An Energy-Complexity Model for VLSI

Computations

Thesis by

José Andrés Tierno

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California
1995
(Submitted January 11)

1

© 1995
José Andrés Tierno
All Rights Reserved

1t

Mamd, Papd, Rosana y Jorge.

iv

A cknowledgements

After six years of toil, the journey is over. Caltech was for me an incredible
experience, for its people, its traditions, and its enormous accumulated wealth
of scientific knowledge. I must thank all of the Caltech community, for all that
I learned from them, either directly or indirectly.

From none did I learn more, however, than from Alain Martin. For six
years he patiently guided my research, and taught me most of what I know
about concurrency and asynchronous design.

A lot of other people has to be especially mentioned, because things would
have been different without them. I want to thank Chuck Seitz, for having
introduced me to the black magic of VLSI. I want to thank Drazen Borkovic,
for having patiently listened to my ramblings for so many years. I want to
thank Marcel van der Goot, for his programs, his IATpXmacros, and many
very stimulating conversations around a dictionary. I want to thank Tony
Lee, for his wonderful CAD tools, and his incredible energy to fix what didn’t
work right or do enough. I want to thank Peter Hofstee, for all the lunch-
time discussions. I want to thank Jessie Xu, for teaching me some Chinese
characters and a little patience. I want to thank Wen-King Su for the Friday-
night movies. I want to thank all of the CS185 students, for all of what they
taught me.

Finally, a very special thanks to Mr. Oshima, for teaching me that of a one
thousand mile journey, nine hundred and ninety nine is only half.

Abstract

An energy complexity model for CSP programs to be implemented in
CMOS VLSI is developed. This model predicts with some accuracy the en-
ergy dissipation of the “standard” asynchronous VLSI implementation of a
CSP program, associated to a given trace of that program. This energy com-
plexity is used in the analysis of CSP programs, in order to optimize this high
level representation of asynchronous circuits for energy efficiency. A lower
bound to the energy complexity of a CSP program is derived, based on the
information theoretical entropy per symbol of the input/output behavior of
the CSP program. This lower bound abstracts the specification of the circuit
(that is, its input/output behavior), from the implementation of the specifica-
tion (that is, the text of the program), and therefore applies to any program
that meets the specification. A number of techniques are presented to write
programs of low energy complexity, and are applied to several examples.

To link the high level representation of circuits to the CMOS representa-
tion, several circuits are analyzed to provide standard translations for basic
CSP operators into CMOS. In particular, a method for pipelining bus transfers
using the sense-amplifier of the bus as a register is proposed.

vi

Table of Contents

1 Introduction 1
1.1 Why Energy Efficiency? 2
1.2 Architectural Energy Optimization 3
1.3 Low-Energy vs. Low-Power 4
1.4 Energy Model for High-Level Programs 5
1.5 Low-Energy Programming Techniques)
1.6 Shorter Delays for the Same Energy 6
1.7 Energy and Entropy L. 6
1.8 Transistor Level Techniques 7
1.9 Contributions oo 8
1.10 Contents v o i i e e 8

2 Energy Model for CSP Programs in CMOS 10
21 EnergyIndex 11

2.1.1 Sources of Energy Dissipation 11
2.1.2 Linear Energy Model 13
2.2 Energy Model for CSP Programs 13
2.2.1 Synchronization 15
2.2.2 Assignments and Communication 20
2.2.3 Function Evaluation 25
2.3 Example: Counter 27
2.3.1 Handshaking Expansion, Production Rules 28
2.3.2 Average Energy and Latency 28
2.4 Example: Memory Array, 30
2.4.1 Energy Model and Optimization 32
2.4.2 Multi-bank Memory Array 34

2.5

Summary & Conclusion 36

vii

3 Entropy and Energy of Reactive Computations 38
31 Flat CSP e 39
3.1.1 Flattening a CSP Process 40

3.1.2 Flat Process Decomposition 41

3.2 Energy and Entropy L 42
3.3 Process Decomposition 49
3.3.1 Program Approximation 49

3.3.2 Breaking-Up the Input 53

3.3.3 Control/Data Separation 54

3.3.4 Pipelining/Parallelism 56

3.4 Summary & Conclusion 59

4 Low-Energy Programs 60
4.1 Reactive Programs 60
4.2 Lazy Programs, 62
4.2.1 Non-Causal Probe 66

4.3 Worst-Case Delay/Average Energy 68
4.4 CONCUITENCY . . « . « v v v e v e e e et e e e e e 71
4.5 Summary & Conclusion 77

5 Enmergy/Delay Sizing 78
5.1 Delay vs. Energy Optimization 79
52 GateModeling oo 82
5.2.1 Transistor Modeling 85

5.2.2 Macro Modeling L. 87

5.2.3 Gate Model for Optimum-Energy Sizing 87

5.2.4 Parameter Reduction 90

5.2.5 Posynomial Interpolation 92

5.2.6 Sizing with a Pre-Computed Table 95

5.2.7 Sizing with a Post-Computed Approximation. 97

5.3 Summary & Conclusion 97

6 Datapath Techniques 99
6.1 Register-to-Register Transfers 99
6.1.1 Dual-Rail/One-Hot Encoding 100

6.1.2 DBundled-Data 108

viil

6.2 Buses. 110
6.2.1 Multiple-Sender Channel 111
6.2.2 Bus with Sense-Amplifier. 111
6.2.3 Pipelined Bus Transfer 115
6.2.4 Multiple-Receiver Channel 116
6.2.5 Safe Completion 116
6.2.6 Unsafe Completion 118

6.3 Summary & Conclusion 119

Self-Limiting Circuits 120

71 Heat Equation. 121

7.2 Temperature Feed-Back 122
7.2.1 Linear Feedback 122
7.2.2 Non-Linear Feedback 123
7.2.3 Exponential Control 124
724 On/Off Control 125

7.3 Current Feedback 125
7.3.1 Sub-Optimal Voltage 126
7.3.2 Current and Temperature Feedback 127

7.4 Summary & Conclusion 127

Example: Processor Design 128

8.1 Specification o 128

8.2 Imstruction Set 130
8.2.1 Control-Transfer 130
8.2.2 Arithmetic/Logic Operations 134
8.2.3 Memory Addressing 134

8.3 Process Refinement 135
8.3.1 Instruction Fetch 137
8.3.2 Imstruction Decoding 138
8.3.3 Offset Register 141
8.3.4 Register-File Extraction 142
8.3.5 Pipelining and Concurrency 143

8.4 Process Decomposition of PCunit 146

8.5 Summary & Conclusion 147

ix

9 Conclusion & Future Work 149
9.1 Conclusion 149
9.1.1 How?. 149

9.1.2 Where? 150

9.1.3 Why? 152

9.2 Future Work 153

Bibliography 155

List of Figures

2.1

2.2

2.3

24

3.1

4.1
4.2

5.1
5.2
9.3
5.4

5.5

5.6

Graph of Er/V2, against Vpp for a 4-bit counter (SPICE sim-
ulation), and for the 3x+1 engine, and the 1.6um and 2.0um
PTOCESSOTS. + . v v v v v e i e e e e i e e e e e e e
Extra circuits required to implement sequencing between two
blocks of concurrent processes. The fork and join trees can be
configured in several ways.
Energy cost of an assignment. I and I are the fan-in and
fan-out of channel A; I¥ and I¥ are the fan-in and fan-out of
register y.o
Process decomposition of MEM as a two-dimensional array.
Only the channels corresponding to a read operation are shown.

Transition diagram for Py||P;. A path on this diagram corre-
sponds to an allowed sequence of input/output symbols.

Channel connections for a mutual exclusion token ring.
Channel interconnection for a serial-to-parallel converter. . . .

Input/output voltage relationships.
Arbiter Implementation for QDI circuits..
RC-model for CMOS gates. (a) transistor model, (b) CMOS
gate, and (c) equivalent RC-network model for that gate.

Two-level circuit for a generalized C-element with weak inverter
feedback.
E-D-C surface for a two-stage generalized C-element, for sev-
eral valuesof Cp.
Graphical representation of the error vector. The norm of the
error vector is minimized when A A is the orthogonal projection
of DonImage(A).

14

16

32

98

61
72

83
84

86

90

93

6.1

6.2

6.3

6.4

6.5

6.6

6.7
6.8

6.9
6.10

6.11

6.12

6.13

7.1

xi

Transistor circuit for a dual-rail, four-phase channel.
Best transistor circuit for one-of-four sender, one stage.

Best transistor circuit for one-of-four sender, two stages.

(a) Quad-flop with one write port, positive inputs; and (b)
double flip-flop, one write port, negative inputs. Completion
circuit not shown., .
Three possible transistor circuits for the non-safe acknowledge
ofaquad-flop.
Bundled data, register transfer circuit, non precharged. (a)
Direct copy; (b) indirect copy.
Bundled data register-to-register transfer circuit, precharged.
Write pulse generation from the read pulse for a precharged
register-to-register transfer. Lo
Sense-amplifier circuit for asynchronous buses.
Signal interconnection for a non-pipelined asynchronous bus
with sense-amplifier. Lo
Signal interconnection for a pipelined asynchronous bus with
sense-amplifier. Lo o Lo
Safe completion schemes for multiple receiver channels. (a)
shared completion tree, and (b) local completion tree.

Unsafe completion scheme for multiple sender, multiple receiver
channels. The bus transfer is pipelined to reduce the cycle time

and decouple senders from receivers.

Negative temperature feedback. H(s) is the transfer from power
to temperature for the system composed of the chip, package,
and cooling fluid. Temperature feedback can be implemented
as a temperature-controlled delay inserted in a critical loop.

105

107

109
110

111
112

113

114

116

118

123

List

2.1

2.2

2.3

8.1

xii

of Tables

Measured (SPICE) and predicted (Model) energy index for sev-
eral register/bus configurations (results in fF). The worst-case
relative error is less than 2%.
Cost of the communications involved in accessing an n x b mem-

OTY AITAY. + « « ¢« v v e et e e e e e e e e e
Cost of the communications involved in accessing an I x w x b

MEMOTY AITAY. .« « « v v v v e e e e e et e e e

Instruction types according to their effect on the pc register. .

23

31

33

138

Chapter 1
Introduction

In this chapter we justify the need for a methodology to design energy-efficient
digital circuits. Three main reasons are given: it is hard to supply integrated
circuits with substantial amounts of power, it is hard to extract from an in-
tegrated circuit a substantial amount of heat, and, if the integrated circuit is
to operate from batteries, the total amount of energy available is limited. We
then explain what type of approach we have taken towards energy-efficient
design, and then describe the contents of this thesis.

There are several aspects to be considered when designing an energy-
efficient circuit. We can put our effort on the circuits we use to implement logic
gates, we can put our effort on the technology we use to fabricate those cir-
cuits, or we can put our effort on the algorithm that the circuit uses to perform
the computation. In this thesis, the main focus will be directed to improving
the algorithms used in the computation, analyzing their performance based on
their “energy complexity.” This energy complexity is based on the high level
algorithmic description of the computation performed by a circuit, and is an
abstraction of the actual energy required by the circuit to operate.

In the end, the actual energy dissipation of the circuit is going to be a
product, the average energy dissipation per transition, times the number of
transitions. Energy complexity addresses the number of transitions required
to perform a computation; circuit optimization and technology optimization
address the average energy per transition. Both terms of the product can be

optimized separately for better energy performance.

1.1 Why Energy Efficiency?

Electric energy, once spent, is transformed into heat that has to be taken
from the chip surface. Heat dissipation is a relatively efficient process. DEC’s
alpha microprocessor, for example, dissipates 36 W and can be cooled with
a heat sink and forced air circulation. For larger power requirements, Cray
Computer’s freon-cooling technology can eliminate the 150 kW that a Cray-2
requires for operation. However, the more sophisticated liquid-cooling tech-
nologies are expensive, and, as much as possible, we want to be able to use
exclusively air cooling.

Air cooling cooling is efficient primarily because of conduction from the
chip surface to the heat sink of the package, and convection from the heat
sink into the cooling fluid. Radiation plays only a small role, since surface
temperature is low — about 70°C — and radiated heat warms up the chassis
around the heat sink. This heat also has to be removed by the cooling fluid.

The situation in a satellite is quite different. Because the available mass is
finite, any heat put out by the devices on board heats the satellite. The only
way of removing this heat is to radiate it into space. Radiation is inefficient at
low temperature. Heat pumps can be used, but they require energy to operate
and add to the weight of the satellite.

Another problem related to power is getting the energy to the chip’s surface.
For example, a chip that requires 22 W at 2.2 V uses 10 A of current. This
large amount of current will force a high number of the pins in the package
to be dedicated to power connections, reducing the number of pins available
for signals. In some cases, this problem can be a more serious limit than the
amount of heat that can be eliminated from the package.

Both problems are related to packaging technology. In the present state
of the art, we can cool any circuit that we can build. However, sophisticated
packaging has an elevated cost, and it pays off to design circuits that — for a
given function and level of performance — use the minimum possible amount
of energy.

If the circuit has to work out of batteries, as in portable computers, satel-
lites, or pacemakers, every bit of power saved translates directly into extended
battery life. Portable applications are becoming more important, especially
in the area of portable computing and wireless networking. Current portable

computers have a limited battery life, about one hour of operation per pound
of battery. A practical amount of energy is between 5 to 8 hours of continuous
operation: 5 hours for a transcontinental flight, 8 hours for a full day’s work
away from the office. Extra requirements on portable computers, like network
connections, cellular phone connections, and more powerful processors and
larger memories, will increase, in the future, the amount of energy required
for operation, unless these portable computers are designed in a very different
way than they have been designed so far.

1.2 Architectural Energy Optimization

Power optimization at the gate level is important, but if a circuit is inherently
wasteful in energy, this optimization will only mitigate a bad problem. The
situation is similar to the huge performance improvement of microprocessors
over the last 20 years. An Intel 8080 from 1974, operating at 2.5 MHz, will
execute about 0.5 MIPS, while an Intel 80486 from 1989, operating at 25 MHz
will execute about 15 MIPS. There is a factor of three in circuit performance
improvement, which is due only to better system level design. In the same
way, low-power has to be designed-in at the system level.

Asynchronous circuits such as the Caltech Asynchronous Microprocessor
[21,22] were designed with high performance in mind. It was not until the de-
sign was fabricated and tested that an interesting side effect of asynchronous
design was noticed: the power delay figures for this processor were very good,
executing 200 MIPS per watt at 5 V power supply, 600 MIPS per watt at 2 V
power supply. In an asynchronous circuit, in principle, every transition con-
tributes to the computation, and there are no hazards or spurious transitions.
Inactive circuits only consume static power, which, in CMOS technology, is a
small fraction of the total. On the other hand, it is not unusual for a clocked
circuit to spend about a third of the total power just driving the clock lines
(this has to be done irrespective of the level of activity of the circuit). On
the down side, asynchronous operation may require extra transitions for syn-
chronization, which do not directly contribute to the computation, as well as
dual-rail implementation of many logic blocks.

This architectural efficiency is not exclusive of asynchronous design. They
can be, and have been, used in the design of low-power synchronous systems.

However, in asynchronous designs the implementation comes for “free”: no
extra circuitry is needed to shut down the idle parts of the system.

This thesis has, as a central idea, the concept that the sources of energy
dissipation can be pinpointed in the high level description of the circuit; this
description can then be optimized to eliminate those sources whenever possible.
Not all high level descriptions or design methodologies are suitable for such
a manipulation. There has to be some correspondence between the operators
described in the high level specification language, and the circuits actually
generated. There has to be a match as well between the operations described
in the specification language, and the activity in the different parts of the

circuit.

1.3 Low-Energy vs. Low-Power

Electrical power dissipation has been used as a figure of merit for energy ef-
ficient applications. Power is a convenient measure for synchronous circuits
with no power management, where power dissipation is very much indepen-
dent of the level of activity of the circuit. In this context, reducing power
will reduce energy consumption. Asynchronous operation is better described
in terms of reactive programs: energy is dissipated only when the circuit is
active. For asynchronous systems, a proper measure of performance is the
“energy per operation.” This metric measures the energy required to execute
an instruction, fetch a piece of data from memory, service an interrupt, etc. To
maximize the battery life, we can minimize the average energy per operation,
that is, we maximize the number of instructions that we can execute with one
battery charge.

Energy per operation is an additive quantity. Given a computation de-
scribed in terms of some more elementary operations, we can calculate the
energy required to execute that computation by adding the energies required
by the elementary operations. In this way, we can compare different algorithms
to execute the same computation in terms of energy efficiency, independent of
timing considerations. A comparison based on power requires precise knowl-
edge of timing and the way in which the computation is going to be imple-

mented.

1.4 Energy Model for High-Level Programs

The first step towards tying the high level description of a system to the energy
performance of the circuit itself, is having an energy model, not of the circuit,
but of the high level constructs — a model that can predict accurately enough
what is going to happen in the circuit before the circuit is even designed.
Accuracy is necessary in relative terms; at this level, we want to compare high-
level designs, or, given a design, see how we can improve on that design. This
model must somehow express the trade-offs that are possible at the circuit-
level design stage. For example, for each delay we can design the most efficient
circuit in terms of energy per operation; this delay-to-energy function becomes
part of the model. We build the model for more complex operators using the
models for the parts of those operators.

This energy model is expressed as the energy complexity of the CSP pro-
gram that we use as the specification for the circuit. This energy complexity
counts the number of transitions executed by the program to compute a given
trace, or set of traces, taking into account the fan-in and fan-out of these

transitions to give them weights.

1.5 Low-Energy Programming Techniques

Given the ideas presented in the previous sections, asynchronous circuits de-
signed using Martin synthesis [18,19,20], appear to be an ideal target for the
techniques to be presented in this thesis. In the Martin synthesis method, the
circuit to be designed is specified as a CSP program [14]. This CSP program
is then successively refined by semantics-preserving program transformations,
expanded into handshaking variables, and finally translated into a network of
boolean operators. Each CSP operator (send, receive, add, etc.) corresponds
to some specific circuitry; every time that a CSP statement is executed, the
corresponding circuitry is activated.

The techniques to be presented here are of general use; they can be ap-
plied to other design methodologies, even to synchronous circuits. There is,
however, an underlying assumption that the target technology is CMOS, or
any other technology where the static power dissipation (that is, the power
that is independent of the level of activity of the circuit) is only a small part

of the total power dissipation. The energy complexity techniques assume that
energy has to be spent only to change the state of the circuit, and no energy
is required to maintain the state of the circuit.

Low-energy programs are reactive: work is done only when requested by
the environment. In a CSP program, this characteristic applies to individual
processes and excludes busy-waiting or input-polling strategies.

Low-energy programs are “lazy”: work is postponed as much as possible,
reducing preparatory work to a minimum and hoping to avoid unnecessary
computation. Lazy programs exhibit a very good average-delay average-power
product, at the cost of an increased worst-case delay. The trade-off between en-
ergy per computation and worst-case delay is the most important consequence

of lazy programming.

1.6 Shorter Delays for the Same Energy

Low-energy circuits will almost always have worse delays than circuits built
for speed. It is important to see how to make these delays shorter, without
paying too much of a price in energy.

Techniques such as pipelining, caching, or concurrency, have been well
exploited to increase the throughput of digital systems. We look at these
techniques from the low-energy point of view, to see what their cost or benefit
is, which ones are preferable, or when to use each of them.

In asynchronous systems, communication reshuffling can increase through-
put, by making signal dependencies closer to what data dependencies are for
the registers in the circuits. This communication reshuffling is an important
optimization because it almost never has an energy overhead.

1.7 Energy and Entropy

The energy complexity of a CSP program is used as an indication of how
efficient this program is, and can be used to compare two solutions to the same
problem. There is, however, the following question: given a specification, what
is the lowest energy complexity of any program that satisfies that specification?
If we can compute this lower bound, we can compare our solutions not only
to each other, but to the best possible solution.

Such a lower bound can be computed from the input/output behavior
of the specification. If the sequence of input/output symbols is completely
predictable, then there is no need to compute it (we already know the result),
and the minimum energy complexity is zero. If the sequence of input/output
symbols is completely random, then there are no “easy” ways of computing
that sequence, and the minimum energy complexity is high. Based on these
intuitive considerations, we look at the information-theoretic entropy of the
sequences of input/output actions that the specification requires. Entropy can
be used as a measure of the “randomness” of these sequences. As it turns out,
this entropy can be used as a lower bound for the energy complexity of a CSP
program; in some cases, this lower bound is tight.

There are other consequences of this lower bound. Because of the way it
is constructed, we can apply information-theory results to the construction of
CSP programs, using the statistics of the input/output sequences. Process
decomposition, concurrency, pipelining, and control/data decomposition can
be directed using entropy arguments. Also, entropy can be used to refine and
simplify the specification of the problem.

1.8 Transistor Level Techniques

The models used for evaluating the performance of CSP programs make some
assumptions about how the corresponding circuit looks. For some types of
operations, like register arrays, buses, completion trees, and control-signal
buffering, the interaction between the parts is so important that they have to
be treated as a unit.

These operations have to be designed with a great level of detail, going all
the way to the transistor description. Even layout issues are of importance,
and they will influence the parameters of the model. High-level optimization
is very powerful, but the final product still will be a transistor circuit, and the
characteristics of transistors have to be taken into consideration.

A good collection of datapath operators is also important, since it can be
used to verify some of the assumptions made by the energy complexity model,
and to compute parameter values in the model. We look, in particular, at
efficient implementations for bus transfers, which are an expensive on-chip

data movement operation.

1.9 Contributions

This thesis makes the following contributions:

It shows how to generate an energy model from the high-level description
of a circuit. Because this model separates the high-level description of
a circuit from the details of the implementation, it makes it possible to

compare programs, or choose architectural parameters.

It demonstrates a number of high level programming techniques to obtain

low-energy circuits, or to improve on existing circuits.

It demonstrates a number of high level programming techniques to im-
prove the throughput of a program with a small cost in energy.

It introduces a lower bound to the attainable energy complexity of a CSP
program that has to satisfy a given specification. It also demonstrates
how to use this lower bound to direct the process decomposition so that
the energy complexity of the final program is as close as possible to the

lower bound.

It demonstrates a number of specialized datapath circuits for low-energy
asynchronous design, in particular a pipelined bus transfer, using the
sense amplifiers on the bus as an extra register.

These techniques are applied to the design of a microprocessor, to show

with an example the impact they can have.

1.10 Contents

Chapter 1 is a brief introduction to the contents of this thesis.

Chapter 2 explains the causes of power dissipation in CMOS and proposes
an energy model for CSP programs that takes into account trade-offs between
energy, delay, and power supply voltage. A performance index is proposed
that captures the essence of those trade-offs, enabling the designer to better
compare alternative circuits for the same computation.

Chapter 3 analyzes the energy complexity of CSP programs, based on the
input/output behavior of the specification of the program. As a result, we

derive a lower bound to the attainable energy complexity of any solution to
a given specification. This lower bound is based on the information-theoretic
entropy of the sequences of input/output symbols.

Chapter 4 takes a detailed look at low-energy programming. Reactive pro-
gramming, lazy programming, energy/worst-case-delay trade-off, caching, pi-
pelining, concurrency, and non-causal probes, are analyzed to evaluate their
relative merits.

Chapter 5 shows that the minimum-delay transistor-sizing problem is equiv-
alent to the minimum-energy transistor-sizing problem. We propose a gate en-
ergy/delay model for accurate minimum-energy sizing based on least-squares
posynomial approximation of the gate equations.

Chapter 6 goes back to the transistor level issues of low-energy design. Some
specialized circuits are proposed to deal with buses, register arrays, completion
trees, and other datapath structures.

Chapter 7 discusses self-limitation as a way to prevent high-power asyn-
chronous circuits from exceeding the maximum allowable chip temperature.
We also show how we can select the supply voltage so that the circuit works
at the highest possible speed.

Chapter 8 Shows how to apply some of the techniques described in this thesis
to the design of an asynchronous microprocessor based on the architecture of
the Caltech Asynchronous Microprocessor.

Chapter 9 makes some concluding remarks about this work.

10

Chapter 2

Energy Model for CSP
Programs in CMOS

In this chapter we present an energy model for asynchronous circuits derived
from the CSP specification of the circuit. The model is based on the energy
dissipated per operation (i.e. executing one instruction of a processor, access-
ing one element of a memory array, etc.).

The CSP description abstracts the notion of timing by providing the partial
ordering of actions that the circuit has to perform. Likewise, to calculate the
energy per operation we do not need timing information; we only have to add
the energy required by each of the sub-parts of that operation.

The energy dissipation of a CMOS circuit is dependent on the power sup-
ply: the speed of operation and the energy required to charge capacitors in-
creases at higher voltages. In this chapter we derive an energy-based index
of performance that is independent of the power-supply voltage and we use
it to justify an energy model for asynchronous circuits based on the energy
cost of communication actions. This model is based on counting transitions,
in the sense that we tally all the actions in the trace of an execution of the
CSP program. Just counting transitions is, however, not enough, since not all
transitions are equivalent. Variables that are accessed from several places in
the circuit are more expensive in energy than localized, non-shared variables.
The extra read and write circuits and wires used to distribute the value of
the variable increase the cost of switching that variable to a new value. It is
possible to reduce the energy cost of a program and at the same time increase
the number of transitions, either by making each of those transitions cheaper,

11

or by simplifying the average-case performance at the expense of the worst-
case performance. Therefore, we take into account the fan-in and fan-out of
all variables in the energy model.

As an example of the use of the energy model, we analyze the design of
asynchronous memories. Memory subsystems are usually designed for speed
and density, with secondary consideration given to energy. Memory is slow
compared to processors; high throughput in memory is achieved through par-
allelism (wide data-words) and prediction (memory caching). These same
design techniques can be used to improve energy performance.

First, we show how to partition a memory array to minimize access energy
under the assumption that all addresses are equally probable. Second, we
show how to use the statistics of long sequences of addresses to further reduce
the average energy per access. These techniques result in a trade-off between
area and energy per access. This analysis shows that conventional commercial
architectures are not optimal from the point of view of energy efficiency.

2.1 Energy Index

The energy dissipation of a CMOS circuit is dependent on the supply voltage:
the speed of operation and the energy required to charge capacitors increases
at higher voltages. In order to evaluate the energy efficiency of a high level cir-
cuit description, we need a measure of energy dissipation that is independent
of the supply voltage. In this section, we derive such an index of performance
and use it in the following section to justify an energy model for asynchronous

circuits based on the energy cost of communication actions and synchroniza-

tion primitives.

2.1.1 Sources of Energy Dissipation

CMOS circuits have three main sources of energy dissipation: leakage currents,
short-circuit currents, and dynamic currents. The total energy dissipated dur-

ing the execution of one operation, Er, can be calculated as:

Er=E;+ E;+ Es (2.1)

12

where Ej is the energy dissipated by the sub-threshold leakage currents, E; is
the energy used for charging and discharging capacitors, and F,. is the energy
dissipated by the short-circuit currents.

Leakage currents come from the sub-threshold behavior of MOSFET’s. For
Vas < Vip, the channel conductance, g., can be modeled by [33]:

. 4 9(Ves = Vin)
ge = o7 exp (-——————-kT (2.2)

All these currents add up and are responsible for an energy dissipation of the

form:

y
E,= [Vhple exp (_qk—}h) dt (2.3)

where Vgg = 0 is assumed. At the present state of the technology, energy
dissipation due to leakage currents represents only a small fraction of the total
power of a CMOS circuit.

Short-circuit currents originate in the short transients, as in the case of a
CMOS inverter, when both pull-up and pull-down transistors conduct while
the input signal switches between Vjp, and Vpp —Vip,. This energy dissipation
has the form [34]:

Eee =Y s (Vpp — 2Vi)® (2.4)

where the s;’s are proportionality constants, and the sum is made over all tran-
sitions executed in one operation. Short-circuit currents also play a significant
role in storing a value into a flip-flop built from cross-coupled inverters.
Dynamic energy dissipation, Fg4, comes from the energy used to charge the
capacitors in the circuit. The capacitors are then discharged to ground, and

the energy is not recuperated. E; can be computed as:

E; = Z nz‘CiV[%D (2.5)

C;
where the C;’s are all the capacitors in the circuit, and n; is the number of
times the capacitor is switched in the execution of one operation. We rewrite

Eq. 2.5 as:
Ey=K[Vip (2.6)

13

2.1.2 Linear Energy Model

Using Egs. 2.4 and 2.6, and neglecting the effect of sub-threshold currents, we
rewrite the energy equation as:

Vop — 2Vin)®
Ep = (K,; + K DDW th)) Vi, (2.7)
DD

Outside the sub-threshold region, (Vpp > V;3), Eq. 2.7 simplifies to:
Er = (K + KsVpp) Vip (2.8)

Fig. 2.1 shows Er/VAp, as a function of Vpp for a 4-bit counter (SPICE
simulation), and for the Caltech Asynchronous Microprocessor [21,22] and
for a 3z + 1 engine [17] (measurement). This figure shows that the linear
approximation of Eq. 2.7 is indeed accurate.

