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ABSTRACT

Convective overshootihg and semiconvection in core-
helium burning stars are studied with emphasis on laboratory
experiments and terrestrial observations. Avnecessary con-
dition for the onset of semiconvection is derived, and the
Schwarzschild neutrality criterion for the semiconvective
zone is justified. Six evolutionary sequences for horizon-
tal branch stars in the globular cluster M3 are computed.
They illustrate the effects of different treatments of
overshooting and semiconvection, helium-burning nuclear re-
action rates, and the primordial helium abundance YO. By
comparing horizontal branch and red giant lifetimes with
observations of the relative numbers of stars, the result

Y, = 0.20 + 0.04 is derived for M3. This agrees well with

0
results of standard Big Bang nucleosynthesis, but it is
definitely smaller than the "normal" Population I helium
abundance.

Evolutionary models for subdwarf B stars are com-
puted which show excellent agreement with observed gravities
and effective temperatures; subsequent evolution will prob-
ably match observations of subdwarf O stars. These models
are burning helium at their centers with thin, inert hydro-
gen envelopes. The hypothesis of mass loss at the helium
flash can explain the small envelope masses and the observed

gaps in the color distribution of blue halo stars. An up-

per limit to the initial helium abundance of sdB stars is



-vi-
derived from their light-to-mass ratios. The limit is
YO < 0.25 - 0.05 (log Z + 2), and this limit is uncertain

by at least + 0.10 because of the small sample size and

the possibility of systematic observational errors.
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1. INTRODUCTION

The metal-deficient stars of the galactic halo are
generally thought to be the oldest stars in our galaxy.
According to the conventional picture 6f galaxy formation
(Eggen et al. 1962), the halo globular clusters formed just
before the proto-galaxy collapsed into its present disk con-
figuration. Thus, an important goal of observational and
theoretical work is the deduction of globular cluster ages,
for comparison with the Hubble time and the age of r-process
elements. Cluster ages can be found only if the primordial
heliumvabundance (by mass-fraction), YO’ is known, because
the lifetime of a hydrogen-burning main sequence star is
very sensitive to YO' Y0 is an interesting quantity in its
own right because calculations of Big Bang nucleosynthesis
predict helium production in the range Yy = 0.2 - 0.3.

Table 1 summarizes recent measurements of YO.

The horizontal branch stars of globular clusters
have been studied exhaustively by observers and theoreti-
cians in order to determine YO; Since the pioneering work
of Hoyle and Schwarzschild (1955), these have been identi-
fied as stars burning helium in their cores and hydrogen
in thin shells at the base of hydrogen-rich envelopes. In
prior evolution, a star moves off the main sequence as hy-
drogen is exhausted at its center, up the red giant branch,
when hydrogen burns in a shell surrounding a degenerate he-

lium core, and to the horizontal branch, after helium
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ignites explosively in the core (the helium flash). When
helium is exhausted at the center, the star leaves the hori-
zontal branch and evolves along the asymptotic branch,
burning hydrogen and helium in two shells around an inert
core of carbon and oxygen. Detailed evolutionary computa-
tions by many workers have succeeded in reproducing most
observed characteristics of horizontal branch stars (see
Rood 1973 and Iben 1974). However, Y0 (and therefore the
age of the galaxy) has remained uncertain by more than 30%.

Schwarzschild (1970) pointed out a serious error
in previously published models for horizontal branch stars.
Specifically, he showed that the central convective zone
must increase in size by overshooting; eventually, a "semi-
convective" zone of varying composition must appear between
the convective core and the exterior radiaﬁive zone of un-
burned helium. The nature of the mixing mechanisms and the
resulting structure of the semiconvective zone have remained
mysterious, and a controversy among different workers has
arisen over the proper treatment of these phenomena in model
calculations. These gquestions are resolved in Chapter 2.
In Chapter 3, six evolutionary sequences of theoretical mod-
els for horizontal branch stars are discussed. The major
effect of semiconvection is a large increase in the life-
time of a star in its horizontal branch phase. Using our

computed lifetimes, we derive an accurate measurement of

Yyt Yo = 0.20 + 0.04.
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As a second application of our study of semiconvec-
tion, we presentbevolutionary models for subdwarf B stars
in the last chapter. Recently, detailed observations of
these faint, blue halo stars have been published, and pre-
vious workers have failed to match the observations with
theoretical models because they neglected evolutionary ef-
fects and semiconvection. A subdwarf B star is a horizontal
branch star which has lost most of its hydrogen envelope
(probably during the helium flash), so that hydrogen burning
makes a negligible contribution to the total luminosity. An
upper limit to YO is derived from the observations:

Y, < 0.25 - 0.05 (log 2z + 2) + 0.10.

It is consistent with our result for globular cluster stars
but is very uncertain because of the difficulty of the

observations.
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2. CONVECTIVE OVERSHOOTING AND SEMICONVECTION
2.1. INTRODUCTION

One of the major unsolved problems of stellar evo—
lution theory is the redistribution of chemical elements
caused by moving boundaries of convective zones. Since a
reliable theory of turbulent convective motién is lacking,
-a number of prescriptions have been used by different
workers, with varying degrees of justification on physical
grounds. After a brief description of these various ap-
proaches, this chapter will describe in detail the problems
of convective mass transport encountered in core helium
burning stars and will solve them subject to the limita-
tions imposed by our admittedly imperfect knowledge of the
hydrodynamics involved.

The classical treatment of interior convective
zones has been succinctly described by Schwarzschild
(1958). From the mixing—length theory, we know that the
lifetime of a convective eddy, Tar is many orders of mag-
nitude shorter than the timescale for nuclear burning, TN
at least for the hydrostatic burning stages which we are
considering (see Despain 1975 for an example where this is
not the case.) Therefore, uniform composition within the
interior of a convective zone is an accurate approximation.
Schwarzschild recommended that the boundary of a convec-

tive core be located at a point where matter yith the



-5~

interior composition satisfies the neutrality condition,

v = where V = d 1n T/d 1ln P and the subscripts in-

rad Vad’
dicate radiative and adiabatic heat transfer. The pres-
sure and temperature vary smoothly across the boundary,
but the chemical composition, density and opacity may be
discontinuous. One of several problems may arise with this
prescription, simple and appealing as it is. First, ther-
mal buoyancy accelerates convective eddies all the way up
to the core boundary, and it is reasonable to assume that
they will overshoot by a finite amount, mixing with fluid
of the exterior composition. This overshooting leads to
observable differences in the evolutionary tracks of main
sequence stars (Prather and Demarque 1974; Maeder 1974)

and of horizontal branch stars. Second, in upper main se-
guence stars, a situation ariées where fluid near the ex-
pected boundary may be stable with the interior composition
but unstable if given the exterior (unburned) composition.
Incomplete mixing gives rise to a sizable zone of varying
composition and uncertain stability; the lower opacity of
helium-rich interior fluid is the cause of this "semicon-
vection," which was discovered by Schwarzschild and Hdrm
(1958). A third problem is encountered if the neutrality
criterion applied with the interior composition leads to

an apparently unbounded increase in the size of the convec-
tion zone; that is, material adjacent to the convective

zone always becomes unstable if mixed with interior fluid.
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Convective cores in horizontal branch stars and flash-
driven convective zones in helium-shell burning stars dis-
play this behavior (Christy-Sackmann 1975).

Clearly, a more careful treatment of mass transfer
at convective zone boundaries is needed. A diffusion ap-
proach has been suggested by Uchida et al. (1967) and by
Eggleton (1972). For each nuclear species, the mass frac-
tion Xi is required to satisfy

, BX, 3K, X,
i (og) = @ * (e v (2.1)

where M is the Lagrangian mass variable, t is time, and the
last term is the net production rate from nuclear burning.
The diffusion constant ¢ is a function of the superadia-
batic temperature gradient Vr - Va and is taken to be zero
in radiative zones. In a convective zone (Vr > Va), it may
be estimated very crudely using flow speeds derived from
the local mixing-length theory. Eggleton has calculated
the evolution of a massive main sequence star and a hori-

zontal branch star, using the expression

o = 10"M, (V_ - v )“. (2.2)

M, is the star's total mass and 71 the nuclear lifetime, as

N
before; they are introduced merely to give a "reasonable”
order-of-magnitude to the diffusion term. Semiconvection

appears naturally and his horizontal branch star shows

qualitative behavior similar to our evolutionary sequences



discussed in Chaptexr 3.

Two major objections may be raised to the diffusion
approach. First, there is no quantitative physical basis
for the value of o shown. The Japanese workers have de-
rived a more complex expression based on a transport theory
of turbulent eddies traveling one mixing-length. However,
numerical solution of the resulting equations appears to be
very difficult (they report no results), and in any case
the mixing-length theory is invalid near a zone boundary,
where diffusion is most important. The second objection is
that several additional difference equations corresponding
to (2.1) must be solved simultaneously with the four stel-
lar structure equations. In the Henyey method of solution
(see Clayton 1968), the computer time necessary is roughly
proportional to the cube of the number of equations multi-
plied by the number of mass zones in the star. Thus, the
diffusion approach is exceedingly expensive, unless a solu-
tion of low accuracy is acceptable.

