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ABSTRACT

The a~particle model 1s re~derived and used to calculate
the energy levels of 016, extending the work of Dennison to include

all levels up to 15 Mev,

Wave functions for low lying levels are used to compute the
lifetimes of the first four excited levels of 016.

Iﬁ addition, the model is applied to furnish core wave
functions for a partially-excited—core shell model of 017 « The 1ife-
time of the 870 Kev level and the electric guadrupole and magnetic
moments of the ground state are computed.

The energy level predictions are found to be in good agree=—
ment with experiment, but the lifetime predictions are only fair.

The O17

model can provide quantitative agreement with the lifetime
only.
The evidence favoring either of the two identification

schenes proposed by Dennison is not conclusive.
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PART I, GENERAL CONSIDERATIONS

1. The s-particle.lodel.

The a-particle model of 016 assumes the nucleus to be a semi-
rigid structure of four a-particles, held together by mtual gttraction
and repulsion. The model regards the excited states as the result of
rotations and/or normel vibrations of the structure, consistent with
the requirement that the wave function be symmetric in all four
a~particles. Except perhaps for the severe symmetry requirement (which
restricts the number of available states) the model resembles the usual
molecular models {1]. For purposes of caleulation, one neglects the
actual form of the forces involved, and considers the particles to be
hérmonically bound to an equilibrium configuration. The vibrations
involved are assumed to be of small amplitude so that the structure
is unchanged in the large, and deviations of the potential from the
harmonic are treated as perturbations.

One has several different approaches in handling the model.
One could, for example, use knowledge of forces obtained from a-a
scattering experiments to deduce the energy levels. Another approach,
which will be used here, is to determine the effective constants such
as the equilibrium separation and the force constants, from the energy
levels, and make predictions of lifetimes, ete. from these. Thus
lifetimes will be given as functions of energy levels, with the model
furnishing the connecting structure. Actvwally, the inductive procedure
is far safer than the deductive approach, since it makes no assumption
that the effective forces among a group of a-particles are the sum of

pair forces, and allows for the possibility of 3 and 4=body forces.



2.0. The Hamiltonian.

The classical Hamiltonian for a semi-rigid rotation has
been derived by Wilson and Howard [2]. The correct transition to the
quantum mechanical form of the ‘semi-rigid rotator Hamiltonian is
difficult to find in the literature.* Although the differences between
the correct Hamiltonién and the various incorrect forms are present
only in terms which we will neglect in the approximations which we
shall employ here, we include a rederivation of the Hamiltonian both

for completeness and to resolve the confusion.

2.1+ Classical Hamiltonian.

Consider a set of N particles m with masses m . and

: -»
cartesian coordinates X, e

N .
The kinetic energy is = % 2 m . i‘:m .

To eliminate the motion of the center of mass, define

N
M=£_ m
m=1
N

=1
—Mémm m
=1
-> - ->
r =x =X .,
m ™

Then
N
- l 2 l pid » g
T zMi +22_' moT CT, e
m=1
ILet there be a potential V(;:m) which is independent of the position

of the center of mass, s0 that

v(i’)zv(i-’) .

Compare, for example, the Q.M. Hamiltonian given in ref. [3] with
the correct form given in.ref. [4].
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Further, let the potential be invariant under rotation of the entire
configuration, so that, if R(8) (the notation ~ signifies a dyadic)

represents a rotation of coordinates gm to ;m » such that

-> ~ ->
Ty R(8) - s s then

Vr(;m) =V (3,) for all (o) .

Lastly, let there be an equilibrium configuration designated by ;m’
and let /;m designate deviations from the equilibrium position, such
that

- -> -
s =a +
m n m

d V(8)=V +7V
an s'dn/ TV T Y

second and higher orders in the componsnts of ;m and satisfies the

->» - .
() vhere V/(/om) is composed of terms of

conditions that /Zm =0 1is & true minimun,
V=V + 2 2 «F <2 + (higher orders)
o -~ /o m mn £ n g *

Now in order to transform the kinetic energy, conaidef a small variation
S;m in the positiona of particles. For the transformation into
rotational coordinates @ and vibrational coordinates /;m to be
valid, we must be able to express any arbitrary variation § ;m
(consistent with 9, m_ S;m = 0) uniquely in terms of an infinites=
inal rotation $8  and an infinitestmal distortion § o e

We have

67, = (8(0)) + (5 +R-(8/ ),

but

6R - =R(®) - 68 x
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or

57 =f(e) - (88x3 +55),

and the condition of validity will be that this relation can be solved
for S -éo*
Using the inverse rotation R =1 (8)y we get

Al) . 82, = §8x3 +575, .

We form

Emame 1(9)'81' 2max§/0 +£m[ax($9xs)]

m
m=
and note that of the $r Ty only 3N - 3 components are independent

- -
since é m, T, =0. If in addition we are to obtain the &0 as
=1

three independent variations, then only 3N = 6 of the components of
-
Sf’m can be independent, hence we are at liberty to fix three linear

relations among the ;m s in particular, to require that

Zmaxf?m .

m=]

We are then left with

o= D B m
where
5(5) = & a i@ 3) -2 3]
B(/om -m= nlia-s)~-a sl;
1 = unit dyad; ; ; = outer product.
* 3(z,)

This is the same as the requirement that the Jacobian ——=—
exist and have rank 3N - 3, 6(/0m, 8)
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and the condition that this relation can be solved for 8 8 is that
B 1s non-singular. If the equilibrium configuration was non-linear,
then g(;m) was non-singular when f-’m = 0; and for some neighbor-
hood of the equilibrium, the condition will still apply, and the
separation into rotational and vibrational coordinates will be valid.
To complete .'bhe transformation into qormal coordinates, we

tranaform the velocities

-> . -
.  ar > ap
g ——m - » g'-g - ---12
r, =g RO (GExs, tg)

and define the angular velocity of the configuration

- _d8

w =3t

5

r=R(G)'(wxs +/0)

and since, for any vectors ; and B’, the scalar product ; e ‘K
= (R(®) * a) » (R(8) » b) is invariant under rotation,
1 N

_l -»’ 1 :»2 -).-D > G . - -
T=3 (X) 2£1mm()om+2w smx/om-i-(wxsm) (wxsm)).

Now define the tensor of inertia

N
I=2 mm[1(sm . ;m) - ;m sn] R
n

Then

n g -t ~
s m(ng)'(wxgm)=w-1-J

and define the 3N - 6 normal coordinates qi, such that
3N-6

i=1

- i

->
fm = cmi q



->
where the ¢

- satisfy:

Note that in the above there are (3N)(3N - 6) components of 3;1 to

be determined, together with the 3N - 6 quantities V,, and that there

i
are exactly (3K + 1)(3N - 6) relaticns; so that in principle, the
separation into normal coordinates can be made.

Lastly, define

’1;°2mm°mix°m;1‘ sij—— 58 -
Then
N - 5 o, 5 )
Embl Gaxp)=Emippxfy)= @ 2 §iad,
and
Sly@2 .l S dg dLlz. . a.1 > 2> 1 ,]
T =3 ME)" + 3 = Sijq tgw.d w+21£;]2w Fiy9 & -

We omit the center of mass motion from further discussion and define

v4 =aﬂ /"—'1,2’ ooo'BN-é
v =UX,Y,Z /0(=3N—5, 3N - 44 3N - 3.

We consider i, j = 1y eoe ’ 3N - 6

0’/3 =12y 3,5%, ¥y 23
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and adopt the convention of summation over repsated, lower case, Latin
or Greek indices (all equations employing the summation convention

are numbered S).

1,, St
1 ij is
(S) T=2V“T/“ \4d T/‘u =
xuj Iuﬂ
where
= (o 1
(S) rﬁj - (Sij q )0. ]

We now define normal momenta By where

oT
= = 1 XX 3N - 3
Py g /‘ ) )
so
(S) pi-a"li- Sijq + Siﬂ
_ ar A hi
S = =1  w + )
) Pa” qwt 9 Sap 8
Then
(s) T= % P ™ b,
where

§1d s
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and for later use we note that

A= e = =35I =, (177 = (e
Thus
ik T 1
() =3 logu™ py = by s 5L 4 ps - oy i Sp1 57 vy
ik .T :
+oy 85, MY 3,0 67 py v 6t p))

and if we define

sjk i

(8) m =p, ¢ 57 =3 9 p,

aj P = Saij 1

then

© wereved oy a4 Gamya) o, 50
+%$i. Vi(qi)2 H

is the total angular momentum,

() plays the role of an internal angular momentum,

/unp are related to the inertial tensor but involve the

vibrational coordinates in a complex fashion.

2.2, Quantum Mechanical Hamiltonian.
The normal and rotational coordinates of the smi-rigid

rotator are not caftesian coordinates and hence demand a special
quantization procedure. Although the resulting form of the guantum
mechanical Hamiltonian is known, [4] it is often given incorrectly,
and a derivation in print is hard to discover. Hence we give the

derivation here,
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We adopt the viewpoint of tensor calculus, that wherever it is
possible in principle to use cartesian coordinates and to obtain
geﬁeralized coordinates by a suitable coordinate transformation, the
resulﬁing Schroedinger's equation, Hamiltonian, and momenta are correct.
Any covariant expressions which result from the transformatioh will
then‘apply to all coordinate systems, even if no cartesian coordinates

exist,

2.2.1. Cartesian Coordinates.
Given a set of N particles with

masses m D= 142y eee 9 N

we can redefine indices such that the coordinates are denoted by a
single index, and are cartesian coordinates in a JN~dimensional space,
j.eey let

xé = x: s Where

i=0.+3n"3, i=1’2’00"3N0

Then in terms of velocities ii and a mass tensor

= Sij (1) where n(i) = itld-g

mij 3

X%
and a=1,2, 3,
such that n 1s an integer

we can express the classical kinetic energy

(s) T =
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and momenta

- aT - jf Ok - o1
(8) Py ====n §2 % =m X 3
x:L % x:"xj n (1)

and with the inverse mass tensor

xixj - j

(8) m £

( )-1 XX

(1)

Qx‘
and the potential

vV = v(x)

we can express the classical Hamiltonian
(s) H=T+V=lmxxpip.+V(x) .

We then form the quantum mechanical momenta and Hamiltonian by writing

o)
p, =~ =7
xi axi

and introduce a wave function V¥ satisfying Schroedinger's equation
HY=EY

i3

(s) (--%sz"x —ai"'a—j+V(x))‘Ifx=E‘Ifx .

ox~ ox

Wave functions have a scalar product, defined by
B, » ¥ )= / gov " .

Any Hermitian operater 0, satisfies

(Oﬂx ’ wx) = (ﬁx s O Wx)

For any @ and YV, and note thst p j and H as defined are Hermitian,
x _
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The momenta in addition, satisfy the commutation relations

-3 §3

[pi ) xj]
X

[Pi’P;j]=[x1,xj]=0 .
X X

2.2.2. General Coordinates.

If now we are given another set of coordinates

qi i=1329 see ’311

in terms of which the classical Hamiltonian is

_ 1,13 |
(s) H=3 M pypy+ Vi)
3 ij _ .51
n which u=° = @ are functions of q, we can form the quantum
méchanical Hamiltonian and momenta by writing the former expressions

in covariant form.

First let us introduce the metric tensor

gij (=4 13 45 cartesian coordinates)

and call
= (1.2 = 13
g = |lg|| E det g (= 1 in cartesian coordinates)

then, according to the tensor caleulus, the volume element transforms to

. g—1/2 FEL

and the covariant form for the Schroedinger equation is

»

W2 2t 2 8y gy gy
aq aq X X X

(s) -15

The above expression, with both m;j and g in itvis awkward, but from

i J
., 0q- dq
(s) gia =— — ¢ k1
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(s) mlazé;i g;imx x =;§ _G_;I 5klmx:(k)
1t followsthat
n % ||ad]] = cg ,
where
e =TT
n=]
is a constant which commutes with gég s S0 that we may write:
q

2 .. o
) muw =-b /28 4 -1/28 4 vy =gy
X x 2 i % "y %
0q dq
The scalar product of two wave functions must be invariant under

coordinate transformation. Hence
o [ e =12 N
0w = [he e 2d®a
but if we attempt to identify # , ¥ as the wave functions and to
use its a/aqi as momentum operators, we find that although these
expressions have the correct commtativity for momenta p 37 they are

not Hermitian with respect to wave functions ¢x o To resolve the

difficulty, we can form new wave functions

_ =1/4
q & %

and compute scalar products according to
- = 3N o
_ ¥)= ¥ a = o
(Eq ’ q) /Bq q q (¢x ) Wx)

Then the momenta

- o 0
p; =~ if —¢
i aql



are Hermitian with respect to wave functions Eq « The appropriate

Hamiltonian is then

i =g-1/4H g1/ __m1/z,H RV
q x
2
(s) o= B pVA 2 43 -1/2.8 Wi,y
=1 ,1/4 5 i /2= /4
(S) = 2 i j m + v

which is Hermitian.

The bars have been used in the above expressions simply
because it is not customary to define the scalar product, the momenta
and the Hamiltonian in this manner. Instead, one usually regards the

wave functions as sealars, and so let
S V22 ,=/* -1/2 3N
=8 =e"8 ., W,y =[F % q .

I£ then follows that the correct forms for Py and Hq may be obtained
by transforming back from the barred expressions:

IRVZAE S VIS VR T V)

pv
i o i axl
=1 /hg Ve L V/k ij =1/2 _ /4.
(s) Hé 58 H.q =sm/Yp, W m py m | +V
B 1/2 8 i3 -1/2 _
(8) ==-%m — Y —-— +V= H .
aql - GqJ

Adopting the more conventional forms,'one can drop the sub=

scripts on ¥ and H and so, given the classical Hamiltenian

1]

(s) R=gudp py+ V()



-14- Io

and the volume element

ar =g /2 g

use
X
6= [ vsV2 N

However, if the volume element is unknown, it is poasible then

to use the unconventional barred forms.

Ei = - iﬂz —Qf
Oq
F = % Ry 5 A 172 Sj V7 (q)

(5,@):/3*%3%

for which it is necessary to know only the range of the variables qi N

2.2.3. Momentum Transformation.
For certain systems, the classical Hamiltonian mey be written

in simpler form if expressed not in terms of a.certain set of coordinates
and the conjugate momenta, but rather in terms of the éoordinates and
linear (but coordinate~dependent) combinations of the conjugate momenta.

In particular, this situstion occurs in the treatment of the
semi-rigid rotator, whose classical Hamiltonian is more simply expressed
in terms of cartesian components of angular momentum rather than in

angular momenta conjugate to Euler angles,
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The new momenta are in general not conjugate to any set of
coordinates. (Indeed, quantum mechanically the commutation relations,
taken together with the transformation coefficients, form a set of

linear partial differential equations which, in general, are nonn'

1ntegrab1e) Hence the quantum mechanical Hamiltonian may not be obtained

directly from the prev1ous discu331on without qualification.

The treatment of this question follows that given‘by Wilson

and Howard, [2] except for the use here of the correct form for the
quantum mechanical Hamiltonian.

If we start with the Q.M, Hamiltonian

(s) H=%mu4 -1/2 1] Vh 4

p; m m pj n

and apply the transformation

(s) p; =8 P s; = 83 (a)

whose inverse is

Lo i 1_ 011,

(s) Pm- Xm Py 8m"‘(3) m
define
(s) pid = g1 gd @
. . m n
where

- .m n ij
(8) M= 8y 85 1
and call

IRNIEL s =6 =07 ™| = u



then
m= |t = ¥*u
therefore
2m-v) = 20 E W1/241 4] il st F, 81/? /4
(s) = 1/2 /b n P g=1 172 xi L g £ 12 1/4

Now if it should turn ocut that

kg o1 y=1_
(s) ‘Sipk‘m 1

is true with I;m‘s regarded g3 differential eperators, or

n _J i =1 _ Jk

(S) LA ‘n p;] "m o= ‘m Py
(8) | tpj!jt = lfflpk
8) P, 3 = qf T
or

-2 [PJs 1; iq] =0 for all m ;

J
then
(s) 2(8 - v) = u/A P y1/2 (g P /4
or

=11/ -1/2 /4 , o
(s) H=g M/t p M /7R MY+
where

_ A1/22 /2 _ ~1/2 L4 1/2
(s) po= V25 g2 12 gt 2

(This is the expected form for the momenta, since if coordinates Q

conjugate to P existed we would have had
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S /e B /4
»Pm--i;fm = M

aQ
and

e = V2 1/

g0 that the factors ¥ -1/2 and § 1/2 would have entered
automatically. )

Lastly, the equation %, [p;, ¥ ¥77] =0 is inveriant
J
under simltaneocus similarity transformations on p 5 and (lff1 3 1)

S0 we may use
I VL VS 2

8q

Py g B

J ¢=1 J .~
'6n ¥ ' - tn 5
ahd write

B -Q:f (¥ 1) =0 as the required condition.
J 0Oq n

To summarize, we may say that if a classical momentum transformation

p o= #lp o=y L ¥=1yll
satisfies
(s) _Q.i.(ﬁ ¥1) =0  for an j
0q

and i1f we denote

(s) M g g i M= ¥%n
i7;

then if in terms of the o0ld variables

(8) H= % m1/4 Py nid m-1/2 Py m1/4' + V(q)
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we may use
()  m=1ulhp i 41/2 p u/e 4 v(q)
vhere. |

(s) P = /2 31 p, $1/2,

and use the old wave functions and inner products
* _
B, 9)=)F var (a).

Alternatively, we may employ the Hamiltonian and momentum operators

given by
(s) H = -;: wl/e § yma12 8 W/ 4 v
m n
S
(S) P]:l - Km pi H

provided that. we transform the wave functions according to
s /2y

and use the inner product
(‘F" ¢') = /gﬂ* ¢' ‘-1 df (q)o

In 7the treatment of the semi-rigid rc_atator,' the natural
coordinates are the normal coordinates of vibration qjl and the Euler
| aﬁgles (@, 8, ¥). The Hamiltonian is more easily expressed in terms
of cartesian angular momenta in a system of coordinates rotating with
the configuration, Pyt » Py 5 Py o for which the classical trans-

formation is:

u
I

"sin‘?pe- cos ¥ esc 9p¢+cos‘¥cot 8py

=cos¥‘pe+sin‘¥cscGp¢—sin’¥cotep\F

Py
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Or,t&king‘l,Z,BEﬂ,Q,‘I’

P = '6’2 Pe * where
sin ¥ <—cos V¥ cac € cos ¥V cot €
35 = cos ¥ sin T csc ® =-sin ¥ cot O
0 0 1

¥=csc o .
Computing
By 31
o (T
we get

669 sin ¥ sin 0 + 7 (=cos ¥) + 37 ( cos ¥ cos 8) =

5% cos ¥ cos @ + —‘3 (sin ¥) + 55 (—sin ¥ cos 6) =

gﬁ(sine)=0 3

verifying that this is one of the allowed momentum transformations.
The metric determinant of the Euler coordinates is
g=R sin2 8
where R is not a function of 6, ¥, ¥ although it may involve con=-

figurational coordinates. Thus the quantum mechanical Euler momenta

are

Po, g, = - if (sin G)-1/2 55,—%;-;1}- (sin 9)1/2

but since ¥ = (sin S)m1 s we form the quantum mechanical cartesian

angular momenta by
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p = g 1/2 ¥ ¥1/2 = (sin 6)1/2 ¥° b, (sin o) 172

a Rﬂ
V-2
S a=x,yt, 2
¢ 20"
8
=-i)f5"g'.' /g=99¢’1¥
a ,

which are simple deri#ative operators with respect to Infinitesimal

rotations about the x', y', z' axes.

3.0. The Complete Quantum Mechanical Hamiltonian.
As a result of the above considerations, we can write the

quantum mechanical Hamiltonian as

; :
=1 1/4 ~1/2  ap /4
H= - -
2. a’§=1 /‘l (po‘ “ﬂ)/“ /a (P Y )/a ’
3N-6 38-6
1 1/4 -1/2 1/4 . 1 (o), 1\2
3N=6 . 3N-6 L
vz Vi(gl): S 1,55K,1=1 vi?lzl @ o qk T

i,j.k=1

where qi, i =1y ¢ee 9 3N~6 are the internal coordinates :

/a“/‘ is the inertial tensor

a
Moo=
Py = - if /“-1/4 _Qf M 1/4 are the momenta
0q
P, = - i} 5%7 are operators for total angular momentum
a . ,

components about the body axes,
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31%-6 . . 3%-6 .
LI qQ pys or W= qQ P
a 3,321 Cdd i’ 1 5 13 3

represent components of internal angular momentum

about the body axes.¥*

Vﬁo) are potential coefficients of lowest order.
V(1) V(Z) are coefficients of higher order expanéion of the
i3k * "ijk1

potential function.