Based on these results, we propose, as an index of performance for an
asynchronous CMOS circuit, the corresponding constants K7 and K. These
indices are independent of the power-supply voltage and the speed of operation;
furthermore, K, and K are additive: we can calculate the index corresponding
to an operation by adding the indices of all of its sub-operations.

As a first-order approximation, we assume K = 0, and use K as the

energy performance index.

2.2 Energy Model for CSP Programs

The CSP specification of an asynchronous circuit corresponds very closely to
its implementation. For each assignment, communication and function evalu-
ation executed by the CSP program there will be a corresponding assignment,
communication, function evaluation computed by the CMOS implementation.
In fact, it is possible to do a purely syntactic translation from CSP into CMOS
[3]. The CMOS implementation will dissipate energy only during the execution
of the assignment, etc. This energy can be assimilated to the energy required
to execute the corresponding CSP statement. To calculate the energy required
to execute a CSP program, we add the energy required to execute each state-
ment in a “canonical” trace of that program; we can also use the relative

14

KL - KS§ X VDD

CREMENTER:

Zralm ZOwONMOxM

Z=T ZOm M oxXm

0. EXUSRNN [dodd l|| dd. LJ s, Il KRN LJ L ILJ oo d
. 7.0 8.0 .
2.6 VGO C(LIN3 16.0

Figure 2.1: Graph of Er/VZ, against Vpp for a 4-bit counter (SPICE sim-
ulation), and for the 3x+1 engine, and the 1.6pum and 2.0um processors.

frequencies of occurrence of each statement in the program on a reasonably
large set of typical traces.

We would like to be able to map each statement into an energy performance
index, independently of the other statements in the program. In general, it is
not possible to do so; layout constraints result in the length — and therefore
capacitance — of wires being affected by the connectivity of the whole circuit,
not just the local connections. A detailed energy model would have to take
into consideration the program as a whole, instead of individual statements.

The purpose of the model is, however, to study architectural trade-offs
(e.g., compare bit-serial and parallel implementation of a function) or deter-
mine architectural parameters (e.g., determine the optimal width of a cache
memory). A very detailed model with a large number of parameters can be

15

intractable and not that much more accurate if those parameters are layout-
dependent (and, therefore, not well known before the layout is finished). At
the architectural design stage a simpler model is desirable; we will base this
model on the cost of communication, assignment, and selection.

The model proposed is based on the energy performance index. To each
type of statement, we assign a capacitance that is representative of the energy
that we expect that operation to cost in a typical implementation.

As much as possible, we want to remove syntactic dependencies from the
energy model; similar programs that result in identical implementations should
have the same energy performance. To this effect, we define an energy index
for just a few constructs that can be used to implement any CSP program.

2.2.1 Synchronization

The synchronization primitives of CSP are parallel composition (‘||’), sequen-
tial composition (‘;’), guarded choice (‘1’), repetition, and bullet synchroniza-
tion between communication actions (‘e’). Some of these primitives have zero
energy cost, such as parallel composition. Some of these primitives require ex-
tra hardware to be implemented, such as guarded choice. We make an estimate
of the extra hardware to assign a cost to each primitive.

Concurrency:
A basic postulate of this model is that parallel composition is free: no extra

circuits are required in the implementation. If there is no synchronization

between the P;’s, we can write:

n

C({lli: Ln: B)) = 3 C(R) (2.9)

=1
where C() is the cost function that assigns an energy index to a program.

Sequencing:

Sequencing synchronizes the end of an action with the beginning of the next
action. If the previous action is the parallel composition of several actions, the
end of those actions has to be synchronized with a tree, which has a linear
energy cost. If the next action is the parallel composition of several actions,
the start signal has to be distributed to them (maybe with a tree), which also

16

has a linear cost (see Fig. 2.2). We can express these costs with the following

equation:

Cllli:1n:B); (|l : 1.m: Qy)) =
C(join(n)) + C(fork(m)) + C(;) +C((|li : L.n: B)) + C((|l7 : L. m : Q;))

= Kj(n— 1)+Kf(m—1)+Ksc+i6(ﬂ)+§C(Q1‘) (2.10)
i=1 j=1

where K, Ky, and K, are technology dependent constants. If n = 1 and m =
1, then the fork and join circuits are not needed, and the cost of sequencing is

just the constant overhead K.

—={ pq [—=> Q1 =
—=>» p2 > —= Q2 =
join fork
—_— Pn e '—>Qm"->

—=
- -

Figure 2.2: Extra circuits required to implement sequencing between two
blocks of concurrent processes. The fork and join trees can be configured in

several ways.

17

Consider, for example, the following programs:
Pr =(Az;.5 An) || (Br; s Bn)
Py = (A1l B1); -5 (An || Bn)
Using Egs. 2.9 and 2.10 we can compute the cost of P; and Ps as:
n

C(P1) = 2Ks(n—1)+>_ (C(A;) +C(B))) (2.11)

=1

C(P) = (Kse+Kp+Kj)(n—1)+ 3 (C(A;) +C(By)) (2.12)
=1
C(PL) - C(PY) = (Kue — (K + K))(n ~ 1) (213)

The relative efficiency of these two programs depends on the value of K, —
(K¢ + Kj). Program P, reduces the number of sequencing operators at the
expense of reduced concurrency and extra join and merge circuits.

Choice:
Guarded choice can be implemented in a number of ways. We consider the
cost, of selection as the difference in cost between the following two programs:

PAR=(||i:1.n: *[[Gi — A; 11)

and,

CHOOSE =*[[{(Mi:1.n: G; — A;)1]

Program CHQOOSE can be transformed into program PAR using the P and V'

operations on a semaphore:

CHOOSE = (||[i: 1.n:*[[Gi — P;[G; — Ail-G; — skipl; V 11)
If the guards G; are stable, we can simplify the implementation to:
CHOOSE = (||i: 1.n:*[[G; — P;A;; V 11)

The cost of choice is, therefore, the cost of implementing that semaphore. A
number of implementations are possible and practical; a state variable per
choice and an extra process can be used to that effect:

CHOOSE = (| i:1.n: *[[~u A G; — wT; [ul; A u] 11)

H *[[(V i:1.N] utl; [(/\ 1:1.N: -yl ull

18

The cost of selection can be reduced to the cost of an Or-gate with fan-out
proportional to the number of choices. If statement ¢ is chosen, we can express
the energy required to execute the selection plus statement 7 as:

C([(D :5:1.m:G; — A))],i) =
Kologgn + Kpn + C([~u A Gil5u;T; [ul; Ags uil) (2.14)
where K, and K are technology constants, corresponding to the energy cost
of computing an n-input ‘or’ and forking the result to n receivers.

We can get rid of the indexation of the cost function by using the frequen-
cies with which each statement is taken. We can write:

C(I{0:7:1.m:G; — A))]) =
Kologyn + Kyn+ Y piC([-u A Gilsuil; [ul; Ajwl) (2.15)

=1

where p; is the conditional frequency of selection of statement ¢ in the traces

of the program, given the history of the computation.
Alternatively, if the guards are stable, the semaphore may be implemented

with a selection tree:

CHOOSE = (||i:1..N: *[[G; — U;; A;; U; 11)
| *[{(0 i:1.N/2: U; — L; U;; U;; L Y]]
| *({(0 i:N/2+1.N: U; — H;U; Uj; H)1]

| *(l L— L;L 0| H— H;H 1]

We apply this transformation recursively, and we get a cost of selection that
is logarithmic on the number of choices and can be expressed as:

Kclogan+ 3 piC(LGil; Us; Ai; Uy) (2.16)

=1

Either Eq. 2.15 or 2.16 can be used to compute the cost of guarded selection,
depending on the expected implementation of the command. The linear cost

19

implementation is more efficient for low values of n, while the logarithmic
cost implementation has more concurrency in the guard evaluation, and scales
better for large values of n.

We can use the frequencies of the guarded commands to improve the av-
erage cost by using the Huffman tree for the p;’s instead of a symmetric tree.
We will see more about this on Chapter 3.

The remaining question is whether a better implementation (i.e., with a
worst-case better that logy n) of the choice statement exists. We will prove
that this is not true under some fairly general assumptions that are justified
in terms of the CMOS energy model.

We implement the mutual exclusion between the branches of the selection
statement with shared variables. Let n be the number of branches in the
selection statement, s; be the number of variables that have to be set in branch
¢ to enter the critical region, and ¢; the number of variables that have to be
consulted in branch ¢ to enter the critical region; each of these variables is
written by w;; and read by r;; different branches respectively, with w;; > 2
and r;; > 2 for all 4, 5.

Now, the s; written variables have to cover all branches to ensure mutual
exclusion; therefore, for all 7, Zj;l wyj > n; the same is true for the ¢; read
variables, and therefore Zg-;l Tij > M.

Writing into a variable with m write ports can be accomplished with
K, logy m energy cost, using a tree multiplexer to write into the variable;
reading from a variable with m read ports can be accomplished with K log, m
energy cost, using a tree demultiplexer. The average cost per branch of mutual

exclusion can be expressed as:

3!*—‘

C(n) =

n
Z (K Z logy wij + K, Z log, r”> (2.17)

j=1 j=1

If a; > 2 for all 7, then Y ;loga; > logy; a;, and we can write the following
inequality:

C(n)

Vv

1 n 83 q:
=3 (Kw logy Y wij + Kylogy Y rij)
T =1 j=1 j=1
1 n
- > (Kulogyn + Ky logy n)

=1

v

20

= (Kw+ K;)logyn (2.18)

Equality is achieved for a single variable shared by all branches.

In conclusion, assuming that we cannot implement access to a shared vari-
able with less than logarithmic cost, the worst-case cost per branch of a selec-
tion statement is always at least logarithmic in the number of branches. Exact
logarithmic cost is achieved if we implement mutual exclusion with a single

variable.

2.2.2 Assignments and Communication

The datapath of a circuit very often consumes the bulk of the energy required
for operation. This is especially true for wide datapaths, where the overhead
of control is relatively small. In the energy cost of the datapath, we will also
include the cost of the control lines that drive it.

There are three main datapath operations: assignments, communications,
and guard and function evaluation. Guard and function evaluation is treated
later, assignment and communication is analyzed in this section.

A CSP assignment can be implemented with data communications. In fact,

the usual implementation of an assignment is as follows:
=Y. > o (Al || A%y); ..

where channel A is a new channel.

A CSP data communication involves two actions: first, copying the data
into the wires that implement the communication channel, and second, copying
the data from the communication channel into a register; the second part may
not be present if the data is to be tested on the channel wires.

We assign an energy cost to the two parts of the communication, send and
receive. In this case, copying data into the channel wires has a cost which
is proportional to the number of bits of data. Copying data into the channel
wires has an extra cost related to the capacitance on those wires. If the channel
is shared by several registers, the capacitance of the channel wires will have
contributions from the write ports to the channel, from the read ports to the
channel, and from the wire itself. As a simplifying assumption, we will consider
that the length of the wire scales with the number of writers, plus the number

21

=N A
'A |A
w r

Figure 2.3: Energy cost of an assignment. I;;‘ and I;“ are the fan-in and
fan-out of channel A; I¥ and I¥ are the fan-in and fan-out of register y.

of receivers. Under these conditions, we can write:
C(Alz) = (K I + KyI2 + K,)logy N (2.19)

where I4 and I2 are the number of read and write ports, respectively, on
channel A; K,, K,, and K are technology constants; and N is the number
of different values that the variable z can take (see Fig. 2.3). K, corresponds
to the contribution of each read port to the capacitance of the channel, K,
corresponds to the contribution from each write port to the capacitance of the
channel, and K corresponds to the contribution from the pre-charge circuit
and other fixed costs (sense-amplifier if present, for example) to the capaci-
tance of the channel.

Likewise, The cost of assigning to a register increases with the complexity
of that register. More read and write ports represent added capacitance to the

22

storage nodes of the register; we can write:
C(A?y) = (KIY + K, IY + K})logy N (2.20)

where I¥ and I¥ are the number of read and write ports respectively on variable
y; K, K!,, and K/ are technology constants; and N is the number of different
values that the variable y can take (see Fig. 2.3).

The technology parameters K, Ky, K, K}, K,, and K} can be measured,
for example, from a SPICE simulation of a test circuit. To this effect we
designed a standard register with multiple read and write ports and measured
the energy index of several transfers between registers, separating the energy
required to assign to the bus from that required to assign to the register. The
register energy is the energy required to change the value of the register (if
the register doesn’t change value, the energy is zero). The measurement was
made at several different voltages, and the parameters were computed using a
least-squares approximation. The values of the parameters in fF for the 1.2um

HP process are:

C(A%) = (22.3IY +22.4I% + 66.8)logy N (2.21)
C(Alz) = (15.6I2 +9.6I2 +10.7)logy N (2.22)

The raw data is shown on Table 2.1.

23

Bus Register

I Iy
IA 1 21 3||I¥ 1 2 3
SPICE | 1355|457 |55.6 11128 |131.3|157.5
Model 36.0 | 45.6 | 55.2 111.6 | 133.9 | 156.2
SPICE | 2(51.8|61.7|70.2| 21354 |153.6|179.9
Model 51.6 | 61.2 | 70.9 134.0 | 156.3 | 178.6

Table 2.1: Measured (SPICE) and predicted (Model) energy index for several
register /bus configurations (results in fF'). The worst-case relative error is less

than 2%.

The numbers I;fl, Iﬁ, IV, I¥ can be derived syntactically from the text of the
program by counting in how many places a variable is used, how many different
variables can be sent over a channel, number of assignments, guard evaluations,
etc. There is, however, the possibility of optimizing the channel assignment
by adding extra intermediate registers and other high level optimization steps
that cannot be derived from the program text, but are dependent on the
optimization algorithm used. Since this type of optimization can be expressed
in CSP, we only consider explicit channels and assignments.

We will show next how to assign channels to optimize the cost of data
communications. Consider, for example, a single-bit register with multiple
read and write ports, where the mutual exclusion between the reads and writes

is guaranteed by the environment:

REG= (|| i:1.r: *x[[Ri — Rilz 11)
(i 2w *[0D Wi — Wiz 11)

and the environment can be modeled by:

ENV =x[[{ 0 i:1. true — R;7y;)
(0 i:1

T
~w: true — Wiz)

1]

24

From the traces of the program we compute the frequencies of each com-
munication action; these frequencies are p] for the read ports, and p’ for the
write ports, with 32; p; = pr, 32; P{’ = Pw, and pr + py = 1. The average cost
per communication can be computed as:

prC(R) = pr(K,+ Ky+Ks)+ > pj (K1Y + K, I¥ + K})
7

puC(W) = pu(Klr+ K w+ K.) + pu(K, + Ky + Ks)
C(RW) = prC(R)+ pu,C(W)
(Kr + Ky + K;) + po(Klr + K,w + K.) +
S_PI(KGIY + K, I + K) (2.23)

il

To improve on this energy cost, we reduce the number of channels to vari-

able x by merging the channels W; and Wa:

REG = (” 1. 1.1 *[[-Rz —»Ri!x 1] >
| *[[Wi — Wiz 1]
Il i:8.w: *[[Wi — W;?z 11)

ENV =x[[true — Wyalz;
I true — Wislze
(0i:1..r: true — R;7y;)
(0 4:8.w: true— Wz)

1]

The new energy cost per communication action from register z, C'(RW), can

be computed as:

prC/(R) = pr(Kr + Ky + Ks) + pr(Kﬂ;?i + K{‘)Ig)i + K;)
7

= pC(R)
puC'(W) = pu(Kir+ K(w—1)+K.)+
(pw — Y — P8)(Kr + Ky + Ks) + (07 + 7)) (Kr + 2Ky + K)
= puC(W) ~ puK,, + 0 +p3) Ky
C'(RW) = pL'(R)+pu,C'(W)

w w
= C(RW) - pu <K{U - MKW) (2.24)

w

25

'To maximize the energy savings, we merge the two channels with the lowest
frequencies (p}’ + p¥ < pw2/w), and the energy savings are:

! y Py + Py ' 2
C(RW) — C'(RW) = py (Kw - -——w—Kw) > D (Kw - EKU)) (2.25)
Eq. 2.25 represents the trade-off between more complex registers and more
complex buses. From a previous measurement we know that K ~ K,,, and
therefore this transformation improves the energy cost as long as w > 2. The
same transformation can be used iteratively as long as the energy improvement
is positive.

If all ports have the same frequency, we can build those ports as a tree of
multiplexors and de-multiplexors. This results in an average and a worst-case
energy cost logarithmic in the number of read ports for the read actions, and
logarithmic in the number of write ports for the write actions.

The global optimization problem of channel assignment is more complex.
Local optimization per variable does not give a global optimum, and other
considerations, such as the complexity of the resulting wiring problem or the
introduction of extra intermediate variables, may have a strong impact on
energy cost. Global optimization is beyond the scope of this section.

2.2.3 Function Evaluation

Function evaluation can hide part of the computation executed by the program.
To incorporate that cost into the energy model, we have to make the evaluation
of that function explicit in the CSP specification, or otherwise use a worst-case
cost for the evaluation of an arbitrary boolean function.

Given the program:

o FUf(z); ..

we want to express the cost of the evaluation of f(z). To estimate the worst-
case cost we give a specific implementation for f and calculate the cost of
that implementation based on the energy model described so far. This way we
know that the cost of evaluating a function is consistent with the rest of the
model.

If the range of x is {x1,...,X,}, and f(x;) = f;, we can express the function

evaluation as:

26

gl iilon: z=x,— FIfp)l;...

The cost of this program scales with n, which can be a large number. To obtain
a more efficient implementation, we encode z as an array of N = [logy n] bits,
and eliminate one bit from the function evaluation by currying:

[z[0] — Xiz[1.N — 1]; FI(F:?)

] “\IE[O] — Xf!x[l..N — 1]; F!(Ff?)

1;...

| *[X:?7y; Filfi(y)]
| *[Xf?y; Frlfr(y)]

From the previous decomposition we see that the cost of evaluating a function
of N bits, C¢(N), is, at worst, the cost of communicating N — 1 bits (X;f
channel), K.(N—1)) plus the cost of evaluating an N—1 bit function, C;(N—1)
plus the cost of merging the F; and Fy channels, Kj:

Cf(N):KC(N—1)+Cf(N—1)+KM (2.26)

Solving for C¢(N),

N(N —1)

Cf(N)ch 2

+C5(0)+ NKy (2.27)

This equation can be further refined. If the range of the function f has m
different values that can be expressed as an array of M = [logy m] bits, the
cost of merging F; and Fy can be expressed as Ky = M Kp,, and we have:

N(N —1)

Cs(N) =K. +Cf(0) + NMK,, (2.28)

In general, the cost of evaluating a function of N inputs and M outputs,
C¢(N, M) can be expressed as:

Ci(N,M) ~ KyN? + KoNM (2.29)

27

2.3 Example: Counter

In this section we develop an example — a self incrementing register — and
show how to predict the energy consumption of the incrementer using the

above energy model.
The following CSP process will serve as the specification for the counter:

PC=x[[T— z:=z+1;]
0l R— z:=0;R
1 L— L%
15— Sz
1]
In most applications, the environment would be responsible for ensuring the
mutual exclusion between the I, R, L, and S channels. We can rewrite P(C as:
PC=(*[[I— z:=z+1;11]]
| *[[R— =z:=0;R 1]
| *[[L— L%z 1]
| *[[§— Slz 1]
)
To improve the performance of the incrementer, we separate the I communi-

cation in two parts:
INC=+[[u —y:=c+1, Iu; [Id]; z:=y; Id 1]

The value of x is stable until Id is started, and stable again after Id is com-
pleted. Iu can execute concurrently with S.

Notice that when z is even, it is trivial to calculate x + 1. We separate
process INC into two parts, one that takes care of the least significant bit of

z, and one that takes care of the rest:
INC = (INCO || INCR)

INCO=+[[Tu N -zy — Iu; [Id]; zp7; Id
0 Tu A 79 — Itu, Iu; [Id); zp|, I1d; Id
1]
INCR =*[[Tlu — yl :=z1 + 1, I1u; [Iid]; z1:=yl; I1d 1]

INC0is a one-bit incrementer, and INCR is an n—1 bit incrementer. We apply
to INCR the same transformation, until we end up with one-bit counters only.

28

2.3.1 Handshaking Expansion, Production Rules

The following is a handshaking expansion for the program INC0O. We rename
the channel Iu, Id as I, and the channel I1u, I1d as O.
INC=x[[i N -z — Iol; [-L]l; z1; Io]
0 i Az — Oof, IoT; [-L]; z|; [0:i];
Oo|; [-0il; Io|
1]
To generate the production rules, we change the comma into a semicolon,
and add the state variable s:
INC=*[[i N ~x — s7; IloT; [-Ii]; z7; s|; Io|
0l i Az — Oof; IoT; [0L1; z|; [0d];
Ool; [-0i1; o]

1]

We derive the production rules for this handshaking expansion:
ILin-z — T O,V s — 1,7
T — sl “O; N0, A—s — I,]
I;ANz — 0ot —I;ANs — zT
OiN—-z — 0ol -I;ANO, — x|

If z is implemented as cross-coupled inverters, the previous production rules

are directly implementable.

2.3.2 Average Energy and Latency

We will derive the average energy cost per increment of the counter, under
the assumption that all register values are equally probable. Therefore, half
of the time the register contains an even number, and only the first bit of the

counter is utilized:)
E,=FE + —2-En_1 (2.30)
where Ej; is the average energy dissipated by a j-bit counter.
From the characteristic equation, £, has the form A2™" + B. Substituting

in the above expression, we derive A and B:

1

29

The average energy dissipation can be bounded by a constant, irrespective of
the word size.

A similar computation can be done for the average latency of this circuit.
Again, assuming that x is even half of the time, we get the following equation:

1
Ln=Li+3Ln1 (2.32)

This is the same equation as Eq. 2.30. The average latency is therefore
bounded by two times the latency of one stage, no matter what the word
size is.

Worst-case delay and energy are linear in the word size, of course, but this
is not worse than a simple incrementer design with no carry-tree.

To finish this computation, we calculate the value of E; based on the
previously defined energy model, and then compare it with a SPICE simulation
of the circuit.

We can compute E; as the energy cost of the I communication. The [
channel is one-to-one, and the target, register z, has 3 write ports (I, R, and
L) and two read ports (S, and guard evaluation). The value of the register is
changed in all / communications. We can approximate F; by:

Ey = (Kr+ Ky + Ks) + (2K, + 3K, + K.) + K, (2.33)

In this case selection is implemented with a shared variable with two read
and two write ports, and we can write K, = 2K, + 2K/ + K!. Using the
constants previously computed, we get £ =~ 36 + 179 + 156 = 371 fF. This
number can be measured directly on a SPICE simulation of an implementation
of the incrementer based on the same register circuits, and we get F; = 350fF.
The difference is due to an optimization in the implementation of the shared
variable where only one of the branches of the choice statement needs to read
the variable (see in the handshaking expansion, variable s). In this case,
E; = 36+ 179 + 134 = 349.

This example shows that the energy cost for CSP programs can be pre-
dicted with a good measure of accuracy, based on some fairly general assump-

tions about the implementation methodology.

30

2.4 Example: Memory Array

In this section we examine the design of a memory array from the energy-
efficiency point of view. The energy model previously developed is used to
express the architectural trade-offs in the partitioning of such an array [32].
In CSP, a memory is an array, and reading from memory is one of the
two operations: z := M|a] or X!MJa]; writing to memory is one of the two
operations M[a] := y or Y?M|a|, where M|a] is an array of n words of b bits.
A program that describes a memory array with one read and one write port

is:
MEM =*[[R — A%a; RIM|a]
0 W— A?a; W?M|a]
1]

The indexing M|a] is removed by breaking up the memory array into a decoder

and an array of registers:

DECODER={(|| i:0.n— 1

ARRAY =(|| 41:0.n—1:
*[[Ri — R'z; ¢ R; 11
| *[[Wy — W7z e W; 1]
)

To read one word from the array, we have to execute an A communication
(one sender, n receivers, log, n bits wide), an R; communication (one sender,
one receiver, data-less), and an R communication (n senders, one receiver, b
bits wide). The costs of these operations are summarized in table 2.2. The
energy cost of reading one word is the sum of the energy costs of executing
each of these communications, that is:

Eip r(n,b) = Kynlogyn + Kp, + Kpnb (2.34)

where K4, Kg;, and Kg are geometry dependent proportionality constants.

31

Channel | Type | Width | Cost

A 1-to-n | logan | Kgnlogyn
R n-to-1 | b Kgnbd

w 1-to-n | b Kwnb

Table 2.2: Cost of the communications involved in accessing an n x b memory

array.

A one dimensional array is a viable solution only for small arrays; for large
n, the energy cost scales like nlogsn. One way of improving on this cost
is by mapping the one-dimensional array into a two-dimensional array. We
represent the double indexing by splitting the address in two:

MEM =*[[R — A?(aw, al); R!M[al][ah]
0 W— A?aw,q); W?M[a][ap]
1]

The first indexing is removed by extracting a row decoder:
DEC=(| 1:0..1—1:
«[[(AT =1) — AI7] 8! 1]
)

The second indexing is removed by extracting a column decoder:

MUX=(||j:0.w—1:
*[[BA(Auw? =j) — Aw?||RY(R;?)
| WA (Auw?=3) — Aw?|| W{(W?)
11
)

where [and w are such that [x w = n. Finally, the register processes:

ARRAY =(|| 1:0..1—1:5:0.w—1:
*[[S;AR; — Rjlzjj 0 5; 1]
| *[L S; A W; — Wz 8; 1]
)

32

So

I I [——— = —
DECO ARRAY0O0 1 | ARRAYOI R - -

2 i I R |
DECI ARRAYI0 H | ARRa¥] H ** H

;
| ‘ : , : . : .
!R 0] S oD xR (w-1)

)] | I i

— DEC(I-1) | .. |
“« v 1 ¥ .
| — — 1
A MUX0 MUXI . MUX(w-1)

Figure 2.4: Process decomposition of MEM as a two-dimensional array.

Only the channels corresponding to a read operation are shown.

The process decomposition and channel interconnection are shown in Fig. 2.4.
In the following section, we show how to choose ! and w from a simple

energy model.

2.4.1 Energy Model and Optimization

The energy cost of accessing one element of the array is calculated as the
sum of the costs of the communications executed by the DEC, MUX, and
ARRAY processes. A read from memory requires executing communication
R (w senders, one receiver, b bits wide), communication Al (one sender, I
receivers, logy I bits wide), communication Aw (one sender, w receivers, logy w
bits wide), communication S; (one sender, w receivers), and communication
R; (I senders, one receiver, b bits wide). Table 2.3 summarizes the energy
costs for all of the communication actions in MEM.
The total energy cost E, of reading a memory location is:

EZD,R(”; b) = Kallogyl + K aywlogyw + Kgw + Kleb + Kpwb (2.35)

33

Channel | Type | Width | Cost

Al 1-to-l | logyl K gllogy 1
Aw 1-to-w | loggw | Kapwlogyw
Si 1-to-w | dataless | Kgw

R; [-to-1 | b Kpg;lb

R w-to-1 | b Krwbd

W; 1-to-l | b Kw,lb

W 1-to-w | b Kwwb

Table 2.3: Cost of the communications involved in accessing an | X w X b

memory array.

We simplify (2.35) by assuming all constant equal to one. This approxima-
tion is acceptable for most technologies; if a more accurate model is needed,
the parameters can be calculated from the layout, and the optimization is done

with those values of the parameters.

