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Abstract

We describe the design, implementation, and initial scientific results of a system
for analyzing the Digitized Second Palomar Observatory Sky Survey (DPOSS). The
system (SKICAT) facilitates and largely automates the pipeline processing of DPOSS

from raw pixel data into calibrated, classified object catalog form.

A fundamental constraint limiting the scientific usefulness of optical imaging sur-
veys is the level at which objects may be reliably distinguished as stars, galaxies, or
artifacts. We therefore expended great effort to explore techniques that would make
most efficient use of the data for classification purposes. The classifier implemented
within SKICAT was created using a new machine learning technology, whereby an
algorithm determines a near-optimal set of classification rules based upon training
examples. Using this approach, we were able to construct a classifier which distin-
guishes objects to the same level of accuracy as in previous surveys using comparable

plate material, but nearly one magnitude fainter (or an equivalent By ~ 21.0).

Our first analysis of DPOSS using SKICAT is of an overlapping set of four survey
fields near the North Galactic Pole, in both the J and F' passbands. Through detailed
simulations of a subset of these data, we were able to analyze systematic aspects of
our detection and measurement procedures, as well as optimize them. We discuss
how we calibrate the plate magnitudes to the Gunn-Thuan ¢ and r photometric
system using CCD sequences obtained in a program devoted expressly to calibrating
DPOSS. Our technique results in an estimated plate-to-plate zero point standard

error of under 0.10™ in g and below 0.05™ in r, for J and F plates, respectively.

Using the catalogs derived from these fields, we compare our differential galaxy
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counts in g and r with those from recent Schmidt plate surveys as well as predic-
tions from evolutionary and non-evolutionary (NE) galaxy models. While we find
some significant differences between our measurements and others, particularly at
the bright end, we find generally good agreement between our counts and recent NE
and mild evolutionary models calibrated to consistently fit bright and faint galaxy
counts, colors, and redshift distributions. The consistency of our results with these
predictions provides additional support to the view that very recent (2 < 0.1) or
exotic galaxy evolution, or some non-standard forms of cosmology, may not be nec-

essary to reconcile these diverse observations with theory.
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Chapter 1

Introduction

A minor revolution is taking place in the world of observational astronomy. As with
many previous forays into unexplored regions of observeable parameter space, this
advancement is technically driven. The subtle difference from the past, however, is
the form of technology largely influencing the current advancement. No longer is it

optical, mechanical, or electronic in nature: it is informational.

One can think of the night sky as simply a greatly under-utilized source of data,
with an information content and rate, in terms of photon flux, dwarfing our data
acquisition capabilities. We build new telescopes and detectors to help reduce this
disparity. For many years, however, the telescopes and detectors themselves have
produced their own flood of information with a volume and bandwidth beyond the
processing capabilities of astronomers. This disparity, between efficiency of data
acquisition and analysis, becomes more apparent with every ground or space-based

instrument brought on-line.

Given this data glut, the critical demands of observational astronomers have
expanded beyond the realm of data acquisition into the frontiers of analysis. The
importance and difficulty of reducing the huge volume of data being accumulated
from a variety of sources, of correlating the data and extracting and visualizing the
important features and trends, are increasingly well recognized. These problems are
certain to become more acute with the advent of new telescopes, detectors, and space

missions producing data fluxes regularly measured in Terabytes. We face a critical
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need for methods of managing these data in order to produce interesting scientific
results quickly and efficiently.

While standard methods of astronomical data analysis have been either incapable
of matching the rates of modern data sources or unable to fully utilize their informa-
tion content, only recently have astronomers had the option of bringing technology
to bear on the problem in a significant way. Since the invention of photography,
astronomers have, with little apprehension, applied technology to the basic task of
acquiring data. We easily recognize the benefit of using technology to increase the
quantity of data we can obtain, to improve its quality (consider a CCD image vs. a
pen and ink sketch), and even to make available entirely new sources of information
(e.g., radio and gamma ray astronomy). With recent advances in the information
sciences, there is now the potential for the comparably innovative application of
technology at the data analysis stage as well.

Among the most visible sources of Terabytes of astronomical data today are the
all-sky surveys being conducted at various wavelengths. A prime example is the
Second Palomar Observatory Sky Survey (POSS-II), which has been in progress at
the Oschin Schmidt telescope since 1985 (Reid et al. 1991). This photographic
survey was prompted by the requirements of the space observatories, notably IRAS
and HST, as well as the general desire to provide a newer epoch survey of the northern
sky to complement both the original POSS and the recent, higher-quality SERC/ESO
surveys of the southern skies. POSS-II, which is more than 60% complete as of
August, 1994, will eventually cover 894 fields spaced 5° apart in three passbands:
blue (ITla-J + GG 395), red (IIla-F 4+ RG610), and near-infrared (IV-N + RG9).
The typical limiting magnitudes for point sources in the corresponding J, F', and N
bands are 22.5, 21.5, and 19.5, respectively.

While the photographic survey is still under way, ST Scl and Caltech have already
begun a collaborative effort to digitize the complete set of plates (Djorgovski et al.
1992; Lasker et al. 1992; Reid and Djorgovski 1993). So far, only a subset of the J,
F, and N plates have been scanned and processed. Both the photographic survey
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and the plate scanning are hoped to be > 90% complete circa 1997. The resulting
data set, the Palomar-STScI Digital Sky Survey (DPOSS), will consist of ~ 3 TB of
pixel data: ~ 1 GB/plate, with 1 arcsec pixels, 2 bytes/pixel, 20340% pixels/plate,
for all survey fields in all three colors. ST Scl will provide an astrometric solution
for each plate accurate to within approximately 0.5 arcsec r.m.s. over scales less
than a degree. In conjunction with the plate survey, we are also conducting an
intensive program of CCD calibrations using the Palomar 60-inch telescope, using
Gunn-Thuan gr: bands. These CCD images serve both for magnitude zero-point
calibration and object classification purposes. The plate scans, when complete, will
be the highest quality set of digital images covering the entire northern sky produced

to date, and their potential scientific value is enormous.

The APM (Maddox et al. 1990a; Maddox et al. 1990c) and COSMOS (Collins,
Heydon-Dumbleton, and MacGillivray 1989; Heydon-Dumbleton, Collins, and Mac-
Gillivray 1989) groups, as well as Picard (1991a,1991b) and Tinney (1993), have
already demonstrated some of the significant scientific results to be derived from
the latest Schmidt plate surveys. The APS group at Minnesota have likewise been
effectively exploiting their scans of the original POSS. While these analyses have
been significant and effective, they have generally focused on a few well-defined
applications of the data, and, even for those purposes, failed to extract the full
amount of information available in the plates. Limitations in computing and storage
technology at the time the scanning machines were constructed forced these groups to
generally employ reduction techniques whereby objects were detected and measured
on the fly as a plate was scanned, leaving the pixel values to be ultimately discarded
or unused. Subsequent analyses (e.g., star/galaxy classification) were based solely
on the measured parameters and were generally performed using computing methods

which had been standard for some time (see Odewahn et al. 1992 for an exception).

Given the enormous resources devoted to conducting these sky surveys, it is
natural that we should pay special attention to how, using present day technology,

we can make most effective use of the data once they are available. Attention to this
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detail, with an understanding of its increasingly general applicability, prompted the
work described in this thesis.

