOj tetragonal phase.

V, -V, Ve—V, V,—V,

(dX, dY, dZ) E (dX, dY, d7) E (dX, dY, dZ) E
(0, 1, 0) 0.005 (0.5,05,0)  0.192 (0.5,0,05)  0.191
(0, 2, 0) 0.023 (0.5,1.5,0)  0.019 (0.5,0,1.5)  0.022
(0, 3, 0) 0.127 (0.5,2.5,0)  0.005 (0.5,0,2.5)  0.012
(1,0, 0) 0973 (1.5,05,0)  0.011 (1.5,0,05)  0.021
(1,1, 0) 0.034 (1.5,1.5,0)  0.007 (15,0, 1.5)  0.017
(1,2,0) 0.007 (1.5,2.5,0) -0.003 (1.5,0,2.5)  0.008
(2,0, 0) 0.280 (2.5,0.5,0)  0.005 (25,0, 05)  0.012
(2, 1,0) 0.014 (25,1.5,0) -0.003 (2.5,0,1.5)  0.010
(2,2,0) 0.007 (25,2.5,0)  -0.002 (25,0,2.5)  0.009
(3,0, 0) 0.003
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Table 5.2: Divacancy relaxation energy (eV) in BaTiOj tetragonal phase.

Ve—Va Ve—=Vy Ve—Vs

(X, dY, dZ) AE, (dX, dY, dZ) AE. (dX, dY, dZ) AE.,
(0, 1, 0) 3230 (0.5,05,0)  3.735 (0.5,0,05)  3.672
(0, 2, 0) 3.030 (0.5,1.5,0)  3.108 (0.5,0,1.5)  3.123
(0, 3, 0) 2.914 (0.5,2.5,0)  3.038 (0.5,0,25)  3.046
(1,0, 0) 2.798 (1.5,0.5,0)  3.120 (1.5,0,0.5)  3.139
(1,1, 0) 3.098 (1.5,1.5,0)  3.046 (1.5,0,1.5)  3.053
(1,2,0) 3.050 (1.5,2.5,0)  3.037 (1.5,0,25)  3.050
(2,0, 0) 2.844 (25,05,0)  3.060 (2.5,0,05)  3.044
(2,1,0) 3.053 (2.5,1.5,0)  3.161 (2.5,0,1.5)  3.165
(2,2,0) 3.026 (2.5,2.5,0)  3.053 (2.5,0,25)  3.036
(3,0, 0) 3.030

two neighbors. The ending vacancies have one neighbor and the sites which has
three neighbors create new branches. Such 1-D cluster has a large perimeter, thus
corresponds to large relaxation region. In the 2-D cluster, the internal vacancies have
four neighbors and more repulsion from each other. It has smaller perimeter and
gives relatively small relaxation region. So the 1-D cluster should be more stable
than the 2-D cluster. Such a preference is confirmed by the following interaction
energy calculations.

We constructed linear, branchy and planar V,, clusters in (100) plane in 10x10x 10
super cells (Fig. 5.9). Each cluster has 9 oxygen vacancies in different configurations
and are fully minimized. It is found that the linear clusters (Fig. 5.9a and 5.9b) have
the lowest energies. The chain slightly prefers the direction along (001) over (010) by
0.025 eV. The planar clusters (Fig. 5.9g) has the highest energies. Linear structures
with branches (Fig. 5.9¢, 5.9d, 5.9¢ and 5.9f) have energies higher than the linear
clusters but much lower than the planar clusters. So during oxygen vacancy growth,
the linear clusters with/without branches will dominate and cause a final dendritic

structure.
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Figure 5.7: Schematic of a 1-D clusters.
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5.5 Discussion

In Section 5.2 we show that the mobility of oxygen vacancy is very low. However
during cycling and near the electrode, where polarization change cause a large local
field, the oxygen vacancies are activated. The 1-D chains may develop branches to
form a dendritic structure during its growth. Such oxygen-deficient dendritic struc-
tures (trees) were observed in LiTaOj experiment [8]. When the dendritic trees are
developed, the domains around the trees are pinned and a polarization reduction will
be observed.