The treatment of convective mixing adopted in this
work attempts to remedy the two shortcomings of the diffu-
sion approach. Although it is neither simple nor elegant,
it is built on‘physical models for mass transport and it is
compatible with the Henyey method. Suppose that we are
given a stellar model containing a convective core and per-
haps a semiconvective zone with composition profiles com-

puted according to any prescription; the model must
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satisfy the four stellar structure equations. The next
step is to estimate the flow patterns which must occur in
the model, using whatever means are available -- the mixing
length theory, dimensional analysis, analogy with terres-
trial experiments and observations, etc. Thus the regions
of the model where compositions are changing can be identi-
fied, and timescales T for the turbulent motions perform-
ing the mixing can be estimated. As noted above, the fluid
motions proceed much more rapidly than nuclear burning.
Therefore, the model is self-consistent only if its flow
patterns, when averaged over an intermediate timescale Tav’
distribute the elements present according to the composi-
tion profiles used in calculating those flow patterns.
Physically, Tov represents the amount of time necessary for
the mixing to attain a stationary abundance distribution
Xi(M), which evolves on a nuclear timescale e

Self-consistent models, in the sense defined above,
can be computed with a Henyey-type stellar evolution pro-
gram by an iteration method. An initial model for a given
time-step is extrapolated from the preceding time-step; it
is converted to a solution of the four structure equations
by the usual Henyey method, with no changes in the abun-
dances Xi(M). Next, the consistency of the model is tested;
abundances are varied by a mixing algorithm to improve con-
sistency. A new model is calculated with the varied Xi(M),

and the procedure is repeated until a prescribed level of
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consistency is achieved. This consistent model is used to
compute abundance changes from burning and to extrapclate
to the next time step.

In the iteration procedure, the time dependences of
Xi(M) due to burning and mixing have been computed sepa-
rately and independently. If this is to be an accurate
technique, then the following inequalities must be satis-

fied:

Te << Tav << TN (2.3)

The first says that details of the fluid motions may be ig-
nored; collectively, they lead to a consistent model. The
second says that burning does not change the integrated
abundances over a time Ty Finally, we must require that
the time step At be long enough for a consistent model to

be established:

Tav < At. (2.4)

These inequalities must be checked throughout the calcula-
tion of an evolutionary sequence.

In this chapter, we will discuss in detail the
types of mixing which occur in the cores of horizontal
branch Stars. In Section 2.2, the early, overshooting
phase of evolution is discussed. The onset of semiconvec-
tion and the resulting zone of varying composition is de-
scribed in Section 2.3. Our aim is to infer the general

nature of the flow patterns present, to estimate 1 and

av’
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to derive the structure of the resulting consistent model.

2.2 THE OVERSHOOTING PHASE OF HORIZONTAL BRANCH EVOLUTION
Helium burning in the core of a horizontal branch
star produces carbon and oxygen at temperatures and densi—‘
ties of approximately 1080K and lO4 gm/cm3. In unmixed
regions outside of the convective core, the composition is

12C (3% in our

nearly pure helium with a small fraction of
models) produced during the helium flash. For these values
of temperature and density, the Rosseland mean opacity «

is dominated by free election scattering, which is inde-
pendent of composition for He - C - O mixtures, and by
free-free absorption (inverse bremsstrahlung by an electron
in the Coulomb field of a nucleus). The free-free contri-
bution to the opacity for the ion AZ is proportional to
ZZ/A, and therefore the material of the convective core
becomes increasingly more opague than unburned matter out-
side the core.

Instability to convection occurs when the radiative
temperature gradient Voad exceeds the adiabatic Vaar which
is insensitive to the composition and very nearly egual to
the ideal gas value, 0.4. The radiative gradient is given
by

3 PL
v = . (2.5)
rad 16macG MT4

where the independent variable M is the mass interior to
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the point under consideration, a is the radiation pressure
constant, and all other symbols have their usual meanings.
Material whiéh is stable initially with the unburned com-
position may become unstable if mixing with core material
increases its opacity enough. Furthermore, if hydrostatic
equilibrium is maintained during mixing, compression occurs
simultaneously because the mean molecular weight y in-
creases; this also tends to increase the opacity. In early
computations of horizontal branch evolution (Faulkner and
Iben 1966; Iben and Rood 1970b), no mixing above the con-
vective core boundary was allowed, and consequently the
size of the convective core remained nearly constant during
evolution. To make consistent models, however, we must es-
timate the rate and extent of mixing by convective over-
shooting; if mixing is efficient, layers outside the core
will continually become unstable, and the core will march
outwards until mixing no longer causes a large enough opac-
ity change. This enlargement of the core significantly in-
creases the amount of fuel to be burned and lengthens the
horizontal branch lifetime of the star. These effects of
overshooting were first discussed by Schwarzschild and
Harm (1969; Schwarzschild 1970) and by Paczynski (1970).
Convective overshooting in a stellar core has been
studied in a laminar flow approximation by Saslaw and
Schwarzschild (1965) and in terms of the mixing-length

theory by Roxburgh (1965). Both of these treatments
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ignored composition differences between core and exterior
matter and are therefore irrelevant as we shall see below.
Castellani et al. (1971la) repeated Roxburgh's analysis with
composition effects included and derived an expression for
the growth rate of the core essentially identical to ours
below. The following argument justifies this result by
comparison with terrestrial observations.

Laboratory experiments on highly turbulent con-
vection in air and water (Townsend 1959, 1964; Turner 1973)
have shown that most heat transport takes place via ther-
mals, parcels of fluid with organized flow patterns which
rise intermittently from a heated surface and travel to the
top of the convecting layer; slow, disorganized descending
currents are present to satisfy the continuity equation.
Equations of motion for a single thermal have been derived
and solved with successful interpretations of transport
properties in the earth's and sun's atmospheres (Priestly
1959; Ulrich 1970; Nordlund 1974). The mixing length
theory is a crude approximation to these treatments which
predicts velocities in order of magnitude agreement. Our
problem is to determine what happens when a thermal of
known vertical velocity reaches the convective core bound-
ary and encounters an environment of varying composition.

First, we assume that the composition change is
discontinuous; this will be justified later. The buoyant

force density on the thermal f£fluid is
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Fy = -9(pt - o) E —gdp | (2.6)

where Pyr P and g are the densities in the thermal and

e

the environment, respectively, and the acceleration of

gravity. Assuming subsonic velocities, Pe and Pt are

equal; also, in convective cores (not atmospheres), both
the thermal and the environment have nearly adiabatic tem-

perature gradients, which implies Te and T, are approxi-

t

mately equal. Using the ideal gas law, we have

Pe Y

- & (2.7)
He He

and, therefore,
8P - Su, (2.8)

P Mt
If a thermal penetrates into unburned matter (nearly pure
helium), it feels an effective gravitational acceleration
of gsu/ut, which we call the "Q—barrier.“
The vertical velocity of a thermal attempting to
penetrate the p-barrier is easily found from the mixing-
length theory (as in Clayton 1968) to be, typically,

1/3

V:[s—ﬁ.——zié——~o(l" )] (2.9)

dvxr Py

where 6 is the ratio of mixing-length to pressure scale
height. As with all results of the mixing length theory,

this expression is uncertain by a factor probably not
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exceeding ten; it should be evaluated at the point half a
mixing-length from the core boundary. Inserting reasonable
values for a horizontal branch core (g = 107cm/52, Gp/ﬁt =
0.05, v = 2000 cm/s), we find by equating kinetic and po-
tential energies that a thermal could penetrate the p-
barrier by only 4 cm!

The p-barrier is very hard, indeed, and this fact
has been demonstrated experimentally. Saunders (1962) has
studied the motion of thermals of dyed salt water dropped
into a tank of fresh water on top and salt water below,
separated by a sharp interface. They accelerate through
the first layer and strike the barrier of dense lower fluid
(denser than the thermal). When the penetration distance
expected from the above reasoning is a small fraction of
the thermal's size, no measurable penetration is seen; in-
stead, the thermal flattens against the barrier, and its
vertical flow is deflected into a shear flow parallel to
the barrier. We may expect a similar shear flow boundary
layer to occur in the stellar case, where the barrier is
much stiffer than that of Saunder's experiment because of
the large value of g. This shear layer is also present in
laboratory convection with a solid upper boundary, as dis-
cussed by Kraichnan (1962) and Spiegel (1971).

Shear flow in a stratified fluid with a p-barrier
becomes turbulent when the Richardson number Ri 1s less

than or equal to a critical value of order one (Richardson



1920; Turner 1973):

-2

R, = -g2220 (2Yy .y, (2.10)

here, v is the velocity parallel to the barrier, which is
presumably of the same order as the vertical velocity of
the thermal before reaching the barrier. This criterion
leads to a rough estimate of the thickness h of the tur-

bulent layer, namely,

h = v° 8y , (2.11)

which is the same very small distance (4 cm) obtained above.
Surely, this represents an extreme lower limit to the ex-
tent of the mixing region; for example, gravity-wave oscil-
lations of the barrier, excited by the thermal, may become
unstable and generxrate more turbulence. Furthermore, the
py-barrier will not be perfectly spherically symmetric, and
composition gradients transverse to r may lead to more mix-
ing and widening of the partially mixed region. We can
find the rate of expansion of the cbnvective core vpen by
assuming (conservatively, again) that a distance h is added

in one "turnover time," the travel time of a thermal from

the center to the core boundary:

3 "
v - hv _ vo(Swy 7, (2.12)
More useful is the rate of increase of core mass,

M 4q;pv3 (Su)_l (2.13)
u

en = -
P g
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This has béen computed for several models of Chapter 3 and
is shown in Table 3; the gquantity Mreq tabulated is the
minimum rate of overshooting required to ensure convective
stability on the inner side of the p-~barrier. We see that,

at least for central helium abundance YC > 0.6, Mpen ex-

ceeds Mreq by a large factor, and_so this stability condi-
tion must be satisfied in a consistent model.

So far, the assumption has been made: that the u-
barrier is a discontinuity, not a smooth traﬁsition zone.
Can a situation like this evolve from an initial model with
homogeneous core composition? In the initial model, buoy-
ancy 1is caused by temperature differences only, and the
above analysis is invalid. Shaviv and Salpeter (1973) have
studied overshooting in this case using an ensemble of
thermals to ggneralize the local mixing length theory; they
find that overshooting will thoroughly mix a deceleration
zone of thickness approximately 0.07 1 (1 = mixing length)
above the point where vrad = Vad' This is confirmed by
meteorological observations (Priestly 1959; Saunders 1962)
and experiments in water (Abraham and Eysink 1969) where
even larger penetrations are seen. Partial mixing will oc-
cur beyond the deceleration zone caused by the relatively
rare thermals which penetrate further than average.