The primary purpose of this thesis was to facilitate the exploitation of POSS-
II, applying the latest and most effective technology for performing any number of
analyses of the data. Towards this end, Caltech Astronomy and the JPL Artificial
Intelligence Group have been engaged in a collaborative effort to integrate state-of-
the-art computing methods for the scientific utilization of DPOSS. The traditional
means of extracting useful information from imaging surveys is through the construc-
tion of object catalogs. Thanks to developments in the fields of pattern recognition
and machine learning, it is now possible to reliably construct such catalogs objec-
tively and automatically with a higher degree of accuracy than ever before. Our goal
has been to successfully transfer the JPL Al group’s expertise in this technology to
an important, domain-specific problem in astronomy.

The result of our joint effort is the Sky Image Cataloging and Analysis Tool
(SKICAT), a suite of programs designed to facilitate the maintenance and analysis
of astronomical surveys comprised of multiple, overlapping images. More generally,
it provides a powerful, integrated environment for the manipulation and scientific
investigation of catalogs from virtually any source. SKICAT incorporates machine
learning software technology for classifying sources objectively and uniformly, and
facilitates handling the enormous (by present-day astronomical standards) data sets
resulting from DPOSS (Fayyad et al. 1992a; Fayyad, Weir, and Djorgovski 1993a;
Fayyad, Weir, and Djorgovski 1993b; Weir, Djorgovski, and Fayyad 1992; Weir et al.
1993b; Weir et al. 1993c). It is a collection of new and borrowed, commercial and
public domain, software products which have been integrated for a common purpose,
with consistent command line and X-windows interfaces.

SKICAT represents our attempt to help introduce the latest information tech-
nology and machine-learning based software tools into astronomy in a meaningful
way. The result of applying SKICAT to DPOSS will be the Palomar Northern Sky
Catalog (PNSC), which when completed, is expected to contain > 5 x 107 galaxies,
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and 2 2 x 10° stars, in 3 colors (photographic JFN bands, calibrated to CCD gri
system), down to the limiting magnitude equivalent of B ~ 22™, with star-galaxy
classifications accurate to ~ 90 — 95% down to the equivalent of B ~ 21™. The
catalog will be continuously upgraded as more calibration data become available.
It will be made available to the community via computer networks and/or suitable
media, probably in installments, as soon as scientific validation and quality checks
are completed. Analysis software (parts of SKICAT) will also be freely available.

The progress of the research described in this thesis has been reported in a number
of conference proceedings and published abstracts (Weir and Picard 1991; Weir et al.
1991; Djorgovski et al. 1992; Lasker et al. 1992; Weir et al. 1992; Fayyad et al.
1992b; Weir, Djorgovski, and Fayyad 1992; Fayyad et al. 1992a; Fayyad et al. 1993;
Weir et al. 1993a; Weir et al. 1993b; Weir et al. 1993c; Weir, Djorgovski, and
Fayyad 1993; Fayyad, Weir, and Djorgovski 1993c; Fayyad, Weir, and Djorgovski
1993a; Fayyad, Weir, and Djorgovski 1993b; Fayyad et al. 1995; Weir et al. 1994b).
Adaptations of the chapters that follow have been or soon will be submitted for
publication to astronomical journals.

This thesis, which describes our work on DPOSS and SKICAT, as well as our
first scientific results, is organized as follows. The second chapter describes the
overall design and philosophy of the SKICAT system. Together with the SKICAT
documentation, it provides a nearly complete technical description of the catalog
construction and database management processes, illustrating how the raw pixel
data are actually transformed ultimately into classified catalogs of objects.

The third chapter describes our approach to object classification. By applying
novel methods from the field of machine learning, we were able to implement a
classifier within SKICAT that not only provides accurate star/galaxy separation at
levels fainter than in previous surveys using similar data, but generalizes to any
number of future classification tasks.

In the fourth chapter, we present our initial scientific results from the PNSC,

including a full discussion of our method of photometric calibration. We describe how
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we used simulation studies to determine optimal methods of performing photometry
using DPOSS data, and how we calibrate DPOSS catalogs using plate overlaps and
independent CCD measurements. Our initial results consist of galaxy counts and
colors in four survey fields near the North Galactic Pole. In comparing our counts
in g and r with those from recent Schmidt plate surveys as well as predictions from
non-evolutionary (NE) galaxy models, we find some significant differences with the
former but generally good agreement with the latter. The consistency of our results
with the NE model predictions provides important new evidence supporting the
view that some non-standard cosmologies or very recent (z < 0.1) and exotic galaxy
evolution, as suggested by previous surveys, may not be necessary to reconcile diverse

cosmological observations with theory.

Of course, a wide variety of additional scientific projects will also be possible with
the PNSC, including studies of large-scale structure, Galactic structure, automatic
identifications of sources from other wavelengths (radio through x-ray), generation of
objectively defined catalogs of clusters and groups of galaxies, searches for quasars,
variable or extreme-color objects, to name but a few. In fact, work in a few of
these areas has already begun. In collaboration with Tereasa Brainerd, we will soon
publish galaxy angular correlation function measurements using the same four PNSC
fields described herein. In addition, Julia Smith has begun a search for high-redshift

quasars using these and additional fields.

A good deal more technical work related to the SKICAT system also remains.
For one, we would like to further explore the application and implementation of un-
supervised classification techniques like Autoclass (Cheeseman et al. 1988) for the
purpose of automated machine discovery. For example, one could imagine employ-
ing these methods in order to try to systematically detect new classes of objects
within astronomical catalogs. We have only begun very preliminary investigations
in this area of research, which we report at the end of Chapter 3. Our initial suc-
cess at distinguishing physically distinct objects within a very limited subset of the

PNSC database suggests that far richer and innovative results may be in store when
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we combine the DPOSS dataset with external catalogs, enlarging its informational
dimensionality manifold.

A significant amount work will also be involved in adapting SKICAT to accom-
modate the special requirements of processing bright objects, N plates, or plates at
low Galactic latitude. Although careful safeguards were placed within the system to
avoid corrupting the measurement of sky backgrounds, thresholds, detection limits,
etc., due to the presence of bright objects, a great deal more work could be done to
intelligently avoid bright objects while processing a plate, or to automatically flag
cataloged objects that appear in the vicinity of bright stars. N plates present their
own set of unique challenges because of the variable sensitivity of each plate and
the difficulty in establishing an accurate estimate of the HD curve. At low galactic
latitudes, the critical problem for all plates becomes crowding. Neither the image
processing or database management tools within SKICAT are currently capable of
handling the extreme number of stars which become visible at galactic latitudes
< 20°.

Our interest in DPOSS provided the initial motivation for the development of
SKICAT, but we really see this application as only the beginning: these tools are
quite general and applicable to a broad range of data reduction and analysis prob-
lems. Digital imaging data sets of Terabytes in size are becoming more common,
undoubtedly becoming standard in the very near future. Their exploration and full
scientific utilization call for the development of a new generation of data processing

and analysis tools. We hope our work will prove to be a useful step in this direction.