3.1. Perturbation Expansion.

Since the complete Schroedinger equation cannot be ‘s'olved
exact_ly, it is necessary to perform a perturbation expansion in Q
in which it is assumed that the most important terms are those which
arise from the coordinate-~independent part of /a‘ys and the quadratic
terms in the potential expansion, and that other terms, which involve
higher powers of qi, produce smaller effects. “

First note, that for any /aafe =/a" *(q), and LI 'ﬁa(p, q)

linear in p:

s /a‘l/!, 7% a/a/u -1/2 “’e/dVA =£ {/uaﬂ 7% 5
d 98
-126- /ua/’ /a-z[“a 9/“ ][ﬂ,‘ ,/‘] + % /(Gﬂ/a-.l[ﬂu ’ [1}5 ,/u]]

Y SRS Dol UL N U

*
However, see condition (2), Sect. I, 3.2.
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Thus also
g/am.p/a-vz 1 1/4 _ %{p‘i _%/a-z[pi ’/(]2

s La [py 4 oy WHNF
Lastly, since [p, ,/a“f’] =[p, sl =lp »ms1=0

-1/2 1/4

Z /6(1/4 (p/“‘1/2/aa n, + “q’“ /u(’a pﬂ)

/3

AN terms which involve [pu, /a], [“a R /a] etc. are to be treated as

. higher order terms; thus let

/aé/‘g =/ag %9 +/(1"9 +/(“/g + see

/&( = /‘{0(1 +ﬂ1 + /[{2 + oee)

where since no generality is lost by doing so, we take &/ g/g as

diagonal, and where /“1' ,4(4';l #  inyolve qi in first 'order; Mo

AL g/‘ in second order, etc.; and perform a second order expansion.
Then

H=H'+H'+H§, where

28! = 21,« by = 1)l 1) + £ 02 + 7\ o?)

a/—ﬁx“f“’ "2 B = T ) = [rge 77 1Ry = e )

/(O [" !/u-l] Saﬁ 136} iJ ijk qi qj qk

k
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3 a (49 a
2}% - a,/§=‘l {-.%/(o 5{3 ["o. ’/('(1];‘Z +%/a3 § /f[ﬂa ’ [uu ’/2]]

o M Mg )+ 457 (pm T e, =g )

- [“0. ’ﬂ;{g](P ) -1 /(1 [“ ’/(1]1/)5 /(q aﬁ[“ ’/(2]170

- -%[pi 12+ 2 py s [py o)) §

Lastly, one must take into account the existence of degeneracy: the
Hamiltonian in terms of which the perturbation expansion is niade is

2 Py M3 Py + 3 % (82 + 7% o)

O

N

| aqd if some of the Vi's are equal, those perturbation terms which
involve only a single degenerate group will have to be treéted ’
différen’tly from others.
Thus we further define
nuznz + nl
where nZ mixes only states within the same degenerate group, while

nl mixes states belonging to different groups. And then we redefine

3
Ho=:-12'u§1ﬂg(pu ") (g '“o)*" 2 (Pi"‘V(o) 2)

=]
"

3 a
1 H{"‘é/lo(pa-

p—— 1
HZ_H2+ é‘ﬂoaa
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In any particular problem, Ho is used as the zeroth order Hamiltornian,

but which of the terms in H, and H

1 2
the particular parameters involved. (For example, it might turn out

are of significance depends on

thet one of the terms of H2 mixed only states of the same degeneracy

group. )

3.2. The Zeroth Order Hamiltonian, Further Considerations..
The eigenfunctions of

= 1 1 2
T2 £ pa/‘o e T2 é (pi * V i)
are well known to be
3N-6
ok =71Y, () ™

Bys Tgs eee s DaNeg  i=i P4

. Where Win is the ni—th harmonic oscillator wave function
i .
Jmk /.- .
X' (I') is an asymmetric top wave function of total angular

momentum J, zZ-component m, index k,

or if, /ll = /Ii s then XJmk(l") becomes the symmetric top wave

function Y‘;k (')  also called generalized legendre function, and k
becomes the component of angular momentum about the figure axis.

For the complete zeroth order Hamiltonian
3

- 1 a 02 a o
H_H+2 °ﬂ“+a=1 0oPq "a ?

the solution is simple if:
1 Vo g2 so that !mk(l") belongs to a definite angular momentum
- A o H o J

component shout the symmetry axis, and,
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2. ['H“ R “,61 = € <, kij ‘S;’ij qi p. s where kij is

asy 13 ki
independent of ¥, q.* In this case,
2 3 3
0 a 2 a o
W, 2 U s 2 M P T
=1 a=1
o2 o N
are all simultaneously diagonizable, and [uw |, ﬂa] = 0, so that the
eigeﬁfuncticns may be found by the usual methods for combining angular
momentum.

The first condition in general, does not apply, but there
are many interesting problems in which it does. The second condition
is probably true in general. The author has been unable to find
reference to it in the literature, and neither to prove i£ in general,
nor to discover a counter-example.

Note that even where the second condition applies it is not
in general, true that the coordinates qi of a given degenerate group

combine in ahy familiar fashion, but commonly, a set of three will be

fouhd that combine in the same manner as cartesian coordinates.

4.0, Identical Particles. Symmetry Properties and Allowed States.

If the particles are identiecal, then it is required that the
" total wave function for vibration plus rotation be symmetric or anti-

symmetric in any interchange of the coofdinates of the particles

*
By applying the commutation rules for Py » 9 to the expression

for [“a ) Tg ], we find that this condition can be written more

simply ass 3N=6 : -
> -»> -> .

51 (;ijx_s‘kj)xIik-O’eralll,k‘.

This algebraic identity is verified in the particular problem

considered below.
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according as the particles obey Bose or Fermi Statistics, respectively,
We tregt only the Bose case here since it directly applies to the
problem at hand, and since the Fermi case would be'slightly more com-
pliéated in requiring the introduction of spin coordinates,

The requirement of Bose symmetry severely restricfs the number
of‘possible states of the system. The use of group theory will
facilitate determination of possible states, and, together with explicit
expressions for the vibrational and rotational wave functions, will
readily allow us to exhibit the total wave functions for use in later

calculations,.

-hele Group Theoretical Method.

The permutations S of the N particles form a group P
which is isomorphic with the abstract group PNt of permatations of N
‘things. Since the particles are identical, the vibrational Hamiltonian
HV, the rotational Hamiltonian HR s the vibration-rptation‘inter-
action Hamiltonian HRv s and the total Hamiltonian are invarient under
P. We require that out of products of vibrational wave functions W(q)
which are eigenfunctions of Hv and fotatiohal wave functions ¥(8)
which are eigenfunctions of HR are formed those combinations which
are invariant under P, and which are also eigenfunctions of HRV'

In general there can be found in P a sﬁbgroup R conmposed
of those permutations which correspond to rotations or rotations plus
inversions and which form therefore a subgroup R of the complete

rotation group. If the rotational coordinates have been properly

chosen, there can also be found in P a subgroup C of permutations
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under which the rotational coordinates (achematically indicated here
by ©) are invariant; so that C represents a change in internal con-
figuratibn with no accompanying rotation. The subgroups R and C
will then span the group P, i.e., for any S of P, there is a unique

" factorization:

"in which
SR(Sé) is an element of R,
Sc(Sé) is an element of C. |

Since V¥(®) is invariant under C, it follows that ¥(q)
must be invariant under C as well, but only the product wave function
must be invariant under R and hence under the full group P.

In the particular problems of 016 on the a~particle model
it turns out that R is identical with P. Hence we shall use S to
iﬁdicate a group element, and P to indicate the group, although in
the general case we should have to use SC and R. Also, although
in general, weshould have to pre~symmetrize Y¥(q) ovér Cs no such

procedure is necessary here,

Lelel. Vibrational Wave Functions.

Since the vibrational Hamiltonian HV is invariant under F,
the vibrational wave functions ¥(q) mmst transform under a permutation
S by means of the unitary transformation U(S):

S ¥ = ¥(sq) = U(S) ¥(q)

vhich mixes only states belonging to the same energy level E of Hv .
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Hence we need confine the discussion only to states @é(q) of a single
degenerate vibrational group.

Further there must exist a unitary transformation V:

R=vy
Ur(s) = v u(s) v

which reduces U(S) to block form U'(S) such that each block of
U'(S) belongs to an irreducible representation Ua of P. Each
irreducible representation will, in general; appear nE(a) tines

(nE(a) is zero or a positive integer):

(a)
nE =S 5 § et U (S)
a k=0
(@ = 5 Ig(a) (@)
wi(q) = ¥
g\d = e Bk q

- in which Wﬁak is a vector of orthonormal wave functions transforming

under P according to

S Ypa(@) =¥, (Sq) = U (S) ¥, (a) .

4els2. Rotational Wave Functions.
We shall confine our discussion to the sPheriéal top case in
which the three moments of inertia are equal. In addition to being

the one immediately applicable to 016

s it is the most interesting
mathematically because the greatest degree of rotational degeneracy
oCccurs.

In the spherieal top, the rotational energy depends solely

upon the total angular momentum J. The rotational wave functions ?ﬁm
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m fixed, |m| £ J, k = -J, -J+1, ... , J-1, J transform according to
the irreducible representation D 3 of the rotation group. Under the
subgroup P (in general R), DJ is reducible, i.e;, there exists
a uniﬁary matrix V (which connects states of the same m and J
values but different k values) which brings D(S) into block form
suchv that each bloek belongs to an irreducible representation U of
P. As before: |

1 = -1 _
DY(S) =V DJ(S) V' = é

T ()

0

TINE

sij U, (s)

vt (@) =V YNE)= S ¥ . (8)
J J 7y 9m

ST =9  (se) =0 (s) "
" and the matrices Uﬂ(S) are to be chosen identical with the Ua(S)
for g=a. |

Lel.3. Total Wave Function,. 7
A stationary state wave function must beléﬁg to a particular
: E value and a particular J value. Further it must be invari&nt
under P, The following conditions can occur:
1. nE(a) nJ(a) =0 for all a. There is no common irreducible
representation. A state E, J is then forbidden by the symmetry

requirement, since no invariant can be formed.
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E J
2. n (/J) n 96) = Sa/a o« For any m value, there is a unique

symmetric wave function* which is automatically also an eigen=-

funetion of the rotation-vibration interaction Hamiltonian HRV .

@EJ(Q, q) = ﬁéa(q) w?a(e) ~ denotes Hermitian adjoint.
= =¥ -1 -

S ¥pr = ¥5;(88, Sq) = (q) UL'(S) U (S) w’}‘a(e) = %;(8, ).

E J 2
3. n (/6) n (/9) =5 § a n symmetric states exist,

i= A%
of the form
‘P]n = N;I? Wm .
EJai Eai Ja

Degeneracy between these states may be removed by the rotation-

vibration interaction,

n®(a) n’(a) > 1. There is a further degeneracy of order-

n®(a) n?(a). Possible states are:

_ B
~ k=1, ...-,n(a)
%oris = Yo Yat g
k‘ =1’ ase ’n(a) L

Degeneracy between these cannot be removed by the vibration-

rotation interaction.
*.

The proof of the assertion follgws directly from Schur's Lemma:
Let the wave function be ¥ = (¥; ) W(¥ ). If ¥ is invariant
under P, then we have /g

v s) w UyS) =W  for all S in P,
or e
WUg(S) =U(S)W forall S in .

(1) If «#8, U, and Us are by definition inequivalent irre-
ducible representations of P. By Schur's Lemma, W = O,

(2) If o =@ then by Schur's Lemma, W is a multiple of the unit
matrix. Since Yjq and VYgq are orthonormal separately and
if ¥ 4is normalized also, then it is required that W is
mlitaryo Hence W =1, .
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To apply these results, we need to determine the numbers

nE(u) and nJ(a) and the wave functions ¥

B 20d w?dk' which

belong to the a-irreducible representations.
Let
R denote an arbitrary unitary representation of a group T.

a denote a particular irreducible unitary representation

of P,
h = the order of the group.
Kﬁ(s) = the character of S in the R representation

Z;(S) = the character of S in the & representation
called a primitive character.
Then the number of times the a irreducible representation is included

in the a representation is given by

nR(a) =% s )[:(s) XR(S) % denotes the complex
S - conjugate

or if we make use of the fact that X's &are dependent only on the
class of group elements and

h(S) = number of elements in class of S

fa =l 2 nE) xis) X .
clasges
4e2. Method of Finding Wave Functions.

In addition to determining n'(q) we can determine explicitly
the basis functions ?i of the a representation (or o s k= 1,0..5n(a)
if n(a) > 1).

Given any set of basis functions for the R representation

‘-PR, 1=142, e 3y N
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the decomposition property allows us to write

n(a) g(a)

A S = < v ¥, where

a k=1 1= ilk "okl

g(a) = order of the a representation, and

S g(a) n(a) =N .
a

hen () gla)
n(a) gfa
sY = % 51 1;{i"=1 Vi U0 () Fou -
Now form
(a) g(a)
w), = S Fis) st =88 g "
% ) h Al h g §k§1 1§"=1

a * a :
e Aa®) U () T
Burnside's theorem states:
1 LI} * s)us (s) = —(l-T
h g LL'() 11'() gle Scys sLl .SL!l'
hence
g(Z) * a -
h ‘g' Uy (8) Uyp.(8) = Su/e PR PET ?
and upon summation over L we get
h ‘Sé Ko () 033, (8) = 8., 8330 -
Applying this result to the S-summation for (‘Pil)ﬂ y we got

(#) )
(‘I’R) nz g(‘/é

= @ =
i(g k=1 1=1 vikl ’Q‘lel i - 1’ ses 3 N .
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Thus (W?%G is in fact the projection of (W?) onto the irreducible
representatian/e . .

Now to determine a suitable set of functions mﬁkl » WE
first computé f??)a s 1 =152, oo s N; note that there must be
exactly n(a) g(a) linearly independent functions among thems (There
can be no more than this number since they are linear combinations of

P

there can be no fewer, since the N original W? are all

k1 }
linearly independent, S5 n(a) g(a) = N, and s (??)a = W? o)
a a
There are two cases to consider:
1. n(0)=1 .

If n(a) =1 there are exactly g(a) linearly independenﬁ
functions among the (Wf)u « Any orthonormalized set of g(a) of
the (W?)a can form the bases Wﬁl 2151y see g(u) of the a repre-

sentatione.

2e n(ﬂ) >1.,

If nR(a) > 1, then there are n R(a) g(a) linearly
independent C??)a . An orthonormalized set of n'(a) g(a) of these
functions can be chosen as before, but a further linéar transformation
on the set is required to reduce the transformations under S to
block form,

Call ¢ij s =1y eee s n(a) g(a) a set of orthonormalized

(Wf)a and then let them transform under the group P by

R n{a) g(a) R
= Ujj'(s) ¢U.j' .

S By Z
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We wish to determine a unitary matrix

V;kl ’ j = 1’ ses 9 n(d) g(u)) k= 1, eee 3 n(a);

1 = 1, see 9 g(a)
(k and 1 together span the space of j, so the unitarity expresses
itself as:

flvjkl e = g
? ijl o1 = S $190)s

and basis functions
n(a) g(a)

= a R

) j‘f‘; Va1 Py

and for the particular reduced representation

)
s(pr) g(a ,(s)r;fR

kK =1y oo ,n(u) .

1, akl' °?
We then have
' n(a) g(a) .
- §,5,() = ve . Ul Vo
JJ!() k’sk':: 1%__1 jkl ll' Skk' Jk'l ’

and the V's can be determined by applying Burnside?s Theorem:

a ¥*q = a = n(a) *a
The quantities on the left are presumably known, and the

equations determine the VS,. to within an arbitrary n(a) x n(a)

Jx1
unitary matrix, i.e., if vikl
n(a)

unitary matrix, then = ij,l W,y 1s also a solution, & situation
k=1

resulting from the n(a) fold degeneracy.

is a solution and Wkk, is an arbitrary
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PART II. O ~ ENERGY LEVELS.

1. Application and Computations for 9_1_?_.

The procedure we shall follow in computing the energy levels

and transition rates for 016

involves the following steps:
(1) Determination of classical normal modes.
(2) Expression of quantum mechanical wave functions.
(3) Symmetrization; use of group properties of vibration énd rotation
wave functions to find the eigenvalues of the Hamiltonian.
(4) Explicit representation of the permmtation group; formation of
| wave functions.
(5) Expression of operators for electromagnetic radiation éhd pair
| ~emission in terms of the normal coordinates and rotation operators.
(6) Calculation of 1ifetimes.
Since we shall need to make use of the properties of and explicit
expressions for the generalized Legendre functions (symmetric top wave
fUncticﬁs) a derivation of them following a paper by Takehashi [5)

is given in Appendix I.

2.0, Classical Normal Modes.

Here we are interested in the configuration of four o-particles
which in equilibrium are arranged in a regular tetrahedroﬁ. Let
X s n =15 .54 be the coordinates of the particles.
Td eliminate motion of the C.M. and at the same time produce independent

coordinates, let
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{ > ‘ ) ,-v 1
/’1 f 1 -1 -1 1 X4
L2 _1 -1 1 -1 1 X,
- 4 ->
3 -1 -1 11 %5
\ R / k 1 1 1 1 y kx‘!l- )

- -> -»
so that X, = T, + R, where

R is the position of the C.M., which will be neglected

hereafter, and

(7,) (1 ) (2

r, -1 1 - Fa
- : ;

r -1 -1 1 2

3 |3,

are the coordinates of the particles with respect to the C.M, and the

combinations /3 1? /32, ;3, are independent.

4 - > -> -
Note that = t oducts }e
o né==1 r T, =4 u§1 /”u/a (outer products)

2.1. Kinetic and Potential Energies,

The kinetic energy is given by:
3
=1 2 « 2
1=imz A, 5, -

In order to express the potential energy, we must first

consider the equilibrium configuration.
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Let a = radius of equilibrium configuration and let

(}w‘ (-:;_-3- 0 o) £
-> 1 N

P20 =a 0 ——/.3_ 0 jt R
- 1 N

| /30 A U EJ %t

where
o subseript refers to equilibrium, and
N _
i',?';%' are a right-handed set of orthogonal unit vectors.

Define

W

1. =2 2 a = length of side of equilibrium tetrahedron

1 = lr4~r1| "l°=2|j02+j-’3| -1,
» -> - -»> -

1, = I, -7l -1, =2lpr pl -1,

1; = er—rBI -10=2l/o1 + ol -1,

)
|

4= Ir - r - 2Lﬁz /(3| -1,
5 = er—r1|-1°=2|/03- Al -1,
16=|r -rzl—l -.2|/o1 /2|-1

" Then the potential may be any arbitrary positive definite quadratic

s
I

form in the 11'8 (1 =1, ees » 6), but symmetric with respect to all

particles. The most general such potential is:

V= v1(1$+12+1+1 +1+16)+v[(1 +1)(1 +1

374 3

+ @, +1)(1 +16)]+v[11 +1215+116]

* 1+ 16)

] g
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where the first term sums over 511 sides separately, the second over

pairs of adjacent sides, and the third over opposite sides. We note

that if only two body forces were involved, Vé and Vé would
both vanish.
2.2+ Normal Modes,
The normal modes ;(i) =d, ¢ i=1 , 6, are in
n ni i ’ 9 S0 3 ’

principle to be chosen so that they are orthonormal (which diagonalizes
the kinetic energy):

A
Mg & 3 =5,
n=f © 0] J

so that they are irrotational:

A 5 .
éé; d;xr,, =03

and so that the potential function is diagonalizeds

- 6 2
V(1) =V (r) =V, (g) = 51 LA
at least to second order, i.e., V is not expressible exactly as a
second order expansion in € » however we are interested only in the
second order potential. In prineiple, the higher order potential
terms could be obtained as well.

Expressing these results in terms of the’}zfs,

;gi)=gai€i a=1’2,3,; i=1,2’ooo ,6
3
-> 4 =l_
a2=1bui By = 2 01
3 . -
551 Dos X Poo = 0 .
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Thus if te b,y *1_ =0 S b b
us if we wrote %31 o ap 1 N z as 1 € may be any
arbitrary symmetric matrix in ave 3 and it is easiest to write

the normal modes down by inspection and verify that the potential is

diagonalized.
AT
5 (L. o) (1
(, 1A
);2 =g 0 ji% ¢] !
V) (¢ 0 ‘;’;-;1 &
(.2, 5 % 50 (1)
/3 2 /B /2 Y2
A ] 12,58 4 3
/T V2 /3 /2 /6 V2
5 % ) L% )
\ y2 Y2 3 /B
In terms of the Ei’s, we have to first order
(& L L 5 o )
3 /2 /B
2 | =1 0 /32 0
Vi /2 /6
2 9 2 0 /2
(1i)=-§§_: /3 & (c,)
Ml L L g 0 0
B3 /2 /B
2 -1 -1
0 - /2 0
/3 /2 /B
=2 0 2. 0 0 -2)
\/3 Y
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whence to second order

_ 1.2 2, .2 _ |
V= M [e:1 (w1 + 16v2 + 4v3)_ + (52 + 53) (v1 2V, + VB)

+ (cz +e2

2+ ef) (v, - 2v)) .

Now since we have no a griori knowledge of V1, Vé s We may con~

veniently use:

_1 22 2,2 2
v-2[w1e1+ 02(52 )+w(e +e )]
where
= 1
‘*’1 = /M (4v1 + 16V, + AVB)
_ 1
w, = 1/ (v, - 2v, +v)
- 1 _
w3 = 1/14 (2\71 2v3)

are the angular frequencies of the classical vibration.
The vibrational modes consist of a non-degenerate dilational
modes, a doubly-degenerate pair-twisting mode, and a triply degenerate

mode in which one side of the tetrahedron shrinks while the opposite

expands.

3.0 Quantum Mechanical Vibrational Hamiltonian.

In obtaining the wave functions for the vibrational motion,
we will find it convenient to use dimensionless coordinates
let q;@ /Zﬁ
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where
_a
o =g Vi
and
Wi = M &’i .

