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Abstract

Monte Carlo simulations are one of the most important numerical techniques
for investigating statistical physical systems. Among these systems, spin models
are a typical example which also play an essential role in constructing the ab-
stract mechanism for various complex systems. Unfortunately, traditional Monte
Carlo algorithms are afflicted with “critical slowing down” near continuous phdse
transitions and the efficiency of the Monte Carlo simulation goes to zero as the
size of the lattice is increased. To combat critical slowing down, a very different
type of collective-mode algorithm, in contrast to the traditional single-spin-flip-
mode, was proposed by Swendsen and Wang in 1987 for Potts spin models. Since
then, there has been an explosion of work attempting to understand, improve, or
generalize it. In these so-called “cluster” algorithms, clusters of spin are regarded
as one template and are updated at each step of the Monte Carlo procedure.

In implementing these algorithms the cluster labeling is a major time-consuming
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bottleneck and is also isomorphic to the problem of computing connected com-
ponents of an undirected graph seen in other application areas, such as pattern

recognition.

A number of cluster labeling algorithms for sequential computers have long
existed. However, the dynamic irregular nature of clusters complicates the task
of finding good parallel algorithms and this is particularly true on SIMD (single-
instruction-multiple-data) machines. Our design of the Hierarchical Cluster Label-
ing Algorithm aims at alleviating this problem by building a hierarchical structure
on the problem domain and by incorporating local and nonlocal communication
schemes. We present an estimate for the computational complexity of cluster la-
beling and prove the key features of this algorithm (such as lower computational
complexity, data locality, and easy implementation) compared with the methods
formerly known. In particular, this algorithm can be viewed as a generalized scan
scheme applicable to problem domains of any high dimension and of arbitrary ge-
ometry (scan is an important primitive of parallel computing). In addition, from
implementation results, the hierarchical cluster labeling algorithm has proved to
work equally well on MIMD machines, though originally designed for SIMD ma-

chines.

Based on this success, we further study the hierarchical structure hidden in



X

the algorithm. Hierarchical structure is a conceptual framework frequently used
in building models for the study of a great variety of problems. This structure
serves not only to describe the complexity of the system at different levels, but
also to achieve some goals targeted by the problem, i.e., an algorithm to solve the
problem. In this regard, we investigate the similarities and differences between
this algorithm and others, including the FFT and the Barnes-Hut method, in

terms of their hierarchical structures.
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Chapter 1

Introduction

1.1 Physics and Computer Science

The connections between physics and computer science have been a fascinating
subject attracting the research efforts from scientists in many other areas as well as
in these two disciplines. It is interesting to ask if we could apply the methodology
learned from computer science to the problems arising in some physical systems

and obtain better understanding by rephrasing or reformulating the problems.



Put another way, we may ask whether or not there is an alternative algorithm or
computational model derived from well-known routines used in physics to attack
some intractable problems existing in other application domains. These questions
have stimulated a great deal of studies in several directions. Recent advances are
stirring even more interest and makes this subject more important than it was

previously recognized.

To answer the first question in part, the most visible progress may be that
the concept of complezity has been brought to the attention of a large number of
physicists when they discuss problems in physics. There are principally two types
of complexity that are employed in studying physical systems. The first one is
devoted to the discussion of randomness observed in the systems where the degree
of order or disorder needs to be defined and classified. The work in this direction
was initiated in the 1960’s by G. Chaitin, A. N. Kolmogorov, et al. [23], who
first introduced the notion of “algorithmic complexity.” In brief, the algorithmic
complexity of a pattern is the length of the shortest program on a general-purpose
computer, a universal Turing machine, required to generate the pattern, divided
by the size of pattern itself (taking the limit of infinitely large patterns is assumed).

This definition of algorithmic complexity seems to be the quantity most closely



related to the intuitive notion of randomness. A considerable effort has been
made to extend this concept such that the other factors affecting the system can
be sufficiently taken into account and the randomness or information of the system

can be effectively described (e.g., [12], [116], and the references therein).

The second type of complexity is essentially imported from the notion of com-
putational complezity [1], [46] in computer science. In the theory of computational
complexity one correlates the complexity of a problem with the time it takes to
solve the problem on a computer, normally an abstract computational model like
a Turing machine. If a problem can be solved on a Turing machine in a num-
ber of steps less than a certain polynomial P(M) of the size of the problem M,
assuming the algorithm is found, we say this problem is a P problem. Further-
more, an NP problem is a problem that can be solved in a polynomial time on a
nondeterministic Turing machine. A nondeterministic Turing machine is a Tur-
ing machine that allows the verification of several guesses to proceed in parallel.
From the experience, an NP problem is an intractable problem with no efficient
algorithm and whose solution rapidly becomes impractical with increasing prob-
lem size. Whether or not an NP problem can be transformed into a P problem

has been an important question seeking answers in mathematics for more than



two decades. Many problems in statistical physics have been proved to be NP (or
NP-complete, more precisely speaking) [10], [14], [45], [115]. Locating the global
minimum energy of some spin glass-like systems is a well-known example that still

lacks an efficient algorithm [11], [7].

Using physical analogies to attack some complex problems, which are often NP-
complete, has been used in many areas, but originated in physics. This approach
1s inspired by the recent success of applying artificial neural-net type algorithms
to problems in pattern recognition and combinatorial optimization [50], [54]. The
feasibility of this methodology is further enhanced by the rapid progress in current
parallel computation capabilities. Physical computation [42] is introduced as the
use of physical methods to describe general complex systems by encompassing
a variety of ideas, including statistical physics, simulated annealing, information
theory, etc. Confronted with the situation that there is no universally good ap-
proach to optimization, this comparatively no.vel methodology aims at being a
general strategy to deal with this sort of very large scale problems [89], [96], [111].
Though it resembles the probabilistic nature of randomized algorithms [3], [61]
in mathematics, only physical computation is able to address the problems in a

more uniform prescription based on the theories and formalism of physics. More



details of its state-of-the-art can be read in [42].

It is a thesis stated by A. Turing and A. Church that Turing machines are
capable of solving any effectively solvable algorithmic problems [71]. Namely,
Turing-computable functions are the closure set of all functions computable by
any mechanical procedure. Worse than the intractable problems like NP-complete
ones, there exist infinitely many problems that are “undecidable” or uncomputable
by any algorithm. Not restricted to the realm of theoretical computer science, a
number of problems in the dynamical systems theory have also proved to be unde-
cidable [27], [59], [72], [73]. Frustrated and encouraged by this reality, physicists
have speculated (e.g., [83]) and attempted to envisage computational models more
powerful than Turing machines, despite the relentless criticism from computer sci-
entists (e.g., [97]). Quantum computer [13}, [22], [32] and emergent computation
[40] are two starting steps toward this goal that have received much attention in
recent years. The major advance anticipated from quantum computer is that,
owing to the nature of quantum superposition, this theoretical machine offers
the possibility for massive parallelism within a single piece of hardware. Though

this theoretical computer does not surpass Turing machines, it reveals promising



prospects by showing more efficient performances than Turing machines on sev-
eral problems. The realization of this design awaits the breakthrough of future
technology. Emergent computation exploits the potentially higher computational
capabilities exhibited by a big set of computers interacting collectively and coop-
eratively. It is an interesting investigation per se to see if any computation with
better efficiency emerges in the vicinity of a phase transition, if any, in the system.

Yet the usefulness of this type of model still receives much skepticism.

1.2 Hierarchical Structures

Hierarchical structure is a conceptual framework frequently used in building
models for the study of a great variety of phenomena. The differences in definition,
interpretation, and utilization of structures of this sort may appear, at first glance,
impossible to reconcile for different problems, though the main underlying ideas
are very likely to be the same. In a sense, the hierarchical structure can be
visualized as an ordered configuration abstracted from an ensemble of interacting

units, and, by some specific governing rules, the interacting units are successively



decomposed into nested sub-components at every level of the hierarchy. This
structure serves not only to describe the complexity of the system at different
levels, but also to achieve some goals targeted by the problem, i.e., an algorithm

to solve the problem.

Spin glasses [38], [69] are a very interesting topic in condensed matter physics
that provide an inspiring example for hierarchical structures. These types of
systems are relatively new (developed in the mid-1970’s), and yet have become
a rich paradigm for the study of several characteristic behaviors shared by a
great many complex systems. Besides randomness, the crucial ingredient to the
construction of a spin glass system is frustration. By frustration, we mean the
inability of a system to accommodate a configuration that satisfactorily complies
with all constraints, i.e., the competition among conflicting interactions. Owing
to this paradoxical feature, the system exhibits a multitude of nearly satisfactory
accommodations, which correspond to a very large number of near equilibrium

states at low temperature.

Ultrametricity [85] entered physics through recent investigations of some spin

glass systems in the context of mean field theory. This concept has appeared now



and then in the mathematical literature under the name of p-adic numbers, origi-
nating in 1897. In mathematical terms, an ultrametric space is a space replacing

the triangular inequality
d(A,C) < d(A,B)+d(B,C) (1.1)

by a stronger inequality
d(A,C) < maz{d(A, B),d(B,C)}. (1.2)

The pictorial explanation of this metric is depicted in Fig.1.1. A very short time
after its introduction into spin glass theory, the concept is discussed in several
fields: statistical physics of disordered systems, combinatorial optimization, neural
networks, conformational structure of proteins, evolution and diffusion (see the

reviews in [85] and [114]).

There is a considerable amount of indirect evidence that the free energy surface
of a spin glass is rough on many scales [99]. Specifically, the free energy surface
of a spin glass system may be filled with valleys of different heights, and valleys
within valleys (Fig. 1.2). In other words, the local minima of the free energy
surface may undergo multifurcation over and over again, which as a result gives

rise to a hierarchical organization on the free energy surface. A number of toy
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Figure 1.1: An ultrametric tree.
In an ultrametric space distance between two states is defined as the number of
levels which must be traced back before they merge.
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Figure 1.2: The Multiscale resolution.
The free energy surface at three different resolutions, which can be controlled by
temperature and length scale.
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Figure 1.3: A toy model of hierarchy-type.
A sketch of a toy model, where the distance between sites is the number of steps
toward the root of tree before paths from two sites converge. Different probability
weights can be specified at different levels of transition.
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models [53], [55], [76], [80], [93] have been invented, based on different types
of hierarchical organization (e.g., Fig. 1.3), to imitate some interesting yet not
totally understood phenomena such as irreversibility, slow relaxation, relaxation

of different time scales, etc., observed in many complex systems.

Another excellent device used to study complex systems are cellular automata
[109]. This model was originally introduced in 1948 by John von Neumann as a
possible idealization of biological systems. In an attempt to “abstract the logical
structure of life,” he developed an automaton network that could exhibit one of the
major features of life: self-reproduction. Mathematically, cellular automata are a
skeletal scheme of natural systems in which space and time are discrete, and the
physical quantities take on the finite set of discrete values; the automaton network
evolves in discrete steps, the sites being simultaneously updated by a deterministic
or nondeterministic rule. Typically, only a finite number of neighbors are involved

in the updating of any site.

The interest in cellular automata was reawakened when Frisch, Hasslacher and
Pomeau proposed their “lattice gas automata” for the 2-dimensional Navier-Stokes
equations in 1986 [44]. Their lattice gas automata are a clear-cut model with a

oversimplified “microdynamics,” in which particles move and collide with certain
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Figure 1.4: A collision rule in a CA model.
Performing a simple collision rule on a triangular lattice can simulate complicated
fluid dynamics.

deterministic or nondeterministic rules on a triangular lattice, e.g., Fig. 1.4. By
taking an appropriate continuum limit of this microdynamics, the macrodynamic
description of fluids, the Navier-Stoke equations, is recovered. Unfortunately, even
after several variant models were proposed, the cellular automaton fluid is still
confined to the low Reynold’s number regimes and offers no help to the study of

turbulence, the most interesting phenomenon in fluid dynamics. However, cellular
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automata may still provide insight into the investigation of models which are as
simple as possible in construction, yet capture the essential mathematical features
necessary to reproduce the deserved complexity. It is now believed that cellular
automaton models of hierarchy-type are well suited to more accurately simulate

the essential features of complex systems (see [58] and the references therein).

These hierarchical cellular automaton models can be roughly understood as
cellular automata of several layers organized in a tree structure, rather than of only
one layer, as their predecessors. In the system, a unit interacts strongly with the
other units of the same level; A unit at the lower level is “slaved” to the unit of its
upper level, while there is a small feedback from the lower level to the higher level.
Obviously, this arrangement is a phenomenological imitation of the dynamics seen
in many natural or social systems. The design of hierarchical cellular automata is
mostly inspired by the work on toy models mentioned earlier (e.g., [53], [55], etc.).
However, the hierarchical cellular automata have much more freedom to vary the
governing dynamics. A hierarchy of coupled iteration rules are from the typical
recipe for the dynamics, where one has the freedom to decide the form of iterations
and couplings with neighbors of the same level and sites at different levels, yet

still to keep the rules as mathematically simple as possible. Complex systems as
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diverse as biological information processing, economic activities, and turbulence
of fluids are currently the problems that the researchers are most interested in

approaching with these modeling schemes.

1.3 Organization of This Work

In spite of the exciting progress in strengthening the connections between
physics and computer science and the significant value of studying the hierar-
chical models, we will only concentrate our attention on the discussion of the
hierarchical algorithms in this thesis. As mentioned above, if a hierarchical struc-
ture is designed to fulfill the goal described by a problem, this structure is in
fact an algorithm to solve the problem, and its structure is that of a hierarchical

algorithm. !

The main algorithm to be studied in the thesis is called the hierarchical cluster
labeling algorithm. This study is essentially motivated by the inefficient perfor-

mance of the cluster Monte Carlo algorithms for spin models on parallel computing

!Quite often, a model simulating a physical system is called an algorithm to unfold the
properties of the system, like Frisch et al’s lattice gas automata also known as the cellular
automaton fluid algorithm. But here, we will call it a model to avoid any possible confusion.
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systems. In Chapter 2, we describe the cluster Monte Carlo algorithms, mostly
based on the work of Swendsen and Wang, and elaborate the motivation to intro-
duce a better parallel algorithm. Chapter 3 and Chapter 4 are entirely devoted
to the discussions of the hierarchical cluster labeling algorithm. We emphasize
the divide-and-conquer methodology employed in this algorithm and its recursive
nature. Owing to these characteristics, we are able to have a clear picture of the
whole course of the algorithm. The algorithm can easily be applied in any dimen-
sion and to arbitrary geometry. Based on this success, the hierarchical cluster
algorithm can be even further extended as a generalized scheme to perform any
parallel prefiz calculation on an arbitrary problem domain. This scheme is more
flexible and powerful than the scan mechanism previously proposed. Chapter 5
is a detailed exposition of fast Fourier transform (FFT) and a brief review of the
Barnes-Hut method. The purpose of this chapter is to discern the similarities and
differences between these two and the hierarchical cluster labeling algorithm, in
terms of the scenarios of divide-and-conquer and shuffling. Since the technique of
shuffling used in the algorithm design here is similar to the idea of encoding in
information theory and this theory has become very useful and popular in elucidat-
ing many notions in physics, we briefly describe the information theory formalism

in the Appendix. The discussion is centered on the Huffman code which plays a
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primary role in information theory and is an algorithm of the hierarchy-type as
well. Finally, in Chapter 6, we conclude the thesis by pointing out the prospects

and further research directions for the hierarchical algorithms.
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Chapter 2

Cluster Labeling

2.1 Motivation

Cluster labeling has been an important problem existing in a wide variety
of studies in natural sciences and engineering applications. It is an unavoidable
problem whenever the specification of a whole cluster of elements with the same

assigned properties in the target configuration arises during the problem-solving
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procedure. This problem has been studied for a long time in different disci-
plines and referred to by various names, like connected component labeling, cluster
identification, and undirected graph computation [92], [106]. Earlier, scientists in
different disciplines only studied this problem based on the experiences within
their own discipline, without knowing much about progress in other areas. Along
with the increased use of high performance computers, the exchange of know-how

between different disciplines has become crucial.