Chapter 2
The SKICAT Systemf

Abstract

We describe the design and implementation of a software system for pro-
ducing, managing, and analyzing catalogs from the digital scans of the Second
Palomar Observatory Sky Survey. The system (SKICAT) integrates new and
existing packages for performing the full sequence of tasks from raw pixel
processing, to object classification, to the matching of multiple, overlapping
Schmidt plates and CCD calibration frames. We describe the relevant details
of constructing SKICAT plate, CCD, matched, and object catalogs. Plate and
CCD catalogs are generated from images, while the latter are derived from ex-
isting catalogs. A pair of programs complete the majority of plate and CCD
processing in an automated, pipeline fashion, with the user required to exe-
cute a minimal number of pre- and post-processing procedures. Some of the
most critical aspects of the image catalog construction process are the steps
required for assuring consistent detection and attribute measurement across
different plates, particularly measurements of magnitudes and attributes used
for classification. We apply a modified version of FOCAS for the detection
and photometry, and new software for matching catalogs on an object by ob-
ject basis. SKICAT employs modern machine learning techniques, such as
decision trees, to perform automatic star-galaxy-artifact classification with a
> 90% accuracy down to ~ 1™ above the plate detection limit. The system
also provides a variety of tools for interactively querying and analyzing the
resulting object catalogs.

keywords: image processing, database management, sky surveys

tAdapted from an article to be submitted to The Publications of the Astronomical Society of
the Pacific by Weir, N., Fayyad, U., Djorgovski, S., and Roden, J.
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2.1 Introduction

The critical needs of observational astronomers have shifted from the exclusive realm
of instrumentation to include that of advanced data analysis. The rate and quality
of the data regularly produced by modern instruments frequently overwhelm the
tools available to exploit them. Because of this mismatch, astronomers are forced to
develop new methods and systems in order to make full use of modern astronomical

data sets for producing meaningful scientific results timely and efficiently.

One such data set, large even by modern day standards, is the Second Palomar
Observatory Sky Survey (POSS-II, Reid et al. 1991). When complete, this photo-
graphic northern-sky survey will cover 894 fields spaced 5° apart in three passbands:
blue (Illa-J + GG 395), red (Illa-F + RG610), and near-infrared (IV-N 4+ RG9).
While the photographic survey is still under way, ST Scl and Caltech have begun
a collaborative effort to digitize the complete set of plates (Djorgovski et al. 1992;
Lasker et al. 1992; Reid and Djorgovski 1993). Both the photographic survey and
the plate scanning are hoped to be > 90% complete by the end of 1997. The re-
sulting data set, the Palomar-STScI Digital Sky Survey, will consist of ~ 3 TB of
pixel data: ~ 1 GB/plate, with 1 arcsec pixels, 2 bytes/pixel, 20340? pixels/plate,
for all survey fields in all three colors. In conjunction with the plate survey, we are
also conducting an intensive program of CCD calibrations using the Palomar 60-inch
telescope, using the Gunn-Thuan gr: bands.

Given the enormous resources devoted to conducting such surveys, it is natural
to pay special attention to how, using present day technology, one can make most
effective use of the data once they are available. Attention to this detail, with an
understanding of its increasingly general applicability, prompted the work described
in this paper.

Caltech Astronomy and the JPL Artificial Intelligence Group have been engaged
in a collaborative effort to integrate state-of-the-art computing methods for facili-

tating the scientific exploitation of POSS-II, applying the latest and most effective
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technology for performing any number of analyses of the data. The traditional means
of extracting useful information from imaging surveys is through the construction
of object catalogs. Thanks to developments in the fields of pattern recognition and
machine learning, it is now possible to reliably construct such catalogs objectively

and automatically with a higher degree of accuracy than ever before.

2.2 Overall Design

The Sky Image Cataloging and Analysis System (SKICAT) was designed to facilitate
the creation and use of catalogs from large, overlapping imaging surveys, and in par-
ticular, the scans of the Palomar-STScI Digital Sky Survey (DPOSS). The purposes
of the software utilities comprising SKICAT generally fall into three main categories:
catalog construction, catalog management, and catalog analysis. The relationship of
these processes is illustrated in Figure 2.1. For reducing scans of POSS-II, the first
step in SKICAT processing is catalog construction, which results in individual image
catalogs. These, in turn, are registered within the SKICAT database management
system and matched, object by object, with other catalogs to create a matched cat-
alog of objects appearing in the survey. A matched catalog, or any individual image
catalogs, may subsequently be queried in a variety of sophisticated ways to facilitate
maintenance or analysis of the data.

While our interest in DPOSS provided the initial motivation for the development
of SKICAT, these tools are quite general and applicable to a broad range of data re-
duction and analysis problems. For example, the catalog construction software could
be rather easily adapted to processing large-scale CCD or infrared imaging surveys.
Likewise, the catalog management and analysis tools are useful for integrating and
making use of an even wider variety of data sources (e.g., matching radio and x-ray

sources with their counterparts from optical surveys).

Currently, SKICAT provides utilities for generating catalogs from two types of

images, although it was designed to handle any number of types in the future. One
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image type consists of a plate scan from the Palomar-ST Scl Digitized POSS-II
(DPOSS) survey. The other, a CCD image, is used for photometric calibration
and training the star/galaxy classifiers applied to DPOSS catalogs. Step-by-step
instructions for processing plates and CCDs from raw pixel into catalog form appear
in the SKICAT Plate and CCD Processing Cookbook (Weir et al. 1994a) and the
SKICAT User’s Manual (Weir et al. 1994d).

In this first section, we provide an overview of the steps involved in catalog
construction, as well provide an introduction to the catalog management and anal-
ysis tasks supported by SKICAT. In the section which follows, we provide a more
detailed discussion of the scientifically relevant details of the plate catalog construc-
tion processes. In the final section, we describe how matched and object catalogs

are constructed within SKICAT.

2.2.1 Catalog construction
Processing plates

The heart of SKICAT is a collection of programs for the quasi-automatic processing
of DPOSS plates from raw pixel to classified catalog form. Starting with a 1-GB
digitized plate exabyte tape from ST Scl, SKICAT provides the tools for transferring
the pixel data to SKICAT format, measuring the plate sky level and image bound-
aries, and determining a photographic density-to-intensity relation. The user then
initiates a script, AutoPlate, which automates the process of cataloging the plate as
a set of overlapping 20482 pixel image ‘footprints’.

The three most critical elements of plate processing are detection, photometry,
and classification. By using the Faint Object Classification and Analysis System
(FOCAS, Jarvis and Tyson 1979; Valdes 1982a) for image detection and measure-
ment, SKICAT is able to reach close to the faintest reliable limits of the plate scans,
i.e., down to a typical equivalent limiting B magnitude of ~ 22™ for galaxies. In
addition, by measuring quasi-asymptotic rather than isophotal magnitudes, using

local sky estimates from annuli surrounding each object, and adapting the measure-
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ment thresholds within and across each plate to adjust for differences in sky level,
noise, and pixel-to-pixel correlation, we are able to obtain very consistent photometry
within and across plate boundaries. Details of our methods for performing photom-

etry and the resulting accuracy appear in Weir, Djorgovski, and Fayyad (1994).

For classification, SKICAT benefits from the application of recent developments
in machine learning. In particular, it utilizes the GID3* and O-Btree decision tree
induction software (Fayyad 1991; Fayyad and Irani 1992; Fayyad and Irani 1993),
together with the Ruler system (Fayyad, Weir, and Djorgovski 1993b) for combining
multiple trees into a robust collection of classification rules. These algorithms work
by using measurements of a training set of classified objects and inferring an efficient
set of rules for accurately classifying each example. The rules are simply conjunc-
tions of multiple “if...then..” clauses, which condition upon any of eight different
object parameters to determine an object’s classification. The real advancement in
using this type of classifier relative to those used in most large-scale surveys to date
is twofold: first, we are able to condition upon a larger and more diverse set of
attributes; second, we allow the computer to decide what are the optimal number
and form of the rules. Additionally, this technique readily generalizes to other, more

difficult forms of classification, such as distinguishing galaxies by their morphology.

