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Abstract

A variety of effects can occur from different forms of nonlinear diffusion or
from coupling of diffusion to other physical processes. I consider two such
classes of problems; first, the analysis of behavior of diffusive solutions of the
generalized porous media equation, and second, the study of stress-driven
diffusion in solids. The porous media equation is a nonlinear diffusion equa-
tion that has applications to numerous physical problems. By combining
classical techniques for the study of similarity solutions with perturbation
methods, I have examined some new initial-boundary value problems for
the porous media equation, including “stopping” and “merging” problems.
Using matched asymptotic expansions and boundary layer analysis, I have
shown that the initial deviations from similarity solution form in these prob-
lems are asymptotic beyond all orders. Applications of these studies to the
Cahn-Hilliard and Fisher’s equations are also considered. In my examina-
tion of stress-driven diffusion, I consider models for the behavior of systems
in the emerging technological field of viscoelastic diffusion in polymer ma-
terials. Using asymptotic analysis, I studied some of the non-traditional
effects, shock formation in particular, that occur in initial-boundary value
problems for these models. Phase-interface traveling waves for “Case II”

diffusive transport were also studied, using phase plane techniques.
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Part 1

Similarity solutions for

nonlinear diffusion



Introduction

Here we study similarity solutions of problems for nonlinear diffusion equa-
tions. For these special solutions, the governing partial differential equation
can be reduced to a more tractable ordinary differential equation. Using
perturbation methods and matched asymptotic expansions it will be shown
how these similarity solutions can be employed to construct solutions for
more general problems involving the full partial differential equation. In the
first section, the method of inverse similarity solutions for the porous media
diffusion equation is discussed. The influence of boundary conditions and
merging solutions of similarity type are analyzed for this class of problem.
In the second section, this approach is extended to study merging traveling
wave solutions in a porous-Fisher’s equation model for population dynam-
ics. Finally, we consider the consequences of non-invertible inverse similarity
solutions that occur for nonlinear forward-backward heat equations in the

Cahn-Hilliard model.



Chapter 1

The stopping problem for the

porous media equation

1.1 Introduction

The general nonlinear diffusion equation

ou 0 ou
= (b3, (11)
specialized to the case D(u) = u™ (n > 0) is called the porous media equation
ou 0 ( ,0u

This model can be used to describe diffusive behavior in many physical appli-
cations [2], [5], [19], [22], [28]. We illustrate two of these applications below.

The mathematical properties of certain classes of solutions of (1.2) have been



studied extensively [3], [4], [20], [21]. It is well-known that if the diffusion
coefficient D(u) vanishes at v = 0, then (1.1) has solutions with compact
support and well-defined interfaces that move with finite velocity — this is
also the case for (1.2).

We formulate an initial-boundary value problem for (1.2) on a finite do-
main that admits a similarity solution of this form for a finite interval of time.
When the solution reaches the edge of the finite domain, the solution’s fur-
ther evolution will come under the influence of the boundary condition. The
focus of this report is to analyze the ability of a fixed boundary to “stop” an
expanding similarity solution. The solution of the “stopping problem” will
be an analytic description of the short-time affect of the boundary on the
similarity solution. This approach is motivated by suggestions to generalize
the use of similarity solutions made by Barenblatt [6], [17]. In developing
this description we will construct an asymptotic solution for a linear problem
and show how the approach generalizes to nonlinear problems. Finally, the
techniques used to solve the stopping problem will be extended to describe

interface-merging dynamics for the porous media equation.

1.2 Derivations of the model

The porous media equation is a model that occurs in many physical problems
[4], [22]. To illustrate this point we present derivations of the model for
problems in porous-media diffusion and for gravity-dominated spreading of
thin layers of viscous liquids.

Following Aronson’s presentation [4], we consider the flow of a gas through



a porous medium. The conservation of mass for this system is given by

dp _
et V - (pu) =0, (1.3)

where ¢ is the porosity of the medium and p,u are the density and velocity of
the diffusing gas. A popular model for the velocity in porous media is given
by Darcy’s law

u= —gvp, (1.4)

where & is the permeability of the medium, p is the viscosity of the gas and
P is the local pressure. This system is closed using the equation of state for
an isentropic gas,

P = Py, (1.5)

where <y is a constant related to the specific heats of the gas. Combining

these equations to eliminate u and P yields the porous media equation

op .
5 = PV (P"V0), (1.6)

where D = il'l’f‘l.

Alternately, following Buckmaster’s presentation [9], we derive the equa-
tion governing a layer of incompressible, viscous liquid spreading over a level
surface, neglecting surface tension. Consider the case where we have a drop

of liquid with upper surface z = h(z,y) spreading on the dry surface z = 0.



The momentum balance for the drop is

Du 1 9
T)?—-—;VP—H/V u-—g, (1.7)

where v is the kinematic viscosity and g is the acceleration due to gravity.
Using approximations from lubrication theory, we may take the pressure to

be

P = —pg(z — h), (1.8)
and reduce (1.7) to
Pu g

Applying no-slip boundary conditions at z = 0 (u = 0), and free-slip condi-

tions at the drop’s surface z = h (u, = 0) yields
g 1,2
= ZVh(32° — hz). 1.1
u VV (22 z) (1.10)
Integrating the velocity over the height of the drop yields the local mass flux
h
q= / pudz = —PLp3vh, (1.11)
0 v

Then, writing the conservation of mass,

oh

pa tV a=0, (1.12)



Figure 1: Liquid pouring out of a tank — a physical situation corresponding
to initial-boundary value problem (1.14a—c).

yields the porous media equation

% = DV - (h¥Vh), (1.13)

where D = ZL.

Many of the qualitative properties of solutions of (1.2) are the same for
all n > 0. While much of our analysis will be done for a modified model
with n = 1 [17], [23], we use Buckmaster’s model with n = 3 to fix physical
ideas. We will address some of the differences in the analysis and the nature
of solutions for the cases n < 1 and n > 1 later, but now we formulate
a problem for the porous media equation that will lead to the “stopping”

phenomenon.



1.3 The initial-boundary value problem

We consider the one-dimensional initial-boundary value problem for the

porous media equation

ur = (U"Uyg)q, (1.14a)

on the finite domain 0 < z < 1 for ¢ > 0 with n > 0, boundary conditions
u(0,t) =1, u(1,t) = 0, (1.14b)

and initial condition

u(z,0) = 0. (1.14¢)

In the context of spreading viscous liquids, this problem describes the be-
havior, in the region of the spout, of a liquid pouring out of a large tank (see
Figs. 1, 2).

It has been shown that (1.14a) has well-defined non-negative compact-
support solutions [4]. Beyond the leading-edge of the region of support,
or the interface, the solution vanishes identically (see Fig. 3). Before the
leading-edge hits the boundary at z = 1, the boundary condition there is

trivially satisfied; hence we can find a similarity solution of the form
u(@,t) = (U(R)", z2=gz/V4 (1.15)
where (w)* = max(w, 0) and U(z) satisfies the ordinary differential equation

...._;.zU'(z) = (DU)U'(2))". (1.16)



u(x,t)

X

Figure 2: The behavior of the solution u(z,t) for short times.



(Uz))*

10

2

Figure 3: The compact-support similarity solution (U(2))".
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To uniquely specify the desired similarity solution, we give two conditions.
First, transforming the boundary condition at z = 0 yields U(0) = 1. Sec-
ondly, we integrate (1.16) over the region of support to yield a statement of
global conservation of mass. We denote the interface position by z,, where
U(z.) = 0 by continuity of the solution. Additionally, requiring the flux,
—D(U)U'(z), to vanish at z, [5], [25] yields '

—% " U(z)d = DOYU0), (1.17)
which is an equation for the unknown interface position z,. Observe that
the position of the leading edge is z.(t) = 2,4/t which moves with velocity
v.(t) = 2./V/4t, which is finite for ¢ > 0. For diffusion coefficients with
D(0) > 0, (1.17) still applies [26], but the region of support is no longer
compact, z, — 00, and the well-known result of infinite propagation speed
for classical diffusion is recovered.

If we integrate (1.16) from 2z, to some indefinite position z and use the

chain rule to write z as a function of U, that is z = z(U), then [8], [27]
D)= ~37(U) [ =(uw)d (118
=37 | #(u)du. .18)

This is a formula that yields the diffusion coefficient corresponding to a given
similarity solution. Later, we will use (1.18) to construct a model problem
for a modified porous media equation with an explicit closed-form solution.
For now, we return to the analysis of (1.14a).

The compact-support similarity solution is valid for times up till the in-
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terface z.(t) hits the right boundary z = 1. At that time, t, = 1/22, z = z,x
and we may determine the final similarity solution U(x) = U(z/+/%.) by

solving the scaled ordinary differential equation

~ 57l (z) = (DU ) (119)

subject to the boundary condition #/(0) = 1 and

————z / D(LU'(0). (1.20)

Observe that for times ¢ > t,, the similarity solution will not be a solution of
the boundary value problem (1.14a—c) since the boundary condition u(1,t) =
0 can no longer be satisfied. The solution can no longer continue expanding to
the right; it is stopped behind the boundary at z = 1 (see Fig. 4). We may
describe the “stopped” behavior with the solution of the initial-boundary
value problem

ur = (uug)g, (1.21a)

on 0 < z < 1 with boundary conditions
u(0,t) =1, u(1,t) =0, (1.21Db)
for ¢ > t, with initial condition

u(z, t,) = U(z). (1.21¢)
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u(x,t)

X

Figure 4: The stopping behavior of u(z,t).