As nuclear evolution decreases Yc, a p-barrier de-~
velops in the partially mixed zone so that thermal buoyancy

becomes negligible there. Also, the lower part of the
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deceleration zone becomes unstable as « rises, causing the
partially mixed zone to move outwards. We can calculate a
self-consistent composition profile by assuming that the

penetration distance, %, of a thermal is given by energy

conservation:
2o.v2 = 12g sp(z") az’ (2.14)
or
2, _ . Z . '
vT(Z) = fo 2g8u (z') 4z (2.15)
U‘C
where §u(0) = 0 and e refers to core composition. If the

velocity distribution f(v) is given, then the probability
of a thermal penetrating to height Z is

[eel

V(Z)f(v')dv' (2.16)

P(z2) = PIv(Z)] = J

Thermals continuously exchange mass with their surroundings
(Turner 1963), and this mixing may be crudely modeled by

Y(Z) = Y[v(2)] = Yc P(z) + Ye[l - P(2)],
(2.17)

with similar equations for carbon and oxygen; éu follows

from (2.17). To impose self-consistency, rewrite (2.15) as
vy =2 Y Pgsuw) az_av (2.18)
He o dv'!

and differentiate to obtain

dv _ gép(v) (2.19)

dz ucv

Given f(v) and the core and exterior compositions, (2.19)
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may be solved numerically to find v(Z) and, using (2.17),
Y(Z).
Numerical solutions of (2.19) have been computed
for all compositions of interest using the convenient ve-

locity distributions

£, = m+ " T e (2.20)
n!
for n = 0, 1, 3, and 8. The mean and variance are given by
v =1
o *(v) = (n+ )7L (2.21)

A fourth order predictor-corrector algorithm from Ralston

(1965) was used. The integration must be started at a

Yc + & (§ = 10~4), or else the exact solu-

it

point where Y
tion v = 0, ¥ = YC would be found. Y(z) is plotted in
Figure 1 for the case Yc = 0.9, Ye = 0.969. Most of the
transition occurs in a very narrow shell for every case
studied; if AZ is the interval between P(Z) = 0.10 and
P(z) = 0.90, then a general result is

-2 -1

8% = Cyv (“c - H ‘ (2.22)
g \

where C_ lies between one and three. This is essentially
equal to the thickness of the shear flow layer given by
(2.11). The region of initial rise, from Y = Yc + § to
Yc + 0.l(Ye - YC), is of comparable thickness; thermal

buoyancy may compete with the p-barrier here, but the
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general result would be unchanged.

We have shown that the homogeneous initial model
will evolve into a model with a very narrow u-barrier above
the deceleration zone. Therefore, the dimensional analysis
leading to eguation (2.11) for Mpen is correct as a lower
limit, with one modification: v should be the speed at the
top of the deceleration zone, which may be considerably
less than the mixing length result (2.9). However, if M

pen

, then the deceleration zone itself

should fall below M
req

would become unstable, v would increase, and the enhanced
overshooting would return the model to self-consistency.
Each consistent model during the overshooting phase must
have an adiabatic core of uniform composition extending a
small fraction of a mixing-length beyond the point where
v = V_.; the models of Chapter 3 show that the precise

rad ad’

thickness of the deceleration zone is unimportant.

2.3 THE SEMICONVECTIVE PHASE OF HORIZONTAL BRANCH
EVOLUTION

From the discussion of the last section, it would
appear that overshooting would cause the convective core to
grow without limit. However, the structure of the core
changes significantly when it exceeds a critical value,
corresponding roughly to Yc = 0.6. The radiative gradient
V.a,q Passes through a minimum point and increases with M,

implying greater instability at the top of the core; this
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situation is sketched in Figure 2. Continued overshooting
adds fresh helium to the core, reducing the opacity and
eventually causing the vicinity of the minimum point of
Viad to become neutral. Subsequent behavior of the two
convective zones will be discussed below, but clearly the
evolution is qualitatively different from that during the
overshooting phase. This termination of the overshooting
phase was also discovered by Schwarzschild and Harm (1969;
Schwarzschild 1970) and by Paczynski (1970). First, we
éhall derive a general criterion for the existence of a
minimum in Viad in a convective core. We assume the core
is an ideal gas: partial electron degeneracy increases the
pressure by about 10% over the ideal value, and radiation
pressure is completely negligible in a horizontal branch
core. Then the state variables obey the adiabatic‘rela—

tions

p = kp2/3 = k1952, (2.23)

where k and k' are constants. Furthermore, the opacity is
fairly well approximated by the classical formula, electron

scattering plus Kramers' law,

— -3.5
K = Koo + KODT . (2.24)

Define a dimensionless temperature variable

t = T/TO, (2.25)

where T0 will be chosen later, and let ¢ be the ratio of

Kramers to electron scattering opacity at the reference
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point where T = T Using (2.5), the radiative gradient

0"
may now be written, apart from a constant factor, as

1 2

v = LM t‘1'5(1 + ot “); (2.26)

rad
L is constant away from the center and will be ignored. It
is simple to show that a minimum will occur if the equation
2

8lnt _ 1 + ot
BAInM g 5 4 24 4 1.5qt7

5 (2.27)

is satisfied within the convective core.
To clarify this result, rewrite the temperature

derivative as

2
51nt GM
nt _ 2 _GM° _:?;_ %’ (2.28)

31nM 5 4nr4P
where the "homology invariants" U and V are defined by

(Schwarzschild 1958)

U = 4ﬂr3p
M
(2.29)
V = p GM
5 . "i_"" -

Choosing TO to be the temperature at the minimum point, the

criterion (2.27) becomes

3v_1l+a (2.30)
50 1+ 7/3a° :

For any star made of adiabatic ideal gas, V/U increases
monotonically from 0 at the center to « at the surface, and
¢ increases monotonically throughout the core. Therefore,

any sufficiently large convective core (large in
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dimensionless variables, i.e., homology invariants) will

have one minimum point of v and no local maximum be-

rad’
yond it; the dilemma of an ever-increasing convective core
is a general phenomenon, not caused by, say, peculiarities
of a given opacity table. To understand this result phys-
ically, observe that radiative energy flux is determined by
the gradient of radiation pressure. In an adiabatic core
dominated by gas pressure, Prad/P decreases rapidly away
from the center; if the core extends far enough, the energy
flux decreases relatively slowly, and an ever-larger loga-

rithmic gradient of Pr is required to carry the flux.

ad
Note that this can occur even for a constant opacity:
Prad/P is the determining factor.

This minimum is never reached in hydrogen-burning
convective cores because they are not large enough in di-
mensionless extent. Table 4 illustrates this, using models
from Kushwaha (1957), which were computed using the input
physics assumed above; more recent models would show the
same general behavior. The accuracy of criterion (2.30)
for helium-burning cores is shown in Table 5, using our
models of Chapter 3. We can also understand why the loca-

tion of the minimum, M changes so little during evolu-

min’
tion. The value of o is nearly constant because the

effects of higher temperature and higher ionic charges tend

to cancel in the Kramers opacity; thus, M corresponds

min

to the same value of 3V/5U throughout evolution. From
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Chandrasekhar (1939), we know that the mass at a given
value of dimensionless extent (U or V) is proportional to

-2, 3/2

o c . This is nearly constant, as shown in the table,

p
and so Mmin is constant. Another statement of this result
is that the structural evolution of the core is well ap-
proximated by uniform expansions and contractions, for
which p(M)—ZP(M)3/2 and M(U) are precisely constant.

We return now to the problem of the structure of
the second unstable zone when overshooting has extended the
core boundary beyond Mmin‘ Castellani et al. (1971b) argue
that overshooting at the top of the second zone will con-
tinually increase its helium abundance, causing its lower
boundary to move outwards as the opacity drops. The over-
all result is a convective core extending slightly beyond
Mmin (because of the decelération zone), an intermediate
zone of varying abundances which is approximately neutrally
stable, and a small convective zone at the top, too feeble
to overshoot appreciably into the large u-barrier. By
some unspecified mixing mechanism, helium is transported
through the intermediate semiconvective zone to the core on
a nuclear timescale, causing the point Mmin to remain neu-
trally stable and the intermediate zone to grow. This is
a consistent model only if the mysterious mixing process
proceeds at a precise rate determined by the nuclear evolu-

tion of the core, an assumption which has led to some skep-

ticism (e.g., Rood 1973). We should also mention that
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semiconvection in massive main sequence stars (mentioned in
Section 2.1) is caused by an entirely different mechanism,
the higher opacity of unburned matter; the terminology has
led to some confusion such as Mitalas' (1973) statement
that semiconvection can never occur in horizontal branch
stars. We propose a slightly different structure for the
semiconvective zone which guarantees mixing of helium into
the core at the required rate. Consider a series of small,
fully convective zones separated by narrow radiative re-
gions and/or sharp p-barriers; the helium abundance Y (M)
has a staircase shape as shown in Figure 3a. These zones
move outwards on an overshooting timescale, occasionally
merging with one another; the time average of Y(M) over

an intermediate timescale will be identical with
Castellani's model. If the deceleration zone above Mmin

becomes unstable, it will engulf the adjacent zones, even-

tually neutralizing Mm.

in as YC increases; a new, small zone

above Mmi will be formed with slightly lower Y than be-

n
fore. Should too much helium be mixed into the core so
that Mmin becomes stable by a finite amount, then no fur-
ther mixing will occur until burning causes a large enough
opacity rise to destabilize Mmin; Clearly, this "bucket

brigade" of small convective zones can impose neutrality at

Mmin quite precisely, by adding small amounts of helium to
the core at each mixing.