Since Swendsen and Wang proposed the “cluster” Monte Carlo simulation al-
gorithm for Potts spin models [104], the problem of finding connected components
on a physical configuration has steadily attracted more attention among physi-
cists. In contrast to the traditional single-spin-flip-mode (Metropolis) algorithm,
Swendsen and Wang’s method is a very different type of collective-mode updat-
ing method. Specifically, instead of updating the spins one by one, the cluster
algorithm considers connected clusters of spins with the same orientation as one
template, and updates the whole template as one single spin. The main purpose
of adopting the collective-mode updating is to combat the effect of critical slowing
down which afflicts the single-mode Metropolis method by reducing the efficiency

of the algorithm to zero near the phase transition as the size of the lattice increases
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In this section, we briefly review the theoretical foundations of the Swendsen-
Wang algorithm. Instead of following the original exposition of Swendsen and
Wang, we will proceed in a form and use the notations first introduced by Sokal
and Edwards [35] and later modified by Binder et al. [79], which turn out to be
more flexible and useful in addressing physical properties associated with clusters
in the system. Given a lattice with Potts spins o; = 1,..., ¢ on the site and bond
variables n;; = 0 (open, i.e. disconnected), n;; = 1 (closed, i.e. connected) on the
edges, the joint probability distribution of a certain realization of Potts and bond

variables is defined by

P(a,n) =z H [(1 —Pij) 67%',0 + Pij 50;‘,0]' 5711‘]',1] (2'1)
<4,5>

with

Z =33 TI (1= pij) bayio + Pij Soroy Syl - (2.2)

{o} {n} <iij>

The p;; are given by the couplings J;; between the spins, p;; = 1 —exp(—J;;), where
Ji; = 0 for all 7, 5 (“ferromagnetism”). This is often called the Fortuin-Kasteleyn-

Swendsen-Wang (FKSW) model (in [35], P(o,n) is denoted as prxsw(o,n)).
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Summing over all bond configurations yields

P(e) = 3 P(on) (2.3)

{n}
= z! H Z [(1 _pij) 67%',0 + pij 6ai,0j 5ni]',1]

<> mij=0,1
= 7270 [T [A=pi) + pij b5,
<&,5>
- e | $ i)
<é>
= 7' exp[—H(0)] (2.4)
with Z = Y1,y exp[—H(0)], respectively, and H(o) = S ;55 Jij (1 — b5;,0;) the
Hamiltonian of the Potts model (thus P(c) is denoted by pp,us(o) in [35]). As

expected, the Potts model is “recovered” from the FKSW model by “smearing”

the bond configurations.

On the other hand, evaluating the sum over all spin configurations leads to

another distribution
P(n) = ZP(O’,H)
{o}

= Z27 3 | Il pibe., I (—=wm)|. (25)

Noticing that all the terms in the sum with a closed bond between two spins in
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distinct states vanish, one can further obtain

Pn) = Z71 Y II » II - py), (2.6)

{on} | <iri> =1 <i,i>,mi5=0
where o™ denotes a spin configuration compatible with the restriction for two spins
to be parallel, i.e. in the same Potts state, if connected by a closed bond. Hence,
the terms in the sum are now independent of the spin configuration. Namely,
given the bond configuration, the sum merely counts the number of compatible

spins configurations. If a cluster is defined as the set of bond-connected spins, it

follows that

P(n)y = z71 II ri IT Q-py)e™ (2.7)

<Z1.7>177'lj =1 <i3j>5nij=0
with ¢ the number of possible spins orientations, i.e. Potts states, and (n) the

number of clusters of the given bond configuration {n}; equivalently,

z=> 1 II pm TII (-py) ™. (2.8)

{n} | <#i>miz=1 <8,§>n;5=0
This is simply the partition function of the random-cluster model first proposed

by Fortuin and Kasteleyn [41] (P(n) is thus denoted by pro(n) in [35]).

Up to now, the following facts about the FKSW model have been verified [35],

which are of both analytic and numerical interests:
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a) Zpotts = Zrksw = ZRc-

b) The probability distribution of P(c,n) (or prrxsw) on the Potts variables
{o} (integrating out the {n}) is precisely the P(c) for the Potts model (or
,U'Potts(o-))-

c¢) The probability distribution of P(co,n) on the bond variables {n} (integrat-
ing out the {o}) is precisely the P(n) for the random-cluster model (or
firc(n)).

The conditional distributions of P(o,n) are also simple:

d) The conditional distribution of the {n} given the {¢} is as follows: inde-
pendently for each bond {7,7}, one sets n;; = 0 in case ; # o}, and sets

n;; = 0,1 with probability 1 — p;;, pi;, respectively, in case o; = ;.

e) The conditional distribution of the {o} given the {n} is as follows: indepen-
dently for each connected cluster, one sets all the spins o; in the cluster to

the same value, chosen equiprobably from {1,2,...,q}.

In brief, exploiting facts (b)—(e), the Swendsen-Wang algorithm (SW), simu-
lates the joint model (2.1) by alternately applying the conditional distributions

(d) and (e) — that is, by alternately generating new bond variables (independent
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of the old ones) given the spins, and new spin variables (independent of the old
ones) given the bonds. Therefore, Swendsen-Wang algorithm consists of assigning
a new random Potts spin value to each cluster, i.e., with all the sites in a given
cluster getting the same value, after the clusters are constructed by introducing
bonds with probability p = 1 — exp (—J) (J;; is normally set to be constant J in
most of the implementations) that connects sites with the same spin. By erasing
bonds we are left with a new Potts spin configuration. This new configuration
can differ substantially from the original one since large clusters can be altered in
one single step, thereby introducing strongly nonlocal moves in the system. The
critical slowing down is ameliorated by this nonlocal updating algorithm through
a drastic reduction in the value of the critical dynamical exponent. The critical
dynamical exponent, normally denoted as z, is a measurement of the efficiency of
an updating method near the point of phase transition. It can be proved that the
statistical error in a Monte Carlo-type algorithm is approximately proportional to
£#/2 near criticality [68], where ¢ is the spatial correlation length. The experimen-
tal data show, for instance, that z is reduced to at most 0.35 by Swendsen and
Wang’s algorithm from 2.125 measured from the traditional (Metropolis) Monte

Carlo simulations on the two-dimensional Ising model [104].
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After the success of Swendsen and Wang’s cluster Monte Carlo algorithm,
there has been an explosion of work devoted to understanding and improving the
algorithm [79], [87], [88], [105]. Another successful variant of the cluster algo-
rithm has been designed by Wolff [110]. In this algorithm only a single cluster
is generated by a randomly chosen spin, applying the same bond probabilities as
for the Swendsen-Wang algorithm. Since only one cluster of spins is updated at
each step of the Monte Carlo procedure, Wolff’s algorithm achieves the best per-
formance on a sequential computer. Nevertheless, Swendsen and Wang’s method
is better suited for parallelization. In addition, many cluster algorithms for more
complicated spin systems, e.g., the fully frustrated [37], [56], [57], the spin glass-
like [26], etc., have also been introduced and intensively studied. Although these
Swendsen-Wang-type algorithms perform impressively well, we understand very

little about why the critical dynamical exponents take the values they do [98].

In implementing these cluster algorithms, whether sequentially or in paral-
lel, the major time-consuming bottleneck is in identifying the cluster(s). Thus
labeling the clusters in a physical configuration has turned out to be a problem
of importance to physics, rather than confined only to engineering and computer

science. A couple of cluster labeling algorithms for sequential computers have long
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existed and been used by physicists when dealing with percolation-like problems
[9]. However, we are now interested in designing their parallel versions in order to
take advantage of the large gain in speed provided by parallel computers currently

being developed.

2.2 Graph Algorithms

The first way of designing a parallel algorithm is to detect and exploit any
inherent parallelism in an existing sequential algorithm. In spite of its straightfor-
wardness, blindly transforming a sequential algorithm to parallel form is often a
mistake. Some problems have strong sequential tendency and consequently their
sequential algorithms have no obvious parallelization. The algorithm adapted
from such a sequential algorithm for this kind of problems will exhibit poor
speedup. Unfortunately, the cluster labeling in the spin models is just such a
problem. The growing of clusters in the spin configuration is very similar to the
information passing procedure seen in many phenomena, and thus is inherently se-

quential in nature. In addition to these obstacles, the hardware architecture often
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demands a new approach. Therefore, it is often better to “start from scratch.”
Before doing so, we would like to see what has been previously accomplished on

this problem.

As mentioned earlier, the cluster labeling problem is sometimes called undi-
rected graph computing, and the algorithms developed to tackle this problem gen-
erally require the aid of graph theory. In a broader context, these algorithms are
always referred to as graph algorithms [64]. Alternatively speaking, the image
component labeling problem is a special case of the graph connected component
labeling problem. In these kinds of problems, the idea is, for a given graph, to
label each vertex in such a way that two vertices get the same label number if and

only if they are connected by a path in the graph.

There are three common approaches to find the connected components of an
undirected graph. The first one is to use some form of search, such as depth first
or breadth first. This kind of search seems to be an inherently sequential process,
since searching always occurs along a single edge from a single vertex, restricting
opportunities for parallelism. In fact, it has been discussed and conjectures that
this type of searching algorithm is hardly parallelizable [48]. The second approach

is to solve the problem by finding the transitive closure of the adjacency matrix
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of the graph.! This method is very straightforward by simply calculating the
product of adjacency matrix of a graph. However storing the information of the
adjacency matrix can become very costly in memory and computing its closure
always consumes too much processor time, when the graph is very large. This

method is not considered the best option in searching for the parallel version.

The third approach collapses vertices into larger and larger sets of vertices
until each set corresponds to a single connected component and it has proved to
be the best suited strategy allowing parallelization. The most important progress
on this study may be the algorithm presented by Shiloach and Vishkin [95]. Given
an undirected graph G' = (V, E') and using a special parallel computation model,
their algorithm takes O(log n) time steps to complete the labeling, employing
n + 2m processors where n = |V| and m = |E|. The computation model used in
the algorithm requires that all the processors have access to a common memory

and are capable of simultaneous reading and writing from the same location. The

! An unweighted graph can be uniquely represented by an n x n adjacency matriz A, with
one row and one column for each vertex. The element of A at row ¢ and column j is equal to 1
if and only if there is an edge from vertex ¢ to vertex j; the value is 0 otherwise. The closure of
a graph is represented by an n x n matrix, denoted as C, whose elements ¢;; are defined to be
1 if there is a path from vertex ¢ to vertex j and defined to be 0 otherwise. It can be proved [1]
that C = (I + A)™, where m = 2[°6(*~D1_ Notice that the matrix product here is performed
according to the rule of Boolean matriz multiplication defined as follows: If X, Y, and Z are
n x n Boolean matrices where Z is the Boolean product of X and Y, then, fori,7 = 1,2,...,n,
zij = (x5 and yy;) or (z;2 and y;) or...or (z;, and y,;).
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(a) (b)

Figure 2.1: The rooted tree and star.
(a) An example of rooted tree; (b) an example of rooted star.

algorithms invented prior to that of Shiloach and Vishkin only achieve the time
efficiency of O(log®n) or worse and use just as many number of processors, see

e.g., [52], [65], [77).

Though Shiloach and Vishkin’s algorithm is intuitively simple, it is worthwhile

to introduce the jargon used in the algorithm for later convenience.
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Definition.

(1) A rooted tree is a directed graph satisfying:
(a) its underlying undirected graph is a tree;
(b) it has a vertex r called the root such that there exists a directed path
from each vertex to r (e.g., Fig. 2.1a).
(2) A rooted star is a rooted tree in which each vertex is connected directly

to the root, i.e., a rooted tree of height 1 (e.g., Fig. 2.1b).

During the whole course of the algorithm, associated with each vertex v has a
pointer D(v) which points to another vertex or to itself. The pair (v, D(v)) pairs
can be viewed as a directed edge and this defines a set of rooted trees, with self
loops at the root of the trees. The set of (v, D(v)) is called the pointer graph
which is always a forest of rooted trees plus self-looping that only occurs in the
roots. The entire algorithm essentially consists of intermixed applications of two

primitive operations.

Definition.

(1) The shortcut operation, D(v) «+ D(D(v)), replaces the value D(v) by D(D(v))

(see Fig. 2.3).
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Figure 2.2: The tree hooking operation.

(2) Let P =(V, D) be a pointer graph with rooted trees 11, ..., T}, k > 2, and let

r; be the root of 1. The operation
D(r;) « v, where veT; and j #1,

is called hooking of T; onto T} (see Fig. 2.2).

As the algorithm proceeds, the hooking operation hooks one tree onto another.

This operation makes the number of trees decrease while individual trees expand or
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even disappear. The trees are also subject to the shortcut operation that decreases
their height. At the end of the algorithm the vertices of each connected component
form a rooted star in the pointer graph. Thus, the question of the form “Do v; and
v; belong to the same connected component?” can be answered in constant time.
The computation model used in the algorithm is normally called CRCW PRAM
(Concurrent-Read Concurrent-Write Parallel Random Access Machine) [64], by
which these operations take O(1) time. Under this assumption, one finds that
the total time taken is O(log n), or |logs/,n| + 2 precisely speaking. Since the
shortcut operation is applied to each vertex v, the height of the tree containing
v reduces by at least a factor of 2/3 whenever the tree is not a rooted star (e.g.,

Fig. 2.3).