Esp r(n,b) = llogy I + wlogyw + (w +)b+ w

(2.36)

We minimize Fyp g with respect to ! and w under the constraint | x w = n,

using Lagrange multipliers:

U =llogyl+wlogyw+ (w+)b+ w+ A(n — lw)

We take derivatives with respect to [, w, and A:

Q(]_
ol
E’)__({
ow
20_'
oA

= logyl+logye+b— Aw

logow +logge +b+1— Al

n — lw

(2.37)

(2.38)
(2.39)

(2.40)

Assuming that %logz n + b+ logy e > 1, we solve for I, w, and A, and [,y =

34

Wopt = v/n. The optimum energy per access, E p,r(n,b) is:
E2D7R(n, b) = N (loggn + 2b+ 1) (2.41)

Memory designed for speed usually has | = b x w [7]. A completely square
bit-array optimizes the access time per bit, but does not take into account the
energy savings derived from selecting only the bits that are part of the desired
word. This extra selection step takes time and area, and saves energy.

If we compare the optimal energy for a two-dimensional array with the
energy used by a one-dimensional array (assuming that all constants are equal

to one), we get:
Eip n(logagn +b+1)
= ~ 2.42
Esp n(loggn+2b+1) vn (242)
The number of words in a memory chip is usually very large, in the order of
220 making the two dimensional arrangement far better in energy. We can, in

principle, generalize this argument to multidimensional arrays, to get an even
greater improvement in energy per access. This cannot be done, however, by
simply increasing the number of indices in the array. The memory has to
be laid-out on a two-dimensional surface; mapping a multidimensional array
on this surface will make all wires much longer, and the results will not be
comparable with (2.41). In the next section, we make that mapping explicit
in the CSP program for the memory so that a realistic energy model can be

derived from that program.

2.4.2 Multi-bank Memory Array

We can further reduce the energy per access by breaking up the memory into
several sub-arrays so that only one of the smaller sub-arrays is accessed in
each memory reference; this technique is also known as the divided word-line
method [35]. We obtain the CSP for the multi-banked memory by applying a
divide-and-conquer strategy to the MEM program.

MEM2B = (MERGE || MEMO | MEME)

35

MERGE = *[[R — A?%a; [odd(a) — Ao'a/2; R!(Ro?)
0 even(a) — Aela/2; R!(Re?)
]
0 W— A?; [odd(a) — Aola/2| Wol(W?)
[even(a) — Aela/2| Wel(W?)
]
1]

MEMO =*[[Ro — Ao?a; Ro'MO]ad]
0 Wo— Ao?a; Wo?MO|a]
1]

MEME = *[[Re — Ae?a; Re! ME]a]
0 We — Ae?a; We?ME]a)
1]

where ME and MO are n/2 x b arrays.

To read one word from M EM2B, we have to execute communication A
(one sender, one receiver, logy n bits wide) and communication R (two senders,
one receiver, b bits wide), plus we have to execute either MEMO or MEME.
The energy cost of reading one word from a memory of size n x b can, therefore,

be expressed as:

Eyp r(n,b) = 2Kpb + K glogan + Esp r(n/2,b) (2.43)
Or, for n = 2V,

Eap r(2N,b) = Eyp p(2N71,b) + 2Kpb + KuN (2.44)

We apply the same transformation to the sub-arrays until the indexing is

completely removed. We get:

N(N+1
EZB,R(2N, b) = E>p r(1,b) + 2KrNb + KA—(_Q—_':_) (2.45)
Or, in terms of n,
1 | -1
Fap p(n,b) ~ 2K gblogyn + K, 282081 =D g 4

2

36

Depending on the cost of merging the results from the two sub-arrays, it may
be convenient to stop the divide-and-conquer process after fewer than NV steps,
and implement the remaining array as a two-dimensional array. After N — J
divide steps, the energy cost is:

(N+1)—J(J+1)

Ezp,p(2Y,5) = Eap p(2”,b) + 2Kp(N =)b+ K™
(2.47)
Minimizing equation (2.47) with respect to J we obtain the optimum bank
size, 27ort.
For example, if all constants are equal to 1, N = 20, and b = 32, we obtain
an optimum for J = 3, EgB,R(220,32) = 1493. For J = 20 (no break-up in
banks), the energy cost is Eop, r(2%0,32) = 87040.

2.5 Summary & Conclusion

In this chapter we have explored the causes of energy dissipation in CMOS
circuits. A first-order approximation shows that most of this energy is spent in
charging capacitors. Energy dissipation occurs only when some computation
is being performed, and this allows us to tie the energy dissipation of the
CMOS circuit to an energy-cost measure for the CSP program that specifies
that circuit.

This energy-cost measure corresponds to the “energy complexity” of the
corresponding program and is computed relative to a trace of the execution of
the program, or to frequencies of occurrence of the different statements in a
number of traces. The energy complexity reflects the sum of all transitions re-
quired to execute the trace, where each transition has been weighed according
to its fan-in and fan-out.

At the CSP level, we have given an energy cost to assignments, commu-
nication actions, function computation, and synchronization. A number of
technology-dependent constants have to be computed to be able to compare
the relative costs of statements of different types. We have shown, with an
example, how these constants can be computed in the case of an assignment
to a multi-ported register.

These constants, though, are not always required to get meaningful con-
clusions, as was shown in the memory design example. In this example, we

37

have presented several memory designs, and we have shown how to choose the
design parameters to obtain the optimum energy cost. These results show that
commercial memory designs, optimized for delay and density, can be greatly

improved in energy performance.

38

Chapter 3

Entropy and Energy of
Reactive Computations

In this chapter we present a lower bound to the attainable energy cost of a CSP
program, based on the entropy of the source that generates the input/output
behavior of the environment. We show, as well, how to use this lower bound
to direct the synthesis procedure.

A CSP program is not only the specification of what an asynchronous
circuit does, but also of how it does it. From the minimum energy point
of view, we want to abstract the how from the specification, and given the
computation performed by the circuit, find the “best” possible implementation
for that computation.

A very large class of programs can be described by their input/output
behavior; for these programs, it is possible to consider the set of all CSP
programs that have the same input/output behavior and pick the one with
the lowest energy cost. Of course, it is not practical to list all these programs.
Instead, we can try to find a lower bound to the energy cost and look at the
programs that get close to that lower bound.

The energy cost of a CSP program, as defined in Chapter 2, can be inter-
preted as the energy complexity of the program, and is similar to the time com-
plexity of the sequential execution of that program. Using that interpretation,
we can relate the energy complexity of a CSP program with the information-
theoretic complexity of the sequence of input/output symbols. We show how
to give a lower bound to the energy cost of a CSP program and under what

conditions the lower bound is attained.

39

In general, a computation engine can be treated as a dynamical system.
From the thermodynamic equations of this system, we can compute the energy

required to perform a given computation as:

final state
AQ = / TdS (3.1)

nitial state

where AQ is the heat dissipated, T is the absolute temperature of the sys-
tem, and S is the thermodynamic entropy of the system. Several models of
reversible computation where the computation proceeds along an isentropic
line [2,12,10], have been proposed. According to these models, any computa-
tion can be performed at an arbitrarily low energy cost, as long as the speed
of forward progress is low enough (or at any speed in the ideal billiard-ball
computer model). Zero energy dissipation is achieved by making each step of
the computation infinitely efficient and, therefore, infinitely slow.

If the computation is to progress at any finite speed, we will have to dis-
sipate some non-zero amount of energy, because the quasi-static requirement
for the dynamical system is not met. It is in our interest, therefore, to make
the computation as simple as possible, or, in the context of digital circuits, to
minimize the “number” of transitions (that is, the transition-count taking into
account fan-in and fan-out of operators). To this effect, we estimate the com-
plexity of the computation by looking at the information theoretical entropy
of the strings generated by that computation [5,1]. Based on this entropy,
we find a lower bound to the energy complexity of any CSP program that
implements that computation.

3.1 Flat CSP

A CSP process P is called flat if it has the form:

P=x*[[Gg—> Ag; SAg
[I G1 —_— A1; SA]

0 Goes — An—1; SAn—g
1]

where the guards G; are stable (that is, once they become true, they remain
true at least until the first action of the guarded command is executed). Com-

40

mands A; are either data-less or boolean communications, and commands SA4;
are constant assignments to state variables. This restriction is introduced so
that all the complexity of the computation is handled by the selection mech-
anism, instead of the data-assignment mechanism.

3.1.1 Flattening a CSP Process

A CSP process can be transformed into flat form by applying the following
rules recursively. The variables that are added when applying a rule are new;
that is, they did not appear in the original program and are initially false. S4
represents a sequence of state variable assignments.

Process. The first transformation converts the whole process into a rep-
etition, if it was not one already:
Py *[[-s — P; s 1]

Sequencing. This transformation removes sequential composition. Other

state assignments are possible to enforce sequencing.

0 G— Ap;A;g;...;A,; Sav

I —sgANG— s4,T;567
0 sg Nsgy — Ao;54,1;54,7

0 sg Asa, — An;sa,l;scl;Sa

Choice. This transformation removes choice composition.
I G— [Gy— Apl...1G, — A,]; Savb
0 s¢gNG— sgT
I s¢ ANGop— Aog; sgl;Sa
0 s¢ NGy — As; sgl;Sa

0 s¢ AGn — An; s¢l;Sa

Repetition. This transformation removes repetition.

4]
I G— *[Gy— Apl...1G, — A,]; Sy
“s¢g NG — sqgl

sg NGy — Ay
sg NGy — A

0 sgA-GogAN...N-Gp, — s@gl; Sa
Bitwise Decomposition. This transformation removes concurrency be-
tween assignments to different bits on the same word, different bits on the

same channel, etc.

I G— Ag,A],...,An; SA[>

0 ~s¢ AG— sgt
I sg A—-say, — Ao;s4,T
ﬂ SG/\"‘SA1 — A1;8A1T

D sgA—sg, — An;sa,T
D sgAsagN...ANsa, — Sa,l5...5861;52

3.1.2 Flat Process Decomposition

A single flat process is an inefficient implementation of a CSP program; all the
guards have to be evaluated every time a command is executed. Hierarchical
evaluation of guards can improve the average cost per command by making
the commands most frequently executed cheaper at the expense of the more
infrequent ones.

Flat process decomposition transforms one flat process into two, in the

following way:

42
*[[Gog — Ap; SAplGy — A1;8A;1 - 0Gn—y — Ap_1;SAn—111 >

*[[GoVG1V...VGj_1~——-—> H
01 G — A;; SA;

0 Gomz1 — An—1; SAn—g
1]
H*[[F/\ﬂGo/\"IGH ANoo.AN=Gj—y — H
I HAN Gy — Ap; SAg

I HA Gj_1 — Aj_1; SAj..]
1]
where H is a new channel.
The two resulting processes are also flat, and we can re-apply the procedure
to each of them to obtain a tree of flat subprocesses.

3.2 Energy and Entropy

In this section we define the energy complexity of the hierarchical decompo-
sition of a flat process and relate this energy complexity to the information-
theoretic entropy of the sequence of input/output symbols.

Hierarchical decomposition of a flat process can drastically reduce the av-
erage energy cost of executing a CSP process. Two mechanisms are at play:
First, we can choose the decomposition so that the more frequently executed
commands are higher up in the tree, and, second, the state of the hierarchi-
cal tree of processes stores information about the history of the computation,
modifying the cost of each command according to this history.

For example, consider a program that executes commands a1, as, as, as,
with Pr(a1) = 1/2, Pr(ag) = 1/4, Pr(a3) = 1/8, and Pr(as) = 1/8. The flat
representation of this program is:

E=x[[Gy — a;
I G2 — ag
I Gs — ag
0 Gy — g
1]

43

The average cost per command for this program is:

C(E)= 24: Pr(a;)logy 4 =2 (3.2)

i=1
We can rewrite this program in the following way:

EH ==*[[G1—->0.1
0 -G — [Gz — ap
D~»G2—>[03~—~903
0 Gy — aq
1]]]

The average cost per command of this program can be computed as:

C(EH) = Pr(a1)logy 2+ Pr(az)(logy 2 + logy 2) +
(Pr(a3) + Pr(a4))(logy 2 + logy 2 + log, 2)
= 1/24+1/2+3/4=175 (3.3)

The new program has a better cost per command because the more frequently
executed command has become cheaper.
Consider next the program:

S=x[(; i:1.n: a;)]

The a; commands all have the same frequency, and therefore the following

program should be efficient:
S=*[[0 i:1.n: pi— az;pil, pivsT)11
where all p; are initially false, except p1, and n +1 = 1.

The average cost per command of S is C(S) = logy n. There is, however, a

better way of encoding §:

SH =*[p; — az;p1l,p27
I —p; — *[ps — az;p2l,ps?
0 —=peA-pr — [...]
]]

Now, for each a;, we execute two guarded commands, each of cost 1; the cost
per command of SH is C(SH) = 2. The difference in cost is due to the fact

44

that the decomposition tree stored the previous history of the computation,
so at any time the non-relevant choices have been discarded.

The previous observations can be formalized. Given a hierarchical decom-
position of a flat process, an execution of that process corresponds to a path in
the tree of subprocesses. This path can be encoded by giving the sequence of
cardinals of the guarded command selected within each subprocess. With this
sequence and the program text, we can reconstruct the computation without
needing to know the sequence of input symbols and reproduce the sequence of
commands that would have been executed by the original process.

For example, consider the program:

P=x[[G]""‘“") H]

ﬂ Gg-—-> A1

I Gs — A

1]

I

*[[Hi NGy — Ag
U—H-1/\G5—> H;
1]

where the A;’s are input/output symbols. Then the cardinal sequence 1, 1, 2,
2, 3 corresponds to the sequence As, Ay, Ag; the cardinal sequence 1, 2, 2, 2,
3 corresponds to the sequence A, A1, As; etc.

As was shown in Chapter 2, the cost of executing a guarded command
from a one-of-n selection scales with logy n. To simplify the notation and the
proofs on this chapter, we use [log,n]! as the energy complexity of one-to-n
selection.

To formalize, let P be a process, FP be the flat representation of that
process, HP be a hierarchical decomposition of FP, a1 ,, = a1,...,a;, be
the first m commands executed by process P. Let s1,..., sywup,q; ,,) De the
sequence of cardinals of the selected guarded commands required to reconstruct
a1.m from HP, and k(HP, a;_,,) be the length of that sequence. This sequence
can be encoded as a list of [(HP, a;.) bits, K1,..., Kiwp,a, ,,)- Finally, let
C(HP, a;.,) be the cost of running process HP until a3, ,, has been executed.

! [z] represents the ceiling function of z, the smallest integer that is at least .

45

We can relate the energy cost to the length of the code with the following
theorem:

Theorem 3.1 C(HP, a1) = I(HP,a;).

Proof: Given n;, the number of guarded commands in the i** selection and

[logs n;] the cost of that selection, we have:

k(HP,a1..m)
CHP,a1.m)= > [logyn] (3.4)

i=1
We need [logy n;] bits to encode the it* cardinal; therefore,

k(HP,a1..m)
I(HP,a1.m)= Y. [logyni] = C(HP,a1..m) N (3.5)
i=1

From Theorem 3.1 we conclude that to optimize the energy cost of a CSP
process we have to find the HP that best encodes the command sequence
ai,...,an. First we compute a lower bound of the optimum encoding, using
some results from information theory.

Let A; be a random variable that takes as value the #** command exe-
cuted by process P. The command sequences of length m have a probability
distribution Pr(A;.), which can be calculated either deterministically (for
example, assuming that all input sequences are possible and equiprobable), or
statistically, by looking at actual traces of the execution of the program. Let
Sm be the set of all command sequences with non-zero probability.

To define the cost per command, we take an average of the energy cost of
the process over a very large number of commands. The limit of the average
cost when the number of commands goes to infinity may not exist, or be
unbounded (as would be the case in a busy-waiting loop). To avoid those
problems, we use the limsup 2 in the following definition:

2

limsupa, = lim sup(a;)
n—+o00 n—100 j>n

46

Definition 3.1 The cost per command of a process HP, C(HP), is defined as:

C(HP) =limsup Y Pr(ay,..., am)—TlﬁC(HP, a1.m) (3.6)

m—+0o (a1..m)ESm

The following theorem gives a sufficient, though not necessary, condition

for the convergence of this limit:

Theorem 3.2 If every loop of HP (that is, every sequence of commands from
HP that has the same initial state and final state) contains at least one com-
mand from P, then C(HP) converges.

Proof: Let K be the length of the longest loop, counted as the number of
selections made in that loop, and n be the number of commands in P. Then

we can write k(HP, a1, ,,) < K x m; therefore:

k(HP,a1..m)
CHP,a1.m)= > [logyni] < K x m[logyn] (3.7)
i=1

Therefore,

C(HP) = limsup »_ Pr(al,...,am)%C(HP,aL‘m)

m—+0o (al..m)esm

< limsup Y Pr(ay,...,am)K[logy 1]

m—+00 (al_.m)ESm

= Klogy n] (3.8)

The lim sup is bounded and, therefore, converges. §
The entropy of the command sequences of length m, H(Ai,...,Ap), is
defined in the usual way [28]:

Definition 3.2 The entropy of a sequence (Ai1,..., Am) of random variables,
H(A1,...,Am), is defined as:

1

(al,...,am)

H(Al, ceey Am) = Z Pr(al, oo ,am) log2 Pr (3.9)

(al..m)esm

We use the following theorem to define the entropy of a process P:

47

Theorem 3.3 The limit,

lim sup —%H(Al, ooy Am)

m—+00
always exists.

Proof: If A; can take n different values, we have
1 1
0< ;’L_H(Al, co iy Am) < - (H(A1D) + -+ H(Ap)) <logyn (3.10)

The sequence is bounded by a constant; therefore, the lim sup exists. §

Definition 3.3 The entropy of a process P, H(P), is defined as:

1
H(P) =limsup —H(A1,..., An) (3.11)
m—+oo M
Now we are ready to prove the basic theorem that gives us a lower bound
to the energy complexity of a hierarchical decomposition of a process P:

Theorem 3.4 For every process P, and every hierarchical decomposition HP

of P, we have:
H(P) < C(HP) (3.12)

Proof: Ki,...,Kyupm) is a prefix-code® for A, ..., A,,; therefore we know
that the average length of the code is at least the entropy of the source of
symbols [28], and we can write:

H(A1,...,Ap) < Z Pr(ai,...,am)l(HP, a1 m)

= Y Pr(a,...,am)C(HP, a1.m) (3.13)

Dividing by m and taking lim sup on both sides of the inequality, we get the
thesis. 1

Theorem 3.4 gives a lower bound to the energy cost of a hierarchical de-
composition. The next question to be answered is under what conditions the
lower bound can be reached. The following theorem gives a partial answer:

3 A prefix-code is a code such that no codeword is a prefix of another codeword.

48

Theorem 3.5 If for every sequence of commands ay,...,a; evecuted by a hi-
erarchical decomposition HP of a process P, we have the following conditions:

1
1' Pr(sk(HPaal..i)lsl7 Tt Sk(HPaal..i)_l) = le(Hp ay)

2. PI‘(Sl, ey Sk(HPﬂl‘.i)) == Pr(al, ey ai)

8. k(HP,a1.;) < K x1

where K is a constant, then H(P) < C(HP) < H(P) + K holds.

Theorem 3.5 can be interpreted as follows. The first condition means that
all choices in a computation of HP are equally probable. The second condition
is automatically verified if, for each sequence of commands from the original
process P, there is a unique sequence of choices from HP. The third condition
puts a fixed bound to the overhead introduced by the hierarchical decompo-
sition. It is satisfied if each loop contains at least one command of P. This

condition excludes busy-waiting.
Proof: The cost of executing a;_,, can be computed as:

k(HP,al_,m)
C(HP,ay p) = Z [logy 1]
j=1
k(HP,a1..m) 1
= log
J.El [2 Pr(sj|st,. .-, 8i-1)
k(HP,a1..m) 1
< k(HP,a;.m)+ log
() ; 2 Pr(sjls1,...,sj-1)
k(HP,a'l‘.m) 1
= k(HP,ay1) +lo
(1 m) 82]I:_Il PI‘(ijSl, ey Sj_.l)

We use the formula:

n
H Pr(xj[:cl, e ,:Ej_l) = Pr(wl, ces ,xn)
j=1
and Eq. 3.14 becomes:
1

C(HP,a1.m) < k(HP,a1.m)+logy Pr
1

(815 -4 Sk(HP,al..m))

= k(HP, a’l..m) + 10g2 Pr(al a)
yeosOm

(3.14)

(3.15)

49

1
< K><m+log2Pr(a1 P
3 "t m

(3.16)

We compute next C(HP):

C(HP) = limsup Y Pr(al,...,am)%C(HP,al,_m)

M=% (g1..m)ESm

1 1
< limsu Pr(ai,...,am)— [K xm+1o
m_—)+£(a1..§):€$’m (o m)m (&2 Pr(ay,.. .,am)>
= limsup K_|._1_ Z Pr(a a)10 1
moeo (@1..m)ESm Lo Gm) 1082 Pr(al, ey am)
= K+HE) (3.17)

The entropy H(P) of a program P was defined based on the entropy of
the sequences of commands from the original program P. We can restrict this
definition to the input symbols or the output symbols, exclusively, and all the

theorems proved so far hold as well.

3.3 Process Decomposition

The entropy of the input/output symbols appears in Theorem 3.4 as a lower-
bound to the best achievable energy dissipation under a simplified energy
model. The bound is, however, not tight. In this section we investigate how
the program can be decomposed so that its energy cost comes closer to its

lower bound.

3.3.1 Program Approximation

One way of simplifying the computation executed by a program is to allow
that program to make “errors”: On some type of inputs the program responds
with an error condition, and the function has to be re-evaluated by the en-
vironment. The idea is that the program that computes the approximation
of the function may have a much simpler implementation than the original
program, with an energy cost closer to the lower bound. Depending on the
probability distribution of the input sequence, this strategy may reduce the

energy cost of the computation.

50

Consider a program P of the type:
P=x[I7z;0lf(z)]
We can replace P by:
P= PR | P

P.=x[I?z;y:= f.(z); [y = error — Ulz; 0O!(D?)
Iy # error — Oy
]]

P ' =«[U?zx; DIf(z) 1

P’ looks the same as P, but the statistics of the input have changed signifi-
cantly since the input of P’ has been filtered by F.. Therefore, good implemen-
tations of P are not necessarily good implementations of P/, and conversely.

To compute the energy cost of B2||P’, we take the average of executing only
P, in case of a hit, and executing P and P’ in case of an error:

C(RIIP)) = C(R) + C(P) (3.18)

where € = Pr(fe(z) = error) = Pr(fc(z) # f(z)).

If P is a deterministic program, its input/output behavior is totally deter-
mined by the sequence of inputs; therefore, H(P) is the entropy of the input
sequence. The same can be said for F, and since both programs have the same

input, we have:

H(P) =H(R) (3.19)

H(P') is, in general, hard to compute because it depends heavily on how the
input sequence was modified by E, as we show in the two following examples.
First, consider the following probability distribution for the input to pro-

gram P:
e if g £ a,

PI‘(.’L‘) — { n—1

€ ifr =z

(3.20)
where z can take n different values. If P, makes an error for z = z, only, then
we have Pr(f.(z) = error) = ¢, and H(P') = 0.

Second, consider the following probability distribution for the input to

program P:
1—€¢ ifz=ux

Pr(x):{_c_ £ % 20 (3.21)

n—1

51

If P makes an error for z # zo only, then we have Pr(f.(z) = error) = ¢, and
H(P') =logy(n — 1).
Let m be the size of the set of values of the input that generate an error:

m = |{z : fe(z) = error}| (3.22)

Then the best we can say about H(P') is H(P’) < logy m. The inefficiency of
splitting P into E||P’ — quantized as the increase in entropy of the resulting
program — is not worse than elog, m. Since m decreases when e decreases,
€logy m can be made arbitrarily small. By using an approximation of the orig-
inal program, we can greatly increase the number of efficient implementations
of the program, with an arbitrarily low theoretical cost in energy.

An alternative way of looking at this problem is with the source coding
function. As before, Sy, is the set of input sequences of m symbols.

Definition 3.4 The source coding function for a sequence (Ay,...,An) of
random variables, ﬂm(e) 15 the smallest positive number H such that S can
be partitioned into two sets, Syt (typical sequences) and Sy 4 (atypical se-
quences), with |Syr| < oM and Pr(Spa) <e.

As before, we can take the limit for a very large number of inputs and have

the following definition:

Definition 3.5 The source coding function for a process P is defined as:

H.(P) = lim sup -T%ﬂm(e) (3.23)

m——+oo

Using Definition 3.5, we can partition the input into typical and atypical
sets, letting P, handle the typical set, and P’ the atypical set. In the worst-
case, P, has to make a choice out of oHe(P), and P’ has to make a choice out
of n — 2He(P), Therefore, H(P’) < log, (n — gH(P)). In the worst-case, using
Eq. 3.18, we can bound the cost of P.||P’ by:

C(PJ|P") > Ho(P) + elog, <n - :ﬁe(P)) (3.24)

We relate next the source coding function to the entropy using the following

two theorems:

52

Theorem 3.6 (Shannon-McMillan Theorem) Given a sequence of inde-
pendent, equally distributed random variables (Ay,..., Ayn,...), with entropy
H(A) and any € > 0, we can choose n large enough so that the set S of all
possible sequences of length n can be partitioned into two sets, S4 and Sr,
such that:

1. Pr(S4) <e
2. If (a1,...,an) € St, then H(A)—€ < —2 logy Pr(ay,...,an) < H(A)+e
3. (1 _ 6)zn('H(A)—s) < iSTI < gn(H(A)+e)

Theorem 3.7 If the inputs to a process P verify the Shannon-McMillan hy-
pothesis, and H(A) > ¢, then we have |H(P) — H(P)| < €

For some types of sources, and for small enough error rates, ¢, the source
coding function corresponds roughly to the entropy of the source.
Proof: From the Shannon-McMillan Theorem we know that there exists a
sufficiently large n such that the set of valid sequences of n symbols, S, can
be partitioned into a typical and an atypical set, S,7 and S, 4, such that
Pr(Sp4) < ¢, and |Spy| < 2MM(A)+€) . Therefore, Hy(€) < n(H(A) + €)

Now, assume that H,(e) < n(H(A) — €). We can encode the source by
assigning codewords of length H,(¢) to the typical sequences and length n to
the atypical sequences. The average length of such a code is

Ho(e)(1—€) +ne < n(H(A) — e)(1 —€) + ne
= n(H(A4) — e(H(A) —¢))
< nH(A) (3.25)

The average length of this code per symbol is less than the entropy of the
source, and this is not allowed by the coding theorem; we have Hy,(e) >
n(H(A) — €) and, therefore, [Hy,(¢) — nH(A)| < ne; taking the appropriate
lim sup we derive the claim. &

Using Theorem 3.7, if € is small enough and the input source is such that
it verifies the hypothesis of Theorem 3.6, we can rewrite Eq. 3.24 as:

C(P:||P") > H(P) + €log, <n - 27%6(1”)) ~ H(P) + elog, (n — 2"F)) (3.26)

which is the expected entropy result.

53

Consider, for example, a memory system with a cache. The entropy of the
input is the entropy of the sequence of memory addresses; the cache can be
considered an approximation of the memory process, with ¢ being the miss
ratio of the cache. To achieve a miss ratio of €, the cache size has to be
approximately 9", Theorem 3.7 implies that very low miss ratios are possible
with a cache size not much larger than 27 (making some assumptions about

the sequence of memory addresses).

3.3.2 Breaking-Up the Input

Combining data from different sources in a single channel can increase the
entropy of that channel, if some information is lost about the source of the
data. Keeping this information around can decrease the complexity of the
program that processes the data on the channel. In general, the more specific
a program is to a particular type of data, the more efficient this program will
be. The question is whether the input stream can be split in such a way that
a net gain is achieved in the lower bound.
Consider a program P of the type:

P=x[I72;[G1(z) — O1!f1(2)1G2(z) — Os!fz(z)]1]

Suppose that G1(z) and Ga(z) are known by the environment. Then P can
be replaced by:

PIE P1 || Pg

P1 = %[II?:L‘; 01!f1.’L’]
Py =x[I37z; Oslfsx 1]

where G1(z) holds for channel I1, and G2(z) holds for channel Is.
Let 6 be the fraction of I; communications relative to the total I7 + Is.
Then a lower bound for the parallel composition of P; and P; is given by:

§H(P1) + (1 - 6)H(Py) < C(P1[|P») (3.27)

P || Py is not strictly equivalent to P; some extra information about the input
is preserved and that can translate in energy savings.

