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ABSTRACT 

A numerical model has been constructed for the study of the properties of 

multi-phase viscoelastic composites. The model utilizes the dynamic corre­

spondence principle of viscoelasticity in a finite element program to solve 

boundary value problems simulating uniaxial tension or simple shear and 

obtains the global complex Young's or shear moduli of the composite. 

Each phase of the composite is considered to be thermorheologically simple. 

The resulting modulus properties of the composite however, are thermorhe­

ologically complex and this investigation examines the nature of time-tem­

perature behavior of multi-phase composite materials. The specific compos­

ite considered throughout this study contains viscoelastic inclusions embed­

ded in a different viscoelastic matrix material. The deviation of the compos­

ite moduli from thermorheologically simple behavior of the matrix material 

is shown to occur at frequencies and temperatures where the glass-to-rubber 

transition of the included phases are reached. 

Properties of polystyrene and polybutadiene are used to investigate the ther­

morheological complexity (non-shiftability) of a Styrene-Butadiene-Styrene 

(SBS) block copolymer. To achieve congruence of the results with experimen­

tal data, it is necessary to consider a transition phase of properties 

"intermediate" to those of styrene and butadiene. Using accurate physical 

information on the individual phase properties and on the interphase region, 

it is possible to utilize the numerical model to predict long term properties of 

multi-phase composites from short term laboratory data. Lacking detailed 

information on the properties of a particular phase (e.g., the interphase), but 

knowing the time dependent properties for the composite material at a broad 

range of temperatures, it is also possible to use the numerical tool to solve an 

inverse problem and determine the unknown properties of the phase in 

question. 
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TIME-TEMPERATURE RESPONSE OF SOLIDS CONTAINING MULTIPLE 

VISCOELASTIC PHASES BY NUMERICAL ANALYSIS 

I. INTRODUCTION 

Viscoelastic composites usually consist of a "stiff" material and a "softer" vis­

coelastic material arranged together with one phase distributed as an array 

inside of the other phase. This type of composite material has many advan­

tages over either phase alone, due in particular to the increased strength of 

the composite from the stiff phase and the increased toughness of the com­

posite derived from the soft phase. The best known examples of this type of 

composite are fibrous composites, where the "stiff" phase is usually not a vis­

coelastic material but instead long thin fibers of graphite, glass, or boron. 

However, many other common materials are composites in which both 

phases are viscoelastic such as Styrene-Butadiene Rubber, used in automotive 

tires; many forms of adhesives, such as American Cyanamide's FM 73 and 

3M's AF153; and polyethylene fiber composites used, for example, in tennis 

rackets. 

It is well known that all homogeneous, viscoelastic materials possess me­

chanical properties which are sensitive to time, temperature, and moisture. 

The material property defining the mechanical behavior of a viscoelastic 

material is the modulus function, which relates stress to strain in the mate­

rial as a function of these variables. Since viscoelastic structures usually have 

to sustain loading over time, it is especially important to understand how the 

behavior of these materials varies with time. Also, because of the possibly 

very long time scales that can be involved for engineering applications, it is 
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necessary to resort to a time-acceleration scheme when determining the 

modulus functions of viscoelastic materials in laboratory experiments. Such 

a time acceleration scheme is well established for thermorheologically simple 

(TRS) materials, which involves a time-temperature equivalence as described 

below. This scheme is based on a relationship between the relaxation mecha­

nisms of the viscoelastic material with respect to temperature and with re­

spect to time. It enables the calculation of long time modulus properties for 

the material based on short time, multi-temperature data. 

Many types of viscoelastic materials, however, are not thermorheologically 

simple. The relaxation mechanisms as functions of temperature and time do 

not relate in a straightforward fashion, and therefore the simple time acceler­

ation scheme for determination of moduli cannot be employed. Materials 

that are not thermorheologically simple are called thermorheologically com­

plex (TRC). Examples of TRC materials include many crystalline polymers 

and all composite materials containing multiple TRS viscoelastic phases. In 

the case of crystalline polymers, the internal structure, and therefore the re­

laxation mechanisms, change markedly with decreasing temperature, making 

a single relationship between the time and temperature behavior of the mate­

rial infeasible. For multi-phase viscoelastic composites, there are two or more 

sets of relaxation mechanisms active in the material at all times and tempera­

tures, and the manner of coupling between the two phases and their respec­

tive TRS behaviors is unknown. For all such TRC materials a simple time 

acceleration scheme is not available and the need to develop an understand­

ing of the long time behavior and the time-temperature behavior of this class 

of materials is what motivates this study. The latter is limited, however, to 

the investigation of the time-temperature behavior of a special class of multi-
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phase viscoelastic composites and does not address the very different TRC 

behavior of other types of materials. 

Tobolsky1 and Leaderman2 in 1943, and later Ferry in 19503, noted that the 

effects of temperature and time on most homogeneous viscoelastic materials 

are related in a simple and convenient way.4 This relationship states that for 

a given loading, increasing the temperature produces a material response that 

is equivalent to increasing the time. Specifically, temperature effects are expe­

rienced primarily through a temperature dependent factor multiplying the 

time scale. Materials for which this is true are called thermorheologically 

simple materials. Several empirical equations represent the multiplicative 

factor that relates time and temperature in TRS materials, the most noted be­

ing the Arrhenius, the Doolittle, and the WLF equations. 4, 5 These equations 

each define the temperature dependent "shift factor", ay, which relates the 

relaxation or creep response data at one temperature to that at another tem­

perature. 

The shiftability of a modulus curve at one temperature through time via aT to 

represent the modulus at another temperature for TRS materials is the way 

in which temperature is commonly used as an accelerator in determining vis­

coelastic modulus functions for long term applications. Tests measuring 

modulus as a function of time for a material are performed in the laboratory 

at many different temperatures in a short time frame "window"; then, choos­

ing a single temperature as the reference temperature, each isothermal modu­

lus curve segment is shifted through time to the reference temperature such 

that overlapping portions of curve segments superpose. This process yields 

one continuous curve of viscoelastic modulus response at a single tempera­

ture Trcf, spanning a large range of times. Such a single curve is called a 
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"master curve" of the viscoelastic modulus function and the procedure to 

obtain this master curve determines the shift factor for the material. With 

the shift factor empirically determined in this manner, one can fit, for exam­

ple, the WLF equation to the aT data and thus have the shift factor defined 

continuously for all temperatures above the glass transition temperature*. 

Then the shift factor may be used to shift the master curve itself from Trcf to 

another temperature. 

As an example, data measured by Plazeck is presented in Figure 1.1 for low 

molecular weight polystyrene, a component of the SBS material considered 

later in this paper.6 The resultant master curve at 85°C in Figure 1.2 is ob­

tained by shifting the data in Figure 1.1 along the logarithmic time axis as 

described above. This shifting operation determines the corresponding shift 

factor given in Figure 1.3, where the squares represent the empirically deter­

mined shift factor and the solid line is the curve fit to these points by the 

WLF equation, which is discussed more fully in Section VI. 

* The glass transition temperature (Tg) is the temperature at which the properties of a polymer 
change from glassy to rubbery behavior; it is frequently defined as the temperature at which 
the coefficient of thermal expansion experiences a discontinuity. Homogeneous polymers still 
maintain a time-temperature superposability below this temperature. However, the character 
of the material behavior is sufficiently different that the shift factor .ibove and below the Tg 
c.innot be represented by the same "standard" equation. The WLF equation is valid only above 
the Tg of polymers. 
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Figure 1.1: Shear creep compliance of low molecular weight polystyrene6 
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Figure 1.2: Polystyrene data "shifted" and reduced to a master curve at 93°C6 

Same legend as Figure 1.1. 
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Figure 1.3: Shift factor for the polystyrene of Figures 1.1 and 1.2 at Tn,f=93°C 

This work examines the behavior of a viscoelastic composite consisting of 

several thermorheologically simple phases. Such viscoelastic composites are 

thermorheologically complex and the time-temperature equivalence of TRS 

materials does not apply. Because the composite consists of two or more ma­

terials, each with its own time-temperature and relaxation behavior, a single 

master curve cannot be attained by shifting isothermal segments of mechani­

cal property curves; in fact such a master curve does not exist. Consequently, 

simple time-temperature shifting can no longer be utilized to relate data at 

one temperature to that at another temperature and determination of long 

term properties of these materials is quite difficult. 

The particular type of viscoelastic composite studied contains uniformly sized 

parallel rods of one phase in a matrix of a second phase. These rods are regu-
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larly distributed and small compared to any macroscopic dimension of the 

material, such that the composite can be considered to be homogeneous on a 

global scale. Such materials are frequently defined using representative vol­

ume elements, with dimensions that are large compared to the dimensions of 

the individual phases, such that all global geometrical characteristics are the 

same in any representative volume element regardless of position within the 

material.7 Thus it is possible to speak of global effective modulus functions 

for these composites, which will apply to any sufficiently large volume of the 

material, and which will relate spatial averages of stress and strain in the 

material. The multi-phase composites or viscoelastic composites referred to 

throughout this work are constrained to this class of globally homogeneous 

composites. 

Two phase composites in which the distributed phase is in the form of cylin­

drical or spherical inclusions arranged in a regular array embedded in a dif­

ferent viscoelastic matrix have been studied in a variety of ways. In such 

studies the common objective is the determination or estimation of the phys­

ical properties of the composite from those of the individual phases. The 

simplest method suggested to achieve this goal is the "Rule of Mixtures," in 

which the value of the composite modulus functions at any time is a simple 

combination of the magnitudes of the moduli of the phases and their volume 

fractions in the composite.8 The rule of mixtures, however, does not account 

for coupling in the deformations of the multiple phases and is applicable at 

best only as a limit case when one phase dominates the material behavior. 

Christensen and Hill have explored the usefulness of the "self-consistent 

model," in which a single inclusion is examined as being embedded in an 

infinite solid of a "matrix material" representing the global effective proper-
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ties of the composite.9, 10 Their work was carried out analytically first for elas­

tic materials using Eshelby's inclusion analysis11 and was then extended to 

viscoelastic materials using the correspondence principle (discussed later). 

Hashin has investigated the so-called method of "composite spheres assem­

bly" (likewise, the "composite cylinders assembly"), which considers the 

change in strain energy in a loaded homogeneous body due to the insertion of 

inhomogeneities and yields upper and lower bounds for the properties of par­

ticulate viscoelastic composites with low volume fractions of inclusions.12, 13 

Hashin and Shtrikman have also presented variational methods to bound 

the strain energy, which again yield bounds on the effective composite mod­

uli, but not subject to the restriction of low inclusion volume fraction. 14 The 

variational and the composite assembly methods are also derived for elastic 

materials and the composite assembly method is extended to viscoelastic 

material descriptions through the correspondence principle. A thorough 

review of the various analyses of composite materials for prediction of effec­

tive composite moduli has been compiled by Hashin in 1983.7 

As mentioned, the limitations of these previous studies have been that they 

avoid the coupled interactive deformation of the multiple phases and can 

therefore provide only approximations to the actual viscoelastic properties of 

multi-phase composites; the effect of the deformation compatibility of the 

phases contributing to the instantaneous moduli has been neglected at the 

local level; the existence of a substantial transition region between the two 

phases has not been included (in some cases, a transition region cannot be 

accommodated); often simplifying assumptions regarding the geometry of the 

microstructure were made in order to derive the theories; frequently expres­

sions could be found for only one or two of the composite effective moduli/ 
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and the thermorheologically complex behavior, demonstrated by non-shifta­

bility:t of the resulting composite moduli, has in some cases been completely 

neglected. Experimental studies on viscoelastic composites have indeed 

demonstrated thermorheologically complex response,15, 16, 17, 18, 19 but only few 

have attempted to model the anomalous behavior.17, 20, 21 In spite of the vari­

ety of investigations into the mechanical properties of multi-phase compos­

ites, the nature of the viscoelastic properties and the interdependence of time 

and temperature remain incompletely understood. 

The purpose of the present endeavor is to model the behavior of a specific 

type of two-phase viscoelastic material in terms of the linear field theory of 

viscoelasticity and to determine the mechanical response behavior as a func­

tion of time and temperature. A model is made of the microstructure of the 

particular composite to be studied, and a boundary value problem is formu­

lated to extract a global effective modulus. The task of determining the solu­

tion is executed numerically because the elastic analogue to the requisite 

mixed boundary value problem described in Section II is not available. In 

addition, if the solution to the elastic analogue were available and the com­

monly employed viscoelastic-elastic correspondence principle using integral 

transforms could be employed to attain a closed form analytical solution, 

there is still considerable question as to the reliability of current approximate 

transform inversion methods. (See Cost for a thorough review of meth­

ods.22) The numerical method used here is an adaption of the finite element 

code FEAP23 that is summarized in Section III. The problem is formulated in 

terms of the "dynamic" boundary value problem which evokes frequency 

+ "I\!on-shiftability" refers to the failure of isothermal moduli curves to form smooth master 
curves upon shifting and will be used throughout this paper as the definitive measure of the 
thermorheological complexity of a material. 
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dependent complex modulus data for the viscoelastic material characteriza­

tion. Given the properties of the individual phases, one is able to solve the 

boundary problem numerically and examine the multi-phase material prop­

erties at long times and varying temperatures, where in every case the me­

chanics of the problem have been addressed exactly, except for numerical 

approximations. 

It is in this regard that this work differs from previous investigations. The 

numerical tool developed here may be applied to numerous models of multi­

phase viscoelastic composites under few restrictions to determine the global 

composite moduli at any time or temperature within finite element approx­

imations. The accuracy of this method is dependent only upon the accuracy 

with which one knows the properties of the constituent phases of the com­

posite and how precisely one knows and is able to model the microstructural 

geometry of the composite. Conversely, if the properties of one of the con­

stituent phases are unknown, the numerical procedure may also be used in 

conjunction with extensive experimental data on the composite properties to 

make a reasonable estimation of the properties of the unknown phase. The 

investigation contained in this paper centers on a specific composite model 

described in Section II, but the tool itself is extremely flexible and potential 

uses extend well beyond what is covered here. 

In the following pages, the model of the composite material examined is first 

described in Section II; then the derivation of the numerical tool for the pur­

pose of obtaining composite Young's moduli is explained in Section III. 

Section IV contains some interesting preliminary results on the modulus of 

the composite before any temperature effects are considered and also offers 

comparisons with elementary models. Then Section V briefly presents the 
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transverse shear modulus case including consideration of the relationship 

between Young's modulus, Poisson's ratio and the shear modulus. Effects of 

temperature are added and discussed in Section VI, prior to comparison of the 

numerical results with experimental data on a Styrene-Butadiene-Styrene 

block copolymer in Section VII. One measure of anisotropy and the effect of 

anisotropy on composite properties is mentioned in Section VIII and finally 

the effect of the properties of an interlayer (a transition phase between the two 

main constituent phases found to be necessary for some composites) on the 

composite behavior is presented in Section IX, before the conclusion in 

Section X. 
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The material model examined is that of regularly distributed cylindrical in­

clusions of one viscoelastic material embedded in a matrix possessing differ­

ent viscoelastic properties. The cylindrical inclusions are arranged in square 

or hexagonal arrays such that repeating units of microstructure can be found. 

To determine the modulus of the composite in a direction perpendicular to 

the axes of the cylinders for this microstructure, one formulates a two-dimen­

sional boundary value problem in plane-strain in which the cylinders are rep­

resented by circular domains, because the length of the cylinders is much 

larger than their diameter. As mentioned in the Introduction Section, the 

size of the inclusions and the inclusion spacing relative to the size of a struc­

tural member made from this material is such that the material can be 

viewed as being globally homogeneous on the macroscopic level, while actu­

ally being heterogeneous on the microscopic scale. For example, in the 

copolymer examined in Section VII the cylinders are on the order of 200A in 

diameter. 

A diagram of a portion of such a material array is shown in Figure 2.1. To de­

termine the global properties of this material, one applies boundary condi­

tions to the composite that if applied to a truly homogeneous body would 

produce homogeneous stress-strain states. The resulting non-uniform stress 

and strain states across the microstructure of the composite are then averaged 

to obtain the average global moduli. In this section, only (plane-strain) sim­

ple tension behavior is explored; the corresponding in-plane shear case is 

considered in Section V. The choice of the x-y directions in Figure 2.1 is con­

venient to the subsequent analysis; the global material properties will be 
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slightly different in other coordinate orientations and this effect is discussed 

later. Consider uniform displacements applied to the material in Figure 2.1 at 

the upper and lower boundaries simulating uniaxial extension; the dashed 

lines then represent lines of symmetry of the geometry and of the loading. 

These lines remain straight and parallel during the deformation. The resul­

tant average force in the x-direction, O'xlavg' along the lines of x=constant will 

be zero if there is no net force acting on the body in this direction. 