We have created separate sets of classification rules for objects from J and F
band survey plates. We used CCD calibration data, which generally have superior
image quality, to construct the training sets used to train the plate object classifiers.
Classifications derived from the CCD data, more reliable than “by eye” estimates
from the plates themselves, were matched to plate measurements to form the training
sets. The measurements used to perform classification are a set of robust, renormal-
ized object parameters that we found to be distributed in a stable fashion within
and across plates. By training the algorithms to classify based on these attributes,
we were able to nearly completely remove the effect of PSF variation across a given
plate, or even between different plates. Average accuracy of star-galaxy classifica-

tions as a function of magnitude may be determined from tests using independent
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CCD-classified plate data. In both the J and F bands, we found the accuracy to
drop below ~ 90% at about the same equivalent magnitude level, B ~ 21.0™. This is
~ 1™ above the plate detection limits, and nearly 1™ better than what was achieved
in the past with similar data. This increase in depth effectively doubles the num-
ber of galaxies available for scientific analysis, relative to the previous automated
Schmidt surveys. The details of our classification methods and results are presented
in Weir, Fayyad, and Djorgovski (1994).

Plate X,Y to RA,Dec assignment, like object classification, is automatically per-
formed in the final stages of catalog construction. Currently, the astrometric trans-
formation is performed based on the astrometric solutions provided by ST Scl as part
of their plate scanning operation, but improved solutions are easily implemented. As
both astrometric assignment and final object classification rely only upon existing
catalog measurements, not raw pixel data, they may be easily repeated at later
times using a different set of classification rules or improved astrometric solution
coefficients. SKICAT provides database manipulation tools that facilitate the con-
tinuous refinement of catalogs as better calibration, or even entirely new algorithms,

become available.

Processing CCDs

CCD catalogs are constructed using most of the same tools as are applied to plate
data. A script called AutoCCD, analogous to AutoPlate, is used to quasi-automatically
process an image from pixel into catalog form. The primary differences between
plates and CCDs are in the forms of pre- and post-processing that are applied. In
particular, a whole host of standard CCD calibration procedures (e.g., de-biasing,
flat-fielding, photometric calibration, etc.), far different from those for plates, must
be followed before running AutoCCD. In addition, we found FOCAS’s built-in classi-
fier to provide very accurate results on the CCDs down to the plate detection limit,
which is our magnitude limit of interest. We were, therefore, able to let FOCAS

automatically classify each object, with just a quick follow-up check by eye, pro-
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ducing excellent quality data without the need for much human interaction or more
sophisticated classification algorithms.

CCD data are used for two purposes in our work with DPOSS. First, they pro-
vide “true” object classifications, at very faint levels, for our classifier training sets.
Because the CCD images are of higher resolution and signal to noise ratio (SNR)
than digitized plates, we are able to assign accurate classifications to objects whose
morphology is not reliably distinguishable, even by an expert, when looking at the
plate image alone. Through the machine learning process, the aim is to train the
computer to consistently classify these faint objects, thereby enabling it not just to
mimic a human’s performance, but actually improve upon it.

The second, most important, purpose for the CCD measurements is to provide
photometric calibration for the plate catalogs. We use CCD exposures in the Gunn-
Thuan (Thuan and Gunn 1976) g, r, and ¢ bands to calibrate the IIla-J, Illa-F, and
IV-N plate data, respectively. These CCD bandpasses provide a reasonable match
to the photographic emulsion plus filter passbands. Details of how we perform our
CCD photometry and the level of accuracy we achieve appear in the paper Weir,

Djorgovski, and Fayyad (1994).

2.2.2 Catalog management

Once the image catalogs are constructed, they must be registered within the SKICAT
database. Modifications and updated versions of the catalogs are maintained through
database management software and tracked by the SKICAT system. The structure
of the SKICAT database was specifically designed to facilitate the creation and
classification of image catalogs, comparison of object photometry and classifications,
revision of object measurements, and the construction of larger, matched catalogs.
For each plate or CCD image, the catalog construction scripts generate a header
and features table, together comprising what we term a SKICAT catalog. A detailed
description of the most commonly referenced SKICAT database terms appears in

Appendix A. The header table consists of columns of parameters used to guide
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the catalog construction process, the name of the image from which the catalog was
derived, the location of the image on offline storage, comments, and other information
necessary to identify the data source and reconstruct the catalog from scratch if
necessary. The features table contains one row for each detected feature in the image.
The columns represent the measured attributes of each feature. Approximately 50
parameters per object are measured and saved in the individual plate and CCD
catalogs.

After the construction process, catalogs within SKICAT must be registered in the
SKICAT system tables, where a complete description and history of every catalog
loaded to date is maintained. Catalog revisions, that might result from deriving
new and improved plate astrometric solutions or photometric corrections, are also~
logged. Multiple versions of each image catalog may exist, each reflecting a different
processing history. The SKICAT system tables also keep track of which catalogs are
currently loaded on-line, or physically loaded on disk. SKICAT provides tools for
quickly and easily saving/loading catalogs off-line/on-line. Only registered catalogs
may be moved to/from off-line storage or matched with other catalogs.

Multiple, overlapping catalogs can be matched into a special SKICAT data struc-
ture called the matched catalog. The matched catalog consists of a matched features
table and a table of those catalogs comprising it. The matched features table con-
tains independent entries for every measurement of every object detected in the
constituent catalogs. Because of size and speed considerations, not every attribute
may feasibly be saved within the matched catalog, but a sufficiently small subset of
parameters is generally more than adequate for most uses of the data. Of course the
saved catalogs themselves provide a complete archive of the full list of parameters if
they are ever needed. SKICAT allows for multiple matched catalogs to be on-line
at once, and they may be saved and loaded to/from off-line storage and a new one
created at any time.

The matched catalog may be queried using a sophisticated filtering and output

tool to generate a so-called object table, which contains just a single entry per
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matched object. With this tool, the user may, for example, generate a distributable
data product, such as a galaxy list, from the current set of matched plate catalogs.
The tool may also be used to perform consistency checks within catalog overlap
regions, or to perform specialized scientific analysis over large survey regions. For
example, a user may request a listing of all stars within a well-defined section of sky
covered by multiple J and F' plates, specifying exactly which object attributes to
report (e.g., magnitude, RA, Dec, etc.) and from which source (specific J plates,

average of all F' plates, etc.).

Catalogs may be easily altered using a procedure that allows arbitrary opera-
tions on table columns. This user simply specifies the C code which describes the
computation for the column value as a function of any other column values, external
data files, or constants. The utility automatically generates the necessary code for
transforming the table and executes it. This utility is used in a number of contexts
in the SKICAT system, including the computation of right ascension and declina-
tion, as well as for applying the classification rules. In the same way, catalogs may
be re-calibrated or otherwise adjusted in light of new or improved data. Such up-
dates might include applying a field-effect correction to a plate’s list of magnitude

or performing new classifications using an improved rules set.

A catalog may also be modified by using a utility that updates selected columns
from corresponding columns in the matched catalog. This procedure would be ap-
propriate if, for example, the entries in a matched catalog were calibrated, and
the calibrated measurements needed to be passed back to the original catalogs for
archival purposes. An updated catalog could subsequently be re-registered as a new
version of the existing catalog. Both the original and new header information would
now be saved in the system, maintaining a complete history of catalog revisions.
Via this mechanism, SKICAT is designed to maintain a “living,” growing database,

instead of a data archive fixed for all time.
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2.2.3 Catalog analysis

The third layer of SKICAT, which is still under development, will consist of a pow-
erful tool box of modern data analysis algorithms to be applied for survey data
space exploration and the scientific analysis of the catalogs. It will facilitate more
sophisticated scientific investigations of these expanding survey data sets, including
a multivariate statistical analysis package, and a wide variety of Bayesian inference
tools, objective classifiers, and other advanced data management and analysis pack-
ages and algorithms.