In the following sections we will more carefully examine the nature of “stop-
ping” and develop techniques for studying short-time behavior of solutions

to initial-boundary value problems like (1.21a-c).

1.4 The stopping problem

In this section we will expand our discussion of some of the interesting aspects
of the stopping problem. In our problem, a moving similarity solution is
stopped by a fixed boundary and then the solution evolves there. This is in
some ways complementary to Kath’s description of the waiting-time problem

[22], where a solution evolves for a time before it begins to move.
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It is instructive to note that we may reformulate our initial-boundary

value problem (1.14a—c) as the moving boundary problem

ur = (UUg)y, 0 <z < s(t), (1.22a)
u"uz =0 ,
u(0,t) =1, . at = = s(t), (1.22b)
u=0,
u(z,0) =0, (1.22¢)

with the prescribed interface

s(t) = z.(t) = (1.22d)

1 t > t..

{z*\/i 0<t<t.,

For times ¢ < ¢,, (1.22a~d) has a unique similarity solution that loses this
structure for ¢ > t,. Observe that the interface z,(¢) is a continuous function,
but it is not smooth. We will study how the kink in z,(t) at t, yields effects
that propagate into the interior of the domain, where we expect the solution
to be very smooth. This behavior is comparable to the reflection of an
expansion fan by a wall in the study of gas dynamics.

Another approach to studying this behavior is to reformulate the problem
in inverse variables to directly examine the level sets, or contours of constant
u. In the study of diffusive problems, this technique is called the isotherm
migration method (IMM) [15], [16]. If we consider the similarity ordinary

differential equation (1.16) in terms of inverse variables, that is z = z(U)
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Li foormmmmom e fom s e e

Figure 5: The level sets of the solution (solid) and the similarity solution
(dashed).



16

rather than U = U(z) then we derive the equation

1 d dz\ ™'

and the corresponding partial differential equation

b2 (D(u) (g_i) _1) . ’ (1.242)

This is an equation that describes the motion of the isotherms xz(u,t) for all
values of u for 0 < v < 1. The initial and boundary conditions corresponding

to problem (1.14a—c) for (1.24a) are
z(1,t) = 0, z(0,t) = z.(t), (1.24b)

z(u,0) = 0. (1.24¢)

Simple numerical discretizations of (1.24a-c) yield very accurate level sets
(see Fig. 5). Comparison of the numerical solution with the similarity solu-
tion X (U, t) = 2(U)v/%, where 2(U) is given by (1.23), shows that there is a
smooth transition from the similarity solution for ¢ < ¢, to the stopped state
for ¢t > t,. In the interior of the domain, the isotherms are smooth curves for
all time. We observe that the isotherms diverge from the similarity solution
for ¢ > t, more rapidly as we approach the interface z.,(t).

To analyze the character of the stopped state we will use singular pertur-
bation expansions to yield the short-time asymptotic behavior of the solution.

This study will show that for a short time after the solution has formally
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stopped, it may still be represented by the similarity solution with an addi-
tional correction from a boundary layer. This approach will also be used to
characterize the dynamics of the interface in a problem describing merging
viscous fluids. In the next section we will study a simple linear problem so
that we may find the limitations of the techniques that will consequently be

applied to the nonlinear initial-boundary value problem (1.21a-c).

1.5 A linear problem - the heat equation

Here we develop a representation of the solution, for short times, of an initial-
boundary value problem for the heat equation. Our representation is asymp-
totically accurate as t — 0 and clearly separates the influences of initial and
boundary conditions on the solution. In the following sections we will show
that this approach generalizes to nonlinear problems.

We consider the initial-boundary value problem for the heat equation
U = Ugy, (1.25a)
on the finite domain 0 < z < 1 for ¢ > 0, with boundary conditions
u(0,t) =0, u(1,t) =0, (1.25Db)
and smooth initial condition

u(z,0) = up(x). (1.25¢)
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We are most interested in the behavior for short times ¢t = 0%, hence we
introduce the stretched time 7 = t/¢, where 0 < ¢ < 1 is an artificial small

parameter, then (1.25a) becomes
Uy = €Ugg. (1.26)

We will use matched asymptotic expansions in € to write a solution of (1.25a—
c). The parameter € is called an artificial parameter since it was introduced
by an arbitrary scaling and can just as easily be completely eliminated. Ar-
tificial parameter expansions can be shown to be nonuniformly convergent
[12], [14], [24]. Hence, our solution will be good only for a limited time, but
for the study of the stopping problem this will be sufficient to determine the
interesting behavior. We now solve (1.26) by constructing an outer solution
to satisfy the initial conditions and boundary layers to correct for the applied

boundary conditions.

1.5.1 Outer solution

We may obtain the outer solution to (1.26) using a regular perturbation

expansion of the form

oo

u(z,7) = y—";l('i)— e, (1.27)

n=

which yields
Unt1(2) = up(x), n=0,1,2,... (1.28)
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and after applying the initial condition, we find that

00 (21'1«)

u(z,7) = W (2) T, (1.29)

|
n—0 n:

Observe that this is a Taylor series in time ¢ with coefficients that contain
the spatial dependence. In general, this outer solution will not satisfy the
boundary conditions at z = 0, and z = 1, hence we need to place boundary

layers there.

1.5.2 Boundary layers

The stretched variable in the boundary layers scales like O(e/?) and we
recover the full heat equation for the inner problems:
z=0: u,=uz, 0<7T<oo, T = €'/,

(1.30)
z=1: U =uUz, —-00<T<0, z=1+¢/T.

We shall look for a uniformly convergent solution u(z,t) that is the sum of
the outer solution (1.29) and corrections due to the boundary layers, U*(z, 7)
and UR(z, 1),

u(z,t) = u(z, 7) + UL(%,7) + UR(z, 7). (1.31)

Note that the boundary layer corrections vanish as (|Z],|Z]) — oo in the

interior of the domain, so

o) {_.( ) +ULET) [o] - oo, .

u(z,7) +UR(Z,7) |%| = oo.
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This is the only approximation that is made in the analysis of this problem.
We consider the situation at z = 0% in detail; the analysis for the right
boundary layer is exactly analogous. Using a Taylor series, we expand the

outer solution (1.29) in terms of the inner variables to get

0 (2n+m) (O)

ryu o

n=0m=0

— n+3Emn, | (1.33)
Substituting the uniform solution (1.32) into (1.30) yields an initial-boundary

value problem for the boundary layer correction on 0 < Z < co

Ul =UEL, (1.34a)
2 up™(0)
uk,7r)=-3% —— e Ul(z — 00,7) = 0, (1.34b)
n=0 '
Ut(z,0) = 0. (1.34c)
We then expand U¥ in a perturbation series
Lz,7) = ZG"U z,7), (1.35)
where at each order U, satisfies
Um- - Unj:i, (136&)
(2n)
U.(0,7) = _uw (0) ", Un(Z — 00,7) = 0. (1.36b)

Un(%,0) = 0. (1.36¢)
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At each order in ¢, this problem has a similarity solution of the form
Un(2,7) = T"ya(3), 2 =i/V4r, (1.37)
where y,(2) satisfies the ordinary differential equation
y' +2zy' — dny = 0. (1.38)

If we let m = 2n then we obtain the differential equation for integrals of the
error function [1]

w" + 2zw' — 2mw = 0, (1.39)

which has the solution that vanishes as z — oo
- . m . -
w(Z) =I1,(2) =2™T (5 + 1) i™erfc(2), (1.40)

where I,,,(0) = 1. Note that i™erfc(Z) is a standard notation where i refers
to an integral operator, not the complex number i. These functions can be

generated from the recursion relation

sm 3\ — _i-m-‘l 5 _l__-m—2 > —
imerfc(z) = —i erfc(Z) + 5 erfc(z), m=1,2,3,... (1.41a)

where

i%erfc(z) = erfe(Z), ilerfc(z) = —=e%. (1.41b)

S
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Solving at each order, we find that

Uz, 7) = 200 fap (-f—) . (1.42)

Using these solutions, we write a uniformly-convergent-in-space solution to

the original problem (1.25a—c) that is good for short times

32 10"() o
u(x, t) = =~ ——n—'— t (143)
o0 (2"-) o0 (271,)
Up (O) n z Ug (1) n (1 — .’E)
-3 il (= | - S g, ,
= n! \ Vat = ! VAt

where the first sum is the outer solution and the following sums are the
corrections due to the left and right boundary layers respectively. Observe
that (1.43) is valid even when ug(z) does not satisfy the boundary conditions
at £ = 0, z = 1. This solution may be interpreted as being composed of
pieces coming from related problems: a Cauchy initial-value problem (the
outer solution), and two initial-boundary value problems on semi-infinite
domains (the left and right boundary layers). Further analysis of (1.43) is
pursued in the next section in order to provide insight into the nature of the

representation.