To compute the entropy of P, we model the sequences of communication
commands on I; and I3 as independent random variables, and the interleaving

54

of actions in I as a coin toss of probability é for I; and 1 — é for I5. In this
case, splitting channel I into I; and Iy destroys an amount of information
corresponding to the result of the coin toss, H2(6) = —6logy 6 —(1—6) log,(1—
6) and, therefore:

H(P) = H(P1||P2) + H2(6) (3.28)

Observe that Hy(6) is as well a lower bound to the cost of computing G and
Gs.

Processor memory accesses can be treated the same way as the previous
example. The processor may be accessing data, instructions, stack, video-
memory, data from different processes, etc. There is an entropy advantage
to keeping those access channels separate; however, multi-ported memory is
expensive by almost any measure. An alternative is to provide a caching
mechanism for each type of access. A cache is an approximation of the memory
system; a cache miss corresponds to an error, which can be recovered by the

main memory process.

3.3.3 Control/Data Separation

Control/data separation is used in the synthesis method as a practical way of
reducing the complexity of the design. Data is, in general, very regular and
can be built from standard parts — such as multi-ported registers, adders and
buses — while control has to be synthesized all the way to the transistor level
and is very specific to the circuit being designed.

From the energy complexity point of view, control/data separation is a
good idea. This is because operations that affect a variable in the program
usually affect all bits of the variable equally — for example, reads and writes
from a register —, and therefore actions on all bits are equiprobable, indepen-
dently of the history of the computation. According to Theorem 3.5, grouping
together these actions should help in getting closer to the lower bound.

In some cases, however, the operation on the register is such that not all
bits of the register behave the same way. There may be some advantage to
keeping part of the register in the control circuit. Consider, for example, the

following program:

55

INC=*x[[T —z:=z+1;]
1 §— Sz
11

where z is an n-bit variable. We flatten INC by expanding z into zg, ..., Tp—1

INCp =*[[T Az — xoT; 1
0 TAzgA-zp — zpl, 1731

0 TAZgA...ATp_g AZn_g — Tol,. ., Tn—2l, Tn_1T; 1
01 §— Sz
1]
Expanding the parallel assignments to the x; variables into separate branches,
we get order n? guarded commands; not counting the S communication, we

get:
C(INCp) =~ 2logyn (3.29)

We use Theorem 3.5 to direct the hierarchical decomposition of INCF; at each
level, we require that all choices have the same probability. Observe that xg is
toggled every time that an I communication is executed. We have, therefore,
two equiprobable cases, 2y = true, and zy = false:

INCH = IN00]|1N01

INCy =+*[I[T/\‘ﬂ[b‘o*—-»on;[
0 TAzg — z9l, 1131
15— Sz
1]

INC; =x[[I; A-x; — o113 I

0 Ij Azg A—zg — 31], 2973 I

DI Az A ABpg A=Tpg — 1T, T, g s I

1]

In this decomposition INCy is the control and /NC; is the datapath. Again,
not counting the S communication, we get:

C(INCy) = C(INGy) + -i-cuzvcl) ~1+1logyn (3.30)

36

This cost is half as much as C(INCr). Keeping z¢ inside the control circuit
will improve the energy cost of the program.

The previous example shows that control/data decomposition has to be
done with some care. The main reason to remove data operations from se-
quencing is data parallelism. A command on a data word typically involves a
command on each bit of that data word; given that the word-command has
to be performed, the probability that one of the bit-commands will be per-
formed next is the same for all bits and, therefore, according to Theorem 3.5,
it makes sense to group those bit-commands together. In the incrementer ex-
ample, some bit-commands are much more frequent than others, and a flat

decomposition of the data is inefficient.

3.3.4 Pipelining/Parallelism

Pipelining has been used for a long time as a technique for reducing the cycle
time of digital circuits. This reduced cycle time can be traded-off for reduced
energy consumption, for example, by lowering the power supply voltage of the
circuit — energy per operation is quadratic in the power supply voltage. Of
course, a pipelined circuit will have a more complex behavior than its non-
pipelined equivalent, and we can expect the entropy of the pipeline to be
higher.

Consider, for example, a circuit designed to compute the function h(z),

where z can take n different values:
P =*[L?z; Rh(z)]

Input and output commands alternate, and the function to be computed,
h(z), is deterministic; therefore, the sequence of input/output commands is
completely determined by the sequence of input commands. In the worst-case,
all values of the input are equiprobable, and we have:

H(Pp) =logyn < C(Py) (3.31)

Assume that the function h can be expressed as h = g o f, where both g
and f can take n different values. We pipeline the computation of h(z) with

the following program:

Pyof = Py|| Py

o7

Py =x[L7z; M\f(z)]
Py =x[M7y; Rlg(y)]

If we implement Py and P, separately, then each of those programs looks like
Py, and the cost of the parallel composition will have, as a lower bound:

C(Pf||Py) = 2logy n (3.32)

However, the cost of pipelining should be lower. Consider the transition
diagram of Fig. 3.1. This transition diagram generates all the sequences of
input/output alternations allowed by P¢||Pg, I being the initial state. A path
through this diagram corresponds to a sequence of coin-flips, one for every
two commands. To describe the sequence of input and output commands
completely, we need the sequence of input commands plus the sequence of
results for the coin-flips. Using again the coding theorem, the entropy per
input symbol of Py||P; can be bounded by:

H(Py||Py) < loggm +1 (3.33)

From Egs. 3.32 and 3.33 we conclude that there may be more efficient
implementations of Py,;. Consider, for example, the following program, where

we replace pipelining with parallelism:
Py = Py|| Py

Py =x[L?%x; I; RIf (z); O]
Py =x[I; L?z; O; Rlg(z)]

Program P, is equivalent to Py.s; both programs compute the same function
and have a slack of 1 from L to R. The cost per input symbol of P, can be

computed as: .
C(Fp) = 5 (C(P1) +C(Py)) < 1+ logym (3.34)

The previous result can be generalized to an m stage pipeline. The state
of the pipeline can be modeled by an integer p = cL? — cR!. p is the difference
between the number of completed L? commands and the number of completed
R! commands and, therefore, 0 < p < m. The sequence of values of p, plus
the input sequence, completely determine the input/output behavior of the

o8

A\ A

L?2;L?;, « L?Rl;

RiLe; T RLRL

@

Figure 3.1: Transition diagram for Pf||P,. A path on this diagram corre-
sponds to an allowed sequence of input/output symbols.

pipeline. In the worst-case, p can be modeled by a random walk between 0
and m, for which we need, at most, one coin flip per input symbol. For an m

stage pipeline P, we can write:
H(Pp) <loggn+1 (3.35)

Eq. 3.35 implies that an arbitrary amount of pipelining can be achieved at
almost no cost. That is true under the energy model described in this chapter;
the program P, can be extended to an arbitrary number of parallel processes.
In practice, there is a hidden cost in the implementation of the multiple-
receiver channel L and multiple-sender channel R, that is not captured by
the model. If we restrict the valid implementations to single-sender, single-
receiver channels, the comparison between pipelining and parallelism becomes
a comparison between the costs of copying information and the cost of splitting
a channel. Copying information increases the number of transitions, while
splitting channels increases the cost of each transition; nevertheless, splitting
a channel in two can be done almost for free by using two-phase signaling
protocols and may reduce the entropy of each channel. Other reasons to prefer

parallelism over pipelining are given in other chapters.

59

3.4 Summary & Conclusion

In this chapter we have shown how to abstract the complexity of the speci-
fication of a circuit from the actual implementation. The complexity of the
specification is derived from its input/output behavior and is expressed as a
lower limit to the achievable energy per instruction performance of any CSP
process that satisfies the specification. This lower bound is based on the en-
tropy of the communication symbols with the environment, which expresses
with a single number how hard it is to generate that sequence.

This lower bound is not necessarily tight. Theorem 3.5 provides sufficient
conditions for getting close to that limit. These conditions can be used to
direct the synthesis procedure; in particular, they have consequences in the
way data and control are separated.

Other strategies for improving energy performance have been discussed. It
is possible to improve the lower bound by changing the specification of the
environment — splitting the input channels, for example — or by selecting
alternative implementations of equivalent circuits that get closer to the lower
bound — choosing parallelism over pipelining — or by increasing the number
of candidates for an efficient solution — program approximation.

The results presented here are limited in scope by the validity of the energy
model selected. Their usefulness resides in allowing us to search a large design
space at the high level when the design costs are still low. Among other
areas, we can look at the specification of the circuit and try to simplify or
change this specification for one that has a better lower bound; we can direct
the first division of the problem into subproblems, so that the entropy of the
subproblems is as close as possible to the original entropy.

60

Chapter 4
Low-Energy Programs

In this chapter we describe some programming techniques that result in energy
efficient programs. These techniques are justified in terms of the energy model
for the resulting program structure.

The energy model for a program defines the energy complexity of the al-
gorithm being implemented; we use complexity arguments to decide which
programs are best. This works well for particular instances, but in general
we would like to have a catalog of program templates, or program styles, that
we know are energy efficient. Using these templates as a starting point for
algorithm development, we can reduce the size of the design space without
throwing away interesting solutions.

Next we present four different techniques for reducing energy consumption.
These techniques try to reduce or eliminate the amount of useless work, or
improve the time complexity without hurting the energy complexity, or replace

circuits with cheaper, equivalent circuits.

4.1 Reactive Programs

Reactive programs alternate computation with waiting for input. Computa-
tion is done only on demand, and waiting for input does not require energy.

One of the reasons that asynchronous circuits are energy efficient is that
the design methodology promotes a reactive programming style. As a result,
all transitions contribute directly to the computation, and no energy is wasted
in busy waiting or in checking that there is no more work to be done.

61

An example where busy waiting is employed is the ring of mutual exclusion.
A token is passed around a ring, and the processes that want access to a
restricted resource have to obtain the token from the ring before being granted

access.
TkRng =*[L% [U — U U? 1-U — skip 1; R!]
TkRngO =*[[U — U2, U? 01-U — skip 1;R!; L?]
Master = ...; Ul; Critical Section; U!;. ..

Fig. 4.1 shows how these processes are interconnected. The number of TkRngO
processes in the ring determines how many Master processes can be in the

critical section simultaneously.

Master Master
\L” v
L R L R
.-~ TkRng0O [TkRng [—=>~_
II \\
1 1
i []
\ 1
\ V4
~ . P g

Figure 4.1: Channel connections for a mutual exclusion token ring.

62

The token is continuously circulating around the ring, even if there are
no requests for the token. The distinguishing property of this ring of mutual
exclusion is that if all critical sections eventually terminate, selection among
the processes requesting for access is fair. Fair selection, however, can be
achieved without busy waiting. Consider the program:

Mutex =*[[U; — U; ;U2 0...00, — U7 U,? 1]

Requestor ¢ enters the critical region between the two U; communications.
This program ensures mutual exclusion, but it is not fair. We transform the

program in the following way:
Mutex = Top || Left || Right

Top=*[[L — L% LY [R— R R?
1-R — skip
1
Il R— RYLR:IL— L7 I?
l]-ﬂ—E-“—)Skip
]
1]

Left=*[[U; — LU/ U L 0...00; — Ly LU, U375 LY 10

Right =*[[Ujy; — R Ujr17 Uit RU ... 00U, — RY; Ug?7; Uy 7; R
1]

Selections between the requests from Left and the requests from Right are fair.
We apply the same transformation recursively, and we achieve fair selection
between all requests. Fairness is obtained at the expense of an extra check
on the non-selected channels. If no requests are being made, however, the
previous program becomes idle, and no energy is dissipated.

4.2 Lazy Programs

There are a number of choices concerning when to execute data-communication
actions in a program. The earliest possible time is when the data is known by
the sender; the latest possible time is when the data is known to be needed
by the receiver. The earlier the data is sent, the better the delay performance

63

of the program as a whole. There is, however, the risk that the data sent is
not always needed by the receiver, and, in those cases, we can save energy by
postponing sending data until it is known to be needed on the other end.

A typical example of this situation is the linear stack. A linear stack process
of size N can be defined recursively as follows:

STACK(N,in put,out get) = SE(in put,out get,out push,in pop)

| STACK(N — 1,in putp,out getp)

connect push, putp

connect pop, getp
Last~in, first-out (LIFO) order is preserved between put and get; the environ-
ment will not try to put an element into a full stack, nor get an element from
an empty stack. The actual definition of SE and STA CK (0) determines the
type of stack. To facilitate describing the processes, we will represent the stack
as a left-to-right queue, with the leftmost element being the top of the stack.

We are looking for a stack element SE with the following restrictions: SE
contains only one register, and for any sequence of puts and gets the number
of assignments is the minimum for all one-register stack elements.

With only one register per stack element, we cannot re-order the data
stored in those registers. As long as we do not destroy any information —
that is, we communicate the data before we overwrite the register — the
LIFO property will be preserved.

To minimize the number of data movements to the right, the stack element
has to execute a push only when absolutely necessary. This condition occurs
when the stack element is holding data, all the stack elements to the left are
holding data, and the environment is trying to put into the stack. The same
condition can be applied to the stack element on the left; this stack element
will try to push only when it and the rest of the stack to the left are holding
data and the environment is trying to put. Each stack element has to keep
track of whether it is full or empty. In CSP, these conditions can be expressed
as:

*[[put A empty — put?z, empty|
0 put A —empty — push!z; put?z
1]

To minimize the number of data movements to the left, the stack element

has to execute a pop only when absolutely necessary. This condition occurs

64

when the stack element is not holding data, all the stack elements to the left
are not holding data, and the environment is trying to get from the stack.
Again, the same condition can be applied to the stack element to the left; this
stack element will try to pop only when it and the rest of the stack to the
left are not holding data and the environment is trying to get. In CSP, these
conditions can be expressed as:

*[[get A empty — pop?z; getlz
0 get A —empty — get'z, empty?
1]

Putting these two programs together, we get the code for the lazy stack:

SE _lazy = {empty = true}
*[[put A empty — put?z, empty]
0 put A ~empty — pushlz; put?z
0 get A empty — pop?z; getlz
0 get A —empty — getlz, empty?
11

The full/empty condition can be encoded in many ways. An alternate form

of encoding is the following:

SE_lazy = *[[put — put?z [get — pop?z 1;
[put — pushlz | get — getlz]

1

The lazy stack is not CRT!; it takes w time-steps to put N elements
into the stack and M%B—'l—) time-steps to get them out. However, this is a
worst-case; performance improves greatly if puts and gets are intermixed. In
the best case, where put and get alternate, it takes 2/V time-steps to execute
N puts and N gets.

In order for put to be CRT, the order of the communications push!z; put?z
has to be inverted [16]. To make the get operation CRT, the pop?z communi-
cation has to be done ahead of time and whenever the stack element becomes

empty.

1 CRT = Constant Response Time

65

These two conditions can be met with an extra register in the stack element.
A bottom marker is used to avoid propagating puts and gets into the empty
part of the stack.

SE_eager= {z=y=1}
*[[put — put?z, [y #L— pushly I y =L — skip]
0 get — getly, [z #L— pop?z [z =1— skip]
1;
[put — put?y, [z #L— pushlz [z =1-— skip]
I get — getlz, [y #L— pop?y [y =L— skip]
1]

At best, half of the registers in the stack will contain data.

The previous encoding presents a symmetry between z and y that can be
exploited. A simple analysis of SE_eager shows that the stack behaves like
two separate stacks, one with the x registers and one with the y registers. If
we split channels pu, get, push, and pop we can recode the stack element in

the following way:

SE eager= { z=y=1}
*[[putr — ypushleputz?z
[gelz — ypoplegetz!z
0 zZpop — [z #L1L— zpop?, popz?z 1| £ =1— zpop?]
I zpush — [z #L— zpush?, pushz!s 1 z =1— zpush?]
11 ||
*[[puty — zpushleputy?y
0 gety — zpoplegety'y
0 gpop — [y #L— ypop?,popy?y 0 y =L— ypop?]
0 ypush — [y #L— ypush?, pushyly 1 y =1L — ypush?]
1]

The top of the stack has to split the data into the = and y stacks:

66

ST eager ={ z=y=1}
*[[put — put?z, [y #1L— pushyly [y =L— skip]
I get — getly, [z #L— popz?z [z =1-— skip]
1;
[put — put?y, [z #L— pushz!z [z =1— skip]
0 get — getlz, [y #L— popy?y 1 y =1 — skip]
1]

This encoding of the eager stack has the advantage that data channels always
have the same source and destination registers, which reduces the cost of those
communication actions and allows for interesting optimizations at the circuit

level.

4.2.1 Non-Causal Probe

Using knowledge about the future, we can improve the efficiency of a program
by doing operations in advance or eliminating unnecessary operations. The
non-causal probe, represented as X (double overbar), introduces this type of
knowledge in the programming notation.

The non-causal probe can be used to probe a channel in the guard of an
IF statement. The non-causal probe becomes true if the probe on the same
channel is guaranteed to become true if the execution of the IF statement
were suspended forever. Clearly, the regular probe is an implementation of
the non-causal probe; other implementations are possible.

We can use the non-causal probe to improve the efficiency of the lazy stack:

SE lazy =
x[[put — put?z 1 get — pop?z 1;
[put — pushlz [get — getlz]

]

In the case of the lazy stack, the non-causal probe allows push!z and pop?z
to execute before put and get become pending. The stack works in both
directions as a left-right buffer and will, therefore, have CRT. Since put and get
are mutually exclusive, the order and total number of put and get operations
is going to be the same as in the case of the lazy stack; therefore, this new

lazy stack also uses minimum energy.

67

The non-causal probe has to have a practical implementation to be useful.
It is not possible to know all the future of the computation; otherwise, the
result of the computation would be known in advance. It is possible, however,
to know the near future: a stack machine will execute two gets and one put for
each ALU operation; a digital signal processor will execute a fixed sequence of
puts and gets to simulate a digital filter (this sequence can be pre-calculated,
even though the data is not known in advance).

If the guards which contain non-causal probes do not involve data, the
difference in propagation delay between control signals and data can be used
to determine the value of the non-causal probe in advance (even though little
is known about the next operation). Another approach is to guess the value
of the probe and undo the work in case of an incorrect guess. If the value is
guessed right most of the time, this strategy can improve performance, but
may increase the energy requirement.

The non-causal probe can be implemented as a data channel with slack,
where choices between guards are pre-calculated and queuned for execution. We
modify the code for the lazy stack in this way. We introduce a new channel,

nzt, to get the value of the non-causal probe.

SE lazy = *[[(nzt? = put) — nat, put?z
0 (nzt? = get) — pop?s
1
[(nzt? = put) — push!z
0 (nzt? = get) — nzt, getlx
1]

In this case, this transformation has the advantage of eliminating the probes
on the data channels, allowing freedom of choice between active and passive
implementations.

If the choice is deterministic, it is always valid to replace 4 by AV A. This
transformation can be used to reduce the latency introduced by the slack on
the nxt channel, replacing (nzt? = A) by AV (nzt? = A).

The data on the nzt channel can be calculated by simulating the stack
with a dataless stack. The ordering between push and get or put and get does
not have to be maintained: data is not involved, and these communications

will be re-ordered by the stack element.

68

SEN _lazy = {empty = true}
*[[nput A empty — nput?, empty|, nzt!(put)
I nput A ~empty — npush!, nput?, nzt!(put)
0 nget A empty — npop?, nget!, nxt!(get)
0 nget A —empty — nget!, empty?, nat!(get)
1]

As long as there is enough slack in the nzt channel, the data-less stack will
have CRT. This slack has to store as much of the sequence of gets and puts
as we can pre-calculate. Additional slack will only increase the latency and

energy consumption.

4.3 Worst-Case Delay/Average Energy

In the design of a digital computer, we are not so much interested in the time
required to complete each individual operation, as in the time required to
complete large tasks. Making each operation very fast helps, but making op-
erations in average very fast gets the same result and is a weaker requirement.

This is partially the approach taken in RISC processor architecture. The
instruction set is simplified (types of instructions, addressing modes) so that
instructions execute very fast. Some operations require several instructions,
but the average duration of the operation is shorter than in an equivalent CISC
processor.

In an asynchronous design we can go one step further by using the data-
dependent delays of some operations in our favor. Making sure that the worst-
case delay of an instruction execution fits within one clock cycle requires some
extra hardware (for example, using a tree adder instead of a ripple carry
adder). If the average case data-dependent delay is low enough, then we can
save the extra hardware and some energy dissipation as well. In general, the
fewer restrictions we put on the worst-case delay, the better average delay and
average energy we can obtain.

Arithmetic circuits have large, data-dependent variations in delay due to
the variable length of carry chains. Carry chains can be made of uniform
length, using, for example, tree adders, or carry select adders. The worst-
case and average-case delay of a tree adder will be logarithmic in the number
of bits in the input data, but twice as many adders are needed to compute

69

the addition. A ripple-carry adder will have a worst-case delay linear on the
number of bits in the input data, but the average case (assuming that all inputs
are equiprobable) is logarithmic delay. The average energy-per-addition for
the ripple carry adder is better than the larger, more complex tree adder for
roughly the same average delay.

The main reason this trade-off is possible is that, in many interesting cases,
the circuit to be implemented can be approximated by another simpler circuit
that computes the same function in the most common cases and generates an
error otherwise. Ch. 3 goes in depth into this trade-off; we give here only a
few examples.

We look first at zero-detection for a large number of bits (for example, a
floating point number with 80 bits). We can determine in logarithmic time
and linear energy in the number of bits that the result is zero; however, most
of the time the number is different from zero, and it should take substantially
less energy to do that determination.

We assume that all bits are equally distributed independent random vari-
ables, with equal probability of being 1 or 0. We represent the number as a
vector, B[1..n]. Then we can write:

B[l.n]=0<« B[l..j]=0AB[j+1.n]=0 (4.1)
We start with the following specification for the zero detection circuit:
Zero(n) = x[[Z — Z(B[1..n] = 0) 1]
The following program uses lazy evaluation to reduce energy consumption:
Zero(n) = Zerol || Zero(n — 1)

Zerol =*[[Z A B[1] — Z'false
I ZA=B[1]— 2Z)(Z17)
1]

Zero(n — 1) =*[[Z1 — Z1Y(B[2..n] = 0) 11
The energy consumption of Zero(n) can be computed as:

C(Zero(n)) = C(Zerol)+ Pr(B[1] = false)C(Zero(n — 1))
= K+ %C(Zem(n -1)) (4.2)

70

where K is the energy cost of executing Zerol, which is independent of n. If
we apply the same transformation recursively, until all of the vector is broken
up in bits, we get:

C(Zero(n)) < 2K, (4.3)

We compute similarly the average-case delay, D(Zero(n)), and the worst-case

delay, WD(Zero(n)):

D(Zero(n)) < 2Ty (4.4)
WD(Zero(n)) = nTh (4.5)

where T is the delay of Zero(1).
The worst-case delay can be reduced at the expense of some energy. The
following program evaluates the zero condition of all bits simultaneously:

Zero(n) =*[[Z — Z)(Z0? A Z17?) 1]

Zero(1..) =*[[Z0 — Z0\(B[1..5] = 0) 11
Zero(j+1.n) =x[[ZI — Z1Y(Blj+1..n]=0) 1]
The energy and delay equations in this case are:

C(Zero(l.n)) = Kpn+2C(Zero(l..n/2)) (4.6)
WD(Zero(1..n)) = Dy, + D(Zero(1..n/2)) (4.7)

Applying the transformation recursively, until all of the vector is broken up in

bits, we get:

C(Zero(1.m)) =~ 2nKp (4.8)
WD(Zero(1..n)) =~ Dplogsn (4.9)

The worst-case delay has improved significantly, but both the average-case
delay and average cost have increased. An alternative is to combine both
programs so that the worst-case delay can be reduced without such a high
penalty. Assume n = 2V; we apply the second transformation J times, J <
N, and we are left with 27 vectors of length 2V~ to check against zero.

71

Combining the equations for both cases, we obtain:

) ~ (2 - 1)K, +2 K, (4.10)
D(J) ~ JTp,+2T} (4.11)
WD(J) =~ JTm+2V7Ty (4.12)

The previous equations can be used to select J given the largest allowable

worst-case delay, average delay, or energy cost.

4.4 Concurrency

In the previous sections we reduced the energy consumption by increasing
the sequentiality of the program, thus avoiding useless work. In the examples
presented (both the lazy stack and the zero detection circuit) there was enough
inter-symbol dependency in the input stream that it made sense to postpone
some computations until the results from other computations were ready.

If the computations to be performed on the input stream are independent
on each symbol (as, for example, on a vector operation), we have two im-
mediate choices for efficient implementation: pipelining of the operation and
parallelism. Pipelining improves the cycle time, but it requires a lot of copy-
ing of data down the pipe. Parallelism splits the input stream into several
sub-streams and performs the computation in parallel on each sub-stream at
a much-reduced rate. There is less copying of information (except for the split
and possibly the merge of the streams at the end of the computation), but the
area requirement for a given throughput might be larger than for the pipelined
circuit because of the replication of the computing circuit and the routing of
signals.

Many other applications can be parallelized efficiently. The following is an

example of a serial-to-parallel converter:
S2P = x[[L?z; Ulz; L?z; D!z]]

Fig. 4.2 shows the channel interconnection for the converter.

In this case, we have the liberty to give different implementations for the
first few stages of the split rather than for the last stages. The throughput
will be high only in the first stages, which imposes extra requirements on the

72

AWA
Vv

Fast Stage Slow Stage

Figure 4.2: Channel interconnection for a serial-to-parallel converter.

circuit design. Even though all stages have the same CSP code, it is reasonable
to expect that the energy dissipation of fast and slow stages will be different
in actual implementations. We can take care of this problem by selecting
different constants for the communication actions of each stage, though this
approach involves mixing delay considerations with the energy model.

A different type of concurrency can be extracted from computations that
have some predictability, such as instruction memory accesses. Instruction
memory accesses are, most of the time, accesses to consecutive memory loca-
tions. This fact can be exploited in two ways to make a more efficient memory
in terms of speed and energy cost. First, the address does not need to be
communicated all of the time; it can be calculated locally. Second, several
consecutive words can be read in parallel at one time, thus reducing the num-
ber of memory references.

The following program describes a read-only memory with sequential ac-

cess:
MEMS =+[[A — A% 0 D — D!M[a++] 1]

where M is an n X b array (a++ means post-increment o with wrap-around).
After an address a is sent to the memory, several data requests are executed.

73

Sequencing between the A and D communications is maintained by the envi-
ronment.

We can reduce the number of accesses to the array M by reading several
words in parallel. We replace M by an (n/m) x mb array, MP. After receiving
an address, the variable line is read from the array, and subsequent data
requests are satisfied with data from line until a.w overflows and new data is

read into line.

MEMR = (PREF | MEMP)

PREF =x[[A — Aw?aw, B'AI?, v|
I DAv — Dllinela.w++];
[a.w=0— v]
I aw+#0— vT
]
0 DA-v — L?line, v
1]

MEMP =*[[B — B?% [L — LMP[b++] 1]

Notice that MEMP has the same form as MEMS.

We compute next the average energy cost of reading a word from MEMR,
and compare that cost with the energy cost of reading a word from a memory
array. Let k£ be the number of consecutive memory references. To satisfy
those k requests, the program MEMR has to execute one A.w, A.l, and B-
communication; k¥ D-communications; about [—7’%] L-communications; about
[%1 reads from an (n/m) X mb array (MP); and k reads from a m X b array
(line). The energy cost of executing those k requests is:

kx Es = Kylogyn+ Kpglog, —% + k(EgR(m,b) + Kp) +
k
[;%—-1 (Eg(n/m,mb) + Kp) (4.13)

where Er(n,b) is the energy cost of reading an n x b array. We take expected
value on both sides of the equation to obtain the expected energy cost of
reading one word from MEMR, Eg(n,m,b):

Eg(n,m,b) =

74

(KA logy n + Kp logy — + K(Eg(m, b) + Kp) +
L—/:;] (Eg(n/m,mb) + Kp))/E (4.14)

To optimize the previous equation, we use Eq. 2.47 for Eg(n/m, mb); k and
I—%] are determined from program traces.