The analysis tools included in the current version of SKICAT are the GID3*/0O-
Btree decision tree induction software and Ruler program for classification learning,
as well as the extremely useful collection of stream processing routines included in the
standard FOCAS distribution. The very same classification learning software which
was used to create the classifiers in SKICAT’s plate cataloging script are available for
use on any SKICAT data set, or even data from external sources. SKICAT provides
an environment for implementing these tools to train and produce classifiers for
scientific uses of the DPOSS, or any other catalogs.

We also intend to explore the potential of machine-assisted discovery, where mod-
ern, artificial intelligence-based software tools automatically explore large parameter
spaces of data and draw a scientist’s attention to unusual or rare types of objects,
or nonobvious clusters of objects in parameter space. We have begun applying the
Autoclass (Cheeseman et al. 1988) unsupervised classification software to DPOSS,
with plans to implement this and other Bayesian inference and cluster analysis tools

within SKICAT in the future.

2.2.4 Application environment

The SKICAT system is largely written in C, Unix shell scripts, and FORTRAN, and
it is portable across Unix systems. As mentioned before, SKICAT is built around and
incorporates a number of preexistent software packages: FOCAS routines for image

detection and measurement; the GID3*/O-Btree/Ruler induction software for object
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classification; and the Sybase commercial relational database management system
(DBMS) for maintaining and accessing the data. While SKICAT was developed
using these packages, none are irreplaceable. Each package serves its purpose and,
because of the modularity of the system, could be substituted for another which
performs the same function. In addition, SKICAT provides quick and easy access
to most system utilities through a common X-Windows graphical user interface,
while users familiar with Unix can access the same utilities directly from the Unix
command line.

SKICAT was designed so that all database system operations specific to Sybase
would be transparent to the user. The user interfaces and underlying Unix utilities
have been designed to allow the user to select and specify subsets of catalogs using a
slightly expanded version of the industry standard SQL (Standard Query Language).
This extended query language provides additional features of specific interest to users
in astronomy. For example, unit conversion capabilities have been provided to allow
the user to specify positional values in a variety of astronomical units (e.g., hours,
minutes, and seconds in addition to degrees and radians). Most database operations
controlled through the SKICAT software are implemented using SQL, so that it
would be relatively easy to replace the underlying DBMS if the need arose.
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2.3 Constructing Plate Catalogs

In this section, we provide more detail on the steps involved in constructing a catalog
from a DPOSS scan. Additional details may be found in Appendix B. Aside from the
initial pre-processing steps, the process of cataloging a CCD image is very analogous

to that for a plate. We provide the details of these operations in Appendix C.

2.3.1 Pre-processing

Once a POSS-II plate has been scanned by ST Scl, only a few manual steps are
required before it may be pipeline processed using a Unix command-line-based pro-
gram called AutoPlate, or the X-windows-based graphiéal user interface to it. A
digitized POSS-II plate scan is provided in the form of pixel data consisting of arbi-
trarily scaled photographic densities. Each DPOSS plate image is 23,040 x 23,040 in
size. After defining the plate boundaries, and the sky and saturation densities, the
first step in processing the plate is to perform the photographic density to arbitrary
intensity conversion. A SKICAT program automatically retrieves the portion in the
southwest corner of each image that contains the 16 sensitometry spots that appear
in each POSS-II plate. This program assists the user in running an IRAF script to
measure the 16 spots and compile a list of the densities. It then prompts the user
to interactively fit an ‘HD’ curve to the data points, providing a density to intensity
transformation for the plate scan.

The mathematical formula we use to fit the measured plate densities (D) to
relative intensities (I) is:

P(D)
(DS — D) X (DT - D)

logI = (2.1)

where P(D) is a polynomial function of the density, and the saturation and toe
densities, Ds and Dr, are those corresponding to fully exposed and unexposed por-
tions of the plate, respectively. The polynomial coefficients, together with the toe
and saturation values, establish the conversion applied to each pixel value whenever

image blocks are subsequently loaded and mosaiced to form larger images. As the
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average sky density is generally far above the toe level, it is usually desirable to
avoid fitting the polynomial to the lowest few intensities, thereby improving the fit
in the other portions of the curve. Similarly, the most nearly saturated point or two
is also generally ignored. After several iterations adjusting the relevant parameters,
we have found it possible to reduce the residual between the fit and all accepted data
points to less than 5% in intensity.

There is a long history to efficiently modeling the HD curve. The method em-
ployed by ST ScI (Russel et al. 1990), for example, involves a more complicated
formula and averaging many plates together. By their own admission, however, they
find the more complicated expression to be overkill for the linear part of the curve
of most interest. In addition, we found considerable variation of the curve among
different plates, requiring independent fits. As described in Weir, Djorgovski, and
Fayyad (1994), we also find the instrumental magnitudes resulting from these fits to
be extremely consistent from plate to plate, in the sense of only requiring a single
zero point offset to match them. This provides, in our opinion, the most important

test of the validity of our linearization scheme.

2.3.2 AutoPlate processing

AutoPlate is a C-Shell script which executes a suite of other scripts, C code, and
Fortran programs to conduct the pipeline processing of plate scans from their raw
pixel form to SKICAT catalogs. The steps involved include everything from loading
the pixel data from exabyte tape, to image detection and measurement, to catalog
construction and quality control. The majority of image processing functions are

accomplished using FOCAS routines, while Sybase is used for database management.

Overlapping footprints

Each plate is analyzed as a set of 13 x 13 overlapping ‘footprint’ images. After
pre-processing, a plate scan exists on exabyte tape as 23 Vax VMS savesets of 23

images each (see Figure 2.2). These image blocks are pasted together to form image
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footprints, which form an overlapping grid covering the entire plate (see Figure 2.4).
Each footprint is 20482 in size, with a minimum overlap between adjacent footprints
of 272 pixels, or ~ 4.5 arcmin. The large overlap allows all but the largest objects
to be reliably measured in this piecemeal fashion, while providing a quality control
check and statistics on footprint dependent measurement errors. In fact, analysis of
these errors indicate that the systematic errors induced by processing the scan in
this fashion are at least an order of magnitude below random image measurement
errors.

A number of distinct levels of processing are applied to each footprint, leading to
the construction of individual footprint features tables. Footprints are identified by
~ a row number within the plate and by a column number within that row. They are
created and processed a row at a time, from bottom (south) to top. Up to nine image
blocks must be mosaiced together to form a single footprint image; up to three rows
of image blocks must be loaded on disk to form an entire row of footprint images.
As each footprint row is processed, AutoPlate loads the necessary image blocks from
tape and deletes unnecessary blocks from disk.

Consecutive footprint images, from left (east) to right, are created just prior to
their processing. Up to two rows of footprints are always on disk, facilitating the
detection of vertical mismatches between footprint tables. Each row of footprint
features tables is saved to the plate features table only after passing a number of
quality control checks meant to assure uniformity of catalog construction. This

process is described in greater detail in the Quality Control section below.

Image analysis

Footprint ifnages are analyzed in a few ways prior to object detection. First, a quality
control check is performed by measuring correlations between alternating pairs of
pixel rows in the plate scan. This check was developed in response to problems
detected in the first batch of ST Scl scans. These correlations resulted from the

scanning machine not taking equal size vertical steps before raster scanning from
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the right or left side of the plate. The problem seems to have been corrected, and all
previously corrupted plates were re-scanned. Nonetheless, we still perform the check

as a part of our production system.