1.5.3 An example

We now carry out a detailed analysis of (1.25a—c) with the specific initial

condition

up(z) = z(1 — x). (1.44)
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The asymptotic solution, (1.43), for this initial condition is
Uz, t) =2(1 —z) - 2t + V(z, 1), (1.45)
where the boundary layer contribution is given by

V(z,t) = 8t (i2erfc (%) + Zerfc (%)) . | (1.46)

We now compare (1.45) with two representations of the exact solution of

(1.25a~c). Using the Laplace transform method [11], we find that

’U,L(CL',t) = iL‘(l - ‘73) —2t+ U(:E,t), (1'47)
where
VRS —1)*| i%erfc ?_t(_’“j_ﬁ
v(z,t) = 8t ?;;)( 1) ( erf ( T >+ (1.48)
" 1—z+(k+3)
i‘erfc ( Jai ) )

Alternately, using elementary separation of variables, the Fourier series so-
lution is
8 X o~ (2k+1)2x%t

7(3 Pt W sin (Zk -+ 1)7‘(’2’,‘ (149)

U]:(Z' R t) -

By studying certain properties of the solution we will illustrate the virtues
of our asymptotic representation.

First, we see that (1.45) is a closed-form representation as opposed to the

infinite series in the exact solution. Indeed, comparing V(z,t) with v(z,t)
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we note that the asymptotic solution replaces two infinite series of i%erfc’s
by just two ierfc’s! The asymptotic accuracy of Y (z,t) for t — 0% can be
shown from the agreement of the Laplace transforms of v and V as s = oo
[10],

2cosh \/s(z — 3 Pz, s) 4 cosh /s(z — 1)
T =
s?cosh /5 # s2eVs/2 ’

o(z,s) = (1.50)
and V ~ 9 as s = oo. Our representation also does not suffer problems
from nonuniformly convergence of series: consider the calculation of u;(z,t)
at t = 0. We know that the exact solution should have u; = 0 at £ = 0 and
z =1 for all times since u is prescribed to be a constant on the boundaries.

However, from the Fourier series solution

_ (_4_1_ i sin (2k + l)mc) Y (151)

=0 Tz, 2k+1

Our
ot

where the above sine series is a nonuniformly-convergent representation of
u = 1. Consequently we see that the behavior near z = 0 and z = 1 for
t — 0 is not well-handled by this representation of the solution. In contrast,

from the asymptotic solution

%%{_ — 2438 <i2erfc (%) + iZerfc (%)) + (1.52)
2 e v (2)

which agrees with (1.51) on 0 < z < 1 as ¢t — 0 and also correctly captures

the behavior of the solution on the edges of the domain in the boundary
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layers.

The eventual breakdown in validity of our artificial parameter expansion
can be tied to the fact that the boundary layers spread like O (\/i) as t in-
creases. As described earlier, the only approximation made in the derivation
of the asymptotic solution is that the boundary layer contributions vanish in
the interior of the domain. Moreover, we have assumed that the contribution
from the boundary layer on the far side of the domain is zero in applying the
boundary conditions. In either the limit of an infinite domain, L — oo, or of
small time, ¢ — 0%, this contribution will be transcendentally small, but on
a finite domain there will be an error for ¢ > 0. The asymptotic behavior of

a boundary layer term I,(Z) is

! .
In(3) ~ ——e% 700 (1.53)

\/7_1' 22n+1

Hence the behavior of the error for short times is

L 4n+1/2n! L2
I n ~ n+1/2 = - .
2 (\/Zt.) \/77L2n+1t exp( 4t)’ t—0 (1.54)

For short times, the exponential is the controlling factor, independent of n,
and as ¢ — 0 the error is negligible beyond all orders. We will now consider a
nonlinear stopping problem where we will find that a similar boundary layer

influences the short-time evolution of the solution.
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1.6 Solution of the stopping problem

We will now apply the techniques developed above to study stopping in a
nonlinear initial-boundary value problem of the form (1.14a—c). Consider the

generalized porous media equation
we = F(u)em (sl
on the finite domain 0 < z < 1 for ¢ > 0, with boundary conditions
u(0,t) =1, u(1,t) = 0, (1.55b)

and initial condition

u(z,0) = 0, (1.55c¢)

where the chemical potential function f(u) [13] is

flu) = 943 (1 - —g) , (1.55d)

where the diffusion coefficient is given by D(u) = f'(u). Note that for (1.55d),
D(u) = O(u) as u — 0, so we are considering a modified porous media
equation with n = 1.

This modified equation is very convenient to study since it possesses a
closed-form similarity solution. For arbitrary diffusion coefficients D(u), the
similarity solution of (1.55a) can only be obtained from numerical calcula-
tions or a perturbation expansion [5] and will be difficult to work with an-

alytically. However, if we write a suitable analytic similarity solution U/(z),
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u(x,t)

X

Figure 6: The solution of (1.55a—d).
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then we may determine the diffusion coefficient D(U) from (1.18) such that
our given U(z) is a solution of (1.55a). By picking a function that approxi-
mates the numerical solution of a problem with a given D(u), we may write
a modified equation that reproduces the behavior of the solution to arbitrary
accuracy. This powerful technique is well known in the modeling of infiltra-
tion and sorption problems for porous media diffusion [8], [27]. In our case,
we have picked (1.55d) in order to simplify the analysis so that we may focus
attention on the phenomenon occurring in the boundary layer. Equation

(1.55a,d) has the simple closed-form solution (see Fig. 6)
u(z,t) = (U(2))" = (1 - 2)*, z=1z/Vt. (1.56)

This solution has interface position 2z, = 1, hence from the discussion in
section 3, stopping occurs for times greater than ¢, = 1.
We now consider the stopped initial-boundary value problem (1.21a—c)

for (1.55a) for ¢t > 1 with the initial condition
u(z,1)=U(z) =1-—z. (1.57)
We introduce a stretched time 7 to focus on the behavior at ¢ = 1,
t=1+er, (1.58)

yielding
ur = €f (U) e, (1.59)



29

where 0 < € < 1. We search for an outer solution of (1.59) in terms of a

regular perturbation expansion

u(x,7) = i €"un(z,7), (1.60)

n=0

which yields the series of problems
0(1) ugr = 0, uo(z,7) =1 -,
0(6) Uy = f(u0)1‘$7 U (iL', T) = %557_- (161)
To O(e), our outer solution is
1 2
ulr,7)=1-z+ €T + O(e?). (1.62)

This can be seen to form the beginning of the expansion of the similarity

solution (1.56) for er < 1,

wz,7) = 1—z(14er)"V/? (1.63)
= 1l-2 (1 - -;—ET + 262’7'2 + 0(637'3)) .

Hence, we actually know the outer solution to all orders since (1.56) is an ex-
act solution of (1.55a) for all times (neglecting boundary conditions). Like the
outer solution of the linear problem (1.29), (1.64) is completely determined
by the initial condition. If our problem were on an unbounded domain, then

this would be the solution of a Cauchy problem; for boundary value prob-
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u(x,t)

0.95 1
X

Figure 7: The behavior of the solution in the boundary layer at z = 1
compared with the outer similarity solution (dashed).

lems on finite domains this solution must be combined with boundary layer
corrections as was done in the previous sections. Solution (1.56) satisfies the
boundary condition at z = 0 for all times, so we only need a boundary layer
at z =1 (see Fig. 7).

Observe that at time 7 the value of the outer solution at z = 1 is u =
€7 + O(€?), therefore we know that u is O(e) in the right boundary layer.
Therefore, rescale

u = €, (1.64)



31

yielding

@y = flell)gp = ?i' (@ + 0(e%)) (1.65)

Rescaling the independent variable, we find that the width of the boundary
layer is O(e)
z=1+ez, , (1.66)

and to leading order we obtain the porous media equation with n =1
1o
u,:z(u ). (1.67)

for —oo < £ < 0,7 > 0. At Z = 0, the boundary layer must satisfy the
boundary condition u = 0, and by expanding the outer solution in terms of

the boundary layer variables, we find that
e 1 -
Wz — —00,7) — 5712 + O(e). (1.68)
This problem has a similarity solution of the form
a(z, 1) = Ty(2), Z=17/T, (1.69)

where y(Z) satisfies

y—Zy = % ()", (1.70a)

(1.70b)
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Let y(2) = —Z + 1 + w(Z), where w(2) satisfies
(5 — % — w4+ (2— 23 — W' + 2w = 0, (1.71a)

w(Z = —o0) = 0, w(0) = —=. (1.71b)

To determine the asymptotic behavior of w(Z) as Z — —oco we may approxi-

mate (1.71a) by the linear equation
n" ! 2
w" — 2w + Fh 0. (1.72)
Using the WKBJ method [7] to write w(3) = *®) we find that

w(z) ~Cz e 7 —x. (1.73)

Therefore, the asymptotic solution is

w(z, t) ~ (1 - %Y + (- 1w (“3 - 1) L i1t (1.74)

t—1

and the correction due to the boundary condition is

o((';—_ll)2 exp [2‘;’:11]) (1.75)

which is transcendentally small for z < 1 as ¢t — 1. Hence, we have shown

that the similarity solution is valid for short times past ¢ = 1 with a boundary-
condition correction that is negligible beyond all orders as t — 1% (see Fig.