These dendritic structure has three effects on the properties of BaTiOs.

e The local relaxation cause Ti atoms move backward, the local polarization of
the chain is tail-tail. This chain is unswitchable and it cause the polarization

fatigue.

e In oxide crystal, an oxygen vacancy leaves two electrons in which is usually called
F-center. The dendritic structure is conductive due to these excess electrons.
When two dendritic trees from the two electrode meet in the middle of a thin

film, a large leakage current appear.

e Stress concentration forms around such dendritic trees, which cause the me-

chanic failure.

By using oxide electrodes on the films, we can reduce the concentration of oxygen

vacancies and prevent the formation of the dendritic structures.

5.6 Conclusion

The oxygen vacancy energies and transition barriers in BaTiOj3 are calculated. Dif-

fusivity and mobility of oxygen vacancies increase 10* from room temperature to the
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Curie temperature. Oxygen vacancy interaction energies are calculated. We found
that these oxygen vacancies preferred 1-D cluster due to large relaxation energy. Dur-
ing growth, possible branches give the dendritic structures. These dendritic structures

can cause polarization fatigue, leakage current and mechanic failure.
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Chapter 6

Future Work

6.1 Density Functional Theory

The P-QEq is optimized with DFT calculations on the phase energy and Mulliken
Charges. So the quality of such calculation plays an key role to affects the P-QEq
result.

In the density functional theory [35, 44|, the many electron effect is replaced by
a potential. The major result of density functional theory is that there exists a form
of this potential, depending only on the electron density n(r), which yields the exact
ground state energy and density. Unfortunately, such an exact form is not known and
there exist several approximations to it. Often, this functional is taken to depend on
the local value of the density only, which leads to the local density approximation
(LDA). Other methods take the density gradient into functional with various form,
which are usually called general gradient approximation (GGA).

LDA and GGA usually gives a smaller and larger lattice parameter than the
experiments respectively. In ferroelectrics, such error can not be ignored. For the
case of BaTiO3, LDA gives a lattice parameter of 3.95 A for cubic phase [14] while
the experiment at 300 K give a value of 4.012. This correspond to a pressure of 5
GPa in experiment. GGA with PW91 functional [60] gives 4.007 A for the cubic

phase [72|, but the c¢/a ratio is 1.0375, much larger than the observed value of 1.01.
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In this study, we optimized the P-QEq to the GGA/PWO91 calculation. The c/a ratio
was taken from experimental value of 1.01.
The recent development in hybrid methods |3| of DFT and Hatree-Fock achieved
a lot of successes in non periodic calculations. It would be interesting to test such a

method in the periodic system for ferroelectrics.

6.2 Anharmonic Effects

In this thesis, we calculate the ZPE and entropies of BaTiO3 within the harmonic
approximation. This method is appliable as long as anharmonic effects can be ignored.
At high temperature, these effects could be corrected by two possible approaches.
One approach is the velocity autocorrelation method. In this method, a long time
molecular dynamics of a large system is performed. If the MD trajectory is close to
a canonical ensemble, then the phonon density of states can be reconstructed from
the velocity autocorrelation (VAC) function and thermodynamic functions can be
obtained within quasiharmonic approximation. However, there are some theoretical

and technique challenges to apply this method to ferroelectrics.

e The VAC is a semi-classical approach, in that the density of states is calculated
in the simulation classically, but the thermodynamic functions are then calcu-
lated with quantum mechanics. It is expected that when anharmonic effects are

not very large, the quantum corrections to DOS will be negligibly small.

e The VAC is a quasi-harmonic approach; DOS are calculated at each temperature

and fit to an model where each mode is harmonic.

e The entropy change during phase transition of BaTiO3 are about 0.5 % and
this is usually beyond accuracy of the VAC method. In our test of this method,

we found that much errors come from rescaling DOS from VAC function. The



80
rescaling procedure usually overestimate low frequency DOS and the big fluctu-
ation of this overestimation is random. For the case of BaTiO3, the fluctuation

itself results in an error of 3 to 5 % of the total entropy.

e The phase structures of ferroelectrics are close to each other and sensitive to
stress and temperature. So keeping a phase structure in MD for enough time
is challenging. During MD, an unstable phase develops low frequency diffusion
modes, which mix with vibrational modes and overestimate entropy. Recently,
a two-phase method has been developed by Lin et al. [47] to separates these

two types of modes. An application of this method may solve this problem.