Then the vibrational QM Hamiltonian becomes

i o2 6 2
=1 A2 +1 o} 1 e N
Hvib'2w1(n2+q1) 222( *q) ”2“354(“2*‘11)

and the wave functions wvib satisfying the Schroedinger equation

Hosv Yoib = Bvib Yvib

are
6 6
Y, =exp(-1 & )T_I'H (a,)
vib 1=1 i=t M 1
with eigenvaiues
= 1 3
E i1 --w.l(n.l + 2) +w2(n2 +ng + 1) +$\r3(n.{'_+n5 +p6+ 2)
a.nd-
H (5) = (-1) (

?

are the usual Hermite polynomials with normalization

o 2 | .
/ Hﬁ(} ) e-§45= u1/2 2% .

3.1. Rotational~Vibrational Interaction Terms. an;giete Hamiltonian.

In order to develop the complete Hamiltonian, even in the
lowest order approximation, we require expressions for the internal
angular momentum operators T and the dynamic tensdr, A d

i
2' Q" P;
13-13'13 5
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where

pA - 3 . -
{i,j:M . nianj=w§1bﬁXbaj ’

T M~
Qg

the d's and b's being as previously defined (Sect. II, 2.2):

(2 & 2, & D)
Y3 V2 /B v2 /2
2 =L U L L P L
/Y Y3 /2 /B 2 2
:IL'. 0 ._.....-2?" L _j.-.!. 0
\ /3 Bz 3 /
(o o 0 0 0 0 )
it '
0 0 0 5 . it
o o 0 .i_'_2£ :.L;ﬁ o
3= = U LN =
_ s.ij - 0 2 2 0 2 2
0 ll' J—l-ﬁ E' 0 i!.
2 2 2 2
= LA
\o k! 0 3 3 0

6 - - ->
This matrix possesses the property that & (Fij x ¥ ik) X Sy = 0
i=1

for all i, k, 80 that the arguments of p. 25 (2) will epply.

-»> -0 -
a=u + wut

W == 5 [ (age - agps) + T (agp, = aypg) +E1 (a0 - ap,)]

- A p q _
™ =i'[q4(-j.23--’§293)-(-72‘2--‘§q3) p4]

P A
+ -2+ Loy - (- 2+ L Pl 4k

2 (agps = aspe)
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* and we shall regard the terms arising from 7!1 as being of higher
order since they mix vibration states of different energies.

‘ For the dynamic tensor, we shall find it sufficient to use
the zero—order approximation, which is the coordinate independent

part of the inertial tensor, and in this case is simply

% = QS =-LS s where
_/ao /ao a/ﬂ 1036

I, = Ma?

wloo

3.2. Complete Hamiltonian. General Solution.
Upon putting together the expressions for /ag/‘ , for the

internal angular momentum and for the quantum mechanical vibrational
Hamiltonian we arrive at the complete zeroth order Hamiltonian:

2 2

9] 3 p
Pzl @-79%4+1, (.1+q2) ile & (_i.+ 2)
21 _ 21 g™ % 2%2 3 (R Y

6 p2
+3v 2 (’i'*”qi) ’
i=4 \

and for convenience we shall introduce for P and .;O two more
convenient operators, i.e., let

B=y7

%= ¥HT
where 7 is the usual operator- for total angular momentum/H . i
corresponds to the usual orbital angular momentum/M operator, except

that it operates on qA, q5, P instead of x, y, 2.
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Y is a constant = - 1/2,

We then obtain

2 2.
' 2 W P v, 3 p
B3R, 2 Pi, .2
HonIO(J-iL) +3 (;%+q1) +§ai§2(1{2+qi)
-2
& ,p
3 1,2
' E () -

2 pas eigenvalue L(L+1) where L is a good

It will turh out that L
quantum number, and that stationary state wave functions are therefore
elgenvalues of I f . |

If (note the change in the use of ni)

ny excitation level of vibration state L with excitation

energy Wi.

=
]

o excitation level of vibration states 9 43 with

excitation energy Wae

3 : excitation level of vibration states qQ» q5; qé,with

]
H

excitation energy Ve

2
w "'""Lo
0- Io

Then the excitation energy of any state is givén by
ey [ 1 12 oSG2 '
E=w, { 5 J(I+1) + > L(I+) - 3@ - D)1 + ngw, + 0w, + nguy .

To determine the excitation energy of allowed states, we need to know
the parameters J, L, (3 i f), nyy Ny n3 for all allowed stated in
vhich we are interested, and to fix the values of energies W w1, Vo

w, by identifying four known excitation levels.
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4e0. Allowed Levels. Group Properties.

‘ We can determine the above parameters for allowed states by
using the group theoretical method developed in Part.I. In this case the
subgrdup of rotations R coincides with the permutation group P which

is isomorphic with the abstract group P, of permutations of four cbjects.

4

We shall empioy the standard "cycle” notation for the
elements of 34=

E is the identity element.

(12) means a simple permutation of objects 1 and 2.

(123) = (12)(23) or the permutation (23) followed by (12) (operators
are considered to operate to the right), under which
1+2,2+3,3~1. |

An element is invariant to cyclic permutation of the symbols
within any one cycles

| (1234) = (12)(23)(34) = (2341) = (23)(34)(12) ete.

All elements with the same cycle structure belong to the same
class, since a similarity transformation relabels the éymbols but
cannot change the cycle structure.

The irreducible representations of the abstract group P4
are denoted by the symmetry pattern to which the basis functions for
the representation belong. Theres are five suchs

(1111), (211), (22), (31), &)
Of these, the first is completely symmetric in the four permuted objects;
the last completely anti-symmetric; and (31), for instance, is the
group of transformations on functions anti-symmetric in three of the
permuted objects, symmetric between that set of three and the fourth

object.
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The primitive characterization of P, is:

4

: o Number

Class of elements h(S) (1111) (211) (22) (31) ()
E 1 1 3 2 3 1
(12) é 1 1 0 -1 -1
(12)(34) 3 1 -1 2 -1 1
(123) 8 1 0 -1 0 1
(1234) 6 1 -1 0’ 1 -1

4ele Calculation of n(a).

For the first excited vibrational states, the wave functions
transform like the coordinates Q4 or & which are lineér‘QOmbin-
ations of the quantities 11, 12, ces 16 s the perturbations in lengths
of sides of the tetrahedron., Under the operations of the gfcup P, the
~ 1's simply permute among themselves, and we can find the irreducible
representations to which the q belong by seeing what irfedugible

representations of P4 are induced in the six-dimensional representation

1
of P, by qij(s)

& 1
S(li) = j§1 Uij(s) lj o

Consider the standard configuration
of Fig. 1. Uij(S) is a permutation matrix

and thus has elements which are either O or 1,

each row or column having only a single element
different from zero, Thus ][l(s) is equal to
the number of 11'3 which are unchanged in the

permutation and we have at once:
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Kl(E)' =6
)51(12)= 2
xt(123)= 0
A1(12)(34)= 2
Al2s)=0 .

Applying thevequation for summation over group characters:

(o) =1 £ n(s) A.68) Ks)

¢lasses
we find

nl(1111) = nt(211) = nl(22) = 1

ol(31) =nl(4) =0 .
Thus there is a

1 dimensional representation (1111),

2 dimensional representation (22),

3 dimensional representation (211).
Looking at the qi's we find belonging to vibrational énergy Vys
a single 9y ; _to oW two states 9y q3, and to W3y three states
92 950 s which therefore belong to the irreducible represéntaticms
1111, 22, 211, respectively.

We would obtain the same results if instead of using the 1's

as basis vectors the representation, we used the qiis, themselves.,

Thus from the defining equations for the ¢

1 (and hence the qi):

sec. 2.2, we see that
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22 + y° + g2
9 " transforms as -—-‘5;——— H
2 2 2 2 2

22 =X = X -
L., 2—=J. | resp.;

s /2

(qu 9 q6) transform as (yz, xz, xy) , resp.;

q3, 9, transform as

and since in the group‘of transformations P, (x, y, z) go into any
permutation of (x, y, z), with the same sign or with two negative
signs, 9y, is invariant, and since xyz - xyz ; (yz, xz, xy) transform
exactly as (x, ¥, 2), and so

q,s 951 9 transform as (xy 75 2) &

To make use of this, however, we used an explicit representation for
the elements of P, It is given in Appendices II and III.
Using the explicit representation of P 1in the space of

the q; » we can find nE(a) for the higher excited states as well.*

* 2 2
For the states 2w2, 2w3 we use as basis vectors a5 q2q3, q3

2 2 2 . . o
and qﬁ, 53 g q4q5, q4q6, Ay o respectively; find the characters
of the classes of the induced representation and then use the character
summation to find nE(a).

3 2 2 3
For the stsate 3w2, we similarly use Qs q2q3, q2q3, q3 -

‘ (n2w2) (n3w3)
For combination states n.w, + n,w, , we note that U xU

272 373
induces on the space of product functions a reducible representation
(nwy) (nw5)

with characters X (S) , and apply the character

(8) A

sumation to find no(a).
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We note that the symmetry is indifferent to the excitation level ny

of the dilatational vibration g, and so give.the values of n'(a)
as a function of n2' and ny only. In addition we include the value
of the internal angular momentum quantum number L. We consider states

0<g n, 2 3, 05 ng < 2, 0Ln, + n, £3.

2

_ E E E E . E
B Sngwy v vy Longyqqq) Bpq) S2) Y(31) ()

0 o 1 0 0 0 0

WZ 0 0] 0 1 | 0 8]

w3 1 0 1 0 9] 0

2w2 0 1 O 1 0 4]

W, + w3 1 0 1 0 1 4]

2W3 0 1 0 4] 0 0

ZWB 2 o] 1 1 4] 0

3w2 0 1 0 1 0 1

2w2 + W3 1 0 1 0 i 0

W, + 2“3— 0 C 0 1 0 0

v, + ZW3 2 1 1 1 1 1

+J
4.2. Caleculation of n_ (g).

Here we make use of the known characters of the irreducible
+

representations DJ of the rotation group. All rotations through the
total angle € belong to two classes: proper rotations through €

(no inversion) and improper rotations through © (with inversion).
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Denoting these by (8, ); =0, 1 for proper, improper
rotations |
](J;(Gna) = (+ 1)‘9 sin((J + 1/2) 8)/ sin -g-

£20,0) = @ 1)? (25 +1) .

1
By referring f‘o the standard 2@ 4
configuration '3 .
3'
and the inverted configuration, in Fig. 2, 4'2'
1 ‘ 1 i
Fig’o 2

we can find the rotation corresponding to any permutation and '6b’oavin:

cass(s) 6 xEs) AEe) £ i) ‘**(s) Ks)

B 0 o 1 3 5 7 9 1
(12) 1w +1 +1 +1 +1 +1 + 1
(12)(34) 0 = 1 -1 1 -1 1 -1
(123) 0 »%F 1 0 -1 1 0 -1
(1234) 1 3 & +1 ¥ 1 +1 +1

and the nJi(a) are:

- 4 = = e t+ =+ =

(o)
+

J 0 1 1 2 2 3 3 4 4 5 5
n(1111) 1 0 0 ©0o 0 0 0 1 1 0 O ©
n(211) o o o 1 1+ o 1 1 1 1 1 2
n(22) c 0 o o1 1t 0 o0 t 1 1 1
n(31) o o 1t o o 1 1 1 1 1 2.1
n(4) 0t 0o 0o 0 0 1 0 0 1 0 O
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We note that the lowest state containing (1111) is 0, (211) is 17,

(22) is 2+, and the lowest purely rotationally excited state is 3 .

5.0, Computation of Energy Levels.

Feving found the n"(a) and n'(a) we could proceed by
the method of Part I, gec. L+2 to find the energy levels of the
Hamiltonian neglecting the J + L term, but we should then have to com~
pute wave functions and combinations which diagonalize the T -1 term
in order to obtain the complete energy expression.

Instead we use the following procedure in which we combine

tha angular function with the n vibration state first, and then

3"3
combine the resulting state with the n,w, state to form an invariant
under P and last add the n1w1 state which does not alter the

invariance.

The Hamiltonian we used is expressed as:

o 2
o_1l. . (3_en2 .1 P1..2)
B =zw (=51 +2“1(K2+"11)
2 2
3 P 6 P

1 3, 2y 1 3 . 2

t1v, 2 (24 &) fwg (3¢

225 (R 1) 27355 |42 i) ?

" and the excitation energy of a state is
E=wl[J(J+1)+lSZL(L+1)-Y(-J"f)]+nw N
o2 2 e by 22 373
and we need to determine the permissible combinations of J, L, 3 . f,
Nyy Dy n3, that define an allowed state.

First we note that L is an angular momentum operator which

operates on the coordinates s 95 9g» of the triply degenerate state;
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> A A n
L=L4i'"+ L j'" + L k'
p 4 Yy 2z

Ly = 5P, =~ %P5
L, = Py, = q4P6
L = qu5 - q5p4

E', 3‘,'%'. are body axes, corresponding to body coordinates
Xy ¥y 2 8o that '3', 3','%' rotate with the configuration.

For first excited states of qA, 59 Ggs We form the com-
. . 1 o -1 . s
binations V4 Wb s vy Wo s V4 Tb » vhere Wo 1§ the grougd state wave
function and will be understood hereafter as a factor of all vibration

wave functions, and

V1 =
1
o
V1T %
“1_ =1/2,  _
vy=2 (q4 iq5) .

1, are wave functions for ny =1 and simultaneously

1 () -
Then v1 » V10 Vy
are eigenfunctions of L and j = Ib with L =1 and J =1y 0y =1,
respectively,

For second excited state of qL, q5, q6 s We can find similar

combinations
' o_ 2, 2,2 _3
v0~q4+q5 +‘Q6 2

which has L = O and belongs to the (1111) representation of PA’ and
0)2 1 =1 .

I

1

1 1,2 -1y2
2) === L) e @
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which have L = 2 and belongs to the (22) representation of P 4 and

1 _ o
/39
SR - B N . B I 1
=Viv]
which have L = 2 and belong to the (211) representation of P .
The notation of the v:i is the usual one for an angular

L
wave function for total angular momentum L and 2 component

(in units of K). Hence if

L+=Lx+iLy
L =L -1iL_
- X

we have

/@-jKL+j+1) vt

J

L < L
L v = Y@L+ 3)@T-3j+1) v
- L L

-

Now in the Hamiltonian there occurs L - 3

. = 1 1 |>
L J Lxe-f-Lny-i‘LJ

J

where the primes on J;:, J}, J; indicate operators for components of
angular momentum on the rotating body axes (identical with St opérators
of Appendix I), and with

T = Tt 2Tt
J+ Jx+1Jy
LU (SR {
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we have

>

L3 (L, 3t +L_J1) +1L, 3.

NI-—‘

Acting on the symmetric top wave functions Ykm (Eqe A1419)

J! Y?= YO+k)(T-k+1) Yﬁ"”m

JLY?"= /T-%) Q+k+1) Y‘}“’m
SR
Thus when acting on a product wave function viing s the

operator TeJ can simultaneously raise j and k, lower both, or

leave them unchanged.

Note now that any eigenfunction of (;'-' 52)2 which is
also simultaneously eigenfunction of 2 and [® is an eigenfunction
of T e f‘ and hence an eigenfunction of a (perhaps fictitious)
aﬂgular momentum 1 =J - L. (The minus sign is chosen here because
7 "i congserves J — k instead of j + k, and so with this choice,

- -
I, =j -k commtes with J * L .)

Then by the vector addition rule for angular momenta we

obtain .
J.T= %J(J+1)+—L(L+1)- I(I + 1)

In addition to the quantum number I of the pseudo angular
momentum I we introduce a parity which is the product of the parity
of J and that of L. (The parity of L is (-1) °3 .)

Then I+ has a mathematical if not a physical interpretation:

under the rotational subgroup P , the wave function for the rotation +



the s vibration transforms like an angular wave function belonging
to total angular momentum and parity vI+ .

| An allowed state is formed by combining thé function which
transforms like Ii' with the v,
a total wave function which belongs to the (1111) representation of

vibrational weve function to form

P, + We disregard thé’value of n, in this procedure since 94 belongs

40
to (1111) and never affects the symmetry of a wave function.

5.1. Determination of Allowed States.

(1) Pure Rotational States: n,,

The only J+ states which contain (1111) are 3 and 4" .

n3=0’0.

Hence the only states with n, = n, =0 are J = 0+, 3, 4+1. '

2
(2) Singly Excited Vibrational States: n, + n, = 1.

(@) n, ny =1, 0O,

Jd = Zi, Ai, 5i are possible, since to form an invariant we
must choose a set of angular wave functions belonging to the (22)
representation. |

(b) n2’ n3 = 0, Te » N

J=1, 2+, Bi, Ai, Si, ees are possible since there are
- wave functions of these J+ values which belong to (211) representation.
Here, however, L = 1 and we need to determine I. We note

that the states of n, = 1 transform under P exactly like angular

3
functions for J =1 . Thus more exactly, L =1 and for a given

J+ , we can have

I=(J+1)_9 J__’ (J-1)_o
+ + +
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However the total wave functions transform under P like

an angular function for angular momentum I, , hence we must have

I=0,3,4,

and so the following values are possible:

L E N 3

(3) Second Excited Vibrational States: n, + ny = 2e

(a) n2, n3 = 2, O.

States of 2w2

belong either to (1111) or (22), so for
(1111) vibrational states J = O+, 3, 4+, ces
(22) vibrational states J = 21, Ai, ces o
The degeneracy in the 4+ state is unresolved.
() n,, ng =1, 1,

States of W

2+U

3 belong either to (211) or to (31).
" Hence J = 1i, 2i, Bi, 51, ;.. are possible. However, L = 1~ here,
and so we first combine the L(wa) functions with the J+ functions

to form I+ , and then combine the I functions with the w

5 functions

to form a total wave function belonging to (1111).
The intermediate I+ here will have to belong to (22).

Hence for a given Jt ,

I =2‘t, lpi, sen
I:(J-‘])_,J_, (T +1) .

¥ O* ¥
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Possible combinations are:

g o 22 st
1 2+ 2+ 44' 2+

() Dyy Dg = 0, 2.

States of 2w2

(211) or (22) with L =2':

may belong to (1111) with L = Q+ ; or to

(1111) states: here L=0, I =J, J =07, 37, 475 ...

(211), (22) states: here L = 2% and for It

I=@-103 -13% 0, @+ @+207

4 - +
I=0’3,4,ooo

Possible combinations are:

I 3 4 0 3 4 3
Complete wave functions for all of the above states (except

those with n, + ny, =2, J > 2) are given in Appendix IV.

2 3

(4) Third Excited Vibrational Levels: n, + ny = 3.

(a) D,y Ny = 3, O. |
States of 3w, belong to (1111), (22), or (4).

+ .+ .+ L+
Jd = 0", 2-, 3-! ll-s ese o
(b) n2, n3 =2, 1.
States of 2w, belong to (1111) or (22)s L= 1~ here, so for
a given J+ ,
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(F=-1)_,3_, (T+1)
¥ ¥ ¥

-
i

+ o -+t
I=042" 3,34, 4.

Possible combinations are:

(C) n2, n3 = 1’ 2'

States of 2ws belong to (1111) with L = 0+, or to (211)

or (22) with L =2%,

with L=0",1=J, 3=2% 4%, ...
with L=2%, 74+

I

L

(J—:z)+ y cen (J+2)+

+ %
I=2_’4—’.oo .

Possible states with L = 2 are:

;oo ot g

1 22 A2 E
The above states are sufficient to compute all energy levels

whose excitation energy is less than 16 Mev.

5.2. Computed Energy Levels.

Table I gives the value of Dy Dyy Dgy Jt, Li,'f . T (and

redundantly I+) for the lower excited states of O16 on the

a—-particle model, and the resulting energy expressions:

- \ 1 i 1=,
E = nup +nu, + ngws + W [3 3T+ 1) + gLL+ 1)+ 37 ]

or

E= n1w1 +n

Jip + gy + w (230 + 1)+ 2@+ 1) - F I+ DI,
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Also included in Table I are quantitative determinations
of the energies following the two methods of identification suggested
by Dennison [6]. FEnergies used in the identification are indicated
in pafentheses. A1l states whose energy is less than 16 Mev under
elther method of identification have been included. |
Tentative correlations with 6b§erved energy levels (uncertain
levels are set off in brackets) whose J and parity are known are
also given in Table I. The observed energy levels up to 13.65 Mev
are tabulated in Table II, together with their correlations on the two
identification schemes. Unobserved levels predicted on both schemes

are listed in Table III.

5¢3s Comparison of the Two Identification Schemes.

Using identification (b) it is possible to fit all levels
within 1 Mev and most levels considerably more accurately..

Using identification (a) it is impossible to fit the‘12.95
Mev J = 2 level within 2.3 Mev, or to fit the 13.24 Mev J = 4' level
within 2.7 Mev. PFurther, if the state at 13.65 turns out to have
J = 2_, then it cannot be fitted within 2 Mev énd if there is a O+
state at ~ 12.5 Mev, it cannot be fitted within 1 Mev..

Thus the older identification (b) is better able to fit the
observed energies up to 13.65 Mev. However, the equivalence theory
for neutrons and protons requires the correspondence of four levels in
O16 to the four known levels (0 to .391 Mev) in N16. Since N16 has

isotopic spin T =1 (Tz = 1) the corresponding O16 levels must have
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T=1(T, = 0), but since a~particles have intrinsic T = O, these
levels cpuld not appear on the o-particle model. Ajzenberg and
Lauritsen* [7] find that these levels (the lowest has J = 2) should
appeaf at energies 12.95 through 13.34 Mev in 016.