Next, AutoPlate creates a re-binned version of the image with one pixel per 8 x 8
in the original. This scale matches that of the ‘sky’ image produced by the FOCAS
detection algorithm. To provide the FOCAS algorithm with a good first guess of
the footprint sky, the value is initially estimated by binning the image into blocks
of 64 pixels each, accumulating the median and quartile sigma* for each block,
then accumulating the median and quartile sigma for all of the block measurements.
Images of the sky median and sky sigma are saved at this reduced (one pixel per
64 x 64) scale. This robust estimation procedure provides relatively accurate initial
sky and sky sigma values, even when relatively large and bright sources exist in the
image. Seeded with these values, the FOCAS detection and background estimation
procedures have been found to work well. We were able to test the accuracy of
this approach by applying it to the simulated plate images we describe in Weir,
Djorgovski, and Fayyad (1994), which were also used to help optimize the choice of

detection and measurement parameters.

AutoPlate also estimates the pixel-to-pixel correlation (horizontal and vertical
combined) within each footprint. For this measurement, in addition to applying
the same binning and median filtering procedure as above, AutoPlate excludes all
pixels two and a half sigma above the sky level. This technique was found to provide
an extremely robust and accurate measurement for all levels of pixel blurring, even

when large saturated objects appear in the image.

*We define a quartile sigma as 0.7415 times the difference between the 75th and 25th percentile
values, a robust estimate of the sample standard deviation that is insensitive to outliers. For a
Gaussian distribution, this is virtually identical (in the limit of large sample sizes) to the standard
deviation defined in the normal way.
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Object detection

The basic processes of object detection and measurement are accomplished using only
slightly modified versions of the standard FOCAS routines (Jarvis and Tyson 1979;
Valdes 1982a). Algorithmic details of these programs may be found in the FOCAS
documentation (Valdes 1982b). Here we describe how we apply these functions and

what are the relevant parameter settings.

Just prior to object detection, a FOCAS catalog is automatically initialized for
the current footprint. The appropriate header values are determined in AutoPlate
based upon the current footprint row and column numbers, and from information
derived from the plate image header. The FOCAS ‘detect’ command then uses the
header parameters for driving its object detection and sky estimation procedure.
Details of the detection process appear below. The result of this command is a
catalog of features, or contiguous pixels a certain threshold above the background,
and meeting a minimum area and signal to noise ratio (SNR) requirement. The
FOCAS detect command also produces an estimate of the sky with a one pixel per
8 x 8 resolution. If this estimate significantly differs from the median sky image

computed previously, an error is reported and processing ceases.

For optimal sensitivity, the FOCAS detection algorithm applies a threshold equal
to some number of estimated standard deviations (sky sigma) above the locally
estimated sky. The assumed sky sigma is the robust value computed for the footprint,
as described in the Image Analysis section above. However, because of spatially
varying pixel-to-pixel correlation within each plate scan, using the same multiple of
sky sigma as the threshold for all footprints would not result in the same detection
sensitivity.

To compensate for this effect and approach a common level of sensitivity between
and within plates, we sought to derive a factor by which to scale the measured sky
sigma so as to make it correspond to approximately one standard deviation in an

unblurred version of each footprint. To establish this scaling factor as a function of
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measured blur, we created a simulated footprint image matching the average noiset
and object number statistics of real footprints, then we convolved it with a series
of Gaussians of different width. Given the convolution kernel, the appropriate scale
factor is simply the square root of the inverse of the sum of squares of the normalized
kernel elements. By measuring the pixel-to-pixel R? for each image, we are able to
empirically derive a mapping from measured (square) correlation to scale factor.
We found a sixth order polynomial to provide a good fit to the relation (see Figure
2.5). We also established the relation using a blank simulated sky image and derived
virtually identical results, lending confidence in the robustness and accuracy of our
correlation estimation procedure.

We then used 2.5 times this scale factor times the estimated sky sigma as our de-
tection threshold. The additional detection parameters required by FOCAS include
a minimum object area, “significance limit” for object detection, and pre-detection
blurring kernel. We require every object to comprise six contiguous pixels. We set
the significance limit to -100, which is equivalent to turning off this SNR requirement
(see the FOCAS manual for details). We used the built-in FOCAS blurring function,

which is simply:

121321
21314132
314|543
21314132
1121321

The FOCAS detection algorithm works by convolving the image with this kernel,
then searching for contiguous pixels with values greater than the locally estimated
sky by the specified detection threshold. To adjust for the convolution, which is
meant to improve the sensitivity of the detection algorithm, the detection threshold

is scaled by the square root of the inverse of the sum of squares of the normalized

tThe appropriate level of uncorrelated, Gaussian random noise was determined in an iterative
fashion. First, we found a Gaussian kernel which, when convolved with the image, produced a
degree of blur, as measured by the pixel-to-pixel correlation, closely approximating that of an
average footprint. We then found that noise amplitude which, after convolution, resulted in a
measured sky sigma closely matching that of an average footprint.
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kernel elements. Note this is the same blurring correction we applied earlier to

account for the correlation induced by the scanning process.

Our choice of detection parameters, in particular our scaling correction for pixel-
to-pixel correlations, results in relatively consistent sensitivity as a function of plate
quality, as evidenced by the relative uniformity of object density we detect from foot-
print to footprint and plate to plate. Our choice of threshold, minimum area, signifi-
cance limit, and pre-detection blurring were chosen after extensive tests on both real
and simulated images, establishing some feel for the trade-off between completion
(percentage of real objects detected) and contamination (percent of detected objects
which are not real). On simulated images, this combination of parameters resulted
in an average FOCAS detection isophote corresponding to roughly 2.0 uncorrelated
sky sigma, which is sufficiently far into the noise as to pick up every object readily
detectable by eye. It also resulted in what we considered a manageable number of
detections per footprint and plate, in excess of the density saved in previous Schmidt
plate surveys. Typical galaxy detection limits for the J and F DPOSS plates are
found to be 21.0™ to 21.5™ in g and 20.1™ to 20.6™ in r, respectively. For point

sources, the limit can extend up to half a magnitude fainter.

Object measurement

The local sky brightness for each feature is measured using the FOCAS ‘sky’ com-
mand. It measures the median pixel value in an annular region surrounding each
feature, avoiding pixels that are within the detection isophote of another feature.
The accuracy and systematic effects of this sky measuring algorithm are addressed

in Weir, Djorgovski, and Fayyad (1994), where we discuss details of our photometry.

After obtaining the sky estimate, additional attributes for each feature are mea-
sured using the FOCAS ‘evaluate’ routine. The total number of measurements num-

ber more than 30, including those in Table 2.D: The indicated magnitudes are
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instrumental and are computed according to:
m = 30.0 — 2.5log L

where L is the luminosity, or sky-subtracted integrated intensity. The offset of 30.0 is
arbitrary and was chosen to make the instrumental magnitudes approximate the final
calibrated values within a magnitude or two. The aperture magnitudes are computed
using a five arcsec radius. The ‘total’ magnitude and area are computed by ‘growing’
the detection isophote out a pixel at a time in all directions until the total area is
at least twice the original. This magnitude is meant to provide a flux measurement
less biased with respect to surface brightness profile, approximating something like
an asymptotic or true total magnitude. The cost for decreased systematic error is
greater sensitivity to sky subtraction, integration over more noisy pixels, and hence,
increased random error (relative to isophotal or aperture magnitudes). A substantial
portion of the paper Weir, Djorgovski, and Fayyad (1994) is dedicated to an analysis
of the photometry obtained from DPOSS using SKICAT, including the results of

detailed simulation studies.