Figure 2.1: The global material 

Thus the smallest symmetrically repeating unit, shown in Figure 2.2a, subject 

to the following boundary conditions is equivalent to study of the entire body 

under uniaxial tension: 

on y=±L : uniform displacement Uy=u 0=constant 

Shear traction T x= 0 



-14-

on x=±L : Ux=constant , where the constant is determined such that 
axlavg = a 
Shear traction Ty= 0 

----- 2L -----

Figure 2.2a: The smallest repeating unit 

Further symmetry of the geometry and of this loading allows us to consider 

one fourth of the smallest repeating unit as the unit cell shown in Figure 2.2b 

subject to the boundary conditions listed below as representative of the case of 

uniaxial tension from Figure 2.1. 

Boundary conditions for unit cell in Figure 2.2b: 

on x=O: u -0 x- T =0 y 
on y=O: Uy=O Tx=O (2.1) 
on x=L: u =-b X T =0 y 
on y=L: Uy=Uo T =0 X 

This unit cell is then discretized with a mesh and studied with the finite ele­

ment procedure described in Section III. The value b in the displacement 

boundary condition Ux=-b applied on x=L is determined by linear interpola­

tion of the resulting crxlavg along x=L from two finite element solutions with 
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prescribed values of b; the interpolation is accomplished such that f LT:,,,dy = 0. 

This process is described in greater detail in Section III.t 

y 

X 

Figure 2.2b: Boundary conditions applied to unit cell 

It is important to emphasize here that while the material may be considered 

globally homogeneous because of the regularity of the inclusions, it may not 

be considered isotropic. Even on the global scale a material such as that 

shown in Figure 2.1 is anisotropic. However, one can assert on the basis of 

studies, some of which are shown in Section VIII, that the effect of the 

anisotropy on the global properties, in particular on the thermorheology of 

these properties, is relatively small. In Section VIII the results for the global 

effective viscoelastic uniaxial response of this material are compared for two 

different orientations. The actual difference in the values of the modulus 

functions at various frequencies and temperatures is relatively minor and the 

degree of thermorheological complexity shown for the two cases is almost 

identical. Therefore, this study is limited to addressing the particular case 

illustrated in Figures 2.1 and 2.2 throughout this work. 

t After completion of this work, it was discovered that using a particular finite element tech­
nique, the interpolation to determine the x=L displacement could be avoided. This technique is 
described in more detail in a footnote in Section III. 
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Interlayer Aspects for Multi-phase Composites 

The model was originally implemented in this work such that the inclusion 

and the matrix phases were distinctly separated and perfectly bonded at the 

interfaces. For later reference it will be of interest to note that the computa­

tional scheme addresses with nearly equal ease situations involving more 

than two viscoelastic phases. Indeed, it turns out that typical composites of 

two viscoelastic phases require an additional transition phase or property gra­

dient, at the interfaces, which is composed of a molecular mixture of the two 

phases. 24, 25, 26, 27 This transition phase is also referred to as a transition re­

gion, an interfacial region or an interphase. In fact, even research on metal 

matrix composites and fibrous composites has discovered interphases in 

those materials that significantly influence the overall properties, although 

the interphase is generally much smaller for these materials than for compos­

ites of two polymeric phases.28, 29, 30 

The size and properties of this transition region vary with different con­

stituent phase materials, solvent type used in material synthesis, rate of sol­

vent evaporation, etc.,31 but there appears to be no firm data on the geometry 

and distinct properties of the transition region for any viscoelastic composite. 

In fact, there appears to exist a specific need for methods with which to de­

termine these interphase properties. It turns out that the method of analysis 

presented here provides a possible tool, when joined by sufficiently refined 

experimental measurements, to estimate these interphase parameters more 

closely than has been possible to date. As will be seen in Section VII dealing 

with a particular block copolymer, lack of information on the actual transi­

tion region between phases in the composite compels the use of the numeri-
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cal method to essentially solve an inverse problem: together with a reason­

ably broad set of experimental data on the composite properties, the numeri­

cal scheme is used iteratively to "back out" a set of properties for the interlayer 

included in the model. 

For two-constituent polymeric materials, the results of the present work con­

firm the suggestions of Meier and Kaelble that the interphase can be quite 

large, can occupy a significant percentage of the volume fraction25, 26 and thus 

strongly affect the properties of the composite. In the model for this study, 

the transition region has been incorporated as an interlayer between the two 

phases with one set of material properties. Fesko has attempted to construct a 

model of an interphase with multiple concentric rings (see also Figure 7.10a), 

each of slightly differing properties, but given the limited amount of experi­

mental information on properties and size of the interphase it is not felt that 

the data justifies attempting this kind of refinement at this stage. Figure 2.3 

shows a diagram of the unit cell including an interlayer that is used for the 

later comparison with experimental results; the size chosen for the interlayer 

will be discussed in that section. 

Figure 2.3: Unit cell with single interlayer 
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Ill. COMPLEX FINITE ELEMENT MODIFICATION 

The finite element code used, Finite Element Analysis Program (FEAP) de­

veloped originally at Berkeley23 then further modified at Brown University, 

was chosen for its segmented structure, which allows relatively easy modifica­

tion of the subroutines of numerical procedure (e.g., constitutive behavior, 

formation of the stiffness matrix, data input, matrix inversion routine ... ) 

without requiring interdependent changes scattered throughout the entire 

program. The base code of FEAP contains element subroutines to accommo­

date linear elastic constitutive behavior as well as plasticity behavior. In 

order to address viscoelastic boundary value problems, it was necessary to 

expand the code's function. The modifications to FEAP are discussed briefly 

in two sections: first the viscoelastic material behavior and the specific rela­

tionships that are best suited to solving this inclusion problem numerically 

are described; then the method in which this material behavior was incorpo­

rated into the FEAP program is explained. 

Viscoelastic Material Behavior and the Dynamic Correspondence Principle 

Due to the convolution form of the constitutive laws, numerical calculations 

for viscoelastic problems are usually computation-time intensive, requiring 

iteration over each time-step and retention of records of the history of the 

field variables at the previous time-step. Issues dealing explicitly with time 

dependence can be side-stepped by formulating the problem in the Fourier 

domain via the dynamic correspondence principle;32 the traditional connota­

tion in viscoelastic material characterization for this formulation relates to a 

dynamic or complex material description. Although the dynamic correspon-
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dence principle is presented here, an entirely analogous correspondence prin­

ciple may be formulated with Laplace transforms.33 

For an isotropic linearly viscoelastic material, the constitutive law can be 

written in general as, 

(3.1) 

where snj and Chk are the deviatoric and dilatational components of the stress 

tensor, enj and t:kk are the deviatoric and dilatational components of the strain 

tensor, and G(t) and K(t) are, respectively, the time dependent shear and bulk 

moduli of the material. If the deformation history is harmonic 

then (3.1) reduces to 

( ) - ( ) icot 
Enj ~,t = Enj ~, CV e 

I 

sn/~,w> = 2icvG<w>en/~,w> 

ff ki ~' cv) = 3icvK( cv)tki ~' cv) 

(3.2) 

(3.3) 

where ii(.) denotes complex quantities and G( cv) and K( cv) are the half-sided 

Fourier transforms of the shear and bulk moduli respectively, defined by* 

G(cv) = /
0
°" G(t)e-iwtdt 

K( cv) = f 00 

K(t)e-iwtdt 
0 . 

(3.4) 

The functions iwG( cv) and icvK( cv) are referred to as the complex moduli of 

the viscoelastic material and are described in terms of their real and imagi-

* The usual factor 2~ appearing in the Fourier transform is contained in the inverse transform. 
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nary parts, which are called the storage moduli and the loss moduli respec­

tively: 

iwG(w) = c'(w) = G/(w) + iG 0 (w) 

iwK(w)= K\w) = K/(w) +iK 0 (w). 
(3.5) 

Dynamic testing, which determines the storage and loss moduli, is a common 

means of assessing viscoelastic material behavior in the laboratory. 

Based on the preceding relations, the dynamic correspondence principle32 is 

applicable to situations in which the boundary conditions vary in a time har­

monic fashion, and in which tractions and/ or displacements are prescribed as 

separable functions in time and the coordinate along the surface of the do­

main of interest (proportional loading). For example, if only displacements 

are prescribed, one has 

(3.6) 

wheres is the coordinate along the boundary and uj is a complex quantity and 

a function of s only. If all boundary conditions are written in this form, with 

the same frequency w, then the stress and strain states of the material are 

expected to be expressible in harmonic form. For example, knowing the dis­

placement boundary conditions to be (3.6), the displacement-strain relation 

implies 

en/~,t) = en/~,w)eiwt 
(3.7) 

( t) - ( ) iwt 
E kk I, E kk I, w e 

where the overbar again denotes a complex quantity, and a function of the 

frequency cv. 

Thus in the case of harmonically varying boundary conditions on a viscoelas­

tic solid, the constitutive equations in the form of convolution integrals 
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reduce to the form given in (3.3). Note that the explicit time-dependence has 

vanished from the constitutive equations in favor of the frequency w, result­

ing in equations in the Fourier (frequency) domain that are analogous to the 

equations of elasticity. Equations (3.3) are valid for any fixed value of w, 

independent of other frequencies, analogous to the corresponding elasticity 

problem, but here each field quantity has both real and imaginary parts. 

Finite Element Modifications 

The theory of finite elements has been used extensively for many years to 

solve numerous difficult mechanics problems for which analytical solutions 

cannot be derived. The basis of finite element theory as applied to solving 

static solid mechanics problems is briefly mentioned here. For an excellent, 

thorough derivation and explanation, see Zienkiewicz34 or Reddy.35 It should 

be noted that this study employs exclusively infinitesimal deformation analy­

sis with strains and displacements such that the linear theory of elasticity and 

viscoelasticity hold; consequently there is no distinction between the de­

formed and the reference configurations. 

In the context of the theory of finite elements for linear elasticity, upon using 

variational methods on the equilibrium equation and discretizing a body into 

a mesh of elements, one can relate the nodal displacements to the external 

forces through the element stiffness matrix, [ Kf (dependent upon the consti­

tutive behavior of the material): 

(3.8) 

Here y is a vector containing nodal displacements and f is a vector contain­

ing the external nodal forces. The strain in the elements is related to the 
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nodal displacements through a matrix /BJ, which contains essentially the 

derivatives of the shape functions for the element: 

(3.9) 

where E contains the strains in the element in the form of: 

£11 

£22 
(3.10) E 

£33 

£12 

and where shape functions are the interpolation functions used to approxi­

mate the relationship between nodal and interior displacements for an ele­

ment. The constitutive relation between stress and strain is expressed at the 

element level by 

(3.11) 

where the stress vector contains the stresses in the element in the same form 

as the strains, and the matrix [DJ contains the constitutive law, which in the 

case of isotropic elasticity is written: 

1 V V () 

E V 1 V () 

[DJ= 
1- v2 V V 1 () (3.12) 

]- V 
() () () --

2 

where E is Young's modulus of elasticity and vis Poisson's ratio. The stiff­

ness matrix for an element is related to both [BJ and [DJ by 

[Kf = j [Bf[DJ[B]dVe (3.13) 
ve 



-23-

As explained in the previous section, for the case of harmonic boundary con­

ditions on a viscoelastic structure, one obtains field equations that are analo­

gous to elasticity equations. The field quantities, however, become complex 

variables; therefore to be able to utilize the Dynamic Correspondence princi­

ple to study a structure via the method of finite elements, the finite element 

procedure must be modified to allow for complex field quantities and stiffness 

matrices. This modification can be accomplished in one of two ways: 1) The 

numerical procedure could be changed to utilize complex variables for every 

quantity that would become complex and any intrinsic functions that the code 

uses with these complex quantities would have to be altered in all subrou­

tines; or 2) the degrees of freedom at each node could be doubled, allowing 

for real and imaginary displacements in all directions and then necessary 

changes could be made to the element subroutine. In light of FEAP's sub­

structure and that FEAP allows many degrees of freedom, the change was 

implemented in the latter form. This method required a major modification 

of one subroutine of the code, but left all other portions of numerical proce­

dure untouched. 

To outline the changes made, first consider equation (3.3) in reduced notation 

for simplicity, omitting the arguments of cfnj and E:rzj 

snj = 2ici£(w)enf 

cf kk = 3iwK( cv)Ekk. 
(3.14) 

Recombining the separated dilatational and deviatoric parts of both stress and 

strain into anj and enj, respectively, and using the definitions 



-24-

(3.15) 

there follows 

(3.16) 

Equation (3.11) can now be used to develop the complex constitutive relation 

in matrix form 

(Jll icv<1c + KJ icv(-lc + K) 2- -
() 

3 
icv(- 3 C + K) E11 

i5'22 icv( _le+ K) iw(fc + KJ 2- -
() E22 icv(--C + K) 

= 3 3 (3.17) 2- -
iw(-lG + K) iw(fG +KJ () t.11 0"33 icv(--C + K) 3 3 

0"12 0 0 0 2iwC €12 

where the 4x4 matrix is referred to below as [DJ. For ease of implementation 

with the standard properties known for viscoelastic materials, this D-matrix 

can be separated into real and imaginary parts 

(3.18) 

Viscoelastic modulus functions are frequently represented in terms of a Prony 

series, e.g., 

N 
C(t) = CC-0 + L Gf-t/~j (3.19) 

j=1 

where Cj and c; j are the relaxation spectra and relaxation times respectively 

and C
00 

is the rubbery asymptotic modulus. Taking the half-sided Fourier 

transform of (3.19) to obtain the complex modulus and separating into real 

and imaginary parts yields 
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- N iu£-
iwG( cu)= G00 +}; 1 ! 

-_1 7+lW 
]- '-:, j 

G-
N G-w2 N fw 

=Goo+ ,I ] J 2 + i ,I 1 } 2 
j=:I ?f + CV j=l ~+CV 

-:, I '-:, I 

= GRe + iG1m 
= G' +iG" 

Thus, the D 11 term, for example, of [DJ is given by 

- 4 - -
D11 = 3 iwG( cu)+ icvK( cv) 

= (1GRe + KRe) + i(1G1m + Kim) 

= (D11)Re + i(D11>1m 

(3.20) 

(3.21) 

From (3.21) the stiffness matrix, (3.13), will also have real and imaginary parts, 

= J [Bf {[D]Re + i[D lJm)[B]dVe (3.22) 
ve 

Returning to the equilibrium equation (3.8), one obtains upon substituting 

complex quantities and splitting into real and imaginary parts 

(3.23) 

After equating real and imaginary parts of both sides of the equation (3.23), 

then recombining in matrix form, one obtains a matrix equation that is anal­

ogous to the elasticity form, but with double the degrees of freedom 
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(3.24) 

Note that the second row in matrix (3.24) has been multiplied by -1 in order to 

obtain a symmetric stiffness matrix. 

The B-matrix relating strain and displacement, which contains the deriva­

tives of the shape functions, does not contain complex quantities; however it 

must be reformed to handle the extra degrees of freedom properly. 

Through these modifications to the element subroutine of FEAP and other 

related changes in the same subroutine that ensure the proper interface of the 

modified matrices in calculations of the stress and strain fields etc., the elastic­

ity finite element code was enlarged to accommodate the special case of visco­

elastic materials subject to harmonic boundary conditions. The input section 

to FEAP was also modified to allow input of viscoelastic properties and pa­

rameters. The modified code, given the viscoelastic properties of the mate­

rial (s) involved, can solve problems that could normally be handled by finite 

element analysis in the elasticity case, as long as the boundary conditions are 

harmonic. The real and imaginary parts of the boundary conditions are the 

required input. 

Application of modified finite element analysis to inclusion problem 

For the particular boundary value problem formulated earlier, represented by 

equations (2.1), to determine the global moduli of a particular multi-phase 

viscoelastic composite via a unit cell analysis, one can consider a correspond­

ing harmonic boundary value problem: Replacing the displacement bound­

ary conditions uy=u 0 and uy=-b in Figure 2.2b with uy = u0 eicut. and ux = -bei<ol, 
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the uniaxial tension unit cell problem can be solved numerically in the 

Fourier domain for each value of w independently as a complex elasticity-type 

problem. The new complex boundary value problem in the transformed 

domain is 

on x=O: 
on y=O: 
on x=L: 
on y=L: 

iix = 0 + iO 
uy = 0 ± iO 
u =-b X 

fiy = u0 + iO 

!¥=O+i0 
lx = o + w 
!y=O+iO 
Tx=O+iO 

(3.25) 

The interpolation procedure to obtain the necessary x-displacement b such 

that jLT/edy = 0 and f Ly_jmdy = 0 in Figure 2.2b, where TxRe and T]m are the 
0 0 

real and imaginary parts of fx respectively, is based on the fact that the model 

is of a globally homogeneous material and the boundary conditions for the 

unit cell are constrained by this feature of the material. To obtain the proper 

interpolation procedure, it is simplest to think in terms of a square, with side 

length L, of purely homogeneous material. Consider such a homogeneous 

material subject to the conditions (in the transformed Fourier domain) 

on x=O: 
on y=O: 
on x=L: 
on y=L: 

(3.26) 

where d is arbitrarily chosen. Then the homogeneous strains in the body can 

be written 

t 22 =t:0 +0i 

£11 =£Re+ i£1m 
(3.27) 

where E = Uo and£ = dRe and £ =dim. One can then show that a 1,e and () L , Re L Im L , 

CJ'Im (from a-11 = CJ'Re + iCJ'1m) are related to £0, £Re, and £Im by four constants. 