CRCW PRAM is the most powerful parallel computation model [63], [82],
though it is impractical to implement physically. Nevertheless, this model fur-
nishes a valuable theoretical paradigm for the discussion of parallel algorithms,
and algorithms designed on it can be translated into algorithms on real, more
feasible machines with less power. A considerable amount of research has been
undertaken to translate Shiloach and Vishkin’s algorithm onto existing parallel

machines with various architectures (e.g., [28] and the review in [2]). In fact, the
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Figure 2.3: The shortcut operation.
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cluster identification problem discussed here belongs to a larger family of problems
called clustering. In the clustering problems [86], [92], one is concerned with par-
titioning a set into groups according to certain properties of the elements. These
properties and the partition rules are usually more broadly defined and the prob-
lems are often much more complicated than the cluster identification problem.
In contrast to the purely deterministic scenario used in the cluster identification,
most clustering problems involve different forms of statistical considerations as
the partition proceeds. The clustering routines that play a key role in the unsu-
pervised learning of artificial neural-net theory [50], [92] are a very good example.
Designing faster probabilistic partition schemes in order to generate better learn-

ing capabilities is one of the major goals in this subject.

Another interesting approach to cluster identification using randomized algo-
rithms has recently been presented by Gazit [47]. The main idea of the algorithm
is to find a way to separate vertices with a large number of incident edges, called
extrovert vertices, from those with a small number of incident edges, called in-
trovert vertices. To separate them by counting the edges takes too much time.
Therefore a statistical test is used: a sample of edges is taken and only the ver-

tices they hit are considered. Obviously, an extrovert vertex is more likely to be
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chosen by this method because it has more edges than an introvert vertex. In a
randomized algorithm, each processor has access to a random-number generator
which makes the statistical test possible. Through rigorous probabilistic analysis,
Gazit proves that his algorithm has an expected running time of T = O(log n)
with P = O((m + n)/log n) processors, where m and n are again the numbers of
edges and of vertices, respectively. The probability that the algorithm runs longer
than expected is at most (2/e)"/'8*" for some k < 4. In other words, Gazit’s
probabilistic algorithm is optimal in the sense that the product P - T is a linear
function of the input size. The algorithm requires O(m + n) space, which is again
just the input size, so it is optimal in space as well. This progress in some way
addresses Shiloach and Vishkin’s conjecture that the barrier of log n cannot be
surpassed by using any polynomial number of processors. If this conjecture is true,
Gazit’s algorithm has achieved the lower bound for running time with an optimal
number of processors. The question of whether these bounds can be achieved by

a deterministic algorithm remains open.

The research into randomized algorithms [3], [49], [61], [84] is a relatively new
yet increasingly active area. In general, a randomized algorithm is one that re-

ceives, in addition to its input data, a stream of random bits that it can use for



36

the purpose of making random choices. Even for a fixed input, different runs of a
randomized algorithm may give different results. Thus it is not surprising that a
description of the properties of a randomized algorithm will involve probabilistic
statements in terms of one or more random variables. By now it is recognized that,
in a wide range of applications, randomization is an extremely important tool for
the construction of algorithms. There are two principal advantages that random-
ized algorithms often have [61]. First, the execution time or space requirement of
a randomized algorithm is generally smaller than that of the best deterministic
algorithm for the same problem. But even more surprisingly, if we look at the
various randomized algorithms that have been invented, we find that they are
in fact very simple to understand and to implement; often, the introduction of
randomization suffices to convert a simple and naive deterministic algorithm with
bad worst-case behavior into a randomized algorithm that performs well with high
probability on every possible input. In this regard, it is desirable to find the cor-
responding randomized algorithms for the NP-complete problems such that these
problems can be solved in a “reasonable” amount of time, i.e., polynomial time.
In a certain sense, randomized algorithms share similar ideas with the physical
computation mentioned in Chapter 1. The most important advantage of random-

ized algorithms over their deterministic counter parts may be their close relation
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with physical statistical mechanics [115]. The exact form of this relation has not
been made very clear yet, and is therefore worth more devoted attention. A great
reduction of computational complexity using a certain number of processors with
a cleverly designed randomized algorithm is not the whole story. Implementing an
algorithm in a real computing environment is also one of the essential steps needed
to evaluate the method in practice. Thus, to analyze the performace of algorithms
of this category on existing computers is an important task which deserves further

attention.
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Chapter 3

The Hierarchical Cluster

Labeling Algorithm

3.1 Divide and Conquer

The dynamic irregular nature of clusters in a spin configuration or a pattern
recognition domain complicates the task of finding good parallel algorithms. This

is particularly true on SIMD machines [43] where the high degree of parallelism
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conflicts with the inherent sequential process, i.e. cluster growing, which defines
the problem. The essential idea behind the algorithm we are going to describe in
this chapter is the construction of a static hierarchical structure on the configu-
rations of the target problem. Through this hierarchical structure, the possible
configurations are recursively decomposed into many components. The connected
components of clusters are labelled by a unique number, which, during the course
of the algorithm, is passed through calling the nonlocal communication routines
provided by the machines. The computation proceeds in a recursive manner up-
wards through the hierarchical structure until all connected components have been
labeled. One can easily see that this hierarchical scenario has invoked a concept

rooted in the technique of divide-and-conquer [1].

Divide-and-conquer (DC) is a problem-solving methodology that involves par-
titioning a problem into subproblems, solving the subproblems, and then combin-
ing the solutions of the subproblems into a solution for the original problem. The
methodology is recursive; that is, the subproblems themselves may be solved by
the DC technique. Many important problems in scientific computing are known to
have efficient DC solutions. Examples are fast Fourier transformation (FFT) [78],

Strassen’s matrix multiplication [102], prefix algorithms [64], Cuppens method
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for solving matrix eigenvalues [33], and several sorting algorithms, which include
quick sort, bitonic sort [62], etc. All of these are essentially some manifestation
of the divide-and-conquer methodology. Recursively partitioning the correspond-
ing problem configuration, like matrix elements in matrix multiplication and se-
quences of numbers in sorting, the hierarchical structure is defined for each config-
uration. By this tree-like structure, a drastic speedup algorithm is obtained, e.g.,
from N? steps of Fourier transformation to N(log N) steps for the FFT. The idea
is not confined to seeking better algorithms. The notion of hierarchical structure
has also been applied to the design of computer architectures. The well-known
hypercube architecture [43] is an embodiment of a hierarchical structure inside the
computer hardware. The concept has been pushed much further, so that a large
number of computational activities of highly heterogeneous nature [34] can proceed
in a single computation environment. The so-called hierarchical multiprocessors
[29] meeting these needs may, in the near future, be a present day mainstream
high performance computer. The hierarchical structure is also a central idea in the
construction of any conventional programming language. It is also a widely-held
opinion that divide-and-conquer is an effective programming paradigm for paral-
lel computers. In particular, a new parallel programming language, Divacon [74],

has also been invented based on the scheme of divide-and-conquer. It is expected
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that parallel programming languages of this type may revolutionize the way of

thinking and programming on parallel computers.

Returning to the major subject of this chapter, in the next section we will
introduce the cluster labeling algorithm in one dimension, and its extension to

higher dimensions will be presented in the following section.

3.2 The Algorithm in One Dimension

The primary portion of the algorithm is composed of a special initialization of
the label number on each site of the target problem configuration. This initializa-
tion installs an appropriate hierarchical structure on the problem from the very
beginning. In addition to the special initialization, another elementary part of
the algorithm consists of mixed applications of local and nonlocal communication

routines furnished by the parallel computer being used.

Suppose we are given a strip of length N as Fig. 3.la, where N is at first

assumed to be a power of 2, N = 2¥ for pedagogical simplicity. In this illustration
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(k = 4), the strip is to grow into one single cluster after the whole identification
procedure is finished. In this array, from left to right, every site has a coordinate,
coord, ranging from 0 through N — 1. To begin, each site is assigned a unique

label number, label_value, by the following formula.
label_value = ap_q + 2059 + ap_3 + ... + 25 ag + (Qkak - 1), (3.1)
where ag,a1,...,ar = 0 or 1 are defined by the dyadic expansion:
coord + 1 = a2% + aj,_2F ' + k2252 4 L 4 @12 + ao.

The evolution rule is that the label numbers are replaced by smaller ones after
checking the label numbers of connected clusters. It is very similar to the ants-
in-the-labyrinth method' which is the most ob‘vious one for identifying a single
cluster of connected sites. The difference is that here we consider each cluster as a
template to be identified. At the first step of identification, every site carrying its
own unique label number can be regarded as a cluster composed of only one site.
Actually, this is the view taken for clusters in the implementation in order to keep

the consistency of definition. After the first iteration (Fig. 3.1b), only one half of

!The reason for its name is that we can visualize the method as follows [9]. An ant is put
somewhere on the problem domain, say a lattice, and notes which of the neighboring sites are
connected to the site it is on. At the next time-step this ant places children on each of these
connected sites which are not already occupied. The children then proceed to reproduce likewise
until the entire cluster is populated. It is easy to see that the time complexity of this method is
a linear function of the cluster size.
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Figure 3.1: The merging of a one-dimensional cluster.
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the label numbers survive, and thereby half the number of clusters emerge. After
the second iteration (Fig. 3.1c), only one quarter of the label numbers survive. At
the same time, only one half of the clusters survive from the first iteration though
their lengths may grow twice as long as they were in the previous iteration step.
Shown in the illustration of Fig. 3.1, this identification process repeats itself until
the growth of one single cluster is completed (Fig. 3.1e). From this evolution, it
is not difficult to understand why only log N iteration steps are required to finish
the job. Furthermore, the strip can be divided into any number of disconnected
clusters. Then only maz{log N;} iteration steps are required to identify those

different clusters. Here N; is the length of i-th cluster.

That the cluster identification ends in a logarithmic time traces back to the
architecture defined by initialization process. Instead of assigning consecutive
numbers site by site in the array, we initialize the label number according to 3.1
so that the cluster is able to evolve in a hierarchical manner. Fig. 3.2 shows the
hierarchical structure embedded in the strip of Fig. 3.1. In the implementation,
the sites belonging to the same cluster are identified with a coordinate, pointing to
a special point that we call the center of the cluster. However, this point doesn’t

have to be the geometrical center of the cluster. It can be decided by any easy



45

Figure 3.2: The hierarchical tree.
The hierarchical structure hidden in the array of Fig. 3.1.
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rule as long as center is some point in the cluster. The following is the pseudo
code which is applicable to a grid of any dimension. Three parallel structures,
OWN, NEIGHBOR, and TMP, are defined for each site on the grid to hold
the essential information about the point, e.g., label number and the coordinate
of its associated center. Since one cluster always connects with more than one
other cluster, especially in higher dimensions, the TMP best satisfying the growth
condition in this problem is that referring to the one having the smallest label

number among the connecting clusters.
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Pseudo Code

Initialize OW N with the unique label number on every site of the grid *
Loop beginning
TMP:= OWN *
For all neighbors of each site Do
NEIGHBOR := OW Nycignpor_i *
If growth_condition(TMP, NEIGHBOR) = TRUE *
Then
TMP:= NEIGHBOR *
Else do nothing
Send the TMP that best satisfies growth_condition in
each cluster to OW Neepge, *
For all sites Do
OWN := OW Nognrer **
Continue this loop if any growth occurs in the previous round

End of Loop
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To exhibit the parallelism in the code, two superscripts, # and &, are affixed
to the instructions which are executed in parallel for all sites and for all clusters,
respectively. When every site updates its label number, obsolete center’s are
discarded at the same time. Only the center bearing the smallest label number
survives after two or more clusters merge. Two superscripts appearing together

at the end of line 9 depicts this occurrence.

This pseudo code illuminates the fact that the whole algorithm is essentially
the superposition of two parts: first, a special arrangement in the label number
initialization; second, the nonlocal cluster updating which occurs by applying par-
allel routines to the updating of center points. It may not be so obvious to perceive
the superiority of this algorithm having seen only the example in one dimension.
In the next section, the extension to higher dimensions will be presented and the

advantages of the hierarchical algorithm will thereby be revealed.

3.3 The Algorithm in Higher Dimensions
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As elucidated by the pseudo code in the previous section, the intrinsic work
required for the extension to higher dimensions is the enlargement of the hierar-
chical structure in the label number initialization. That is, only modification of
the first part of the algorithm (line 1) is required. The adaptation of the second
part occurs automatically as the configuration (or shape in the terminology of the
Connection Machine) of the grid is redeclared for higher dimensions in the code
header. In the beginning, we show how this enlargement is accomplished in two

dimensions and then introduce the general method in arbitrary dimensions.

The basic idea in extending this structure to two dimensions is to store the
hierarchical ordering of the initial label numbers in both directions at the same
time, horizontally and vertically, from any site on the grid. Once the structure
satisfying this criterion is constructed, the clusters will be connected in a log-
arithmic time, in both horizontal and vertical directions simultaneously (or in
all directions on the two-dimensional grid, in fact). The clusters merge in this
manner, no matter where they are located on the grid, since all the clusters are

updated in a parallel fashion according to the second part of the algorithm.

Now we introduce our method of weaving this structure on the two-dimensional

grid. Suppose (z,y) is the coordinate of a certain point on the grid. Making use of
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3.1, one can compute label value_z taking label_value_z = label_value with coord = z
label_value_y is similarly computed simultaneously. Therefore the respective label
numbers projected onto the vertical and horizontal axes are derived, and the hier-
archical structures expected to reside in each direction are simply encoded in these
numbers. Now we still need an appropriate melding of these two numbers to define
the actual label number on this site, in such a way that the hierarchical struc-
ture is entirely preserved in both directions. There are several ways to combine
these two projected numbers and still keep the combined numbers distinct from
one another. One natural way is to take label value = plobel-veluez label valuey
where p and ¢ are any two different prime numbers. However, the drawback of
this combination is that it may take too much memory when the grid size is large:
This combined label number increases exponentially with the size of the projected

label numbers.

In fact, there is a linear combination of the label numbers which satisfies the
aforementioned criteria, and uses only the same order of the memory storage as

that of assigning label numbers consecutively site by site.

Theorem 3.1.
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Let

label walue = p * label value_x + q * label walue_y, (3.2)

then the label numbers on a grid of size N = N, * N, are distinct.

Here p and q are two relatively prime positive integers,

(pg) =1,
p>1,
g>N,—1,

and N, and N, are, respectively, the horizontal and vertical widths of the grid.

Proof.

Suppose z; and z; are two label numbers that happen to have the same value,

yet originate from different combinations, i.e.,

21 = p * label value_ry + ¢ * label_value_y,

2y = p * label walue_zy + q * label value_y,

and

label walue_rq # label value_z,

label walue_yy # label value ys,.
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Then we have

0 = p* (label walue xy — label walue ) + ¢ * (label value y, — label value_ys),
ie.,
0 = (label value_ry — label value ;) (mod q)

0 = (label value_y, — label value_y,) (mod p),

for (p,q) = 1.

We know that this is impossible, since
q > Ny — 1 > (label value_zq — label value_xy) # 0.