For example, if all constants are equal to 1, n = 220, b = 32, k = 8, we
obtain the minimum energy cost for m = 8, Eg = 1134. Compared to the
minimum energy cost of accessing a memory array, Fp = 1493, we do not
obtain a significant improvement. However, the optimal block size for this
parameter set is eight words per block; with this block size, most of the silicon
area occupied by the memory will be dedicated to routing of data and address,
resulting in very poor memory density. We can choose a sub-optimal block
size to improve in density; for a block size of 210 words, we get Ep = 3195,
and Eg = 2590. The pre-fetch mechanism allows us to use a denser memory
with a smaller energy penalty.

We use a simple sequential access model to compute the hit ratio for
the line array. If afi] is the i** address in the sequence of accesses, then
Pr(ali + 1] = a[i] + 1) =), that is, the probability that the next address is in
sequence with the previous oneis A, 0 < A < 1. Also, if a[i+1] # a[i]+1, then
afi + 1] is uniformly distributed over the address space. If n is the number of

memory locations, we have:

1-)
Pr(ai +1] =2z) = {i_—;— n

n ?

ifz=ali] +1

i (4.15)
otherwise

With this model we compute how many words are used in average from the
line retrieved from memory. If the line has m words, and [is the number of
words used from the line, then the expected value of [, E(l), can be calculated

as:
E() = JioiPr(l —i) = fpr(z > i) = mf Pr(l > i) (4.16)
=0 =0 1=0

Let y be the index within the line of the first word in the sequence. Let
Py be the probability of having overflow from one line to the next. Using the

75

uniform distribution assumption, we have:

P+EA, ifi=0

Pr(y =1) = =h ifo<i<m
0, otherwise

We can calculate the probability of overflow, P, as

m

Py = Y Pry=m- DA

i=1
1- Py &,
= PA™ 4+ —23 X
moim

1—Pyl— ™

= PpA™ 4+)
oA+ 12

Solving for Py,
A

P0=m(1_/\)+)\

(4.17)

(4.18)

(4.19)

The probability of [> i can be calculated as the probability of getting at least
i+ 1 addresses in sequence, times the probability that the first address in the

sequence falls in the first m — i words of the line. That is,

Pr(l > i) = Pr(y < m — i)\’

m—z‘_1 (1= X)i
T m(I=X)+ A

Prly<m—i)= P+ (1 - P)

ml/o (1= A)iX
E() = L S
0= 2 (A =) +,\>

(1 —A—2™ 4 2,\m+1) m 4+ 2\ — 2\™+1

A=A (M =N+N

The hit ratio for this one-line cache is h(m, A) = E(l)/m,

1—A—2\" 4 2/\m+1) m+ 2X\ — 2\m+1

(
h(m,) = m(1—A) (m(1 —X)+ A)

(4.20)

(4.21)

(4.22)

(4.23)

Notice that h(m,0) = 1/m (addresses are random; only one word is used
per line) and A(m,1) = 1 (addresses are sequential; all words are used from

76

every line). For m = 1/(1 — A) (average length of a sequence of consecutive

addresses), we can easily show that:

2
=~ 0.76 (4.24)

1 3
h(——=,A) > = —
(1 —A) 2
Given the energy per access for a memory of size (n/m)xmb, E,(n/m,mb),
we can calculate the average energy per access using the previous pre-fetch
scheme as the energy cost of retrieving a line from a m-word wide memory,
divided by the average number of words used from a line:

Eq(n/m, mb)

AN (4.25)

Ep(n,b,A) =

where we have assumed that the energy required to select one word out of m
is a very small part of Ep(n,b, A). The reduction in energy per access, p, is:

_ Ep(n,b,A) Eq4(n/m,mb)

= 4.
E,(n,b) m h(m, A)Eq(n,b) (4.26)
We use Eq. 2.41 to substitute E,:
logy(n/m) +2mb + 1 (4.27)

S h{m, A)v/m(logyn + 20+ 1)

Minimizing p with respect to m gives the optimum size of the pre-fetch line.
The equation that results is transcendental, and we cannot give a closed form
expression. We can, however, determine numerically that if n > m, a good
approximation for the optimum is m = 1/(1 — \), and we get:

(1-)2

2
0.76 (4.28)

p R
For example, if in the execution of a program we have a branch instruction
every eight instructions in average (that is, A = %), we can expect an improve-

ment of p = 1/17.

77

4.5 Summary & Conclusion

We have shown in this section some of the consequences of the correspondence
between energy complexity of programs and energy dissipation of circuits.
These translate into programming techniques to achieve low energy complexity
and several trade-offs that can be made between energy complexity and time
complexity.

Reactive programs come naturally as a programming style for CSP pro-
grams, and that is the reason why many circuits designed so far without low-
energy performance in mind have very good energy characteristic. Reactive
programs avoid wasting energy in busy-waiting loops.

Lazy programs postpone actions whose result may be invalidated by a
later action as much as possible, until it is known that the result will be
used. Lazy programming improves the energy efficiency of the algorithm at
the expense of the delay performance. To recover some of the lost performance,
we introduced the non-causal probe to look ahead in the future and determine
whether the action will be needed. The non-causal probe is not implementable
in general, but a good approximation can be implemented in many interesting
cases. The non-causal probe corresponds, in a sense, to letting the control
circuit run ahead of the data and, thus, increase the concurrency between the
data operations.

Worst-case delay can be traded-off for energy dissipation without affecting
the average-case delay much. Reducing the worst-case delay involves extra
circuitry that increases the energy cost of the average case and does not nec-
essarily improve in the same degree the performance of the system as a whole.
In some examples, such as the zero-detection circuit, reducing the worst-case
delay increases the energy cost and the average-delay and may degrade system
performance.

Finally, we have shown that concurrency is an important source of effi-
ciency. If there is some amount of data-independence in the input stream, it is
convenient to replicate the hardware and split the input stream to keep delay
performance at a lower energy cost. In this way, we trade-off area for energy

cost.

78

Chapter 5
Energy/Delay Sizing

In this chapter we show that transistor sizing for minimum-energy and transis-
tor sizing for minimum-delay are equivalent problems. We look at energy/delay
models for optimum sizing, and how to simplify these models using local op-
timizations at the gate level, that do not alter the global optimum.

Transistor sizing is one of the final stages of the design before the physical
layout. The purpose of transistor sizing is to select the size of all transistors in
a circuit so that some measure of performance is optimized or some minimum
requirement of that measure is met. Two problems have to be solved: first,
choosing a relevant measure of performance; second, solving the optimization
problem. Choosing a relevant measure of performance is far from trivial;
asynchronous circuits have no clock period to optimize, and worse-case delays
are not relevant if they are very different from average-case delays. Also, power
dissipation varies substantially with the level of activity. A more elaborate
measure of performance will be, in general, harder to evaluate and optimize.
At the transistor level, the number of parameters to be calculated is very large
(one per transistor), and computationally simple transistor models are not
accurate for sub-micron CMOS technology.

As a consequence, transistor sizing requires some trade-offs between accu-
racy and computation time. The weak point of sizing methods such as [11,4,
27] is the use of the Elmore delay model [9]. In exchange, the global measure
of performance is computationally simple, and the optimization problem turns
out to be convex in many interesting cases. The accuracy of the energy/delay
model can be increased significantly by using more elaborate transistor mod-
els. To keep the optimization problem simple, the number of parameters has

79

to be reduced with local optimization — restrictions on the number of dif-
ferent transistor sizes, per-gate optimizations that do not affect the global
optimum, use of symmetries in datapath circuits, etc. — or the global mea-
sure of performance has to be broken up so that the optimization can be
performed independently on smaller sub-circuits. The global optimum can be
replaced by a local, easy-to-compute optimum, leaving to the high-level design
optimization the responsibility of eliminating bad local optima.

Transistor sizing is usually done to optimize delays. In general, minimum
delays require infinitely large transistors (so that delays due to parasitic wiring
capacitance are eliminated). To get an implementable solution, some con-
straints have to be added: area, power, or some other transistor-size related
constraint. Other sizing strategies are possible. We can, for example, minimize
the energy required for a given operation. Without any further constraints,
for a CMOS circuit the optimum corresponds to all transistors being mini-
mum size. To obtain a meaningful solution, we have to add a constraint, for
example an upper bound to the delay, cycle time, or some other speed-related

constraint.

5.1 Delay vs. Energy Optimization

Given a circuit C to be sized, we define two functions, D(S), and E(S); where
S = (s1,...,8n) are the transistor sizes to be determined, D(S) is the time
required to perform a certain computation, and E(S) is the energy required to
perform the same computation. These are not two arbitrary functions; they
are related by the circuit itself. We will assume that D(S) and E(S) have the
following properties; these properties are derived from the physical nature of
energy and delay and have to be verified for specific examples.

Property 5.1 D(S) and E(S) are continuous functions of S.

Property 5.2 Delay can be traded-off for energy, and vice-versa. That is,
given S and € > 0, there exist s and t such that |s| <, |t| <¢, and:

1. e>E(S+s)—E(S)>0
2. ¢>D(S)=D(S+s)>0
3. ¢>E(S)—E(S+1t)>0

80

4. ¢e>D(S+t)—D(S)>0

The meaning of this property is that there are no flat regions anywhere on
the E(S) and D(S) functions. The upper bound to the function variation is a
consequence of the continuity of the energy and delay functions.

Consider, for example, as a function D(S) the sum of Elmore delays in the
critical cycle of an asynchronous circuit, and as F(S) the sum of all transistor
widths. These two functions are continuous, so property 5.1 is verified. If we
multiply all transistor widths by a factor A > 1, all delays will decrease since
parasitic wiring capacitances become relatively less important; therefore, the
cycle time will decrease and the sum of all transistor widths will increase. The
converse happens when A < 1; therefore, property 5.2 is verified as well.

We define next the delay and energy optimization problems.

Definition 5.1 Given a delay function D(S) and an energy function E(S),
and two positive numbers Dy, and E,,, the delay optimization problem is to
find Sy such that D(S) has a local minimum at S = Sp, with the constraint
E(S) < Ep; the energy optimization problem is to find Sy such that E(S) has
a local minimum at S = Sy, with the constraint D(S) < Dy,.

Theorem 5.1 Given D(S), E(S), Dm, Em, So, and S1 as in the previous
definition, we have E(Sy) = E,, and D(S1) = Dp,.

Proof: Assume that F(Sy) < En. From property 5.2, and using € = E,, —
E(Sp), there exists s such that E(Sy + s) < Ey and D(Sy + s5) > D(Sp).
This contradicts the definition of Sy. Therefore, E(Sy) = Ey,. A similar proof
holds for D(S1) = Dp,. 1

Theorem 5.2 The delay optimization problem is the dual of the energy opti-
mization problem. That is, given D(S), E(S), Dp, and E,,, then

1. if Sy is a solution to the delay optimization problem, it is also a solution
to the energy optimization problem with Dy, = D(Sp).

2. if S1 is a solution to the energy optimization problem, it is also a solution

to the delay optimization problem with E,, = E(S1).

Proof: Let Sy be the solution to the delay optimization problem. From Th. 5.1
we know that E,, = F(Sp). Then there exists § > 0 such that, for all s, if

81

|s| < 6 and E(Sp+ s) < E(Sp), then D(Sp + s) > D(Sp). By contraposition,
there exists § > 0 such that, for all s, if |s| < 6 and D(Sy + s) < D(Sp), then
E(Sp + s) > E(Sp).

We still need to know what happens if D(Sp + s) = D(Sp). Assume that
there exists s, |s| < 6, such that D(Sp+s) = D(Sp) and E(Sp+s) < E(Sp). We
apply property 5.2 with € = min(6—|s|, E(Sp)— E(So+s)). Then there exists ¢,
|t] < e, such that D(Sp+s+1t) < D(Sp) and E(Sp+s) < E(So+s+t) < E(So).
But |s +t| < 6, therefore E(Sp + s +t) > E(So). This contradicts the
assumption and, therefore, implies the first claim. A similar proof holds for
the second claim. g

Definition 5.2 Given a delay function D(S) and an energy function E(S),
the delay sizing function Sp(S) is the function that assigns to S the closest
solution to the delay minimization problem with the constraint En,, < E(S);
the energy sizing function Sg(S) is the function that assigns to S the closest
solution to the delay minimization problem with the constraint Dy, < D(S)!.

Theorem 5.3 The following properties hold:

1. If Sp(S) is defined, then Sp(Sp(S)) = Sp(S).
2. If Sg(S) 1is defined, then Sg(Sg(S)) = Sg(S).
3. If Sp(S) is defined, then Sg(Sp(S)) = Sp(S).
4. If Sg(S) is defined, then Sp(Sg(S)) = SE(S).
5. If Sp(S) and Sg(S) are defined, then (Sp(S) = Sg(S)) & (Sg(9) =
SvSp(S)=2S5).
Proof:

1. From the definition of Sp(S) and Th. 5.1, we have E(Sp(S)) = E(S).
The constraint is the same; therefore, Sp(S) is a valid solution for the
new delay optimization problem and is the only solution at distance 0

from itself. §

2. Similar to 1.

1 Tf more than one solution lies at the same distance, a suitable total order on S is used

to choose one solution.

82

3. From the definition of Sp(S) and Th. 5.2, Sp(S) is a solution to the
energy optimization problem with constraint D(S) < D(Sp(S5)), and is
the only solution at distance 0 from itself. g

4. Similar to 3.

5. (=) Assume S # Sg(S). Then E(S) > E(Sg(S)); but from Th. 5.1 we
have E(Sp(S)) = E(S), and therefore Sp(S) # Sg(S).

(<) If Sp(S) = S, then Sg(Sp(S)) = Sg(S); from 3 we have Sp(S) =
Sg(S). A similar proof holds for the case Sg(S) = S.

The previous results show that energy minimization and delay minimiza-
tion are very closely related, and techniques used to solve one problem can be
used to solve the other. Delay minimization techniques try to provide a good
delay function so that the sizing obtained corresponds to the best possible
measured performance on the fabricated circuit. The energy function used in
the constraint will not be, in general, an accurate prediction of the energy
consumption of the fabricated circuit because some other numerical properties
of the constraint are more important for the optimization algorithm (it is con-
venient that the constraint be computationally simple and a convex function
of S).

If we want to guarantee that the optimal sizing results in a good measured
energy performance, we have to provide the sizing algorithm with an accurate
energy model. The added complexity will be reduced by doing some amount of
local optimization or by simplifying the timing function, which now becomes

a constraint.

5.2 Gate Modeling

The energy and delay functions studied in the previous section are very general;
properties 5.1 and 5.2 are the only restrictions imposed on them. The names
do suggest, however, that the delay function have some relation to the time
performance of the circuit and that the energy function have some relation to
the energy performance of the circuit.

In this section we narrow the choices on energy/delay functions by defining
an energy delay model for individual gates in the circuit, and by considering

83

only those energy/delay functions that can be built from the gate models in
the circuit.

Gate-level modeling is convenient because it can be developed independent
of the global timing analysis of the circuit. Also, in most design techniques,
circuits are naturally divided into gates; the function of a gate can be ab-
stracted and modeled, and the transistor circuit of the gate can be optimized
for that particular function, thus reducing the total number of parameters.

The influence of a gate on the rest of the circuit is determined by the
function it computes, and by the electrical interaction with other parts of
the circuit. For CMOS gates, this electrical interaction is reduced to its input
capacitance, delay per transition, and energy dissipation per transition. Given
these parameters for each gate, we can predict the behavior of the circuit to
some degree of accuracy, without knowledge of the actual transistor netlist.

N C Co
input ! ! ! !
vdd i y h i
I !
4 I
: >
| fall time rise time time
output | . ' ==
Vdd ! Lo .
O\ /
' AN 1
; :
1 ! .
X ' time
‘< delay—s=

Figure 5.1: Input/output voltage relationships.

84

Gate delay is an abstraction of when and how the gate switches its output.
The how is important in case the inputs to the gate are unstable (that is, the
input condition that makes the gate switch is negated before the gate finishes
switching). Instability generates transients whose behavior may be important
to model with accuracy.

Quasi delay-insensitive (QDI) circuits, for example, do not have any unsta-
ble guards, except those appearing in arbiters. In these cases, the arbitration
is solved by using a circuit similar to the one shown in Fig. 5.2. If both inputs
I1 and 72 come in at the same time, the circuit formed by the cross-coupled
nand gates may go into a metastable state; transistors 71 and T2 wait for
the outputs of the nand gates to differ in at least one threshold voltage before
producing an output, by which time the metastable state has been resolved
into one of the two stable states.

"
b sl a4

12 T2 /
b L Do
Figure 5.2: Arbiter Implementation for QDI circuits.
The delay model for QDI circuits has to guarantee the correct operation of

metastable circuits. However, since arbiters are used very sparingly and can
be identified easily from the circuit specification, it is more convenient to use

85

a simpler delay model for the rest of the circuit and a specific delay model for
arbiters.

The delay on a gate depends on the transistor circuit for that gate, the
output load, and the shape of the input signal. Of all, input signal shape is
the hardest to quantize; the order in which inputs occur and the rise time
of those inputs, all seem to affect the actual shape of the output signal. To
account for most of those effects some assumptions have to be made about
“reasonable” input shapes. Since inputs are the outputs of other gates, input
and output shapes have to be similar. From the stability requirement we know
that there will be no runts as outputs, that is, all signals are allowed to make
full transitions.

Several models for CMOS delay estimation have been proposed in the past.
These models vary in the way that the delay through the gate is computed,
and in the nature of the circuit that is assumed to generate that delay. We
can classify those models in two categories: those that model the behavior of
individual transistors and those that model the behavior of individual gates.

5.2.1 Transistor Modeling

The most accurate way to compute gate delay is to solve the transistor equa-
tions for each gate in the same way that, for example, SPICE2 [24] simulates
a circuit. This type of transistor modeling will generate the right answer with
very few assumptions about the input signal. Even though this approach can
be used for small circuits, its computational complexity is very high, especially
if we use it as a model for global sizing optimization.

Increasing the accuracy of the equations that model the transistor does
not necessarily improve the overall accuracy of the prediction. More precise
equations rely on a larger number of process dependent parameters that may
not be very well known or that may have large variations from one fabrication
run to the next. Also, because the modeling is done to a finer level of detail, the
effect of parasitic capacitors, resistors, and inductances becomes noticeable,
and therefore these parasitics have to be extracted or predicted with better
accuracy.

Adding constraints to the input shape, we can simplify the transistor equa-
tions and still get a fairly accurate prediction of the timing function. The
transistor network of the gate can be replaced by an RC-network plus ideal

2 D— R2

—D o v e —Do

® D =T=c BD—T—1KR ==c.+c
- T c3 s
4 D>—1 A4 4 Re_| N

T c4 Cay
v <~
(b) (c)

i Hg/ i D_%:_m_cl R‘I Crp
}__

Ll

Figure 5.3: RC-model for CMOS gates. (a) transistor model, (b) CMOS
gate, and (c) equivalent RC-network model for that gate.

switches, as in Fig. 5.3. The source, drain, and gate capacitances, Cs, Cd,
and Cyg, are proportional to the transistor channel width, while the channel
resistance, Rc, is inversely proportional to the channel width. Based on this
model, it is possible to make predictions on the upper and lower bound to the
signal delay through the RC-network [26].

The RC-model for transistors is not very accurate for submicron devices
because of velocity-saturation effects. The relationship between transistor sizes
and timing parameters becomes very complex and is not suitable for global

optimization.

87

5.2.2 Macro Modeling

Gate modeling, or macro modeling [23,25,6], attempts to reduce the complexity
of the optimization problem by providing timing models for logic gates. All
internal nodes to the gate are eliminated, and the gate is replaced by an
equivalent and simpler electrical model.

Gate modeling can be done in many different ways. In [23], complex gates
are mapped into simple gates as inverters. Sizes are computed and optimized
on those inverters and then mapped back to the original gate. The reduction in
complexity corresponds to the reduction in the number of degrees of freedom
of the complex gate, to the number of degrees of freedom of the inverter. The
accuracy of the method is dependent on the accuracy of the mapping function.
A similar approach is followed by [30], where the concept of logical effort [29] is
used to separate the logic function that the gate is computing from the physical
modeling of that gate with an inverter. This type of modeling is more adequate
for asynchronous design because it can deal better with feedback loops.

In [25], a look-up table approach is used. The delay computation is tabu-
lated for different gate types and configurations. This method is very accurate,
but it requires large tables to be useful, especially if each gate has several pa-
rameters. The size of the look-up table can be reduced by combining the effect
of some of the parameters into scaling laws.

The method presented in [15] derives the delay equations from the non-
linear equations for the transistor circuit, and the theoretical parameters are
adjusted from SPICE simulations. These equations are developed for simple
combinational gates (nand, nor, AOI, OAI, inverters) under all possible trig-
gering conditions. The resulting model is very accurate (to within 10% of
SPICE), but it is restricted to those gates for which a model was derived.

5.2.3 Gate Model for Optimum-Energy Sizing

Gate models have traditionally been optimized for very accurate delay predic-
tion at the expense of the energy function. This is an acceptable strategy if
the purpose of optimization is to obtain the best delays at a reasonable price in
energy dissipation. The energy measure most commonly employed is the sum
of all transistor sizes. This energy measure is positively correlated to the total
energy consumption, to the area of the circuit (in the case of a datapath, not

88

true for control logic), and to the probability of transistor failure (assuming
that fabrication flaws are the most critical on transistor gates); it also has the
fundamental property of being a posynomial? on the transistor widths and,
therefore, a convex function of the logarithms of the transistor widths [11].
When the purpose of the optimization is to minimize the energy dissipation
in absolute terms, we have to use a better model. On Ch. 2 we have shown
that the energy consumption of a CMOS circuit could be approximated by the

equation:
Er = (K1 + KsVpp) Vip (5.1)

The same equation is valid for individual gates or individual transitions in
each gate. We can derive Ky and Kg for the circuit, adding the coefficients
corresponding to each of the transitions occurring in the operation of the
circuit. If there are n different transitions in the circuit, with K7;, Kg; being
the coefficients corresponding to the i** transition, and f; being the relative
frequency of the i** transition, we have:

n
Er = Y fi(Kpi+ Ksi Vop) Vip

i=1
= (Y fiKri+)Y fiKs; VDD> Vi, (5.2)
i=1 i=1
Kp = Y fiKL (5.3)
i=1
Ks = Y fiKs; (5.4)
i=1

Observe that the f;’s can be computed independently of the scenario chosen
for the timing simulation. This way, the energy function can correspond to
average energy dissipation, while the timing function corresponds to a specific
simulation. This is especially interesting for circuits with data dependencies,
where not all gates are used with the same frequency and, therefore, do not
contribute in the same way to the energy dissipation.

Next, we assume that the delay function for the circuit is based on the

2 A posynomial is a polynomial with positive coefficients, positive variables, and integer

exponents

89

timed simulation of the circuit [4]. In that case, the other gate parameters
that are relevant to the sizing problem are delay, transition time, and input
capacitance. Delays are used to compute the timing function. To insure
that isochronic forks do not misfire, we have to impose maximum restrictions
on transition times; finally, input capacitance plays an important role in the
interaction between gates.

Each gate will have at least two different transitions, one up and one down.
More transitions per gate are possible: transitions are identified by the input
condition that causes them, or the production rule that fires, or the transis-
tor path that ties the output node to ground or Vpp, etc. Identifying the
transitions is part of the logic specification of the gate.

The sizes of the transistors in a gate can be fixed arbitrarily within certain
limits that ensure that the gate works correctly. These transistor sizes repre-
sent the degrees of freedom of the gate; we can, however, choose a different
set of independent variables that allow us to compute the transistor sizes and
that are more convenient in the context of the optimization problem.

To summarize, the characteristics of the gate model gate are:

1. An output load, Cp,.

2. m degrees of freedom, k1,..., kp,.

3. pinputs, I,..., I,.

4. For each input I;, an input capacitance, Cj(ki, ..., kmn)-
5. n transitions, 11,...,T,.

6. For each transition, Tj;

(a) An energy equation, E;(ky,. .., kn,CL).
(b) A delay equation, Dj;(ky, ..., kn,CL).

The independent variables ki, ..., k,,, may not have physical meaning; the
input and output capacitances and energy and delay functions, however, do,
and we can derive some properties for these functions from their physical

meaning.

90

Property 5.3 The gate delay and energy functions are continuous functions
of k1,...,km,Cr, and differentiable functions of Cr,, and verify the following
equations:

OF;
1. a—c'i‘ >0
oD;
2 5o >0
Again, these properties have to be verified for the specific energy and delay
function chosen to do the optimization.

5.2.4 Parameter Reduction

" j/ Wi
D—Cj —OQI—

2 >—d

3 D—| w1 W2 = .
] L
14 >— W N

~

Figure 5.4: Two-level circuit for a generalized C-element with weak inverter
feedback.

91

Consider the two-stage implementation for a generalized C-element shown in
Fig. 5.4. To simplify the example, we assume that all transistors in the same
pull-up or pull-down chain have the same width. The up-going transition
corresponding to the production rule I3 A I — O7 can be modeled with 3
parameters, W1, W2, and Wf, plus the output load Cy. This gate has more
degrees of freedom than we need; given an input capacitance and a delay,
there are many assignments to the gate parameters that achieve that input
capacitance and delay. Nevertheless, the only interesting assignment is the
one that minimizes the energy function.

We show next that the number of parameters can always be reduced to, at
most, two per transition, plus the output load Cj,, without altering the global
optimum.

Consider the function,

Ui (k1, .. kmy C1L) = (Ej(kl,...,C’L),Dj(kl,...,CL),C'j(kl,...),C’L) (5.5)

where F;, Dj, and C; are are the energy, delay, and input capacitance function
for a particular transition, T;. Let D; and R; be the domain and range of
U;. We assume that D; is a closed set. We further assume that R; is a closed
set3 and that both D; and R; are connected sets. We show next that not all

points in R; are interesting.

Definition 5.3 We define the following functions:

1. fg(D,C,CL) = (E,d,c’cL)ERj,rfiligl}),cSC,cL?.CL

2. fp(E,C,Cr) = (e,D,c,CL)eRj,IEigI}E,cSC,cLZC'L b
3. fc(E,D,Cp) = (e,d,C’CL)ERj,IESi%, d<D,c>C, ¢
4. fo (B, D,C) = (e,d,c,C’L)ERi-I,l?%(E d<D,c>C

Theorem 5.4 Let P = (E,D,C,CL) € R; be an optimum solution to the
energy-sizing problem. Then we have:

(E,D,C,CL) =

3 If the optimization procedure selects a point in the closure of R; without a pre-image in
D;, then, given the granularity of the actual implementation of the gate, and the continuity
of U;, we can map that point into another close by point in the interior of R;.

92

(£2(D,C,Cr). f0(B,C, CL), fo(E, D, CL), fo, (B, D,C)) (56)

Proof: Assume that E > fg(D,C,Cp). Then we can choose the parameters
k1,...,km such that the transition T achieves a better energy dissipation,
fe(D,C,Cr), with an equal or better delay, an equal or better input capaci-
tance, under output load that is either equal or more strict. This new selection
of parameters verifies the constraints of the global optimization problem, and
has a smaller contribution in energy. It is, therefore, a better solution, and we
can replace the transition 7 with this new transition.
A similar argument holds for D, C, and Cy..

Theorem 5.5 Given Cp, two more parameters are required, at most, to de-
scribe a transition that is a solution to the global optimization problem.

Proof: Given C and the parameters D and C, we know, from Th. 5.4,
E = fg(D,C,Cr). Cr, D, and C are enough to describe the set of optimum
solutions; other more interesting parameter selections are possible. g

Fig. 5.5 shows a parametric representation of the relationship between F,
D, and C, under optimum conditions, for a two-stage generalized C-element.

Two parameters plus the output load are necessary in this case.

5.2.5 Posynomial Interpolation

The reduction in the number of parameters is important, because it allows us
to use tables derived from accurate (SPICE) simulations in the sizing algo-
rithm. However, even with only three parameters left, the tables can still be
fairly large if we desire good accuracy — unless we have an efficient way of
interpolating into that table.

Many sizing algorithms rely on expressing the energy/delay functions as
posynomials of the transistor widths. It is advantageous, therefore, to use
posynomials as interpolating functions, to be able to use the same sizing algo-
rithms. The table becomes a table of posynomial coefficients.