FOCAS also sets a number of flags for each feature, each of which is saved as an
attribute. These flags indicate such things as whether the object touches the edge
of the footprint, the object is below the sky level in integrated intensity, the object’s
size exceeds current FOCAS limits, there are saturated pixels in the object, or the
object was not split at any level by the FOCAS deblending routine. Additional
useful attributes are obtained by taking non-linear combinations of some of those
listed in Table 2.D. For example, using the intensity weighted second moments, we
can calculate the ellipticity and position angle of each feature. Additional attributes,
the so-called ‘revised’ ones described below, are defined by the position of a feature
within the statistical distribution of that footprint’s features within some measured
parameter space (e.g., within the plane defined by the first radial moment and the

total magnitude).
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Object deblending

After each feature in a footprint has been evaluated, SKICAT next applies the FO-
CAS ‘splits’ command. Effectively, this routine runs the detection algorithm on
every existing feature, but using successively higher thresholds. ‘Islands’ detected at
a given threshold are entered into the catalog as distinct features, and all attributes
are remeasured for them. The ‘parent’s’ flux is divided between the ‘children’ ac-
cording to the ratio of isophotal fluxes obtained using the higher threshold. This
process continues recursively until no more islands are detected.

All parents and intermediate children (i.e., a feature’s full family tree) are saved
within the FOCAS catalog and likewise within SKICAT. Each feature is referenced
by an entry and subentry number. A parent and all of its children share the same
entry number. Children are distinguished by the hierarchically constructed subentry
number: subsequent generations append additional digits to the end. The leaf or
leaves in a feature’s family tree correspond to indivisible objects and are marked as
such by a flag attribute.

We note that improvements can certainly be made to the deblending process. For
example, other methods could be used to improve the quality of the photometry of
the deblended objects, better take deblending into account when matching overlap-
ping images, handle the extreme crowding conditions to be found in lower Galactic
latitude POSS-II plates, etc. Nonetheless, we find the present implementation to be
more than sufficient even for detailed analyses of higher latitude plates, and that it
at least represents a step above reduction without the use of deblending at all, as in

the case of some previous surveys (e.g., APM, Maddox et al. 1990b).

Classification related measurements

An additional set of attributes are measured solely for the purpose of facilitating
feature classification. Four revised attributes are determined by automatically esti-

mating and subtracting the ‘stellar locus’ from the parameters M,,,., the magnitude
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of the brightest 3 x 3 pixel region, of total intensity Le.; the log of the isophotal

area, log A; the intensity weighted first moment radius, r1; and S , where

A

5= 10g[Leore /(9 x I)]’

and I is the average intensity of the detection isophote. The stellar locus is the
attribute value as a function of magnitude around which point sources are fairly
narrowly distributed, at least at brighter magnitudes. As described in Weir, Fayyad,
and Djorgovski (1994), we have found that the resulting revised attributes are rel-
atively insensitive to footprint-to-footprint, and even plate-to-plate, variations, and
are thus robust parameters for use in feature classification.

In order to derive even more powerful classification attributes, we form an em-
pirical estimate of the PSF for each footprint. Along with magnitude and ellipticity,
the four revised attributes are fed as input to a decision tree classifier, which culls
out a list of ‘sure-thing’ stars. This represents a significant application of machine
learning technology to the classification task. A FOCAS routine then adds images
of these stars to form a two-dimensional PSF template.

Using the PSF template, the FOCAS ‘resolution’ routine determines the best-
fitting ‘scale’ (o) and ‘fraction’ (8) values, which parameterize the fit of a blurred
(or sharpened) version of the PSF to each feature (Valdes 1982a). The template

used to model each feature is of the form:
t(ri) = Bs(ri/a) + (1 — B)s(ry)

where r; is the position of pixel ¢, « is the broadening (sharpening) parameter, and
B is the fraction of broadened PSF. This template-based approach is the core of FO-
CAS’s Bayesian classification method. Objects are classified as stars, galaxies, arti-
facts, etc., according to their maximum likelihood (best-fitting) location within two-
dimensional scale and fraction space. Extensive tests performed by Valdes (1982a)
indicate that one can achieve significantly higher accuracy in star/galaxy separation

with this template-fitting approach versus simpler approaches employed previously.
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Weir and Picard (1991) explicitly tested the use of these two techniques on digitized
Schmidt plate data and confirmed this result.

In the present version of SKICAT, we combine these resolution parameters along
with total magnitude, ellipticity, and the four revised attributes described above
to form an even higher dimensional space in which to perform feature classifica-
tion. Actual classification is run as a post-processing procedure, using the measured
attributes within the plate catalog. One can thereby alter the existing, or create
an entirely new, classifier and apply it to a catalog at any future date. The clas-
sifier currently applied to plate features within SKICAT was generated using the
GID3*/0-Btree and Ruler decision tree induction programs. A full description of
how it was created and the results we have achieved on actual plate data appears
in Weir, Fayyad, and Djorgovski (1994). The net effect is that by employing this
new technology, we are able to go about a magnitude deeper in achieving accurate
object classifications, resulting in approximately three times larger classified object

catalogs than in previous surveys using comparable data.

Quality control tests

Each individual footprint FOCAS catalog, and its corresponding revised attribute
list, is joined into a Sybase table for subsequent processing. As a quality control
check, the current footprint features table is matched with the tables of the footprints
to its left and bottom, if they exist. If any major discrepancies are detected in the
mean or standard deviation of measurements in the overlap, processing is halted and
an error reported. Otherwise, AutoPlate appends these results to a summary file
characterizing the footprint row.

After a row is complete, Autoplate searches the footprint summary file for outliers
and trends, halting the program if it encounters any problems. If none are found, the
previous row of footprints is added to the Sybase plate catalog and any auxiliary files
are saved. First, the row’s footprint summary file is appended to the corresponding

file for the plate. Next, each footprint’s compressed original, sky, median sky, and
b p b g
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sky sigma images are pasted into corresponding composite images for the entire
plate. Footprint specific parameters are appended to a footprints file. All features
with central coordinates in a nonredundant portion of the plate image are added
to the plate features table, while features whose outer isophotes extend beyond any
single footprint’s boundaries are saved to a border objects list. Generally these are
features which appear at the edge of the plate. In addition, AutoPlate appends to a
list of footprint overlap statistics, and summary thereof. Data for the previous row
are deleted after each of these operations is complete.

After all rows have been processed, the system checks the footprint summary file
for outliers and trends among footprint statistics in the vertical direction. Provided
none are found, catalog generation is complete, a plate catalog header is created (if

it was not already) and all remaining footprints and image blocks are deleted.

Data products

The final products of an AutoPlate run are a SKICAT catalog, consisting of a Sybase
format features table and header table, and several auxiliary files. The plate catalog
resides on the Sybase disk partition while the auxiliary files are saved within a Unix
directory hierarchy created specifically for that plate. The auxiliary files include the
following images: a re-binned version of the plate scan containing the average of
every 8 x 8 pixels in the original; the ‘sky’ image produced by the FOCAS detection
algorithm at the same scale; images of the median and quartile sigma of the plate
scan at a one pixel per 64 x 64 scale. Besides providing an overall reality check of
the AutoPlate process, these images may be valuable for future scientific programs,
such as searches for low surface brightness galaxies.

In addition, SKICAT saves each of the FOCAS ‘areas’ files produced for each
footprint. These files contain a run-length encoding of all the pixels comprising
every feature in each image. This information may prove useful in the future for
locating the precise extent of a feature when all of the imagery data, in addition to

catalogs, are readily available online for querying and analysis.
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The other auxiliary files produced by AutoPlate are those produced and used for
quality control purposes. They include a footprint statistics file, containing lists of
statistics measured for each footprint (e.g., number of features detected, average sky
level, etc.) which are used to detect trends and outliers among the footprints along
any given plate row or column. The other quality control file contains lists of all of

the overlap statistics measured between adjoining footprints.