The proper gradient of Y (time-averaged) in the
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semiconvective zone is not immediately clear from the above
discussion. First we will discuss this problem for
Castellani's (incorrect) model with a continuous abundance
distribution, because there is great confusion on this
point in the literature: see Spiegel (1969) for a review.
The Schwarzschild (1906) criterion for neutral stability
against convective mixing is Vead = Vaa’ this means that a
parcel of fluid displaced adiabatically from its initial
position remains at the same temperature as its surround-
ings. In a region where p decreases outwards, the parcel
will suffer a buoyant restoring force from the u-barrier.
Ledoux (1947) suggested that mixing will not occur unless
this buoyant force is zero, and the correct criterion is

equal density of the parcel and its environment:

— B d log u
Vead = Vaa Y 737 @ log P’ (2.31)

where B is the ratio of gas to total pressure. However, a
parcel displaced in a Ledoux-stable environment will oscil-
late about its origin with increasing amplitude, because
heat flow near the turning points tends to increase the
buoyant restoring force above its initial value. This
overstability has been analyzed by Moore and Spiegel (1966)
and Baines and Gill (1969), among others. The latter au-
thors show that growing oscillations will occur in the
stellar case if the Schwarzschild criterion is exceeded by

a tiny amount,
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d log P°

—S)d log u

v > V_o + 0(10 (2.32)

rad ad
The effectiveness of these oscillations in causing mixing,
however, is not apparent.

Fortunately, these problems have been studied in-
tensively because of their importance in oceanography and
meteorology (Turner 1973). Shirtcliffe (1967; l969a;'l969b)
prepared a tank of salt water with a Ledoux-stable density
gradient (salt concentration decreasing vertically); it was
then heated from below to become Schwarzschild-unstable.
The initial oscillations rapidly changed to fully developed
convection which occurred in a series of well-mixed layers
and persisted throughout the experiment; layering occurred
so rapidly that the oscillations were difficult to observe
and were not seen in the first experiment of this type by
Turner and Stommel (1964). When averaged over the layers,
the density gradient always remaiﬁed Ledoux~stable. These
results show that local mixing will occur if the
Schwarzschild criterion is violated by a tiny amount, and a
bucket brigade structure will result. In the stellar case,
helium (analagous to cool, fresh water) is continually add-
ed from the top of the semiconvective zone and carriéd down
by mixing between adjacent layers; therefore, we expect
that the average composition profile will satisfy the
Schwarzschild criterion very accurately.

Another interesting confirmation of our model of
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the semiconvective zone is provided by the observations of
Lake Vanda, Antarctica, by Wilson and Wellman (1962) and
Hoare (1966), which stimulated Shirtcliffe's experiments in
the first place. This is an ice-covered, brackish lake
with no outlet; heating by solar radiation causes an un-
stable temperature gradient which opposes the Ledoux-stable
density gradient due to dissolved salt. The layered struc-
ture of the resulting semiconvection is shown in Figure 4,
reproduced from Hoare. Remarkable persistence of this con-
figuration is shown by the excellent agreement of observa-
tions made four years apart. Turner (1973) mentions
examples of semiconvective zones observed beneath Arctic
ice islands and other brackish lakes. If a solar thermom-
eter can be built deep in a South Dakota gold mine, then
perhaps it is not so surprising that the assay of the Big
Bang is to be found in an Antarctic lakel

Our model for "normal semiconvection" has a homo-
geneous adiabatic core extending to Mmin' where it is
neutrally stable, a small homogeneous deceleration zone, a
semiconvective zone obeying the Schwarzschild criterion,
and a second fully convective zone overshooting into un-
burned matter through a sharp u~barrier. We assume that
each layer in the semiconvective zone is a small fraction
of the entire zone; this may not be true (see Figure 4),
but we have no quantitative basis for an alternative in the

stellar case. One final problem remains; the overshooting
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rate Mpen of the second convective zone may be insufficient
to provide helium to stabilize Moin and the semiconvective
zone. If so, the semiconvective zone Will not develop, and
the two convective zones will exchange matter through a

small region near Mm' which is approximately neutral.

in
This structure is shown schematically in Figure 3. The
evolutionary track HB2 of Chapter 3 has been computed with
this structure. Table 3 compares the overshooting rate of
the upper convective zone in these models with the minimum
rate needed to establish normal semiconvection. For a
brief period after Mmin is reached at YC = 0.6, the rates
are comparable, but normal semiconvection will certainly be

established and maintained for Yc < 0.45. Other aspects of

this model sequence will be discussed in Chapter 3.
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3. EVOLUTION OF HORIZONTAL BRANCH STARS

3.1. INTRODUCTION

Six evolutionary sequences of models for horizontal
branch stars have been computed. The purposes are: to
determine the effects of overshooting and semiconvection,
previously neglected by Iben and Rood (1970b), on observable
characteristics of horizontal branch stars; to see whether
models consistent in the sense of Section 2.1 can be made
during all stages of horizontal branch evolution; to assess
the effects of the revised helium-burning reaction rates
(Fowler et al. 1975) on the models; and, to set limits on
the primordial helium abundance of globular cluster stars.
We also note that the Yale University stellar evolution
group of P. Demarque has concurrently been studying hori-
zontal branch evolution (Sweigart and Gross 1974 and ref-
erences therein); comparison with their results gives
confidence in our (common) fundamehtal assumptions about
globular cluster stars and also points out remaining un-
certainties in the details of horizontal branch evolution.

The defining characteristics of the sequences HBl -
HB6 are given in Table 2. Each star's total mass M, (solar
mass units), helium core mass M.+ initial helium abundance
YO’ and heavy element abundance Z are chosen to represent
typical stars in the extensively observed cluster M3, ac-

cording to the most reliable estimates available (Rood
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1973). Normal semiconvection, assumed for HB1l, HB3 and
HB4 was described at length in Section 2.3; HB2 uses the
double convective zone model mentioned at the end of that
section. Sequence HB5 terminates at the end of the over-
shooting phase; it employs a finite size for the decelera-
tion zone, which is neglected in the other models. HB6 is
computed with precisely the same methods as those of Iben
and Rood (1970b), i.e., with no allowance for overshooting
or semiconvection, and is directly comparable with their
models.

Each evolutionary sequence is a solution of the
time-dependent stellar structure equations:

dp -GM

S = 4ﬂr4 ; : (3.1)
gﬁ B 41ri.'2p ; oo
%FIZ— = EN + eg; (3.3)
%% = g§». min(Vad, vrad)' (3.4)

Here, M is the mass interior to r (spherical symmetry is

assumed) ; eN is the nuclear energy generation rate per unit

mass, and Eg is the gravitational counterpart, given by

e = "T ds
g dt
- dT _m (3Sy dP
T(53) _ax (3.5)

-._C b
Pdt. T
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where S is the entropy per unit mass and Cp is the specific
heat at constant pressure. The equations for composition
changes (expressed as mass fractions),
iﬁg) = (_a.}f_l_ | + (Ei_-) (3.6)

dt ot Nuc Mix ]
are solved simultaneously with the structure equations;
the terms on the right hand side represent changes caused
by nuclear burning and mixing, respectively, and are de-
scribed in detail in Section 3.2 and Appendix B. Typically,
about 150 time-steps are included in each evolutionary se-
quence. At each time step, the solution is a table of the
dependent variables P, T, L, r, and Xi evaluated at approx-
imately 400 values of M between the center and surface.

Computer programs for calculating initial stellar
models and evolutionary sequences were most generously pro-
vided to the author by Dr. R. T. Rood. They were written
by Dr. I. Iben, Jr., and Dr. Rood between 1964 and 1971 and
have been used in several important studies of stellar evo-
lution (see Iben 1967, 1974). Input physics and numerical
methods are described in Appendices A and B. The author's
contributions are the addition of important mixing algo-
rithms to make self-consistent horizontal branch models and
numerous minor changes to ensure convergence, improve ac-
curacy, update reaction rates, etc.

In the next section, we describe the mixing algo-

rithms in detail. The structure and observable
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characteristics of the models are discussed in Section 3.3,
with emphasis on the effects of overshooting and semicon-
vection. Problems in the construction of consistent models
near core-helium exhaustion (Yc < 0.08) are treated in Sec-
tion 3.4. Finally, we derive the primordial helium abun-

dance and discuss its uncertainty in the last section.

*3.2. MIXING ALGORITHMS

Self-consistent models are calculated by the iter-
ation procedure described in Section 2.1. Figure 13 is a
flowchart of the operations at each time-step. During the
overshooting phase, the algorithm is very simple, and two
passes always produce consistency. The algorithm examines
points outside the convective core boundary and decides
whether or not they will become unstable if given core com-

position by overshooting. A neutral opacity k,, is computed

N

for each point by the relation

« (M) = 'aa XM
rad
here, vad is the adiabatic gradient just inside the core
boundary. If the opacity at point M after complete mixing

with the core exceeds KN(M), then the Schwarzschild cri-
terion for instability is satisfied, and the mass zone
centered on M is added to the convective core.

To estimate the change in k(M) after mixing, we

consider composition and density effects. Derivatives of
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k with respect to composition are routinely computed and

stored for each point, and we have

_ Ik .
be (M) = & (5% ) (X, - X, (MM1;  (3.8)
i ip, T
4 12 16 . . .
He, C and 0O are included in the summation. For den-

sity effects, we assume the classical formula

K k — 0.20
ok =k = 0.20, 3.9
(39)T, X. P (3-9)

exact evaluation of the derivative from the opacity tables
is slower and no more accurate for this purpose. The equa-

tion of state is

r

p —_—'S’EUBRT , (3.10)

where the factor o represents the extra pressure due to
partially degenerate electrons (o« = 1.1, typically). P
changes very little after mixing because hydrostatic egui-
librium must be maintained, and changes in T are also found

to be small. Thus the density change Ap is

ro = a(M)uC _

p (M) o p (M) 1. (3.11)

The final criterion for mixing the point M into the core
is, in obvious notation,

(L + 8) (M) < «(M) + £3.x AX.
N A (3.12)
o

+ [k(M) - 0.2] (—=

a
CU

- 1)'

The tolerance § prevents excessive mixing and is equal to
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0.003 and 0.0007 on the first and second passes through the
mixing algorithm, respectively. Occasionally, when a shell
is found to be radiative (vrad < vad) after mixing, it is
removed from the adiabatic core and given exterior abun-
dances again. Mass shells outside the boundary are thinner
than 0.2% of the convective core mass Mcc' and so the neu-
trality criterion is always satisfied at the boundary to an
accuracy better than 0.1%.