Therefore, on the grid of N, * Ny, no two label numbers can be identical by

this assignment. O

Furthermore, suppose we define label value_z; the projected label numbers in
every dimension, ¢ = 1,2,...,n, from 3.1. The generalization of Theorem 3.1 to

arbitrary dimensions is as follows:

Theorem 3.2.

Let

label value = Zpi * label value x;, (3.3)

=1
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then the label numbers on the grid of size N, equal to [T, N;, must be distinct.
Here

Jj<i

(Vn2>i>1) pi > Y pi(N; —1),
7=1

and N; is the width of the grid in the #th dimension.

The proof is similar to that of Theorem 3.1, except more trivial. One may
find that the linear combinations above do not reduce to those in Theorem 3.1
when n = 2, for the restriction that p; and p, be relatively prime has been
lifted. However, both methods are legitimate. It was pointed out earlier that the

combination rule is not unique.

Notice that there is no theoretical upper bound for the choice of p; (or p in
Theorem 8.1). However, in the implementation, it is usually chosen to be 1, using
the assignment of Theorem 3.2, or chosen to be 2 using that in Theorem 3.1. This
way all the label numbers are kept as small as possible. If, for instance, all shuffled
label numbers are assigned to a two-dimensional grid by these methods, one can
see that the hierarchical structure is preserved on any size patch of any shape,
wherever it is located on the grid. Therefore, for any cluster configuration on a
grid of arbitrary dimension, this assignment guarantees the asymptotic running

time is maz{log N;;} (in practice, greater than this time). Here N;; denotes the
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Figure 3.3: The growth sequence in 2-d.

width in the j-direction of the i-th cluster.

In the growth sequence, the clusters actually evolve in diamond shapes or,
more generally speaking, by moving diagonally. Due to the identical hierarchi-
cal structure along each axis of the grid, the clusters are updated in all axial
directions with the equal ‘velocity.” Fig. 3.3 demonstrates this process in two
dimensions. The heavy vector in this figure indicates the ‘superposed’ direction
of cluster updating from Lg to Ly, while AB and AD represent, respectively, the
horizontal and vertical directions of the grid. Imagine that the rectangle ABCD
1s an arbitrary subset of the grid (it could be the whole domain, too). The updat-

ing from point A to point C implies a parallel shift of the updating line from L
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Figure 3.4: The growth sequence in 3-d.

to Ly. As the diagonal updating line crosses over this rectangular domain along

the heavy arrow direction, the updating progression along each axial direction has

proceeded two lattice sites, i.e., AE = 2AB and AF = 2AD. For a d-dimensional
cube, the updating in each axial direction will proceed d lattice sites when the
(d — 1)-dimensional diagonal hyperplane crosses the whole cube (Fig. 3.4 shows

a three-dimensional example).

The actual number of iteration steps required to finish the labeling is very
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likely to be much smaller than the upper bound stated in the following theorem
below, we will not address such subtleties here, postponing the further discussions

until the next chapter.

Theorem 3.3.

The time needed to complete the cluster labeling is at most log N, and is the
same as the height of the hierarchical structure constructed in Theorem 3.2 or

Theorem 3.3. Here N is the number of sites in the grid.

Proof.

The theorem is nearly self-evident. Since the hierarchical structure, or tree,
has been defined in the problem configuration, the connected components simply
emerge as the tree is described (see Fig. 3.5) from the bottom, and terminate
at a particular node at a certain height. This height is the time step at which
the cluster stops growing. Since the maximum height of the tree is log N, the

temporal upper bound for the algorithm is log V. O

As we see from Theorem 3.3, building a suitable hierarchical tree for the prob-

lem makes the proof trivial, very much unlike the cumbersome proofs required
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Figure 3.5: The composite hierarchical tree.
The composite hierarchical tree embedded on a 2-d grid; only partial label numbers
and sites (or nodes in the tree) are shown.
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in the graph algorithms described in the last chapter. This is a triumph of shuf-
fling techniques, by which the corresponding hierarchical tree is established and
then an efficient algorithm is derived. Moreover, through shuffling techniques, this
method of cluster labeling highlights a fundamental difference from the previously
used techniques [6], [19], [70] for parallel cluster labeling. Some implementation
results of the algorithm are described in [103]. It should be pointed out that
Rossi and Tecchiolli [90] proposed two options of label number shuffling similar to
ours for 1-d clusters (their preprint was shown to the author after this work had
been substantially completed). However, they are not the optimal choices in one
dimension. In particular, Rossi and Tecchiolli did not discern the most important
implication of label number shuffling ~hierarchical structures on the problem do-
main. As a result, the general and systematic shuffling scheme was not discovered

in their work.

Quite often, the shuffling or reshuffling of the original problem configuration
should be viewed as a different “representation” of the original configuration, such
that we obtain a better “perception” of the problem through which one may be
able to seek a better or even optimal solution. Very similar to the codewords

in communication theory (see the Appendix), shuffling is a method of encoding
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that conveys the essential information about a problem in an optimal way. This
property is particularly useful when the problem has a highly irregular dynamic
nature. More elaboration and discussion of these points will be presented in the

following chapters.

3.4 The Implementation Results

We have implemented the algorithm on NPAC’s (Northeast Parallel Archi-
tectures Center at Syracuse University) Connection Machines, CM-2 and CM-5.
The Connection Machine 2 (CM-2) is a fine grain SIMD machine, which is better
suited for the implementation of the hierarchical cluster labeling algorithm. The
average times (typically over 500 sample points) of each iteration (i.e., 1 step of
time complexity) taken in simulating the Ising system at criticality are plotted in
Figs. 3.6 and 3.8 (16K processors). For the lattice size of interest (1024 x 1024),
our algorithm gives an averaged time per iteration per site of 0.268 microseconds

on a 16K CM-2. This measurement is already about 10 times faster than the best
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results previously achieved (Apostolakis et al.’s [6] and Brower et al.’s [19]), which
were 2.6 microseconds for each iteration. Furthermore, owing to the hierarchical
scheme employed in the algorithm described above (i.e. nearly in an optimal way),
the numbers of iterations to finish the labeling at criticality are always less than
the lowest previously reported (see Fig. 3.7). Notice that the numbers on the
abscissa of all plots in this section are the exponents (base = 2) of the linear
size or of the total site number (more data not at criticality are recorded in Figs.

3.13-3.17).

Besides demonstrating a success in numerical improvement, the hierarchical
cluster labeling algorithm also allows a systematic analysis on the implementation,
for instance, the estimation of iteration steps to finish the labeling for a cluster
of any kind of complicated shape, and the further optimization of the algorithm
by reshuffling the label numbers. The analysis is essentially achieved by making
use of the hierarchical structure (or recursive decomposition) furnished in the
algorithm. In systems of higher dimensions, the algorithm is expected to give even
better performance and excel over other algorithms for the same problem (e.g. the
performances on 3-d Ising systems at criticality are shown in Fig. 3.8 and Fig.

3.9; those not at criticality are in Figs. 3.18-3.20). In a sense, the hierarchical
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cluster labeling algorithm can be considered as a generalized scan scheme [16]
applicable to a domain of arbitrary geometry and of any dimension, yet not using

any built-in routine provided by the machine to speed up the implementation.

When the same code (i.e. a SIMD version) is implemented on the CM-5, which
has only 32 processors available to us and is practically a MIMD machine, the al-
gorithm is unable to exhibit a speedup closely comparable with that on the CM-2
(see Fig. 3.10). However, after an appropriate adaptation which makes the code
more “congruent” with the MIMD architecture of the CM-5, the algorithm imple-
mented on the CM-5 is able to perform as well as on the CM-2 (as shown in Fig.
3.10). The basic trick to do this adaptation is that, instead of each site on the grid
(i.e. each virtual processor) executing the same command simultaneously as on
a SIMD machine, only the boundary sites keep active in the process of checking
neighbors’ label numbers and exchanging information with the associated center;
all the internal sites, whose label numbers remain the same during the above two
procedures, stay idle until they need to update their label number. This sim-
ple trick (a similar but independent work is reported in [39]), also incorporating
the use of a very effective communication primitive, active message passing, pro-

vided on the CM-5, has greatly improved the performance of the algorithm on
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this machine. The absolute average times taken in each iteration of the adapted
algorithm on the CM-5 (32 nodes) are still longer than those on the CM-2 (16K
nodes). However, when considering the difference between the peak performance
between these two machines (the peak performance of 16K CM-2 is 500 Mflops
and that of 32 node CM-5 is only 144 Mflops without vector units), one can safely
say that the algorithm, originally designed for SIMD machines, works equally well
on MIMD machines. In fact, if the ratio of the peak performance between these
two machines is taken into account, the performance of the algorithm on the CM-
5 is about 2 times as fast as that on the CM-2. The ratios of speedup (on the
CM-5) using this adaptation for different linear sizes of 2-d grid are shown in the
first array of the following table, .and the ratios of speedup using the adaptation
(on the CM-5) over the original performance (on the CM-2), after scaling with
the ratio of peak performance between these two machines with quite different

architectures, are in the second array.

Speedup Linear Size

128 | 256 | 512 | 1024

CM5(MIMD) vs. CM5(SIMD) | 3.27 | 3.40 | 3.06 | 3.77

CM5(MIMD) vs. CM2(SIMD) | 1.79 | 1.99 | 1.70 | 2.27
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Further performance improvement can be achieved in the CM-5 program by
1. overlapping communication and computation;
2. further reduction in the overhead of processing the active sites and centers.

The basic idea of the MIMD implementation is to take advantage of the large
computing power provided by each physical processor (in CM-5, it is a sparc
processor) and meanwhile to maximize the usage of the information collected on
the current problem domain (or cluster configuration in this particular problem).
As the algorithm is implemented on MIMD machines, the center of a site should
be separated from the sites. The site uses a pointer to maintain a link to its
center. At all times, the site will either point to the center of its cluster or to a
representative of its cluster. Here, a representative is designated as a “local center”
in a node, for the sites in the same cluster and confined in this node. The point of
the representatives is to reduce the occurrence of node-to-node communications
that are much more costly. The lifetime of a site passes two stages. At the first
stage, the site is a boundary site. It is responsible for exploring the neighboring
cluster and reporting the finding to the center or the representative. The site
is in the second stage when it serves as an internal site. It is responsible for

maintaining the center information during the updating phase, i.e., not attended
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until the whole cluster needs updating.

The center of a cluster passes through three stages over its lifetime. Stage
one of a center is to serve as a center of a cluster. At this stage, it decides the
future of the cluster, specifically which neighboring cluster to join. It also serves
the center information to the local sites that belong to the cluster. The second
stage is the representative stage. At this state, the representative serves as a
cache of the center information for an off node center. The representative also
serves as a buffer and an arbitrator for the information extracted by the local
sites about the neighboring clusters. In other words, each individual cluster is
identified with a local representative rather than the remote center. After all the
local sites complete their exploration, the representative then presents the final
selected neighboring information to the center for further processing. The final

stage of a center is to be removed from the processing list.

More benchmarking data (on a CM-2 with 16K processors) of the algorithm
applied to higher dimensional Ising systems are shown in Fig. 3.11 and Fig. 3.12
(this timing is very insensitive to the variance of the coupling constant). It is
no surprise that the iteration time per site increases with dimension as the total

number of sites is fixed (Fig. 3.11). The major reason contributing to this increase
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is that the higher the dimension is, the more directions of neighbor-checking are
required and thus more communications are involved. It is important to notice
that, even in the highest dimensions (19-d and 20-d) allowable on the CM-2, the
iteration times per site are only 4.8 microseconds. This time is still shorter than
that of 5.8 microseconds obtained by Brower et al. on the 2-d Ising system of
the same number of total sites, and is less than two times the best result (2.6

microseconds) obtained on a 2-d (1024 x 1024) grid by Apostolakis et al.

In this chapter, we have presented a hierarchical method to tackle the problem
of cluster labeling on parallel machines. In addition to successful speedup in the
real implementation, the hierarchical cluster labeling algorithm is a very compet-
itive algorithm in its own right. Compared with the methods formerly known,
this algorithm is much easier to implement and is more memory efficient. This is
because the primary information (or recipe of the algorithm) is encoded as a hi-
erarchical structure that has been built via a shuffling of the label numbers, from
the very beginning of the label number initialization. Through this hierarchical
structure, the problem domain is recursively decomposed and clusters can thus be
recursively labeled in a nearly optimal way. This algorithm demonstrates a clear-

cut and uniform method to deal with arbitrarily irregular cluster configurations,
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without the aid of any d prior: knowledge or any generic testing. Allowing close
estimation of the computational complexity during the course of the algorithm
is thereby one of natural merits possessed by this method. In particular, the hi-
erarchical cluster labeling algorithm should be considered as a generalized scan
scheme applicable to a domain of arbitrary geometry and of any dimension, by
simply replacing the neighbor-checking by the operation required. Furthermore,
owing to the inherent hierarchical structure of the algorithm, the adaptation of the
algorithm to machines of various architectures becomes easier and admits system-
atic analysis, especially when nowadays parallel computers often have a certain
kind or a certain degree of hierarchical organization. Such a useful technique,
the combination of shuffling and divide-and-conquer, is not fully exploited in the
above-mentioned algorithms addressing the same problem. We will discuss these
features in more detail in the next chapter. Yet, this technique has been well
utilized in many other efficient scientific algorithms. FFT is the most famous one

among them and it will be elaborated in Chapter 5.
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Chapter 4

More about the Hierarchical

Cluster Labeling Algorithm

4.1 The Recursive Relation

In the first part of this section, we would like to discuss the recursive relation-

ship hidden in the shuffling specified by (3.1). This relation will be indispensable

in later discussions.



83

As introduced in the last chapter, the hierarchical tree can essentially be
constructed by an appropriate shuffling. Fig. 4.1 displays the feature of self-
stmilarity contained in the shuffling obtained using (3.1). The figure shows the
label numbers assigned by the formula to an array of 32 sites. One can clearly see
that every shuffled label number, except the one at the end (the 32nd number in
this case), is either greater than its two nearest neighbors or less than both. This
feature is preserved only if the greater numbers are extracted and moved to the
next level. The same is true if, alternatively, the lesser numbers are extracted and
moved to the next level. On the right side of Fig. 4.1, the bold face numbers are
all less than their nearest neighbors at each level of the hierarchy; on the left side,

the bold face numbers are all greater than their nearest neighbors at each level.

To make these ideas precise, some definitions are needed.

Definition 4.1.

For a given array of length 2V, the site coordinates range from 0 through 2V — 1.
Let (an, an—1,an—2,...,a1,a0) denote the binary representation of an arbitrary
integer between 1 and 2V. The 1-d A-shuf fling, A1, is a one-to-one mapping from

the coordinates to label numbers which are all integers:

/\1: (aN7aN_1,aN_2,...,a1,a0) — (CLN,Clo,Cll,...,CLN_Q,CZN_]). (41)
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Figure 4.1: The recursive nature of the shuffling.
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nearest neighbors.