7). Moreover, (1.74) is appealing since it clearly separates the influence of the
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boundary from the rest of the solution. This form of the solution will offer

us some insight into a merging process that is studied in the next section.

1.7 Dynamics of merging interfaces in one di-
mension

In this section we will extend the results derived above to describe interac-
tions of similarity solutions. Generally, similarity solutions only exist for a
small class of problems. We will consider a problem whose solution does not
have a similarity structure, but for short times we show how to construct a
uniform asymptotic solution from combinations of similarity solutions and a
nonlinear interaction term.

In the context of viscous flows, we will be describing the short-time behav-
ior of two merging streams in one-dimension (see Fig. 8). We will consider
a problem for the generalized porous media equation used in the previous

section (1.55a,d) on the finite domain 0 < z < 1 with boundary conditions
u(0,t) =1, u(l,?) = 1. (1.76)

Observe that the nonlinear diffusion equation (1.55a) admits the following

invariant transformations:

z — —z reflection in space,
z — z + h translation in space, (L.77)

t — ¢+ k translation in time.
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u(x,t)
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Figure 8: A problem for merging streams
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Using these transformations, we can generalize the similarity solution (1.56).

For example,

uo(z, 1) = U(\/——%%c—;) (1.78)

describes a similarity solution expanding to the right that started from the

initial condition ug(z,0) = (1 -z/ \/I?(;)+. Likewise,

wi(z,8) = U(\}%) (1.79)

is a similarity solution expanding to the left from the boundary condition
ui(1,£) = 1 with the initial condition u;(z,0) = (1 - (1 — 2)/v/k) .

While the regions of support of ug(z, t) and u;(z, t) are disjoint, there is no
interaction between them and we may write the exact solution to (1.55a,d),
(1.76) as

u(z,t) = max(uo(z, t), u1(z,1)). (1.80)

Nonlinear interactions begin when the regions of support first intersect at

(Tuy ta) = (ﬁi’j—(;—:—@—) — k0>, (1.81)

(see Fig. 9). For short times ¢], we assume that the nonlinear interactions
are localized in the neighborhood of z, and, just as in the stopping problem,

we determine the scalings for inner problem to be

T =z, + €I, t=1t, +er, (1.82a)
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Figure 9: The interfaces of the similarity solutions ug(z,t) and u;(z,t) and
the region of interaction (shaded) in the z—¢ plane.



u = €t, (1.82b)

so that
_ 1.
%:Z@ﬂﬁ+0@, (1.82c)

where —0o < Z < oco. Expanding the outer solution in terms of the inner

variables, we obtain the boundary conditions to leading order for @

(1.82d)

T T -
. 5’53‘ z T — 00,
u—r

T T
2(1-z. )2 + T—z. T =700

Like the boundary layer problem for the stopping problem, this problem for

@ has a similarity solution of the form

w(Z, 1) = Ty(2), Z=13/T, (1.83)
where y(Z) satisfies
1 "
S — 2
y—-2y' =7 (v*), (1.84a)
1 z 5
57 T = Z — —0Q,
y - { o (1.84b)
2(1—z. )2 + 1z, # 00

For times ¢ > t,, the behavior of the approximate solution offers an in-
teresting view of the physical merging process. The outer solution u(z,t)
describes two isolated streams that flow through each other with no interac-

tions (see Fig. 10). This solution is incorrect due to the lack of conservation
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(1)n

xo(t)

X%

xi(t)

Figure 10: To conserve mass the regions above/below the outer solution must

have equal areas.
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of mass in the region of overlap, where the mass defect is given by
zo(t)
m(t) = / m(z,t) dz, (1.85)

where

m(z,t) = min(ug(z, t), ui(z, 1)), (1.86)

with the interfaces for uo(z,t) and u,(z,t)

.’Eo(t) = \/t + ko, CL’l(t) =1- \/t + kl, (187)

where zo(t) > z,(t) for t > ¢, and m(t) = 0 for t < t,. To conserve mass, the
nonlinear interaction solution in the internal layer at z, must balance this

mass defect to leading order, that is
m(t) = / ~ (3, 7) — ulz, t) di. (1.88)

Observe however, that away from the interaction region, m(z,t) = 0 and
the similarity solutions given by the outer solution u(r,t) are still locally
exact solutions. These physical considerations lead to a physical criterion for
judging if the asymptotics yield a good approximation of the true solution;
while m(z,t), and presumably the corresponding nonlinear interaction, is
localized compared to the length of the domain, the approximation should be
good. When the spatial extent of the interaction at z, becomes significant,
then solving an infinite domain shock layer problem for y(z) (1.84a,b) is

no longer valid since the effect of the boundary conditions (1.76) on the
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U(z) a=1

z

Figure 11: Similarity solutions to the porous media equation for o < 1,
a=1,and a > 1.

finite domain will become important. This situation was observed in the
examination of the “far boundary layer” error for the heat equation (section

5).

1.8 Further considerations

We conclude with a discussion of approaches to generalize the analysis given
above. The porous media equation will be examined for general n > 0 and
also for the two-dimensional case.

Above, we have studied the stopping problem for a modified porous media
equation with D(u) = O(u), that is, the case n = 1. For the general case

D(u) = O(u®), o > 0, there are some significant differences in the analysis.



41

If we assume a similarity solution of the form
u(z,t) = U)*, U@ =Q0-2Y, z=z/V, (1.89)

then, from (1.18), we obtain D(u) = O(u*). For @ = 1 the solution has finite
slope at the interface; for o < 1 zero slope; and for a > 1 infinite slope (see
Fig. 11). For the analysis of section 6 to O(e) there is no trouble for a < 1.
For oo > 1, we will encounter divergent terms in the direct expansion of the
outer solution (1.61). To avoid this difficulty, we can either use the similar-
ity solution (1.89) as the complete outer solution, or attack the problem in
inverse variables. While for & > 1, U(z) has an infinite slope at the interface
z, = 1, in inverse variables, z2(U) = 1 — U* is a nice, differentiable function.

Recalling (1.24a), the inverse partial differential equation corresponding to

(1.55a) is
g_;”_ = -e;% (D(u) (%) ) : (1.90)

and we may expand z(u,t) in a regular perturbation series

2(u,t) = i € (u, 1), (1.91)

Using either approach, we will determine that in the boundary layer at z = 1,
u = O(e'/*), and

i, = % (@), (1.92)

where

u = e/eq, z=14¢€z. (1.93)
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This boundary layer problem has the similarity solution

a(z,7) =1V (3), i=3i/T (1.94)
where y(Z) satisfies
1 P o a+1 "
V=3 ()", ' (1.95a)
1 1/a
y(Z = —00) — (—5 + 5) . y(0)=0. (1.95b)

Observe that the similarity variable for the boundary layer problem is given
by Z = z /7 for all o; hence the spreading of the boundary-condition influence

like O(t) is a generic property of the porous media equation in one dimension.

Application of this analysis can be extended to the porous media equation
in several dimensions

u =V - (u"Vu). (1.96)

Consider the Barenblatt similarity solution of (1.96) in two dimensions [18],

[22]

1/n
' 1 n(z?+y?) 1° /
Uy, t; E) = myeesvll i 4(n + 1)t/(nHD) ’ (1.97)

where F is a parameter. In Buckmaster’s model U(z,y,t; E) would describe
a finite drop of fluid on a surface, spreading under the influence of gravity.

We might consider the Cauchy initial-value problem for two merging drops
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Figure 12: Merging drops in two dimensions.
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given by the initial condition

’U,o(.’E, y) = max(uo(x, v, O): ul(ma Y, O))7 (198)
ug(z,y,t) =U(x — 2o,y — Yo,t + ko; Ep), (1.99)
u(z,y,t) =U(T — 21,y — y1,t + k1, Ey). (1.100)

We expect the qualitative features of the solution to this problem to be
similar, however the details to the analysis will be much more difficult due to
added geometric considerations and the fact that the nonlinear interaction
will be governed by a partial differential equation. Numerical simulations

support the generalization of the outer solution

u(z,y,t) = max(uo(z, y, 1), u1(z, y, 1)), (1.101)

for short-times after merging in the two-dimensional case (see Fig. 12).

1.9 Appendix: long-time behavior of the
stopping problem

Above, we considered the “stopping problem” — the one-dimensional initial-

boundary value problem for the porous media equation

U = (U uy)q, (1.102a)
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on the finite domain 0 < z < 1 for ¢t > 0 with n > 0, with boundary

conditions

w(0,) =1,  u(l,t) =0, (1.102b)

and initial condition

u(z,0) = 0. (1.102¢)

The solution to this problem was developed in terms of a compact support
similarity solution for times up to a critical stopping time ¢,. Moreover, using
singular perturbations, a solution for short times after ¢, was constructed
using matched asymptotic expansions. Here, we complete the analysis of
(1.102a-c) by giving a description of the behavior of the solutions for long
times, £ — oo.