<511 = Ae11 + Ce22 

= (A+ iB)( £Re+ i£1m> + (C + iD)( £0) 
(3.28) 
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These four constants can be determined from two solutions of the numerical 

program with different values of ux< X = L) = a I since the real and imaginary 

parts will yield essentially two equations for each solution. 

er Re = At: Re + Ct:o - Bt: Im 

O'[m = Bt:Re + At:1m + Dt:o 
(3.29) 

Once the constants are determined in this manner, one interpolates to deter­

mine the necessary values of £Re and t:1m, and therefore of the ux<x = L) dis­

placement, to result in ij11 = 0 (er Re= 0 and cr1m = 0). This procedure applies 

also to the average stress and strain values along the edge x=L in the unit cell 

of the globally homogeneous material. The average t:0 value along y=L is the 

same as the point by point value in this particular case. One notes that in the 

homogeneous case the four constants can be determined analytically as func­

tions of E( w) and v( (JJ) without iteration. However, in the case of the two­

phase material studied here, the global moduli of the material are to be de­

termined from the analysis and are obviously not available for determining 

the boundary conditions necessary to carry out the analysis.§ 

From the results of the finite element analysis on the unit cell subjected to 

the described complex boundary conditions, the complex plane-strain 

§ After completion of this work, a discussion with J. F. Hall determined that using a special 
finite element technique, the interpolation to determine the x=L displacement could be 
avoided. Two potential methods arc arc known at this time by the author: One method would 
be to add two-nodcd "shear beam clements" superposed on the boundary edge of the four-nodcd 
elements along x=L. These clements arc very stiff to resist rotation, but have no stiffness in the 
y-dircction. Use of the shear beam clements would thus ensure that all nodes on x=L are dis­
placed by a constant amount. A second method would be to assign the same equation number to 
the horizontal degrees of freedom for the nodes along x=L in the assembly process. This proce­
dure is equivalent to treating the entire x=L boundary as having one real and one imaginary 
degree of freedom in the x-direction. This method then ensures that the boundary displaces as 
a unit and, by specifying in the input that the real and imaginary forces in the x-direction be 
zero, also ensures that the resultant average x-forces are zero along that boundary. This second 
method will be implemented into the numerical procedure in the future: it will reduce computa­
tion time by a factor of three. 
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Young's Modulus of the global composite material was determined. By com­

bining the "average" resulting normal stress, ayj obtained by a simple nodal 
avg 

average on y=L, along with the applied average normal strain, Ey = i, the 

complex moduli, E\ w) = E/( cu)+ iEn( cu) were extracted for the two-phase 
' 

composite by 

(3.30) 

Note that the moduli determined are the plane-strain moduli since the basis 

of the numerical analysis performed is two-dimensional plane-strain. Figure 

3.2 shows the unit cell discretized into a finite element mesh. This is the 

mesh used for the unit cell of the SBS material studied in Section VII. All 

other meshes are similar with a graded and finer mesh at the boundaries of 

any two phases. The meshes for each different geometry case studied were 

refined until the point at which the results for E( w) from a mesh with the 

number of elements increased by a factor of 1½ could not be distinguished 

from the results of the previous mesh within plotting accuracy. 

An assumption underlying this application of the correspondence principle 

to a non-homogeneous solid pertains to the issue of uniqueness. For homo­

geneous elastic and viscoelastic materials, there exists a uniqueness proof 

which guarantees that if one obtains a solution that satisfies the field equa­

tions and the boundary conditions, then that solution is unique.36 There is 

no immediate such proof for inhomogeneous materials. In the formulation 

of the inclusion problem with the unit cell, it is assumed that the frequency of 

every point in the body is the same - in particular, that the frequency in the 

inclusion and in the matrix is the same frequency as applied in the boundary 
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conditions. Although through this assumption, a solution is obtained to the 

problem which satisfies the boundary conditions and the field equations, lack­

ing a uniqueness theorem one cannot from this solution conclude that the 

frequency is indeed uniform throughout the body. In homogeneous materi­

als, however, it is known that there is only one frequency throughout the 

body, and in this work it is assumed that the same is true for the globally 

homogeneous, although microscopically inhomogeneous material. This 

assumption is supported by the fact that the body as studied in this procedure 

undergoes instantaneous deformations, which would not account for a fre­

quency in the interior to be different from that on the boundary. 

More definitively, one can argue this point with superposition of two homo­

geneous sub-problems. See Figure 3.1. Consider the first sub-problem to be a 

square homogeneous body of the matrix material subject to the same uy=u 0, 

and ux = -b displacements with a void the size of the inclusion and with dis­

placements Us and tractions Ts on the boundary of the circular void. This first 

sub-problem possesses a unique solution by virtue of the theorem in Gurtin 

and Sternberg.36 Then consider the second sub-problem of a circular homo­

geneous body of the inclusion material subject to displacements us and trac­

tions -Ts on the boundary. This second sub-problem, too, has a unique solu­

tion by the same theorem. Then by the theory of superposition, the solution 

to the inclusion unit cell problem is the addition of sub-problems one and 

two. Because the solutions to the sub-problems are unique, the superposed 

solution may be unique as well, as long as the interface boundary conditions 

are exactly matched. The superposed solution is at least a solution to the 

nonhomogeneous problem. 
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Superposition Problem Sub-problem 1 Sub-problem 2 

• + 

( Identical Boundary conditions on edges of squares ) 
Figure 3.1: Superposition of two sub-problems to attain unit cell inclusion 

problem 

Figure 3.2: Finite element mesh used for unit cell with interlayer in later 
study of SBS copolymer (see Section VII) 
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Extremes Accounted for in Computations 

There are special cases for which the numerical procedure fails to render solu­

tions without specific attention. One of these situations occurs at high fre­

quencies for the boundary value problem. Since viscoelastic material proper­

ties change over a large range of time (or frequency), the investigation of the 

global composite modulus properties of the multi-phase material frequently 

extend to very large values of frequency. The numerical difficulty with this 

occurs in the situation of large frequency values (e.g., on the order of 108) in a 

viscoelastic material for which the Prony series characterization also involves 

large relaxation times (e.g,, on the order of 1014). Referring back to equation 

(3.20), one notes that calculation of the complex modulus involves multipli­

cation of relaxation times with the square of the frequency in the denomina­

tor of the imaginary part. This multiplication generates numbers (with this 

example) on the order of 1030 and causes a numerical overflow error. 

However, since this large number is in the denominator, the resultant value 

for the imaginary part is zero. Therefore, a procedure was placed in the finite 

element program to check for the conditions that lead to this error situation 

and bypass the calculation of the denominator in those cases. 

A second consideration for the numerical analysis arises in the study of com­

posites where one of the materials possesses a shear modulus without an 

asymptotic rubbery limit, i.e., the shear modulus decreases to zero with in­

creasing time, G
00 

= 0. In the inclusion problem at low frequencies where the 

situation of "zero" shear modulus occurs, a specific numerical difficulty is 

encountered in which the element stiffness matrix is not calculated correctly 

because the incompressibility places too severe of a restraint on the possible 
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element deformation modes. The issue of modifying finite element proce­

dures to correctly address the limit cases of incompressibility has been thor­

oughly addressed by Nagtegaal and Rice et al.37, 38 In essence, the problem is 

that in a standard formulation of the tangent stiffness matrix for finite ele­

ment analysis, incompressibility places too many constraints on the elements 

such that the individual components of the dilatational strain are forced to be 

constant. This restriction then gives the illusion of "stiffness" in the result for 

the material the finite element results indicate that the material is stiffer 

than it actually is. 

Summarizing Nagtegaal, Parks, and Rice, in the continuum for plane-strain 

problems, each point in the material has two degrees of freedom, and there­

fore in the case of incompressibility only one constraint can be valid at each 

point (in addition to the incompressibility constraint). Thus, to have a finite 

element code that accurately allows for incompressibility, the number of con­

straints on the dilatation for each element type must be related to the average 

degrees of freedom for the element in the mesh by a factor of two.37 (For the 

four noded isoparametric elements used in FEAP for the inclusion problem, 

the ratio of degrees of freedom to constraints is 2/3, instead of the desired 2.) 

One method to reduce the parameters which govern dilatation to account for 

the limit case of incompressibility is to alter the variational principle through 

which the stiffness matrix for an element is derived. The simplest way in 

which to implement this method is by changing the B-matrix containing the 

derivatives of the shape functions. By splitting the B-matrix into its devia­

toric and dilatational components, then calculating the dilatational portion of 

the B-matrix at a reduced number of quadrature points (in the case of four 

noded isoparametric elements, at one quadrature point), the constraints on 
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the element deformation are reduced and the correct dilatational strain is cal­

culated. The calculation of the deviatoric strains are still correct with this 

method. Therefore, this method known as the B-Bar method was employed 

throughout the analysis. 
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IV. CIRCULAR INCLUSION PROBLEM 

In this section (and in other sections prior to the specific example of the SBS 

composite) an "ideal" composite consisting of two phases is considered. The 

individual phase properties are chosen as idealized viscoelastic properties 

such that the modulus functions of each phase have distinct long-term and 

glassy asymptotic values and one phase is "stiffer" at all times than the other, 

"softer" phase. Figure 4.1 shows the Bulk and Shear moduli as functions of 

time chosen for these phases. Examination of the effective properties of a 

composite with phases of these idealized properties with simple relaxation 

characteristics and definitive glassy and rubbery moduli allows for easier in­

terpretation of preliminary results before attempting the modelling of a real 

material. 

5 r----r----"""T""----T-------,r------r-------r-----, 

4 

Stiff _Jvla_t_ecial _____________________ -~ 

--------
,,......_ 

!--< 
ro 

,.Cl 
'--' 3 

V) 

;::i ....... 
;::i 

"O 
0 
E 2 
bl) 
0 -

1 

Soft Material 

' 

Bulk Moduli 
Shear Moduli 

' 
' ' ' 

' 
' ' 

' ' ' ' . 
' ' ' 

--~--~-----------------

---------------------------
o.___...__ ___ _._ ___ ___._ ___ ___. _______ ......_ _______ __. 

-2 0 2 4 6 8 10 

log time (sec) 

Figure 4.1: Modulus data for individual phases used in initial analysis 
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Effect of Varying Volume Fractions on Composite Properties 

The first set of results presented in this section examines the behavior of the 

Young's modulus of the composite material of Figure 2.1 with increasing 

volume fractions of inclusion relative to the volume fraction of the matrix 

and involves no temperature changes of the material. Three separate cases of 

Young's modulus were studied for which the volume fraction of inclusion 

was chosen as 25%, 36%, or 64% of the total composite volume (or unit cell 

volume). Each case was also calculated for both the arrangement of a soft 

matrix material with stiff inclusions (as in the case of Styrene-Butadiene rub­

ber) and for the case of a matrix of the stiff material with soft inclusions (like 

rubber reinforced adhesives). 

Figure 4.2 shows the Young's modulus calculated from the numerical proce­

dure for a composite of the soft material with stiff inclusions; the results are 

presented as the storage and loss moduli separately. Also shown on these 

plots are the Young's moduli for each phase as a homogeneous material. It is 

clear from these figures that the behavior of the composite is dominated by 

the behavior of the matrix material, even when the volume fraction of the 

inclusion exceeds 50% of the total volume. This is sensible since the contin­

uous phase, as opposed to the dispersed phase, should govern the response of 

the composite. The magnitude of the storage modulus increases with increas­

ing volume fraction of the stiff inclusion, but the character of the glass-to­

rubber transition (shape, length, location) remains dominated by the soft 

matrix material. As one would intuitively expect, for nearly all frequencies 

the values of the composite moduli (storage and loss) lie between the values 

of the moduli of the soft material and the stiff material. However, there is an 
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exception to this guideline at high frequencies of the loss modulus. At high 

frequencies where the loss modulus of the stiff material is lower than the loss 

modulus of the soft material, the composite's loss modulus is completely 

dominated by the soft material, nearly independent of volume fraction. 

Before explaining this phenomenon, it is instructive to examine the inverse 

composite where the matrix is that of the stiff material and contains soft in­

clusions. 

Figure 4.3 shows the complex Young's moduli results for increasing volume 

fractions of inclusion where the stiff material is the matrix and the soft mate­

rial is the inclusion phase. The results here are quite similar to the inverse 

case shown in Figure 4.2. Once again the composite properties are governed 

by the matrix properties and the magnitudes of the moduli are between the 

magnitudes of the stiff and soft phase homogeneous moduli except for the 

high frequency loss modulus. As before, the high frequency loss modulus for 

the composite, where the stiff loss modulus is lower than the soft loss modu­

lus, is almost equal in magnitude to the soft material's loss modulus, nearly 

independent of volume fraction. This occurrence can be most easily under­

stood by the following physical argument: the energy dissipation, which is 

proportional to the loss modulus, must be expected to be absorbed by the 

softer material, even if there is a larger volume fraction of stiff material or if 

the stiff material surrounds the soft material. At high frequencies, the stiff 

material "does not have time" to react or prohibit dissipation. 

Also worth noting in comparing the soft matrix and the stiff matrix cases is 

the relative influence of the included phase on the composite properties. 

When the stiff material is in the matrix, the magnitude of the resulting com­

posite modulus is decreased by the presence of the soft material inclusion less 
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percentagewise than the magnitude of the composite modulus increases due 

to the presence of stiff material inclusion when the soft material is in the 

matrix. In other words, for a set volume fraction of inclusion, the magnitude 

of its effect on the properties of the composite depends greatly on whether the 

matrix phase is "stiffer" or "softer" than the inclusion phase. Physically this is 

reasonable because (except for the high frequency loss modulus for reasons 

mentioned earlier) one would expect a stiff material in the matrix to "shield" 

or block the influence of a softer inclusion material more than a soft material 

would be able to block the influence of a stiff material. Likewise, one would 

expect a stiff material inclusion to constrain the deformation of a softer ma­

trix more than visa versa. 

It is noted that the loss modulus of the composite with the stiff continuous 

phase shown in Figure 4.3 shows very clearly two distinct loss peaks, a main 

one due to the stiff matrix and a smaller one as the contribution from the soft 

inclusion. The loss modulus of the composite with the soft continuous phase 

(Figure 4.2) also shows two loss peaks; however, while the loss peak due to 

the soft matrix is distinct, the contribution from the stiff inclusion loss peak is 

somewhat obscured due to the fact that the loss modulus of the soft material 

itself has a slight second rise at approximately the same frequency as the stiff 

material. Later it will be shown that when the loss peaks of the stiff material 

and the soft material are separated farther in frequency than in this example, 

the second loss peak from the stiff inclusion is quite clear. 
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Unit Cells of the Same Volume Fraction: Comparison of Computational 

Results to Rule of Mixtures 

The Rule of Mixtures commonly used to estimate the material properties of 

composite materials is based purely on the volume fractions and the material 

properties of the respective phases. For example, the Rule of Mixtures for the 

transverse modulus for unidirectional cylindrical inclusions in a matrix 

(which is the representation of the model in Figure 2.1) is given by8 

(4.1) 

where Vj and Ej are the volume fraction and modulus of phase j, and Ecornp is 

the predicted modulus of the composite. Applying the correspondence prin­

ciple, this is equivalent to 

1 V1 Vu 
-=-+-
£ * E; E;I 

V1 Vn ---=---+-_cc.__ 1 
(4.2) 

E' +iE" Ej +iEi' EJr +iEjf 

which when solved for E' and E '' of the composite, yields formulas involving 

the products of quantities for the two phases. The formula for E' is shown 

here as an example: 

From (4.1), and upon closer inspection also from (4.3) as well as the corre­

sponding formula for the loss modulus of the composite, it is apparent that 

the Rule of Mixtures does not distinguish between which phase is in the 

inclusions or in the matrix for the same volume fraction of materials. Thus, 
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the Rule of Mixtures predicts the same composite moduli for stiff matrix/ soft 

inclusions as for soft matrix/ stiff inclusions for fixed volume fractions. 