85

Here
coord + 1 = (an,an_1,an=2,...,a1,a0),
label walue 4 1 = (ay, ag, a1,. .., an—g,an_1),

and the variables coord and label value are the coordinate and label number of

the site, respectively.
In short, ignoring the increment by 1, the 1-d A-shuffling, A, is a bit reversion

operation, which leaves the first bit in the coordinate of the array frozen.

The merging of clusters involves a reduction operation defined as follows.

Definition 4.2.

For a sequence of label numbers obtained by applying the shuffling \; on an array
of length 2V, the h-reduction, A = {Ag, A1}, is an onto mapping which, except for
the number 2V — 1 at the end, extracts either the even numbers from the sequence
(Ao), or the odd numbers (Ay). Namely, for (vi, Vo, Vs, Vs, - .., van_g, Von _y, Van),

a given sequence of label numbers, the reduction mappings are
Ao (Vi, v, U3, Ve,  VaN g Von 1, Van) — (Vg Vay ...y Van_3), (4.2)

Av: (Vi v, Vs, Uy o VN g, Von_q, ) — (U1, V3, Uan_q). (4.3)
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The reduction mappings, Ag and Ay, can be re-applied to the sequence repeatedly.
Also, any intermixed application of Ag and A, is a legitimate mapping on the
sequence, e.g., AgAgA1Ag, etc, as long as they are applied no more than N times.
Notice that only the very first reduction leaves out the label number at the end

of the sequence.

Using these two operations, 1-d A-shuffling and h-reduction, we are now able

to prove a recursive feature hidden in the hierarchical tree for the problem.

Theorem 4.1.

The sequence obtained by the 1-d A-shuffling is strictly oscillating at every
stage of h-reduction, excluding the last number of the original unreduced sequence.
By strictly oscillating, we mean that every number in the sequence is either greater

than its nearest neighbors or less than its nearest neighbors.
Proof.

Suppose x — 1 is the coordinate of a site in an array of length 2V, ie., 1 < z <

2N. Let n, be the image of z under Ay, i.e., Nz = A1(z). In other words, if

z = (an(z),an-1(z), an-2(x), ..., a1(z), ao(z)),
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then

Ne = (an(z), ao(z), a1(z), . .., an—_o(z),an_1(z)).

Now, if the site is even, i.e, ag(z) = 0, then its nearest neighbors, if they exist,
must be odd, i.e., ap(z — 1) = ap(z + 1) = 1. Therefore, ,_; > 7, and Netl > Ne-
Similarly, if the site is odd, then n,_1 < 5, and 7,41 < 7,. Here it is assumed that
z+1 < 2V, We have now proved that the sequence obtained by 1-d A-shuffling is
strictly oscillating.

Furthermore, it is easy to see that applying the h-reduction is entirely equiva-
lent to extracting numbers from the sequence {5, }, or from its subsequences, by
selecting z’s with the same last few binary digits. Thus, after the first reduction
the surviving n,’s are those with the same ao(z), i.e., ag(z) = 0 if Ay reduction is
applied and ao(x) = 1 if A; reduction is applied. After the second reduction, the
surviving numbers have the same values of ag(z) and a;(z). In general, after !
reductions the survivors consist exclusively of the numbers with the same pattern
of {ao(z),a1(x),...,ai_1(z)}. In addition, in this reduced sequence, it must be
true that a;(z — 1) # ai(z) and a;(z + 1) # a;(x). Hence, this sequence is strictly

oscillating. a

The 1-d A-shuffling described here is by no means uniquely defined by this
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theorem. Definition 4.1 is used for mathematical simplicity. From Fig. 3.2. one
can see that the order of numbers at the same level in the tree is irrelevant to the
hierarchical structure. In other words, re-shuffling numbers at the same level will
not havevany effect to the recursive feature we have just discussed. Hence, for an
array of length 2V, the number of reshufflings that preserve the identical recursive

relation is I

N~-1
=21 x4l x 8! x 16! x ... x 2N = T 27! (4.4)
p=1

I' increases very rapidly with /N. Taking the leading term in Stirling’s approxi-

mation, I' is given approximately by

9(N-2)2% QN -2
= (=), (4.5)

e() e

When the dimension of the problem is greater than one, this recursive relation
is “contaminated” to a certain degree, depending on the geometrical structure of
the cluster components. An example of two dimensions is illﬁstrated in Fig. 4.2.
In this example, the components consist of paths on the grid. In this cluster, the
original shuffling may get rearranged at a certain level of the hierarchical tree, and
extra steps are then added to the labeling procedure. The number of extra steps

is related to the number of permutations of the contaminated recursive relation.
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4.2 Estimation Methods

The most difficult component labeling problems are encountered when facing
clusters with geometrical structure of great complexity, e.g., those with multiple
branches, windings, or zigzags. In an attempt to deal with clusters of arbitrary
shape in an optimal way and yet without any d priori knowledge of the associated
topology, the hierarchical cluster algorithm recursively refines the problem domain
implicitly through the reshuffling methods. There is one representative root in each
cell and, in an abstract sense, at each certz;Lin level of the refinement this root is
always at the cell site with the minimum label number. The connected components
of a cluster successively fuse into a bigger cluster in a hierarchical fashion. This
occurs in the direction opposite to the previous refining process, and at each level
of the hierarchy the cluster temporarily saturates at the label number of the root.
From the standpoint of implementations, the root can be regarded as the center
in the pseudo code presented in Chapter 3. The hierarchical trees displayed in

Fig. 3.2 and Fig. 3.5 are skeletal visualizations of the above scenario.

Before going into the details of analyzing clusters in higher dimensions, we

need a mathematical definition.
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Definition 4.3.

In a two-dimensional grid, a polyomino P is column- (respectively row-) convez
if the intersection of P with any vertical (respectively horizontal) line is connected.
A polyomino is convez iff it is both column- and row-convex (see examples in
Fig. 4.3). The generalization of this definition in n-dimensional space is merely
straightforward. A polyomino P in the n-dimensional grid is convex iff the inter-

section of P with any line along a certain axial direction is connected.

Counting polyominoes is a famous classical problem in combinatorics [17], [18],
[31]. It is a rich subject which has attracted continuous attention from mathemati-
cians, physicists, and computer scientists. In physics, for example, polyominoes
are considered as special cases of self-avoiding polygons that are used to model
crystal growth and polymers [66].! On the other hand, they are also applied as
pictorial representations of a special class of grammars in context-free languages,
attribute grammars [31], which are extremely important in compiler design for
computers and in syntactical pattern recognition [92]. Searching for the generat-
ing functions corresponding to appropriate classes of polyominoes, and exploring

the profound algebraic structures of these generating functions is a fascinating

! Another example which is familiar to many physicists is the analysis of permutation groups
with the aid of Young tableaux [107].
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Figure 4.3: A two-dimensional convex polyomino.
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area of research. Unfortunately, they are not directly related to the main problem

addressed here and are thereby beyond the scope of this thesis.

The shuffling procedure in higher dimensions is defined as follows.

Definition 4.4.

The extension of 1-d A-shuffling to an arbitrary n-dimensional grid, n-d A-
shuffling, is achieved using (3.3) (In d = 2, one can use either (3.2) or (3.3)), and
A, denotes the corresponding mapping on each site, based on the binary expansion

of its label.

One merit of the n-d A-shuffling is that the smallest label number in a convex
polyomino is always near its “geometrical center.” It is hard to define the geomet-
rical center for an arbitrary convex polyomino and actually a rigorous definition
will not be necessary. We can compute the upper bound for the number of steps
to complete the labeling of a convex polyomino. By definition, the site with the
smallest label number is the aforementioned root, whose associated refined cell
corresponds to the highest level of the minimum hierarchical tree, or the partial
tree (see below), in which the polyomino can be embedded. From the proof of

Theorem 3.8 and Fig. 3.5, it can be seen that an upper bound on the number
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of labeling steps is equal to the height of the partial tree in which the convex
polyomino is embedded. Notice that the partial tree of a polyomino consists ex-
clusively of nodes corresponding to the sites of the polyomino. The height of the
partial tree is derived by counting the maximum length of all possible orthogonal
walks on the polyomino. An orthogonal walk on a polyomino is a very useful tech-
nique for measuring the labeling time. It projects the dynamic evolution of the

algorithm in the partial tree onto the corresponding polyomino.

Definition 4.5.

An orthogonal walk on a polyomino must start from the site, say Sy, with the
smallest label number. Starting from Sy, the walk proceeds in any one of the 2d
axial directions (d = number of dimensions), and temporarily ends at a certain
site, say S1. The sectional length of this path is defined to be the logarithm of
the number of sites in this path, including the first and the last sites. Re-starting
from site S1, the walk continues in one of the 2d — 2 orthogonal directions, and
temporarily ends at another site. The sectional length of this path is computed
in the same way. The walk progresses as far as possible until it reaches the
boundary of the polyomino or is about to violate the following restriction rule. The

restriction rule imposed on the orthogonal walks is that every chosen orthogonal
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walk is a conver tour. Quite similar to the definition of convex polyomino, a
tour is convex iff its intersection with any line along a certain axial direction is
connected. Thus for a convex tour, such an intersection is either a line or a single

point. The total length of the walk is the sum of all sectional lengths.

It is not hard to see that an orthogonal walk explores the extreme boundary

of the partial tree from its root, the site with minimum label number. Measuring

these walks leads to an upper bound on the labeling time of a convex polyomino.

Proposition 4.1.

The number of steps required to label a convex polyomino, after performing the
n-d A-shuffling on the grid, is bounded by the maximum length from all orthogonal
walks on the polyomino. This upper bound is less than or equal to the sum of the

logarithmic widths of the polyomino in all axial directions.

Instead of adding up the logarithms of the lengths of each straight part of
an orthogonal walk, it is often helpful to measure the regular length. Intuitively,
we know that the logarithm of the maximum regular length of all possible convex
tours is a lower bound for the labeling time. This lower bound is normally achieved

only if the convex polyomino is very “slim.”
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How do we deal with non-convex polyominoes? One possibility is to decom-

pose the non-convex polyomino into several convex ones and proceed with the

appropriate estimates. Such a decomposition into convex pieces is not unique.

We choose here a decomposition algorithm which obeys the following rules:

1) Keep the volume (or the area, in a 2-dimensional grid) of each convex portion

as large as possible, i.e., keep the number of pieces as small as possible.

The minimum label number in each portion is taken as the representative
label number. The upper bound on the labeling time for this portion is cal-

culated using the estimation methods stated in Definition 4.5 and Theorem

4.2

If there is any ambiguity in the decomposition, i.e., rule 1) always valid no
matter which connected convex portion absorbs this part, yield this part to

a connected convex portion with the smallest representative label number;

4) Single out the representative label number from each convex portion and put

it in an array, in such a way that adjacent elements in the array represent
adjacent portions, and the array should start with the smallest of all the

representative label numbers from the connected portions; 2

*When the geometry of the polyomino is not ‘simple,” e.g., there exist several branching
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5) Compute merge_rep_p, which is the number of steps for the array generated

by rule 4) to merge into a single numbers, namely the smallest label number

in the whole polyomino;

6) Add merge_rep_p to the maximum value of the upper bounds calculated in
rule 2). This sum is the upper bound for the number of steps needed to label

a non-convex polyomino after performing the n-d A-shuffling on the grid.

This set of rules is quite heuristic and a little bit cumbersome, and they some-
times give an estimate of 1 or 2 steps more than the exact number of steps required.
However, the sequence of rules is a simplified procedure to help one realize how
the merging process can occur in an efficient way, and how the partial contami-
nation of the hierarchical structure may occur due to the geometry of the cluster.
The restriction from rule 1 on deciding the size of decomposed convex polyomi-
noes can be lifted by dividing the cluster into a greater number of polyominoes
of smaller size. This change will not much affect the resulting estimates, since,
as stated over and over, the algorithm has a recursive nature. But nonoptimal

decomposition only adds unnecessary additional steps to the estimation. One can

components, there is more than one such array generated. Go through rules 5) and 6) for each
array, then the maximum value obtained in rule 6) among all arrays is the final answer for this
case.
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Figure 4.4: The evolution of a thicker snake-shape cluster.

test this estimation method on the clusters shown in Fig. 4.2 and Fig. 4.4 and
compare with the actual cluster evolutions. From more testings, one may find
that the real number of iteration steps is often to be lower than the predicted
upper bound. In general, the real number of iteration steps is equal to the sum
of two terms, maz_convez_p and merge_rep_p. Here maz_convexr_p denotes the

maximum of the number of iteration steps needed to complete the labeling for
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the convex polyominoes after the decomposition, and merge_rep_p was defined in

rule 3.

There is an alternative way of obtaining an upper bound which turns out to be
much easier. Simply calculate the height of the partial tree which the polyomino
is embedded on. For an n-dimensional polyomino of arbitrary geometrical shape,

its height of the partial tree is the following sum:

Height = Zlog Wi, (4.6)

i=1
here W; is the width of the polyomino in the i-th axial direction. It is possible that
the minimum label number of an axial direction is far from the geometrical center
of the polyomino. In this kind of case, W; should be defined as two times of the
geometrical width of the polyomino in this direction, since the extra number of
polyomino labeling along this axis is at most 1. However, in the implementation
on the Ising system, the data show that assigning W; as the the geometrical width

is closer to the reality. Now we acquire the upper bound as follows.

Theorem 4.2.

Once the n-d A-shuffling has been performed on the grid, the upper bound on

the labeling time for a polyomino of arbitrary geometry is less than or equal to
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the sum of the logarithmic width in each axial direction. Accordingly, the upper
bound on the labeling time for the whole grid is the maximum value of these sums

over all polyominoes.

This yields a much better estimate than does Theorem 3.5.

4.3 The General A Shuffling

Before closing this chapter, we would like to re-state some interesting points
and define a general method for shuffling. If the array obtained from rule 5 still
preserves the recursive feature of the n-d A-shuffling, i.e., strictly oscillating, this
merging process will terminate in the minimum number of steps, i.e., the lower
bound is achieved. When the recursive relation is not perfectly preserved, i.e.,
is contaminaled, some extra steps may be required for merging. For example, it
takes only one step to merge the array {1,0,2}, but two steps to merge {0,1,2}.
In other words, by appropriately re-shuffling the label numbers on parts of the
array (or of the column) it is often possible to improve the recursive feature. This

shuffling is performed on the grid only once at the very beginning of the program.
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However, by re-shuffling the label numbers within some geometrically complex
clusters based on some slight d priori knowledge of their geometries, one is very
likely to achieve the lower bound. Take one trivial example from the 2-d Ising
system: If one knows the largest cluster of the system, especially at criticality,
tends to percolate along one certain axial direction, then one should take this

direction as the z-axis in Theorem 4.1 or the first axis in Theorem 3.2.