Another candidate is the so-called self-consistent phonon approximation (SPA) [75],
where a trial Hamiltonian of harmonic form is introduced to construct the density
matrix. The trial Hamiltonian is determined variationally to obtained the free en-
ergy based on this density matrix and the Hamiltonian of the crystal. This method
include all even derivatives of the interatomic potential. An generalization including
odd derivatives is the improved self-consistent phonon approximation (ISPA) [32].
Application of ISPA to Argon gas gives good expansivity, heat capacity and bulk
modulus.

SPA and ISPA provide a systematical approach to include anharmonic effects.
However, the computation is much more expensive than the harmonic lattice dy-
namics since an thermodynamic average of the second derivatives are required. It is
even worse for many-body potentials, where the analytic form of third derivatives are
complicated.

With the development of more powerful computer and parallelization algorithm,

this approach seems to be feasible in the future.
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Appendix A

Charge Equilibration

A.1 Derivatives of Basic Coupling Function j; j

First we summarize the derivatives of the basic coupling function j;, 5, which is a

component of the coupling function Jy, j;. For simplification, we define

Qi Qg

Cikgl = A o Z+; ; (A1)
ik T Qi

tikji = CikjiTik,ji- (A.2)

So, the first and second derivatives of ji ;; w.r.t. the distance 7 5 can be written as

, 43 o )
OJik,ji 3/ Cik, 1T ik.j0> Tikygi = 0; (A.3)
6n~k - . 42 :

gl 1 2tik,j1 exp(—t5 1)
2 ( NG —erf(ting) |, else,
and
. __4 .3 - .
Phingi ) T 3/mCikiv Tikjt — 0;
a/rz?k,jl 1 4 t ) tZ 1 t2 2 t 1
3 \ TV ikl exp(—t ;i) (1 + L3y 1) + 2er f (firge) |, else,

(A.4)
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So the first and second derivatives of jj; j; w.r.t. the Cartesian coordinates and strains

are
i _ 4 /3 . . o .
a]ik,jl 3ﬁcik,jl7'zkz,]laca Tik,jl — O:
Orike Tikz,jlz OJik,ji 1
. . 8 . L) e Se7
Tik,jl Tik,jl
p
4 3 — e
— 5= Che gty Tikj — 0 and z = y;
. 8 .5 e o .
62]ik,jl 5\/ECik,jlrzkw,]lxrzky,ﬂya Tik,jl — 0and z 7é Y,
Ok OT; = 2;
tkx Ul iky Tike,jlz Tiky,jly O Jik,jl
Tikjl  Tik,jl 8Tv.'2k,jl
1 2 Ok
\+T?k,jl (5ccy7nik’jl Tzk:c,jlzrzky,jly) ik’ elsea
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O€zy Orik,ji O€gy
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Pjivst et Orinit 0wyt Ojwst i
Jikglt O Jik,g1 OTik 51 OTik 51 Jik,jl Tik,jl

= 52
O€ryO€yy, 0Ty 5 O€zy O€zy

67‘1-;6,]-[ 8623}8621”

A.2 Derivatives of Coupling Constants Jj; j;

The derivatives of Jy j; plays an important role in application of the model.

A.2.1 Non-periodic System

From Eq. (2.14), we get

OJikji

arik:z

2
0% Jik i

8rikw aTiky

= 9

(

0, ik = jl;
Jik,ji
\ arik:c ?

ik % jl.

e

0, ik = jl;

5.
% Jik j1

ik % jl.