Thus the lack of the 12,95 Mev (J = 27), the 13.24 Mev
(¥ ='4+) and perhaps the J = 13.65 level should be regarded as evidence
for rather than against identification (a).

Further in the range C = 12.5 Mev, identifiéation (a) predicts
only five unobserved levels whereas identification (b) predicts ten (both
being figured on the basis that there exists 0" and 2% levels at ~ 12.5
Mev, and disregarding the possible level between 7.12 MEv.and 9.58 Mev).

Thus from energy level considerations alone, it appears that

identification (a) is favored, but the evidence is not overwhelming.

5;4. Inversion Doubling.

In the above calcuiation, we have omitted the effect‘of
invérsion_doubling, which must theoretically arise froﬁ the symmetry of
the potential with respect to inversion. In the pair:twisting mode of
energy wz, the possibility of inversion occurs; As a result, the L)
" states of positive parity shoﬁld be elevated relative ﬂo those of negative
parity. However according to Dennison [6], the difference should amount

to only several Kev and may be neglected.

Correcting the atomic mass difference for the n -,H1 mass
difference (.781 Mev) and a coulomb energy difference (3.46 Mev, ,
based upon a uniform charge distribution of radius 1.45 42 x 10~13 cm).



II.

-6] =

Leell=+2  €6°LL  LS*Ll=+Z  12°LL /% aEnz - 4+ 4z 4 2 0 0

1701 8%*6=-1  6l°0l vPucifnz 2= € o+ -1 T 0 0

96 | 6 Eng 0o 0 0 + T 0 0

vg*6=tz  SL°OL 19°91 Cngslng ¥ o z 0

89°L  [+$°ZI=H0]  VS°€L Cnz 0 o T o

[+G°z1=40] 21Tl Se'll=0  2Zl°el buz o o o0 z

98° Ll Ll 7/°n6+En ¢ - =L % 1 0o o0

285l 1St 7/ ngaEn I 4 =L =% 1 0 o0

2Ll ‘ 19° 11 v/ m24En I =L =L+ 1 0 0

89°6 156 4/°n61+5n - +# -1 =€ L 0o o0

ZIL 16*9=s  (10°L) 7/ n64En 2= - - +& I 0 0

2=l (1L  2tlel (10°L) v/ nesEn 2z + =L -l L 0 o0

veegl=+7 LTl 00°L1 °no1+%n ¥ o 1 o0

16°0=+z  (16°9)  "B*6=tZ  (78°6) Cng+n T2 o L o0

29°ll=¢  02°2Zl  29°ll=~f  0Z°ZL ®ngeln < 0o 0 1

90°0=40  (90°9)  90°9=+0  (90°9) b 0 0o o 1

9E*0l=tY  <Z°Ol  9g*Ol=+?  g2'Ol °not # 0o o0 o

yleo=-€  (V1°9)  TL*o==g  (71°9) ®n9 < o0 0 0

Oﬂ+o 0 0=+0 0 0 +0 0 0 0

T ae)° ™% g (a0 ™™g G 7.0 1 71w fu Wk
AnvﬂOﬁvwoﬁMﬁpsovH AwVQOﬁchﬁMHpﬂw@H

0 Jo syeas] LBasuy °I TIGVL

*Topol oToTIIed=D oY U

ot



II.

- 62 -

21 9691 ¥ mgfanln o0 42 % Fo oz L0

0g* ¥t ooz v/ metalaz = € -1 ® 1L 2 0

| 08*71 R e R R S A

60%€l==1  LZ°€L to'6l  7/oncetmne 1= sz -1 TL Lz o

651 82°€2 ®ngsng 2 0 € 0

L€l 09°61 nztin 0 0 z 1

e ll=t0  2S°LL LE°02 Cng o o € 0

8z*Y1 60°LL q\,oamﬁmfma & 7 =1L T L L 0

[+¢zI=t2]lg Tl=—2  67°2L ocest v/ mgifadn 1 w2 -1 T2 oL L o

gce=—1 €76 rzi==l  zezt vomeafm®m - 12 -1 T o1 1t o

glegl [+¢ozi=+z] s0°€t v mefmiln - ¢ -1 w2 1 0 1

erozi=—1  8L°€l  60°€l==1 10°€t v/ mefmiln . w0 -1 -t 1 0 1

geTl=—z  L6°TL 06°51 ®ng+Znstn oo t 1

[so°c1=-2] @rcl Iszi=z oecl 1/ agfz o € ® = z 0 o

«8%% A>mzvcaaom "Sdog A>mzvoﬁmom g Tep ¥ T 7 fu % «m.
(q)u0T3e0TITRaeP]  (B) UOTIBOTITIUSPL

penuyjucd *I FIAVL



- 63 - II.

TABIE II. Identification of Known Levels.

Identification (a)

Identification (b)

E:obs Jp calce 4 ) nB Efcalc , 2 n2 n3
0 o+ 0 0o 0 0 0 0 0 0
6,052 0+ (6,06) 1 0 0 (€.06) -1 0 0O
6,142 3~ (6.14) 0O 0 O (6.14) 0 0 0O
6.91% 2+ (7.01) o o0 1 (6,91) 0 1 0
7.12% 1= (7.01) 0 0 1 (7.12) - 0 0 1
(8.6)
9.58 1= 10,19 o 2 9.43 11
9.84% 2+ (9.84) » 1075 0 2 0
10,36 4+ 10.25 0 0 10.25 0 0 0
(11,10) ‘ ’
11,25 0+ 12,12 2 0 o0 11,52 0 3 0
11,51 2+ 11,21 0o 0 2 11,43 0 0 2
11.62 3- 12.20 1 0 O 12,20 1 0 0O
12.43 1- 12,24 o 1 1 13,18 1 0 1
12,51 2- 13.26 0o o0 2 12,49 0 1 1
(12.5+) o+ [13.54 0o 2 0] [12.12 2 0 0]
(12.5+) 2+ [13.07 10 1] [12,49 0o 1 1]
12,95 2= no state < 15.3 » 12.97 1 1 0
13.09° 1- 13,09 10 1 13.27 0 2
13,24 L+ no state < 17.0 14,07 0 1 0
J=1+ 12,29 o 1 1)fF=1+13.27 0 2 1
13.65° (1+2-) {no 2-state < 15.90 J=2-13.48 0 0 2
Notes: a. Energies from Ajzenberg and Lauritsen [7] .

b. Angular momentum from Schardt, Fowler and Lauritsen [ 8].
c. Kraus [9].

Reference for all other energies and angﬁlar momenta is Bittner and
Moffat [10], ‘
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TABLE III., Unobserved Levels.

Identification (a) Identification (b)
E J+ n, n, n4 E Jt n, n, N,
9.42 O+ 0 0 2 6.91 2= 0 1 0
957 3~ 0 0 1 7.2 2+ 0 0 1
9.84 2= o 1 0 7.68  OF o 2 0
11.61 3+ 0 0 1 9.43 1= 0 1 1
12,24 1+ 0 1 1 9.64 o+ 0 0 2
9.68 3= 0 0 1
1041 1= 0 0 2
10,75 2- 0 2 0
11.52 0= 0O 3 0
11.72 3+ 0 o 1



PART III., . LIFETIMES OF THE LOWER EXCITED STATES

1« Computation of Mean Lives.
In this section we compute on the a~model the mean lives of
the four lowest exclted states of 016. For three of these states, namely,
the 0%, 37, 1™ states, the identification is independent of which of
the two identification schemes (a) or (b) is used. For the fourth,
the 2+.state, the two schemes differ. Hence the lifetiﬁes.are computed

for the five cases:

Measured Assumed

Energy (Msv) Identification State Energy (Mev)
6.06 (a) or (b) A, o, 0, o) 6.06
6.14 (a) or (b) (0, 0, 0, 3°) 6414

(a) (0, 0, 1, 2¥) 7.01
6.91 +

(b) (0y 1, 0, 27) 6.9
7.12 (a)*or (b) (0, 0, 1, 17). 7.12%

¥ on identification (a) this energy should be 7.01 Mév, but the small
difference is immaterial to the calculations.)

The 3~ to ground, 2" to ground, 1~ to ground transitions, which
occur by single quantum emission, will be treated first. Then the
O+ to ground pair production and 2-photon processes will be considered

separately.

2.0. Coordinate System.
We shall now express the coordinate system in terms of which

all future calculations will be carried out. Ilet
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be a right-handed set of unit vectors of fixed

cartesian axes.

are coordinates of the center of mass in the'g,'g,'i,
system.

are a set of axes rotated from the ’i:, 3’*, ’l‘c,taxes, and
constituting body axes for the configuration.

are Buler angles (and an inversion operator) describing
a rotation from /:i', /J:', k! to (:f, /j\, “%: the inversion,
if it occurs, will be regarded as preceding the rotation.
is to be regarded as a shorthand notation for &, 8, ¥(L).
" with subseripts, primes, etc. will denote other

rotatlions,

The Euler angle convention which is followed here is that of

Appendix I on Generalized Spherical Harmonies: In terms of rotations

about body axes (f', 3','%‘), a rotation T or @, €, ¥ is one in

which the coordinate axes rotate first through ¥ about 'i',vsecond

through © about 3', third through @ about k'.

I''s obey right-handed group multiplication: a rotation F1

followed by a rotation TI" to produce a total rotation of ‘Fz is

represented by

Ykm(l")

P2 = T1 r.

are angular functions obeying the right-handed group

property

YT, = 2 YohTy) Yo
h==



Completing the definition of ccordinates, we let:
Qqs o+ 5 Qg be vibrational coordinates.

Then X, Y, Z, T Qys +ee » Qg are a complete set of coordinates. Ve

shall always disregard the center of mass coordinates, X, Y, Z.

-> -

Tys eee s r4 are positions of the particles 1, 2, 3, 4, given by

TS 2% e R Rt R o R

;123_{(1.[.?_1.)1 J k +%ai._._j-+qil. J+2k
4 /3 2 /2 % /B

V2 %3 V2 3 /2
A Al Pl A
- q.,y =it + j' - k! q, i' + j! Q, =1' +J' + 2k!?
7o {(+3) %2 L3
| 1 /3 2 /Z %2 V8
N A
=t + k!t -t - LI |
T B . L% 2 J}
3 /2 3 2 3 /2
R a Bl I Y a, - R RS
r;=a 1+ + == + =
1 /3 2 /2 2 /6
YT T - e I
k2 ] i J}
% vz 3 /2 3 /2
. qy T+ P+ q, =i' + :]" q v+ 3' -~
r, T e 0 +'GT) o, e
1 /3 2 /2 2 V6
-
A j'+’l\<'+_q2 €'+k'+2é ’i'+j!}
3 /2 3 V2 3 /2



in which
a is a characteristic distance, the ™uclear radius" appropriate
| to the model, the radius of the configurétion with all q = o.
ays “ﬁ’ ) are numbers ~ 3 associated with the three types of vibration.

Values which are consistent with the model are:

2\ 1/2 ‘
~ (2 L) =1.9x 10-13 em (M = a-particle mass)

a =
4 MW3
4Ma2w 1/2 w,\1/2
ay = ] = -1 = 2.98
1°\T K . Wy .
( 2) 1/2 = 2,40 on identification (b)
a - 3 ———in
2 wB = 3,15 on identification (a)
) 1/2 = 2.66 on identification (b)
a3 =3 (W ) ‘ .
3 = 2.63 on identification (a).

2.1« Normalized Wave Functlong.

(0,0,0,07) Ground state

y = ()2 03 exp(- s a)
° i=1

(1,0,0,0") Excitation Energy W,

vy = 6,06 Mev

ﬁQ»]w

H

(0,0,0,37) Excitation Energy Wy 6w, = 6.14 Mev

W= /7 75 [E2r) - 2O Y, .
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(0,2,0,2+) Excitation Energy w2 =, + 3w = 6,91 Mev on identification
(b)

&= 2 { V2 ay TIND) + 0 [T520(r)+ 22+’m(r)]}

(0,0,1,2") Excitation Energy W] = wy + M /4 = 7.01 Mev on ‘identi

fication .(a e

s o/s L { /vl IR 4 w2 ) - 2]
7 |

-1 L1,

(0,051,517 ) Excitation Energy Wy =gt 9w°/4 = 7,21 Mev on identi-

fication (b).
- : g 1 4lom 0 LOsm -1 ~1,m ,
= /3 /2 7 {v1 o5\ DI M Ll (D Ik A P (F)} ¥, .

In the above

1 __ 1 .
v, = -—/:2_(q1++1q5)
o

Y1 7%

. 1 .
v1 —E(q‘!’-l%).

2.2 A Note on Matrix Elements.

In computing a matrix element
*
<alo]b> = (7, 0%) —/Wg wa aT ,
the volume element we employ is

dT =days days <o+ 5 dqg sin & ¥ ag ae
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with 0<%, f<2m; - @< q; < » as limits of integration, and with
the operator O expressed in terms of q; and (g, 6, ¥). The wave
functioﬁs are normalized and orthogonalized accordingly.

This procedure corresponds to the use of the barred momenta,
wave functions and Hamiltonian of sec. I.2.2.2.

[It can be argued that the limits =w< g, < w are not
mathematically true to the model, inasmuch as the assumed potentials
certainly break down as lqi/ail - 1, and cannot apply for Iqil > gy .
Purther, the condition of sec. I.2.1 on the Jacobian of the trans—
formation has been violated by the time qq = <94 for exémple. This
situation is not serious, however, since all g, are > 2.4 and since

-a

e 1s +003, the errors that arise from this cause will be only a few

per cent.] -

2.3. Expression of Operators.

| Any operators used will have to be expressed in terms of
the coordinates Qqs eee 9 9o ' The operatorsl wili appear in terms
of the radial and angular coordinates* associated with each of the
particles; however, by virtue of the wave funétion symmetrj, we may
dhoose a particular particle, say number 4, in terms éf which to
perform all calculations.

S

Thus we shall require expressions for r I‘4 in terms of

43
9 and T+ When we compute the matrix elements between any singly-

There also could occur the angular momentum of a particle, as for
example in expression of magnetic multipole operators. However none
of our calculations will require an expression for L °
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excit;d vibrational state and the ground, it will suffice to use a
first order expansion in the qy o -‘However in a later calculation of
the quac';lrupole moment of the ground state of 017, a second order
expansion is required.

(1) The Operator r

4 .
To first order:
r, =a 1+%l+-—2~' ?}-(q4+q5+q6)}.
1 /B "3

To second order:

_ q
= o) L e af

S RARE I EXRRRRn

1
/3 ayd,

+ (/3 qyla, = a5 + asl2a, = q, - a51)

L
"2 (9,95 + asdg + 949 } .

(2) TIhe Operator T, *

We can obtain the rotation T 4L by a three step process. By

definition, 1"4 is the rotation necessary to take a set of axes
a

/it“', ™, /l\c“' such that T 4 lies on ?c“' and turn thém into the fixed

3, /j\,'lxc axes. We can break this up into: first a rotation T q which
brings ’i‘“, 3\"', X" into ’i“, 3\“, %* in which k" is the axis on
which Y4" would lie of &all q = 0; second a rotation Fl: which brings
fw, ﬁ'\", %" into 'f‘, 3',’?{'; third the rotation T" which brings

/i\" 5",?(' into /ig ?, /Eo



Thus: T', =T T!T.

4 "q 4
(Alternatively, the rotation PZ1 which carries the vector ak into
the vector réﬁ"'is made up of Fr1 which carries ak into ak',
- : ~ AT BT
followed by T 1 hich carries &' into ak" = a(—-ltX) .
- | s

followed by r~! which carries k" into =z Xkw r! = r1 it ol

' q . ‘ 4 4 4L 4

i = ¥ .
or again FZ Pé TZ T.)
| oo oy Rt T - Ty Tt
We choose n = = ll P2kl . en il dl  qe ik
/e /2 /3

Then the rotation Fz

Pq is obtained by noting that

£ oo g a{-%+q—4+q5-2q-6-}

is given by (d, 6, ¥) = (o,mﬂﬁ,% ).

i

4

_ o, 2 /3 Gy
;ognza{-qz-i'lk-c}i

4 o, 2a3

> A 9,2 .
rA-k“=a{1+ + [q4+q5+q6] .

% /B a3.

A . -
Since a rotation about 1i" carries G into’-ﬁ“, while a rotation

about 3“ carries k" into 1", the required notation is

-q q, - q 2 -qg-g
_;% - _452_32 about 4" plus ;2 + % about ", or since
2 3 2 2/3 oy ,

an infinitesimal rotation about 1" or 3“ is brought about by the
operator 13; or iS} respectively, then to first order, Fé is

represented by the operator

- 2q, =g, - _
P =1-1 L, L B g, (B, BT U,
q 2a X 0-2 2/3'(13 y

0.2 3
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If we need the I‘q operator to second order in Qs We
regard the rotation Fﬁ as a finite rotation through 6; about i®
and ‘through 6; about j%, (Any physically important operators will
be répresented by terms Ygém(ré). Thus any S; term in rq will
yield nothing and it does not matter whether 6 precedes é; , 6;
preéedes 9:'; or the two rotations are simltaneous, since

1 g1 -Gt St = & g1 anai n
sy Sy Sy 8! =38! .) We then use a second order expansion in eq

and 9; and keep terms of second order in Qs obtaining:

:——@ —S.L '_—]-. 2
o= 5 o (q, + a5 + qg) 2 (q, + a5 +qg)
3
1 1 2 2
+ =3 (q,a: + @9, + q,9,) = —5 (a5 + q3)
2d 435 7 9% T 9% 22 2
-3 - - -
o (/3 gylq, = a5) + a3l2q, = q, - a5))
2 3
' q a, q, a7
1 2 2 4 5
+ ] == [q, + +q]) (-i [-——+ ] st
( a4 aB‘/g A q5 6 a 2a3 X
q 2, -q, ~-q
+4 [—3+ Yo " % 5] s')
% 2a3 /3 y
a, q, -a\° a4y 2q, - q, - g\ 2
..l(—.z..;.A-_—qi) (Sn)z-l(_l+_.§.___4._3i) (St)z
2 a, 2a3 x 2 o, 2(13/3 v
- 2q, = -
+l 3%_,.?.&__32) 22.;. q6 (:14 qé (St st + st St ) 4 eee
2 a, 2a3 a Xy v % .
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3 .0. Emission Q_i ann‘b&.

16 the a-particles may be treated non-

~In the a-model of O
relativistically. Thus to perform the lifetime calculations for all
except the10+ state, we start with the non-relativistic Hamiltonian for
a set of particles of mass M, charge Ze (2 =2 here; for aé electron
L& ﬁould be =~-1), and spin zero in an electromagnetic field with vector
potential 2 and scalar potential .

4
S e,

i=1

H_é”‘ ;L(—) -ZQE(-))}Z-%V(-) -> - —>)+
T3 WP T e T10 Tar T3 400

=H_ + 7#’1 + 74’2 s where

-> -3

4
. _ J_ -> .2 - -> \ .
H, =55 ié; (pi) + V(r1, Tyy T3s T 4) is our original zero=-order

Hamiltonian for the a~particle model, and

- zl» - > > - > ‘ -> 4 -». |
= 5%1% ié(pi *Alry) + A(ry) - py) +Ze 514’ &)

22 4
w Z e 2 A2(r )
2w ;o

are perturbation Hamiltonians corresponding to the emitted »electro-
magnetic radiation.
According to the rules of Quantum Electrodynamics:
1« We can choose the gauge such that é = O,
2. An emitted photon of energy E,momentum K (K = %) and

polarization e is represented by the vector potential:

i -y -
L 7 (Bt = Kex)
2y1/2 2 ePI

i= (4nﬂ2 c 3 e+ K=o
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The normalization used here is the relativistic normalization
in which a plane wave, representing a particle of energy E, is normalized
to a prébability of finding 2E photons per cubic centimeter. ]
3. The probability of emission of a photon is to be caiculated
by perturbation theory; but the vector potential for a singlé photon
acts only once in the perturbation. Thus the 3k+2 term can emit or
absorb two photons or emit one and absorb the other, but can never
figure in a single photon emission process.
The transition rate w from a state 1 to a state O through

the action of a perturbation Hamiltonian 7#* is given by

W= 5% 55 1?451l%/’

vhere f’ is the density of final states,

‘4,4 is the matrix element of H = /‘1‘* P v.aT = <0|P|1>

ol o 1

:5 denotes an average over initial states and a sum over final
states.

N is a normalizing factor: in our method of normalization N

is the product of a factar2Ei for every free particle of

snergy Ei in the final state.

3.1. Single Photon Emission.
For the particular case of state 1 with energy Hj, spin J1
and 2z component of spin Dyy going into state O with energy wo, spin

o
into solid angle d (0

J s z component m s with emisaion of a photon of energy E = W1 - WO



2
_ Ean
f (2mhe )3

_ AN (Et-K-x ) (Et-K-x )
= 3 WA £ 163 k: o

i Et-K-%, )

- 4 R > >
- 32 )/ 2 o @-5,)
since K+e =0.
J J
1 o
-ty = s =
(2J1 1 polarizations m1=-J1 o =3

(e 'Pi )]

If we seek the total transition rate (assuming that this

process predominates), and deal with an initially unoriented state,

then the sum over polarizations yields the factor 2, and integration

over dJfL yields 4w . Further, all of the wave functions we deal

with are symmetric in interchange of any of the four a‘s,»so’ the

4
in %" will yield the factor 4, and we get
i—1

= 2%, 1 o 2, 2
o 2§ E T e

and putting Z =2

28 62
w = 25, + 1 (e B
and
J J 1,0, 2> 2
1 o e°p (EtXer,)
™= S, s <O,mo ch-;ey i 1,m1> .
my==J m_==J
1 1 o' o

The mean life T of the state is then given by

T =1 .
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3.2. Maltipole Expansion.