As — oo, we expect the solution u to approach a steady-state. The

steady-state solution %(z) of (1.102ab) satisfies
(@u;), =0, (1.103a)

and

a(0) =1, (1) = 0. (1.103b)

The unique solution of this problem is
a(z) = (1 — z)Y/0+D), (1.104)

If our solution at time ¢, u(z,t), is a function in some sense close to the

steady-state, we may express it as the sum of the steady-state and higher
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order deviation terms
u(z,t) = a(z) + dv(z, t) + O(6?), (1.105)

where ¢ is a small parameter. This ansatz allows us to study the evolution
of the solution using linearized stability analysis.
Substituting (1.105) into (1.102a) and retaining terms to leading order in

d yields
o &

5 = 50 @v(@,1) +0(). (1.106)

Using separation of variables, we search for a solution of the linearized prob-

lem in the form

oz, 1) = ki:) Fe(@)gu(t)- (1.107)
We find that gx(t) = e % and that fi(z) satisfies the boundary value prob-
lem
(1—2)2f"(z) — ;?%(1 —2)f(2)+ (1.108a)
(,\2(1 — )R - ﬁ) F(z) =0,
f0)=0, f(1)=0, (1.108b)

where the eigenvalue \? is the exponential rate of decay of the linearized

deviation from the steady-state. We can put (1.108b) in a more standard



47

form with the change of variables s = 1 — z, y(s) = f(x),

(n+1)?

(s71y/(s)) + (A%ﬂ‘l - s‘?’%) y(s) =0. (1.109)

Equation (1.109) subject to the boundary conditions y(0) =0, y(1) =0 is a
self-adjoint eigenvalue problem. It can also be written in the form

2n
n+1

(n+1)2

sy'(s) + (Azsﬁ%? - ) y(s) =0, (1.110)

which is related to Bessel’s equation and has solutions

A
y(s) = SPJ,, <58q> 5 (1.111)
where
l1-n n+2 n+1
= =" = , 1.112
P=onv2 5oy YT oi2 (1.112)

where the J, is the Bessel function of fractional order v and the eigenvalues
satisfy
J, (%’i) 0 fork=01,2,... (1.113)

Therefore, we can write v(z,t) as a generalized Fourier-Bessel series expan-
sion

v(z,t) = i are % (1 = 2)PJ, (\k(1 — 2)9/q). (1.114)

In the limit that ¢ — oo, we may neglect the higher order terms k =1,2,...

in (1.114) and higher order terms in (1.105) as we approach steady-state.
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Hence

u(z,t) ~ T(z) + @ (1 — 2)PJ,(Ao(1 — 2)7/q),  t—oo. (L.115)
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Chapter 2

Merging traveling waves for the

porous-Fisher’s equation

2.1 Introduction

Wavelike propagation of properties is a phenomenon that is observed in
countless biological and chemical systems. In biology, studies of popula-
tion dynamics are often based on models that show properties spreading in
traveling waves [12], [13]. Similarly, in many chemical systems, such as the
Belousov-Zhabotinskii (BZ) reaction and combustion problems [13], a “reac-
tion front” propagates with constant velocity into regions of unreacted ma-
terials. All of these problems are described by mathematical models called
reaction-diffusion equations. We will construct a reaction-diffusion model
for a population dynamics system and show how the case of two merging

populations can be examined.
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The simplest and most well-known reaction-diffusion model is Fisher’s

equation [4], [9], [12], given in one dimension by

ou 0%u

5 a2 +u(l - u), 0<u(z,t) <1, (2.1)

which is a partial differential equation that describes the evolution of a popu-
lation density function u(z,t). Fisher’s original work modeled the spreading
of a gene throughout a population [12]. The terms on the right-hand side
of (2.1) represent the effects of diffusion and local nonlinear reaction on the
population respectively. Equation (2.1) has two homogeneous steady-state
solutions; v = 0, v = 1. These solutions describe spatially-uniform empty
and full populations respectively. In the absence of spatial variations, Fisher’s

equation reduces to the logistic ordinary differential equation

du
i u(l — u), (2.2)

where the nonlinear reaction term F(u) = u(1—u) is called the Pearl-Verhulst
model [6], [13]. This model describes growth processes and the stabilization of
a saturated finite-density population. Kolmogorov, Petrovksy and Piscounoff
(KPP) [9] showed that, for a general class of reaction functions F'(u), Fisher’s
equation yields the same behavior as the Pearl-Verhulst model. We will take
reaction terms F'(u) from this general class and focus on making an improved

population dynamics model by modifying the diffusive term in (2.1) [1], [15].

In the absence of the reaction term, Fisher’s equation reduces to the
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u(x,t)
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Figure 1: A traveling wave solution of Fisher’s equation.
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classical model of diffusive processes, the heat equation,

ou _ d%u

Friaiok (2.3)

This equation describes the spreading out of a population composed of indi-
viduals that move about at random [7], [11], [12]. The interaction of diffusion
and reaction terms in Fisher’s equation yields steady-profile traveling wave

solutions (see Fig. 1)
u(z,t) = U(z), z=1z— ct, (2.4)

in which fronts move with constant velocity ¢ and do not change shape as
they propagate. These fronts connect regions where u = 1 to regions where
u = 0. Such traveling wave solutions describe locally saturated populations
expanding into empty regions. We will now derive an improved model of the
diffusive effects in population dynamics by considering a revised description
of the motion of individuals.

Following Gurney and Nisbet [7], we study a population made up of indi-
viduals whose motions are governed by a simple drive: to avoid overcrowding.
The spatial distribution of a fixed-size population is governed by the conser-

vation law
du
i -V .J, (2.5)

where J is the local population flux vector. We model the flux as having

contributions from random, diffusive motion and from the tendencies of in-
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dividuals to avoid crowded regions

J=-DVu+uv, (2.6)

where D is a constant diffusion-coefficient and v is a density-dependent ve-
locity vector. To represent our model, we take v to be opposite the direction
of maximal density increase

v ox —Vu, (2.7)

this is the “directed motion” model of Gurney and Nisbet [7]. A generaliza-
tion of their model is to have the velocity scaled by an increasing function of
density

v =—-Eg(u)Vu, (2.8)

where E is a constant of proportionality. Hence, local density and local
gradients both contribute to the anti-crowding impulse. The flux may then
be written as

J=—-DVu - EG(u)Vu, (2.9)

where G(u) = ug(u). The relative sizes of D and E determine the magni-
tudes of the diffusive and directed-motion contributions to the flux. We will
consider a population where directed-motion is the dominant effect F = 1,

D <« E. Then we have

au_

5 = V- (GwVw) +0(D), (2.10)

which is a generalized porous media equation [16]. Weak diffusive effects can
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be added to this model, but the results will only be minor modifications to
the solution of (2.10).

The porous media equation with G(u) = u®, a > 0,

ou 0 [ ,0u

is a model describing diffusive processes in many physical systems [8], [10],
[16]. Murray [12] describes how this nonlinear diffusion model has been used
to represent “population pressure” in biological systems. The mathemati-
cal properties of solutions of (2.11) have also been extensively studied [2].
The most significant features are “compact support” and “finite speed of

propagation.” Non-negative compact support solutions can be written as

u(z,t) = (U(z, )", (2.12)
where
w)*=m wO)-—{w w0 (2.13)
()“ax(’_Oelse, .

and U(z,t) is a smooth function [8]. These population distributions have
distinct boundaries, called interfaces, beyond which the population density
is identically zero. Solutions of the heat equation (2.3) do not have distinct
boundaries; rather, they have populations which extend over the whole do-
main. Solutions of the porous media equation spread with a finite interface
speed. This is also a desirable feature for our model since it corresponds to a
finite speed for the motion of individuals in the population. The properties

of compact support and finite propagation speed can be shown to be related,
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and they also extend to the generalized porous media equation [16].
We will study population dynamics for a generalized directed-motion

porous-Fisher’s equation [1]

%Q;— =V (u*Vu) + u(l — u®). (2.14)
Using combinations of traveling wave solutions of (2.14), we will describe the
behavior of merging populations. In the BZ reaction, circular traveling wave
solutions (“target patterns”) are often observed [5], [12]. A simple model

for the BZ reaction in two dimensions can be reduced to an axisymmetric

Fisher’s equation [12]

ou 0*u 10u

575— = 573+;5;+u(1—u). (2'15)

As described by Murray, (2.15) does not formally allow steady-profile travel-
ing wave solutions of the form (2.4). However, for large radii, R = 6! > 1,
where 6 — 0 is a small parameter, we may introduce the change of variables
r = R4 to yield

ou _ d%u § Ou

ot = o Tl mu At T

(2.16)

As § — 0, we solve (2.16) using a regular perturbation expansion of the form

u(F,t) ~ uo(7, t) + duy (7, 8) + . ... (2.17)
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To leading order, (2.16) becomes the one-dimensional Fisher’s equation

6u0 _ 6211,0
‘5{' = W‘*‘Uo(l -UQ)+O(5), (2.18)

and hence has the leading order axisymmetric traveling wave solution
ug(7,t) = U(F — ct). In three dimensions, the spherical wave case can simi-
larly be reduced to the study of the one-dimensional Fisher’s equation. The
focus of our study is to analyze the interaction of two expanding popula-
tions. By considering the porous-Fisher’s equation in one-dimension, we
hope to describe the fundamental behavior of merging target patterns in the
BZ reaction [5] and more generally, the dynamics of merging populations.
The following section will be a mathematical analysis of this problem.
For the global structure of the population distribution, we will make use
of traveling wave solutions of the form (2.4), (2.12) found by Newman [12],
(13], [14]. Our focus will be the study of the local interactions near the
merging interfaces (see Fig. 2). Using perturbation theory and the method
of matched asymptotic expansions, we will be able to describe the dominant

physical effects for the short-time merging behavior.