As an example, consider the case of 36% stiff material and 64% soft material 

in the composite of Figure 2.1. The complex Young's moduli calculated from 

the numerical procedure for both the composite with the 36% stiff material in 

the inclusion and the composite with the 36% stiff material in the matrix are 

given in Figure 4.4. Note that there is actually a great difference between the 

moduli of these two cases, greater than a 50% difference at some frequencies 

on the scale of the plots and upon conversion to the real modulus from the 

log modulus, the difference exceeds 90%. As illustrated earlier, the composite 

with the 36% stiff material in the matrix has moduli dominated in magni­

tude and form by the stiff material, whereas the composite with the 36% stiff 

material in the inclusion has moduli dominated in magnitude and form by 

the soft matrix material. Figure 4.5 shows the Rule of Mixtures result, which 

is the same for these two cases, along with the numerical results. From this 

comparison, it is evident that the Rule of Mixtures is inadequate for general 

prediction of multi-phase viscoelastic composite properties. The Rule of 

Mixtures best approximates the modulus for the stiff inclusions in a soft 

matrix (both in magnitude and shape), for the particular properties used here, 

although the magnitude of the modulus is underestimated in both cases. 
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V. SIMPLE SHEAR DEFORMATIONS 

Derivation of boundary conditions 

The procedure for determining the global moduli of a viscoelastic composite 

material comprised of an array of inclusions was developed in earlier sections 

for the case of uniaxial tension, to produce a global Young's modulus for the 

material. The same computational procedure is applicable to the determina­

tion of any modulus, under the following limitations: 1) The boundary value 

problem to obtain the effective modulus from the global material must be 

describable in two-dimensional plane-strain. 2) An appropriate set of bound­

ary conditions must be derivable for the unit cell, which simulates the action 

of the boundaries of the unit cell when the global material is subjected to the 

boundary value problem to attain the modulus. 

The boundary value problem for the unit cell in the case of a uniaxial exten­

sion to determine Young's modulus on the global material was formulated in 

Section II. The in-plane shear modulus for the composite material can be 

determined in a somewhat different fashion. Simply considering the global 

material from Figure 2.1 subjected to simple shear does not intuitively lead to 

boundary conditions for the unit cell as in the uniaxial tension case. It is not 

clear a priori what the deformations are or what tractions act along the 

boundaries of a unit cell. 

To determine the proper boundary conditions for the unit cell under shear 

deformation, it is necessary to recall that the material being considered is 

globally homogeneous and that there exists an alternative representation for 

pure shear. In homogeneous materials, the state of stress at any point ob­

tained by applying shear tractions to all four boundaries as in Figure 5.la is 
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equivalent to the state of stress of any point in Figure 5.lb in a 45° rotated ref­

erence frame (x'-y'), where tension is applied in they-direction and compres­

sion in the x-direction. 

tttttttttt 
~ ~ 

~ --E--
~ --E--
~ 

y~ 

--E--
~ --E--
~ ~ 

~ --E--
~ X --E--
~ --E--
~ X --E--

ttittttttt 
Figure 5.la: Pure Shear, shear 
tractions applied 

Figure 5.lb: Pure Shear, tensile 
and compressive tractions applied 

Therefore, for the globally homogeneous material considered in this study, a 

state of pure shear (Figure 5.2) may also be attained by applying orthogonal 

tensile and compressive tractions. When considering the situation depicted 

in Figure 5.3, it is clear that by viewing a rotated unit cell at the angle of the 

loading, the boundary conditions on that unit cell are quite similar to those 

for uniaxial tension. The boundary conditions on the rotated unit cell (Figure 

5.4) that are equivalent to studying the entire body in a state of pure shear are: 

on y' =Ll : uniform displafement Uy• = u0 
Shear traction Tx, = 0 

on x'=Ll : 

on y'=O: 

uniform displafement Ux• = -u0 
Shear traction 1~, = 0 

uniform displafement Uy• = 0 
Shear traction 1> = 0 

on x' =0 : uniform displafement Ux• = 0 
Shear traction Ty,= 0 

(5.1) 
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Figure 5.2: Pure Shear on Composite Material, shear displacements applied 

y 

" - -------- / ••••• ' / ____ , __ 
' ' / / • ,_,,, • 
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y' il{ .,,,_. ,. ,. 

{---a.- / ' 

x' X • ., • ',. • 

/ 
Figure 5.3: Pure Shear on Composite Material, tensile and compressive dis­

placements applied. Repeating rotated unit cell is in bold. 
Original unit cell in dotted lines. 
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Figure 5.4: Rotated Unit Cell from Figure 5.2. Original unit cell boundaries 
in dotted lines. 

It would now be possible to use this rotated unit cell to determine the global 

shear modulus for the composite. However, by examining the deformations 

and the nodal reaction forces along the dashed boundaries in Figure 5.4, 

which correspond to the boundaries of the original (un-rotated) unit cell, a 

clear set of boundary conditions for the original unit cell appear. After sub­

tracting a rigid rotation from the pure shear results (and neglecting small sec­

ond order effects), the boundary conditions for the original unit cell (Figure 

5.5) corresponding to the global material in simple shear are determined to be: 
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on y=L: uniform displacewent fix= u0 
Normal traction Ty = 0 

on x=L : uniform displacewent Uy = 0 
Normal traction Tx = 0 

on y=O: 

on x=O: 

uniform displacewent fix= 0 
Normal traction Ty = 0 

uniform displacewent fiy = 0 
Normal traction Tx = 0 

y 

/ ,~o 
~ii~_~/. ____.__~-► X 

Ty= 0 

Figure 5.5: Boundary conditions for original unit cell in simple shear 

(5.2) 

The original unit cell subject to the determined boundary conditions in equa­

tion (5.2) was then used in the subsequent analysis to determine the shear 

modulus of the composite. Analogous to the methods described for uniaxial 

tension, the global composite shear modulus can be determined from the 

average resulting deformations of the unit cell subjected to (5.2) via 

(5.3) 
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Here, y is defined to be the average applied change of angle that the global 

material experiences, y = uo, and axyl ( co) is the resulting nodal average 
L avg 

shearing stress in the unit cell along y=L. 

Shear modulus: Results 

The shear modulus of the composite material with the individual phase 

properties again defined by Figure 4.1 was determined by the procedure of the 

preceding sub-section. The results for the shear modulus are consistent with 

those for the Young's modulus and therefore only one set of results are 

shown here. Figure 5.6 contains the values of the storage and loss compo­

nents of the shear modulus for the composite with a 25% volume fraction of 

the stiff material in the inclusion. Also shown on the figures are the storage 

and loss components of the shear moduli for the individual phases. As in 

the case with Young's modulus, the matrix behavior dominates the behavior 

of the composite although the change in shear modulus due to the presence 

of another phase is less dramatic. 

The deformation of the boundaries of the unit cell is of interest in the shear 

case, since the normal displacement on each boundary is not completely 

known a priori. Figure S.7 contains the real displacements of the deformed 

mesh, exaggerated for presentation purposes. These results show that the 

boundaries of the unit cell do not remain straight in the case of shear. 
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Figure 5.6b: Shear loss moduli for composite material and constituent phases 
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Figure 5.7: Deformed mesh for unit cell showing real components of 
displacements 
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A Measure of Anisotropy 

As mentioned in Section II the composite material under consideration is 

globally homogeneous, but not globally isotropic. The anisotropy is also 

apparent from the necessity to examine a different unit cell in x' -y' reference 

frame than in the x-y frame. What is not obvious, however, is the degree of 

anisotropy of the material. One method by which to ascertain the extent of 

influence of the anisotropy on the composite properties is to compare the 

shear modulus obtained from the boundary value problem described in this 

section with the shear modulus obtained from the isotropic relation of 

Young's modulus and Poisson's ratio, where these two quantities are deter­

mined from the results obtained for uniaxial tension. 

The definition of Poisson's ratio for an orthotropic material, in the Fourier 

domain, is 

(5.4) 

where Ex and Ey are the strains resulting from a uniaxial tension test. 

Poisson's ratio may be determined for the composite material from the uniax­

ial tension results via (5.4) simply by calculating the ratio of the average x­

strain along the x=L boundary, Ex= ~, and the average y-strain along the y=L 

boundary E y = uo 
L 

Thus, for the composite material of the same phase properties as before, the 

Young's modulus was determined from the boundary value problem for uni­

axial tension, the Poisson's ratio was determined in the manner just de­

scribed, and the Shear modulus was determined from the solution to the 
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shear boundary value problem and equation (5.3). Then, the "isotropic shear 

modulus", Gi, was determined via the isotropic relation: 

(5.5) 

The example was performed on a composite with an inclusion volume frac­

tion of 25% and the results for the Young's modulus and shear modulus are 

contained in Figure 4.2 and Figure 5.6 respectively. The Poisson's ratio is 

shown in Figure 5.8. Note that as with all other calculations, the Poisson's 

ratio determined is the plane-strain Poisson's ratio; with this consideration, 

the limit values for the glassy and rubbery response regions are as expected. 

The non-plane-strain Poisson's ratio, v, is calculated from v = _ Vpt-c , 
vpl--c + 1 

where vpl-E is the plane-strain Poisson's ratio; this equation for conversion of 

plane-strain and non-plane-strain quantities is the same for isotropic materi­

als and the square-symmetric material considered here. The non-plane-strain 

Poisson's ratio is shown on the plot with the plane-strain values for compari­

son. Again, the glassy and rubbery responses are reasonable, approaching 

unity low frequencies. The comparison of the shear modulus and its 

isotropic approximation is shown in Figure 5.9. There is a clear difference 

between the two, the isotropic approximation overpredicting the actual value 

at all frequencies. However, the magnitude of the difference between the 

shear modulus and the isotropic shear modulus is only about 20% at the 

worst case for this particular example. While 20% is certainly significant, this 

observation indicates still that anisotropic effects are not overwhelming and 

that isotropic approximations could be made as rough estimates for this com­

posite material. Another measure of anisotropy is presented in Section VIII 

and the effect of anisotropy on the TRC behavior of the composite is discussed 

at that time. 
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VI. THERMOMECHANICAL RESULTS 

As discussed in the Introduction Section, many homogeneous polymers have 

been shown to be thermorheologically simple materials that permit time­

temperature interchange. The amount of shift of modulus properties at one 

temperature along the log-time axis necessary to obtain the corresponding 

properties of the material at a new temperature is called the shift factor, aT. 

The empirically determined shift factor can be represented as a continuous 

function of temperature through the general form of the WLF equation4 

l 
_ cf(T -T0) 

ogay - - 0 r 

c2 +T-T0 
(6.1) 

' 

where the parameters cf and c~ are related to the free volume of the polymer 

and are dependent on the chosen reference temperature T 0. For example, the 

shift factor for low molecular weight polystyrene shown in Figure 1.3 displays 

both the empirically determined shift factor, calculated from Figures 1.1 and 

1.2, and the resulting WLF equation shift factor, where the free volume con­

stants determined are indicated on Figure 1.3. 

Since each phase in the composite studied here is considered to be a thermo­

rheologically simple material, the modulus functions and WLF parameters 

are known at their reference temperatures and can be used via (6.1) to deter­

mine the modulus functions of each phase at any desired temperature. The 

numerical analysis developed in this work makes use of this procedure in 

shifting the individual phase data to obtain the average effective complex 

modulus of the composite at any temperature. The usual relatively small 

vertical shift for the density and entropic correction ( '.p ) is also applied to 
1oPo 
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each phase in the same manner. This vertical shift is applied over the whole 

frequency range as a multiplicative factor to the value of the modulus itself. 

It should be noted that the formulation of the finite element analysis does not 

address the dilatational effects of thermal expansion for the materials studied. 

Changing the temperature of the composite will cause a constant pre-stressed 

state in the material. One is concerned in this study only with perturbations 

from that state for modulus determination. Also all points in the composite 

are held to be at the same constant temperature for the calculation of the 

moduli as functions of frequency. Energy dissipation effects in the form of 

heat are neglected. 

Limit Case: Elastic Inclusion 

For clarity in explanation of later results, it is prudent to first examine a limit 

case of the general problem in which one of the phases is elastic. In this 

event, only one of the materials in the composite has properties that vary 

with time and temperature. Therefore the relaxation mechanisms of the vis­

coelastic phase will also be those of the composite. Using the shift factor con­

cepts, one can plainly show this equivalence by considering the composite 

material at two different temperatures, T1 and T2. Letting Pe denote the prop­

erties of the elastic phase and P v< t, T) denote the properties of the viscoelastic 

phase as a function of time t and temperature T, one can define the properties 

of the composite, Pcomp, at T1 and T2 as an unknown function of the individ­

ual phase properties 

Pcom/t, T1) = ~(Pe,Pit, T1),B) 

Pcam/t,T2) = ~(Pe,Pit,T2),B)
1 

(6.2) 
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where the parameter B represents all other factors of the geometry and the 

loading lumped together. But, for the viscoelastic phase with a shift factor 

ay = ay(T2, T1), it is known that the properties at T 1 are related to the properties 

at T2 

Thus, the properties for the composite at T2 can also be written 

Pcam/ t, T2) = :f ( Pe, Pj lay, T1), B) 

(6.3) 

(6.4) 

In fact, comparing (6.4) to (6.2), it is clear that the composite properties at any 

temperature are related to its properties at any other temperature through the 

same time shift factor as that for the viscoelastic material: 

(6.5) 

Thus the majority of the thermorheological behavior of a viscoelastic com­

posite with only one viscoelastic phase is identical to that of its viscoelastic 

component. The small density and rubbery entropic contributions to the 

thermorheological variation in properties, however, cannot be shown to be 

identical in the composite and its viscoelastic constituent. In fact, because the 

change in properties due to density and rubbery entropic behavior is mani­

fested as a multiplicative factor to the properties themselves, for any random 

unknown function of the phase properties as in (6.2), the density and rubbery 

entropic behavior with temperature will be different in the composite from 

that in the pure viscoelastic phase. Fortunately, the effects of these vertical 

corrections are less than 1 % of the modulus values for a given temperature 

change and therefore, for all practical purposes, the time-temperature behav­

ior of a viscoelastic composite with only one viscoelastic phase will be the 

same as the time-temperature behavior of its viscoelastic phase. 
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As an example, consider the Young's modulus of the composite of previous 

sections, represented by the unit cell in Figure 2.2, with the "soft" viscoelastic 

material in the matrix, but replacing the "stiff" viscoelastic inclusion with an 

elastic inclusion with a shear modulus of G=300 bar, and bulk modulus of 

K=10,000 bar. The volume fraction of the stiff elastic inclusion is taken to be 

25%. Only the example of elastic inclusions in a viscoelastic matrix will be 

presented here; the corresponding case of an elastic matrix with viscoelastic 

inclusions is comparable. The density for the "soft" viscoelastic phase is taken 

to be p0=1.2 g/cc. at T0=300 K and its variation with temperature is taken to 

follow 

p(T) = Po 
1 + 3a(T-T0) 

(6.6) 

where a is the thermal coefficient of expansion and is taken to be 6.0 x 10-4. 

The shift factor for the "soft" matrix phase is represented by the WLF equation 

(6.1) with constants c0=16 and c1 110. A plot of this shift factor's variation 

with temperature is shown later in Figure 6.4 along with a shift factor for the 

"stiff" viscoelastic phase. 

Shown in Figures 6.1 and 6.2 are the storage and loss Young's moduli of this 

composite material at two different temperatures, 0° and 27°C. The complex 

Young's moduli of the viscoelastic matrix and the constant Young's modulus 

of the elastic inclusion are also given for comparison. It should be noted that 

the constant elastic modulus is a degenerate case of complex modulus where 

the real part is constant with frequency and the imaginary part is zero. 

Figure 6.3 contains the storage and loss moduli of the composite where the 

0°C curve has been shifted with the free volume shift factor ay and the rub­

bery entropic correction ( ~p ) of the matrix material to 27°C. The result af-
1oPo 
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firms the earlier proof that the time-temperature behavior of the composite 

with only one viscoelastic phase is identical to the time-temperature behavior 

of its viscoelastic phase alone. The time-temperature shift factor of the matrix 

material, when applied to the composite modulus at one temperature to at­

tain the modulus at another temperature, provides perfect superposition of 

the two curves along the log time axis: the curves for 0° shifted to 27° coin­

cides on the log time scale exactly with the calculated 27° curves. Also as pre­

dicted, the small vertical rubbery entropic correction for predicting the modu­

lus curve at one temperature from another temperature is not the same for 

the viscoelastic phase and the composite. The vertical shift factor of the ma­

trix material, when applied to the composite modulus at one temperature to 

attain the modulus at another temperature does not permit perfect superposi­

tion: there is a small vertical mismatch between the 0° storage modulus 

curve shifted to 27° and the calculated 27° curve. This mismatch is less than 

1 % of the modulus values, confirming that the effect of temperature on the 

amplitude of the modulus is relatively small. Therefore when dealing with 

composites of only one viscoelastic phase it is acceptable, for all practical pur­

poses, to assert that the relaxation mechanisms and the behavior of the mate­

rial with time and temperature is that of the viscoelastic phase alone. There 

will be multiple reference to this result later on in this work. 
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Two Viscoelastic Phases 

For clarity of presentation, some initial thermomechanical results are given 

here for which the individual phase properties are again the idealized visco­

elastic properties: the modulus functions of each phase have distinct long­

term and glassy asymptotic values and one phase is "stiffer" at all times than 

the other, "softer" phase (refer to Figure 4.1). In this set of results, the stiff 

phase is taken to be that of cylindrical inclusions at 25% volume fraction 

arranged in a square array within the softer matrix; the interlayer modelling 

of a transition region between the two phases (see discussion below) is sup­

pressed. Only the results for the loss moduli are presented and discussed 

since the thermorheological complexity of the material is depicted most 

clearly in that function. No further information on TRC behavior is gleaned 

by examining the storage modulus. 