We start with a function f(ki,..., kp), that we want to approximate with
a posynomial of which we know everything but the coefficients, Ar’s:

al m
Flkiy. o km) mPlky, .o km) = Y kit knd (5.7)

0<I<q

93

We end up with a

1 m
[«,
Kk
1
1091

\
TH?
T 7
4 [
17/ ==.==.=.-.....\e

m
1
m

\\\

m
e
ki

1
1
17,011
alkl .k

o1

We need to model the value of the function and the functions derivatives

e
N

Figure 5.5: E-D-C surface for a two-stage generalized C-element, for several
with accuracy. It is the derivatives of the function that specify the trade-

off between the different parameters of the gate. To this effect, we compute
the A;’s by equating the differentials of f and P to as high a degree as it is

necessary to make the system of equations determinate.
system of linear equations on the Aj’s:

values of CJ,.

94

or, in matrix notation,
D =AA (5.9)

D is a h x 1 matrix and is either measured or derived from a SPICE
simulation. A is a h X ¢ matrix and is derived from the theoretical posynomial
model for the gate (Elmore delay model, for example). A is a ¢ x 1 matrix and
the unknown to be determined. Because we have to take whole differentials
for the posynomial approximation, the value of h is not arbitrary but has some
fixed values, h = 14+m,1+m+ -%m(m— 1),.... In general, we will have h > g,
and the system will be overdetermined. This means that we will not be able
to find A such that D = AA. We define the error vector of the approximation,
E = D — AA, and the error € = ||E||. We choose A so that € is minimized.
Since AA € Image(A), this minimum is achieved when E is orthogonal to
Image(A) (see Fig. 5.6).

AxA
Image(A)

Figure 5.6: Graphical representation of the error vector. The norm of the
error vector is minimized when AA is the orthogonal projection of D on
Image(A).

95

From the orthogonality relation, we have ATE = 0; therefore,
ATE=ATD - ATAA =0 (5.10)
If AA = D is overdetermined, the matrix AT A is invertible, and we have:
A=(ATA)T ATD (5.11)

The vector norm used so far is ||X|| = vVXTX. Other vector norms can
be used if we want to assign different weights to the error contributions from
different equations. In general, if NTN is a positive definite matrix*, we can
define the associated norm || X||y = VXTNTNX. In that case, Eq. 5.11
becomes:

A= (ATNTNA) " ATN'ND (5.12)
Observe that if A is invertible, Eq. 5.12 becomes A = A~'D, as would be
expected.

The posynomial approximation for the energy/delay can be used for sizing
in a number of ways, depending whether we pre-compute the approximation
as a table, or we compute the approximation after some preliminary sizing
has been done. In both cases, the objective is to increase the accuracy of
the sizing algorithm by adjusting the gate parameters around a point close
to the optimum. This reduction in the domain of validity of the model is
what allows us to provide a model that is very accurate for those particular
circuit configurations. In the next two subsections we describe these two sizing

methods.

5.2.6 Sizing with a Pre-Computed Table

Many sizing algorithms rely on choosing from a fixed set of gate sizes. There
are good reasons to do so; with a reduced number of gates we can do extensive
simulations on those gates, or characterize them after fabrication. In this way,
the characteristics of those gates are very well known, and the energy/delay
functions can be computed with a high degree of accuracy. The gates can be
taken from well-tested library, which increases the reliability of the circuit.

4 A positive definite matrix is a symmetric matrix with positive eigenvalues.

96

For control-type circuits that are going to be laid-out in a “standard-cell
place-and-route” style, the wiring capacitance becomes a larger part of the load
capacitance (compared to gate capacitance), as the circuit becomes larger 8].
As a consequence, the placement algorithm becomes more critical than sizing.
This, together with the use of two-stage gates for generalized C-elements,
greatly reduces the sensitivity of the delay with respect to individual gate
sizes.

Assigning a discreet number of sizes to the gates in a circuit, however, con-
verts a continuous optimization problem into an integer optimization problem,
and it is, therefore, computationally harder. The algorithms described in [4] to
compute the performance of asynchronous circuits, generate an integer linear
programming problem in this case, which only has exponential-time known
solutions.

The table can be used to bridge the gap between the integer and continuous
optimization problem. Given a solution to the integer optimization problem,
we can improve this solution by using the posynomial approximation to the
energy/delay functions around that solution. Since the energy/delay functions
are going to be approximated around a few points, the posynomial coefficients
can be pre-computed and tabulated.

There are a number of advantages to this approach:

Because the table is based on numbers obtained from very precise simu-
lations or measurements, we are not dependent on the accuracy of simpli-
fied theoretical models used to reduce the complexity of the computation.

The integer programming problem is used to compute an initial solution.
If the table is large enough, this initial solution will be close to the global
optimum, and we prevent the continuous optimization algorithm from

getting stuck in a bad local optimum.

It is expected that the continuous solution will not be very far away from
the integer solution. If this is the case, the posynomial approximation

of the energy/delay functions will be fairly accurate.

97

5.2.7 Sizing with a Post-Computed Approximation

The main drawback of the previous approach is the complexity of the integer
optimization problem. The size of the input can be fairly large — several
hundreds of gates — which may require that we use small tables (three or
four different gate sizes) to obtain results in a reasonable amount of time.

A different approach is to obtain the initial solution by solving the contin-
uous optimization problem. We then compute the posynomial approximation
around this point and re-compute the optimum with the new model. Comput-
ing the posynomial approximation is numerically intensive, but computation
time scales linearly with the number of gates, instead of exponentially.

Also, with the pre-sizing for the initial solution we can generate layout
that will not be very different from the final solution. From this layout we
can obtain a more accurate prediction of the parasitics and use them for the

second round of sizing.

5.3 Summary & Conclusion

We have shown in this section that low-energy sizing can be approached the
same way as low-delay sizing. In fact, both problems are dual of each other.
This fact underlines the necessity to treat both energy consumption and delay
at the same time; transformations that improve performance can be used to
improve energy dissipation, and vice-versa.

Typically, a great effort is spent in correctly modeling the delay characteris-
tic of gates. To obtain a meaningful energy optimization, energy consumption
has to be modeled better. Global energy measures — as compared to delay
measures — are easy to compute based on energy models for gates, since there
is no temporal interaction to be accounted for. We can compute the energy
dissipation of a circuit as the sum of the energy dissipation of the gates in
the circuit, while circuit delay requires a much more complicated operation
on the delays of the gates of the circuit. We have directed the effort in this
chapter to the better modeling of CMOS gates, and base on those models any
circuit-level optimization.

Given that only a limited number of properties from the gate are interest-
ing (input capacitance, energy/delay characteristic), we have shown that the
number of degrees of freedom in each gate can be reduced so that the gate

98

characteristics are optimized locally without altering the global optimum. This
allows us to reduce the complexity of the global optimization problem by doing
some of the optimization at the gate level and, in this way, reducing the total
number of parameters in the circuit.

The traditional posynomial function modeling for gates can be used as a
first-order approximation for gate delays. To improve the accuracy of such a
model, we have proposed a way of fitting a posynomial function to the gate
properties to be modeled. The posynomial function is based on the Elmore-
delay model for the gate; the coefficients of the posynomial are fitted using
least-squares approximation for the best available model for the gate and its
differentials (a SPICE model, for example). This approach is directed towards
either table-based sizing algorithms, where the posynomial approximation can
be used to reduce the size of the table, or continuous sizing algorithms, where
the posynomial approximation is used to refine the accuracy of the energy
model after some preliminary sizing has been done.

99

Chapter 6
Datapath Techniques

In this chapter we study how to minimize the energy dissipation of datapath
circuits, using efficient implementations for the more common datapath con-
structs. We look into circuits for register-to-register transfers and for multiple
sender/multiple receiver buses.

Algorithmic low-energy techniques try to minimize the number of energy-
consuming steps required to perform a computation, in particular, register-
to-register transfers, and function evaluation. The next step in improving
the energy efficiency of the circuit, is to come up with efficient, circuit-level
implementations for the building blocks of asynchronous design.

6.1 Register-to-Register Transfers

Register-to-register transfers account for a large part of the energy dissipation
in processor-type circuits. Self-timed register transfers require either spacer
tokens and completion signals or cumbersome logic to implement the more
efficient (i.e. fewer transitions per symbol) protocols. We can considerably re-
duce the complexity of the logic by giving up some of the self-timed properties
of the code and by introducing timing assumptions.

In this section we make an analysis of the following encodings: dual-rail,
one-hot, and bundled data. For each type of transfer, we calculate an index
based on the total amount of charge that has to be spent in the transfer. This
charge is computed using the following assumptions:

All transistors have the same size, and their gate has one unit of capac-

100

itance (minimum-size transistors will result in minimum energy for the

transfer).

The charge in the diffusion area of each transistor can be assimilated to
the charge in the gate and, therefore, will not be counted.

Short-circuit currents are small compared to dynamic currents and will

not be counted.

The energy cost index will be computed for an n-bit register-to-register trans-

fer.

6.1.1 Dual-Rail/One-Hot Encoding

Dual-rail, four-phase encoding results in the simplest implementation of reg-
isters and boolean functions, even though not always the smallest implemen-
tation. Dual-rail encoding uses two wires to transmit one bit (one for each
value); one-hot encoding uses one wire for each value to be transmitted. In
between data values, all wires are reset to the neutral state; this is a self-timed
code. In practice, only one-of-two, one-of-four, and one-of-eight codes are use-
ful; larger codes have too much overhead or are used ounly for very specific
functions (e.g., array decoders).

The dual-rail four-phase protocol is used as a reference to evaluate the other
protocols and to illustrate how the energy index is obtained. The handshaking
expansion of the dual-rail four-phase protoco is as follows:

SENDER = *x[[-z Ar — b07; [-r]; b0}
0 zAr — bI7; [-r]; b1]
1]

RECEIVER = *[[b0 — y0]; al; [-b0]; al
0 61 — y07; al; [—b11; al
11

Fig. 6.1 shows a transistor circuit for a dual-rail, four-phase channel. From
this diagram and the handshaking expansion we can derive the cost per bit,
as follows:

3 gates for the rw_ signal,

4 gates for the b; signal,

101

Figure 6.1: Transistor circuit for a dual-rail, four-phase channel.

2 gates for the y signal, half of the time,
2 gates for the ack_ signal,
2(n — 1) gates for the completion tree,
Total: 10n + 2(n — 1) = 12n — 2.
We look next at the one-of-four encoding. The handshaking expansion for

this protocol is as follows:

SENDER = *[[-z0 A —z1 AN — b0T; [—r]l; b0]
0 20 A=z AT — b17; [-r]; b1]
I z0AzIANT — b27; [-r]; b2]
0 z0ANzI AT — b3T; [=r]; b3
1]

RECEIVER =*[[b0 — y0|,y1]; aT; [-b01; al
0 b1 — y07,y1l; af; [-bI11; al
01 62— y0l,yI7; al; [-b2]; al
I b8 — y07,y17; al; [-b31; al
1]

We derive the production rules for the SENDER and RECEIVER:

102

g Az AT — byl by Vbs — ygl

- — byl boVbs — yol

g ANz Ar — bi? baVbs — yil

-r — byl bpVb; — yil

Lo Az AT — bel by A —yg A —yy — al

-r — bgl br Ayo A —yy — al
ba A —yo A Yy — al

ToNTg AT — bsl bs Ayo N yi — al

- — byl =bg A by A—bg A-bg — al

These production rules are not directly implementable!. Depending on the
choices we make for the registers zg, x1, 39, and y;, we get very different

energy costs.

On the sender side, the x registers can be implemented either as two sep-
arate registers with cross-coupled inverters or as double registers (quad-flop).
The generation of the b; signals can be done in one stage, requiring more power
from the control line, or in two stages, generating an extra transition.

If we use quad-flops, the implementable production rules are as follows:

oo N — bp_| TigN\NT
-r — bp_T -r
Tor AN — by_] Ty AT
-r — by 7 -r

—

—

—

—

ba_|
bz-T

bs-|
bs-1

The control line r goes to two and a half transistors per bit (which is better
than the three transistors per bit for the dual-rail implementation), and the

pull-down chains are two transistors long.

If we use two registers instead of one quad-flop, we get:

! That is, extra inverters are needed to implement this circuit with CMOS logic.

Tof NTyg AT —

-r

!

Tot Nz AT —

-r

The control signal r still goes to two and a half transistors per bit, but now
the pull-down chains are three transistors long, requiring larger transistors.
Fig. 6.2 shows a transistor schematic for this circuit. Even though a quad-flop
looks like a better solution for the source register, the choice between flip-flop
and quad-flop can be more strictly determined by the other write ports that

—

bo-|
bo-|

br-|
bs-l

the source register may have.

Figure 6.2: Best transistor circuit for one-of-four sender, one stage.

103

Zof ANxp AT

-r

Tt NxTpp AN'r

-r

/(g
C =
L L

q

!

—

—

bz-|
be-|

bs-l
bs_|

B

b2

x0t

tod

b1

x1t

i

x1f

g

104

— —
"o "o |-o-d D

bo b2 b1

L Y

Figure 6.3: Best transistor circuit for one-of-four sender, two stages.

We can improve on this design by generating the b; signals in two stages:

rpp NS —

S —

-z At —

Zp As —

S —

boT
bol

bs1
bil

b2
bs |

=z At = bgl
t — bg|

Tof AT — 5]
T AT — t]
A

The control signal 7 goes only to one and a half transistors per bit, and

these transistors can be made smaller because they have to switch just the

local signals s and . An extra one and a half transistors are switched per

bit by the second stage. Also, the pull-up and pull-down chains are just two

transistors long, and the channel uses positive logic, which results in a better

implementation of the receiver side. The price to be paid is in the two extra

transitions on the variables s or ¢, making this implementation as expensive as

the dual-rail circuit. Fig. 6.3 shows a transistor schematic for this circuit. Also,

this scheme scales well for a one-of-eight code or for a lazy-active datapath
where one extra transistor is required in the pull-up and pull-down chains:

105

Ty NS A-by — byt R ITRARRI A -b; — bel
S — bol t - b:?l
“Zpp At A-by — byl Tof A\TAL — s
t — byl Tt N\TANs — t]

-7 - s,

“1$1f/\'18/\"1b0 - bal

S — bgl
° e ¥
] — -

D

P > :
=D

P o

= >

{@) ®)

Figure 6.4: (a) Quad-flop with one write port, positive inputs; and (b) double
flip-flop, one write port, negative inputs. Completion circuit not shown.

On the receiver side, the y registers can be implemented either as a single
double register (quad-flop) or as two separate registers (see Fig. 6.4).
The production rules for the quad-flop are:

106

boV (y1-Nya_-Ays-) - yo-l
—bo A (myr-V oy Voys) — ypd
b1V (yo-Nyz-Ays-) -yl
by A (myo-V oye-V —ysl) — oy
be V (y1-Nyo-Nys-) - Y2l
~bg A(myr-V oyp-V oys) — ye
bs V (yo-Nys-Nys-) - ys.l
—bg A (myg-V —ye-V —yr) — ys.T
bo ANy1-Nys_Ays- — ack_|
b1 ANyo-Nys_Ays_ — ack_]
bo ANyr-ANyo-Nys- - ack_|
bs Nyr-ANyz-Ayo- — ack|
—bg A =by A—bg A by — ack_

To write a new value into the quad-flop, six gates have to be switched three
quarters of the time, or two and a quarter gates per bit. This implementation
of the quad-flop, shown in Fig. 6.4(a), does not scale well for a large number
of write ports due to the complex write-acknowledge gate. It is possible to
simplify this gate by making a reasonably safe timing assumption on the values
of the y variables and replacing the acknowledge gate by:

bo AN —yp-Vbs AN—-y;_Vbas A-ys_Vbg A-ys. — ack_|
=bgp A by A by A by — ack_T

This gate is smaller than the previous one, requires only one extra connection
per y variable, is faster, scales well to a one-of-eight code, and can be broken
up easily in two gates. Fig. 6.5 shows three different transistor circuits for this
gate. Fig. 6.5(c) is the fastest of the three (all transistor chains are two-long),
and (b) has the lowest transistor count but is very slow for positive-logic b;
signals.

The production rules for the double flip-flop are:

(@) (b)

©

Figure 6.5: Three possible transistor circuits for the non-safe acknowledge of
a quad-flop.

—bg_V —be_V mygt — yof?

bo- A ba_A ygt - yofl

bV =bg -V myof — ygtl
by -ANbs_Ayof — ypt]

108

—bp_V bV oyt — yif?

bo-ANbi_ANy;t -y fl
—bg_V -bs_Voy f — yit]
bo_ANbs_Ayif -yt

(mbg-V —ba) A —ypt — ackyl
(=b1-V =bg) A =yof ackp
bo_ANbs_Aba_Absg_ ackg |

!

!

(mbg-V —bs) Ayt — acks]
(mbg-V =bs) A=ysf — acks?
bop_Nbi_ANba_ANbg. — acks]

The double flip-flop, shown in Fig. 6.4(b) has the advantage of representing
both bits separately, which is convenient if the register is going to have read
and write ports of different types. Also, this register converts the one-of-four
code back to dual rail. Two write acknowledge signals are generated, one
for each flip-flop, and the gates are more complex than for a standard one-bit
register. It turns out that the energy saved from having two less transitions on
the data wires does not make up for the extra complexity of the acknowledge,
and the capacitance of the data wires is higher due to the higher fan-in of this

register.

6.1.2 Bundled-Data

The bundled data protocol relies on timing information from a control signal
to determine the validity of the data on the channel wires. Only one wire is
needed per bit; if the bus is not precharged, only half of the wires, in average,
will have to switch for each data transmission. This protocol has, therefore,
one-fourth as many data-wire transitions than the dual-rail protocol and half
as many data-wire transitions as the one-of-four protocol. It does, however,
violate the self-timed properties of the circuit; we have to be sure that we get
an energy improvement in return and assertain that the circuit timing is not
compromised critically.

A simple implementation of a bundled data transfer is shown in Fig. 6.6.
It requires two separate control signals for the read circuit, but each signal

109

@gi B

B
L
-o—

el
-

Figure 6.6: Bundled data, register transfer circuit, non precharged. (a) Direct
copy; (b) indirect copy.

goes to only one transistor per bit. This circuit is ideally suited for micro-
pipeline style design [31]. The transfer can be done either in one step or
two. The one-step transfer is simpler and faster, but it requires that both
registers be placed close to each other. If this is not possible (because of the
other read/write ports that these registers may have), we can use the two-step
transfer shown in Fig. 6.6(b). The value of the source register is first copied
to the intermediate variable b and then copied from b to the destination. The
indirect copy makes the destination register into a master-slave register and
allows for better pipelining of the operation at a cost in energy.

110

Figure 6.7: Bundled data register-to-register transfer circuit, precharged.

An alternative implementation of the bundled data protocol is with a
precharged intermediate variable, as shown in Fig. 6.7. The precharged pro-
tocol has one transition per bit, on average, and is very efficient if the data
transfer includes function evaluation. The write signal can be derived from the
read signal using the circuit of Fig. 6.8. This circuit generates a fixed-width
pulse. The timing assumption is that this width is enough to complete the
write action. The width of the write pulse is controlled by the delay element
in the feedback path.

6.2 DBuses

A bus is an efficient way of reducing the number of point-to-point communi-
cation channels in an architecture with a large number of registers. Transfers
over buses are more expensive than point-to-point transfers, but using buses
results in simpler registers — fewer read and write ports — thus reducing the

111

——
,D_%g:ﬁ%}%_@ “

Figure 6.8: Write pulse generation from the read pulse for a precharged

register-to-register transfer.

overall cost of each assignment.

A bus is a communication channel with at least three ports connected to it.
Buses come in three flavors: single-sender, multiple-receiver; multiple-sender,
single-receiver; and multiple-sender, multiple-receiver. We will assume that
access to the bus is mutually exclusive, so no arbitration is necessary.

A bus is different from a point-to-point channel in the way the design scales
with the number of senders and receivers. A large number of receivers increases
the speed and area penalty of completion detection; a large number of senders
increases the speed penalty of the data transfer.

6.2.1 Multiple-Sender Channel

The capacitance of the bus wires of a multiple sender channel scales linearly
with the number of senders on the channel and, therefore, the delay and energy
dissipation on the bus will also increase with the number of senders. Increas-
ing the size of the driving transistors increases, in the same proportion, the
capacitance of the buses, with little net gain on the delay.

6.2.2 Bus with Sense-Amplifier

A standard solution to improving delays on a bus is to use sense-amplifiers.
Sense-amplifiers are usually very expensive in power, unless they are switched-

wocse [Tor‘bﬁ_c{ .
]

T2

T
» P A

DN [~

sense D “ T7

Figure 6.9: Sense-amplifier circuit for asynchronous buses.

off while not in use. Fig. 6.9 shows the circuit of a switched sense-amplifier.
When sense and precharge are low, the buses are precharged high and equal-
ized. When sense and precharge are high, the sense amplifier behaves like two
cross-coupled inverters, and switches to one of its stable states. The sender
trying to write into this channel has biased the bus wires towards the value to
be sent, making this state the preferred equilibrium state of the amplifier.

Thanks to the sense-amplifier, we can use small transistors as bus driv-
ing circuits. As a consequence, several sources of energy dissipation become
smaller: the node capacitance of the sending register is reduced, and it is,
therefore, cheaper and faster to write into this register; the select signal for
the sending register goes to small transistors; the registers themselves will be
smaller in area, making the length of the bus wires shorter.

The main energy cost associated with this sense amplifier is the short-
circuit currents during the sense operation. If the timing of precharge and
sense is not correct, the amplifier can go into a metastable state, with a high

113

cost in energy, and potentially generate the wrong output.

Control0 Control1

Sali Selo Seli Selo

Pre Sel0 Selt Seln
Sense Bus_Control
Wr0 Wwri Wrn
Ack |
Data0
3
» Datam
Receiver SenseAmp Senders

Figure 6.10: Signal interconnection for a non-pipelined asynchronous bus

with sense-amplifier.

The following handshaking expansion gives a possible implementation for
the bus control that guarantees the proper operation of the sense-amplifier.
Signal Sel; selects register j to write into the bus; signal Wr; allows register
j to write onto the bus; signal Pre precharges the buses when low; and signal
Sense triggers the sense-amplifier circuit. Fig. 6.10 shows how signals are

interconnected.

114

BUS_CONTROL =
*[[(0 j: Sel; — Pret; Wr;1; SenseT;
[—Sel;1; Wr;|; Sense|; Pre])
1]

WroV ...V Wry — Sense]
“WrgAN...AN=Wr, — Sensel

Pre A Selj — erT
ﬂSelj — WT']‘J,

Selp V...V Sel, — Prel
~Selp A...A\-Sel, AN —Sense — Pre]

Control0 Control1
Selo Seli Selo seli | C
(J |

Ack | S0 Wr0 Selt Wrt
Sdone
Pre Bus_Control
Sense

W0 Wr1 Wrn

Ack
Data0
Datam
Receiver SenseAmp Senders

Figure 6.11: Signal interconnection for a pipelined asynchronous bus with

sense-amplifier.

115

6.2.3 Pipelined Bus Transfer

The cycle time of the previous scheme can be improved by observing that the
sense-amplifier behaves like a register. We can use this register to pipeline the
data transfer, thus decoupling sender and receiver and increasing the concur-
rency of the circuit. To use the sense-amplifier as a register, we have to add
a completion signal, Sdone, to the bus, to determine whether the bus is in
a valid state or the neutral state. A possible handshaking expansion for this
type of transfer follows. Fig. 6.11 shows how signals are interconnected

BUS_PIPE =
*[[(0 j: —Sdone A Selj — Prel; [-ackl; Wr;1; SenseT;
[Sdone A ~Sel;1; Wrjl; Lack]; Sensel; Pre]

1]
(Selp V ...V Sel,) A —~Sdone — Prel
- W A —Sense — Pre|

—~Sense A ~ack A Pre A Sel; — Wr;1
Sdone N\ =Sel; - Wrl

Wrg V...V Wry — W7
-WrgAN...AN=WrpANack — W]

w — Sense]
W Aack — Sensel

With this reshuffling, the data will be held on the bus until the receiver is
ready to read it in. The signal Sdone is required to maintain mutual exclusion
in the access to the bus resource. A slack of one is created between the sender
and receiver, so care has to be taken that this does not affect the correctness
of the circuit.

Other reshufflings are possible, depending on whether the sender or the re-
ceiver is active or passive. The bus can be used as an active-active converter,
allowing the designer to choose the gender of the channel on both ends inde-
pendently. Some of this options will be explored further in the implementation

of a multiple sender, multiple receiver channel.

116

6.2.4 Multiple-Receiver Channel

In a multiple-receiver channel, the generation of the completion signal is espe-
cially inefficient because it has to be implemented as yet another bus transfer.
One completion tree per register is more efficient in energy because only one
bus wire is required to gather all the completion signals from each register

(instead of one bus wire per bit).

D_DM

(a) ()

Figure 6.12: Safe completion schemes for multiple receiver channels. (a)

shared completion tree, and (b) local completion tree.

6.2.5 Safe Completion

Fig. 6.12 shows two basic schemes for the generation of the completion signal.
The first alternative (Fig. 6.12 (a)) is to have a single completion tree per
channel and share the inputs to the completion tree using acknowledge buses.
This scheme minimizes the amount of circuitry required, but it is slow and
expensive in energy because of the extra bus transfer. We can make an estimate

117

of the energy cost of completion to compare to other schemes. If the channel
has m receivers, and n bits per receiver, then the cost of completion can be

estimated as:
E? = Kymn + Kp(n) (6.1)

where K} is a proportionality constant for the energy required for a bus tran-
sition, and K7(n) is the cost of an n input completion tree.

The second alternative (Fig. 6.12 (b)) is to provide each register with a
completion tree and gather the output of the completion trees in a bus. The
amount of circuitry required for completion increases considerably; however,
only one or-gate is required to compute completion. The cost of computing

completion can be estimated as:
Eg = Kyn + Kr(n) + Ky(m) (6.2)

where K,(m) is the cost of an m input or-gate. This or-gate can be placed
outside of the datapath. We have, therefore, no wiring restriction, and we
can use a tree structure for the or-gate, which has a logarithmic cost. Eq. 6.2

becomes:
E? = Kyn + Kr(n) + K,loggm (6.3)

For reasonable sizing of transistors, we will have K, > K}, since the transistors
on the bus will be small, and the transistors on the or-gate will be large to
minimize the delay of the or-gate. For large enough values of m, it is clear,
however, that E¢ > E?.

To avoid having to pay the cost of adding one completion tree per target
register, we can use a hybrid solution, in which each completion tree is shared
by several of the target registers. If we use p completion trees, then the energy

cost becomes:
m
EM = Kbn})- + Kr(n) + K,ylogy p (6.4)

Differentiating Eq. 6.4 with respect to p, the optimum number of completion
trees is given by:

Ky
E) (6.5)

A smaller number may be preferable to reduce the area overhead of computing

p=mmin(l,n

completion.

118

6.2.6 TUnsafe Completion

If the number of receivers is large, the time overhead of computing completion
can be unacceptable. As in the case of a multiple sender channel, we can use
the bus as a pipeline register to reduce the cycle time of the operation and
decouple sender from receivers. The multiple sender circuit of Fig. 6.11 can

be used to that effect.

Ack Control0 Controli
Selo Seli Selo Seli | 77T
RI R1 | RO ‘_T \V_J
—
—D Ack Seld Wr0 Selt Wrl
DO
_______ Pro. Bus_Control
Sense
W0 Wrt wrmn
Rdi Rdt Rd0 / \
(l) Data0
\ Datam
: \V
Receivers SenseAmp Senders

Figure 6.13: Unsafe completion scheme for multiple sender, multiple receiver
channels. The bus transfer is pipelined to reduce the cycle time and decouple

senders from receivers.

Given the amount of circuitry that has to be added to compute completion
in a multiple receiver channel, there is a good deal to be gained in energy and
delay by replacing those circuits with an appropriate timing assumption. We

119

assume that the write operation is completed a fixed delay ¢ after the bus
becomes valid and the target register is selected. The delay has to model the
time it takes for a register to be written to; this delay is data-independent and
comparable to two gate delays. Fig. 6.13 shows how signals are interconnected.
The unsafe completion scheme results in significant savings in energy, area, and

delay.

6.3 Summary & Conclusion

In this chapter we have compared several alternative ways of implementing
register-to-register transfers. We looked at two types of transfers, point-to-
point and buses.

We have shown how to make point to point transfers more efficient by
using multi-valued registers. Fewer transitions are necessary to copy the same
amount of information between multi-valued registers than between equivalent
single valued registers, at the expense of more complex circuitry. There is a
potential for some energy savings in reducing the number of transitions, but
these savings are especially important if they are combined with a reduction
in the complexity of function evaluation — some functions can be evaluated
more efficiently if the input data is in one-of-n form.