In the calculations of the matrix element sums M, we can
choose any i =1, 2, 3, 4 (any other choice would be equivalent) and
choose photons in the 4z direction K= %lﬁ with polarization in the

N B
i

=3
x~direction e =1

We need the matrix elements of the operator
s-p; FET,)
o © .

However instead of using this operator directly in computing
matrix elements, we use a multipole expansion, based on fhe fact that
the exponential is expressible as a power series in Kﬁg “which is of
order %% and that for any particular wave functions the nohfvanishing

terms differ in order of magnitude by the square of this quantity
B ) 2 (JL) 2

2m 02 8
o

where m = mass of electron and a = Bohr radius 5%%; o E > ~6

2m c
a 3. _ -3
and = ~z5= = 1.5 x 10 7, so that the successive non-vanishing
o

contributions differ in magnitude by a factor 1074,

We shall require the expansion to third order (second order

in zig ) s
-> -» (K— ) -
Mc z i = -—B (1+ B K-r - -—- (K°r)2 + oo ),

(1) First order terms: Electric Dipole operator.

By operator calculus,

> -3

ep_ 4 e'r_iE-*.-*
Me at ¢ K- ST .



- ~
Putting e =1, we get

[y =
e
.

(2) Second order terms:

Put R=2%
e
1@ ED) _E Gk + R ED)
c -2 L Mic ]
(8-p) (k7)) = (2-7)(k°p)
+ g [ Mijic ]

From the first of these terms arises the electric quadrupolé operator

-E2

iE d > 5, A D> - - - A =
7 ax LEer)r)] = v (8-7) (R.7)
_Ez
= ——'——2){2(:2 2X o

From the second arises the magnetic dipole operator

E
2KM¢

s - ”
s (cxp)eJ.

(3) Third order terms:

> >, = .2 2

roamhbw Rl
c c
wz - - A -, '
=25 ¥ & (D6 - 7]
c

+ A RED) P DR D (D) G5

t35 & PG



The first term gives rise to the Electric Octupole cperator

~3 3 -> -
—%7 (e°r) (5[k~1'7]2 - iEB x(52~2 -r%) .
30/”¢ 30){ c
The second term is the Magnetic Quadrupole operators
B (7. @xD) rxp)e 3]
J+(rxp)lz+alrxpl) il .

The third term is a third order Electric Dipole operator:

3.2.1. Electric Multipole Operators.
In the calculations, we need expressions for the éléctric

maltipole operators in terms of radial coordinate r, and angular

4

coordinates T as invariant under permutation.

4° In this we regard rA
Thus the parity of the angular functions for an electric multipole
of order 1 1is -1t

The electric multipole operators E 1 are: .

(1) Electric Dipole:

’ &'1 =% ._r,/é (Y;):"1 (r) - Y‘;’J(FA)) .(first orde,r)

£ (3 ) -1E3 (

1 0,1
T, ) - Y T, )) (third order).
] ){3 3 ” ( ( ( order

Either of these operators can induce aJ =0, 1; Am=1,
parity change transitions (no O - 0). Normally 51 would be two
orders of magnitude larger than E 1(3 ) except that in the case

N identical particles, the matrix element of ;i is just % x the matrix



- 80 =~ III.

element of i, and since X = 0, the matrix element of E always
vanishes, and only E 1(3 ) can contribute,

(2) Electric Quadrupole:

2
2 T
- B4 0,~1 -y
52 ke (07 () =132 (,)) .

This operator caen induce AJ =0, 1, 23 A m = 1, no parity change

(o 0-+0,1->0, 0> 1) transitions.

(3) Electric Octupole:

3 _

=3 T

£, =3E 4 o) -yl .
3 ’{303 15 /3 3~ 4 3= Y4

This operator can induce AJ =0, 1, 2, 3; A m =1, parity change

(no 0, 1 >0y 1; 2 » 03 O = 2) transitions.

3.2.2. Magnetic Multipole Operators.

In our calculations, we shall never employ the magnetic
multipole operators. In general a magnetic 21 pole has parity
(--1)1”1 and éarries angular momentum 1M, except that for a set of
identical Bose particles, the magnetic dipole operator can never change

the total angular momentum.

(1) Mggnetic Dipole:

7ﬂ1= 32%(;4x54)'3'\o

The total angular momentum, K = s, (;g x 5&) vhere the
i

sum is over all particles. In any matrix element of/ J for identical
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Bose particles, however, each particle contributes equally by virtue

of the symmetry of wave functions and thus for N particles, we can replace

->»
Jd or in our case

-

1 = >\
P (ri X pi) =

e =2 4 _ _de
— J . j - (S_ - S ) L]
8Mc® 16Mc® *

Thus in this model, the magnetic dipole operator can induce

only transitions in which AJ =0, A m =+ 1, no parity change.
(2) Magnetic Quadrupole.

772 eMc K [j (r4 x p4)24'+ 25(1'4 x p4) « 31

(5. 2 +z J, o f'] .
6M63ﬁ3 4 L 4

An expression for 34 can be found but the procedure is
~ messy and has not been carried out. The form of the expression which

would be obtained for m 5 is

2
- —E _a ' s1 o1
772 6M33K3 f(qi, Z‘s g ) [Yo (P ) + Yo (™1 .

This‘operator can induce AJ =0, 1, 2, Am =+ 1, parity

change (no 0-0,1-0, 0~1) transitions.

3.2.3. Transition Rates.

Finally, observing that the matrix element of the term
L |
J’+1(P ) between a state ??‘p and the 0,0 ground state must vanish
unless J =J', p=p!'y m' =+ 1, and that magnitudes of the matrix

element for m = + 1 must be equal, we have the rates:
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3~ to ground
& 2—,7- <T) ?2 |<0,0] €3 5%

2+ to ground

Wao =% G2 B 10,0l Eyl2" 12
(two cases to conéider, accofding to the identification_use@).
1" to ground. In first order

W, = %33 (ﬁé) % |<0,01 €, 17,1212

which vanishes, and we are left with

R D) 7 <00l € P2

3.3. Calculation of Matrix Elements.

(1) 32 =20

By = <0,0] EBIB",1> .

3

F o). o (Wr)B ot
3 = ok r,) .

We need the zeroth order expansion of r, and T, in terms of 9y

1 _ Y2,m ,m
v, = (r) - mly, .
f °

4 4
r4=a
= L] i =
TA Fq FZ T with Fé 1.

Whence

ot 1(1* ) = 2 v; ’h(r') Yh’ 1r)
h=3
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and the only terms which can survive integration over ¥ are those

wvith h =+ 2.

FA = (0, sin”} % , % w)
) _ #3in/2 o042, . -1 /2y _-. /30 .2 i
YB_’_ (Fz',)"e P3_’_ (sin /;)—+1 7 3 /;

whence

W.a 3 . 1
- 7.1 10 g2, | 251,
By = (—%;) (wc, /-ig: . = x 2= 27 () Y’;_ ()]

,1 - ’1
Bl - 5o, )

. ;2 _1 i2 "'1 *
Now YB_’ == (1 ) and the only terms which can survive the
integration are the products Y,='7' Yar! and v3*™! ¥72*1 unien

each yield %

. 3
W.a
1 ( )
B - .
3 9/i% ’%°

I

B, = <0,0| 52|2+,1>

1= 5 AL {aglo oo s gten f

<
]

W) 7 1
- Oy~
2l7) =~ (ZE) -f-z—z. Tor ()

and we need the first order expansion of r, and I, in terms of

4 4
%, and q3:
r4=a .
9 i
T, =T I!T with T =1-1i-=28!+3j==g1
4 "q 4 q o X T 0y y



-8 =~ IIT.
Only the S;c and S}L terms can produce a finite matrix element:

f 1 A ’ i
I = = 1} 1 I == f - L]
St =3 (8! +8!) st =3 (st -s!)

(r' r) = 2 ro:ry) v (r)

i

ohl y~-1sh
RS SR

O’h i 1’h
Sy Tar =3 /6 (4}

~1,h
o)

Since only the q'; and qg terms survive integration, we need:

1,0 _ v 1s0 _ 10 —11/2"%"
L0 - ¥, 00()) = 20, (sin T J5 ) =

i[Y. (I") + Y, ’2(1*')] = 1[¥)? (r') + Y (r“ )]
= P;’z(si_n'-1 %) + P; ’2(5:':.n-'1 /%) = - "3@

and -

0"‘1 o] 1 * ;2’"1 = - i
Yz (Y i H Yz - (Yz ) .

Putting all terms together and keeping only surviving terms:

2
Bz_i(‘*‘za) LB
2 He 2 /3L 5 O

(w0 (2 L 1 @+ L2 {1217+ 152 12 ) 1y,

The q§ and qg terms give equal contributions. From the angular
integrations we get a factor 1/5 and from the a4, or g integration
a factor 1/2. k



ITI.

)+ St - G2en

1 1,1,
Y_;(I‘)}\Fo

2 2/:2—4-
2
B :-—-j'—- 1— (Wza) o
27T o (e
3) 2t' -0
By, = <0,0] €,]2"1,1>
W= B AL {AE]
- /§v1
2 2
W r
2oy 1
€, =- (K;) —
ren

We need the first order expansion of r

0,=1
R, .

and T%, in terms of

A
Q"As q5’ gt
- 2. 1
1‘.'4-51(14‘-/é Gl3[(14~I-q5-f-qé])
4"=»I"q I‘Z " , with

q
In first order in qA, qs, de

n a2
r 17 ==

Expressed in terms of
1_ 1 .
vy = ——/ﬁ (qu + 1q5)

vo“
1~ 9%

r ‘1-"""(q4 a5) S} +

2/5(1

(2q6-q4'-q5) s;, .
3

2, -ty - ~i '
a” q [/g(q4+q5+q6) 2(q4 q5)8;+ /_(2% q - qs)s]
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-1 _ 1 .
vy -—/—-é-(qA-i%) ’

i ¥
9 La = e V} - P

DS { [ (- 15) el ) ]

+ 0 [-28 4 ..l...;(sn..st)
’ [./5 2v/3 7 “]

+e-3ﬁi/4v;1 [~-—‘?'—/:g+ (21’“‘-:1,};) S_}_+(21;-Z'1;_;) S.'.]}

] Yg_;h = /3 Y” .

In the matrix element B,y » the only coordinate combinations

which can survive are v]l \£ and v? v? s multiplied by |Yl§_:_1 |2 .
t1

Thus for the \f term of o1 9 We need the coefficient of
a rn

”’ 1(I‘ ) tn 2 y9rrl (r,) which is

a

+3ni/4 2n ,+1 .
{ vt @+ (4

M

%Y ,+1 ,)
4 43) ‘/_2+ (P-
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0,1 - 0,"'1. 11 - —1,"’1. “1,1 - 1,-1 Y
We note that since PJ’' = - 3Ty prl =P T Pl = Tl

the coefficients of the terms IY;_:_1 ]2 and |Y;_}_’1 |2 in the matrix
element are of equal magnitude but opposite sign, and thus cancel.

There is left only the v? t erm, for which we need:

O,+2(F') + _J;-_ /g [Y ,+2(1..‘ 1’+2(F, )]

./'6
2n o ) -1 +2 1,42
=+1 TR(e)) + == /'w ’ )—P'(“”}
{ 2 4 2 4
2 3

2 _14-2 _ 2
2' (e* P, %(e!) = 3

2 4

Thus the coefficient of Y 1(l") in r Yo’ 1(1'1‘4') is

2+ A
2 2
+1 8 4o B 2R 5,88
£13 3v7 73 t3ig
3 /6 3
12,1 ,
From the integration of |Y2+ |“ we get a factor 1/5
and from the (v(;)2 a factor 1/2, yielding:
e : L. /10, 1 .41
thz- 7; a—-. 1.—.—.%.2.%1
3 V2 /6 |
5 = 10 Wla 2
21 7 -1 36 oy c *
(4) 1_=0

By = <0,0| 6111',1>

g 1 1,1 0 Oyl =1 1,1
/3 /2 7 Dvy ¥20(0) + v] 1270() + v Y, 2T v

-> "]
81(1'4) T——j_‘ ?_ (1‘) .
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B1 should vanish. From subsection (3) above the coefficient of

o a |
vy I, () in 4 4 1 (r,)

(—+-—-—-—) 2.91’1‘1(911)} .

In the matrix element, contributions from these terms w‘lll cancel.

The coefficient of v{ Y‘;:'1 (r) in -% rz 19 1(I‘ ) 1s

2n oo o] o 2
(8f) + — IP *“(8!) - ’ (e'>]-—-—-— n~-1).
/"/. 4 35

Thus the matrix element B1 for whiech n = 1 vanishes,

B(B) - <0.0|E(3)“-, 1>

E(B)—-l(il) 073 1_1(1" .

From the above, putting n = 3, and noting that Y?"-‘I Y?ﬂ =
IYO’112 s we get
W,a 3
P es () L sl

™
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3e4he Lifetimes: Numerical

(1) 3-state
9 2 W
_2. (e 2
“"30 - 7 ( c) H: IBBI
. 6 2
9 2 W.a W me
- 2 e ﬁ 3 o)
735 x 92 KE ¢ m c2 H
With °
2
W
( a) _9 M
[ 4 Mc2
, 3 2
2 W W me
~2 @ [ 3 o
w30 245 (ﬂc_:) (Mcf%) 2 K

(M = g-particle mass; m = electron mass)

Mc2

=/ x 931 Mev
n e = .51 Mev
—5—5 = 1,285 x 10-21 sec.
mecoe
o]
3 ' -
,rBo = ‘3 = %*45- x 137 x (L]é-%%l) (gé-&) x 1.285x 10 213ec.
30 L] » k.
T3y =32 x 10717 sec.
(2) 27 state —Identification (b):
9 2
- 2 (& 2 2
W =% Gz 7 I8,
i 2
7 2 W.a W mc
-2 @®y .1 |2 —_—2. Do
=% ) 3 ('HE) 2 K
U~2 moc



- 90 ~ III.

with

N
= lNEZ

W W
2 =2 2
(—H‘-’) 4 Me 3

st

1
9w2

(s3] 21
(—2) (137) (6 91)(6 91)(4‘-—%:3%-) gigll-)x 1.285%10  sec.

ffz°= 1.95 x 10_15 sece.

(3) 2t state - Identification (a):

with

=Wl -2y = - -
Wy = W= 2y = 7.0 - 2,30 = 4,71 Mev.

2 2
w = L (%E) ﬂ Wi W% Wi n,C
2to 45 A WB 3 Mc? n 2
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_ = (&2 il L._.?.'él 2211,
Toro wz,o € a3 @& Ggh E5BL 65
x 1.285 x 10~21sec.
T e X 10-14 sec.

210

(4) 1~_state

(3) =__( ) i]_ ‘3(3)|2

6 .. 2
29 ( ).l. W1a) ‘441 m e
= 3.81 x 225 x 2 he 2 Ke L2 K
3 0
with
2
W W
(‘_“%i) e
c 4 Mc2 WB
1.1
2 9 w
dg 3
=W, -2 W= - =
WB - W.l 8 WB 7 21 2030 1& 91 Meve.
2 3 2
w3 - 12 & ("’_1) l ‘13_) LT
1o 225 ‘Ac W-B Wy Mc2 mocz '
(3) _ = (222 491 4....221 22115
T e = w(ai = &) () @ 21) Gz G5z @)
1o
x 1.285 x 1(}—21 sec.
7}1(3) = 1.6 x 10"11 sec.

4+ Fuarther Considerations on ’r 10 *

On the strict g-particle model, first order eleectric dipole
matrix elements vanish and so we had to resort to the third order

electric dipole operator E 1(3) to obtaln a finite lifetime for the
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17 state
74?3 = 1.6 x 10711 gee.

We expect that this is much too long, since a small admixture
of single particle wave function would appreciably shorten this lifetime.
[For a single proton cutside a N15 shell, the transition rate iwcmld be

W

5 2 W, \?
_ 2 se”, 1 1 2 2
wsp =3 (Zg) T (K;) <r>_ <sin® 6>

The last two factors coming from the normalization of wave

o
.
U fot
.

functions, and with

2 2
< gin™ 8 >av 3 3
<r>? =[(32 ) + (35) e (1.3 x 1612 x 1073 @)?
=2 x 1.9 x 6.35 x 10720 on? = 1,15 x 1072 o ;
-K'E = 3.86 x ‘I()'-11 em
mc
we obtain
2 W, 2 -5, me2
w -3 e ( 1) L (115 x107%) | T
sp 27 He mocz (3.86 x 10 11)2 A

Top = G3) (137) 1) 12)x 10 x 1.28 x 1077 sec

-1 986(3 0]

7x 10
However, following the arguments of Wilkinson [1] we will
be able to bracket the lifetime more closely.
To obtain an upper limit for the lifetime of the 1~ state
we note that the 1~ state can decay to the 3 state by electric

quadrupole emission, for which our method of calculation should be valid.
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Experimentally the 1 » 3" process is observed to be less probable by
a factor < .008 than the decay to ground. Hence we can obtain the
upper limit T, < (.008)~1 T 3

| To obtain a lower limit we can use the fact that while the
2+ state can decay to the 3~ state by electric dipole emission, the
2% + 37 process 1s less probable by a factor of < .005 than the 2
ground state decay. From W 23 < 005 w2° and from our previously
calculated values of 'f' 0o? We can obtainan upper limit for an electric
dipole matrix element. By relating the T. 10 to T 23 W can obtain
a rough lower limit for T

(1) 1= 23"

10°®

Again we shall use only that part of Ez which lowers

m= JZ °
BIZ = < 3-,m~1| Ezﬁ-,m > with m=-1, 0, 1
= “/_ 5 e - 2 v,
¥ = 3 /2 —5_3— v} ) + V) V) + -1 ol IR
W )2 1
-»> - - o’
E,G,) (K? ——-4—/2: r,) -
Here for the v, term of E 2(r&) we need the coefficient of
2
B (W1) 1=y “’ o,
Rel a3 "z 1

which by sec. IIT.3.3(3) is: |
=y ke 0¥ 1, 1,¥1 1.1 15 o)
+1ib = % /ng (ez)+( ) ,/(SP (e')+(4 W /@Pz (94)

e

b

b

™
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In the computation of BTZ s these terms do not (as before)-

cancel, but add on account of the minus sign in @?_ o
+1 _
The important part of the 4 term of E 2 will then have

an angular dependence proportional to YZl’ -1 which will mu}tiply
‘I’::m to give a term proportional to YZZ_’ -1 Y-.;-1 ™ | For these products,

we use the Clebsch-Gordon expansion

't Ijﬂ.'l k+k! 1 g 3317
ol ol - + ,m+m jj Jj
Yl.]?sp Yl.';' sp! 2 YJ:PP' © kok!'ykitk! “mym! ymim!
7 =|3-31
. ;2’3.‘1-1
and need the terms proportional to YB- s Or
C2‘13 213 and G213 213

-1 ,_1 ,-2 -1 ,m,m-1 1 ,1 ,2 C"1 ,m,m-1

which are equale. The terms arising from v? cannot yield a finite

result since there is no way of forming Y%E,mﬂ out of Ygf_’ﬂ} =1

S
Hence
W,.a 2 1 |
n_ [ 13 2.1, 213 213 L
B = ( o ) w12 /7033 € C-tymm-1 ib
and v
m (2 w134_1_1 21312 2 (213 2
s Is 4' = e 168 'é' 112l b 2 |-1,m,m~1l .
m (13 . .
Using
31
ijve 2 _2J +1
mé"i' | m,m',m—%-l'n'I T2 +1
and ”
2 _25 . 21312 _ 2 213 2 _1
bT =385 leial® =55 Sl nmil =5
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m2 _ _5 13- 1
|B I” = 555 Ao 2
a
3
and
4 2
9 W,.a me
w = -2-— x 5 . .J__ ) 13 (o]
13 3 23 x 34 ag %c m002 e
2
1.1 (w_;lf) _9 _z Mi3
a§ 9 w3 ¢ 4 Mc WB
w3 - 4.91 y-bv, W13 = 702‘1 - 6.14. = 1007 Mev.
2 W We. (W \ZW m o~
o, =8 @ 2 _12(_12) M3
13 27 ‘he w3 WB M02 mo°2 B

q‘ ( ) (137) (4-2-)(-4§)(4 X 931) ('511) x 1.285 x 10;-_21 sec

.07 \Toor’ o7 ) oy
iy = 3.7 x 1071 gec.

which fixes an upper limit for the lifetime of the 1 state as

q;o <5x 10-13 sec, which is less than the previous estimate of

7‘§2) = 1.6 x 10-11 sec.
(2) 23"

We have noted that in all the matrix elements so far calculated
the expression for the rate of an (1)th order transition can be written
as a product of

a fraction ~ % g

20
o tern K- (H-)“(W)l W
]
wi w2 Mc2 n 2

where Wy corresponds to

(2708 ol OO
N
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, | 2 | m c2
a constant factor (5=) 0 .
e 7
Hence we should expect that, within a factor of approximately
6, on identification (b)

3
Tio _ _Wa3 _ (‘21)

T3 Wio VM

W
3o (=2Ty?, 49l 1073

hence for a lower limit
| S 3 L .16
7)10>1.1x10 23—200x1.1x10 ‘1"20—1,3{10 sec.
and we then obtain on identification (b)

4 x 10'-16 see, < qa1o <5x 10”1 sec.