No deceleration zone is allowed in the above algo-
rithm. In all models of HB5, the convective core extends
a distance 0.05 Hy beyond the point where Viag = Vaa’ Hp is
the pressure scale height at that point. The adiabatic
gradient is used in the deceleration zone, following the
treatment of Shaviv and Salpeter (1973). The only notice-
able difference between HB5 and HBl is that semiconvection
appears at a slightly higher wvalue of Yc in the former, but
the core masses MCC are identical at this point. Typically,
the deceleration zone contains 0.008 M@ or less than 10% of
MCC'

Semiconvection is recognized when the minimum of

\Y occurs several zones inside the core boundary. The

rad
overshooting algorithm is discontinued, and abundances in
the core and the semiconvective zone are calculated by

techniques similar to those of Robertson and Faulkner

(1972).
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Helium burning during each time-step raises the
opacity of the core, causing the point M iq to be unstable
at the start of the mixing algorithm. Usually, much of the
semiconvective zone is also superadiabatic. The neutral

opacity, M) (the opacity for which Vv = Vad)’ is com-

kg { rad

puted for each point using (3.7). We want to compute the
"neutral helium abundance" YN(M) (the abundance for which
K = KN). If the convective core is given the abundance
YN(Mmin) and if each point M in the semiconvective zone is
given YN(M), then the core boundary Mmin and the entire
semiconvective zone will have Vead = Vag within a given
tolerance. The detailed discussion of Section 2.3 showed
that this is the correct criterion for a consistent model.
YN(M) is most easily computed by assuming that the final
(post—mixing) ratio § = Xl6/X12 is given. Then we find
from (3.12) that

(l+6)KN—K+D

r

Y. (M)
N B, + Bia 4+ SByg
1 + 8 1 + 8

(3.13)

(%q5 -

D=B,Y +B 12 i F 5

4 12

- __.§~__)
16 1 +8s5/°
In these equations, § is the tolerance defined after (3.12);

Y, X and X are the abundances at M before mixing; and

12 16

Bi is the total derivative of k with respect to Xi’ upon
mixing:

(¢« = 0.2) 2y

+
i M 9%y

(3.14)
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Degeneracy is neglected because only small changes in abun-
dances are made.

In principle, (3.13) evaluated at M = M

. ives
min 91V€

the value of Yc which will neutralize Mmin' In fact, it is
not always accurate, and we use instead the lesser of
} and

YN(Mmin

o = Yo # ALV 9/ Vagdmin = (1 + 8)1-  (3.15)

The slope A was found by trial and error and is varied be-
¥
tween 0.8 and 1.0 as evolution proceeds. When YN is used,

values of YN for points near Mmin are adjusted slightly to
ensure a smooth composition profile.

Equations (3.13 - 15) enable us to compute the
abundances at each point necessary for a consistent model.
The mixing algorithm sets these abundances, maintaining
exact conservation of nuclei, and determines the extent of
the semiconvective zone. An imaginary reservoir of mass
Mr is created by mixing mass zones beyond Mmin with the
convective core, one at a time; reservoir abundances are

updated every time a zone is added:

1 M
Xip = F’i; for X, (M)aM. (3.16)

As soon as the helium abundance of the reservoir exceeds
the neutral helium abundance for Mmin’ core abundances are
set equal to those of the reservoir for all nuclei, and

Mmin is subtracted from Mr; core abundances are also given
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to the first few mass zones beyond Mmin to simulate the
deceleration zone, and its mass is subtracted. Thereafter,
each mass shell above the deceleration zone is neutralized
in turn. YN(M) is calculated, using the oxygen~to-carbon
ratio of the reservoir; if YN(M) > Y., zones are mixed into
the reserVoir, increasing Yr' Eventually, Yr exceeds YN(M)
and reservoir abundances are given to the shell centered on
M, and the process repeats to neutralize the next shell at
M + AM. When‘the size of the reservoir shrinks to zero
(the last zone neutralized is also the last zone to have
been mixed into the reservoir), the upper boundary of the
semiconvective zone MSC has been reached; a jump in Y to
the unburned value (0.969) is left here. 1In practice, the
last several zones have uniform composition and represent
the fully convective region which provides fresh helium for
the whole process by overshooting.

Two iterations of this procedure at each time-step
provide acceptable consistency as long as YC > 0.08. When
Yc < 0.08, it is not always possible to make a consistent

model for reasons discussed in Section 3.4. The convective

core boundary at Mm. always satisfies

in

\Y
| a4 _ 1| < 0.001; (3.17)
vad

the residual error rises gradually throughout the semicon-

vective zone, occasionally becoming as large as 0.0l at the
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outermost point, Msc' Figure 5 shows Y (M) and vrad/vad in
the semiconvective zone of HB1 when Yc = 0.353. The adia-
batic temperature gradient is used for M < Msc' with a
discontinuous change to Veag 2t that point. Fine zoning is
crucial in and around the region of varying composition.
We require that AM < 0.0025M near Mmin and that Y change by
less than 0.015 from point to point in the entire semicon-
vective zone. Near M., AM is limited by the constraint

0.969 AM + YcMmin

AM + Mmin

Y, + 0.0004; (3.18)

the purpose is to ensure that the reservoir helium abundance
does not change too much when one shell of unburned helium
is added to it.

The above algorithm is the normal treatment of semi-
convection. In models of HB2, the same procedure is fol-

(Mmin

lowed until the point Mm. ).

. . N
in S neutralized, Yr > Y

N
Then reservoir abundances are given to every point M, 0 <
M_ng, so that we have two fully convective zones, with
identical abundances, in the intervals (0, M_._ ) and (M_._,
min min
Mr)’ As before, the point Mmin is neutral to an accuracy

of 0.1%.

3.3. PROPERTIES OF THE EVOLUTIONARY SEQUENCES
Once the mixing algorithms have been chosen (and
debugged!), it is straightforward to compute consistent

models as long as Y, > 0.08. Summaries of the interior and



-39~

surface properties of all six sequences are given in Tables
6 - 17. At this point, the reader is urged to look briefly
at Tables 6 and 7 to familiarize himself with the important
physical properties of horizontal branch stars. The
Hertzsprung—-Russell diagram is shown in Figure 6; there are
no surprises here. Although overshooting and semiconvection
cause a longer track in log Te, none of the tracks covers as
wide an interval as observed in M3 or M5. Rood (1973) has
shown that a dispersion in total mass (or core mass) is al-
ways necessary to fit the observed H-R diagram, and the de-
tailed shape of the track is not important for this purpose.
In Figure 7, we see the straight evolutionary tracks in the
log g - log Te plane, which are quite sensitive to the
initial helium abundance. Gross (1973) has used this fact

to determine that Y, > 0.30, using initial models which

0
agree well with ours. As we shall see in Chapter 4, the
possibility of systematic errors in the observed values of
log g renders this result uncertain by perhaps + 0.10.

We will discuss the physical reasons for differences
among the sequences, without repeating all the details of
the interior evolution, well summarized in Iben and Rood
(1970b). HB1l is our standard star, and HB5 is virtually
identical in all properties: the only importance of the
deceleration zone is that no superadiabatic gradient can be

allowed at the core boundary. Exploratory models of

Sweigart and Gross (1974) and of Castellani et al. (1972)
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computed using Vr > Vad at the boundary cannot give accu-

ad
rate lifetimes.
Comparing HB6 (no overshooting) with HBl, we see
that the obvious effect of internal mixing is to increase
the horizontal branch lifetime tus by at least 75% because
additional fuel is made available. The helium core lumi-

nosity, L, , is also larger in HB1l, by about 50% at YC =

He
0.1, because of the higher central temperature. Burning at

12

high temperature in HB1 decreases the final C abundance

and enhances the 1longer lifetime because the reaction

12C l60 yields three times as much energy per 4He

(a, v)
nucleus consumed as the triple-alpha process.

Turning to the surface properties, we see that both
stars evolve toward higher Te for 0.8 > YC > 0.3; HBL
spends more time in this phase and thus its maximum value
of log T is greater by 0.028. The central density is ac-
tually decreasing during this phase of HBl, and the star
obeys the "rule of thumb" that central expansion implies
surface contraction, and vice-versa. Redward evolution be-
gins when central density rises to maintain energy genera-
tion. HBl displays surface expansion and contraction for
roughly equal lengths of time, and this fact may be reflect-

ed in the observed period changes of cluster variables.

The pulsation period P obeys

p = kM /?r3/2, (3.19)
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where k is constant for a given mode (fundamental or first
harmonic). Nearly equal numbers of positive and negative
period changes dP/dt are observed for M3. Although HB1 is
too blue to pulsate, slightly more massive models would
trace out similar loops in the instability strip.

HB4.uses new reaction rates (Fowler et al. 1974)
and intermediate screening (DeWitt et al. 1973) for which
€3a/€412 is increased by a factor of about three compared
with the old rates (see Appendix B). This causes a lower

16

L and shorter tHB for two reasons: 1less 0 is produced,

He
implying less energy liberated per 4He; and, the semicon-
vective zone 1is smaller because of the decreased opacity of
burned matter. . Semiconvection appears later, at Yc = 0.575
(Table 5), in HB4, again an opacity effect. Its track in
the H-R diagram shows a much smaller variation in log Te
(.044 vs. .079), partly because of the shorter lifetime,
and occurs at systematically lower luminosity.