We have shown in other chapters that pipelining is a bad strategy for low-
energy design. The reason is that pipelining implies copying of information,
and there is an alternate strategy — concurrency — that achieves the same
effect without having to copy information. Sometimes, however, information
is copied anyway because it results in a smaller and more efficient implemen-
tation. An example of this is datapath buses, where data is copied from one
register to the bus and from the bus into another register. In this case we
can consider the bus to be an intermediate register and use it to pipeline
the register-to-register transfer. We have shown in this chapter how to use
the sense-amplifier on the bus to increase the speed of the bus transfer and
pipeline this transfer. The objective is to reduce or eliminate the overhead
introduced by completion detection in such a transfer.

120

Chapter 7
Self-Limiting Circuits

One of the targets of low-energy design is to reduce the average power con-
sumption of high performance circuits. The effect of this action is two-fold:
it is easier and cheaper to cool the circuits, and we need to dedicate fewer
pins to the power and ground connections. Present-day high-performance
CMOS circuits are designed to the limit of available air-cooling technology; it
is unlikely that in the near future we are going to overtake the capabilities of
liquid-cooling technology, but liquid-cooling is completely inadequate for ap-
plications like desk-top workstations, that owe their success to their excellent
price/performance ratio.

The cooling system guarantees that nowhere on the machine will the sil-
icon temperature exceed the maximum allowable for that particular silicon
technology. This is a worst-case design that takes into account the maximum
power-output of all systems. As a result, the cooling system has to be over-
designed, and chips will run, in average, at a lower temperature than they
could, with the corresponding loss in circuit performance (the design could
have been less conservative) and efficiency of the cooling process (the temper-
ature differential available to extract heat from the chip is lower).

In this chapter we show how to use temperature feedback to slow down the
hot parts of the circuit so that the maximum temperature specification, Ty,
is never exceeded. This way, we eliminate the need for a worst-case cooling
design; instead, the cooling power limits the maximum sustained performance

of the system.

121

7.1 Heat Equation

Heat transfer occurs through three different mechanisms: radiation, conduc-
tion, and convection. Surface temperature and area are much too low for
radiation to play a significant role in cooling; almost all of the heat is removed
by conduction from the chip surface to the package and heat sinks and con-
vection from the package and heat sink to the cooling fluid (air, water, freon,
etc.).

The total effect of the cooling process can be represented by the thermal
resistivity of the package, Ry, and the thermal mass of the chip, My. If T; is
the surface temperature on the chip, 7, is the ambient temperature, and P is
the instantaneous electric power dissipated by the chip, then the heat transfer
equation for the chip is:

dTs T, — T,

My —p—
0" at Ry

(7.1)

The real situation is a little more complicated than shown above because
the thermal mass of the package, heat-sink, air, etc., has to be taken into
consideration. We will model these effects by lumping them into the value of
Mp. Observe that the steady state solution of Eq. 7.1 does not depend on the
value of Mjy.

Assuming constant power output, Eq. 7.1 can be solved; for initial condi-

tions T5(0) = T, we get:
ot
T,-T =PR9(1—~e Ry e) (7.2)

The steady state solution is independent of the initial conditions, 75 = T, +
PRy. Under worst-case power assumptions, we have to guarantee that

Ty — T,
<Ma

o (7.3)

P
Eq. 7.3 puts an upper bound to the peak performance of the system.

In synchronous systems, where power dissipation is a fairly constant func-
tion of time, we can use this equation to design the cooling system. It is,
however, the wrong way to design an asynchronous system, where there may
be a very large difference between the worst-case power dissipation and the

122

average power dissipation. We will show in the next section how to replace
the worst-case analysis with “self-limitation”: chip temperature is used in a
feedback loop to reduce circuit activity and ensure that the temperature spec-

ification is never exceeded.

7.2 Temperature Feed-Back

CMOS circuits slow down when the temperature increases. This occurs be-
cause at higher temperatures more electrons jump between the valence and
conduction band, emitting a phonon. The extra phonons in the lattice reduce
the mean-free-path of the electrons and, therefore, reduce electron mobility.
This effect has to be considered in synchronous design when we do worst-case
timing analysis. In an asynchronous system, the effect will be that the chip
runs slower when it warms up, but can it still run a little faster if it is cold.

7.2.1 Linear Feedback

We will model the slow-down as a linear function of temperature. Instanta-
neous power is proportional to circuit activity and, therefore, a linear function
of temperature as well. The heat equation becomes:

dTs Ts—Tu Ts—1,
M, =P - .
o7 dt T, —Tn Ry (74)
where Ty > T, and Ty > Tjy. The constraint on power becomes
Ty — T, Ty — T,
pc Mo, H ca (7.5)

Ry Ty — Ty

This restriction is weaker than Eq. 7.3 by a factor 7—%’{% The steady state
performance is the same as before, since the limitation on constant power
dissipation is the same. If power is not constant, however, the chip will run a
little faster in average.

We can increase the strength of the temperature feedback by measuring
the temperature of the chip and deliberately slowing down the speed of op-
eration (for example by inserting a temperature controlled delay on a key
handshake, as shown in Figure 7.1(b)). We can then choose the best value for

123

the parameter Tq.

Temperature Controlled Delay

D_

+
Power ,—Q > H(s) Temperature
‘Temperature
feed-back Chip
(a) ®)

Figure 7.1: Negative temperature feedback. H(s) is the transfer from power
to temperature for the system composed of the chip, package, and cooling
fluid. Temperature feedback can be implemented as a temperature-controlled
delay inserted in a critical loop.

7.2.2 Non-Linear Feedback

The main advantage of linear feedback is that the underlying mathematical
theory is simple and well understood. We can use a more sophisticated linear
model of the chip and packaging without significantly increasing the complex-
ity of the design. In particular, it is easy to make sure that the feedback loop
does not introduce instabilities that could cause large temperature oscillations.

124

We cannot use linear feedback, however, to guarantee that the chip will not
overheat under any conditions, including variations on all parameters. Also,
from the point of view of performance, linear feedback starts slowing down the
chip well before getting to a dangerous temperature.

One of the remaining parameters that has to be designed for worst-case
is the thermal resistance between chip surface and ambient. If we desire to
use the cooling power to the maximum efficiency, the design has to make the
minimum assumptions about this parameter. In the linear feedback section,
we needed Ry to calculate the maximum power that can be dissipated on
chip. We can use the temperature measurement to guarantee that the surface
temperature does not increase beyond a critical point, without having Ry enter
the equation. This way, we can increase the system performance by increasing
the efficiency of the cooling system.

We will show in the following sections non-linear feedback mechanisms
that achieve the following objectives: no slow-down unless the temperature
becomes critical; under no circumstances is the temperature allowed to exceed
the maximum specification — even under a failure of the cooling system; and

the thermal system is stable.

7.2.3 Exponential Control

We can use a temperature-exponential delay to control the speed of the chip.
The exponential law is interesting for two reasons: at low temperatures it is
fairly constant, and the feedback control has very little effect; and there are
several physical mechanisms that behave exponentially in temperature (for
example, sub-threshold currents).

The heat equation becomes:

df, It T, T,
MQTE Pe 0 - Re (76)

The steady state solution requires that we impose a restriction on P,

— Trpr=Ta
P< ZMR—T" xe T (7.7)
0

Tr—Ta
Because the factor e I can be fairly large, Eq. 7.7 is a weak restriction

125

on the worst-case power dissipation, and we can choose a very pessimistic Ry
without a great penalty in performance.

Stability of the solution can be proved by linearization of the heat equation
around the steady-state solution. Performance is affected at low temperatures,
but due to the slow start of the exponential function, this effect will be smaller
than the equivalent linear system. Temperature may exceed specification if
the cooling system were to be turned off, but performance will increase with

increased cooling power.

7.2.4 On/Off Control

The simplest way of controlling temperature is the “thermostat” algorithm:
the chip is completely stopped at temperature 77 and re-started at tempera-
ture Ty, with T7 > T3. The hardware required to implement a thermostat is
minimal: one temperature sensor/comparator with hysteresis, and a synchro-
nizer for the delay line. The temperature will never go over 717, irrespective
of the value of P and Ry. The condition 77 > T, ensures the stability of the
systein.

The circuit will always work at maximum speed, at all temperatures, while
the limiting mechanism is not working. Maximum performance is achieved by
choosing T3 as close to 17 as possible; if T = T the functioning of the circuit
will resemble the control described in the previous section.

If the thermal mass of the chip is high, once the chip is turned-off, it may
take some time before the chip is cold enough to be turned on again. During
that time, high-priority requests cannot be taken care of. If it is important
that the system have a guaranteed maximum latency, this approach is not
adequate.

We will show later how this method can be combined with global power-
supply voltage control to avoid this problem and maximize energy perfor-

mance.

7.3 Current Feedback

In the previous section we showed how to control the temperature of the hot
spots in a system on a per-chip basis. Slowing down the hot chips may, as a

126

consequence, slow down other parts of the system, because these parts spend
more time waiting for data coming from the hot chips. This is inefficient
in terms of energy: the system is working too fast and paying too much for
operations that could be spread over time.

One way of globally controlling the speed of the system is by varying the
power-supply voltage. Reducing the power-supply voltage reduces the speed
of operation, but it also reduces the energy dissipation. Reducing the voltage
reduces the speed of operation of all chips, but does not necessarily reduce the
performance of the system. If some of the chips are being limited in speed
because of temperature, they may run just as fast at a lower voltage (and,

therefore, a lower temperature).

7.3.1 Sub-Optimal Voltage

We will use as a measure of performance time to completion for a specific
task (running a program, routing a message, etc.). This task can be measured
by the total capacitance that has to be switched to complete the task —
which corresponds to the E/ V12)D index at a fixed power-supply voltage. Let
V be the power-supply voltage, I be the power-supply current, C be the total
capacitance to be switched, and T, be the time to completion. During a period
dt, the amount of charge supplied to the circuit is Idt; the total switched
capacitance is dC, and the charge stored in that capacitance is, therefore,
VdC = Idt. We can, therefore, write:

/ . é-dt = [“ac=c (7.8)

The optimization problem can be posed as a variational problem: minimize
T, under the constraint fOT ¢ %dt = C¢. In general, it is very hard to give an
optimal solution to this problem, it will depend strongly on what the [JV
space looks like. There is, however, an interesting sub-optimal solution. I/V
can be measured externally at any instant, and we adjust V so that I/V is
maximized. At any moment, the system is running as fast as possible. We only
need to make global measurements (power-supply voltage and power supply
current), and we do not need to know what the actual task being performed
by the processor is (neither C, or T is evaluated or measured).

127

7.3.2 Current and Temperature Feedback

It is interesting to combine the on-off temperature control with the current
feedback voltage control; this allows us to run all chips just hot enough so
that the system is working at peak performance.

Consider a system consisting of a single chip. This chip is active a fraction
§ of the time, 0 < § < 1, and is blocked by the temperature control a fraction
1—6. The average power dissipation of this chip can be computed as PP = kV26.
If § < 1, the power dissipation is constant and equal to the maximum power
dissipation allowed by that package, Pmax. The average power supply current
can be computed as I = P/V = kV§. Therefore, I/V = ké; the sub-optimal
algorithm that maximizes I/V also maximizes the duty-cycle of the system.

The same argument holds when the circuit is idle not because of tempera-
ture control, but because the environment is not supplying data fast enough.
In this case, too, the voltage control will slow the circuit down until it matches

the environment.

7.4 Summary & Conclusion

In this section we have shown how to control the activity of an asynchronous
circuit so that the circuit never overheats. Temperature feedback is used to
control the throughput of individual circuits; this control removes from the
design worst-case power constraints that would adversely affect average-case
performance.

On/off control and exponential control were explained as ways of imple-
menting temperature limitation. On/off control is simpler and prevents over-
heating under all circumstances, but it completely stops all circuit activity
for long periods (thermal time constants are long). Exponential control is
somewhat harder to implement and still requires some limits on the maxi-
mum allowable power dissipation for the circuit, but the system will always
be active.

Self-limitation can be combined with power-supply voltage variation to
slow down the system when it is working too hot (or when the environment is
working slower), to stretch operations over the available time so that they can
be performed more efficiently. The power-supply voltage is adjusted so that
the “resistance” of the circuit Vpp/Ipp is minimized.

128

Chapter 8

Example: Processor Design

In this chapter we apply the techniques introduced previously in this thesis to
the design of a low-energy-per-instruction microprocessor. The instruction set
and architectural definition are based on low-energy requirements.

The specification is in terms of the energy required to execute a specific
mix of instructions, plus a minimum requirement in performance (time to
completion for those programs). To make the specification of the programs
independent of the selection of the instruction set, those programs are given in
a high level notation. A way of trading-off energy for delay has to be provided
as well.

The type of programs to be run on this computer are reactive. When a
program has terminated, the machine stops and waits for another program
to become active. This mode of operation is important, since the processor
operating in this mode will dissipate energy only when executing a program.

For the purpose of clarity, the example will be kept small. Care will be
taken, though, that this design can be scaled up (wider datapath, more regis-

ters, more functional units).

8.1 Specification

The initial specification for the processor is given by the following program:
pP = [P?Program; Ezecute(Program)]

The text of the program is read and executed, and when the program is fin-
ished, the process is re-started. This initial specification is in the form of a

129

reactive loop, which ensures that all the energy that is spent by the circuit
goes into execution of the program.

We reduce the generality of the specification by making some assumptions
about the possible implementation. If the program is going to be stored in
memory, as a sequence of instructions, then we do not need to read the whole
program, just the address of the first instruction of the program. At the same
time, the Erecute function can be expressed as the execution of the instruc-
tions in the program. We now have some new variables, pc points to the next
instruction to be executed; S represents the state of the processor (register
contents, alu flags, etc.); Im is an array that contains the program instruc-
tions; and Erecute() is a function that executes an instruction and returns the
address of the next instruction and the new state of the processor. There is a
special instruction, done, that indicates that the program has finished.

uP =x*[P?pc; *[Im[pc] # done — pc, S := Ezecute(Im[pc], S) 11

We have seen in previous chapters that there are many alternative ways of
implementing indexing. In this case in particular, there many possible opti-
mizations on the access to the Im array, due to the relative predictability of the
string of instruction memory references: prefetch buffer, instruction memory
cache, memory management unit, etc.. We remove the instruction memory
form the processor process, so that we can treat the instruction memory sep-
arately. The processor and instruction memory processes become:

uP =x[Plpc;dT;*[d — Alpc || 174;
[©:=done — d|
0 ¢ +# done — pc, S := Ezecute(i, S)
]]]

IM =x[A%a; I'Im]a]]

In the previous program we have made the assumption that there is one in-
struction per word in Im. This does not necessarily imply that all instructions
have the same length; words in Im could have different lengths. For practical
implementations, however, it is more convenient that all words in memory are
equal, so we will deal with variable-length instructions in the processor speci-
fication. Since we have not yet defined what Ezecute() is supposed to do, we
can assume that all words in instruction memory have the same length, and
Ezecute() will handle multiple word instructions if there are any.

130

The previous program represents the basic specification of the circuit to
be designed. The FEzecute() function is left unspecified. We deal with the

instruction set next.

8.2 Instruction Set

In this section, we define the instruction set for the processor. This instruction
set has to be complete, that is, we have to be able to implement all programs
from the specification. While it is enough to make a machine equivalent to a
Universal Turing Machine, we want an instruction set that executes efficiently
the more frequent operations from the specification. We assume that these

operations are:

Control-transfer: conditional branch, sub-routine call.
Arithmetic/logic operations: signed and unsigned integer arithmetic.

Memory operations: loading operands from memory, storing results back in

memory, moving data.

At this level of the specification, the input/output operations of the pro-
cessor are exclusively the sequences of instruction addresses and instructions.
Since the entropy of these sequences is a lower bound to the energy complexity
of the processor, we choose an instruction set that minimizes this entropy.

8.2.1 Control-Transfer

Control-transfer instructions alter the contents of the pc register. Technically,
all instructions do this; each instruction specifies which is the next instruc-
tion to be executed. Nevertheless we differentiate between the instructions
that only increment pc to the next consecutive memory location, and those
that replace pc with a new value. The reason is based on the entropy of the
instruction address sequence.

Let A[1],...,Ad],... be this sequence. We assume that the probability

distribution for A[i] can be modeled by:

A4 =2

Pr(al] =)= {15 7 it o = Afi — 1] + 1

8.1
otherwise (8.1)

131

where 0 < A < 1, and n is the number of instructions in the program. The
parameter)\ represents the probability that the next address in the sequence
is the present address plus 1. For actual programs, A = %, and n > 1. We
can compute the entropy of Ali], as:

1-— 1 1-—
H(A[Z]) = ()\‘*‘ A)lOg-m:X+(n~1))\log n

n n 1-A
n

1 1
~)\logX+(1—/\)log1_/\+(1—/\)logn
~ (1-2X)logn (82)

To decrease the entropy of the address sequence, we have to increase A
or, similarly, increase the predictability of the instruction sequence. Delayed
branching has this effect; the address of the following instruction is always
known before decoding the current instruction. Delayed branching is ineffi-
cient, however, if we are not successful in filling the shadow with a useful
instruction. In a clocked system, if we do not use the shadow we always lose
at least one clock cycle, and delayed branching pays-off in performance. In
an asynchronous system, the shadow may be less than one instruction cycle,
and filling it with useless work (as a no-operation, for example) may waste,
in average, more time than it saves. Also, delayed branching requires that
more than one pc register be kept, since the instructions in the shadow are
not necessarily sequential. It is estimated that delayed branching can be filled
with a useful instruction about 80% of the time [13]. Assuming that one out of
6 instructions is a branch, we have that one out of 30 instructions is overhead
in energy for a delayed branching strategy.

In this Chapter we will explore a different strategy for removing entropy
from the instruction stream. We saw in Ch. 3 that if we can split an input
channel into several sub-channels, then the average entropy per symbol of the
multiple channels can be made lower than the average entropy per symbol of
the single channel. In this case, the natural way of splitting the instruction
channel I, is according to instruction type. The new program for the processor

becomes:

132

uP =x[P?pc;dT;*[d — Alpc;

[Iy — Ij7;d]
I; — I;%4;; pc, S := Ezecutes (i, S)
Ip — I;%49; pc, S := Ezecuteg(ig, S)
Is — I;?4g; pc, S := Executes(ig, S)

- e
&

]]

where three different instruction types have been represented.

We show next an efficient implementation for the instruction channel split.
The determination of the type of the instruction can be encoded on the pre-
vious instruction, so that before the processor fetches the next instruction, it
already knows something about it.

In principle, the instruction code can be split over several instruction words.
However, each instruction can fork the instruction stream, and the amount of
information that has to be kept increases exponentially with the length of the
split.

There are two ways of getting to an instruction; either by fall-through from
the previous sequential instruction, or by a jump to that address. In the first
case, the extra information on the current instruction can be encoded in the
previous instruction; in the second case, the extra information can be encoded
in the jump address.

We introduce this split in the P program:

uP =x*[P?(di,pc); dT;
*[d — Alpc;
[di = done — d|
0 di =1 — I?(iz,mi);pc, S, di := Ezecute; (iz, di, ni, S)
0 di =2 — I?(ig, ni); pc, S, di := Exzecutes(iz, di, ni, S)
0 di =8 — I7?(ig,ni); pc, S, di := Ezecutes(is, di, ni, S)
1 1]]

The split between instruction type and opcode can be used to gain an
extra stage of pipelining as well, without having to spend energy copying
information.

For the moment we will postpone the decision on how to split the instruc-
tion channel, until we have all of the instruction types of the processor. We
keep around the variable di, and rewrite the uP process as:

133

wP =+*[P?(di,pc); dT;
*x[d — Alpc|| I?(i, ni)
[di = done — d]
0 di # done — pc, S, di := Execute(i, di, ni, S)
1 1]
Next we discuss the addressing modes for control-transfer instructions. A
few of the choices are:

Immediate: The destination address is encoded in the instruction. Immediate
addressing is easy to implement, and does not use the register bank. It
does, however, require either longer instructions to store the address, and
this address has to be pre-computed at compile-time or load-time. To
keep the processor simple, we use this type of addressing for conditional

branch instructions.

Register indirect: The target address is the contents of register. This type
of addressing is necessary to use jump tables.

Stack indirect: The target address is taken from the top of the hardware
stack. The stack is used to implement sub-routine calls and returns (the
alternative option is to use a register and save or restore the register into
a software stack). Return from sub-routine uses this addressing mode.

We have tried to minimize register access for address computations. Reg-
isters will be highly overloaded by the arithmetic and memory instructions;
extra buses to the registers cost extra time and energy for each register access.
An alternative is to provide a register bank exclusively for addresses. We do
not choose this option in order to keep the processor simple.

The control-transfer instructions are:

branch if cc: Branch to the immediate address if condition cc is true. The
conditions are the usual arithmetic and logic conditions.

pshpc: Used to implement sub-routine calls in combination with the branch
instruction. Save the address of the return instruction in the hardware

stack.

return: Return from sub-routine. Pull the address of the next instruction from

the hardware stack.

134

The following program specifies these instructions. The stack process has

been left out.

pwP =x*[P?(di,pc); dT;
*[d — Alpe || I7(4, ni);
[i:di=done— d]
0 ¢:di =pshpc ri — Push!(ri, pc + 3);
di, pc := ni, pc + 1

i:di = br cc)Acc(flags) — Al(pc + 1) || I7(di, pc)
i:di = br cc) A —cc(flags) — di, pc := ni, pc + 2
else — pc, S, di := Ezecute(i, di, ni, S)

: di = return — Pull?(di, pc)

(
(

8.2.2 Arithmetic/Logic Operations

The operands for alu operations can be either registers in the processor or
data memory. There are good reasons to use memory operands, especially
for vector operations, where memory access can be done very efficiently. Vec-
tor operations are, however, more appropriate for co-processor hardware, and
we will restrict the specification to register-to-register operations (two source
registers, one destination register).

As a generic specification for alu operations, we use:

0 7:di = aluop 0 rl 12 —
R[r2] := alu(aluop, flags, R[r0], R[r1]);
di, pc := ni, pc + 1
The alu function is left unspecified at this moment. The result flags are

assigned as a side-effect of the alu function call.

8.2.3 Memory Addressing

Most of the operations executed by a processor are data-movement opera-
tions. Data movement requires address computation and the actual loading

and storing of the data.
We first decide on the addressing modes for data operations:

135

Immediate: The data to be loaded is part of the instruction. This addressing
is convenient for loading constants.

Register: The data to be loaded/stored is the contents of a register. All data
movements have as source or destination a register.

Register indirect: The address of the data to be loaded/stored is the contents

of a register.

Many more addressing modes are possible. Addressing modes are justified
in terms of the reduction of instructions required to compute the source/target
address. For the moment, we restrict the addressing modes to those presented

above. The data movement instructions are:
Load immediate: Load a constant into a register.

Load indirect into a register: Use the value of a register as an address, and

load a second register with the corresponding memory location.

Store indirect from a register: Use the value of a register as an address,
and store the contents of a third register in the corresponding memory

location.

We introduce at this point the data memory array, Dm/[]. The CSP speci-
fication for the memory instructions is:

.
.

0 i:di=1Idi 12— Al(pc+ 1)| I?R[r2]; di, pc := ni;pc+ 2
0 i:di=load r0 r2 — DA!R[r0]; DR?R[r2];
di, pc := ni, pc + 1
(0 i:di=store 10 r1 — DA!R[r0] || DW!R][r1];
di, pc := ni,pc+ 1

DM = *[[DR — DA?da; DR!Dm|da]
I1DW — DA?da; DW?Dm|[da)
1]

8.3 Process Refinement

In this section we refine the specification of the processor given previously into
a CSP program suitable for implementation.

136

The transformations to the processor program have the goal of improving
the energy complexity without increasing the time complexity, and improving
the time complexity without increasing the energy complexity.

One refinement has already been introduced, instruction splitting. In the
present specification instruction, splitting has not been used either for energy
or for performance. The objective of instruction splitting is to do predecoding
of the next instruction to be executed — improving performance — and in-
crease the hit ratio of the prefetch mechanism — improving both performance
and energy.

We start from the following program that we have derived from the speci-

fication of the instruction set:

uP =x*[P?(di,pc); dT;

*[d — Alpc|| I7(i, ni);
1:di = done — d|
i : di = pshpc ri — Push!(ri, pc + 8); di, pc := ni, pc + 1
i : di = return — Pull?(di, pc)
(1:di =br cc) Acc(flags) — Al(pc+ 1) || I7(ds, pc)
(i
i

i:di =br cc)A—cc(flags) — di,pc:= ni,pc+ 2

Co oo & = 3 M

, . di = aluop 10 r1 12 —
R[r2] := alu(aluop, flags, R[r0], R[r1]);
di, pc := n1, pc + 1

0 ¢:di =Idi 12— Al(pc+ 1); I7R[r2];
di, pc := ni; pc+ 2

I ¢:di=load r0 r2 — DA!R[r0]; DR?R[r2];
di,pc:=ni,pc+ 1

0 i:di=store 0 r1 — DA!R[r0] || DW!R[r1];
di,pc:=ni,pc+ 1

0 else — pc, S, di :== Ezecute(i, di, ni, S)

1 11

where the else statement has been included for possible extensions to the

instruction set.

137

8.3.1 Instruction Fetch

The pc register has to be communicated to the instruction memory for every
instruction fetch. We have, as a trade-off, the cost of communicating the value
of the pc register, which scales with the size of pc, against the cost of re-
computing the pc in two places. Most of the time, computing the next pc is
a very simple operation, with constant cost independent of the size of pc. In
this case, it is better to keep two program counters and update one from the
other when necessary.
To this effect, we change the specification of the instruction memory:

IM =*[[A— A%a
0 I — I'Imlal;a:=a+ 1
1]

The pc needs to be sent on A only when a new value is loaded into it. We

add this modification to the processor program:

uP =x[P?(di,pc); dT; Alpc;
*[d — I7(i, ni);
i:di = done — d]
i : di = pshpc ri — Push!(ri, pc + 8); di, pc := ni, pc + 1
i : di = return — Pull?(di, pc); Alpc
(i : di = br cc) Acc(flags) — 17(di, pc); Alpc
(i : di = br cc) A ~cc(flags) — di, pc := ni, pc + 2
i:di = aluop r0 1l 12 —
R[r2] := alu(aluop, flags, R[r0], R[r1]);
di, pc := ni,pc + 1
0 i:di=Idi 12— I?R[r2];di, pc := ni;pc+ 2
0 i:di=load 10 r2 — DA!R[r0]; DR?R[r2];
di, pc := ni, pc + 1
0 i:di=store 10 r1 — DA!R[r0] || DW!R[r1];
di, pc := ni, pc + 1

[== I e B e Y - B — B |

(=}

else — pc, S, di := Erecute(i, di, ni, S)

138

Instruction | offset | branch | group
done false | true 1
pshpc false | false 0
return false | true 1
branch true | true 3
alu false | false 0
ldi true | false 2
load false | false 0
store false | false 0

Table 8.1: Instruction types according to their effect on the pc register.

8.3.2 Instruction Decoding

The next step in the transformation is to decide what information will be
contained in ni. The idea is to be able to do some predecoding so that the
decoding step is simpler.

From the energy point of view, the variables 7 and d: are shared in too many
places; with predecoding, we can copy these variables to the proper place so
that they don’t have to be shared.

From the performance point of view, the predecoding can be done concur-
rently with the decoding of the previous instruction so that the predecoding
does not introduce a delay penalty. This makes decoding simpler, potentially
reducing the cycle time. The type of information in di¢ may be useful not only
for predecoding, but to determine data dependencies between consecutive op-
erations.

We will consider two choices for di. First, we minimize the size of d:
to contain information exclusively about updating the pc register. Second,
we maximize the size of di to contain information about the exact type of
instruction to be executed next.

We assign two bits to di: di.offset (the instruction is an offset instruction)
and di.branch (the instruction is a branch instruction). Table 8.1 shows the
classification of the processor instructions according to this criteria.