On identification (a)

3
Tio. ()", 82) = 1.9 x 107
T Wi 7.017 T e

T >200x% 1.9 x 102 7., =9x 10" Pgec.

1o 210
and

9 x 10-'15 see. < 7)10 <5x 10—13 seé.

The above limits on the lifetime would correspond to a Y
wave function which is a mixture of a single particle state/a-particle
state in the ratio 10-2/1 to 10-3/1 or in terms of expectation,values,
-5

to a probability of 10-7 to 10 © of finding a proton cutside an

ag=particle.

5. Decay of the O Excited State.
The O excited state is known to deeay primarily by pair pro-
duction. Two quantum emission is also possible, however, and will be

treated first.
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5.1 Two Quantum Emission.

Iet
K1, Ké = vector potentials for the two photons, with
-> -
eqr e, = respective polarization, and
E1, Ez, = energies
E E

- ___l/\ - __g/\ -

K1 =3 k1 » K2 =3 k2 = momenta
dn,1, d_{)_2 = solid angles

density of states.

“

Pixing the energy E2, we have for the density of statess

Ef Eg dE, daq dq,
dp = % .
(2ue)
Integrated over all d112 ’
mf ng aE, 40,
d/ = 6
(2uHfe)

~ A
considering k, =k and integrating over d¢1

2 -
8 2 .2
d = ES ES dE, d(cos 8,) .

The perturbation Hamiltonian is

2 2 2 2 2R
Y - 2Z°e (K o i ) = Z27e” (4uc K L s e.e exp[- :L(I-{> +K, )';.]
2 a1 2 Me® ;T2 A2

and in order to produce a transition O+ -+ 0, the second order term in

the expangion of the exponential is required.
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(1) _ 22 2 3 4 =1z = 2A . n
3 _%0-5(%;) (gc> ﬁ ZKZ[(K1+K2)°I'J] 8, &,

The transition rate into energy dE15 angle d91 is

2 2 2 . i
o o2 gn” £y Ef B d(cos 6,) g2 2 2 2 y
[t 488y (2ny{c)6 Me? Ko (fe)
- - -5 2
[(K+K,)r.12
* ZEE: <0,0] & —1 Al 3.3, 0,00
polarizationa 142 J 2f

We can remove a factor (6‘1 -32 )2 from the matrix element, and if we
call @, = angle betueen }’j and (K, + £,), then since the wave

functions are spherically symmetrie,

|<] 2 [(K1+K ) . ;j]2l>'2 = ]K +K Il* (cos 9 )2 |<] 2 2l>|2

but

The 2, in the matrix element produces a factor 24, and so, putting

J
in 2 =2
L7 2122l (42,52 |
7 K, + K |“ = 22 (E] + ES + 2B, E, cos 6,)
7 22E dE (E +E +2E1Ezcose1)2
qw =5 (= 2 2 %
(Me*) (He)
x5, (31.32)2 d(cos ©,) I<]22|>|?
polarizations 4
now
2 (31 -32)2 =1+ cos2 91 .

polarizations
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Integrating over d(cos 91)

2, 64 2.2
o = ?Z o2 )2 E, E, 3 (E + E ) + 75 Ey Eg- %1 |<|r2|>|2 .
or |\ Ke (Mc?)? (y{c)" 4
Putting u
4 4 : o
|<|r2| ]2 = 355 = % égg) and integrating 4/, dE,
o (Me™ )" W WB o

we obtain the total transition rate for two-quantum emission:

: 2y 2 W W L W me
Zg;; x (K") * qoxl B =%
¢ 3 Me m c E

and a mean life for this process

ff: =—222§._x(137)2x.6'_1/t (4_6_320_227_)43(;211

1
w16 x4 6.06 * 6.06

x 12.85 x 10721 sec.

7 =3x 1077 sec.

5.2. Pair Emlss;on.

In the Feynman reversed time formulation. [13]; pair emission is
the scattering of an electron from a reversed time (positron) state
into normal time (electron) state. The O' = O pair transition occurs
through the production of an oscillating electromagnetic field (the
matrix element of the nuclear electromagnetic potential) which in turn
brings about the scattering (pair emission).

The electron ard positron must be treated relativistically,

but the nucleus can be treated non-relativistically.
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Consider the pair production process first.
Notation: units are chosen so that Y =c¢ = 1

E1, ;H = enérgy, momentum four vector of positron ,

->

AR

E = 55 + §é= total momentum imparted to the pair

= energy, momentum four vector of electron

E1 + E2= total energy imparted to the pair.

. Since we can neglect the nuelear recoil energy,

+
=i
i
=
i

the excitation energy of the O' state.

V(p)s X(3)

four vector potential for electromagnetic field
which produces pairs.

The Dirac Hamiltonian for the interaction between an electroﬁ_énd an
E.M. field is

?* = eﬂ.

where for any four vector

-
n

— _, ]
Sy Ex’ %y’ Bz’ Bt = Bt’ B , the notation

= 14243

o
<

fl
LA
% )
] il
R 9
i I
~

0, MEY

and. §; are the four-veetor form of the Dirac operators, satisfying
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Then the relativistic Hamiltonian for the interaction between
an electron and an E.,M. field is
P o= el = eV Ut -eh % .
Sinee in this problem the E.M, field does not represent free photons,
we may choose the gauge so that % = 0. Then the interaction is simply

?4'=3V‘t .

The total rate of transition is given by

21 2 A
w =3 § {lozmione? £}
where N is the normalizing factor for the emitted particles, and in
the Feynman formulation we use

N = (-231) (2E2) = =4E.E, .

The density of states is

vem— .

_P1 P B iz dEy dE, 44, dll,
(2m) a(E, + E2)

and assuming that the nuclear recoil energy can be neglected (nucleua

considered infinitely heavy with respect to E1 or E2) and regarding

E1 as fixed,
dE,

. F aB) =1,
d(g, + dE,)
Then for emission into energy dE1 and solid angles d111 and dn,

p_ 1 PP O 4, A0,

L1

For the matrix sum, we note that the matrix element <0,2|?*[0',1> can
be broken into two parts, a nuclear and an electronic.

<0,2|H|0',1> = e <o|v]|or> <2] 1t|1> .
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We can compute the electronic matrix element best in a momentum space

representation: i.e., if the nucleus imparts total momentum E ’

<> -3

1 B
<olv]o'> = v(p) = fV(§) e K 23,
where
> 4 Ze
V(R) = W 3 s Y odr .

=t R -1

Then the matrix sum over all spin states for the electron and positron

can be found bty spur technique:

5<o,2|’H|o',1> = &*|v(®)|? spur [(#,+m) Yt(152+m)'3‘t]

here
By = =By Yy +py o ¥
By=E ¥ympp o ¥

it

spurl B+ ) ¥, (Bt m) ¥,) = Spl(=8, ¥, + B, § 4 m)(5, ¥+ By ¥ +m)]

~4(E, E, + 51 . 52 -u®)

combining expressions, we get

2
- &fe 12 : > 2> _ 2
w = Zeg [f] W12 @5, + 3, B, - 5% pyp, @8 a0 4, -

v(p) = V(p)

w 1 /2 - ipR e
/ /1 f i V(R) e P‘ccs ag d(cos &) dR
o - o

R
o sin 2
4 / V(R) == R 4R .
(o]

"
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Now
2 4 Ze
V(R) = I‘Ifg S TS Y, ar .
. =t |R - rjl

However, 2 = 2 and from the symmetry of the wave funetions, 3
3
gives a factor of four. Further, V(E) must be spherically symmetriec;

hence

- 1 R ©
V(R) = V(R) = &e {g‘ /_ Y, AT + / wg;‘-’ Yo df}
T, Fee R 4

The = « limit on the first integral and the volume element d7

are to be taken in accordance with sec. III.2.2. V(R) dies off rapidly
for R > a, and V(2a) ~ 1072 V(a)e In forming V(p), therefore, since
p < 5.5 Mev/c (and for R = 2a, %R' ~ %6) we can let (sin E%)/(PR/H) ~1

and ﬁse
R
w /M (a -1) —q';z
V(p) = V = 32me /Z Rq, e = dq, dR
T 1 1
o -0
o w | O -q?
+ R°g [a(1+-l)] e dq, dR
1 a 1
o] (B_ _1) 1
% a
V = 32ne JZ (1, + 1.}
1t 1 21 °
In both I1 and 12 we may with little error, replace the lower limits

on dR by =-w.,

2.2
<0 w (=] a, X
R 2
I1=/—w ----§'<=:>x:1::[-cz1 (%-1)2]&1:-%/ (x + a) expl- 12 ] &
—-co a
2
—_i—-ﬁ-
- 2a. *

1
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In 12 we change the order of integration:
/. / ) dq
q
. el =h) 1 -2
1 1 1.2
= q a(l + -) e R~ 4R 4q
/__m A 1 [ oy ] 1
it q 2 =q 2
= q 1 1 _a/m
12-/ Y [0+ e agy =5
=~ 3 1 1
I.+I,=~ a—z—'@
1 2 - 6(11
V= 16w a2 e y2
3ay *

Putting V into W :

5 ok &

W =
9ﬂa$

// (85, + By Pz'm)P1p2dE1 day da,

-

integrating d_{)_2 s putting 51 . pq = PqP, CO8 @ and integrating d¢1:

Zae / (E o * PP cose-mz)pp d(cos 6, )dE
1¥2 172 1771
9}{ i a
integrating d(cos 8), using the extreme relativistic approximation:

_ _ 2
Pp=E s Py EETE
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and letting E, = w1 - E1

2
W
9 4 4 1
W= 22 % / E?(w1*E1)2dE1
94 n o) )
27 4341{3{

EET- A
1

putting back all f, ¢ terms

and with

e

8. 1
15m (KE) W,

T =3=1Fam? Gl x EEE 2l < 1, 285 x 10721 sec.
T =446 x 10-12 sec.,

6. Comparison with Experiment.

The experimental and theoretical mean lives for the four

lowest excited energy levels are summarized on the followlng page.
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' Mean Life in Seconds.

State  Energy  Experimental Ref.  Theoretical Remarks

(Mev)
of  6.06 7H1x10" 11 1141 4.6x107%2
- >403X10-12; _1.1
3 ba14 -11 (157  3.2x10
, ' <1 OA{J.X10
2 6.91 <1.7x10 [15]
| 2.4 x10” 14 Ident.(a)
-16,
{;¢X10_13’}  Ident.(b)
- _15 <5X10
1 7.12 <1.2x10 [15] -15
{:2X10_13i} "~ Ident.(a)
5x10 o

The prediction for the 0" lifetime is a factor of ~ 15 too
short, while that of the 3~ state is 2 or 3 times too long.

Since the o-particle model is expected to be fairly good in
these éomputations, the discrepancies here reflect thg basic inaccuracy
of computation with inexact wave functions.

For the 2% 1ifetime it is apparent that identification (b)
for the 2+ state is in closer agreement with experiment than is
identification (a), although the lifetime computed on identification (a)
is no more discrepant than that of the 3  state. _

For the 1  lifetime the theoretical limits are those given
by the back-door approach of sec. III.4. Since the upper limit is based
upon the 2+ lifetime, the 1 lifetime agreement with experiment is

also better on idsntification(b) than it is on identification (a);
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PART IV. APPLICATIONS TO 0!/
e AEErOQCh.
The mucleus O/ is known to have a ground state with J =,% +
and a state at 870 Kev excitation with J == + . The lifetife of the
% + state has been measured by Thirion and Telegdi [16] and found to

be 2.5 + 1 x 10 1° gec.

On the striet shell model, O17 is expected to consist of a

single neutron outside of a core of O16 in the ground state. In the

ground state, the neutron is in a d5/2 state; while in the excited
state, it is in an 51/2 state. On such a model, assuming a radius of
1.5A1/3 x 10“13 cem (A = 17), these authors [16] find a lifetime of
~ 10-7 sec. ‘

Théy then depart from the strict shell model, assuming an
- admixture of excited core state (016 in the 2+ state) and find that upon
16

assumption of a transition rate for 2+ i O+ in 0" which ié 20 times

10 sec-]) for a single proton transition in 016, then

that (1.25 x 10
a 2 per cent probability of finding 016 is sufficient to account for the
observed lifetime of the % + state, and is still_consistentAWith the

. measured quadrupole moment [17], - 005 + .002 e x 1072 on?

In this section we perform similar calculations,‘using the
a~particle model to describe the 016 core. We find that we can obtain
agreement with the observed lifetime of the % +>state‘on identification
(b) for the 2+ state of 016, but that the electric quadrupole and
magnetic moment of the ground state will be of slightly ibwer magnitude

than observed values.
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2. The Wave Functions.
We assume that, as a result of some unspecified effective
potential between the neutron and the 016 core, the two states of 01‘7

can be represented by:

‘9?5‘/2(0‘7) = ao@fi‘ (n) wo(o16)

* 2 C}{iﬁ?:f,/zéj (n) ¥ (0')
j=-1/2

11"1“/2(017* =1 @s (n) ¥ (010)

5/2
5/2,2 1/2 -j 16
+b2 2 J,Bl";} m éd n) WS+J(D ) s
j=5/2

where

8,9 a2, bo’ b:2 are parameters whose values are to be found

2 2 _ 2 2 _
la l® + lagl® = o |+ [p,]° =1

To be more specific, we employ the same coordinates as before for 016
- 3 . 16
qq *** 9y internal coordinates of O
- 16
T' = angular coordinates of O
and use
P 8y # = radius and angular coordinates for the relative motion.

Hereafter we shall suppress the arguments 016, Dy 017, 8, d and use /o

and g as shorthand for P 6, § and Qg **° dg» T" respectively.
The wave functions \I‘o and Wz, and @1 /2 and §5 /2

are orthonormal.
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3. Operators.
There are. three operations which we shall employ.
For the lifetime calculation we need the electric quadrupole

operator:

W_\2

E,=- () = =2z ) -t .
Y24 chargesi

For the magnetic moment ealculation, we need the magnetic moment operator

AZ e
M= Z [ i 3. 1.
A particles i /(i ' myoC ( L2

For the electric quadrupole moment calculation we need the electric

quadrupole moment operator ‘
0a= & ez, (32 -7
particlesi

»

Each of these operators may be separated rigorously into a linear sum
16

of an operator which acts only on the internal coordinates of O~ and one

which acts only on the relative motion (for A4y also the neutron spin J*.

* Eg and { are bilinear forms in the cartesian coordinates =x;,

of the a-particles (subscript j designates particle, ¢ the compOnent)
and may be written in the form

Cxx.,
¥ 2 F % ey

but
= = J—
xja rja+ x/oa (¥ 16 here) ’

where

r;ja = the internal coordinate

Pa= separation coordinate

o = 5 C .5 (v, + % )Nr, , +¥f)

a ’/6 a/a 3 Ja /o o' s /o

and the cross terms vanish by virtue of 2 r, =0,

7 e

2

Op = C + 2 r., r.

P f:ﬁ ae ¥ Lufy 3 Tia Ty

A similar argument applles to M4 . The term A ‘ works only on the
neutron spin, and (J% is bilinear form in the ™ coordinates and

momenta, and the proof = will hold by virtue of £ Pig = 0.
3
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(1) Electric Quadrupole Operator.

52# Ez(q) + 52(/0)
where

-8 ,-1 oyl
Ez(q) -*/:: (;(') ° (PA) - Y, (FA)] |

/>—-§—<z-> (16)2/% e - 13 @ 80

(note that Ez(q) differs from our definition of 62 in sec. I11I.3.2.1

by a factor of 8).

(2) Magnetic Moment Operator.

M= ) 4P+ o)

vhere if we call

.
i

total angular momentum

I = angular momentum of 016

L = angular momentum of relative motion

S = angular momentum of neutron
/”o = nuclear magneton.
- .3 _1_ " .
/(/ (q) = 81 My T:I-I—i /ao gr =3 = gyromagne?ic ?atlo of an
‘ a~particle
L-3 _ 8 _ ' "
/u y) = g My IT-'-E /“o g, = -2-5- = g.m, :atio for relative

motion.

gy comes about from reduced mass consideration. For an angular

velocity W, classically, (Mo = nucleon mass).



y{L:: 774 2 M -——--—— ) =W M . —%&l—
_.._ﬁ_. ....__
_/a 3 (16)%
et - S -

gL”L/a 2 me 241

_ §.3 - |
(s) = g  m; |J|2 M 8 1.913x 2 .

(3) Quadrupole Moment Operator.
Q = qq) +Q(/)

ala) = 16e 7 Yo2(T,)

16e 2 _00

Wp) =55z p7 By 0)

4 Computation of lifetime of the L + State.

We shall use in the calculations only that part of fsz

which lowers the value of m., Then

3 2 .. 1/2
- 2_ (& \ W m;2
w=% (g 5 I8
n=-1/2
where
Bm=<%.,m—1lle‘]2',m> .

We shall choose the phase of wave functions so that a, and bo are

both real.
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Then ‘
-1
B =8, B, ($572» € 2lp) P
i c1/252,5/ /252,1/
ar 252,5/2 2,2,1/2 j 3+
+ 82 b2 Z jom=1+j 4ym=1 05+1 ,m-1+3 ,I (4%/2 ’ (f) 45/2)
j=-i/2
ta b, G222 0 E (o) W)

2 0 my~1ym=1i

Only the latter two terms will contribute significantly to B". Further

oebe 2c + 1 (_4\a~atc=¥ cba
%ar 1/2a + 1 (-1) C 3}-%?,a
80
$/2:2,1/2 -2 (=1)4728 ¢ 1/20245/2 _ _ L ;1/2:2,5/2
m—1 s 1m Mmy=~1 ym=1 my=1,m-1
% /5 =1y
and
(‘@;1, Ez(q) ‘I’g) = - (Wg, E 2(q) ‘F;) , since Ez(q) is a real

function (and hence a Hermitian operator), and since

o\¥ _ .0 =1 _ _ ¥
(‘2’0) =¥ but ¥, = (\?2) .

We therefore obtain

=71- (ab, + Y3 b ) 01/212;%2 2, € (q) J
and using
é% ldi?ig',a&f!lz %%éf—%
and

0 Ex e =8 g s,



(B, and W, are associated with identificetion (b) for the 2" state;

on identification (a) they would be replaced by Bé and W{ respectively.)
Therefore, we obtain

£ 1R=1.

n

L TTe)N

6 *2 W% g2
" 2 lagey + /302 A %l
and a transition rate

w

#2 WD
lagb, + V3 b al (w2 Was

W = .870 Mev.,

Using identification (b) for the 2' state of 01°

W 6.91 Mev., 020 = 5.14 x 1014 sec-1.

2

!aob2 + /3 bo 32’2 x 1.6 x 1010330«‘l .

w
b
Using identification (a):

Wl = 7,01 Mev. = el X 1013 s:ec“1

|
“o

;aob2 + /§ boa.;|2 x 1.2 x 109 s«ec“1 .

€
]

5. Magnetic Dipole Moment.
The magnetic dipole moment is defined as the expectation

value of the magnetic dipole operator in the ‘{’g /2 state,

= lagl? (22 Luge) w0 F2)

¢ layl? EVR202) 12, w @R + (G 2m (o) B3]

-> - -> - P
in the first termy, I=0and J =L+ S where L=2, S = 1/2; in the

- -> -
second, L=0 and J=1+8 with I=2,8=1/2



1/2,2,5/2

2
+ o™ (01502752 (2 el 1913 3 = 1)

1/2,2,5/2 _ 4

putting in 01/2’2,5/2 = and since J I+ S=L%+ S~

bt
la ® =1 - la,l?
ﬁ = (1 - ]a2|2) (1-227 - 15913) + Iazl?“ (1 =1.913 /Tz-)

= - 1.847 + 0934 lazlz .

6. Electric GQuadrupole Moment.
» The electrie quadrupole moment is defined as the expectation

value of @ in the state @2/2

Q= a2 (§22 ap) P2+ I )* (B, e B)
The first term is the neutron wave function contribution; For the
wave function we can use
@:ﬁ} 2 cp) 326, B 7(‘/2
where
£5(p) is the normalized d-state radial wave function

7‘ };g is the neutron spin wave function



is a normalizing factor for angular integration

5

5/2 2 5/2y _ 222 222 2
(¢5/2 * 36 ° oo(e) ¢5/2) 16 © * Cooo Conz'fyr/” fd)

and

222 222 _ _ 2
C;c:oo C022 I/

Q/)‘Ial 568(f,/0 £) .

If we use

(fd,/»2 £) = (1.5 x 171/3 4 10713 e)?

we get

Q/o) la | (= 2.7 x 1072 & x 107% n?) .

For the second term, the contribution of the core, we shall require a
second order expansion of (g) in terms of q» since Pgo(r‘i)
is zero and therefore the zeroth order terms vanish.

We shall have to perform the calculation twice, first for

identification (b) and second for identification (a).

Identification (b 2 .

Z= 5 21 {VEay 0Pm + 0B + Y‘z’z(rn} v,

Aa) = l,)* 16° 7 ¥0(r))

and we need the terms of second order in 39 q2 .

i (14505 +6)

2

r

= 1
I"4 I‘q 1"41"



where
q o 1,9
=1 o= (2 4 gR) - —2 2_123 2,123 S1g
I‘q 1 22(q2+q3) 22(3) 22(83")4-2 2(3}'{5};_-!-:;0;:)
2 %2 % a2
()2 =-l- (st + 1) =2‘: [(s)? + (s1)% + stst + s18!]