The WLF constants for the soft phase were given in the previous sub-section. 

The free volume shift factor for the stiff phase is represented by WLF con­

stants of c0=19.4 and c1=85 at the reference temperature T0=300 K. A plot of 

the variation of the shift factor with temperature is shown in Figure 6.4 along 

with the shift factor for the soft viscoelastic phase. For both phases in this set 

of results, the small (vertical shift) factor from density and rubbery entropic 

corrections has been omitted. 
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Figure 6.4: Shift factors for soft and stiff materials at Tref=27°C 
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Figures 6.Sa and 6.5b show the loss moduli for the composite obtained from 

the developed numerical procedure together with the loss moduli of the indi­

vidual phases on the same axes for two temperatures. The distinct difference 

in the shape of the composite loss modulus at low frequencies for these two 

temperatures is clear. This observation is further illuminated by plotting the 

composite loss moduli at three temperatures together in Figure 6.6, where, for 

ready comparison, all curves have been shifted such that the high frequency 

ends coincide. 
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From these results it is clear that the (loss) modulus of the composite tends to 

be dominated in both magnitude and in the shape of the glass-to-rubber tran­

sition region by the modulus of the matrix material. That is, the magnitude, 

location, slope, time range, and general shape of the modulus curve describ­

ing the transition from glassy to rubbery behavior of the composite is con­

trolled primarily by those same features of the matrix material. The signifi­

cant deviation from this general rule occurs at frequencies at which the glass­

to-rubber transition in the inclusion phase occurs. Therefore at temperatures 

and frequencies where the inclusion is in the glassy portion of its behavior, 

the viscoelastic properties of the composite are completely governed by the 

relaxation mechanisms of the matrix material. However at frequencies 

where the inclusion material begins to proceed through its transition, the 
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time dependent properties of the composite are no longer dominated entirely 

by the matrix. 

Returning to Figures 6.5a and 6.5b, the glass-to-rubber transitions (g-r transi­

tion) for the inclusion and matrix phases (symbolized by the peaks of the loss 

modulus) occur at different frequencies when the material is at various tem­

peratures. In addition, the difference in thermorheology of the inclusion and 

matrix material (i.e., different shift factors) causes the location of the g-r tran­

sition of the two materials to change relative to one another as the tempera­

tures changes. For example, at 0° C the g-r transitions of the individual 

phases are separated by approximately 9 decades of time (Figure 6.Sb), whereas 

at 27°C these transitions are separated by only 2 decades (Figure 6.Sa). 

Therefore, at 0°C two quite distinct loss peaks appear in the composite proper­

ties, the first one at high frequency due to the soft matrix material and the 

second one at lower frequency as a contribution from the "stiffer" inclusion. 

At 27°C the loss peak in the composite arising from the f 1if1er material has 

begun to coincide with the loss peak from the soft matrix material, and at 

60°C (not pictured here) the loss peaks of the two individual phases are at 

nearly the same frequency and therefore only one peak is experienced in the 

composite. 

If one tries to shift the response curves obtained at different temperatures 

through (log-)time to obtain a single master curve (as one would do for a 

homogeneous material), one obtains the situation shown in Figure 6.6. Here 

the individual curves have been shifted along the log-time scale such that the 

high frequency ends coincide. The reasoning behind overlaying the high fre­

quency ends is that because the matrix is a softer material with a lower glass 

transition temperature (T g) than the inclusion material, at most temperatures 
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its g-r transition lies at higher frequency than that of the inclusion material. 

Therefore at sufficiently low temperatures the composite behaves for nearly 

all frequencies like the soft material with an elastic filler, the elastic modulus 

of which is the glassy asymptotic modulus of the stiff material. As the tem­

perature is raised, the onset of the g-r transition of the inclusion approaches 

the g-r transition of the matrix material from the low frequency end. In this 

example, at 0°C from log m=-12 (the onset of the g-r transition of the inclu­

sion) to all higher frequencies, the composite properties are entirely governed 

by the matrix properties. At higher temperature of 27°C, for example, this is 

true from only log m=-4 and up. As shown in the elastic inclusion subsection, 

viscoelastic materials filled with elastic solids exhibit the same time-tempera­

ture behavior as the viscoelastic material alone, and therefore have the same 

shift behavior. This TRS-like behavior occurs because in this case only one 

phase exhibits temperature dependent behavior. In the multi-phase visco­

elastic composite then, the high frequency segments of the response of the 

composite, the range in which the inclusion is glassy-elastic at each tempera­

ture, will shift perfectly as a TRS material with the shift factor of the matrix 

material for all temperatures until the temperature at which the g-r transition 

of the stiff phase begins to occur at higher frequencies than the g-r transition 

of the soft phase. 

The distinct failure of the curves to superpose in Figure 6.6 demonstrates 

clearly the thermorheologically complex behavior of multi-phase viscoelastic 

composites. Time and temperature are no longer equivalent to one another 

in terms of modulus response in the simple sense as applies to homogeneous 

polymers. The interaction of the two phases in the composite and the differ­

ent time temperature behavior of each phase cause the modulus of the com-
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posite to have a distinctly different character at different temperatures. The 

shape of the modulus function at each temperature is quite different than the 

shape at the other temperatures, in contrast to TRS materials for which the 

shape of the modulus curve is identical at all temperatures, but merely trans­

lated through time along the (log-)time axis. 

There is thus clearly no simple way through which time and temperature can 

be related for composites of multiple viscoelastic phases. Obviously a single 

shift factor that is a function of temperature is inappropriate, however a shift 

factor that is a function of time and frequency is also not adequate. This ob­

servation is especially clear for non-monotonically increasing or decreasing 

functions such as the loss modulus, where it is possible for points on a curve 

at one temperature to have no corresponding value on a modulus curve at 

another temperature. 

TRC Parameter 

At this point it is convenient to introduce a measure of the thermorheologi­

cal complexity of a material: the TRC parameter, K'. This parameter is a mea­

sure of the amount of non-shift of two modulus curves at two different tem­

peratures upon shifting to the same temperature such that the high frequency 

ends coincide. In terms of the example of Figure 6.6, the TRC parameter is a 

measure of the difference in the modulus of the different curves shown. The 

TRC parameter is a function of the two temperatures being compared and is 

defined in terms of the loss modulus, normalized by the glassy asymptotic 

modulus: 

(6.7) 
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where E(/ represents the loss modulus of a material at a temperature Tj and 

E; is the asymptotic value of the storage modulus at large frequencies. 

For the example of Figure 6.6, K(cv,0,60), K(cv,27,60), and K(cv,027) can be deter­

mined. These are plotted in Figure 6.7. Values of K for temperature ranges 

( 0 ,2 7) and ( 0 ,60) are quite similar over frequency as one would expect from 

Figure 6.6, but there is quite a noticeable difference between (27,60) and the 

other two. One notes that the value of the TRC parameter is zero at high fre­

quencies for all curves, indicating the manifestation of TRS behavior there. 

Since the TRC parameters in Figure 6.7 are comparisons of the moduli curves 

reduced to 60°C, the change in the TRC parameter from zero in each case 

occurs over the frequency range in which the inclusion material has its loss 

peak at 60°C. Also, comparing the moduli curves at 27° and 60° where the 

peaks of the loss moduli of the two phase materials almost coincide, 

K( cv,27,60) is close to zero for the entire frequency range implying that there is 

relatively little difference in TRC behavior for these two temperatures, not 

that the composite exhibits nearly TRS behavior for the frequency range 

shown at these temperatures. Another feature of the TRC parameter curve is 

that there is a region of influence in frequency of the loss modulus of the 

included phase, which changes the value of K from zero, after which K takes 

on a (non-zero) constant value again. 

One can also use the TRC parameter for the same temperature change to 

compare differing amounts of TRC behavior due to other factors. For exam­

ple, an interesting application is to compare the amount of TRC behavior of 

differing volume fractions of inclusions for the same temperature change. 

That is, does the amount of TRC behavior of a composite change by varying 

the volume fractions of its phases? In Figure 6.8 the resulting K( cv,0,27) has 



-73-

been plotted for the composite of Figures 6.5 and 6.6, but for which the vol­

ume fraction of the stiff inclusion has been varied to 25%, 36%, and 64%. The 

plot of 1(( w,0,27) shows clearly that there is not only a difference in modulus 

when the volume fractions of the materials change (as shown in Section IV), 

but there is also a noticeable difference in the TRC behavior of the composite. 

The greater the volume fraction of the stiff inclusion, the more thermorheo­

logicall y complex is the composite: there is more pronounced non-shift in 

modulus curves for the same temperatures in the composite with the higher 

volume fraction of inclusion compared to the composite with the lower vol­

ume fraction of inclusion. The TRC parameter shows this difference much 

more clearly than looking at plots similar to Figure 6.6 for each case and over­

laying them to determine if and in what manner they differ from one an­

other. 



0.0 

,..... -0.2 
E--
8~ 

~ 
I-< -0.4 
<l) ...... 
<l) 

s 
('!j 

~ -0.6 
P-i 

~ 
E--< -0 .8 

, , ____________________ ,_ -·-· 
, , , , 

' 

-74-

.. ___ _ 

K(W,0,60) 

K(W,0,27) 

K(W,27,60) 

-1.0 .__ _ __. _____ __. ___ ........_ ___ _._ ___ _._ ___ ...._ ___ .......... 

-6 -4 -2 () 2 4 6 
-1 

log w (sec ) 

Figure 6.7: TRC parameter comparing three temperatures of Figure 6.6. 
Frequency values are for each temperature shifted to 60°C. 

0.2 r-----,------,----------.-----.----....------, 

0.0 

-0.2 

-0.6 

-0.8 ' 

I 
~ •. 

,: ,: ... ,: ... ,: 
,: 
,: 
,: 
,: 
,: ,: 

,: ,, 
,: 
" ... 

,'/ 
,: 
,: 
,: 

•: ... ,: ,: ,: ,: ,: ,: ,: 
,: ,: ... ,, 

,: ,: ,: 
,'/ 

- 64% Inclusion 
.......... 36% Inclusion 
· · · · · · 25% Inclusion 

-1.0 .___ __ ___. ___ _._ ___ _..... ___ _._ ___ .....__ ___ _.__ __ ___, 

-8 -6 -4 -2 () 2 4 6 
-1 

log w (sec ) 

Figure 6.8: TRC parameter comparing three different volume fractions in 
the unit cell to show their effect on TRC behavior. Frequency 
values are for each temperature shifted to 60°C. 



-75-

VII. EXAMINATION OF AN SBS BLOCK COPOLYMER 

Introduction to Block Copolymers and SBS 

In order to examine the ability of the analytical tool developed to adequately 

predict moduli of multi-phase composites based on individual phase data, it 

is necessary to apply it to experimental data of a material system. To do so 

requires data with a sufficiently wide range of time or frequency and tempera­

ture. In addition, it is prudent to effect such a comparison with a material 

with a minimal difference in geometric detail at the microscopic size scale. 

The initial model is based on a composite with a very regular microstructure, 

where two phases exist as a dispersion of one phase of cylindrical inclusions 

in a matrix of the second phase. Furthermore, the inclusions are regular both 

in size and in spacing. While it will certainly be possible in the future to cre­

ate more complex models for the computational procedure, which will elimi­

nate some of these restrictions (see Conclusion Section), it is best at this initial 

stage of analysis to maintain simplicity in the model for clearer and easier 

understanding of results. 

Block copolymers are multi-phase viscoelastic materials that consist of two 

distinct phases arranged in a regular microstructure. The smaller volume 

fraction phase usually exists as spheres or rods within a matrix of the larger 

volume fraction, or if the volume fractions are nearly equal, the two phases 

exist as lamellae. In addition, the inclusions (or lamellae) are generally quite 

regular in size and in spacing. The solvent used in synthesis, rate of evapora­

tion of solvent, and annealing all affect the type of domain structure and its 

regularity.31 In block copolymers the two phases are not miscible, creating the 

microstructure of distinct phases. However, at the interface between the two 
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phases, chain ends from each polymer are intermixed, resulting in inter­

molecular non-covalent bonding. This molecular bonding at the boundary of 

the phases gives the inclusion-matrix connection strength-the boundary of 

the two phases is not necessarily a weak domain in which slippage occurs.39 

These factors make block copolymers a type of multi-phase viscoelastic mate­

rial that readily fits within the microstructural geometry of the current physi­

cal model. Some experimental data does exist in the literature for the time 

and temperature dependence of the properties of certain of these materials. A 

very common block copolymer is Styrene-Butadiene-Styrene (SBS). SBS usu­

ally consists of either spherical or cylindrical inclusions of polystyrene 

(T g=93°C) embedded in a hexagonal array within a polybutadiene matrix. For 

the copolymers with cylindrical polystyrene domains, the approximate, me­

dian dimensions of the cylinders are 200A diameter and lOµm length, which 

allow the approximation of the cross-section as a two-dimensional problem, 

which can be formulated in the context of plane-strain. 

Due to the extremely regular microstructure of SBS and the fact that time­

temperature experimental data is available, this particular copolymer was 

chosen as an example for comparison with results from the model presented 

earlier. An SBS was therefore modelled for which the matrix contains 1,2-

polybutadiene (T g=-7°C) instead of the more common 1,4-polybutadiene 

(T g=-88°C) so that the glass transition temperatures of the two phases would 

be closer together (than in the 1,4-SBS case) and so that the thermorheologi­

cally complex behavior would be more evident in experimental time and 

temperature ranges. Existing experimental modulus data that contain time­

temperature information show significantly more prominent TRC behavior 

for 1,2-SBS than for 1,4-SBS. A very thorough and careful study of the varia-
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tion of the mechanical properties of 1,2-SBS with time and temperature has 

been presented by Cohen and Tschoegl.1 8 Their data is presented in this sec­

tion and it is the basis for comparison with the numerical results. 

Experimental Results 

Shown in Figure 7.1 1s the experimental data determined by Cohen and 

Tschoegl.18 Short term modulus tests were performed over frequency at thir­

teen different temperatures for the Loss and Storage Compliance of SBS. 

They then shifted the results along the log-frequency axis such that the high 

frequency ends coincided with a shift factor, the parameters of which are 

nearly identical to those of a homopolybutadiene of similar structure. This 

equivalence of the SBS shift factor obtained from superposition of the high 

frequency ends of isothermal modulus curves with the polybutadiene shift 

factor is expected on the basis of the argument presented in Section VI: at 

high frequencies only the relaxation mechanisms of the softer matrix mate­

rial are operative in the composite when the stiffer inclusion is glassy-elastic. 