We can now re-write the uP program with predecoding, and we introduce

139

4 separate instruction registers, 0, ¢1, 72, and 3.

uP1 =
*[P?(di, pc); dT; Alpc;
*[d —
[—di.offset A =di.branch — I7?(i0, n3); di, pc := ni, pc + 1;
[20 = aluop 10 r1 r2 —
R[r2] := alu(aluop, flags, R[r0], R[r1])
I 0 =load r0 12 — DA!R[r0]; DR?R|[r2]
I i0 = store r0 r1 — DA!R[x0] || DW!R]|r1]
I 0 = pshpc ri — Push!(ri, pc12)
]
0—di.offset A di.branch — 17(il, ni);
[¢ =done — d]
0 ! = return — Pull?(di, pc); Alpc
]
0 di.offset A ~di.branch — 17(i2, ni); di, pc := ni, pc + 2;
[2 =idi 12— I?7R[2]]
0 di.offset A di.branch — I7(i3,ni); di, pc := ni, pc + 2
[(i8 = br cc) A ce(flags) — 17?(di, pc); Alpc
0 (43 = br cc) A ~cc(flags) — Alpe
1 1 11
In this program, the instruction registers have become simpler, at the ex-

pense of the I channel.
The second approach is to encode in di the format of the instruction. In

this instruction set, we have the following formats:

Alu operations: The instruction contains an alu opcode and three register

names, r0, rl, and r2.

Load/store: The instruction contains three register names, r0, rl, and r2.

Done/return: No operands.

Load immediate: The instruction has one register name, r2, and an offset
with the data.

Pshpc: The instruction contains the predecode information for the return in-

struction.

140

Conditional branch: The instruction contains an opcode with the condition

to branch on, and an offset with the target destination.
With the previous assignment of values to di, the P program becomes:

uP2 =x*[P?(di,pc); dT; Alpc;
*[d —
[di = alu — I7?(aluop,r0,11,12, ni); di, pc := ni, pc + 1;
R[r2] := alu(aluop, flags, R[r0], R[r1])
0 di = mem — I?(ldst,r0,r1,12, ni); di, pc := ni, pc + 1;
[ldst = load — DA!R[r0]; DR?R[r2]
0 ldst = store — DA!R[r0] || DW!R|[r1]
]
0 di = dn/ret — I?(dnret);
[dnret = done — d7
0 dnret = return — Pull?(di, pc); Alpc
]
0 di = ldi — I?(r2,ni); di, pc := ni, pc + 2; I?R[r2)
0 di = pshpc — 17?(ri, ni); Push!(ri, pc + 8);
di, pc := ni, pc + 1
0 di = branch — I7(cc, ni); di, pc :== ni, pc + 2;
[cc(flags) — I17(di, pc); Alpc
I-cc(flags) — Alpc
11 1]

The di variable is shared in more places, but it only needs to be three bits
long (instead of a full instruction word). The I channel is more complex now,
but the registers it writes to are very simple.

We choose between uP! and puP2 based on energy considerations and
potential for pipelining. We assume that only the cost of decoding is different;
the cost of executing the actual instruction is the same.

In the program pP1, the channel I has one source and six destinations.
In the worst-case, destination 10 is shared by all registers (unless the register
indexing operation is specified otherwise).

In the program uP2, we break up the channel I in several sub-fields. Ef-
fectively, the number of destinations is very small (between two and three for
each bit). Again, the worst-case sharing is for the r0, r1, and r2 fields, which
are shared by all the registers.

141

According to this analysis, uP2 looks more energy efficient, though the
differences do not appear critical at this level of the design. More importantly,
uP2 can be better pipelined. The reason is that there is less difference in
complexity between predecoding and decoding; therefore, predecoding the next
instruction overlaps better with decoding the present instruction.

In this example we choose P2, and keep refining it for energy complexity

before optimizing time complexity.

8.3.3 Offset Register

We can further reduce the number of destinations of the I channel by intro-
ducing an offset register. The reason is that it is better in energy complexity
to do two simple assignments than to do one complex assignment. We use the
offset register when the data in the instruction memory does not correspond
to an instruction code.

For the branch instruction, we have removed the A!pc communication on
a branch not taken; in exchange, we read in the offset both for branch taken
and not taken. The instruction following a return or a done is never executed;
therefore, we do not have to read these instructions if di is enough to identify
them.

Register ni can be removed and replaced with di since ni and dia are never
used at the same time. The purpose of having two registers is to allow the
pipelining of predecoding and decoding; however, pipelining can be achieved

without ni, as we show later.

142

wP2 =x[P?(di, pc); dT; Alpe;
*[d —
[di = alu — I?(aluop,r0,r1,12, di); pc := pc + 1;
R[r2] := alu(aluop, flags, R[r0], R[r1])
I di = mem — I7(ldst,r0,r1,1r2, di); pc := pc + 1;
[ldst = load — DA!R[r0]; DR?R[r2]
0 ldst = store — DA!R[r0] || DW!R[r1]

0 di = done — d7

I di = return — Pull?(di, pc); Alpc

1 di=ldi — I?(r2,di); I7R[r2]; pc := pc + 2

I di = pshpc — I?(ri, di); Push!(ri, pc + 3); pc := pc + 1

0 di = branch — I7(cc, di); I?or; pc := pc + 2;
[cc(flags) — di, pc := or.di, or.pc; Alpc
l-cc(flags) — skip

1 1 1]

8.3.4 Register-File Extraction

We remove the explicit indexing into the register-file by treating the register-
file as memory. To do this, we have to decide on the number of read and
write ports to this register-file. The more ports to the register file, the more
units can operate in parallel. Having a large number of ports does, however,
have some disadvantages; assignments take a longer time and/or more energy
(there is more capacitance in each node of the register).

It is critical to tie the circuit level design of the register file to the high
level specification since a good deal of low level optimization is necessary to
obtain a fast and efficient register file. We have looked at several alternative
implementations for low-energy buses in Ch. 6, and we will steer the derivation
towards one of those designs.

With pipelining in mind, we consolidate all the read actions and all the
write actions. In this case we need two read-ports and one write-port. Given
that the register file is a relatively small array, we will use the variables r0, r1,
and r2 as shared variables between the array and the processor. We define 3
channels, X and Y for read, Z for write.

143

wP2 =x*[P?(di,pc); dT; Alpc;
*[d —
[di = alu — I7(aluop,r0,11,12, di); pc :== pc + 1;
X?za || Y?ya; Z!alu(aluop, flags, za, ya)
0 di = mem — I?(ldst,r0,rl, 12, di); pc := pc + 1;
[ldst = load — DA!(X?); Z\(DR?)
I ldst = store — DANX?) || DW(Y?)

0 di = done — dJ

0 di = return — Pull?(di, pc); Alpc

0 di=ldi — I7(x2,di); Z\(I7); pc:= pc+ 2

I di = pshpc — I?(ri, di); Push!(ri, pc + 8); pc := pc + 1

0 di = branch — I7?(cc, di); I?or; pc:= pc + 2;
[cc(flags) — di, pc := or.di, or.pc; Alpc
l-cc(flags) — skip

1 1 1]

Regfile= (|| i: *[[X A(x0=1) — XIR; 1]
| [l YA@l=14)— YIR; 1]
| *[[ZA(2=1) — Z7R; 1]

)

8.3.5 Pipelining and Concurrency

A common technique to reduce the cycle time of a processor is to introduce
pipelining between successive functional units. Pipelining has a disadvantage:
it requires copying of information and, therefore, increases the energy con-
sumption per stage.

Some amount of information copying can be unavoidable; to preserve the
low-energy characteristic of the design, and to improve the delay performance,
we can introduce pipelining along the boundaries set by that information copy-
ing. In an alu operation, for example, it is just as natural natural and as effi-
cient in energy to latch the input data while computing the output function.
In general, we design programs so that semicolons separate data-dependencies;
at each semicolon we can introduce a pipeline stage.

The lack of data dependencies also introduces some concurrency. For ex-

144

ample, pc computations are independent of the rest of the computations of the
processor, except when the pc register has to be updated in branch and return
instructions. These computations can proceed in parallel and synchronized
only in those cases.

Another source of concurrency is the split of the instruction decoding into
two parts. We have on the processor at the same time part of two instructions,
and the execution of both instructions overlaps. The concurrency we obtain
from this overlap is derived from the data parallelism obtained from reading
more than one bit at a time, and from the fact that not all of the instruction
is needed to make decisions about decoding.

We use all these sources of concurrency to decrease the cycle time without
increasing the energy required per instruction. To this effect, we group the
actions in the program into several stages. All the actions in the same stage
can proceed concurrently (no data dependencies between actions in the same
stage). Actions in different stages can correspond to different instructions

(pipelining).
uP =x[[P?(di,pc); Alpc; G! 11

Predecode = *[G — [di = alu — Alu!|| Ipc!

di = mem — Mem! || Ipc!
di = done — G?

di = return — Pullpc!

di = ldi — Ldi!|| I2pc!
di = pshpc — Pshpc!; Ipc!
di = branch — Br!

LJ o 9 = o oo

145

Decode = *[[Alu — I?(aluop,0,11,12, di);
(Xb!e Yb! @ Zb! o Alaluop) || Alu?
I Mem — I?(ldst,10,r1,12, di);
[ldst = load —> (Xb! e Zb! e M) || Mem?
0 ldst = store — (Xb! e Yb! @ M!) | Mem?
]
0 Idi — I7(x2, di); ZbY; Z\(I?) || Ldi?
0 Br — I?(cc, di); I?0r || F?f;
[cc(f) — Orpcl; Apc!|| Br?
0-ce(f) — 12pc!|| Br?
1
1]

ALUunit = *[[A — X?za| Y?ya; Z!alu(A?, flags, Ta, ya)
I F— Flflags
11

MEMunit = *[[M A ldst = load — DA/(X?)|| Z\(DR?) || M?
0 M Aldst = store — DAN(X?) || DWY(Y?) || M?
1]

PCunit = *[[Ipc — Ipc?|| pc:= pc+ 1
0 IZpc — I2pc?||pc:=pc+ 2
0 Pullpc — Pullpc? || Pull?(di, pc)
0 Pushpc — Pushpc? || Push!(ri, pc)
0 Apc — Apc?e Alpc
I Orpc — Orpc? || di, pc := or.di, or, pc
0 Ppc — Ppc?|| P?(di, pc)
11

Regfile = (|| i: =[I[’ﬂbiA-)?I)'/\(r():i)__) ble X!R; 11
| *[[~b; AYDA(rl =1i) — Yble YIR; 1]

)
| *C0(0 i: =b; AZbA(r2=14) — b;T;Zb || Z7Ry; b;))11

We have omitted the hardware stack and the pc+ 3 operation; this addition
can be done on the top of the stack.

146

8.4 Process Decomposition of PCunit

In this section we take the PCunit process from the previous program and
decompose it into simpler and more efficient processes. The decomposition is
directed by the energy cost of the different operations on the pc register and
by the frequency with which those operations occur.

The pc register, as is used in the previous program, is a fairly complicated
register. It has 3 input ports, 2 output ports, and 2 different operations (+2
and +1) that have to be executed on the register. The +1 and +2 operations
have to be executed very often compared to, for example, the P7pc opera-
tion, and the overhead of that operation should not increase the cost of the
increment.

Without loss of generality, we simplify the PCunit program by eliminating
the d; and r; registers and express the assignment of or to pc as a communi-

cation action.

PCunit = *[[Ipc — Ipc?| pc:=pc+ 1
0 I2pc — I2pc?|| pc:=pc+ 2
0 Pullpc — Pullpc? || Pull?pc
0 Pushpc — Pushpc? || Push!pc
I Apc — Apc?e Alpe
I Orpc — Orpc?|| Or?pc
0 Ppc — Ppc?|| P?pc
11

Next, to reduce the cost of the increment actions, we reduce the number
of ports on the pc register to one for read, and one for write; we then add
multiplexors and de-multiplexors for the other ports. We increase the cost of
the read and write operations, but the overall cost per operation is expected

to improve.

PCunit =*[[Ipc — Ipc?|| pc:= pc+ 1
0 I2pc — 12pc?|| pc:= pc+ 2
01 Rpc — Rpclpc
I Wpc— Wpc?pc
1]

147

PCmuz = *[[Pushpc — Pushpc? e Push!(Rpc?)
I Apc — Apc? e Al(Rpc?)
1]

PCdmz = *[[Pullpc — Pullpc? o Wpc!(Pull?)
1 Orpc — Orpc? @ Wpc!(0r?)
I Ppc — Ppc? e Wpc!(P?)
1]
This transformation also attempts to make the probability of each statement
in the guarded commands more equilibrated.

Next we break up the incrementer. Half of the time, the incrementer only
has to flip one bit, and we use this to eliminate the assignment to pc in the
first two guarded commands. We express pc as an array of bits, pc[0..n — 1].
PCunit = *[[Ipc A =pc[0] — pc[0]1]| Ipc

0 Ipc A pe[0] — pc[0]] || Ipct || Ipc
0 I2pc — Ipcl || I2pc
0 Rpc — Rpclpc
0 Wpc — Wpc?pc
1]

PCincl = *[[Ipcl — pc :=pc+ 2;Ipcl 1]

We can use the same transformation as before to improve the PCincl

process:

PCincl = *[[Ipcl A —pc[l] — pc[1]7; Ipcl
0 Ipcl A pecll] — pc[1]l; Ipc2; Ipcl
1]

PCinc2 = *[[Ipc2 — pc :=pc+ 4; Ipc2 1]

We transform PCinc2 in the same way recursively until all bits from pc have

been taken care of.

8.5 Summary & Conclusion

We have shown in this chapter how to apply a number of different low-energy
techniques to the design of an asynchronous microprocessor. Each aspect of the

148

design is potentially affected by energy considerations. The instruction set was
examined to provide all of the functionality of a processor, but implementing
each function at a low cost. For example, an on-chip hardware stack was
chosen to implement sub-routine calls because it can be used as a cache for
the call stack in main memory with a very high hit ratio. Also, pipelining was
used to take advantage of the registers already present in the processor, since
we can then improve throughput without a cost in energy performance.

A characteristic of this processor design is the split instruction fetch. The
instruction register contains at the same time part of the current instruction
and part of the next instruction. This scheme allows us to split the instruc-
tion register in two and gain one pipeline stage without having to increase the
number of registers, therefore without a cost in energy. It also allows efficient
pre-decoding of the instruction and thus we are able to set-up the decoding
circuit for the specific type of instruction contained in the next program loca-
tion. Prefetch mechanisms are facilitated, since the processor knows ahead of
time whether the next instruction contains a branch or not.

The trade-off between worst-case delay and average energy dissipation is
used extensively to optimize certain parts of the architecture, like the PCunit.

149

Chapter 9

Conclusion & Future Work

9.1 Conclusion

In this thesis we have shown a number of results to help us design energy-
efficient circuits. Energy efficiency was broken down in two parts: algorith-
mic efficiency and circuit efficiency. The idea is that to achieve a low-energy
dissipation in a given computation, we can optimize independently both the
algorithm used to make the computation and the circuit used to implement
the algorithm.

This analysis leads to three questions:

How is energy spent? What are the physical mechanisms that dissipate en-

ergy during the computation?

Where is energy spent? What parts of the circuit spend energy and how
much?

Why is energy spent? Why do I have to spend any energy to perform a
computation? Is there a better circuit that I do not know about that is
essentially better than the one I have?

9.1.1 How?

The first question has a simple answer. The transistor equations used in
simulators such as SPICE are a good approximation of reality, and we can
make a very precise circuit-level computation of energy dissipation. Factors
like capacitor charge and discharge currents dominate the energy dissipation

150

of CMOS logic circuits, which further simplifies the problem. As a result, we
can design efficient CMOS gates and other basic building blocks for digital
circuits; we can produce simple and accurate models for energy dissipation;
and we can investigate other alternatives to the usual CMOS implementation

of digital circuits.

9.1.2 Where?

Having good building blocks is, of course, not enough. We have to know how is
it that they fit in the architecture of the circuit we are building. The approach
we have taken to bridge this gap is very much related to the way we design
asynchronous circuits, though it is general enough that it can be extended to
other design methodologies.

An asynchronous circuit is first specified as a collection of sequential, com-
municating processes, a CSP program. This program is then refined through
successive semantics-preserving transformations, and finally, when we get a
satisfactory program, we translate this program into a CMOS circuit through
a systematic compilation procedure. As a consequence, there is a very good
match between the text of the program to be compiled and the CMOS circuit
product of the compilation. Before the compilation takes place, we can al-
ready tell what the final circuit looks like and make an estimate of the energy
consumption of each of the parts of that circuit based on the simple models
derived from the circuit equations for CMOS gates.

We are now ready to answer the question “where is energy spent?” We
can use a trace, or set of traces, of the execution of the program to estimate
how often each part the circuit is in use. By tallying the energies required for
each usage, we can profile the energy dissipation of the program we are going
to implement and know exactly where that energy goes.

The answer to “where?” is the first step in the analysis of a system.
Knowing exactly where most of the energy goes allows us to concentrate our
effort on those parts of the computation that are the most wasteful. This
answer is presented here as the energy complexity of the CSP program that
performs the computation. The energy complexity of a program is similar to
the time complexity of that program when all concurrency has been removed
and each step of the computation is weighed to take into account the extra
energy required to deal with fan-in and fan-out of operators.

151

We have now separated the two basic concerns in energy optimization. The
energy required to perform a computation P, E(P), can be expressed as:

E(P) = E; x C(P) (9.1)

where E; is the energy required to perform an elementary transition and C(P)
is the energy complexity of P.

The constant F; depends on the CMOS technology employed and the de-
sign style for CMOS gates. To improve on E;, we can try to make the tech-
nology better by reducing parasitic capacitances, increasing the number of
wiring layers, and reducing threshold voltages to allow for lower power sup-
plies, among other measures. Or we can try to make the gates that we employ
better by utilizing pass gate transistor logic, quasi-adiabatic switching, reduced
voltage swing logic, sense-amplifier schemes for buses, and so on. We do not
deal in this thesis with technology aspects; some circuits are proposed, how-
ever, to implement some of the datapath constructs. In particular, we present
a sense-amplifier circuit that can be used to take advantage of the implicit
intermediate register in a bus transfer (the bus wires themselves), to pipeline
the bus transfer, and reduce the cycle time without affecting the energy cost
of the transfer.

Most of the focus of this thesis is directed towards the energy complexity
of programs. QDI (quasi delay insensitive) circuits have shown to be energy
efficient for algorithmic reasons: programs are designed as reactive loops, and
energy is spent only in useful computation. Being careful about the design,
we can further reduce the energy complexity of the algorithm that implements
the computation and get more energy savings.

There is another good reason to target complexity instead of technology.
Technology is continuously evolving, and it is possible that one day CMOS
circuits will become obsolete when another new, better, technology comes
about. Complexity results will then still be relevant because they are related
to the mathematical representation of the computation, not to its physical
embodiment.

We have shown how to derive a complexity model for CSP programs and
how to use this model to help in the analysis and design of asynchronous
circuits. In particular, if the algorithm is parametrized (as in the case of the
memory design example), we can minimize the energy-complexity equation

152

and, thus, determine the missing parameters.

9.1.3 Why?

So far, we have learned how energy is spent and where in our circuit we are
spending it. The idea is that if we know how and where, we can reduce some
of that energy dissipation without actually introducing more dissipation in the
process.

But how much of that dissipation can be eliminated? We need to know
why we are dissipating energy in a computation and whether it is unavoidable.
In this case, our approach was to find a lower bound to the energy complexity
of the computation. If the energy complexity of the program we have designed
gets close to its lower bound, we know there is no room for improvement.

This lower bound is based on the input/output behavior of the specification
of the problem. By looking at the input/output behavior, we have abstracted
the specification from any choice that we might have made about the imple-
mentation. If the program we design has an energy complexity close to the
lower bound, we know why we are spending that much energy: because we
have to.

Knowing the lower bound helps us in other ways too. Every time we make
a decision about the implementation of a specification, we restrict the number
of possible solutions. We can validate those decisions by checking that we have
not thrown away all of the interesting solutions (that is, check that the lower
bound has not gone up by too much). We can thus validate implementation
strategies: program approximation, proper separation of control and data, use
of concurrency, removal of unnecessary synchronization, etc..

We can also make an analysis of the specification and try to simplify this
specification. By knowing what is hard about the specification, we know what
to relax and change so that the net effect is positive.

The arguments used to derive the lower bound are purely information-
theoretical. The basic intuition behind them is that to generate a more com-
plex string of input/output actions, we need a more complex machine, with
more internal states, and therefore it is more expensive to run. This intuition

can be quantized precisely in the equation:

H(P) < C(P) (9.2)

153

where H(P) is the average entropy per symbol of the string of input/output
symbols of process P, and C(P) is the average energy cost per symbol of running
process P. We have, at this point, all the mathematical tools of information
theory at our disposal to manipulate program specifications.

9.2 Future Work

The work on this thesis was aimed exclusively at energy cost of computation.
Energy efficiency is achieved by simplifying the computation, so that fewer
steps are necessary to finish it and, therefore, less energy has to be spent. The
energy complexity approach assumes that time efficiency is going to follow from
the energy efficiency as well, which may not be true under all circumstances.

An extension of this work would be to include a measure of time complexity
into the equations, based as well on the CSP specification of the circuit, and
combine both measures (E and T') into an ET® index of performance.

Defining a time complexity index for CSP programs is simple; computing
that index can be, however, a complex task because of the effect of concurrency.
Time complexity is, however, well understood, and the reader can easily make
this extension if, for example, he requires an ET? index of performance.

Another interesting point of research is to try to find an information-
theoretical lower bound to the ET® measures of performance. The bound
for the energy was easy to find because of the additive nature of both energy
dissipation and entropy. Time is not additive; two operations performed in
parallel take as much time as the longest of the two, not as the sum, so a dif-
ferent approach would be necessary to account for this effect. We would have
to consider the time cost of concurrency: starting n actions in parallel has a
cost proportional to log, 7, that is required to distribute the start signal to
all of the n processes, and collect the done signals form all of these processes.
Based on this cost, we may be able to derive a similar lower bound for time
complexity.

Finally, many of the results in this thesis are quantitative in nature, as the
different energy complexity models, but are hard to compute. Some amount
of CAD support is needed to simplify those computations and help direct
the high level synthesis procedure. In particular, many aspects of high-level
synthesis can be directed through energy-model considerations, as register and

154

bus assignment or memory and cache dimensioning.

155

Bibliography

[1] Y. S. Abu-Mostafa, Complezity of information eztraction, Ph.D. thesis,
California Institute of Technology, 1983.

[2] C. H. Bennett, The thermodynamics of computation—a review, Interna-
tional J. of Theoretical Physics 21 (1982), no. 12, 905-940.

[3] S. M. Burns, Automated compilation of concurrent programs into self-
timed circuits, Cs-tr-88-2, California Institute of Technology, December
1987.

[4] Steven M. Burns, Performance analysis and optimization of asynchronous
circuits, Ph.D. thesis, California Institute of Technology, 1991.

[5] G. Chaitin, Information-theoretic computational complezity, IEEE Trans.
on Information Theory IT-20 (1974), 10-15.

[6] H.Y. Chen, Design automation for high performance CMOS VLSI, Ph.D.
thesis, University of Illinois at Urbana-Champaign, December 1988.

[7] S. T. Chu, J. Dikken, C. D. Hartgring, F. J. List, J. G. Raemaekers, S. A.
Bell, B. Walsh, and R. H. W. Salters, A 25-ns low-power full-CMOS 1-
Mbit (128Kx8) SRAM, IEEE J. of Solid-State Circuits SC-23 (1988),
no. 5, 1078-1084.

[8] W. E. Donath, Placement and average interconnection lengths of computer
logic, IEEE Transactions on Circuits and Systems CAS-26 (1979), 272—
277.

[9] W. C. Elmore, The transient response of damped linear networks with
particular regard to wideband amplifiers, J. of Applied Physics 19 (1948),
55-63.

[10] R. P. Feynman, Quantum mechanical computers, Foundations of Physics
16 (1986), no. 6, 507-531.

156

[11] J. P. Fishburn and A. E. Dunlop, TILOS: A posynomial approach to
transistor sizing, Proceedings of the 1985 International Conference on
Computer-aided Design, November 1985, pp. 326-328.

[12] E. Fredkin and T. Toffoli, Conservative logic, International J. of Theoret-
ical Physics 21 (1982), no. 3/4, 219-253.

[13] J. L. Hennessy and D. A. Patterson, Computer Architecture a Quanti-
tative Approach, ch. 6, pp. 273-278, Morgan Kaufmann Publishers Inc.,
1990, pp. 273-278.

[14] C. A. R. Hoare, Communicating sequential processes, Communications of
the ACM 21 (1978), no. 8, 666-677.

[15] J. S. Hwang and C. Y. Wu, Efficient techniques in the sizing and
constrained optimisation of CMOS combinational logic circuits, IEE
Proceedings-E 138 (1991), no. 3, 154-164.

[16] T. K. Lee, Communication behavior of linear arrays of processes, Cs-tr-
89-12, California Institute of Technology, December 1989.

, Energy and delay measurements of an asynchronous 3x+1 engine,
Personal Communication, 1993.

[17]

[18] Alain J. Martin, Compiling communicating processes into delay-
insensitive VLSI circuits, Distributed Computing 1 (1986), no. 4, 226—

234.

[19] Alain J. Martin, The design of a delay-insensitive microprocessor: An ex-
ample of circuit synthesis by program transformation, Hardware Specifi-
cation, Verification and Synthesis: Mathematical Aspects (M. Leeser and
G. Brown, eds.), Lecture Notes in Computer Science, vol. 408, Springer-
Verlag, 1989, pp. 244-259.

[20] Alain J. Martin, Asynchronous datapaths and the design of an asyn-
chronous adder, Formal Methods in System Design 1 (1992), no. 1, 119-

137.

[21] Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic, and
Pieter J. Hazewindus, The design of an asynchronous microprocessor,
Advanced Research in VLSI: Proceedings of the Decennial Caltech Con-
ference on VLSI (Charles L. Seitz, ed.), MIT Press, 1989, pp. 351-373.

, The first asynchronous microprocessor: the test results, Com-
puter Architecture News 17 (1989), no. 4, 95-110.

[23]

24]

[25]

[26]

[28]
[29]

[30]

[33]

[34]

[35]

157

M. Matson, Macromodeling and optimization of digital MOS VLSI cir-
custs, Ph.D. thesis, MIT, February 1985.

L. Nagel, SPICE2: A computer program to simulate semiconductor cir-
cuits., Tech. Report ERL-M520, University of California, Berkeley, May
1975.

V. B. Rao, Switch-level timing simulation of MOS VLSI circuits, Ph.D.
thesis, University of Illinois at Urbana Champaign, January 1985.

J. Rubenstein, P. Penfield, and M. A. Horowitz, Signal delay in RC tree
networks, IEEE Transactions on Computer-aided Design of Integrated
Circuits and Systems 2 (1983), no. 3, 202-211.

S. S. Sapatnekar and S. M. Kang, Design Automation for Timing-Driven
Layout Synthesis, ch. 4, pp. 113-140, Kluwer Academic Publishers, 1993,
pp. 113-140.

C. Shannon, A mathematical theory of communication, Bell Systems Tech.
J. 27 (1948), 379-423.

P. Single, The theory of logical effort and overhead, Proceedings 7** Aus-
tralian Microelectronics Conference, May 1988.

I. E. Sutherland and R. E. Sproull, Logical effort: Designing for speed on
the back of an envelope, Advanced Research in VLSI (C. H. Séquin, ed.),
The MIT Press, 1991, pp. 1-16.

Ivan E. Sutherland, Micropipelines, Communications of the ACM 32
(1989), no. 6, 720-738.

José A. Tierno and Alain J. Martin, Low-energy asynchronous memory
design, Proc. International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, November 1994, pp. 176-185.

R. R. Troutman, Subthreshold design considerations for insulated gate
field effect transistors, IEEE J. of Solid State Circuits SC-9 (1974), 55—
60.

H. J. M. Veendrick, Short circuit dissipation of static CMOS circuitry and
its impact on the design of buffer circuits, IEEE J. of Solid-State Circuits
SC-19 (1984), no. 4, 468-473.

M. Yoshimoto, K. Anami, H. Shinohara, T. Yoshihara, T. Takagi, and
T. Nakano, A divided word-line structure in the static RAM and its appli-
cation to a 64K full CMOS RAM, IEEE J. of Solid-State Circuits SC-18
(1983), no. 5, 479-485.