2 2 %[-(s;)z - (s1)% + Syt + 51511

sist + sist = % [(s1-s!)(st+s)) + (stsp)(st=s1)] = 3[(s1)3~(51)%)

and
Yo T) = 2‘, Y5 (r") 20(r)
(szz_)2 onry) =28 Y*z’h(rp
(sist + stst) Y (r ) =12 Y (r') .

In the h—summation, only terms with h =+ 2, O are important:

00 -
12,0
o ) =2
(o] ,j-_Z - 3
1 = ——
T, (0)) =+ v
2 ,+2 "'2 ’+2

(r') +3,, (rz}) =¥

qug

2,12 22
Top (O =Y, ()=~

S b
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to second order:

2
2 y0© = 1 .2
%2

+ 1 -éé q2 + i 28 2 1 Gy93 Y‘gf(r)

In the matrix element, only the q2q3 terms can survive, since in the

Y2° term the qg contribution will cancel that of q§ s while in

2
2 SRo 2 420 . . 2 20
the other terms the a5 Y2 and q5 Y2 will cancel the 95 Y2

2 =20 ) 222 222
and d5 Y2 contributions, respectively. Using C+2 1052 Ci2,¥2,o

= Jg s We obtain

' 2 2
10 1.1 .4 2_16 a 2
Q(q):".’wz—o—.-&o-.—-—.lp/i.—:-—e—-la‘ .
) /3 T T RN
2 2
a2 m_c®
5= % ("Lzm c) 3 (Mo = proton mass)
Q. o) 2
2
Qq) = |a2|2 % . %%%Z xex 1,11 x 10'-28 cm2 = [azlz x 1.5e x 10-2601112

hence on identification (b),

Q = (=27 + 18[a2!2) e x 107%7 e .
Identification (a).
Gn = 52T {7 Y;_}’z(r) + v3E22 - 22 ()]
- A e ) v

2 2
Q' () = |ay|® - 16e 1) gf (r,) -



We need terms to segcnd order in qL, q5, q6
2 _ A L 2
rj"—az‘{1+a3/6(q4+q5+q6)+ ag(%*%‘“%)

L .
- a,; (q4q5 tqq, qsqé)} H

r =T T!'T ;
q
vhere
1"=1-—3-( +q. + )2+---( + + qeq,.)
o2 4 BT %N T2 % T Y8 T 9%
3 3

i o SN - I —_i - - :

2 2 1 2 2
== (q,- q)(S') ~ =%= (2q,~ q,= q.)° (8!)
80 475 240.2 6 S4 75 v
3 3
1
+ (q,- a-){2q,- q,~ g, )(S!s! + s!s!) .
80%/3 4 B\ 4T 95000y T Oy

To second order:

2.2
a,r 3 P P e ] -
Ty = % SEEE (IS ORETE SC A RN

1

+ 2 (v O) 4 = [(v )2+(v ) (e_BUi/4 v} - eBHi/l’ v? )] S}‘(

P A T e R R

3/3 1

- ;13- (i (v} )2+2v}v'1'1 - (v;1 3] (s;c)2

~ 2 (1]l e (0] PR (@ e )P )

R Wy (v (v‘;1 )2+2v‘1°(e"3“i/ bt o 3t/ v‘{‘ (315 + s181)

1



2
90r,) = 3 Yoh(r, T}) Lo(r)

h=-2
st = -;- (st + 1)
s = L (st -8
()% = (s + (S1)° + (sysL + stsy)])

(s:;)2 [(3')2 + (81)% - (sisy + ss!)]

s18) + 818} L [(s1)? - (s1)A

,h
S'Y (r")= /Byz+ 1',
2, +2,h

(S') (r') -2./812+ ()

(sis! + s!st) Y (r') = 12 Y (r'

In the matrix element only the following combinations can survive:
1 =1 o0 0,2 00 2 o]
ZRZ Y2+(l"), (v1) Y2+(l"); (V ) Y (), | ‘12 +(T)s

vV, ¥V

o _1 o -1 ,~1 O
171 Y (P)’ V-l V1 Y2+ (F) .

2
a .
If in -% 1'2+ ;:(I‘ ) +the coefficients of the above four terms

are called 812 Bp3 o0 9 8¢ respectively, the matrix element of

4 2+(T‘) is:
2 - 222
(Wg'!'" 4, gz(r‘ ) \;;2 ') 2 022 {[ 3(C011 O,-1*1)

_1_ (0222 222 222 222

1 222, 222
022 T Co,-2 -2”31 + [zl + S

1
1) 7(C522705, 50 20 ey

1 222 1 o222 A2 222 222
+30057 18730, 4,18 %6 (12 - 07, 2,-1)8

A2 22 cR22
+ <€ (c g6

-1 "'1 ,-2 ‘1 ,2 1
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Using the Clebsch-Gordon coefficients

@222 /_T_
0yt1,+1 14

22 '/2
o ,i2 ,iZ 7

222 _ 222 _ _ .22 _ 3
Ot 7R 71 Ciz,;a T T Gt T /; ?
we get
2
o0 =2, .ZZ .ZZ. L
(Frs 7, Toul,) 1) = 277 [ 5 GEre) t 2 f (8548, )-(esveg) |
3
Putting in the value of Fi (suppressing the argument PZ)
1o 2
Y (+9') Y = 0y ==
/3
O, _y v2s0 _ _1_
Y§+(+’ )Y2+’ - /B » 0
0,1 _ = _1_ +3mi/4
Yzi =+ = e
0yt2 _ = 4.
Y2+ =+ /a
0t - o = (L, 3] LA
/3
0B LR = 0 4R, 41 )
Rl (4, o8 o 2, ) /4
Yz’i2(+, ) Y‘2 12 _ (.',T 2L , =)
2+ 3 /3'
we get
28 t8 =1
- B
8 78,7172
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ea” 2
Qa) = lagl® - 16 %5+ Z = fapl® - 5722
0.3 a3

; | i | _
|a2I2 . %% . Z?%% xex 1.1 x 10 28 on? =la2[2x 1.05¢ x 10 20 en?

H]

and on identification (a),

Q, = (~2.7 + 13 |a2|2)e x 1027 e

7. Comparison with Fxperiment.

1
2

and for the electric quadrupole moment and magnetic moment of the

17

Experimental data for the 5 + - % + transition rate in O

2+ ground state is summarized below.

5 .
Reference
Transition L x 109 sec-1 [16]
Quadrup§le Moment, (=5 +2)ex 10‘27 cu” [17]
Magnetic Moment -1.8928 + 2 Mo - [18]
The calculated values for the transition rate are:
1.6|a0b2 + /3 ban[2 x 1010 sec_1 on identificaticn (b)

- * -
1.2]a°b2 + /3 boa2|2 x 109 sec 1 on identification (a).
; *
On identification (b), the observed rate is achieved withv|a6b2+ /? b032|
. 1) *

= 0.5, Given the most favorable phase relationship, b2 = a5 a quite
low amplitude of core excitation, lazl = lbzl ~ 0,2 (4 per cent
probability of core excitation) is possible. On identification (a),

no exact fit is possible. Taking ay = b2 =0,

a‘
P
example, gives a rate of 3.6 x 1010 sec‘1, which is in agreement with

=bo=‘h for

the experimental value; however a, = 1 , corresponding to a completely

excited core in the ground state, is not to be believed.
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The computed values of the quadrupole moment
(=2.7 + 18]&212)e x 10727 on? - on identification (b)

2

(=2.7 + IBlazlz)e x 10727 e on identification (a)

can never agree precisely with the observed value. On identification

(b), with |a,| = 0.2, Q = ~2e x 107*7

cm2 and the fit is fair;
on i&entification'(a),uhowever, with a large value of laz}, the wrong
sign of the quadrupole moment would be obtained.

The computed magnetic moment,
2
(=1.847 + .934]a,)] )/(0

likewise can never agree precisely with the experimental value. Here
again identification (b), with !azl = 0.2, gives a value, —1{81/ab,
which_is in fair agreement; but identification (a) with a large
value of Iaél produces no agreement. (It is to be noted however,

that no model of O17

based upon an orbital neutron and core can correctly
predict the magnetic moment.) |

| Calculations of these data using more complicated wave
functions, €eges including d}/é neutron states, could be performed.

However, it is expected that no improvement in the fit with experimental

data would result.
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" PART V. SUMMARY
" The ekcitation energies of states of 016, computed on the
a-particle model on either of the two identification schemes proposed
by Dennison, are in quite good agreement with the observed energies.
There are on either scheme several levels which are predicted buﬁ not

observed; however, since the actual O16

nucleus éontains.a greater
degree of symmetry than that which the o~particle model représents,
this discrepancy is not serious. On identification (a), several of
the observed levels are not predicted. However; if four of the
energy levels above 12,5 Mev have T = 1, as predicted by the theory of
equivalence between neutrons and prqtons, this evidence favoré.
idéntification (a) over identification (b).

The'lifetimes of the four lowest excited states have also
‘been computed on this model. Here the agreement is only fair. The
calculated 0+ lifetime is too short by a factor of fifteen,‘while that
of the 3; state is too long by a factor of three or more. On identifi-
cation (a), the calculated lifetime of the 2% state (and indirectly
that of the 1  state based upon the 2" lifetime) is definitely too
long by a factor of greater than ten. On identification (b), the
calculated lifetime of the 2+ state agrees with the present expérimen—
tal dataj but if the experimental data should be improved,ﬁhis appér-
ent agreement may be removed.

17

Calculations on O°° have been performed, using the shell

16

model with a neutron outside an O ™ core ahd allowing fof a partial

2% excitation of the core. If identificatisbn (a) is uéed to describe

the 27 core state, the lifetime of the 70 Kev % + state in 0!/ camnot
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be fitted. If identification (b) is used, the observed lifetime can
be fitted, requiring only a 4 per cent probability of core exeitation
in both the % + and % + states. The calculated magnetic and electric
quadrﬁpole moments of the ground state are slightly too emall in

magnitude. However, as no model of O17

which treats of an orbital
neutfon and core can accurately match thesermoments, this discrepancy
cannot be regarded as decreasing the validity of the a~particle models
We conclude, therefore that the a~particle model predicts
the energy levels of O16 rather well, but gives only fair agreement
with the lifetimes of the lower excited states. Using the a~particle
model to supply core wave functions for an excited core shell'model

17 can provide agreement with the observed lifetime of the 870 Kev

of O
% + state,‘but cannot provide quantitative agreement with the electric
quadrupole and magnetic moments of the ground state. |

Since the energy level data tend to favor idéntification (a)
while lifetime calculations favor identification (b),‘we do not find

conclusive evidence for eliminating either of the two4identification

schemes propésed by Dennison.
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APPENDIX I

GENERALIZED SPHERICAL HARMONICS (SYMMETRIC TOP WAVE FUNCTIONS)

The treatment reproduced here is aimost exactly that given
by Takehashi [51, except that the rotation operators Sx’ sy‘,'j sz and
SJ?C' s S}, S; are defined more in accordance with common usage, of half
the magnitude of Takehashi's S operators. It is also hoped that the
argument here is clearer.

Given an initial set of cartesian axes ?1\‘, 3",%1\:1‘ correspond~
ing to coordinates x', y', z', we define a rotation of the coordinate

axes through Fuler angles #, 6, ¥ into a final set of axes /i\., /j\, %

to consist of first a rotation through angle § about K

N A A N N
i1, §ry %kt —> 1(1)’ J(1)? k(“

€(1) 1 cosf§ sing O
3\-(1) = Rz(ﬁ) 3“ ’ Rz(ﬂf) E |~sin@ cos @ O
?‘(1) &t 0 0 1

followed by a rotation through & about 3'(1) (the transformed :']" axis),

A N A ) Pl ’
Ty y ¥y — T2y T2y B2
”~ A A
12) (1) it
Tyl =80 |3y| =n@ e, |T)
I~ ~ A
(2) 1) k!

coe 8 0 «~sin ©
Ry(e) = 0 1 0
sine O cos €
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followed lastly by a rotation through ¥ about £(2) (the transformed

Fa)
k! axis):

A A

12)r d2)r ¥(z) = L 1n X

£ 1) e
T =z, || =r,mr @@ |3
o o a
k k(z)) k?

fﬁi!

= R(d, 8, ¥) |

ke

vhere by definition R(#, €, ¥) =R_(¥) Ry(G) R, (#)s We have adopted
the convention that the rotation through V¥, 6, ¢ is merely a change
of reference coordinates. Hence in the rotation, a position wvector

N N N A ) N
x'i' + y'§! + 2'k! = xi + y] + 2k remains invariant, Thus the
coordinates x', y', z! undergo a transformation which is the inverse

of the transformation of the coordinate axes:

x‘, y" zt ——> Xy Y9 % where

x x! | ‘ x!
y| =r@ e, |yt| =R (RO R(D || @)
Z z! . z!

The rotations through angles @, €, ¥ form a group, and
the matrices R(f, 8, ¥) a three dimensional representation of that
group with basgis 1, /j\’, 1 (or x, ¥y 2)s However we desire to find
explicitly the most general representation DJ

ki

of the rotation group and the basis vectors Yl;m of the representation.

of dimension 2J + 1
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To do this we fix attention on the coordinates x, y, 2

of a point on the unit sphere, and establish the homomorphism

} "? -2 Xy Vs 2 with

x+iy =2N¥
AR 3)
2= §E -7

./:;2+y2+z?“ §§E+M 7 =1

If we regard x, yy 2 as transformed coordinates of a point Xy Yoo 24

then by eq. (2):

X
]
=R, (-#) R (-8) R, (-¥) |7,
z z
o
which may be paralleled by
\ =i [ i
2 8 - e 2
i} e -0 cos 3 sin 5 e C Eo
id iy
2 e 8 2
‘Z ) o) | e sin > cos 3 0 e ?o
or
) 2wy o Fewm o) ()
3 e cos 3 -8 sin 3 ?o
= (4)
. 1 NP 1(. 2 ) B
) e sin 3 e cos 5 70
]\ "}
If we use a bar to indicate complex conjugate, we may also write
= e PP
_ ;Z_ o 2 (¢+\¥) cos 9- -.e'i'(ﬂ'ly) sin Q ; -
3 =l 2 : 2117 "ol ()
1 LN (8+7) A -
w5 \° siny e s 7% Fo
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If we identify ?o =1, N, =0, and in general take

-1
? = e2 (¢+¥) coSs g
2
i
)2 = 82(95-‘4") sin g
2
we see that the matrices 'g - 'E form a group under rotations
m ¥
-0
and if - represent the rotation which transforms Xqs Yqs 24
s

into %59 Yoo 22’ then
5 2 N § -N 5, -
] = _ - (4")
T, %2 v 3 [T 7
We shall at this point switch to the adjoint of these equations and
use right hand group multiplication which turns out to be a bit

more convenient and agrees with Takehashils usage.

$, 7, LEAT T 2
- = - (5)
“72 5 “71 54 -1 3
and we may denote
- - i e §
Si )Zi e2 () cos g e 2 () sin -29-
ry = a3 ’ r= -1 4 (6)
P 2P 20 e
2 2
then

Iy »T, is denoted by r,=ryT (5')
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and ' forms a right handed two-valued representation of the rotation

with basis € »n i
group . sis € n or nE.
Spherical harmonics of order J may be generated by

Jtm Je-m
q _

Y (T4m) ¥ (J-m)!
(7)

since it can easily be shown that Y}' are homogeneous functions of

- J
2
-J];(-%(x+iy)p2+apq+%(X~iy)q )J"m‘f—‘_JYnJ1

order J in x, y, 2 which satisfy laplacets equation.
This could be written more simply

J+tm J-m

P q

T (7")
J /(J+m)t (J=m)!

- - J J
(¥p+ 7q) (-m p+3a) J
71 = 2

NS,

We obtain the generalized spherical harmonics Y?n (x|, |m] < J)

from 'Ehe expanaion

/TH0T (3-k)8 n==y ¢ /Gt (G-m)t

(8)

in which J, k, m, may be simultaneocusly integers or half integers.
If we define the spinor P and the function U?( P) as
J+k J-k
P q

() = — . (9)
¢ (J+H)l (I=k)!

P =

“we

q
Then equation (9) may be written
TR = £ 1) UHP) (10)

or as shorthand

U;(CP) = Y (r) U (®) (10")
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vhere it is understood that U (FP) is a column vector of 2J + 1
elements, and YJ(I") is a square matrix of order 2J + 1 with ¢ “umns

k and rows m, We also see that

Yl(I‘) =T .
2.

Applying eq. (5) we get
Uz (0, P) = Uy(ry TP) = Yo(ry) Up(CP) = Xp(ry) T5(r) U (F)
whence
T.(ry) = Y5(ry) Y;(T)

or

) = £ e ™) . (11)
7 \a A M
Thus for fixed k, Yi" , ~J<m<J forn the basis for a 2J + 1
dinension row representation DJ » and at the same time Y?n forms a

right-handed representation of the group.

If we write in, is , :'LSz as right-handed operators on T

y
corresponding to infinitesimal rotations about the final 3.\, /5, % axes,
we have
__, o =1(0 1
5% =" 1%| = 03'2(1 o)
2’72
. 0 1/0 -1
y 0e 0,0,0 211 O
3 1 (1 o)
S - - i o= =--
2z 5% 0,0,0 2(0 -1 (12)
If we call

_ _ (o 1 _ _f{o o
s, =S +1§ = (0 0), s_--sx-isy.-(1 0) (13)
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2=52+82+¢° 2
x "y

...l Q : )
—2(S+o_+S_S+)+S

and consider using these operators as left hand operators on

then formally

»
3
1

1 (py 21 02, &
2 2(-q) =z Pap-agg P -
Hence if we define the scalar product of two spinora
(P @) =7 p+3 a=GHa)(E) =R (190
(~ denotes Hermitian adjoint)
and we note that
ad (B TR) = (p', T(5,P) = (P') TS)P) =5,(F', TF)
(14)

and if regard S+, S_, Sz written ocutside and the left as operators
on the quantity to the right of the comma, it makes no difference
whether we regard S as operating to the right on f or to the
left on P,

Now if we consider the definition of UJ(Rﬂ from eq. (9),

together with the definition of UJ(F) from eq. (10'), we find

ye (81 TP = U (RY), UL O R)) = (W (), T,(0) Ty(R))

J J |
=2 £ 1 ) e (15)

k==J m=eJ
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and if we define

s TPNr) =TT 8)

and noting that

a &5 03 (P) = /TN G v ()
P a0y (P) = /T @) 031 (@) (16)
Mo -a) (P =m (R,

we apply operators S to eq. (15) and equate expressions with S

operating on T to those with S operating on PP , we get:

s, Y0 = /T Frmr) Yﬁ"“‘ (r)

5. I5Mr) = /TG B (r) (17)
| 5, Yl;m(l") m Yl;m(l")

s° YPNr) = 33+ 1) YD)

To consider infinitesimal rotations about the initial
A A AN ~ o~ N
i'yJj'sk' axes, note that for any rotation S about 3, J, %k, the
corresponding rotation S! about i, f‘f‘ ’ k! can be performed by
undoing the rotation T', performing S, and then rotating through T':

st=r1gp

or (18)
rst=31m

Therefore S'(@', ') = (P!, STH) = (SP', T M), where 5 is

the Hermitian adjoint of S; but

0
1]
w

-
L1
n
wn
-
i

=38
z z

and by the symmetry of eq. (15) with respect to P and ', x and

m, we get:
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s! ‘1};"(1") = /(J+k) (J-k+1) Y§"1 ()

st Y?“(r‘) = (I=k) (J+k+1) Yﬁ” r)

ST YSN(r) =k Yo (19)
512 - 82
g12 Yﬁm(r) =J(T +1) Y?“(I‘) .

We can now demonstrate that ng(F) are symmetric top wave functions.

The Hamiltonian for a symmetric top is given by:

2

2 2
= 1 t ] 1 - f
H=a(M"™ + M%) + oM} where M K S

sz = A Sxy,
= §2(as® + (c - a) 51%) .
Thus
HYR(M) = B2a3(3 + 1) + (e - ali?] T2()

showing that Yﬁm are eigenfunctions for the symmetric top wave
%1

equation, with energy HQ[aJ(J +1) 4+ (c -a)k

Explicit Expressions, Normalization, and Special Properties of Yﬁm(r).

Performing the expansion indicated in eq. (15):

wrp (@ TR £ Y(r) UAP) TE(PY)

s GEp+ N ) (eqp+3a)’®
k /(3T (3T

@)

= = Y(otm)t (J-m)¥ (J+k)! (J-k)!
=2 U TR & Tt e T v

< (.? )J-!-m-v sJ-k-V (;t}(-m‘i“](_.'z )V
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hence
_ _4\V Jim)d (J-m)! (J+k)! (J=k)!
ng(l") = %’ (-1) Jtm-v)! (J-k-v)! (k-m+v)! v!
‘ g J+m~v §J-k-v i k-mt+v ,v‘v (20)
= of (mPHCY) 2 C) (21)

where the generalized Legendre function P’}“‘(e) is equal to:

_ %(J+ T G=m) (3001 (3-k)t
Pl.?n(g) - % -1)7 J+mlfv)l (fok-vT! (k=m+v)! v!