In Figure 7.1 the curve segments at low temperatures (from 1 °-58°C) all shift 

uniformly onto a smooth "master curve" demonstrating a temperature de­

pendence of mechanical properties at low temperatures governed purely by 

the polybutadiene relaxation mechanisms. Modulus curve segments above 

65°C however, no longer map onto a single curve when shifted. Instead, these 

curves deviate more markedly from the low temperature "master curve" as 

temperature is increased. This clear illustration of the thermorheological 

complexity of the SBS material is especially noticeable in the loss compliance. 
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Properties for Numerical Study 

The SBS composite investigated by Cohen and Tschoegl consists of 106,000 

molecular weight polybutadiene centerblocks containing 90% vinyl 1,2- addi­

tion with 7% cis 1,4- addition and 3% trans 1,4- addition, as well as 16,000 

molecular weight polystyrene endblocks. This composition yields a 23% vol­

ume fraction of polystyrene for the copolymer. The microstructure of Cohen 

and Tschoegl's SBS was modeled for the numerical analysis as a polybutadi­

ene matrix with rod-type polystyrene inclusions. Although no electron mi­

crograph is available for Cohen and Tschoegl's composite, many electron 

micrographs recorded on various kinds of SBS composites of similar volume 

fractions all show a regular arrangement of rod shaped inclusions. Figure 7.3 

is an example of an electron micrograph from Dlugosz for an SBS material of 

the same volume fraction;40 all micrographs with which the author is famil­

iar for rod-shaped structures of SBS show this same arrangement. Note the 

extreme regularity of the polystyrene domains, appearing white inside of the 

black stained polybutadiene matrix. In addition, following the theory of 

Helfand on the thermodynamics of polymeric mixtures, Figure 7.2 can be 

constructed41 which shows a phase diagram for polymeric mixtures of immis­

cible phases based on the total molecular weight of the composite and the 

volume fraction of the phases. Designating polystyrene to be phase I and 

polybutadiene to be phase II, the situation for Cohen and Tschoegl's 1,2-SBS 

falls into the middle of the rod category (cylinders of I in II) with an overall 

molecular weight of 138,000 and 23% volume fraction of Polystyrene.§ 

§ It was determined after this work was completed, through personal communication with N. 
W. Tschoegl, that the assumption of regular cylindrical mclusions in the SBS composite of 
Cohen and Tschoegl is not correct. Tschoegl stated that although the molecular weights and 
volume fractions o1 the individual constituents indicate a cylindrical domain structure, these 
parameters alone are not conclusive for determining the microstructure. Although an electron 
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Figure 7.2: Phase diagram showing microstructure of a mixture of two im­
miscible polymers (I and II)41 

micrograph was not taken of the SBS material, Tschoegl stated that they had chosen the many 
physical parameters of the copolymer components in hopes of attaining a spherical domain 
structure. In this sense then, the analysis nere is an approximation of a three dimensional 
spherical domain structure by two dimensional circular domains. After consultation, Tschoegl 
concurred that the results obtained from the two-dimensional study of circular domains would 
differ from a full three-dimensional analysis of spheres primarily in the magnitude of the 
modulus; the time-temperature information, which is the main thrust of the present analysis, 
should not be significantly affected.[Tschoegl, 1990 #60] 
Another consequential factor regarding the material geometry is that even if cylindrical do­
mains are present, in a macroscopic specimen the cylinders would not be uniformly arranged 
throughout the entire body. Rather, the cylinders would exist as regular arrays in smaller, 
separate domains interconnected somewhat like grains in metals. Again, in view of the 
anisotropy study performed in Section VIII, the moduli of a body composed of grains of regu­
larly arranged cylinders and the moduli of the idealized body studied here of a single uniform 
cylindrical array (Figure 2.1) would differ primarily in the magnitude of modulus; the time­
temperature behavior of the composite should not be greatly altered.lTschoegl, 1990 #60] 
Thus, in the study presented here, the proper coupling between the phases of the composite is 
accounted for.[Tschoegl, 1990 #60) 
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Figure 7.3a Ultramicrotome section cut perpendicular to the extrusion direction of an SBS plug. The dark 
regions correspond to the Osmium stained butadiene matrix. Magnification 50,000X. 

~-~ 

-~;'??:?' 
Figure 7 .3b Parallel section in optimum contrast position showing a large area of striated structure with some 

faulted regions. 

Figure 7.3: Electron micrograph from Dlugosz et al. 40 for a Styrene­
Butadiene-Styrene block copolymer showing cylindrical 
polystyrene inclusions in a polybutadiene matrix. 



-82-

The phase properties used in the numerical model for Cohen and Tschoegl's 

composite were mostly obtained data available in the open literature. 

Although care was taken to find properties for polymers of similar structures 

to the constituents of SBS, it should be stated here that the accuracy of the 

individual phase properties as applicable to the Cohen SBS system may be 

questioned: variability of polymeric properties according to different synthe­

sis procedures and the probability that the phase polymers in microdomains 

on the order of 200A will exhibit different behavior than that demonstrated 

by the bulk homopolymer data, leave doubt as to the accuracy of the phase 

property data for this application. The shear modulus and shift factor for 

polystyrene were taken from data by Plazeck for a polystyrene of (low) molec­

ular weight 16,400.6 The shift factor below the glass transition temperature for 

polystyrene was taken from analysis by Rusch. 42 The polybutadiene shift fac­

tor was taken from data by Sanders and Ferry for a polybutadiene of 

99,000MW containing 91.5% vinyl 1,2-, 7% cis 1,4-, and 1.5% trans 1,4-.43 

The characterization of the polybutadiene matrix was taken, however, from 

the low temperature SBS composite transition and plateau regions with the 

magnitude adjusted to agree with the comparable data on 1,2-polybutadiene 

from Sanders and Ferry. This choice was made for the following reason: 

since the composite behavior is largely dominated by the matrix behavior at 

low temperatures (see Section V and VI), earlier numerical results stressed 

the importance of having accurate properties for the shape of the transition 

region of the matrix material modulus. At temperatures below 30°C the 

composite acts like polybutadiene filled with an elastic medium (the glass 

transition temperature of the polystyrene is 93°C), and consequently the shape 

of the plateau and transition regions will be those of polybutadiene. 
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Therefore, data from 1.31 ° to 29. l 6°C from Cohen and Tschoegl' s SBS compos­

ite were used to obtain the character of the transition behavior for the 1,2-

polybutadiene phase. This method accounts for the filler effect and effective 

crosslink density for polybutadiene as it exists in the matrix of the composite, 

factors that are not well defined, and that would have to be added into any 

homopolybutadiene properties used. 17 The magnitudes of the modulus func­

tions for polybutadiene taken from the composite curve are, however, too 

large because of the extra stiffness added by the (elastic) inclusions and there­

fore were adjusted downwards to represent polybutadiene data. This proce­

dure for procuring reasonable matrix material properties was used by Fesko 

and Tschoegl in their paper modelling 1,4-SBS behavior analytically.17 

Time or frequency dependent bulk moduli for the individual phase materials 

could not be found in the literature and as a result constant bulk moduli were 

assumed for both phases. This assumption is at least approximately valid 

because for a typical viscoelastic material the bulk modulus function through 

the transition region decreases in magnitude by a factor of only two or three, 

as compared to the shear modulus function, which changes by multiple pow­

ers of ten. 4 Consequently, the transition region of Young's modulus function, 

which is the result obtained in this study, is completely dominated by the 

character of the shear modulus transition. Results substantiating this claim 

are given in Figure 7.9 later in this Section. In that example, reasonable time­

dependent bulk moduli are assumed for each constituent phase of the com­

posite, then the composite moduli are determined and compared to results 

for which the bulk moduli of the individual phases were assumed constant. 

There is less than a 0.1 % difference in the values of the Young's Modulus 

functions of the composite for the two cases and no difference in the ther-
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morheological behavior. Thus, the assumption of constant bulk moduli for 

the component phases of SBS is justified. The values for the bulk moduli for 

polystyrene and polybutadiene used in the numerical analysis were taken 

from a paper by Arridge examining SBS elastically, which consequently 

employed constant values for moduli.44 

As mentioned in Section II, the results of the study of SBS composite will 

suggest consideration of an intermediate phase, called an interlayer, between 

the two main constituent phases of SBS. The existence of an interlayer con­

sisting of a molecular mixture of polystyrene and polybutadiene as a transi­

tion region between the two phases has been postulated extensively in the lit­

erature,24, 26, 27, 45, 46, 47 but there are no properties available for this additional 

phase. In fact the interlayer probably does not really exist as a single separate 

phase of distinct homogeneous properties, although some researchers have 

spoken about a "glass transition temperature of the interphase."18, 24 Here, a 

single phase interlayer will be used to model a possibly complex transition 

region and best estimates were made based on the information available re­

garding appropriate properties of an interlayer. It has been suggested that the 

transition region is rich in polystyrene48 and therefore the shape of the inter­

layer properties chosen is based primarily on the polystyrene properties. The 

glass transition temperature is also suggested to be lower than that of polysty­

rene18, 24, 26 and 75°C was chosen for that property of the interlayer. The 

numerical procedure was then applied to partially solve the "inverse prob­

lem" in a short iterative process that refined the properties of the interlayer in 

order to match the complete sense of the experimental data as closely as was 

possible and could be reasonably expected. This "fine-tuning" is discussed in 

greater detail later in this section as well as in Section IX on sensitivity. 
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The size of the domains in the SBS composite are chosen based on the stated 

23% volume fraction of polystyrene. The present procedure is insensitive to 

the size scale of the unit cell; therefore the actual size of the domains does not 

come into account and knowledge of the volume fraction is sufficient. For a 

unit cell without an interlayer, polystyrene is chosen to occupy 23% of the 

volume and polybutadiene 77%. 

For considerations involving an interlayer, the literature contains estimates 

for sizes of an interphase that deviate widely from one another depending on 

the theories used, the exact phase materials considered, the molecular weights 

of the materials, measurement methods, etc. 24, 26, 27 In addition, the solvent 

used, rate of evaporation of the solvent, and the annealing processes will all 

also affect the size of the interphase domain and the influence of these pa­

rameters on interlayer size has not been systematically studied. Therefore in 

the present work a median size for the interlayer was assumed. To accom­

modate the suggestion that polystyrene is represented in the interlayer more 

than polybutadiene, a greater percentage of polystyrene than of polybutadiene 

is subtracted from their volume fractions in the unit cell devoid of an inter­

layer to compose the volume fraction of the interlayer. A moderate 16% of 

the volume fraction of the unit cell is assumed for the interlayer, with a 

domain size of pure polystyrene at 13% and the pure polybutadiene matrix at 

71 %. Compared to the average sizes for SBS microstructures mentioned in 

the beginning of this section, these percentages yield a 150A diameter inclu­

sion, a 37 A thick annular interlayer and a 370A square lattice parameter (2L). 

Another factor of importance concerns the plane-strain aspect of the analysis, 

an assumption necessary for the two-dimensional formulation of the numer-
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ical problem. The specimen size for Cohen and Tschoegl's work was 0.38 cm 

in thickness and 0.14 cm2 in crossectional area; the strain was applied perpen­

dicular to the plane of the crossection. The experiments to attain the modu­

lus of the material were performed in compression, but because of the exceed­

ingly small strain values, ""'0.01 %, there is believed to be no significant effect 

from bulging of the specimens.49 Due to this fact and the experimental set-up, 

described in detail by Cohen and Tschoegl,1 8 in which the specimen is con­

strained "in the thickness direction" throughout the test, the experimental 

test is not a true "uniaxial tension test", nor is it a true "plane-strain test". It is 

believed, however, that the plane-strain modulus determined from the 

numerical analysis is a reasonable approximation to the modulus derived 

from the experimental results. 

Results 

The model studied initially did not allow for an interphase. The global effec­

tive Young's modulus functions for this model were determined numerically 

at a variety of temperatures. The Young's modulus curves obtained were 

then shifted along the log-frequency axis with the polybutadiene shift factor 

such that the high frequency ends coincided. The modulus curves were also 

"inverted" to attain compliance curves to facilitate direct comparison with the 

experimental results of Cohen and Tschoegl shown in Figures 7.1. 

In the absence of an interlayer, the non-superposability of the isothermal 

modulus curves indicative of thermorheologically complex behavior did not 

occur at the same temperatures as the experiments showed. In fact, the 

numerical modulus curve generated for the 96°C temperature, which shows 

extreme non-shiftability with the lower temperature data in Cohen and 
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Tschoegl 's measurements, shifts well to coincide precisely with the lower 

temperature numerical data in the frequency range of interest. At higher 

temperatures however, for example at 120°C, the numerical results do begin 

to show TRC behavior in the experimental frequency range. These results are 

shown in Figure 7.4 for the loss compliance. 
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Thus, in the absence of an interlayer, the TRC behavior at any given tempera­

ture does not occur until the transition of the polystyrene domains has been 

reached; this result is consistent with the earlier ones on the idealized mate­

rial in Section VI. At 96°C, the polystyrene transition occurs around log W=-10 

and cannot, therefore, affect the shifting of the composite near log a>=O.* At 

* The numerical results would show non-shifting at 96°C at lower frequencies, but we cannot 
attain those results numerically because the polybutadienc moduli become very small relative 
to the polystyrene values. This excessive modulus ratio results eventually (at log W=-5) in 
producing a (nearly) singular stiffness matrix. 
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120°C however, the polystyrene transition has shifted to log m=2 and therefore 

has begun to affect the shifting of the composite in the frequency range of the 

experiments. The relative locations of the glass-to-rubber transitions of each 

phase and the composite are illustrated in Figures 7.5 and 7.6 at 85°C and 

120°C. 

The experimental data, on the other hand, show non-shiftable behavior from 

temperatures as low as 60°C. Considering this discrepancy, one notes that the 

numerical code solves the mechanics of the problem accurately, subject only 

to the restrictions of finite elements and the accuracy of the model of the 

material represented; furthermore, it is not reasonable that the relaxation 

times of the modulus data used for polystyrene would be incorrect by 6 

decades of time. One concludes, thus, from these observations of misfit in the 

location of the onset of TRC behavior that an additional physical phe­

nomenon must be operative in this SBS material, which is not being ac­

counted for in the numerical model, and that produces TRC behavior at tem­

peratures well below the glass transition temperature of polystyrene at high 

frequencies. 
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It is this significant misfit in the time response of the viscoelastic composite 

that demands consideration of a transition phase with properties that are 

"intermediate" to those of the two primary phases. In much of the literature 

there is experimental and theoretical support for the existence of this third 

phase between the two main phases in both multi-phase polymers in general 

and in SBS in particular.24, 26, 27, 45, 46, 47 

This transition region is a domain of molecular mixing of the two phases and 

exhibits properties that are different from those of either phase alone. The 

existence of an interphase is not incompatible with the fact that polystyrene 

and polybutadiene are immiscible in one another. At the boundary, polymer 

chains and, in particular, ends of polymer chains of the two phases bond to­

gether. One can consider polymer ends at the boundary to be like monomers 

(or short segments) of the polymers anchored at one end; in fact the 

monomers of styrene and butadiene are partially soluble in one another. 

Thus, it is conceivable that at the boundary the two phases mix to form an 

interphase with properties different from either phase alone. As far as the 

size scale of the interphase is concerned, a polystyrene monomer measures 

about 7 A and therefore an interlayer of 37 A is not unreasonable. 

An interlayer was thus incorporated into the model as discussed earlier to 

emulate the actual physical transition region present in the composite mate­

rial. It is expected that the addition of such an interlayer possessing properties 

intermediate to those of polystyrene and polybutadiene would explain the 

experimentally shown TRC behavior of SBS in regions where the polystyrene 

g-r transition region is not even close to being encountered. When attempt­

ing to create an analytical shift factor as a function of both temperature and 
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time for a 1,4-SBS material, Fesko and Tschoegl1 7 were also forced to incorpo­

rate an interlayer into their model to be able to emulate experimental results. 

The final set of modulus properties chosen for the interlayer are shown in 

Figures 7.10 along with the polystyrene and polybutadiene data, and results 

for the composite. The shift factors for all three materials are shown in 

Figure 7.7. The numerical results for several temperatures, all shifted to 85°C 

with the shift factor for polybutadiene such that the high frequency ends coin­

cide, are shown in Figures 7.8 along with the experimental data. Note again 

that compliance curves, instead of modulus curves, are plotted in Figures 7.8 

for ready comparison with the experimental data. 

Figure 7.8 shows that one can indeed account for the experimental results 

showing TRC behavior in SBS at 60°C at relatively high frequencies by incor­

porating an interlayer into the physical model of the material. The properties 

chosen for the interlayer appear reasonable in magnitudes and shapes in 

comparison to the individual phase properties. It must be reiterated that the 

existence of an interlayer of homogeneous material properties is somewhat 

artificial; in this form the interlayer is a modelling tool to include the effect of 

a transition region between the two phases without much knowledge about 

the physical characteristics of the region. In the Conclusion Section some 

plausible ways in which this initial approximation of the real transition re­

gion may be expanded are mentioned. 

The results shown in Figure 7.9 are the assessment of the effect of time-de­

pendent bulk modulus data on the composite properties. They confirm that 

assuming constant bulk moduli for each phase of the composite as men­

tioned in the Properties subsection is reasonable. Figure 7.9 shows the calcu-
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lated storage and loss moduli of the composite for the cases of constant and 

time varying bulk moduli for each phase. For the case of time varying bulk 

moduli, the change in bulk modulus from glassy to rubbery behavior was 

assumed to be approximately a factor of two for each phase and the relaxation 

behavior was represented by the model of a standard linear solid,32 where the 

rubbery modulus was equivalent to the bulk modulus used in the case of con­

stant bulk modulus. The difference in the resulting moduli for these two 

cases is less than 0.1 % and the curves for the two cases cannot be distin­

guished within plotting accuracy; therefore the constant bulk modulus as­

sumption is believed to be acceptable. 
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Discussion 

With a complete and accurate set of data for the material properties of the 

individual phases of a multi-phase polymer the analysis tool presented al­

lows the determination of the global effective viscoelastic properties of the 

composite. In the results of the previous sub-section the computational pro­

cedure was applied to a real material and the results were compared to exper­

imental data. The numerical results confirm the existence of an interphase 

region in SBS, which has been postulated by other researchers. An interphase 

between the polystyrene and polybutadiene domains with "intermediate" 

properties is necessary in order to effect thermorheologically complex behav­

ior in the numerical results at the same frequency and temperature as in the 

experiments. 