\ OTikeOriky’

(A.5)

(A.6)

(A.10)
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A.2.2 3D-periodic System

From Eq. (2.15), the first and second derivatives of Ji j, w.r.t. the Cartesian coordi-

nates and strains are

O Jint ZZG G2 exp(— ¢ i ) exp(iG-Tipi1)
87“1-,” V G40 p 40dew 40éjl p gl
QJik,jt(Tikgt + L) Ojik,ew(Ting + L)
) ) ) ) All
- Z ( OTika OTikz ’ ( )
82 J'k 5l 4 G2 G2
i L _ G,G,G™? — - iG - Ty
OTikzOTiky \% GX#:O v exp( 40ty 4ajl) exp(iG - Tig ;1)
£y <82jik,jl(rik,jl + L) Oiken(Ting + L)) (A12)
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T 1 1
Sy (— — ), A13
v~ o) (A1
and
0? Jik 4l G2 G? .
Al VAN - G- ik
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oo — ) (A1)
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5 =14 + L_ﬁ.i_ﬁ.i an
1= v 4aew 4C¥jl G2 8€wy ’

where

and

Br = (5 +< ! +i+i)8G2)
i Aoy, 4oy G2 ) Oegy

x((S +( 1 +L+i)aG2)

= 4aew 405]'1 G2 8€zw
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(A.15)

A.3 First derivatives of Charges

A.3.1 First Derivatives to Coordinates

We take the derivatives of both sides of Eq. (2.18) to 7y, Then for i =1...N,

0qjs ox OJisji

armn:c

Jis j S 6’i'J'O - = - . A.16
ZJ:( ) + Y] )armnw armn:p %: armnx QJl ( )
ie.,
0 aQ's aX aJmn,is aJ'l,is
Z(Ji&js + 52]‘11 )37‘ - or - - or 9mn — 5m,i5n,s Z +le- (A17)
J mnx mnx mnx jl£mn jlx
From the condition of charge conservation Eq. (2.19), we get
0 s
Yy A, (A.18)
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With Egs. (A.17) and (A.18), we get

6q13 ( _ 8Jmn,ls _ 6le,ls . \
—37“mm\ Ormns Gmn 5m,15n,s Zjl_—'émn iy q;1
6q25 _ aJmn,2s _ anl,?s i
Ormnz M mne mn 6m526n’5 Z]l;&mn a"'jlcc q]l
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dqns _ 8Jmn,Ns N 9Jj1,Ns
Ormnz Ormnz Grmn 5m,N5n,5 Z]l;émn 6lem qjl

\ 0 /

where C is the electrostatic coupling matrix defined in Eq. (2.21).

\67“67:% )

A.3.2 First Derivatives to Strain

(A.19)

We take the derivatives of both sides of Eq. (2.18) to €. Then fori =1... N,

dg; ox 0Jis ji
E Jis's i ; 77— - Z il-
- (isjs + 055 J’)aemy O€zy — Jegy at
J jl

From the condition of charge conservation Eq. (2.19), we get

aQis _
Zi: 5, =0

With Eqs. (A.20) and (A.21), we get

(1)

9J1s,j1 \
(_Zjl Bey Lt

Oezy
8¢2s _ Odas ji
Beny Zjl Beny Ll

C = ,
anS o aJNs,jl .
Beay Zjl Beny LIl

a) 0 )

where C is the electrostatic coupling matrix defined by Eq. (2.21).

(A.20)

(A.21)

(A.22)



95
A.4 Derivatives of Electrostatic Energy

A.4.1 Force

The force due to electrostatic part of interaction is

OFES a0J; ES 9gq,
ES _ _ _ 1k,jl q]S
fzkm — arikm ~ a Z m qqu]l Z

Considering the charge equilibrium condition, the last term vanishes:

Z ES 8Qj5 _ Z aQJs _ 6qu]'5 = 0.

aQ]s 8rzkm 8rzkm aTikm
Therefore,
8J k,jl
fzgrsn = - B e qik9qjt-
Z m

aCZ]s arzkm '

(A.23)

(A.24)

(A.25)

In a non-periodic system, substituting Eq. (2.14) into Eq. (A.25), we get the force

on the item & (core or shell) of atom i in direction m,

OFik ji(Tik,jt)
Fiom == Z 71(;7"191 =2 gingjis
KM

jltik

a.hk ]l(rzk ]l)