" (COS _g)2J+m—k-2v (Sil'l g)k-m+2v . . (21')
From eq. (11) we then have for r,=TyT
1 (kY +MZ,,) J 1 (k¥,+h[ @, +¢]+ng )
P e 2 f =g Fle)PMe) e ! .(22)
h=~J
If we define
0s g i =3
cos 3 sin 3
e = (23)
-gin 2 cos g
2 2
P™(e) = ¥(0) (24)
for the special cases
a 0) -
T = = =0 (25)
a (o b (!

(26)
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A.I.
From which we derive the properties of Pﬁm(e):
g Xh,.. .mm
P}’?“(e +o')= S P§ (8) Py (8") (22%)
h=-J
km, .\ _ km _ J¥k
Pyhe) = 8§, P o= ()78 (@)

PRan) = (1) § P & m) = (-1)7F pe) , (2e)

kom

By applying the formal relation

6. - (‘ °) @,) (‘ 0) (29)

0 -1 0 -

with

1 0
_ J-k
Yls‘m (O —‘l) = (-1) Sk,m

r-0) =5 T (1 0) Pr(6) ¥ (1 0) = (-1)"* P™e)  (30)

0 -1 0 -1
- -— -‘k,-m .
= P0) = F(e)
and by the formal relation

_f1 0 182 1
@-(O_i) @,,/2( _ie/z) @ /2 ( 0) (31)

0

ve get

Pe) = %  (Z7¥k) plhdy (168 phm_ 1) 4 (I-n)

= £ 40 0BG 2B g (32)
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Then using
PRE) = p - ) = (T PP (30')
PoR@) ) = ()R PG PTG
we get
k-n
PP = (<10 2 P°G) P°G) + £ cos(ner(cm) 3) PYP(G) PIAG)

h>o
(33)
To obtain a more convenient expression for P?n(e), observe that for

‘I’=¢=O,I‘=@

J pJ+m qJ-m
@P) = £ P (34)
n=-J /(J+m)! (J-m)?
hence
Im - J-m)! 4. \J+m
e = I [ dem) | (35)
- J4+m)! 4.\Jm
- J-m)! {(dq) U?(@/P)} p=l,q=0 °
But
J-
Ul';(@ m) = (p cos 'g‘ + q sin 'g‘)J+k (-p sin g' + q cos %) k 3 (36)
hence if we let g=1 and t =cos 8 - p gin &
1-t=(1 -cose)+psin9=251ng' (sing-+pcosg)
1 +t=(1+ cos 9)+psin9=2cosg-(cosg-psin-g-)
J+k J=k
J o=l 22J gin® Tk gcos Ik g— Y (d=k)1 {J+k)!
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d
g = =~ g8in 8 =~ ,
dp p=o dat
o=l
(__cl_)J+m = (-1 }J+m 2J'+m sinJ-Hn g cosJ+m g (%)J+m
p=0 p=0
q=1 =1 .
hence
k "
L—Um (J - m)! m-k € mtk 9
Pkm(e) o) (5)! (oak)y  °iF 2 ©o8 2
d +m J-k J+k
'(m [(cos 8 + 1) (cos 8 + 1)) (38)
If we write 2z = cos &, sin 5 =2 -1/2 - )1/L, cos 5 = 2-1/2(1 + z)1/2
m=k mtk

(Z) = (- 1)m.k -J /(J,Q_i)-j'n}_k). (G+x)1 (1"‘2) 2 (1+Z) 2

()T 5+ 1) @ - 1) (39)
- Applying eq. (32), we get alternate expressions
r ( kem k+m
km, \ _ o~ J - k)3 2 2
) = 27 ety 00 2 ()
t(f;)'”k [(z + 1) (z - 1)7™ (40)
k-m =k
= 2-J /(J-m)‘(iJ:kn)l'n (J k)‘ (1"2) @ (1+Z) 2

Y M R DR CI P (41)
nk ik

_1 )0k SIED9) S 1 >
"/(J-kﬂ (T-m)t (J+m)? (1-2) (1+2) 2_

S (@ + )T @ - 1) (42)
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Orthogonality

1
[1 P?n(z) P?(Z) dz =2Ji1 § 5,51

W A 21 _kt',m'
/ / / Y ¥,  sin 6 dvag ae
(o] o) (o]

A.I.
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APPENDIX II
TABLE OF GENERALIZED LEGENDRE FUNCTIONS Pgm(e )3 0LJ=L4 .

The listed functions have m > k > O . All others can

be found from the relations of eq. AI.28 and AI.30.

Pl.;m(e) = P}m"‘k(e) = (-1)k™ ng"m(e) = (=1)f™® AR C)

= (17 B eim) = F1(-8) = (-1)77F P T (n0)

= (_1 )J"k P'li]-’-k(ﬂ"‘e) = (_1 )J+m P}k,m(n_e) = (-1 )J+m sz,k(n_e)
PoC(8) =1
P}1(G) =% (1 + cos 8)

P?‘(G) = - '71_— sin ©
2

P?O(G) = cosg ©

P§2(6) =[J: (1 + cos 9)2

P;2(G) = - % sin 8 (1 + cos 8)

sz(e) = % V6 sin® @

P;1(9) = % (2 cos & = 1)(1 + cos 8)

ol - _ 1‘2
P2 () = 5 sin © cos €

26-1)

P§°(e) = % (3 cos
P;B(G) =% (1 + cos 9)3

P’;’B(G) = - % V6 sin 8 {1 + cos 9)2



P(0) =

03 -
P3 (9) =

Py(0) =
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%/TE sin® (1 + cos 8)

1 /5 s1n3 &

2

(-2 - cos 8+ 4 cos® 6 + 3 cos> 8)

/10 [231n36-sine (1 + cos 8)?]

i ®i=

/ﬁ sin2 ® cos €

2

(1 +11 cos @ - 5 cos 9+c0536)

V3 sin © (5 cos® @ - 1)

- o=

1

3 cos 8 (5 0052

6 - 3)

"716' (1 + cos 9)4

-% 233‘.:16(1+cos€)3

N sin® @ (1 + cos 9)2

o=

-% 14511’139(14-0039)

-11.6 /’75 =sf|.n4 )

_.-71-5 [7 sin29 (1 + cos 6)2- (1 + cos 6)4]

A, IT1.

Pi3(€)=i]g J2 [ 3 sin36 (1 + cos 8) -~ sin 8 (1 + cos 9)3 1

i

13
P,~(8)

o3 -
P4 (8) =

-11—6 /715 sin® 6 = 3 sin®

:}; /35 s:’m3 © cos ©

6 (1 - cos 9)2]

Piz(e) = 1% [ 15 sin® @ - 12 sin® © (1 + cos 9)2 + .(1 4+ cos 9)4]

PZZ(G') = - T% V2 [ 10 au'.n3 86 (1 -cos ©) =15 sin3 6 (1 + cos 8)

+331n8(1+cos€)3]
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Pzz(G) = %g /10 [ 3 gin® @ (1 = cos 6)2 - 8 sin* @ + 3 sin26(1 + cos 6)2 ]

P}f ) =~ 71'6 [10 sin® 6(1 - cos 8)° - 30 sin®

+ 15 sin2 8 (1 + cos 6)2 - (1 + cos 9)4 ]

PZ1(9) = % V5 [ sin @ (1 - cos 9)3 + 12 sin3 6 cos O

- 8in 8 (1 + cos 9)3]

2

BZO(Q) = % (3 - 30 cos™ 8+ 35 cos® 8)
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APPENDIX TII

STANDARD ROTATIONAL REPRESENTATION OF PERMUTATION GROUP P.

Standard configuration 1,2,3,4

A A A
i'y j', k' are a right~handed

system of axes.

2
Inverted configuration (1), @ , @ » @
@ ,@ ,@_ are a left-handed
system of axes. 1' - 2

The permutations of the group P are to be regardaa as
relabelling of coordinates. Thus in thé equivalent rotation, the axes |
rotate but the particles are regarded as fixe‘d in space. It is most
convenient to regard the rotation in terms of fixed axes: @, 6, ¥
is a rotation of ¥ sbout X', followed by © about the original 37,
followed by @ about the original k',

The generators of the group P are the six elements of
class (12) of simple permutations. Each of these involves a rotation
through total angle w and an inversion which commutes with the
rotation,

Any other element is formed by left-handed group multiplication,

i.0.2

(12)(34) = (34)(12), but
- (123) = (12)(23) = (23) followed by (312)
(1234) = (12)(23)(34) = (34) followed by (23) followed by (12) .
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It follows that all odd elements {classes (12) and (1234))
are equivalent to a rotation and inversion which commites with the
rotation, and all even permutations (classes (12)(34) and (123)) are
equivalent to & pure rotation. | ,

The table on the following pages gives the rotation @, 8, ¥
and parity p (=1 for inversion), together with the three dimensional

representation RS

o o
3! —_— RS 3\1
&t ®

for each element S of P

From Sece II 2.2, it i3 seen that qA, 450 9 transform
under P like yz, xz, xy respectively. However under P ,
(yz, xz, xy) transform in turn like (x, y, z). Thus under P,

(qk, as s q6) transform a8 (x, y, 2); hence for a given S

A %Y,
B =7 R %
% %
From Sece. II 2.2, it is also seen that 93» 9, transform
222 - x2 - y2 x2 _ o2
like the quantities e ’ 4 reapectively.
Ve V2

The column U(22)(S) gives the transformation induced on

q
the column vector (f) : under S
2

B L Ry [P
9 @
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k4

Parity p

Permutation S

+1

1 00
0 0-1
0-1 O

|
Bl

T

(41)

=l

=loy

3 Y

(23)

(42)

(13)

(43)

OO e
-0 0

Q=0

(12)

+1

(41)(23)

+1

(42)(13)

+1

(43)(12)
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u(22)(s)

Rg

v

Parity p

Permutation S

+1

(234)

+1

(243)

>
)
- lon N
t ./. N
/rnlh\ ——
-]\ Lo [
ey, g
- O 0 01-1_0
OO v= 1_..00
OO OO w
{h\ s
(@] =1 (¥4
7l
=ioe =iy
_eu—z =
[
- -
-+ +
3 -
™
o ~¢
- o
A N

+1

(124)

+1

(142)

+1

(132)

(1243)

01.0 v O O
400 OO..»I
e
=l =
=iy =ty
t=jee =
il

o -

1 1

N

~3 o\
(12} N
bl -
Sas? A

O O wv=

(1432)

O w0

(1423)

(1324)
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The transformation of angular functions Ykm(F) under P
follows from eq. AI.11. Since the rotation Ty corresponding to a
»n
permatation S of P is given with respect to the it, 3‘, Py body

axes, the permutation S induces on I' the transformation
' ——> FS T 3

hence the transformation induced on any Ykm(F) is:
) - £ Yhrg) TR
h

and the matrix of the transformation is:

vg 1 (k\IfS+h¢S)

g = @ 1)° Pieg) .

Both the transformation Ykh(P ) angular functions and
that (such as R (S)) on coordinates Qs d5» Qs ON vibration functions
form right-handed multiplicative groups. That being established
makes it necessary in combining functions to consider the transfor-
mations induced by the six group generators only..

We"take as basis for the standard realizations of the

irreducible representations of group P4 3

i,m

Y1_

for (211): basis Y?:m ; Tepresentation U§211)(S)
-1 om
Y¥$

1,m
T4

for (31): basis Y?;m ; representation

~1, (31) (gyo (g S {(211)
T, U~ (8)=(=1) T Ut (s)
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2.m _ _1 Y2,m =2 ol
v =~ (1" + L,5")
2+ /i 2 2
for (22): basis H
: _Oym 0
72; = Ygl

representation U§22)(S);

representations (1) and (4) are trivial,

The standard representations U§211)(S) and U;zz)(S} for S

in the class (12) are given below. We also include the representation

1

¥4

1
- E (qA +iqg)

U(211)(S) induced on v? = qq
basis

= L. -
V1 - /3 (q4 iq5)

it is seen that all S of class (12), U5211)(S) = (U§211)(S))*. It

then follows that Uc(l‘?”)(s) = [Us(f”)(é)-]* for all S of P, and

since the U's are unitary, [35211)(5)]T = [U§211)(3)]-1 for all S,
Further the representation Uézz) (S) 1induced on (ZZ) also

obeys the property Uézz)(s) = (Usz(s))* = ;2(8). (The last since

these matrices have only real elements.) And [U§22)(S}]T =[U’3§22)(S)]-1

for all S,



U(211 ) (S)

(s)

g(211)

u(22)(s)

weg

y

Parit
p

Permugation

V2 -1
0 i/2
2

i
i

Q ey
-~ t
4 '\i-i e ]
e S~ —
A I3 —je -l o
TS —_— — —_TN

41

=lce
=l

=ty

-1

23

42

13

OO

OO .

43

O 0O

O w0

O O

12

AJIIT,
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AFPENDIX IV
WAVE FUNCTIONS WHICH BELCNG TO THE STANDARD IRREDUCIBLE REPRESENTATION
Since under a permutation S of F, YJi(I‘) - YJi(FS)YJi(F)’

the matrix (Y};E)a vhich projects YJ+(I‘) onto the a representation

is:

(.= £ e By
$ ) i(k’?s+h¢s) ih
= g (x1) " 8 7\(“ (3) e P; (8g)

A1l @5 are given as O, n/2, or w:

- - J-k
o) = ORGP S

km’
P];m(g-) are given for J<4; m>k >0.

Other terms Pl;n(%) can be found from:

P1;,1:1 - PEm,-k = (-1 )k-m P?'k = (-1 )k-m P}k,-m = (=1 )J-k Pg,-m
- (_1 )J‘kPIJﬂ,"k - (_1 )J+m P}k,m = (_1)J+m P}m,k
POO(3) = 1
P
1
1 L
2
k
Of~ % 0
1 o
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km ,w
1
N
1 _1
k 1]-2 -3
1 _1
o) ;& 0 -3
2 1 0
m
n
P53
1
31 8
1 -1
2—8/1—6 2
K
1 i _1
1] g/B /0 -3
21 1
0 4./5 0 4./'3' 0
3 2 1 0
pB(E) .
4 2
' 1
S T+
-1 .3
3|~g/? 2
1 1 1
x 2| g/7 g /1% 7
1 _1 1 2
1 8/1'2 5 V7 5/3 5
1 5 1 3
0 16,,/'76 0 2/1?) o g
4 3 2 1 0

m

Matrices 6(Y§2)a for J < 4 are given in the table which
follows: for J < 4 only the (2J + 1)th order central portion is

applicable.
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* £y paed v@o\mm>o JoJ¥ mumnaﬁ: Peq93oBaq pPur sulls nwm&ﬁ\noaoa

*fa118d pPO/UBAS JOF sJequmu pejeyorIq puw sulTs po:oﬁ\nmmmp

q

k-]

(]

0
0
A Fvbm m.l.v.l

0

£

dz+l 0

0 (Y-
LT -

0 0

0 0

.h- - -
_mmh.: Y+

o

0] 0

f
£l

de h.ﬁ 1=-)¥

0

0

0
0
(D (1)-

0

(1)

0

(@]

O

16 B _(112)
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*£3Taed ppo/usAs JOT SJOqUNU PONeNORIG PUR sudts Jeoddn/IeMo]

q

* £.Tand @mo\zw>m J0J sJasqumu pe3seioedq pue sufrs gemol/xeddp e

o

(d7+1) ()

0 0

0 0
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<o

el (9) (1)
0 o]

0 0

0 0

(A (D (1=) 0

0

0
(a1 (}) (1)

0

Q

o

od(3)

0

0
(o d [ (1) 11 (D)

0

0

0

qw_kmwvl =)

(&)

o

o

O

o

0
(a1 (b (1)

0

0
(Ear1) ()

0

o

O

Q

o

[}

(71 (D) (1)

0

0

(a1 (D)

o(7) 20 S(LLLL)
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0

(321 p(1°)

0

o

0

ocd=[,(1-)+1]

0

r -}
yodep(1-)

o

(

r
[44

mm+wthpuv

0

0

o

o

o

o

(ppd2=t) o (1)
0

0

0

r
wode=

0

Aqmmmnpvhﬂpzv

(22)
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Normalized wave functions which transform according to
. *
the standard representations U(a) (S)or [U(a) (3)]  are:

U(211)(s)=

bt om =1m
Y‘l— ’ Y1_ ’ Y'l-
~1m g _ y—im Im
E (Gor = Top )s Ty

1 1,m =-3,m O,m 1 -1,m w3.m
(/A" B, N, (B Bt
/& 3- 3~ 3- /3 3- 3-

1 3,m ~1omy _1 ,p2ym _ o=2,m _ A ~3ym _ ,1,m
ST, ﬁw;’;,; M - (A )

1 /,o™3,m 1,m 1 5T =/, 4T 1 ,43,m -1,m
"""(Y ™+ 77%Y,°? )a - "'(ﬁ - Y™ )’ “'(Y ™+ ﬁ b4 )
/B 4= b= /2 4= 4= /B b= 4=

and with the definitions:

1 1. 1,2, =2, _1 L2 2
Vv, = = (q, + 1g.) —— (Vs + v, ) =2 /3 (q] - qat)
1 5 95 522 2 L~ %
v T g é(vg’vgz)ziﬁ%%
-1_ . 1__ f3
Vi = /5(%“"-5) V2 = 1/;%(“4”‘*5’

o_1 2 _ 2 _ 2
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v1 vo v~1
1°? 1°? 1
- 2 -

1 -
2 (pagt Sy

Change parity of all functions listed under U(zﬂ) (s).

1 1 -
T a- V3 a3) » v a4y » 1 Ll ey~ /39 q5)

0(22)(3) .

2+ /5
g m =241 O,m
> (G + 2%, -1
1 m _ 0,1 =4, gt 1. (Rm m
/2_2(,/'72’;; MBYE+ AR, — + 43
L@@, L (AR B Y e
Y e Sy
q3’ q2
o 1,2 ~2
V5 0 ﬁ(v2+v2)
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U(nn)(s) .

L (B T, et

U(A)(S) :

Opposite parity from U(”“)(S) .
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APPENDIX V

n,+n,<1, J <4
TOTAL WAVE FUNCTIONS FOR

n2+n3=2, n2i1, Ji2.

The ground state wave function
' 6
- 21 2
Vo = oxp 2£1 a4y

is understood as a factor of all wave functions. The factor Hh (ql)

is not given. Normalization is incomplete. A normalizing factor

Cn . n is to be applied to all wave functions.
1? 72* 73

(njs Nys D3 J+) = (0,0,0,0+)

¥=1.

(0909093")
- _l_ ok =2

= - (5" - 2
(050,0,4+)

P (e R T

V24

(091,5042+)

T}fmz%(ﬁqB 2+ +q2[Y2’m+Y ’m])
(0y1,042-)

@F:-;-g(/éqzyg;m (™ + 1,27™])
(051,0,4+)
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(031’094‘)
= - s O,m =4y Yl ’ -2
= gl TG T 4 /TG - /2 g 2

(0)011!1‘)

v = —}-_3— (v T2 4 w2 g, 00m vl vl

-

(0,0,1,52+)

S 1 ,~1,m o m -2 oI -1
' /g(/ﬁv1Y2+’ + v [Y2’ -Y']-ﬁv.]Y

(05041,3+)
- 1 ~3,m _ 3,m o m, ~2,m
v vz (V500" - /30 + /A2 ) (50 + 2
s LA M- B im)
L=1, J.IL=1
(0,041,3~)
\sz__L_ 1 =3,m Tomy _ o ,0,m
G, (v.l[ /5 Y00+ 3 Y‘B_] /8 \ YB:
+v;1[ /5 Y§:m+ ﬁYgl’m])

L=1’ 3'£="‘3
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(050,1,4+)
¥ = -—1/_—_- [ V7 Y3’“‘ - 4+'m] + 2v1[yi;m Zi’m]
- -1[ Y 3om l;m])
L=1, J.L=5
(0,0,1,4-)
¥ = —/};;_Z (vl[Y 3m o, 5 ylf“] - gv?[!.z:m _ Yz:f’m]

~lry3,m ~1,m

(051,1,1-)
g (/2 qy [v} Y}_’_m -2vd ¥ 4 vty

/12

(051,1,14)

replace q3 by Qr 9, by =4, in above, change parity
L= 1, :f . f =

(04141,2+)

¥ = (/-QB{ -v 2+,m+/- 1[22’1“ ,m] + 11 Y;;’m}

+ /8 q, {7} Yzim - )

1
Ve
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(0319132‘)
replace 93 by Ay 9y by -q3 in the above, change

parity; L =1, J-T=1.

(0,042,0+)

- =l (R iR R 3
L=0, 7= /3 (q4 + Ay + 9 2)

(030:2’1‘)

(0,042,2+)
| L = 2.
Both the vibrational and the rotational wave functions have
. a.(22) representation and a (211) representation.

From the (22) functions, we form

o [vg 2][Y + Y2+’m})

¥o = 1 ( 1 Y 1,m + [v2 - v—Z][YZ,m ,m] + v ~1 Y—i,m) .
A 2 /3 2 T2+ 2 2 V2t
Neither i1s an eigenvalue of J-T:
F-Dvg=2/8Y , (G-DLv=2/087+2
States

;:- (/295 + /3 ¥,) and :i%% (/379 - 2:/5 vg)

+
are eigenfunctions with JT=6and -4(1=0, 4+) respectively.
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(0’0’292‘)

J = 2= functions have no (211) representation, so there is
only one state, derived from (22) functions

™ = % (vg[Yg_’_m + Y;E’m] - [vg + v;Z] Y;:m)

L=2, J.2=0 (I=3).
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