Because of the lack of precise information on the interphase properties, the 

analysis of the SBS copolymer at present amounts to a data-fitting procedure 

for the determination of a reasonable set of properties for the interlayer based 

on the experimental data; with this caveat and the numerically determined 

interlayer properties, the computational scheme can be applied to compute 

moduli at all frequencies and temperatures. There is little doubt that the 

properties determined here for the interlayer are not necessarily unique, 

because by varying the size and properties of the interlayer more than one set 

of data could yield nearly the same desired results. However, it is not asked 

that the properties determined for the interlayer from the numerical analysis 

be unique at this stage; rather, the thrust of the present explanation is that if 

one had knowledge a priori of the physical properties of the transition region 

(size, gradients of properties ... ), then it would be possible to model them in 
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this numerical method to obtain the modulus functions of the composite at 

all temperatures and frequencies. Furthermore, it is believed that if determi­

nation of the interlayer properties was the desired objective, this analysis tool 

could accurately solve the inverse problem and provide a reasonable single 

set of properties for the interlayer, provided that there was available a suffi­

ciently large range of detailed experimental data on the properties of the com­

posite.t In particular, low frequency data at many temperatures would be 

required. 

Figures 7.10 show the individual phase moduli of the interlayer, inclusion, 

and matrix materials along with the resulting composite moduli from the 

numerical analysis to aid in discussion of the TRC behavior of the composite. 

Similar to the idealized property case in Section VI, the composite behaves as 

a TRS material at temperatures and frequencies where the interlayer and the 

inclusion are behaving as glassy materials with constant glassy viscoelastic 

moduli. So, considering two temperatures of composite modulus data at fre­

quencies above which the interlayer and the inclusion have not yet under­

gone their glass-to-rubber transition, in both cases the composite will have 

the same relaxation behavior and therefore the moduli curves will have the 

same shape (that of the matrix material) and be shiftable. This TRS-like shift­

ing of high frequency data is because the relaxation mechanisms active in the 

composite will be only those of the matrix material at frequencies above the g­

r transitions of the included phases. The composite moduli curves for 25°C 

and 85°C for example, have identical shapes for frequencies above the inter­

layer transition. 

t See subsequent subsection, "Discussion of Interlayer Properties," to see how certain aspects of 
the interlayer properties are determined by the experimental data. 
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The relative rate of change of the properties of the individual phases for a 

given temperature change is important to the results for the composite. 

Differences in the rate of change of properties with temperature of two mate­

rials are most notable near the glass transition temperature of each phase, 

where the properties of a material are extremely temperature sensitive. Thus, 

the shift factor possesses a high slope near the T g, which quickly abates with 

increasing temperature. For example, for the shift factor of polystyrene in 

Figure 7.7, near the Tg a change in temperature of only 10°C produces a time 

shift in properties of 3-4 decades, whereas 40°C above the Tg the same 10°C 

change in temperature produces a shift of only 1/2 a decade in time. 

Because of this phenomena of rapid change in properties of each phase near 

the glass transition temperature and because of the large difference in the 

glass transition temperatures of the phases in SBS, the relative amounts of 

shift of the two phases become quite noticeable in the results: As temperature 

increases, the g-r transitions of the interlayer and the inclusion shift more 

through time than the g-r transition of the matrix causing the TRC behavior 

of the composite, which is manifested near the transition of the interlayer, to 

appear at higher frequencies. For the entire temperature range of the experi­

ments, the polybutadiene matrix is in its rubbery phase and therefore the 

properties shift very little on the time axis with changing temperature (only 3 

decades in time for a change in temperature of 60 °C, from 25° to 85°. See 

Figures 7.10 and 7.11). Thus, when the temperature of the composite ap­

proaches the 75°C glass transition temperature of the interlayer or the 93°C 

glass transition temperature of polystyrene, these two phase properties, which 

are 5-10 decades lower in frequency than the transition of the polybutadiene 

properties at 25°C, rapidly come into the time and frequency range that is 
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experimentally measurable, and in fact the g-r transitions of the matrix and 

included phases begin to coincide. At the frequency where the g-r transition 

region of the interlayer or inclusion is encountered, the behavior of the com­

posite changes from that of an elastically filled polybutadiene to a composite 

with truly complex properties. 
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In Figure 7.8 one notices that not every aspect of modulus curves at each 

temperature is matched exactly by the numerical results. In particular, the 

experimental curves at 75°C and 85°C appear to possess a second decrease in 

the loss compliance at log m=1 that does not occur in the numerical results. 

With the current single interlayer model it does not seem reasonably possible 

to match this secondary dip at 85°C and preserve the proper characterization 

for the 95°C curve. If a multiple phase interlayer was employed, however, it 

might be possible to adjust the individual properties to account for this sec­

ondary dip in the loss compliance at 85°C (and to a lesser extent at 75°C) while 

still maintaining full representation at 95°C. As stated earlier we do not feel 

comfortable, however, incorporating a multiple phase interlayer at this time 

because of lack of information on the actual transition region in the real 

material, but it is believed that the numerical procedure is able to capture the 

major features of the experimental data with the single interlayer model with 

commensurate precision. 

There is a special feature of the numerical results for both the idealized com­

posite of Section VI and the SBS composite that is worth considering. For 

both composites in the case of stiff inclusions (and interlayers) in a softer 

matrix material there is an apparent frequency lag between the glass-to-rubber 

transition of the included phases and the appearance of the secondary loss 

peak in the composite moduli. One notes from Figure 7.10 that the interlayer 

in SBS has the loss peak at log m=3 at 85°C; the composite, however, shows 

the secondary loss peak due to the interlayer at log m=O. Also, in the idealized 

composite in Figure 6.5b, the stiff material alone has the loss peak at log m=-12 

at 0°C while the composite shows its secondary loss peak due to the stiff mate­

rial at log m=-15. It appears thus that in these cases the composite begins its 
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secondary loss peak at the maximum of the loss peak in the included phase 

material. Further elucidation for this phenomenon arises from the study of 

the sensitivity of the composite to interlayer properties in Section IX. It will 

be shown in that section that the location in frequency of the secondary peak 

in the composite loss modulus due to the interlayer (or inclusion) transition 

can be moved by changing the relative magnitude of the modulus of the in­

terlayer (or inclusion) to the magnitude of the matrix material modulus. 

This interplay between the amplitude of the modulus of the included phase 

and the frequency at which its relaxation mechanisms affect the composite 

properties possibly emerges from the rate sensitivity of these viscoelastic 

materials. Further explanation of this effect is postponed to Section IX. 

Discussion of the Properties for the Interlayer 

A portion of this overall study in Section IX examines the sensitivity of the 

composite results to the interlayer properties. Such a study is necessary in the 

effort to solve the inverse problem: determination of the properties of the 

interlayer given the composite properties. In the SBS example, there is not 

quite enough experimental data on the composite properties at many temper­

atures and low frequencies to allow for determination of definitive, unique 

interlayer properties. However, by means of the investigation in Section IX 

and from other observations on the thermorheological behavior of the com­

posite, a reasonable set of properties for the interlayer was determined. This 

sub-section explains how some of the properties of the interlayer were con­

fined to lie within specific ranges by the experimental data. 

From the investigations and observations surrounding the glass transition 

temperature of a phase, the associated g-r transition region, and their effect on 
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composite properties, one concludes that the location of the g-r transition 

region of the viscoelastic properties for the interlayer and the glass transition 

temperature of the interlayer are quite important. To match the experimental 

data for the SBS composite, the g-r transition of the interlayer, considered as a 

homogeneous phase, must be in the vicinity of log w=3 at T=85°C, because the 

SBS composite begins to exhibit TRC behavior at that frequency and tempera­

ture. The location of the transition is not pinpointed exactly, however, be­

cause different shapes of the g-r transition region of the interlayer properties 

can accommodate moderately differing transition locations (±1 decade) to give 

the same overall effect. 

The glass transition temperature <Tg) of the interlayer is also important to the 

manifestation of TRC behavior in the composite on account of the tempera­

ture sensitivity of the shift factor near that transition temperature. Near the 

T g of the included phase, small changes in temperature cause large changes in 

the viscoelastic properties of the included phase, resulting in modulus curves 

for the composite that are markedly different in shape. For the SBS compos­

ite, the TRC behavior changes drastically between 75-95°C, indicating that the 

T g of the interlayer should be in that range. Both the location of the g-r tran­

sition for the interlayer and the T g of the interlayer are fixed to within approx­

imately two decades and 20°C respectively by the amount of non-shifting of 

the experimental data and the temperatures at which it occurs. A T g of 75°C 

for the interlayer is a little higher than might be initially anticipated, much 

closer to the T g for polystyrene than that for polybutadiene; however it is con­

sistent with the suggestion that the interlayer is rich in polystyrene and with 

assumptions by Cohen and Tschoegl, namely that the Tg of the interlayer lies 

within the temperature range in which the TRC behavior is observed in the 
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composite.18 After the Tg is determined and the modulus properties are cho­

sen, the shift factor for the interlayer itself is fixed by the location in frequency 

of the secondary loss peaks in the composite in experimental results at differ­

ent temperatures. The difference in the 75°, 85°, and 95° curves was used to 

determine the necessary shift factor for the interlayer in the SBS material after 

the Tg and modulus properties of the interlayer were chosen. 

Other aspects of the interlayer properties are not, however, fixed as clearly by 

the current set of experimental data. For example one finds from Section IX 

that the magnitude of the interlayer moduli and size of the interlayer can be 

"traded off" for a similar overall effect. In the SBS example a median size is 

chosen for the interlayer, which then fixed the magnitude of the moduli. 

However, the size of the interlayer is really not known and therefore the 

magnitude of the interlayer properties is subject to question. In addition, the 

location of the secondary loss peaks in the composite at a given temperature 

is also shown in Section IX to depend upon the amplitude of the moduli for 

the interlayer. Thus, the shift factor is highly dependent on the magnitude of 

the interlayer moduli. From this, one perceives the interdependence of indi­

vidual aspects of the interlayer properties on one another in terms of their 

influence on the composite behavior and one begins to realize the difficulty 

of fully or uniquely determining the interlayer properties in this example. 

An interesting result of the trial and error iteration to obtain the interlayer 

properties was the shape of moduli that was required. In order to mirror the 

slow and gradual departure of the experimental modulus curves as tempera­

ture increased (in Figure 7.8 and Figure 7.1) from the "master curve" shape at 

low temperatures (essentially the matrix modulus shape), it was necessary to 

postulate interlayer properties that varied very slowly over a long frequency 
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span in the g-r transition. The final interlayer properties used to obtain the 

results in Figures 7.8 and 7.10 possess a g-r transition region that spans many 

decades with a slope on the log-log plot less than half that of the polystyrene 

properties. When one allows for the properties of the interlayer to have a 

steeper slope in the transition region than that shown in Figure 7.10, the re­

sulting composite modulus curves depart too sharply from the low tempera­

ture behavior as the interlayer transition is encountered. The frequency of 

departure can be made to be correct for each temperature, but the shape of the 

composite modulus curve will not agree with the experimental data using 

interlayer properties with sharp g-r transitions. See the example of an inter­

layer with a "rapid" glass-to-rubber transition (g-r transition occurs over a rel­

atively short frequency range) in Section IX, Figures 9.4a-9.4d. 

This result is quite interesting because for the interlayer considered as a ho­

mogeneous phase, gradually varying properties in its g-r transition are per­

haps indicative of what is likely to be occurring in the real material. The tran­

sition region between the two phases is probably a volume in which the 

properties change gradually from those of the inclusion to those of the ma­

trix. If one were to model this gradual change discretely by several concentric 

cylinders of interlayers, each of slightly different properties having relatively 

steep slopes in the g-r transition (as indicated in Figure 7.12), one would expe­

rience a situation that would be equivalent in an average (smeared) sense to 

an interlayer of one material with slowly varying properties over time. There 

is a potential problem with the discretization of the interphase into thin 

rings. One would have to take care to compare the model size scale with the 

size scale of the physical materials. For example, if the interlayer is 40A 

across, but the length of a monomer of one of the constituent polymers is 
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lOA, then allowing five rings in the interlayer section, each of different 

homogeneous material properties, would most likely be inaccurate. In that 

case, one has departed from traditional continuum analysis. 

lntcdayers { 

Inclusion Matrix 

Figure 7.12a Concentric rings of inter­
layers of varying properties 

2 3 .... 

! 
Individual Rings 
of Successive 
Interlayer 
Properties 

Inclusion Matrix 

Figure 7.12b Single interlayer with 
gradual g-r transition 

log time 
Figure 7.12c: Example of suggested moduli for each of the multiple phases in 

Figure 7.12a and 7.12b 
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VIII. ANISOTROPIC EFFECTS 

In this section results are presented on the effect of anisotropy on the thermo­

rheologically complex behavior of the SBS composite from the previous sec­

tion. Referring to Figure 2.1, which shows the global material, it is clear that 

this material is anisotropic, though of a special anisotropic nature. One mea­

sure of anisotropy was discussed in Section V, which dealt with the shear 

modulus, while here in Section VIII a different measure of anisotropy based 

on the composite modulus in different directions and the TRC parameter, 

K( OJ, Tl, T2), is discussed. From Section VI, one recalls that K( OJ, Tl, T2) is a 

measure of the TRC behavior of a composite. Because the computations are 

attempting to capture the TRC behavior of the experimental results, the dif­

ference in K( OJ, Tl, T2) for the SBS composite in various orientations is of 

importance. In this section the TRC parameter of the SBS composite in two 

orientations is discussed. 

The viscoelastic moduli of the composite are considered in two different di­

rections here: the first is they-direction shown in Figure 2.1 (this orientation 

is used throughout this paper) and the other is the direction at a 45° angle to 

these x-y axes (as in the x' -y' direction in Figure 5.3). The first case yields a 

square array of unit cells as is developed earlier. The second case yields a 

hexagonal array of unit cells. (n.b. The second case is not a regular hexagonal 

array where the centers of the inclusions can be connected to form a hexagon 

with equal length sides.) 

Figures 8.1a and 8.1b show the results for the loss moduli of the SBS compos­

ite considered in these two different material reference frames. There is a 

slight difference in the magnitudes of the moduli of approximately 0.2 

dynes/ cm2, but the overall behavior of the moduli over frequency is essen­

tially the same. Also, the effect of the anisotropy on the thermorheological 
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behavior is slight. This observation is illustrated clearly by the TRC parame­

ter, which relates the magnitudes of the shifted loss moduli at two tempera­

tures to each other as a function of frequency. The TRC parameter, 

K( m,T1,T2), was defined in Section VI, equation (6.7). 

The curves for K( m,25,95) of the loss compliance for the two different direc­

tions of the SBS material considered here are shown in Figure 8.2. Note that 

at high frequencies for both cases this parameter is equal to zero, indicating 

thermorheologically simple behavior at high frequencies. At lower frequen­

cies, the values of the parameter for each case differ slightly from one an­

other, indicating minor differences in the non-shifting of isothermal moduli 

curves; however, the character of K( m,25 ,95) over frequency is identical indi­

cating that TRC behavior occurs at the same temperatures and frequencies in 

both cases. The magnitude of the difference between K( m,25,95) for the square 

and hexagonal arrays is one tenth of the difference in the TRC parameter 

between different inclusion sizes from Figure 6.8. This example shows, there­

fore, that the effect of anisotropy on the TRC behavior of the type of multi­

phase composite examined in this work is relatively small and indicates that 

the study of the SBS composite in the x-y orientation (square array) as op­

posed to the x'-y' orientation (hexagonal array) throughout this work is ac­

ceptable. 
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IX. SENSffiVITY OF COMPOSITE MODULI TO INTERLAYER PROPERTIES 

In this section, results will be presented for a systematic study in which some 

of the material property parameters of the interlayer in the composite are var­

ied individually. Comparisons will be made relative to the "base case" of SBS 

with the interlayer characterized to obtain the numerical results in Section 

VII. The difference in the resulting effective moduli of the composite and the 

difference in thermorheological complexity will be shown for each new inter­

layer case compared to the base case. A study such as this one is crucial to the 

iterative procedure used with the numerical analysis developed in this work 

to solve the "inverse problem," in which one extracts properties of an un­

known (or partially unknown) phase in the composite from knowledge of the 

composite properties. This study demonstrates that the many factors con­

tributing to the composite behavior are inextricably intertwined and further 

explains the deficiencies of some of the analytical models reviewed in the 

Introduction Section in terms of predicting composite properties based on rel­

atively simple schemes that do not allow for coupling between factors. 