Besides re-shuffling the label numbers at the same level of the hierarchical tree
introduced in Section 4.1, greater freedom for varying the shuffling is allowed, still
maintaining the hierarchical property. We introduce, then, a shuffling of more

general form.

We confine our discussion to the 1-d array, since the shuffling along each axis
of the grid can be chosen independently, then combined using (3.2) or (3.3).3
The shuffling rule is as follows. Given an array of length N, i.e., with N sites,
a hierarchical tree of log NNV levels is to be constructed out of the label numbers,
ranging from 0 through N — 1. For the simplicity assume N to be a power of 2,
N = 2H_ As before, the label number 0 is put at the highest level (level 0), the

label numbers 1 and 2 are put at the second level (level 1), etc. The hierarchical

3 Alternatively, one can, in higher dimensions, first calculate the level order (in the hierarchical
tree) of each site by adding the level order from each axial direction (e.g., Fig. 4.5), and then
assign the label numbers by this order.
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Figure 4.5: Level order spreading.

tree 1s constructed by a single rule: the numbers at any given level are all less than
the numbers at higher levels. The hierarchical tree with 4 levels is plotted in Fig.
4.6. The difference between this tree and the one in Fig. 3.2 is that the nodes are
only labeled by their level number in the tree. Now we want to squeeze this tree

into an array. The method obeys the following iterative rule: for 0 < £ < H

A) Between the (2] — 1)-st and the 2{-th label numbers from level k&, insert the

[-th label number from level £k — 1. Here [ = 1,...,2F 1,

B) Always put the label number NV — 1 at the end of the array.

Notice that this rule requires that, for example, the second label number, say

p, from level 2 must lie between the third and the fourth label numbers, say o
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Figure 4.6: Another type of hierarchical structure.
The tree with only level numbers on the nodes, before being squeezed into a 1-d
array.
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Figure 4.7: A 1-d cluster evolution after a more flexible shuffling.

and § from level 3, but does not specify how many label numbers from the lower
levels, 4, 5, etc., should be inserted between y and « and between p and 3. Thus
there is plenty of freedom to re-arrange the label numbers within the restrictions
enforced by the above rule. An array with label numbers arranged differently
from 1-d A-shuffling but obedient to this rule is shown in Fig. 4.7. One finds

that the cluster is still able to merge in a hierarchical fashion. Basically, most
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of mathematical characteristics, except the strict oscillation property of the A\
mapping, are preserved by this general shuffling method. The strict oscillation of
the original shuffling is replaced by a more flexible recursive rule, called sub-rule
A): in the array every number from (hierarchical) level k is bounded on two sides
by two numbers from level k—1. We call the shuffling method general A, shuffling

if this recursive rule is obeyed on each axis of an n-dimensional grid.

Re-shuffling the label numbers along some of the axial directions in the grid is
equivalent to shifting the position of the root in the cell at different levels of the
hierarchical tree. Our main purpose is to keep the root in the position closest to the
center of the component enveloped by the cell and also to maintain the hierarchical
structure, or the recursive regularity, as well as possible. By performing reshuffling
(i.e., shifting some roots in some cells at some certain levels in the hierarchical
tree) which incorporates any amount of ¢ priori knowledge, if available, about
the geometrical configurations of clusters, one is very likely to have the labeling
complete within an optimal time complexity. Even when this knowledge is in
a probabilistic form, a “probabilistic” or “randomized” shuffling scheme is still
worth attempts and thus leads to an even more interesting research topic [61].

This is the major payoff for searching for such shufflings, and the technique is
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particularly necessary when the geometrical complexity of clusters is high and the
dimension of the problem is large. The number, {2, of different shufflings on an

array of length N = 2 obeying the above rule, is given by

Q=T x(3+4-p-3%), (4.7)

where, p = 2772 — 1 and T has been defined in (4.4).
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Chapter 5

Other Hierarchical Algorithms

5.1 Divide-and-Conquer and Shuffling

The divide-and-conquer technique is important for dealing with most complex
problems. Scientific algorithms often employ this technique, as has been pointed
out in earlier chapters. Motivated by the rapid progress in parallel computing, the
divide-and-conquer strategy is the unifying principle common to a large number

of parallel algorithms for various computational models. Using this strategy, a
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parallel algorithm can be viewed as a collection of independent task (or computa-
tion) modules that execute in parallel and communicate with each other in order
to share intermediate results of the computation. Not confined solely to the de-
sign of algorithms, this methodology has become increasingly common in different
facets of computing, for example, the design of hierarchical computer architectures
(24], [51] and in the Divacon parallel programming language. In the construction
of conventional programming languages, the emphasis on “modularity” in “struc-
tured programming” and “object-oriented programming’ is yet another example of

this basic idea.

There are a number of problems that exhibit parallelism explicitly, rather than
implicitly, for instance the scalar product of vectors. For this sort of problem, the
divide-and-conquer strategy is simple and straightforward to apply. However,
in the most interesting problems, finding the “right way’ to divide and conquer
and to thus optimize the speedup can be very subtle. Very often, proper use of
divide-and-conquer demands an appropriate shuffling of the objects involved in the
computation. The hierarchical cluster labeling algorithm described in the previous
two chapters is one example, where a special shuffling of the grid sites occurs at the

very beginning of the algorithm. In this chapter, we discuss a famous algorithm
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of this kind, the fast Fourier transform (FFT). It is also a good example that
embodys the spirit of “split-and-hit” in its application of the divide-and-conquer

method.

Any divide-and-conquer hierarchical algorithm incorporates two primary ac-
tions: 1) a certain type of shuffling, trivial or non-trivial, of the elements in the
problem space, and 2) a repetitive utilization of a recursive relation coordinating
the course of the algorithm. The elements in the problem space of the (discrete)
Fourier transform are the elements of the vector to be transformed or the entries
in the matrix of transformation. The FFT algorithm is essentially another ap-
plication of exchange shuffling (Equation (5.9)) and recursive re-scaling of two
halves of a vector (Equation (5.10)). The exchange shuffling divides the vector
into two sub-vectors, whose components are respectively the even-indexed and
the odd-indexed entries of the original vector. The transformation is partially
computed at each stage of recursion, in which the two sub-vectors are combined

with an appropriate weight.

Compared to the FFT, the bitonic sort [62], an important sorting algorithm
of hierarchy-type, appears to be simpler, though the proof of its validity is more

subtle. The elements in the problem space are the numbers in the sequence to
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be sorted. The shuffling procedure divides the sequence into two subsequences of
the same length and then recombines them into a new sequence by alternately
interleaving the numbers from two subsequences, i.e., the reverse action of the
shuffling occurring in the FFT. After this, the operation of compare-ezchange seen
in almost all sorting algorithms is performed. It can be proved that a sequence of

length N is sorted after O(log?N) parallel steps.

Unlike in these two algorithms, the shuffling in the hierarchical cluster labeling
algorithm occurs only once at the very beginning, although the re-shuffling may
further optimize the performance when some d priori knowledge of the cluster
geometry 1s available. The basic idea of the algorithm is to decompose (divide)
the problem domain into different portions at each stage of recursion or at each
level of the hierarchical tree, through the (general) A shuf fling procedure, and
then merge (conquer) the connected components, following a path toward the root
of the tree. The decomposition is only implicitly defined by the shuffling, and, as
explained in the last chapter, the re-shuffling may change the decomposition. An-
other big difference is that the FFT and the bitonic sort are actually 1-dimensional
algorithms, while the hierarchical cluster labeling algorithm is intended for prob-

lems in any dimension. Since the algorithm is designed for cluster labeling, the
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computation mainly involves comparison of label numbers. There should be no
difficulty in applying similar ideas to parallelize most prefix algorithms in higher
dimensions on an arbitrary domain geometry, thereby extending the method as a

generalized scan scheme [16] for parallel computation.

5.2 The Fast Fourier Transform

No algorithm has had a greater influence in the recent past than the fast
Fourier transform [78]. The speedup obtained using this algorithm is all the more
important due to the many applications of the FFT. The nature of divide-and-
conquer strategy contained in this algorithm makes it worthwhile to describe the

FFT in detail.

The Fourier transform of a continuous function z(t) is given by

0

y(f) = / (1) e~ gy, (5.1)

— 00

while the inverse transform is

w(t) = o= [ y(h) I ar. (5.2)
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Most functions one deals with computationally have to be discretized for im-

plementation. Corresponding to the continuous Fourier transform, then, is the

discrete Fourier transform (DFT) which handles sample points of z(t), namely

To,T1,-..,ZN-1. The discrete Fourier transform is defined by
yi= 3. oz e RN C0<j<N-1,
0<k<N-1

and the inverse is

1 .
=5 y; e2mRN 0 < E< N —1.
0<j<N-1

(5.4)

In short, the discrete Fourier transform of an N-vector & is a linear transfor-

mation defined by ¥ = Fy&, where the 1, j entry of Fiy is w%, 0<+e 5 <N, and

wy is a primitive N-th root of unity, namely, w® =1 and wi, # 1 for 0 < 7 < N.
p N N

For N = 8, the transformation matrix, using w = ws, the primitive 8-th root of

unity, is
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1 w! w? w3 w? w® w® w’
1w ot W 1 w? Wt WS
1 w oWt Wt wtooWwh W w®
Fg =
1wt 1 w?t 1 w? 1 w?t
1 w? w? w* w? wt w8 w?
1 wt Wt W 1 Wt Wt W?
1 W' Ws WP wt W W2 wt

The key idea behind the FF'T is to establish a connection between F), and Fya,
and this connection enables one to compute very quickly an n-point DFT from
a pair of (n/2)-point DFTs, i.e., a realization of the divide-and-conquer method.
The “divide” part of the FFT groups the points into two sets, one containing
the even-indexed points and one for the odd-indexed points. For simplicity of
discussion, the number of points N is assumed to be a power of 2. The problem

of computing if = FyZ can be reduced to the problem of computing
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Zo Zq
o I3
U = Fyyy T4 and v = Fyny zs |, (5.5)
ITN-2 ITN-1

where wy/y = w¥ is the primitiv (N/2)-th root of unity used to define Fyya. To

see this, consider, for 0 < ¢ < N/2,

Y, = Z w%»’c;‘

0<j<N
even j odd j -
_ 17 . 27 .
= D wpait Y wi oz
0<j<N 0<j<N
i2k i(2k+1)
= Z Wy Tok + Z Wy Tok+1
0<k<N/2 0<k<N/2
ik i ik
= ). wnpTmtwy Y WN/2 T2k+1
0<k<N/2 0<k<N/2
= u; + w}vvi.

Similarly, for N/2 <i< N,

i~N/2)k i i—N/2)k
o= X Wl et S WG
0<Ek<N/2 0<k<N/2

= Ui—Nj2 + WnVi—N/2-

Therefore, once @ and ¥ are computed, i can be retrieved via the connection
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i0<i<N/2

if N/2<i<N.

The formulae are best illustrated in matrix form, in a manner revised from

[113]. Consider the N = 4 case, we have then

where w = ws = exp(—271/4)

1 1 1 1 1 1

w? WP 1 = -1 4

wt W ) 1 —1 1 -1 7
wh oW I 7 -1 -

= —i and w* = 1. Let Iy be the 4 x 4 permutation

matrix which splits the points into two parts, i.e., the shuffling operator:

such that
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10 0 0
0 0 1 0

] o 1 0 0 7
0o 0 0 1



116

L 0 0 0

6 0 1 0
H4CE:

0 1 0 0

0 0 0 1

Zo Lo
Ty )
g h Zq
I3 3

In general, the inverse operator of a shuffling operator is its transpose, i.e., I, 1L =

I, = I,,. For n = 4, the shuffling operator is its own transpose, i.e., ¥ = Il4,

and one has the relation Fy ¥ = F, [I;' 11, # = (F4Ily) (I14Z). If we further define

a 2 x 2 block matrix as follows,

1
QQ —
0
and recall that
1
F2 =
1
then
Iy
F4 H4 -
Fy

0y Fy
—Qy Fy

Thus, each block of Fy Il is either F, or a diagonal scaling of F,.
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The general form that connects F,, and F, /2 1s the heart of the FFT algorithm.
Let us now work out this form for even n. The shuffling operator II,, is a n X n
matrix which, when applied to a vector, groups the even-indexed components first
and the odd-indexed components second. The form of 1, is simply a reshuffling
of the columns of the identity matrix [,. The inverse of the shuffling operator,
is called the co-shuffling operator. The general form of the connection

1, = 117

7

in matrix form is described in the following theorem.

Theorem 5.1. !

If n = 2m and the diagonal scaling operator is defined by

D, = diag(l,wp, w2, ..., w1, (5.7)
then
F,II, = = (I, ® F,) (5.8)
Proof.

' This theorem is revised from that of C. Van Loan [113].
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If 0 < p, g <m, then

(Fnﬂn)p,q = Wﬁmq) = wy = (Fn)pg
(Falla)pimg = w@tmEo = yfrtma = (Fm)pg
(Fall)pgim = wilrtl) = whwht = (Qndm)pg
(Falln)ptmgtm = wtmEHD = wpom(@il? = —1) = (= QmFn)pg
Here I, ® F,, = diag(F,,, ). O

Theorem 5.1 contains the recursive property of the FFT algorithm. If
feven

10,7 = , (5.9)

fodd
where Zeyen 1s the vector containing only the even-indexed components of & and
Zoaq the odd-indexed ones, then the core recursive relation is
In/2 Q’n/Z Fn/2 :feven
F,z = . (5.10)
In/2 —Qn/Z Fn/2 :Zodd
These two formulae explicitly exhibit the fact that the FFT algorithm is nothing

more than an alternate application of even-odd exchange shuffling along with

proper re-scaling.?

?Computational linear algebra involves mainly matrix factorization. Besides the FFT, the fast
wavelet transform is a more complicated example which exposes the beauty of the decomposition
and shuffling method [101]. Mathematically, the wavelet basis is similar to the Fourier basis in
that it forms an orthonormal basis for square-integrable functions. However, unlike the Fourier
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Since F,, ¥ can be computed in a single parallel step given Frj2 Zeven and

Flj2 Toad, the total time needed to compute F), £ is given by the recursion relation
T(N)=1T(N/2)+1.

Therefore the FF'T algorithm takes O(logN) parallel steps, or O(NlogN) sequen-

tial steps.