At the end of Section 2.3, we noted that the models
of HB2 are not self-consistent for Yc s 0.45; they afe
still interesting for comparison. The surface character-
istics are indistinguishable from those of HBl1. Surpris-
ingly, in the interior, the mass of the second convective
zone is greater than or equal to the mass of the semicon-
vective zone in HBl; inefficient overshooting in the

second zone provides more fuel to burn than the efficient

overshooting assumed in HB1l! Naturally, this lengthens
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t although the effect is partially cancelled by a larger

HB'

LHe’ This result is also relevant to the uncertainty in-
troduced by the unknown sizes of the "bucket brigade"” con-
vective zones which comprise the normal semiconvection
model; it suggests that tHB may increase if only a few of
these zones are present. If a sequence were computed using
the Ledoux criterion in the semiconvective zone, its helium
distribution Y (M) would lie between the curves of HB1 and
HB2; thus its lifetime would be bracketed by the results
for these two sequences.

Finally, we come to the effects of the initial
helium abundance, seen by comparing HB1 and HB3. The major
change is a larger value of MC for lower YO; Mc is assumed
to be the critical helium core mass at the core flash, com-
puted by Rood (1972). The hydrogen shell source weakens
because it is further out in the star and because u is
smaller in the envelope, both causing lower values of T and
p at the shell; therefore, LH and.log L are lower in HB3.
In the H-R diagram, HB3 remains nearly stationary during
the overshooting phase and then moves redward; it shows no
observable differences from the tracks in Iben and Rood
(1971).

The lifetime of HB3 is only slightly (4%) shorter
than that of HB1l, and it is interesting to see why. Our

-1.7

result implies tHB a Mc whereas Rood (1973) assumed

-4 . . . . ' .
tyg @ M, derived in the following way. It is natural to
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compare the evolution of the helium core with that of a
pure helium main sequence star. For the latter, tys @
EMcc/L’ where E is the energy released per 4He burned,
which is constant if all stars have the same final 16O
abundance. The homology relation for pure helium stars is
roughly L g :4M5; where ; is the mass-—averaged mean molec-
ular weight, and Rood's result follows, assuning MCc lies
at a fixed mass-fraction. In our cores, however, the fuel
supply is determined by Msc' and this is identical in HB1
and HB3 because it is determined by the local properties of
the opacity. Furthermore, LHe(B) approaches LHe(l) rather
closely for Yé < 0.5, and so the weaker dependence is ex-—
plained.

We can generalize this result by applying the
homology relation to the mass interior to Msc' In Figures
8 and 9, log L,, is plotted against log Mg and log 1, re-—
spectively, for HBl1 - 4. We see that HB1l, HB2 and HB4
define a common, homologous curve, and HB3 approaches this
curve asymptotically from above. This suggests that all
cores evolve through the same structural sequence in terms
of these variables. Then the lifetime in the semiconvective
phase is determined by the rates of increase of MSc and u;
therefore, the critical variables are the stability crite-

1

rion in the zone and the rate of 60 production by

12¢ 16O, which determines u and the local opacities.

(o, v)
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We can make the sweeping conjecture that all evolutionary
sequences, computed with a given stability criterion and
reaction rates, will have nearly the same tHB; naturally,

a weaker dependence on Mc remains, because LHe does not re-
lax immediately to the common curve.

We can compare our results with those of other
workers to check the validity of our conjecture. Evolu-
tionary sequences with some treatment of semiconvection
have been published by Paczynski (1970), Castellani et al.
(1971b, 1972), Robertson and Faulkner (1972), Eggleton
(1972) , and Sweigart and Gross (1974); of these, only the
last authors present detailed results for comparison with
globular cluster stars. Earlier papers by the Yale group
(Demarque and Mengel 1972; Sweigart and Demarque 1972a)
represent early stages of program development and will not
be compared here. Sequence S of Sweigart and Gross has
initial parameters (M, MC, Y, Z2) of (0.66, 0.475, 0.30,
0.001); in general, its interior evolution is similar to
our HBL or HB3. Its lifetime at Y_ = 0.1 is 96.3 (10°
years) conpared with 91.8 and 87.6 for HBl and HB3. In
their reaction rates, €3a/8412 has a value 1.20 compared to
our old rates. If we interpolate tHB(S) to the rates and
core mass of HBl (this procedure will be described in de-
tail in Section 3.5), the result is 93.9, a discrepancy
with t,., (1) of only 2.3%. The uniform nature of semicon-

HB

vective evolution is apparent, although certain differences
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remain. As shown in Table 5, semiconvection appears earlier
in sequence S; the homology invariants show that opacity
differences are at least partly responsible. Also, My is
slightly iarger in their models, partly because we allow a

small convective zone just below MSC; this probably accounts

for the residual difference in tHB'

3.4. PROBLEMS NEAR CORE HELIUM EXHAUSTION

In the sequence HBl, it becomes very difficult to
make self-consistent models with our mixing algorithms when
Y < 0.061. Up to four iterations of the nixing algorithms
were tried, and after each iteration the following results

appeared: V at the core boundary increased from the

rad/vad

previous iteration; M

. i ased; reased; >
mip 1hcre ; Tc decrea ioEy became

less centrally concentrated, but LHe still increased.

Occasionally, the point Mmin could be neutralized if MSc
was increased, mixing stable fluid into the semiconvective

zone. Clearly, the local opacity near Mm'

in DO longer de-

termines the mixing rate; we will call this phenomenon the
composition instability. It also occurred in HB3 and HBY at
YC = 0.063 and 0.073, respectively. 1In HBZ, YC became con-
stant in time and M_._ rather erratic at Y _ = .040.

min c
Sweigart and Demarque (1972b) have studied this instability
in more detail, finding it at YC = 0.12 in a sequence with
= 0. They impose a perturbation on YC, growing on an

€412

overshooting timescale as the core mixes into the
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semiconvective zone; for Yc < 0.12, this leads to a similar
growth of Vrad/vad at the core boundary. The entire semi-
convective zone is mixed in about 106years, causing rapid
evolution to the blue and adding several million years to
tHB' before YC reaches 0.12 again by means of nuclear burn-
ing. This situation is reminiscent of Shirtcliffe's (1969b)
experiments (see Section 2.3), where a tank of stable salt
water was heated from below. He observed a well-mixed con-
vective layer form at the bottom, whose upper boundary rose
as overlying fluid became unstable. In the terminology of
Section 2.1, the composition instability prevents the con-
struction of a consistent model because the intermediate
timescale no longer existé.' Mixing on an overshooting time-
scale causes simultaneous structural changes, and no time-
averaged composition profile can be defined. The
instability is caused by the sensitive (Y3) dependence of
€3, OR composition and does not occur if Y2 dependence is
artificially imposed (Demarque 1975); this explains the
different critical values of Yc found because of different
reaction rates.

Our first attempt to treat the composition insta-
bility was to ignore it, hoping that dominance of £N by
12

C(a, y)l60 would suppress it quickly. Models were made

stable by increasing Ms still allowing only two iterations

Cl

per time-step. This was a failure: after Y. reached 0.025,

it rose rapidly anyway. Our second attempt is more
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realistic; starting with a model just before instability
(YC = .069), HBl is gradually converted to the two-zone
scheme. At each time-step, the convective core mixes out-

ward until Mm' is neutralized, and no readjustment of the

in
semiconvective zone is made. Properties of these models
are shown in Tables 18 and 19. The timescale is about four
times slower than the actual overshooting rate (for ease of
convergence) , and so the surface response is not computed
realistically; these models should be adequate for a rough

estimate of the increase in t however. The entire semi-

HB'
convective zone is mixed in 3.7 million years,breaching

Yc = ,106; subsequent evolution proceeds smoothly on a
nuclear timescale. The sequence is terminated at YC = .063,
at which time it is identical to the corresponding model of
HB2.

A second sequence has been computed to see the
effects of rapid mixing. Starting with a model of HB2 at
Yc = 0.043, the outer boundary MSc is arbitrarily extended
by 0.0044 over one time-step. YC rises to 0.074, and a
small increase in log Te (0.01) is seen after several time-
steps; Tables 20 and 21 contain the details. After mixing,

a radiative region develops around Mm' , and evolution pro-

in
ceeds smoothly with the convective core overshooting into
that region. After Yc becomes less than 0.016, no more

overshooting is permitted, so that we may see the star
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approach core helium exhaustion without computer fund ex-
haustion. Several convective zones of vérying composition
appear between MCc and Msc’ mimicking normal semiconvection.
In the H-R diagram (Figure 6), the star rapidly approaches
the red giant branch along a track similar to those of Iben
and Rood (1970b).

The sequence is finally terminated by extremely
slow convergence, 60 models after the imposed mixing. At

5

this time, Y = 2.2 x 10" and yet the center still pro-

duces LHe = 24.3 L@; the surface properties are log L =
2.009 and log Te = 3.697, well removed from the horizontal
branch. Neutrino losses due to the universal Fermi inter-
action, not included in the models, are beginning to be
important. The dominant process is the photoneutrino re-
action, y + e -+ e + ve + v i using the rate of
Petrosian et al. (1967), we calculate LV ~ 2.0 L@ in the
last model. This cooling process at the stellar center is

not negligible, and so further evolution with our program

would not be realistic.

3.5. THE PRIMORDIAL HELIUM ABUNDANCEH

In this section, we derive the initial helium abun-
dance YO of the similar globular clusters M3 and M5. Our
method is to compare relative lifetimes of horizontal

branch and red giant stars with relative numbers observed

in star counts. Introduced by Iben (1968a), this method is
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potentially quite accurate because of the simplicity of the
observational data used; in practice, it must be calibrated
using a number of technical assumptions of varying accuracy.
Fortunately, we have devised a simple variant of Iben's
technique which avoids some of the largest systematic
errors.