2.2 The merging problem

We study the porous-Fisher’s equation on —0co < z < oo:

ou 8 ( 20U
u

N = % —3—5) + u(l — u®), (2.19)



u(x,t)

7

Figure 2:

Merging fronts in the porous-Fisher’s equation.
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for a > 0. After reviewing some properties of traveling waves for this equa-
tion, we will construct a problem describing merging populations and then
solve it using perturbation theory.

Traveling wave solutions of (2.19) of the form u(z,t) = U(z — ct) satisfy

the nonlinear ordinary differential equation
—cU'(z) = (U*U'(2))' + U(1 = U®). (2.20)

The corresponding ordinary differential equation for the classical Fisher’s
equation (2.1) has traveling wave solutions for a continuous range of velocities
c. Newman [14] has showed that for the porous-Fisher’s equation, there is a

unique traveling wave solution

u(z,t) = (U(2))* = ((1 — exp [%})1/0)+, z=z—ct, (2.21)

with velocity

1

Vva+1

Observe that the partial differential equation (2.19) remains unchanged under

c= (2.22)

the following transformations

z — —x reflection in space,
z — =+ h translation in space, (2.23)

t — t+k translation in time.

Using these transformations, we can generalize the traveling wave solution
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(2.21). For example,
ug(z,t) = (U(x — 9 — ct)) ™ (2.24)

is a shifted traveling wave moving to the right, starting from position z = z,

at time ¢ = 0. Likewise,
ui(z,t) = (U(zy — z —ct))*t (2.25)

is a reflected traveling wave moving to the left, starting from position z = z;
at time ¢ = 0. Using these two solutions, we now produce a description for
merging populations.

While the populations represented by ug(z,t) and u,(z,t) remain sepa-
rated (see Fig. 2), there will be no interaction between them and the overall

population distribution is
u(z,t) = max(uo(z, t), ui(z, t)). (2.26)

This equation describes two populations moving toward each other; the two

populations first meet at

To+ X1 .'13'1—-.’560) (2 27)

w b)) = 3
(= ) ( 2 2c

Hence, if the initial population distribution at time ¢ = 0 is given by

u’(z) = max(uo(z, 0), us (z, 0)), (2.28)
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then u(z,t) will be the exact solution for times 0 < ¢ < t,. In fact, we
can consider a large class of initial conditions similar to (2.28) represent-
ing initially widely-separated populations, since KPP showed that each such
population will eventually approach a traveling wave profile U(z) [9].

At time t,, the populations begin to merge and interactions take place.
For t > t., u(z,t) is no longer an exact solution; it requires a correction in
the neighborhood of z.. Equation (2.26) incorrectly predicts that at z, the
populations will “pass through” each other with no interactions (see Fig. 3).
While near z., u(z, t) is not accurate, away from z,, it correctly describes the
behavior of the bulk of the population. In our asymptotic solution of (2.19),
u(z,t) is called the outer solution since it describes the solution away from
the critical point z,. We will show that the correction needed to describe the
interaction of the merging populations, called the inner solution, is initially
localized to a small neighborhood of z,.

We will study (2.19) for short times after the merger at ¢t = t,, so we
rescale time as

t =1, +er, (2.29)

where € < 1 is a small parameter. Observe that at z., u(z,t) at time 7 is

U(—ecr), and from (2.21) we have that
u = O(e®). (2.30)
Therefore, we rescale the dependent variable as

u = e'/*q, (2.31)
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and the distinguished limit yields the scaling in z to be
T =z, + €%, (2.32)
yielding the partial differential equation
iy = (4%Uz); + €d(1 — ea®). (2.33)
Expanding @(Z, 7) in a regular perturbation series as € — 0,
W(Z, 1) ~ Uo(Z,t) + ety (Z,t) +..., (2.34)
yields the leading-order porous media equation

By 0 (.0

Therefore we observe that in the neighborhood of z., the population-merging
dynamics are diffusion dominated; the reaction terms do not affect the solu-
tion to leading order.

Expanding the outer solution in terms of the inner variables, we obtain
the matching boundary conditions to leading order for @

Ule(z —cr)) I — —o00,

u(z,t) - { (2.36)

U(—€e(Z +ec7)) T — o0,
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u(x,t)

w(s)

u] (x’ ¢ ) :j"‘_',,«.-" uo (x’ t )
0 L

X x
X

Figure 3: Details of the merging-dynamics perturbation expansion.

Figure 4: Circular merging fronts in the porous-Fisher’s equation.
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and, from (2.21)

Ve ((c—Z/r)V/* % — —o0,
i(z,t) — ( il ) e=/7) (2.37)
va+1 (c+Z/T)V/* 7 — 0.
This problem for %(Z,7) has a similarity solution of the form
W&, 1) =1y(3),  §=3F/T, (2.38)

where y(3) satisfies the ordinary differential equation on —oo < § < 00

1 ~ 1(= a, =\ /

Sy =S8 =06, (2.39)
with boundary conditions

y(3) — ( = )Ua { (e=9He 5 —co, (2.40)

va+1 5

(c+ 5> 5— co.

We present the analysis for the case o = 1, corresponding to the simple
directed-motion model and the Pearl-Verhulst reaction term, for which the
algebra becomes straight-forward. From considerations of (2.39), (2.40), we
note that y(§) must be an even function of 3, so we may consider the problem

for (2.39) on —oo < § < 0 with boundary condition y'(0) = 0. Let
+ w(3), (2.41)

where w(3§) represents the nonlinear correction needed to describe the merg-

ing dynamics (see Fig. 3) and satisfies the nonlinear ordinary differential
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equation

(%——%—w) W'+ (V2 -§5—uwuw' +w=0, (2.42)

with boundary conditions

w(E = —00) 50,  w(0) = —1\[-2- (2.43)

To determine the asymptotic behavior of w(§) as § - —oco we may approxi-
mate (2.42) by the linear equation

w" — 2uw' + l/s—iw = 0. (2.44)

Using the WKBJ method [3] to write w(8) = e®®) we find that
w(3) ~ C5%eV® 5 —c. (2.45)

Hence we have shown that during the initial stages of the merging process, the
effects of nonlinear interactions are exponentially localized to the interface

region. The uniform asymptotic solution to (2.19),

u(z, t) ~ max(uo(z, ), w1 (2, ) + (£ — £.)ow (ft{ti) t 5 tF, (2.46)

is the sum of the outer traveling wave solution (2.28) and the nonlinear merg-
ing correction w(3). From (2.46), we observe that effects of the population-
merging propagate from the interface back into the bulk of the populations

with distance proportional to O(t). Since the nonlinear interactions are ini-



65

tially localized, we note that the bulk of the population away from the inter-
face continues moving with the same speed in a traveling wave profile, just as
before the merger. Hence (2.28) correctly describes the outer solution even
for short times after the merger. We note that this solution for the circular
traveling wave case yields patterns for the front positions during merger that
are very much like the “merging target patterns” observed in the BZ reaction

(see Fig. 4).
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Chapter 3

Similarity solutions of the

reduced Cahn-Hilliard equation

3.1 Introduction

Formation of spatial structures in nonequilibrium mixtures through the pro-
cess of phase separation has been the focus of many recent studies [1], [6],
[19]. When a solution of two miscible components is rapidly brought to a
thermodynamic state where the components can no longer exist as a uniform
mixture, or “quenched,” then it will spontaneously separate into two phases.
We will examine certain aspects of the Cahn-Hilliard model for phase sepa-
ration [8], [17]. While it was originally derived from classical thermodynamic
considerations for a two-phase solution, the Cahn-Hilliard equation has be-
come accepted as a model for various physical phenomena including pattern

formation through phase transition [17], spinodal decomposition [13], [14],
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and nucleation (8], [12].

We will study a problem for the Cahn-Hilliard equation in the limit of
weak interfacial energy. Under these conditions, the Cahn-Hilliard equa-
‘tion reduces to a nonlinear diffusion equation, the reduced Cahn-Hilliard
equation. After reviewing properties of an equilibrium solution to the Cahn-
Hilliard equation, we will study a similarity solution of the reduced Cahn-
Hilliard equation. From theoretical analysis and numerical simulations, it
will be shown that this class of nonlinear diffusion equations admits weak
solutions with shocks. The behavior of solutions to this nonlinear parabolic
problem will be compared with wavelike behavior in hyperbolic systems of

conservation laws and in Burger’s equation.