The effect of the following interlayer parameters will be presented: size 

(volume fraction of unit cell), magnitude of the modulus, location of the 

glass-to-rubber transition, relaxation behavior, and the shift factor. The effect 

of each of these parameters on the composite behavior is studied as a separate 

case. The defining characteristics of each case are listed in Table 9.1. 

Hereafter, each case will be referred to by its case number. 
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Case num- Interlayer parameter, which is Description of the parameter change relative 
ber varied from base case SBS to the base case SBS 

Case 1 volume fraction The interlayer occupies 8% of the volume 
fraction, exactly half that of the base case 

Case2 location of transition Glass-to-rubber transition of the interlayer 
is 2 decades higher in frequency than the 
base case 

Case 3 shape of transition Glass-to-rubber transition of the interlayer 
is much "sharper" than base case transition: 
the modulus decreases in magnitude twice 
as much over same frequency range as that 
for the base case. See Figure 9.3e. 

Case4 shift factor Shift factor of the interlayer is less sensitive 
to temperature change than the base case 
shift factor. 
aT=85(Case 4) = aT=s5(base case) 
aT=95(Case 4) < aT=95(base case) 

Case 5 magnitude of modulus Magnitude of the modulus of the interlayer 
is lower uniformly by one decade of 
dyne/cm2 than base case modulus 

Table 9.1: List of cases compared to base case SBS. Each new case varies one 
parameter of the interlayer properties of the SBS of Section VIL 

From the discussion of the interlayer properties at the end of Section VII, it is 

suggested that the numerical fitting procedure to determine the interlayer 

properties produces non-unique results. This systematic study of the effects of 

the individual interlayer properties on the composite properties was per­

formed to attempt to better define the degree to which interlayer parameters 

could be changed and yet still achieve the same desired results for the com­

posite. Unfortunately, the results from this study are not that easily inter­

preted. Change in an interlayer parameter affects the composite properties in 

a highly non-linear fashion; furthermore, change in one interlayer parameter 

causes change in more than just that same parameter in the composite. This 
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study does reveal, however, a few important phenomena in terms of the 

composite response to the properties of included phases. 

Figures 9.la through 9.5d show the response curves for the composite moduli 

(for each of the individual cases of Table 9.1) that best illustrate the parameter 

effects. For most cases: the storage and loss moduli of the composite at 85°C 

are given compared to the base case; the loss moduli at 25° and 85° (shifted 

such that the high frequency ends coincide) are shown and can be compared 

to the base case situation in Figure 9.lc; the TRC parameter 1C( cv,25,85) for each 

new case and the base case are compared. Discussion for each of these cases 

individually is omitted for brevity and bec_ause of the qualitative nature of 

such discussions. Instead, direct comparisons of the figures with one another 

point out the different effects of each parameter rather clearly. A few particu­

larly salient points on the multiple effects of changing a single parameter are 

mentioned here. 

In Case 2 for which the frequency of the interlayer properties was shifted uni­

formly two decades toward higher frequencies, the noticeable difference from 

the base case regards the location of the onset of TRC behavior in the compos­

ite. From Figure 9.2b or comparing 9.2c to 9.lc, one sees immediately that, as 

expected, the TRC behavior arises at higher frequencies in Case 2 than in the 

base case at the same temperature. However, from examination of Figure 

9.2d, one discovers that the character of the TRC behavior is qualitatively dif­

ferent in these two cases. For example, the peak of the TRC parameter is 

somewhat higher in Case 2 than in the base case. Also, the location of the 

peak of the TRC parameter in frequency for Case 2 is less than exactly two 

decades higher than that of the base case; it is approximately 1.8 decades 

higher. That the composite should evidence different TRC behavior for the 
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same temperature range is not completely surprising since the transition of 

the interlayer is at a different location relative to the matrix material modu­

lus for each case: the magnitude of the matrix moduli at the transition of the 

interlayer differ in Case 2 and the base case. 

In another example, Case 5 with a uniformly lower modulus than the base 

case demonstrates what one would initially expect in Figure 9.Sa: the magni­

tude of the composite storage modulus is subsequently lowered in Case 5 

compared to the base case. However, Figure 9.5b showing the loss moduli of 

each case at 85°C demonstrates a striking difference between the two cases 

other than magnitude of modulus: the location of the second peak in the 

composite modulus due to the presence of the interlayer transition has 

shifted toward higher frequencies in Case 5. Previously in Section VII it was 

pointed out that the appearance of the second loss peak in the composite due 

to the presence of the included phase transition does not coincide in fre­

quency with the loss peak of the included phase itself: the second loss peak in 

the composite is delayed toward lower frequencies by several decades from 

the actual loss peak of the included phase (interlayer or inclusion). Here, 

with the modulus of the interlayer decreased uniformly, the position of the 

second loss peak in the composite has moved toward higher frequencies (log 

ro =2) and is closer to the loss peak of the interlayer phase itself (which is at log 

co =3 at 85°C). From the TRC parameter for these two cases in Figure 9.4d, it is 

clear that the TRC behavior of the composite with a lower magnitude modu­

lus occurs at higher frequencies then for the base case. In addition the magni­

tude of the TRC behavior is higher in Case 5 than in the base case. This result 

has been checked with the idealized composite studied in Section VI. If the 

magnitude of the stiffer inclusion phase is lowered uniformly by one decade 
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(in bar), the secondary loss peak in the composite modulus shifts towards 

higher frequencies and the TRC behavior is larger than for the case shown in 

Section VI. 

These examples express that although the effect of the relaxation mechanisms 

of the phases appearing at different frequencies at different temperatures is 

the most easily understood reason for the TRC behavior and non-shifting, it 

is not the only factor involved. More complicated causes involving the in­

ternal stress states of the materials, which vary with additional factors such as 

the ones examined in this section, are important to manifestation of TRC 

behavior as well. Indeed, one can certainly conclude from this section that 

the relative magnitudes of the moduli of the two phases is extremely impor­

tant to the influence that included phase properties have on the composite 

properties. 
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X. CONCLUSION 

A theoretical and numerical model for examining the properties of multi­

phase viscoelastic composites has been developed utilizing the correspon­

dence principle of viscoelasticity to create an elasticity-like finite element 

analysis with complex variables. From the computational scheme developed, 

one can obtain the modulus properties of certain classes of multi-phase mate­

rials at all times and temperatures from precise knowledge of their micro­

structure and individual phase properties. This work has confirmed evi­

dence of the existence, and importance to overall material properties, of a 

transition region between the phases for some multi-phase polymers, specifi­

cally for an SBS block copolymer. Unfortunately little is known at this time 

about the structure and properties of such a transition region and therefore 

the computational procedure developed in this paper was used to solve an 

inverse problem, in order to extract appropriate properties of the interlayer 

between the two phases. 

The application of the numerical procedure to solve this inverse problem for 

the (tentative) characterization of the properties of one phase (interphase) of 

the composite, provides a new analytical tool. Other methods for estimating 

composite moduli reviewed in the Introduction Section (Rule of Mixtures, 

self-consistent modelling, composite spheres assembly, Hashin-Shtrikman 

bounds, Takayanagi model) do not lend themselves easily to individual 

phase property determination. In the SBS example used for this study 

(Section VII), there was insufficient experimental data available on the com­

posite to allow a complete, definitive deduction of the properties of the 

unknown phase (interlayer). However, with sufficiently refined time-tem­

perature information on the composite, it should be possible with the numer-
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ical procedure presented to determine the properties and domain size of the 

unknown phase completely. 

It should be noted again that the model of the SBS composite material with a 

single phase interlayer of homogeneous properties is not likely to be physi­

cally correct. However, if this model provides a reasonable representation of 

the physical material, then the computational scheme yields precisely accu­

rate results within finite element accuracy. In addition the numerical 

method is capable of supporting any number of other physical models, for 

SBS or other materials, with relative ease. It is this flexibility of the tool to 

adapt to known aspects of material structure that makes it especially benefi­

cial. 

That it was possible to match the sense of the experimental data by modelling 

the transition region as an interlayer of reasonable properties is of interest in 

and of itself. Moreover, the results obtained are physically appropriate: The 

composite moduli tend to follow the behavior of the matrix material (the 

continuous load-bearing phase) below the glass transition temperature of the 

included phases. The composite begins to exhibit thermorheologically com­

plex behavior, signified by non-shifting of isothermal modulus curves to 

coincide with one another, at temperatures and frequencies when the in­

cluded phases (the higher T g phases) reach their glass-to-rubber transition. 

These results are also consistent in both the idealized material tests and the 

SBS composite material tests. 

From results for the simplified composite without an interphase, the effect of 

different inclusion sizes and the difference in behavior between soft ma­

trix/ stiff inclusions and stiff matrix/ soft inclusions was studied. The compos-



-131-

ite moduli are dominated by the matrix phase except for the high frequency 

loss modulus, for which the soft material controls dissipation nearly inde­

pendently of volume fraction and phase orientation. Also, the composite 

properties are affected more when the inclusions are made of the stiff rather 

than the soft material. Comparison with results obtained by way of Rule of 

Mixtures clearly shows the inadequacy of that approach to determine multi­

phase viscoelastic properties reliably; also the Rule of Mixtures estimates the 

properties of stiff inclusions in a softer matrix much more closely than the 

reverse case. The presentation of results in this work was primarily for 

Young's modulus and the in-plane shear modulus results discussed briefly in 

Section V are similar, except for a slightly smaller influence of the included 

phase on the composite properties than for the Young's modulus results. 

From experimental results on multi-phase composite moduli one cannot 

predict moduli at every temperature from the short term experiments per­

formed because of the inherent thermorheologically complex behavior of the 

material. It has been shown that the thermorheologically complex behavior 

results primarily from the fact that the glass-to-rubber transitions of the vari­

ous phases occur at different frequencies and different temperatures and that 

the TRC behavior is accelerated by the marked change in properties of the 

included phases as their glass transition temperatures are approached. To use 

the computational procedure developed in this paper to solve the inverse 

problem in order to determine unknown properties of one phase of the com­

posite, the experimental measurements of the composite are crucial. For bet­

ter accuracy of the fine-tuning of property parameters for the unknown phase, 

the example on SBS has indicated that future measurements of the dynamic 

properties should provide a wider frequency range than is usually studied, for 
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comparison in a few of the the especially important TRC regions. Of course, it 

would also be best to have as much direct experimental information as possi­

ble on the size and structure of the phase in question to eliminate variables 

from the iterative property determination scheme. Finally, one should be 

careful not to use this tool at very high temperatures, above the microphase 

separation transition (MST) for block copolymers, because eventually (for SBS 

at about 140°C), the polymers begin to melt and there is global mixing of the 

phases.50, 51 

There are great possibilities for future work both with this computational 

procedure and in further experimental work as suggested here. The current 

model is embedded in a two-dimensional finite element code; however, it is 

feasible that this analysis, in particular application of the correspondence 

principle to a finite element code to form a complex elasticity-like problem, 

could be programmed into a three-dimensional finite element procedure and 

enable analysis of materials that cannot be broken down into two-dimen­

sional unit cells (spherical domains, for example). It would also be possible to 

use stochastic procedures to obtain moduli for materials with random size 

and distribution of inclusions. This result could be achieved, for example, by 

solving the unit cell problem of a regular array of inclusions for a variety of 

volume fractions of inclusions in the unit cell; then, considering the global 

composite to be a random distribution of these unit cells, the individual re­

sults could be combined with random variable analysis to model the effective 

global composite moduli as a function of the moduli of all the unit cells. 

Using a procedure of this kind, it would be possible to investigate the global 

properties of polymer blends. Polymer blends tend to have microstructures 

containing particles of one polymer in a random size and spatial distribution 
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within another polymer. These materials have one particular advantage for 

further study with the numerical analysis procedure developed here, in that 

polymer blends tend to have no, or very small, interlayers between the 

phases. 

Some multi-phase materials have regions of regularity that are packed to­

gether in a random fashion similar to grains in metals. The microstructure of 

each grain is geometrically the same, but the orientation with respect to global 

axes is different for each grain. The current computational scheme can de­

termine the moduli for a single grain. It would be possible to model the 

overall moduli of these materials by performing a "global ensemble average" 

of a random arrangement of grains knowing the properties in the three prin­

ciple directions in any one grain.52 

As mentioned in Section VII in connection with the interlayer, it is possible 

to replace the simple, initial model of a single interlayer with homogeneous 

properties. One sensible approach would be to consider several concentric 

interlayer regions each of systematically different properties, the innermost 

interlayer having properties quite close to those of polystyrene and the 

outermost interlayer having properties close to those of polybutadiene. (See 

Figure 7.11.) Another possible arrangement to extend this idea even further 

would be to examine not rings of an interlayer, but an interlayer region in 

which each element is allowed independently to have slightly varying prop­

erties from those of its neighbors. The variation of properties would have to 

be constrained such that the properties of neighboring elements still pro­

ceeded in an orderly manner from inclusion to matrix, but would avoid the 

restriction of discrete bands of distinct properties. A potential problem with 

both of these approaches depends on the actual size of the interlayer being 
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modelled; if the interlayer is on the order of 40A and the size of the monomer 

units of the polymers in the composite are on the order of 10A, then splitting 

the interlayer up into elements SA across and bestowing homogeneous 

polymer properties on them is not realistic. In this case, one is no longer 

dealing with a continuum. 

Throughout the analysis it has been assumed that the boundary between 

phases is sharp and the phases are rigidly bonded together (no slipping or sep­

aration at the interface). It is possible to extend the current numerical proce­

dure to account for imperfect bonding at an interface within finite element 

analysis and this might make another interesting pursuant study. 

In terms of comparison with further experimental results it would be prudent 

to compare the computational procedure developed in this paper to results 

for 1,4-SBS materials, although their non-shift is not nearly as apparent as 1,2-

SBS. With detailed thermorheological moduli data on unidirectional Kevlar­

epoxy systems transverse to the fiber direction, this composite would make 

another good comparison. 

Finally, it should be mentioned here that the computational procedure devel­

oped can be used to determine solutions for many kinds of boundary value 

problems on viscoelastic structures. Although the emphasis in this study has 

been purely on extracting global moduli of specific composites, one could just 

as well use this technique to examine the stress and strain fields within a 

complicated viscoelastic structure and determine regions and magnitudes of 

stress concentration. This potential use could have many applications in 

practical engineering analysis. 
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APPENDIX: SIMPLE CHECKS ON PROCEDURE 

Numerous checks were performed on the devised numerical procedure to 

ensure that all necessary changes had been made and that the code was indeed 

producing correct solutions. Two of the checks will be mentioned here. Both 

of these cases are simple enough that exact analytical solutions can be found 

and compared to the numerical results. 

The first case covers the time dependent stress and strain field in a homoge­

neous rod of viscoelastic material subjected to unidirectional oscillatory dis­

placement boundary conditions. The finite element model is a single ele­

ment of the material subjected to a sinusoidal displacement boundary condi­

tion on one face. The time dependent response of the material is found by 

looping the program over time. Given a rod of viscoelastic material with the 

Young's modulus function expressed in a Prony series 

subjected to uniaxial displacement at its ends 

uit) = u0sin( wt) 
I 

which in turn determines the homogeneous strain in the rod 

£it)= £0sin( wt) 
I 

the constitutive law can be used to determine the stress state in the rod 

CJ it) 
t 
j E(t - r) dEit) dr 

dr 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

The resulting homogeneous stress state upon substitution of (3.27) and (3.29) 

into (3.30) is found to be 
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The finite element model of this simple problem, in the form of a single ele­

ment, was run with the modified FEAP code in the axisymmetric mode and 

the results of the stress state over time were compared to the analytical re­

sults. If the transient term is neglected in the analytical solution, or after the 

initial cycles required for the transient term to die out, the results from the 

code are identical to the analytical results. This problem was also solved ana­

lytically using the correspondence principle, and those results match exactly 

the results of the program runs at all times. 

The second check described here considers a rod composed of two different 

viscoelastic materials. One half of the rod is material A and the other half, 

perfectly bonded to the first half, is material B. This situation and the bound­

ary conditions imposed are shown in Figure 3.3; oscillatory displacements 

u0eiwt were applied in the y-direction, perpendicular to the interface of the 

materials, and the vertical sides of the rod are completely constrained in the 

x-direction. This problem was solved analytically using the correspondence 

principle for the stress and strain states in materials A and B. Again, when 

the finite element model of this problem was solved using the modified 

FEAP code, the solutions obtained matched the analytical results exactly 

within plotting accuracy. 
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Figure 3.3: Simple example containing two materials for checking code. 

One other very simple check on the procedure for obtaining E( c.o) was to 

examine an inclusion problem mesh, but where all of the elements possessed 

the same material properties. Then the boundary value problem (equation 

3.25) was solved for this homogeneous unit cell by the same procedure de­

scribed in Section III. For a single material, given the shear modulus and the 

bulk modulus, the Young's modulus was also determined analytically and 

checked with this numerical result. 