The first task is to derive the horizontal branch

lifetime, t,.(Y

HB This is defined as the elapsed time

L
(unit = 106years) between the initial model and the model
with Yc = 0.01l. The latter model is brighter than the
star's mean horizontal branch luminosity by 0.3 - 0.4 mag-
nitudes and is evolving rapidly toward the red giant
branch; it should be distinguishable photometrically as an
early asymptotic branch star. tHB is considered to be in-
dependent of My, Y

0 and Z, for a given core mass, because

of the work of Iben and Rood (1970b) and the arguments of

Section 3.3. The core mass M, is determined uniquely by

YO and 7, which is approximately known from observations.
Butler (1975) has summarized recent measurements of the
iron abundances of globular clusters, relative to the solar
abundance; he finds deficiency factors of 8 to 37 for M3
and 5 to 16 for M5, the range representing different mea-
surement techniques. We adopt Z = 0.001 for both clusters,

since the sensitivity of our final results is not great.

An implicit assumption is that the CNO abundances in
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globular clusters are normal (solar) relative to the iron
abundance. This has been questioned (Hartwick and McClure
1972) but definitive observational evidence either way is
lacking.

We actually derive three values of t to illustrate

HB
the uncertainties introduced by semiconvection and the com-
position instability; the effects of new reaction rates will
be considered shortly. Graphs of Yc(t) are shown in Figure
10. Let tL(YO) be a lower limit to tHB' where normal semi-~
convection with no composition instability is assumed.
Extrapolating the curves for HBl and HB3 to Yc = 0.01, we
find tL(.25) = 110.1 and tL(.ZO) = 106.2. For an extreme
upper limit to tHB(YO), we take the lifetime of HB2 with
imposed mixing; this gives tU(.25) = 133.9 and tU(.2O) =
129.2, where we have used the ratio tL(.ZO)/tL(.ZS) to ap-
proximate the core mass dependence. Our "best" value of
tHB(YO) assumes normal semiconvection with one occurence of
the composition instability. Inspecting Figure 10, we see
that the imposed, sudden mixing adds about 10 million years
to the lifetime of HB2; a slightly larger increase is found
for the mixing episode of HB1l, although the actual compo-
sition instability develops more rapidly than assumed in
these models. Reasonable estimates are tHB(.25) = 121. and
tHB(.20) = 116.7. By comparison with HB6, overshooting and

semiconvection increase t by a factor of 1.87 + 0.17.

HE
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Helium-burning reaction rates affect tHB in two
16

ways. The obvious effect is O production, quantified by

comparing HBl and HB4. If r = e3a/€412 relative to the old

rates, then for new rates we have r = 2.94 at T6 = 150 and

g r—0'16.

reported a "most recent" rate for the triple-alpha process,

t After HB4 was finished, Fowler et al. (1975)
larger than the rate of HB4 by a factor of 1.20; the most
recent rate has been confirmed by three independent groups
of nuclear physicists (Chamberlin et al. 1974; Davids et al.
1975; Mak et al. 1975). This decreases typ by a factor of
0.814. The second effect of the triple-alpha rate on tHB
is its influence on the helium core flash which determines
MC(YO). Stability of a degenerate helium core has been
carefully analyzed by Tarbell and Rood (1975; reproduced as

Appendix C), and the correct MC(YO) for any rate is compu-

ted there. Most recent rates give MC(.25) = ,479 M@ and
Mc(.20)-= .490 M@ for typical horizontal branch stars in M3
or M5. Assuming tHB a M;l's as above, the final horizontal
branch iifetimes are
tHB(.25) = 92,2, 101.3, 112.1; (3.20)
tHB(.ZO) = 89.1, 97.9, 108.4. (3.21)

Next, we must determine tRG(YO), the lifetime of a
cluster star on its first ascent up the red giant branch.
This is defined, following Iben et al. (1969), as the time

for which the visual magnitude is less than MVRR’ that of
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the RR Lyrae variables of the cluster. 1In a comprehensive
study of M3, Rood (1973) has found, for the variables,

< log L > = 1.66 and 1.59 for Y = .25 and .20, respectively.
He used evolutionary tracks computed with old rates, and we
may subtract 0.01 from log L (compare HB1l and HB4) without
doing violence to his fitting techniques. Using bolometric
corrections from Schlesinger (1969), we get log LRG = 1.69
and 1.62 at the same visual magnitude. By interpolation in
the evolutionary sequences of Rood (1972), tRG(YO) is found
to be 66.7 and 83.3 for typical red giants of M3. tRG has
the dependence

-0.84 ,-0.04 ,—~0.27
tpe @ Lo 7 M, , (3.22)

which will be used in the error analysis.
The first observed quantity from which we determine

Y. is the ratio R,

0
N .
R = Nﬂﬁ, (3.23)
RG
where NHB and NRG are the numbers of horizontal branch and

red giant stars in an unbiased selection of cluster stars;
naturally, red giants are Counted down to MVRR in visual
magnitude. On the basis of sixteen different data-sets,
Iben et al. (1969) found that R, . lies in the range 0.80 -
0.95. However, at high luminosity, asymptotic branch stars,

which should not be included in N are indistinguishable

RG'

by photometry from (helium-core) red giants; the authors
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were able to recognize and exclude early asymptotic branch
stars. Gingold (1974) has computed an evolutionary sequence
of an asymptotic branch star with initial parameters (M,, Y,
7z) equal to (.60, .30, .001); after careful comparison of
relative lifetimes and color differences, he concludes

Rops = 1-2 + 0.15 (3.24)

(our estimate of standard error). Using the theoretical
values of R(YO) shown in Table 22, we'find
Y = 0.207 + 0.015; (3.25)

where the uncertainty includes only the effects of differ-
ent treatments of semiconvection. This value has been an-
ticipated by Demarque et al. (1972), who guessed the
result before careful calibration became possible.

Before we estimate a realistic uncertainty for YO'
a variant of the R method will be introduced. Define a new

number ratio

Q = ISE_E,_' (3.26)
- AN
RG
where AN is the number of red giants with visual magni-

RG
tudes between MVRR and MVRR + 0.4. This defines a narrow

horizontal band in the H-R diagram at the luminosity of the
horizontal branch, but it still contains enough stars for
reasonable counting statistics. The measurement of Q
avoids several systematic errors which may affect R. First,

no asymptotic branch stars contaminate the sample. Second,
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no selection effect in Mv (brighter giants being more likely

to be counted) should be present in AN In the theoreti-

RG*

cal calibration, where AtR is the time spent between log

G

L - 0.16 and log L uncertainties in the neutrino ener-

RG RG’

gy loss rates from the red giant core have a negligible

effect on At The same is probably true for rotation of

RG~

the core, although both of these can influence tH because

B
of its dependence on the core mass at the helium flash.
Both methods, Q and R, show equal sensitivity to the refer-
ence luminosity level, Lre-
Cubic polynomial interpolation has been used in the
tables of Rood (1972) to find AtRG(YO), and the resulting
values of Q are given in Table 22. For the cluster M3, the
three data-sets listed by Iben et al. (1969) give Q = 3.65,
2.90, and 3.27; for M5, one data-set gives 3.02. A simple

average is misleading because of the different sizes of

data-sets; instead, we combine the sets to find

EN
HB
Q = = 3.09. (3.27)
obs ZANRG
In deriving the standard error, if we assume o (N) = Nl/z,

i.e., Poisson statistics govern the occurence of a given
star in the sample, the result is o(Q) = 0.20. This is
smaller than the sample standard deviation of the data-sets
and than the error in R, quoted by the authors, which was

based on a much larger number of stars. We assume there is
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bias in some of the data-sets and use the sample standard
deviation, which gives a fractional error similar to that
of R; thus, o(Q) = 0.33. Referring to Table 22, we see
that

¥, = 0.187 + 0.015, | (3.28)

where, again, the uncertainty includes‘gglz the limits on
tup (Vo) -

At.this point, the reader may be justifiably un-
easy about the large number of assumptions, correction fac-
tors, interpolations and extrapolations in the calculation.
Unfortunately, they are virtually always necessary in stel-
lar evolution, unless the answers are known beforehand or
unlimited time (human and computer) is available. We will
not attempt a detailed error analysis of every step. In-
stead, we note that R and Q are sensitive to Yy mainly

through t and it is in turn strongly dependent on LRG'

RG’

A generous estimate will be made for the standard error in

log LRG’ and its effect will be combined with the uncer-
tainties due to Robs' Qobs’ semiconvection and reaction
rates (as they affect tHB)a The results for the two meth-

ods will be combined with no reduction in standard error,
because they are not statistically independent.

Realizing that both theoretical and observational
uncertainties are involved, we adopt a standard error in

log L of 0.10 (0.25 in visual magnitude). The

RG
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calculations have been repeated twice, using log L varied

RG
by + 0.1; Q and R method abundances change by 1'0.030. The
upper and lower limits for tHB depending on semiconvection
are considered to be two standard error limits; thus, they
contribute + 0.0l for the R method and + 0.008 for the Q
method. Fowler et al. (1974) tell us that the reaction

rates for the triple-alpha process and for 12C(a, Y)lGO

both have standard errors of about 30%; these cause uncer-

oo

tainties in the ratio r and tHB of 42% and 6%, respectively.

Using the variations from Table 22,

Qo

Y
“ﬁg = 0.15,

BYO

sq- = 0045, (3.29)

Q

we find that reaction rates cause standard errors in the R

and Q methods of + 0.011 and i>0.008. The errors in Robs

and Q. . become + 0.023 and + 0.015 in terms of Y Com-~

0"

bining all of these in quadrature, the standard errors in

s

Y0 become

oR(YO) = 0.041, oQ(YO) = 0.035. (3.30)
Taking a weighted average and rounding, our conclusion is

Yy = 0.20 + 0.04. (3.31)

A glance at Table 1 shows that our result is the
lowest recent measurement of YO but is consistent with sev-
eral others employing stellar evolution and pulsation

theory. Perhaps we have been too generous in increasing

tHB because of the composition instability. Two other
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assumptions must be mentioned before we pass on to more
general comments. First, we have assumed that every red
giant becomes a horizontal branch star. Rood (1970a) has
shown that mixing of hydrogen to the stellar center at the
helium flash causes a star to return near the main se-
guence. Caloi and Castellani (1975) have made more exten-
sive calculations, showing that blue stragglers and some
cluster B stars may be explained this way. Although no
model calculations have found mixing to occur at the flash,
relatively small numbers of blue stragglers are observed in
M3. As we shall see in Chapter 4, excessive mass loss at
the flash results in stars too blue to be considered hori-
zontal branch members. If not negligible, "non-conservation
of stars" causes us to underestimate YO‘ The second as-
sumption we have made is that red giants have approximately
the mass they had on the main sequence (Mg ~ 0.8); if they
lose mass sufficiently early, then tra increases according

to (3.22) and our Y, values are too low. It seems unlikely

0

that this could affect the Q method, however, because sur-

face gravities at log L are several hundred times their

RG
values at the helium flash.