3.2 The Cahn-Hilliard equation

Following Bates and Fife [6], we consider the Cahn-Hilliard equation in the

form

ou 0? ,0%u

5= m (f0 - =) (31)
where 0 < € < 1is a small parameter related to interfacial energy and u(z, t)

is the concentration of one of the two components in the system. This model

can be derived from the energy functional [11]

Flu] = / E[u] dz, (3.2)
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where the energy density £[u] is given by
Elu]l = F(u) + I(ug), (3.3)

where F'(u) is the free-energy density and I(u,) is the interfacial energy. The
chemical potential [11] may be derived from (3.2), for systems with Dirichlet

or Neumann boundary conditions on 4 [19], as

fs—-f = / plu] dz, (3.4)
where
plu] = f(u) = I" (ug) U, (3.5)
with
f(u) = F'(u). (3.6)

We shall call f(u) the reduced chemical potential. The diffusive flux is given
by the negative gradient of the chemical potential, and we define the diffusion
coefficient to be

D(u) = f'(u) = F"(u). (3.7)

Additionally, the interfacial energy can be modeled by

1
I(ug) = -2—e2ui. (3.8)
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F(u)

u

Figure 1: A double-well free-energy density F(u).

With these definitions, the conservation law for u can be generally written

as

U = gg, (3.9)

or as (3.1) for our particular choice of .

For the study of phase separation, F(u) is modeled by a double-well po-
tential with two stable states (see Fig. 1). This form of the free-energy
density yields a diffusion coefficient that becomes negative over a range of u.
We will call diffusion coefficients with this property Cahn-Hilliard diffusion
coefficients. The concentrations where D(u) = 0 are called spinodal points,

%, and u,, and the range u, < u < u, where D(u) < 0 is the spinodal or
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unstable region

Uy
U

Figure 2: A Cahn-Hilliard diffusion coefficient D(u).

u=l =S
mixing region
——  u=0

X

Figure 3: The physical problem studied here.
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unstable region [1], [13] (see Fig. 2). The higher-order gradient term in (3.1)
that gives the contribution to the energy due to an interface is needed to
regularize fronts that form in this region in general solutions. Linearized
analysis in the unstable region suggests that (3.1) is an ill-posed problem
without this regularization [12], [14]. The focus of this report is to study
a particular, well-defined solution of (3.1) in the absence of regularization.
Close parallels exist between this special solution and the “breaking-wave”
solution of the inviscid Burger’s equation. Our solution will be a weak solu-
tion of (3.1), with € = 0, that contains a shock. The effect of regularization
is to smooth out the shock according to the form of the interfacial energy.
Away from a sharp interface, we may approximate solutions to (3.1) using

a regular perturbation expansion in e for the outer solution
u(z,t) = u(z,t) + eui (z, t) + ua(z, t) + O(). (3.10)

Expanding (3.1) to leading order in € yields the reduced Cahn-Hilliard equa-
tion

Uy = f(T)ge + Ofe), (3.11)

which can be written as a nonlinear diffusion equation
U = (D(T)Ty)y, (3.12)

where D(%) is given by (3.7) from the appropriate form of F(z).
We will study a Dirichlet problem for (3.12). The corresponding Dirichlet

problem for the Cahn-Hilliard equation can be used to represent the behavior
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of a mixture that is initially uniform v = 0 (the pure second component)
separated by a semi-permeable membrane from a uniform reservoir of u = 1
(see Fig. 3). First we will consider the steady-state problem, and then
using similarity solutions, we will describe a dynamic solution to the time-

dependent Cahn-Hilliard equation.

3.3 The equilibrium problem

We introduce some of the properties of the Cahn-Hilliard equation through
the examination of a steady-state problem. Consider the solution to the

steady-state boundary-value problem for the Cahn-Hilliard equation on 0 <

<1
(f(u) - €2uz:c)z.1: =0, (313&)
w(0) =1,  wu(l) =0, (3.13b)
Uee(0) =0,  ugy(1) = 0. (3.13¢)

These boundary conditions on u, u,, correspond to Dirichlet conditions on
the chemical potential ; and describe the physical problem given in the

previous section. Integrating (3.13a) twice yields
f(u) — Eugy = az + b, (3.14)

where a and b are constants of integration. If we assume that u(x) is a smooth
function, so gradients are O(1), then to leading order we may neglect the

O(€?) term. Both boundary conditions (3.13b) are satisfied by the resulting
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multi-valued implicit outer solution (see Fig. 4)

_ fw) - £() |
z(u) = O = F D) (3.15)
Returning to the full problem (3.13a), we have now determined a and b to
yield
f(u) = €uge = (F(0) = f(1))z + F(1). (3.16)

The multivalued outer solution cannot satisfy this differential equation for
€ > 0, and we conclude that a shock layer must be inserted to form an
admissible single-valued solution. Therefore, we will assume the existence
of a sharp interface, or shock, of width O(e) at some position z,, to be
determined. The inner problem in stretched variables in the neighborhood
of the shock is

f(@) — Gz = ¢+ O(e), (3.17)

where
T — I

T = = (£(0) — f(1)zs + f(1). (3.18)

€

The general leading order solution to (3.17) is

T dUu
T—Ty= /uo \/2(F(U) = cU)’ (3.19)

where Io,uq are constants of integration, and

F(u) = /0 “HU)AU, () = uo. (3.20)
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To match to the outer solution, we require that @ approach constant values,
say 4(Z — —o0) — up and @4(Z — o0) — uy, as |Z| — oco. From (3.17), this

results in the conditions

flu)=¢,  flug) =c (3.21)

In order that the integral (3.19) diverge as & — u; and @ — uy, we require
that the denominator of the integrand vanish at these points. This condition

can be written as the equal area rule [19] (see Fig. 5)

/u " (Fw) = ¢) du =0. (3.22)

2

To uniquely specify the shock layer solution, we take %, = 0 and require that
the shock layer agree pointwise with the multivalued outer solution at z = z,
(Z = 0). Therefore, define u, as the value on the middle branch of (3.15)
such that z(u,) = z,, and take ug = u,. Equations (3.21) and (3.22) are a
system of three equations for the unknowns u;, us, and ¢. The solution of

this system yields the shock position from (3.18) as

g, = =) ;= a(u), (3.23)

- fO)-s(

and by comparing (3.23) with (3.15), we note that ¢ = f(u,).

For particular choices of the reduced chemical potential function f(u) it
is possible that the shock position determined by the equal-are rule will fall
outside of the domain 0 < z < 1 and hence will not be admissible. To study

such a case, and for other general considerations, we consider a problem for
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Figure 4: The equilibrium solution.
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The equal-area rule.

Figure 5
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the time-dependent Cahn-Hilliard equation.

3.4 The dynamic problem

We will consider the initial-boundary value problem for the Cahn-Hilliard

equationon 0 <z <1fort>0

U = (f(u) — €Ugz)en, (3.24a)
u(0)=1, wu(1)=0, (3.24b)
uzz(0) =0,  uge(1) =0. (3.24¢)
u(z,0) = 0. (3.24d)

As above, we will use the method of matched asymptotic expansions to con-
struct a solution of this problem. For this problem, the shock layer analysis
is very similar to that in the equilibrium case, so we address this point before
proceeding to the study of the outer solution, which will be the focus of the

remainder of this article.

3.5 The dynamic shock layer

As in the equilibrium case, to determine the fine structure of the solution
at a sharp interface, we use stretched variables to obtain an inner problem.

Consider an inner expansion centered at the unknown shock position z, =
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s(t), which will be determined later by the outer solution,

5=12 ’:(t). (3.25)

Under this change of variables, (3.24a) for u = (%, t) becomes
Uy — s’ ()i = (f(@) — Uzz)zs- (3.26)
To leading order we get
AZ + B = f(a) — sz, (3.27)

where A and B are constants of integration, possibly functions of time, and
are determined from matching to the outer solution. As in the equilibrium
case, as |Z| — oo, to match to a smooth outer solution % must approach

constant values, hence A = 0, and
B = f(@) — fizs. (3.28)

This is the same equation as for the steady-state shock (3.17), and therefore
we obtain the same equal-area rule (3.22) for shock placement to leading
order.

We will now study the outer problem for (3.24a) which will give the
overall structure of the solution as well as determining the motion of the
shock layer. The analysis of this problem is considerably simplified for outer

solutions of similarity form. For particular forms of F(u), these will be
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exact solutions of (3.24a—d). Hence, in the next section we will use similarity
solution techniques to reduce to outer problem (3.12) to a nonlinear ordinary

differential equation.

3.6 The outer solution - similarity solutions
of diffusion equations

As described earlier, away from the shock, we expand in a regular perturba-

tion series to obtain the leading order nonlinear diffusion equation

Ut = f(u)zs. (3.29)

We will consider similarity solutions of this equation. The properties of
similarity solutions used in the study of diffusive systems [9], [21] will be
reviewed in this section.

We consider the initial-boundary value problem for the general nonlinear

diffusion equation in one-dimension 0 < z < oo for t > 0
uy = (D(u)ug)s, (3.30a)
with boundary conditions

u(0,t) =1, u(z,t) = 0 as z — oo, (3.30b)
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and initial condition

u(z,0) = 0.
If we define the diffusive flux as

ou

then we may write (3.30a) in conservation law form as

Ou  Oq
B‘i“i—-a—a;-—o.