The inverse DFT preserves a recursive form nearly identical to that of the

FFT, since the 7, j entry of the inverse matrix F-', denoted by £}, is simply

transform, the wavelet transform expands an arbitrary function into a hierarchy of contributions
labeled by a scale and a position parameter and hence better captures the multi-length-scale
features of the function. The rate of progress on this subject has increased significantly in recent
years. It has been realized that many ideas and techniques related to this transform can give
rise to straightforward calculational methods applicable to mathematical analysis, theoretical
physics, and engineering [25], [30]. To give the reader a sense of this transform of increasing
importance, here, we would like to take a simple example —~the Haar wavelet. Without going
into any detail, one can consider the Haar wavelet as a transform which constitutes a local
(orthogonal) basis for piecewise-constant functions and whose translations and dilations are
mutually orthogonal (a brief definition). The Haar wavelet of the lowest rank is a 2 by 2 matrix

Wa,
11
Wa = (1 _1) = Fy.

In contrast to the recursive relation of the FFT

I, Q, F,
e () (5 )

the fast Haar wavelet transform has the following recursive form

Wz Wn
Wy, = e 1I5, 5
Wz In

the matrix W, appears n times in the left factor. This is a beautiful “pyramid scheme,” which
drops the complexity of the operation from O(nlogn) to O(n).
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w7 /n. Following nearly the same algebraic manipulations contained in the proof

of Theorem 5.1, one has the following corollary.

Corollary 5.1.

If n = 2m and the co-diagonal scaling operatoris defined by

O, = diag(1,w2™ 1 W22 L wm ), (5.11)
then
FoIl, = 2] =2 | (L®E). (5.12)

Here (1, is the “inverse” of Q,, since w;* = w2™* for arbitrary integer k.

Also, the factor 2 comes from the fact that (£,);; = w=" /n, (Frp)i = wiii/m,

:Jeven
1L,y = ( ) , (5.13)

Yodd

and n = 2m. If

then the recursion relation for the inverse DFT is

5 In/? Qn/2 Fn/2 geven

F,q =2 . N . (5.14)
]n/2 _‘Qn/2 Fn/2 godd

Except for the factor of 2 and 1, /2 in place of §),,/,, this recursion relation is

a replica of that for the FFT.
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Figure 5.1: The 16-point FFT.
The input is “pumped in” from the top; the paths in the diagram depict the
shuflling process required in the transform.
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The FFT algorithm is one of the very few algorithms which is easily paral-
lelizable and is fast in both the sequential and parallel domains. It has been
extensively studied since its invention in the 1920’s. Special hardwares have even
been designed to implement this algorithm. A famous example is shown in Fig.
5.1. This figure illustrates the so-called butterfly network, for 16 points. The di-
agram gives a very clear picture of when and where the divide-and-conquer and
(exchange) shuffling take place in the course of FFT computation. After an ap-
propriate shuffling on the input points, the whole procedure of an 8-point FFT is

shown in Fig. 5.2. One can easily see the similarities between these two diagrams.

One may have noticed that in the proof of Theorem 5.1 only the two facts
w? = w,/; and w/? = —1 are used. However, the essential property that w, is a

primitive root of unity is never mentioned in the proof. The reason for selecting

wn to be a primitive root is to ensure the existence of /-1, the inverse transform.

It is interesting to note that the FFT algorithm can speed up the multiplication
of polynomials [64], [78], Here the inverse transform is necessary. Let f(z) =

en—12V V4 eny_gzV "2 4 ...+ ¢ be any (N — 1)-degree polynomial and wy be a
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Figure 5.2: The 8-point FFT.
An 8-point FFT after shuffling the input points, where W} represent the scaling
weights along the paths. The shuffling paths are in the opposite direction, right to
left, if the input points are not shuffled, i.e., the same pattern as that of 8 points
in Fig. 5.1.
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primitive N-th root of unity. It follows that

fw) Co
J(wn) a
f(wlzv) = Fy C2 ;
Flwy™) CN-1
since f(w}v) = ¢y + clwfv + cw;% + o+ cN_lw](VN_l)i for 0 < ¢ < N. Thus,

performing a discrete Fourier transform is equivalent to evaluating a polynomial
at the N N-th roots of the unity. Conversely, the polynomial can be interpolated

by taking the inverse DI'T,

€p f(w?v)

C1 f(w}v)

¢ | = Fy' | fw})
CN-1 flwn™)

Clearly, the powers of wy must be distinct, i.e., wy must be a primitive N-th
root of unity. Since, (Fn);; = Wi for 0 < 4,5 < N, if wh = 1 for a certain
0 < k < N, the entries in column &k will all be 1 and Fy would be a singular
M—1

matrix. Considering now two polynomials f(z) = ao+ a1z + ...+ apy— 2 and

glz)=bo+ bz + ...+ bagr—1zM'=1 let h(z) = co +c1z+ ...+ ey_1z¥ 7 denote
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the product f(z)g(z), where N = M + M’ — 1. The strategy of computing h(z)

is [64]

1) evaluate f(z) and g(z) respectively at the N N-th roots of unity,
2) evaluate h(z) at the N N-th roots of unity, i.e., for 0 <<¢,7 < N computing
h(wy) = f(wi)g(wi), and

3) interpolate h(z) from its values on the roots of unity.

Both steps 1) and 3) can be accomplished using the FFT algorithm and step 2)
takes N sequential steps, or only 1 parallel step. Hence, the entire multiplication
takes O(N log N) sequential steps or O(log N) parallel steps, in contrast to
the usnal O(N?) sequential steps and O(N) parallel steps. Since polynomial
multiplication is the same as convolution, the FF'T algorithm can be used as well
in computing convolutions. In particular, from a wider mathematical point of
view, the FFT algorithm is applicable on any commutative ring, 3 though it is
often used for complex numbers or finite fields. More comprehensive discussions

of the FFT algorithm in different fields of mathematics are contained in [64], [78].

3A set R is a ring with respect to the two operations & and @ if the following conditions are
fulfilled:
1. (R, ®) is an abelian group.
2. Closure Ifc=a®b, forabe R, then c € R.
3. Associative Law a® (b®c)=(a®b) ®ec.
4. Distributive Law a@ (b®c)=a®bDa®@cand (B c)@a=bQ@ad®c®@a.
The ring is commutative if the law ® is commutative.
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5.3 Hierarchical N-Body Methods

This last section of Chapter 5 is devoted to a brief discussion of the increasingly
popular methods for scientific computation of N-body problems. The N-body
problems here are basically concerned with simulations of galaxy evolutions under
the influence of gravitational forces. John Salmon’s Ph.D. thesis [91] probably

contains the best review of these methods, and we refer the reader to this reference

for details.

An essential property of these kind of problems is the large range of scales in
spatial and temporal information requirements. For example, a point in the prob-
lem domain requires less information, usually less frequently, from distant regions
of the domain, than from closer regions. A physical system that involves a, large
number of particles evolving under their mutual gravitational interaction is an
example of such a problem. It has been known for about a decade that exploiting
this property and thus approaching the problem from a hierarchical point of view
can substantially reduce computational complexity. Improvement of these hierar-
chical methods still continues, and research into possible parallel implementations

is ongoing. The Barnes-Hut algorithm is a very successful method for tackling
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a)

Figure 5.3: A 2-d BH domain subdivision.

N-body problems.

A hierarchical octree, i.e., a tree with at most eight children for each node,
1s at the heart of the Barnes-Hut algorithm in three dimensions. The root of
the tree is a space cell encompassing all particles in the system. A recursive
subdivision procedure is performed on the root until each leaf cell contains a

single particle. * A two-dimensional example and its corresponding quadtree

“Some modified versions of the algorithm allow more than one particle in a leaf cell, but this
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Figure 5.4: The corresponding quadtree from subdivision.
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is shown in Figs. 5.3 and 5.4. The algorithm is designed to simulate evolving
systems, so it proceeds in an iterative manner. Within each iterative timestep, the
algorithm, in its sequential version, has four phases [81]: building the hierarchical
tree, computing the cell centers of mass via an upward pass through the tree,
computing the necessary interaction forces, and updating the dynamical properties

of the particles.

As mentioned earlier, the hierarchical approach is intended to reduce compu-
tational complexity, i.e., to decrease the execution time spent on the force com-
putation phase. The tree is traversed once for each particle to compute the net
force acting on that particle. This phase starts from the root and performs the
following recursive test for every cell it visits: If the cell center of the mass is far
enough away from the body, the entire subtree under that cell is approximated by
a single particle at that center of mass, and the force this center of mass exerts on
the body is then computed. If, however, the center of mass is not far enough away,
the cell must be “opened” and each of its subcells must be visited. The criterion to
decide if the cell is far enough away is varied by a user-defined accuracy parameter
6. A cell is said to be far enough away if {/d < 6, where [ is the length of the cell

sides and d is the distance of the body from the cell’s center of mass. In this way,

change does not affect much the basic ideas in the implementation of the algorithm.
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bodies in the system are grouped on a hierarchy of length scales, and a particle
interacts directly with more levels of those parts of the tree which are spatially
closer. Through this approximation scheme, the computational complexity of the

sequential Barnes-Hut algorithm is O(N log N).

For the parallel version of this algorithm, a fifth phase [81], work partitioning,
must be added. A good partitioning technique should yield a balanced workload
among the processors, and provide data locality. The data locality on a multi-
processor refers the requirement that those particles assigned to a given processor
should be close together in space, while particles should be assigned to different
processors in such a way that the spatial distance corresponds roughly to the
length of communication route. One of the main contributions of Salmon’s thesis
is a detailed investigation on this partitioning phase. At this point, it may be
interesting to compare two hierarchical methods, namely the hierarchical clus-
ter labeling algorithm and the Barnes-Hut algorithm, in terms of this partition.
Unlike the FFT and the bitonic sort, these two hierarchical methods should be
applicable to domains in arbitrary dimension. Fig. 5.5 illustrates the “slicing”
process of the hierarchical cluster algorithm occurring in the direction opposite to

that of cluster merging. This picture of slicing demonstrates that cluster labeling
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Figure 5.5: The slicing procedure on the problem domain.

can proceed in parallel on different length scales, in a simple recursive manner.
By contrast, the natural cluster-growth process is inherently sequential and does

not reveal any evidence of length-scale dependence of this kind.

From this recursive slicing process, one can see a tree structure created in
a way similar to that shown in Fig. 5.4. However, the hierarchical structure

obtained in the hierarchical cluster labeling algorithm is a complete n-ary tree,
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while the one in the parallel Barnes-Hut algorithm an incomplete n-ary tree. In
this cluster labeling algorithm, as already explained in the preceding chapters, the
hierarchical structure is imposed on the grid through a shuffling of label numbers
at the very beginning. That is, the grid (the problem domain), a 2-d mesh for
example, is decomposed into 4 subcells first and then each subcell undergoes a
recursive subdivision procedure. Therefore a complete quadtree is created in this
procedure, in contrast to the incomplete quadtree spawned by the 2-d Barnes-Hut
algorithm. This distinction makes a great difference in the partitioning phase.
Generally speaking, the partitioning phase of an algorithm associated with an
incomplete n-ary tree incurs greater difficulties and must be more sophisticated

than an algorithm with a complete n-ary tree.

Before going further into the discussion of the partitioning phase, we would
like to bring up an important point. Cluster labeling or connected component
identification is a problem of primary importance occurring in many statistical
growth models. However, most of the sequential or parallel algorithms that tackle
this problem do not necessarily account for any physical characteristics of the
system. Cluster-merging in Potts spin systems and percolation models generate

patterns via a step-by-step process. In other words, this process is strongly history
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dependent and inherently sequential. We have now proven that the cluster label-
ing problem can be solved with a logarithmic number of iterations on a parallel
machine using a divide-and-conquer scheme. Whether pattern formation prob-
lems in other growth models, e.g., diffusion-limited aggregation (DLA) and fluid
invasion in porous media, admit efficient parallelization is still an open problem.
Efficient parallelization here means that the existence of a parallel algorithm to
generate patterns for the problem that runs in polylog time, O(log" N ) for some
k, using only a polynomial number of processors. Interestingly analogous to the
theory of NP-completeness, if a parallel algorithm running in polylog time can be
discovered for any problem in the class of “parallel P-completeness” (e.g., DLA is
in this class and it has been proven to be solvable in polynomial time on a parallel

machine), then all problems in this class can be efficiently parallelized [67].

Partitioning a problem to satisfy the criteria of load balancing and data locality
is one of the most difficult parts in parallel implementation. Quite often, these cri-
teria are too stringent to deal with, and approximate partitions must be accepted.
In his thesis, Salmon proposes a decomposition method, “orthogonal recursive
bisection” (ORB), to deal with the partitioning phase in the N-body problem. In

simulating galaxy evolution, the workload associated with a particle is roughly
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proportional to the logarithm of the local density of particles in its neighborhood.
Using this workload estimation, ORB iteratively decomposes the spatial domain
into several subdomains of different areas (or volumes in three dimensions) with
similar workload, and assigns each subdomain to a processor. Notice that this
decomposition may be subject to a slow change from one iterative timestep to
the next, due to the evolving estimation and the fluctuating particle density. It
is important to realize that the nature of the hierarchical algorithm allows each
processor to neglect most (but not all) of the tree data. In this N-body problem,
a “locally essential” tree is built in each processor, and this tree contains data
only up to the level prior to the last ORB which creates the subdomain assigned
to this processor. An example of a 2-d domain decomposition after ORB is shown
in Fig. 5.6. In this example, the whole domain is divided into 16 subdomains
and each of them is assigned a 4-digit binary number that is known as the Gray
Code number. On a hypercube multiprocessor, to each processor is addressed by
a Gray Code number, and two processors are adjacent to one another if and only

if their Gray Codes differ in a single digit.

One may have observed that in this decomposition the criterion of data local-

ity is not completely attained. Thus, some domains share boundaries and yet are
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Figure 5.6: Salmon’s subdivision.
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assigned nonadjacent Gray Codes, e.g., the domains 0000 and 0011 in Fig. 5.6.
This occurrence of dilation is basically a consequence of the arbitrary (incomplete)
tree structure in the Barnes-Hut algorithm and the orthogonal recursive bisection.
Because of these types of tree structures, the decomposition of the domain be-
comes irregular and there is no way in general to keep the Gray Code assignment
dilation free. ® A similar situation occurs when one tries to embed a tree structure
in a hypercube. It has been proven [64] that in general a complete binary tree
can be embedded in a hypercube with at most dilation 1. But there is no simple,
systematic method for constructing a good, i.e., small dilation, mapping from an
arbitrary (incomplete) tree onto a hypercube [108]. In contrast, the partitioning
phase of the hierarchical cluster labeling algorithm is much easier to deal with.
First, the workload on each processor can be roughly estimated as proportional
to the logarithm of the area (or volume) occupied by the subdomain after parti-
tioning. Thus, to achieve load balancing, one simply needs to subdivide the whole
domain into portions with the same volume. The problem of the Gray Code
assignment appropriate to locality now turns out to be trivial. This problem is
identical to that of embedding a regular n-d mesh in a hypercube, and the method

for doing this is already known. Some examples of the Gray Code assignment are

5Fortunately, the appearance of dilation is relatively rare, and does not cause any serious
problem according in Salmon’s implementation.
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Figure 5.7: Gray Code assignment on mesh.

displayed in Fig. 5.7 to demonstrate the mesh-hypercube embedding.
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Chapter 6

Future Directions

The best way to conclude this thesis may be to consider future research di-
rections. Rather than seeking the ultimate answers for the questions raised in
the very beginning of the thesis, we shall restrict our attention to further explo-
ration of algorithm improvement for solving increasingly complex problems on
high performance computing systems. However, instead of simply concentrating
on algorithm design, we believe a broader view should be taken: Algorithm design

must be considered in the context of the computer architecture on which it is to
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be implemented. Otherwise, the best performance can never be achieved. Com-
puter architectures here refer to the abstractions of the hardware and operating
system, and mathematically they are computational models in themselves [63],
[112]. The underlying theme in the field of high performance computing is: how
should the architecture interact with the algorithm and the physical problem in
order to obtain “optimal” computation? Put another way, given a specific com-
puting environment, what is the “best” communication design (e.g., through an
appropriate arrangement or scheduling) to account for all global communications
which must capture long-range features of the problem, and for all local commu-
nications which capture the short-range features. This optimization must balance

a number of major factors such as speed, accuracy, and a few more practical costs.