Our value Y, = 0.2 agrees with the prediction of
"standard" Big Bang nucleosynthesis. The implied age, ~16
billion years, 1is consistent with the Hubble time 1if the
universe is nearly empty. The most interesting implication

is for the chemical evolution of the galaxy: model-
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builders must address themselves to an increase in
(AY ~ .05 ~ 0.1l) between the formation of globular
and of young stars here and now. This problem can
surely will be solved in as many ways as there are

who attack it.

Y
clusters
and

theorists
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4. MODELS FOR SUBDWARE B STARS

INTRODUCTION

The subdwarf B (sdB) stars of the galactic halo

pose a challenge to stellar evolution theory: their inte-

rior structure and evolutionary status have remained un-

known since their discovery. For classification purposes,

Sargent and Searle (1968) have given the following defini-

tion:

A star which has colors corresponding to
those of a B star and in which the Balmer
lines are abnormally broad for the color,
as compared to Population I main-sequence

B stars. Such stars may also be recognized
by the early confluence of the Balmer
series, which is only seen up ton = 12.
Some, but not all, subdwarf B stars have

He I lines that are weak for their color.

These stars occupy a compact region of the surface gravity-

effective temperature plane, given by

4.3 < log Te < 4.6,
(4.1)
4.5 < log g < 6.0.

This region is collinear with the locus of horizontal

branch stars, which has led Greenstein (1971) to call it

the "extended horizontal branch." Hotter, subdwarf 0 stars

are found with effective temperatures at least as high as

50,000°K.

Published evolutionary tracks avoid the region of

the sdB stars, as shown strikingly in Figure 16 of

Greenstein and Sargent (1974; hereafter, GS). In brief,
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horizontal branch stars are too cool; pure helium stars are
too hot, and hydrogen lines are clearly present in sdB
spectra, anyway; helium shell-burning stars are too lumi-
nous; nuclei of planetary nebulae are too luminous or too
hot. Petersen (1972) and Caloi and Castellani (1975) have
evolved stars assuming mixing during the helium core flash;
their models are too cool or they show no tendency to
cluster in the sdB region. Trimble (1973) has studied mod-
els with inert helium cores and thin hydrogen envelopes;
these suffer ﬁhe same drawbacks and also evolve too rapidly.

Cox and Salpeter (1961) first suggested that the
hot subdwarfs might be burning helium in their cores, with
inert hydrogen envelopes making up a small fraction of the
mass. Faulkner (1972) and Caloi (1972) attempted to fit
the observed properties with models of this kind. Both
found that this could be done only by assuming a large he-
lium core mass, about 0.6 M@. Core masses of this size
imply an initial helium abundancé very close to zero, in
conflict with a great mass of data for globular clusters.
Additional problems with this structure, some of which will
be discussed later, have been pointed out by Sweigart et al.
(1974) .

The observational data for sdB stars are described
in more detail in Section 4.2. In Section 4.3, we present
evolutionary sequences with semiconvection for models of

the Cox - Salpeter type, and we show that the observations
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are reproduced very well. The core mass and initial helium
abundance are estimated in the last section, and remaining

problems are briefly pointed out.

4.2. OBSERVATIONAL DATA

A sample of thirty-one sdB stars in the halo field
has been analyzed by GS. This supersedes the earlier com-
pilation of twenty-one stars by Newell (1973), most of
which were drawn from Greenstein (1971). For the sake of
homogeneity, Newell's data will not be considered here. GS
have measured effective temperatures from UBV photometry,
corrected for reddening. Surface gravities were found from
measured widths of the hydrogen Balmer lines, calibrated
with a large grid of recent model atmospheres. We prefer
to consider log L/M, given by

log L/M = 4 log Te - log g - 10.615.(4.2)

All stars of GS are plotted in the log L/M - log T, plane,
Figure 11. The mean and median values of log L/M are 1.9
and 1.8, respectively. Note that the stars with the small-
est light-to-mass ratios are also the coolest of the sample
(with one uncertain exception). This could be a selection
effect, hotter stars being fainter in visual magnitude and
less likely to be iﬁcluded in the sample.

Helium lines are systematically weak, implying de-
ficiency factors of 2.5 ~ 100 relative to normal (Population

I) helium abundances; similar deficiencies are seen in blue
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horizontal branch stars. They are not considered to re-

flect a low primordial helium abundance (Searle and Sargent

1972). The metallicity of the sdB stars is not well known.

In general, GS find wupper limits for the carbon and magne-

sium abundances to be normal or deficient by a factor of

two. Some peculiar abundances are seen: the star FB 103

(Feige 66) shows strong sulfur and helium lines. A few sdB

stars have been analyzed at higher dispersion by other au-
thors. In a differential analysis of HD 4539 with respect
to a normal B star, Baschek et il; (1972) found nitrogen

overabundant by a factor of three, oxygen underabundant by

a factor of at least ten, and other heavy elements erratic

but roughly normal. Baschek and Norris (1970) found that

metal abundances "may be approximately normal" in HD 205805.

The same authors (1975) found sulfur enhanced by a factor
of ten and the CNO abundances low by factors between four

and forty in HD 149382,

Hot subdwarfs seem to be very rare in globular clus-

ters, although two sdB stars are known in M13. This sug-

gests membership in the Intermediate Population II, which is

consistent with the metal abundances given above. Newell
(1973) has found a distinction between sdB and blue hori-
zontal branch stars which is relevant to the problems of

their origin and interior structure. He shows that there
a statistically significant lack of stars in the interval

4.31 < log Te < 4.34 rather than a continuous distribution

is
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in color. The data of GS also suggest this gap, although
too few stars are present for a definite test. We offer a
speculative explanation of this gap in Section 4.4.

Finally, we mention that GS also analyze a sample
of thirty sdO stars. Although these measurements are more
uncertain because of the higher atmospheric temperatures,
most sdO stars lie in the intervals

1.5 < log L/M < 3.5,

(4.3)
4.55 < log’ffe < 4.7.

Helium 1lines are much stronger than in the sdB stars (this
is one of the defining characteristics of the type sd0),

and many of these are nuclei of planetary nebulae,.

4.3. EVOLUTIONARY MODELS FOR sdB STARS

Our hypothesis (see also Faulkner 1972) is that
catastrophic mass loss during the helium core flash has oc-
curred in sdB stars. The resulting structure is burning
helium at the center of a helium core, with a thin, inert
envelope of hydrogen and helium. From our knowledge of
horizqntal branch stars, we expect the core mass Mc to be
about 0.5 M_. The envelope mass M, = M, - M, is deter-
mined by the obscerved effective temperatures and by the
envelope composition. Contamination of the envelope with
products of hydrogen burning on the red giant branch may
have occurred, so we do not restrict ourselves to primordial

envelope abundances.
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It is straightforward toicompute initial models for
sdB stars, with homogeneous helium cores, using the program
described in Appendix A. New helium-burning reaction rates
have been used in all sdB models. Table 23 gives the prop-
erties of a set of models with initial parameters (MC, Xe'
Z) of (.488, .75, .001) as Me is varied; Xe is the envelope
hydrogen abundance. The trend of decreasing luminosity and
increasing effective temperature for lower values of M, is
evident. TFor this composition, Me must be less than 0.02
M@ to reproduce the observed values of log Te for sdB stars;
hydrogen burning is negligible in such models. The region
of varying abundances in the hydrogen-burning shell is
0.002 Mo thick in all models. Decreasing this parameter to
0.001 M@ (in better agreement with the red giant models of
Rood 1972) has a negligible effect.

The effects of varying Mc with fixed envelope mass

and composition are illustrated in Table 24 for (Me, X zZ)

el
= (.012, .75, .001). Log L/M is determined uniguely by the
core mass, for all models hot enough to represent sdB stars.

The relation is

log L,/M = 2.574 + 3.36 log M_, (4.4)

where the subscript reminds us that these are initial models
only. In agreement with previous workers, an uncomfortably
large value, Mc = 0.6, 1is needed to obtain the mean observed

value of log L/M. According to Appendix C, this is larger
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than the core mass at the helium flash even if the primor-
dial helium abundance is zero.
Envelope compositions are varied in the models of
Table 25. If mixing occurs simultaneously with mass loss

12C abundances in the

at the helium flash, then 4He and
envelope will increase. Log L/M is not affected, but log Te
decreases as Xe or 2 is increased. This is readily under-
stood because hydrogen and heavy elements are both more
opaque than helium; a steeper temperature gradient and lower
surface temperature result. Even the model with the ex-
tremely low value Xe = 0.20 and log Te = 4.557 is not hot
enough to represent the majority of sdO stars, however.
Next, we consider evolutionary tracks in the log L/M
- log Te plane. Interior evolution should be very similar
to that of pure helium stars (Paczynski 1971) or horizontal
branch cores. In order to study many stars without requir-
ing excessive computer time, we have computed "quasi-
evolutionary" sequences for sdB stars. These are sequences
of static stellar models with identical parameters (Mg, M.,

X %) which have helium-depleted convective cores and semi-

e
convective zones. The gravitational term in the luminosity
equation (3.3) has a small effect on the observable proper-
ties of horizontal branch stars prior to the composition
instability, and this should also be true for sdB stars.

For a given value of central heli