Bron has the analytic form in Appendix A.1.

where

(A.26)

In a periodic system, substituting Eq. (A.11) into Eq. (A.25), we get the force



96

B 147 2

Jikm = ERT Z G *Gmgik exp(— ) exp(iG-ry)
G#O ew
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A.4.2 Stress

In periodic system,

1 OE®PS 1 (1 0Jik_; OEFS 9g;
ES = — _ Zka]l ) . %s
%oy =y Oézy 1% (2 sz Zjl O€zy ikt ZZ 0qis 8emy> ) (A.28)

Using the charge equilibrium condition, the last term vanishes,

5 OE"S dgis Z Ois _ 02 _ (A.29)

0¢;s aew 36wy aexy

Therefore we get

1 /[1 0Jik i
UEyS TV (5 ZZ 8ekﬂlqikqjl) . (A.30)
ik 4l zy

Substitute Eq. (2.15) into Eq. (A.28), we get
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1 . 0G?
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2 G
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See Appendix A for the derivatives in Eq. (A.31).

A.4.3 Hessian

In order to calculate phonon structure, we need Hessians to construct the dynamic

matrix. The Hessians can be obtain by,

aZEES
HES = —
ety Orik Or jly
- Mq ik
" aTikxaley mn
aJik mn ann
+ ; ik
Z arikw arjly ’
Z ank mn a%’k (A 32)
Brm aley
o T 0% Jik ju

= 5’i,m5k,n(5j,i51,k - 6j,m6l,n) (A33)

Oz OT jly OrigzOr iky
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2
9 Jilc,mn 6Jik,mn
> OTikeOTjiy’  OTika

The derivatives of J and ¢ to coordinates and ‘337;", are summarized
Iy

in Appendix A.2 and Appendix A.3.
A.4.4 Strain-Strain Second Derivative

This matrix is required to calculated elastic constants and bulk modulus.

OEPS EZ 0% Jik. i1 .
2

04y O€ 1y

k
1 0Jikj1 Ok
5 qji

o O€gy Oy
1 0Jikj1 0gji

+ Qik; -
2 o O€gy Oy

(A.34)

See also Appendix A.2 and Appendix A.3 for the derivatives of J and ¢ to strains,

2T s 0Jin i
O€pyO€zy’  Oegy

Oqik
O€zw *

, and

A.5 First Derivatives of Displacements

Sometime we wish to know the displacements of shell due to some core displacements.

Based on the rule of force equilibrium, for i =1... N and z = 1... 3, we have

2EP 2EP
0 drjsy + a7037'16% =0. (A.35)

iy 87’,'5167"]'5:[/ 8riszarkcz

In other words,

O*EF or,, = OPEF

= — . A.36
iy ariswarjsy arkcz ariswarkcz ( )

In the language of matrix, Eq. (A.36) is written as
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A.6 Polarizability

The dipole moment of the system is given by

Wi = GicTic + Gis({rji}, E)ris.

Under electric field in y direction, the change of the dipole moment is

dp = Z du; = Z Girdr;p + Z Tis Z Z aqw d/rjlz + Z ri, Z 8%5

The change in x direction is

Z QdeTzkw + Z Tisx Z Z aales dr]lz + Z Tisx 8%5 Ez

Therefore the static polarizability is

0 (9 T 8155 8256 2 ais
amy— aga Z zk ik +Z7‘zswzg afjl a’;{jl Zriszazy-

ik %

Consider the force equilibrium condition,

(A.37)

(A.38)

(A.39)

(A.40)

(A.41)
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szdEy = _dfjly = ZHikw,jlyde‘k:u (A-42)
kT
ie.,
OTike _
aE’ = Z Hiki,jlyqjl' (A43)
Y 4l

Plug Eq. (A.43) to Eq. (A.41) and we get Eq. (2.28). If we froze all core coordinates

in Eq. (A.41), we can get the static polarizability as Eq. (2.29).