A greater and greater number of scientists (e.g., [24] and [51]) have argued that
a combined use of hierarchical algorithms and hierarchical architectures should
be pursued. Their arguments are bolstered by at least two observations. First,
many problems in various scientific disciplines permit treatment by one or more
hierarchical algorithms analogous to the ones described in this thesis. This is
obviously true for the hierarchical models mentioned in Chapter 1. Second, it

is always easier to adapt one hierarchical architecture to another , than it is to
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adapt a nonhierarchical architecture. In other words, the synthesis of hierarchical
algorithms and hierarchical architectures provides a paradigm that motivates a
systematic, mathematical analysis of the interactions between algorithms and ar-
chitectures. For instance, in an intuitive sense, increasing the locality (or range of
interactions) of an algorithm often decreases the communication diameter within
an architecture, which in turn increases the contention of data during communica-
tions. In a hierarchical setting, the variation of locality, communication diameter,
and other parameters in the computation, whether deterministic or nondetermin-
istic, are scaled by the level in the hierarchy. This allows a proper mathematical

formulation of the whole computation procedure to be derived.

The study of hierarchical architectures is, on the other hand, motivated by
the practical concern of designing efficient and cost-effective hardware. It is well
known that the hypercube supports a wide class of hierarchical algorithms and is
among the most versatile and efficient networks ever developed for parallel com-
putations. One thing that accounts for its popularity is that the hypercube can
effectively embed and simulate any other network of the same size, such as an ar-
ray, binary tree, or mesh of tree with only a small constant multiple of the original

cost [64]. There is, however, a fatal disadvantage against the direct enlargement
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of a hypercube network. Since the number of links needed with a hypercube is a
logarithmically increasing function of the total number of processors, the system
becomes prohibitively large and it becomes extremely difficult, if not impossible,
to fabricate each processor. Considerable effort has been expended looking for
other network structures that cope with this problem and yet are still able to
preserve all the advantages of the hypercube. In this regard, hierarchy-configured
networks arise as a potential choice. Several hierarchical networks have been pro-
posed and even built, such as the fat-tree and clustered hypercube. Advanced
design is a matter of trade-off between system efficiency (and complexity) and
flexibility. It is still too early to foresee what the best design will be. However,
for a large range of problems, exploiting the hierarchical characteristics hidden in
the algorithms and thus identifying or classifying the various patterns observed in

them may provide important clues to solving these problems.

In spite of the continuing success of hierarchical algorithms, there are many
problems that still lack hierarchical approach. Spin glass-like systems are appar-
ently a good example of such problems. As described in Chapter 1, locating the
global minimum of the free energy in a spin glass-like system is often N P-complete

and no efficient algorithm exists. The main reason for the failure of hierarchical
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treatments of this type of problem is that local information gives almost no in-
Jormation about the global picture. Nevertheless there is a bright side to this
failure: Should a hierarchical algorithm for these problems eventually be found,
it certainly will tell us whether or not NP = P. Even if no such algorithm exists
for these problems, we can still try to understand or to alleviate the degree of
difficulty on a hierarchical basis. Thus, in terms of an appropriate hierarchical
framework, one can ask how much of the global picture of the problem can be
reflected by patching together local information. Such a program may help clarify
the distinction between “easy” and “hard” problems, like P and NP problems.
With these future directions in mind, I would like to close this thesis as a first

step of research in what promises to be an exciting journey.
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Appendix A

Huffman Code

Information theory [15] is a discipline focused on mathematical approach to
the collection and manipulation of information. Several statisticians have made
theoretical inquiries into problems of information in communication since the
1920’s. However, the subject did not take its present form until Claude Shannon
laid the central foundation in the 1940’s [94]. Strongly influenced by his experience
in cryptography during World War I, this work developed from a realization that
communication at its most fundamental level is a probabilistic process. Essen-

tially, information theory is intended to answer a number of very basic questions,
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classified by R. Blahut [15]:

1. What is information? That is, how do we measure it?

2. What are the fundamental limits on the transmission of information?

3. What are the fundamental limits on the extraction of information from the
environment?

4. What are the fundamental limits on the compression and refinement of
information?

5. How should devices be designed to approach these limits?

6. How closely do existing devices approach these limits?

Owing to the fundamental nature of the questions raised above, information
theory has found applications in a variety of disciplines as diverse as physics, artifi-
cial neural networks, biology, etc. In classical and quantum physics, many versions
of (physical) entropy are defined as measurements of randomness or complezity in
a physical or computational system (see Sec. 1.1). These variants of entropy
mostly trace their roots back to the original Shannon entropy, and sometimes are
simply straightforward applications of the latter in more physical settings. In ad-

dition, since quantum mechanics, statistics, and information theory all deal with
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probabilistic phenomena, i.e., phenomena with incomplete information, connec-
tions between these subjects are often based on the Shannon entropy minimum
principle. ! In the highly active research area of artificial neural networks, learn-
ing theories and algorithms [50] have attracted much attention. The concept and
techniques of minimizing the Shannon entropy are often employed in describing
the learning capabilities of networks. The question of what is the fundamental
mechanism governing the basic units of organic bodies, e.g., DNA, RNA, and
cells, and is responsible for the emergence and evolution of life in general has been
puzzling scientists for a long time. In attempting to answer this question, more
and more evidence has been found to support the idea that life can be considered

as a dynamic state of matter organized by information [36].

Given a finite random output sequence {aq,ay,.. ., arx-1} from a discrete in-
formation source, we would like to write down a mathematical definition of the

information contained in this output. If an output, say aj, occurs with probabil-

1
p(ag)

ity p(ay), then on average the output a; will be observed once out of every

outputs. To “encode” this fact, log 5((117) = —log p(ax) bits of information are

1An interesting and promising development is that such connections can be obtained in the
natural meeting ground of differential geometry [4], [5], [20], [21], [60], [75]. As a result, a variety
of stochastic dynamics discussed in different disciplines seemingly without any significant overlap
can be placed in one common mathematical framework.
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required. Here the logarithm is to be the base 2, though this is not necessary. If
the number of total selections, n, is very large, a; will occur approximately np(ay)

times. Therefore the average information contained in n outputs is equal to

1 1 1
ag)log——— + p(ai)log—— + ... + p(ax_y log———
p(ao) . pla1) 8 e plar-1) 8 (o)
bits. The uncertainty or entropy H(p) is defined as follows.
K-1 K-1
H(p) =— > p(ax) log p(a) = — > px log py, (A1)
k=0 k=0

where p(ay) is abbreviated as py.
The entropy thus defined is a very “well-behaved” function with a number of

good properties. For instance, the entropy is a convex function of P,
VOSAST HQp+(1—Np)—MH(p)— (1- NH(P) >0,  (A2)

l.e., a straight line joining any two points p and p’ on the graph of H(p) never
lie below the graph. This property enables the entropy to be easily minimized
since any local minimum is also the global minimum of a convex function. Ob-
viously, the entropy function is continuous in p. This property guarantees that
small changes in the probability distribution only give rise to small changes in the
uncertainty. The entropy is an additive function for independent random events,

L.e., the entropy is equal to the sum of the entropies of the individual events. It
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1s trivial to see that the entropy is a non-negative function and H(p) =0 if and
only if all p; but one vanish. Thus there is no uncertainty when the output is
sure. Moreover, intuitively we know that the greater number of the unbiased selec-
tions available, the larger the uncertainty is. Indeed, the uncertainty is maximum
when all selections are equally probable. This fact is equivalent to the property

H(p) <log K.

The transmission of a large volume of data demands a very clever use of cod-
ing techniques so that the information can be conveyed in a reliable and optimal
way. A tremendous amount of effort has been devoted to this problem since the
appearance of Shannon’s groundbreaking work. A code is a special representation
of a string of data that satisfies a given need. Various types of codes are employed
to serve different functions subject to many practical conditions on the communi-
cation channels [15]. For example, at a certain stage of source data, encoding, one
might or might not introduce some intentional distortion into the data, depending
on the degree of data compression required. Introducing some degree of distor-
tion into the data may yield methods that more concisely encode the data, at the
cost of error-free source data recovery. In practice, the communicating channels

are usually noisy to some extent and may only allow the transmission of data
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within certain constraints. Special designs of error-correcting codes meeting these

constraints must therefore be developed.

Huffman codes are in the category of data compaction codes. This type of
code represents the source data more efficiently, but also in such a way that the
source data can be recovered essentially error-free. In most practical situations,
data streams are normally so long as to appear infinite to the encoder and the
decoder. Building long codes from small codewords and breaking the data streams
into sequences of these codewords is a feasible way of dealing with large amounts
of data. Classified by codeword structure, there are several different kinds of
codes, e.g., block codes, tree codes, and prefix codes. Among them, prefix codes
admit self-punctuation, and are the kind utilized in Huffman codes. By self-
punctuation, we mean the code stream which is obtained by concatenating a
string of codewords can be uniquely decomposed (punctuated) into the blocks
of codewords unambiguously, i.e., an indefinitely long string of code is uniquely
decodable. To accomplish this, the so-called prefix condition is imposed on the
codewords. The condition requires that no codeword is the beginning of any other
codewords. More precisely, suppose {ng,ni,...,nx_1} is the set of codewords. If

the codeword ny, is not the beginning of ny for any & # k and 0 < k, k' < K,
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then the code is called a prefiz code. The following is an example of a set of binary

prefix codewords.

{00, 01, 110, 11100, 11110, 11111}

The string

011101110001...
can only be punctuated as

01,110,11100,01...

Now we know all prefix codes are uniquely decodable, but not vice versa. There
is a loss of generality if prefix codes are considered exclusively. Thus a crucial
question should be asked: Does there exist a set of numbers {ng,ny,...,nK_1}
which are the codeword lengths of some uniquely decodable code, but not of any
prefix code? Fortunately, the answer to this question is no. The following Kraft

Inequality plays a key role in establishing this fact.

Theorem A.1. (Kraft Inequality)

In an alphabet of size S, there exists a prefix code with K codewords of length

ng for k=0,1,..., K — 1 if and only if

K-1
S5 < 1. (A.3)
k=0
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For binary codes, the alphabet is {0,1} and the size S is 2.

Therefore, assuming the Kraft Inequality holds, without loss of generality, we can
address the representation of information while dealing exclusively with prefix

codes.

We are now in a position to talk about the celebrated Huffman code. The
question is to find the most efficient method of representing numbers, letters or
other symbols using a binary code. Let X = {ag,as,...,ax_1} be an ensemble
with the corresponding positive probabilities pg, p1,. .., prx—1. What is the mini-
mum average number of bits required to represent the outcome, X? Equivalently,
can we find a set of codewords with lengths ng,n,...,nx_; and minimize the

average information i = %=1 piny, under the constraint Z,If:_ol 27 < 17 2

The way to construct such a code is as follows. Suppose K > 2, let X =
{@o,a1,...,ax_1} be arranged in non-increasing order by the probabilities, i.e.,

Po 2 P1 2 ... 2 pr—2 = pr-1 > 0. In this ordering, ax_; refers to be the

>This is the same question [100] was set by Robert Fano as a term paper in a graduate
electrical engineering course (in lieu of taking the final exam.) at MIT in 1951. David A. Huffman
was one of the students in this class. Several good people, including Claude E. Shannon, the
creator of the field of information theory, had struggled with this problem for a long time and
were unable to obtain an optimal solution. Without being told this fact, Huffman worked on
the problem for months and almost despaired of ever finding a solution. Just before he decided
to start studying for the final, an “absolute lightning of sudden realization” hit his mind, and
Huffman wrote down a simple and elegant binary code which answered the question.
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Figure A.1: An example of Huffman Code.

least probable element, and ag_5 the next least probable element. Let X' =
{af,a, ..., ax_o} with probabilities p}, p},. <., pl_, given by pi = py for 0 < k£ <
K — 3, and py_y, = px-2 + pr—1. Here X' is called the reduced ensemble. The
Huffman code assigns 1 and 0, respectively, as the last digit for the codewords of
the two least probable elements ax_; and ax_1. The two least probable elements

are then “merged” into a%_, and this step is repeated recursively on the reduced
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ensemble. Fig. A.1 shows an example of this procedure.

The optimality of this algorithm is based on two facts contained in the following

propositions.

Proposition A.1.

Given any ensemble X, there exists a prefix code that achieves the minimum
n in which the two least probable elements have the same codewords except for

the last digit.

Proposition A.2.

The average codeword length of the encoding of X is minimum iff the average

codeword length of the encoding of the reduced ensemble X’ is minimum.

These two propositions guarantee an optimal code for X by obtaining an optimal
code for the reduced ensemble, after committing to the initial last-digit assign-
ment. It recursively proves that Huffman’s algorithm indeed yields an optimal
prefix code. The rigorous proof can be found in most standard books on the
information or coding theory. One more pleasant fact about the Huffman code

is that the average codeword length obtained by this algorithm differs from the
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information, or entropy, H(X) of the ensemble X by no more than 1 bit, i.e.,

n <1+ H(X)!

Huffman code has been appraised by Donald E. Knuth as “one of the funda-
mental ideas that people in computer science and data communications are using
all the time.” We have re-introduced it here because of its elegant use of divide-
and-conquer. There is a very amusing application of Huffman’s algorithm which
we would like to pose as a question to close this chapter. Given m; balls of color
c1, mq balls of color ¢y, ..., and mg balls of color ¢k, Mr. H picks one ball at
random with uniform probability from this group of balls. How do we design a
minimum set of questions for Mr. H, who is only allowed to answer “yes” or “no,”

such that we are able to determine the color of the ball?
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