Searching for similarity solutions of (3.30a) of the form
u(z,t) = U(2), z=z/Vt,

reduces it to the ordinary differential equation

%—zU'(z) — —(DUYU'(2))"

(3.30c)

(3.31)

(3.32)

(3.33)

(3.34)

The transformation to similarity variables yields a corresponding similarity

flux

a(z,t) = t72Q(2),

where

Q(z) = -DU)U'(2).

(3.35)

(3.36)
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With this definition (3.34) becomes
1 ! /
izU (2) = Q'(2). (3.37)

Following Babu [5], we will consider this problem in inverse variables, that
is z = z(U) rather than U = U(z). This change of variables is often used to
make perturbation expansions of (3.34) more convenient [4], [5], but for our
application this is an important step in the analysis. Using the chain rule,

(3.37) yields

aQ

~z(U )= Fiin (3.38)

If we define the inverse-flux as

_ 1 dz 1
JU) = _-F(—U—)-dU = 00 (3.39)
then we obtain
—z(U) d (_L (3.40)
dUu \J )/’ ’

which may be used to write the nonlinear ordinary differential equation for
2(U),

—2—22'2 = D(U)2" — D'(U)7, (3.41)

where the primes now denote differentiation with respect to U. For uni-
formly parabolic equations with D(u) > 0, (3.34) and (3.41) are equivalent
representations.

If D(0) = 0 and D(U) > 0 for U > 0 then the diffusion equation is of

porous media type. Similarity solutions of this class of equation are weak
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solutions with compact support and are of the form
u(z,t) = U@)*, z=z/V, (3.42)

where (w)* = max(w,0) and U(z,) = 0 defines the leading edge of the region
of support (see Fig. 6). Having a compact-support solution of the form (3.42)
means that even though our original problem (3.24a-d) is a boundary value
problem on a finite domain, a similarity solution will exist for a finite interval
of time. For porous media equations, solving (3.41) becomes more convenient
than solving (3.34) [5]. We determine 2, through a global conservation of
mass

% [ v dz = Q) (3.43)

Zu
0

Imposing the conditions that U is continuous and the flux vanishes at the
leading edge yields

~57() [ 20y dv = DQ). (3.44)

Note that (3.44) holds for general D(U); if D(0) > 0 then the similarity
solutions do not have compact support and z, — oo [20].
Similarly, if we integrate (3.34) from 2z, to some indefinite position z and

use the chain rule to write z as a function of U, z = z(U), then [7], [21]
1 U
D) = ~57(U) /0 2(u) du. (3.45)

This is a formula that yields the diffusion coefficient corresponding to a given

similarity solution. We will now extend some of these ideas to study the
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(U(z))*

Tx
Z

Figure 6: A compact-support similarity solution.
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u(x,t)

X

Figure 7: A numerical solution of (3.46a—c).
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0 u, Uy, 1
U

Figure 8: A Cahn-Hilliard D(U) and a multi-valued similarity solution z(U).

reduced Cahn-Hilliard equation, where D(U) becomes negative.

3.7 Multivalued solutions

To gain some insight into the behavior of (3.30a), we conducted some prelim-
inary numerical studies of the initial-boundary value problem on 0 < z < 1

fort >0
u = (D(u)ug)q, (3.46a)

w(0,t=1,  wu(l,t) =0, (3.46b)

u(z,0) =0, (3.46¢)
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where D(u) is a Cahn-Hilliard diffusion equation with D(0) = 0 to obtain
compact-support similarity solutions. Using several finite difference schemes
[2], [16], we obtained consistent results showing the existence of a compact-
support similarity solution with an apparent shock in u (see Fig. 7). Solving
(3.41) numerically with a Cahn-Hilliard diffusion coefficient, subject to the
boundary condition z(U = 1) = 0 and (3.44), yields a nonmonotone solution.
The solution z = 2z(U) cannot be written as a single-valued function U =
U(z) and hence (3.34) cannot be used! The implication of having a Cahn-
Hilliard diffusion coefficient is that the corresponding similarity solution will
be multivalued! This behavior can be shown to be generic; if we assume a
solution z = z(U) > 0 for a multivalued function U(z), then we can make
use of (3.45) to determine the corresponding D(U). Since z(U) is positive,
so is its integral. Since U(z) is multivalued, 2(U) is not monotone and 2'(U)
changes sign, yielding a corresponding diffusion coefficient D(U) which is
negative in some range (see Fig. 8).

As in the theory of nonlinear waves [22], since the partial differential
equation (3.46a) governs the evolution of a physical quantity such as density,
concentration or temperature, a multivalued solution is not admissible. For
waves, multivalued solutions can be replaced by weak solutions that contain
discontinuities.

Recalling section 3, we can write the nonlinear diffusion equation in con-
servation form as

U+ ¢z = 0, (3.47)
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where the flux is given by

q = —f(u)q. (3.48)

In this form we may apply Whitham’s derivation [22] of the condition for the
motion of the shock z, = s(t) to yield

ds _lg] _ [f(u)s]

dt o [

(3.49)

where the brackets indicate the jump across the shock. This condition on
the interface velocity was also derived by Pego [19] through the consideration
of a Stefan problem for the reduced Cahn-Hilliard equation. We note that
for our similarity solution s(t) = 25v/% and (3.49) yields the equation for the
shock position

1 [DU)U']

R 7 (3.50)

Equation (3.49) states that the motion of the interface is driven by a jump
in the flux across the shock. This is a condition that is commonly used in
the formulation of Stefan problems [9].

Similarly, using some of Whitham’s considerations of weak solutions [22],
we can argue that the reduced chemical potential f(u) must be continuous

across the shock. We may take the solution U(z) of the equation
1
—2—zU’(z) =—f(U)" (3.51)

to be of the form

Us(2) 0<2< 2z
U(z) = (3.52)

Ul(z) 2y < 2,
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or, equivalently,
U(z) = Uy(2)H (25 — 2) + U1 (2)H (2 — 25), (3.53)

where H(z) is the Heaviside step function. Substituting (3.53) into the
lefthand-side of (3.51) yields terms like

-%dguwuf-n+~~, (3.54)

where §(z) is the Dirac delta function. In order to balance this singularity,
d?f /dz? must act like a delta function, df /dz must act like a step function

and hence f(U) must be C° continuous at z;,

[fU)]=0. (3.55)

The motion of the shock in a first-order scalar conservation law is con-
trolled by one condition at the shock, given by (3.49). For example, consider

the generalized Burger’s equation
ut + q(u); = €Ugg, (3.56)

where the flux is ¢(u) and the viscosity is 0 < ¢ < 1. In the absence of

viscosity we get the first order equation

ue + q(u)g = 0. (3.57)
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Figure 9: A breaking wave solution of Burger’s equation.
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Figure 10: A reduced Cahn-Hilliard solution.
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Solutions of this equation will generally become multivalued breaking waves.
It is possible to insert a shock into these solutions to yield a weak solution
that corresponds to a viscous solution of Burger’s equation as ¢ — 0 (see Fig.
9). In the weak solution, a shock connects the upper and lower branches of
the original multi-valued solution. The position of the shock is determined
by the shock condition. If u is the conserved quantity in the system, then we
get (3.49). If some function P(u) is conserved, then, by multiplying (3.57)
by P'(u) we get

P(u): + Q(u), =0, (3.58)
where
Q) = [ gw)P'(v) v, (3.59)
and we get the shock condition
ds” _ [Q(u)]
dt ~ [P(u)]’ (3.60)

where sP(t) is the shock position. Hence, by specifying the conserved quan-
tity in the system a unique shock equation is determined.

Our problem for the reduced Cahn-Hilliard equation is in some ways more
analogous to a hyperbolic system of conservation laws. The Euler equations
for gas dynamics describe the transport of mass, momentum and energy. So-
lutions of this system of mathematical equations yield breaking waves which
correspond to shock formation in the physical system. At a shock, the gov-
erning conditions, the Rankine-Hugoniot relations, require the conservation

of the three transported quantities. Unlike a weak solution of a single con-
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servation law, a weak solution of a hyperbolic system cannot generally be
constructed from a shock connecting the upper and lower branches of a sin-
gle breaking-wave solution. The solution of the system is in fact composed
of different classical solutions ahead of and behind the shock, related to each
other through the shock conditions. For the reduced Cahn-Hilliard equa-
tion, the weak solution is constructed from a shock that connects the upper
branch of one multi-valued solution of (3.41) to the lower branch of another
multi-valued solution of (3.41) (see Fig. 10).

Requiring that u is conserved and f(u) is continuous does not uniquely
specify a shock position for the the reduced Cahn-Hilliard equation. Consider
finding a weak similarity solution of (3.51) of the form (3.52). U, and U, are
solutions of a second order ordinary differential equation and hence they each
have two unknown constants of integration. Additionally, the shock position
zs is unknown for a total of five unknown parameters in the weak solution.
The boundary conditions (3.30b) for the nonlinear diffusion equation yield
two conditions. The shock relations (3.50) and (3.55) give two more restric-
tions. One more condition is needed. The correct weak solution is selected
by the form of the higher-order viscous terms in the equation. For the Ca