2.3.3 Post-processing

After a plate catalog has been created by AutoPlate, there are still a few operations
which must be performed as a part of the plate’s standard pipeline processing. These
include the assignment of Right Ascension and Declination (RA,Dec) to each object,
as well as classification. As neither of these operations require access to the pixel
data themselves, one is able to re-run either of these multiple times in the future

using new and better coefficients or algorithms.

Astrometric transformation

The J2000 RA and Dec of the central pixel (specified in plate standard coordinates
by the XC and YC attributes) of each feature is calculated using coefficients in
the plate catalog header. These coefficients are initially provided by ST ScI and are
supposed to be good to ~ 0.5 arcsec RMS accuracy over scales less than about a
square degree. When in the future better plate solution coefficients are available,
it is simply a matter of entering them in the catalog header, then re-executing a

catalog modifying procedure to assign a new RA and Dec to each feature.

Classification

The plate features classifier provided with SKICAT was generated using the GID3*/0O-
Btree and Ruler programs, and is implemented as a procedure executed by a more
general utility for modifying columns within a database table. By applying a set of

rules that condition upon a subset of the parameters in a plate features table, the
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procedure provides a classification to each object. An entry within a plate’s header
table specifies the classifier rules file to use. Therefore, it is simply a matter of edit-
ing this field and re-running the appropriate column modifying procedure to apply a
new and improved rules-based classifier to the catalog. Similarly, an entirely differ-
ent plate classification algorithm could be designed in the future and implemented

as an alternative column modifying procedure.

Bright object editing

Currently, the SKICAT user is required to hand create a list of the ‘bad regions’
within the plate, such as areas corrupted by bright stars. The SKICAT Plate and
CCD Processing Cookbook provides a description of how to create such a list using
the SAOImage display program. One detects the bad regions by analyzing the 8 x 8
binned average of the full scan image produced by AutoPlate. By displaying this
image, the user may easily pick out and mark the 100 or so brightest objects in
the scan which will have been poorly processed by AutoPlate. It is particularly
important to mark the regions surrounding bright stars, as their halos and spikes
are split into sometimes hundreds of small artifacts which may be mistaken for real
objects in the catalog (e.g., see Figure 2.7).

At this time, the bad regions list is not used to filter or flag entries in the SKICAT
plate catalog itself, but rather for subsequent filtering of ASCII data files generated
by queries of the plate or matched catalog. Details of how this filtering is performed
are in the Queries section of the SKICAT Plate and CCD Processing Cookbook. We
also note that the entire process of bright object detection will also be automated in

the near future.

Catalog registration

Once all of the aforementioned processes are complete, the plate catalog is ready for
registration into the SKICAT catalog management system. This loads the catalog
header information into the SKICAT System Tables, allowing it to be matched with
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other catalogs or saved to/loaded from tape. At this time, the plate catalog, along

with the auxiliary files, are generally saved on an archive tape, and plate processing

is complete.
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2.4 Constructing Matched and Object Catalogs
2.4.1 Matched catalogs

SKICAT provides the ability to match features from multiple plate and CCD catalogs
based on the similarity of their measured positions in celestial (RA,Dec) coordinates.
This procedure is essential for analyzing objects measured in multiple bandpasses,
such as finding optical IDs of non-optical sources; constructing object lists span-
ning multiple overlapping images; and for performing consistency checks of object
measurements and classifications. Details of the data structures pertaining to the
matched catalog appear in Appendix D.

The process of adding a catalog to the matched catalog involves matching each
feature in the catalog to the nearest object meeting certain criteria within the
matched catalog, after solving for a small systematic X,Y offset between the two. To
perform this matching, the filtered source catalog is broken down into a user-specified
number of solid angle ‘segments’. A best fit transformation in X and Y is solved for
using a robust fitting algorithm and applied to each segment when it is matched. To
optimize this process, the catalog should be split into as many segments as necessary

to allow for systematic deviations in its astrometric accuracy.

For each segment, the matcher attempts to minimize the overall match error (de-
fined as the average matched feature difference) separately in X and Y by repeating
the matching process until the errors meet specified criteria. For each feature in a
segment, the matcher attempts to find the closest feature within some search radius
within the matched catalog, offsetting by the previous iteration’s match error in
X and Y. These errors are accumulated over each iteration to form a mean offset.
The initial search radius is given by the user; subsequently it is determined as some
multiple of the measure standard deviation in the previous iteration’s offsets. These
average offsets and the standard deviations are computed only for a quartile-sigma
clipped fraction of the matches from the previous iteration, in order to exclude out-

liers from the estimate. This matching and estimation procedure repeats until the
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iteration’s match error in both X and Y is less than some multiple of the estimated
error in the mean offset. The matcher then performs a final pruning of the matched
object list, passing only those matches with a residual Chi-squared error less than
some threshold.

The matcher then assigns each feature an identification number according to the
match results. Features with no corresponding object in the matched catalog are
assigned the default next ID, which is then incremented. For each feature from the
segment, a row including a user-specified subset of attribute columns is appended to
the matched catalog’s features table. The match and converge process is repeated
for each segment of the catalog. After each segment has been matched, information
about the input catalog is added to system files detailing the contents of the matched

catalog.

2.4.2 Object catalogs

While the matched catalog is the most comprehensive form of database produced
by SKICAT, it is generally too unwieldy for direct use in large scale survey analysis.
By allowing a virtually unlimited number of independent feature entries per object,
very little data reduction actually takes place in the matching process. Although in
practice, one generally limits the number of attributes saved in the matched catalog,
this still leaves unsolved the problem of combining the multiple measurements that
are usually present for any given attribute and feature.

To provide the user with power and flexibility in accessing the matched catalog for
scientific analysis and calibration, we developed a sophisticated database querying
mechanism. This program summarizes data from the matched catalog to form an
object catalog, which by our definition contains just one entry per object. The query
program has two primary inputs: a filter and an output specification file. The filter
basically defines the conditions that an object, or its constituent features, must meet
in order to be passed on for output. A full description of the filter language appears in

the SKICAT Users Manual and specific useful examples appear in the Query section
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of the SKICAT Plate and CCD Processing Cookbook. These filter conditions might
include a requirement on the number of features measured per object, that an ob ject
be measured in a particular catalog, that an object not be measured in a particular
passband, that an object’s magnitude falls within a certain range, etc. The most
important filter specification is of an allowable RA and Dec range, as the matched
catalog is sorted on those fields. All queries to the matched catalog should specify
the most restrictive RA and Dec limits possible, for most efficient retrieval of the
data.

The output specification file defines which attribute columns to pass on from
the query and how to combine multiple measurements into one. For example, the
following output specification would produce a table containing the following five
columns: the object ID, RA, and Dec from plate J442, and calibrated J and g

magnitudes derived from a combination of all feature measurements for each object:

ObjectId/j442 %d
RA/j442 %d
Dec/j442 %d
Mag/C/J %d
Mag/A/g Yd

To the right of the column/source specifiers are format codes, indicating how to print
the column value if the output is directed to a text file. For this output specification
to result in a valid query, the filter must have restricted its output to those objects
detected in plate J442 for which there is at least one g (CCD) measurement, since
we are requesting output from both these sources. The specification Mag/A/g refers
to the average (A) of all calibrated g magnitudes measured for that object. The
preceding specification asks for the object’s J magnitude not necessarily from plate
J442, but from that particular feature that was measured closest to the center (C) of
its source catalog (and, therefore, presumably the least susceptible to field effects).

Using the query program, the user can combine the data in the matched catalog
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in most ways needed for subsequent scientific use. To facilitate the construction
of the filter and output specification files, we created an X-windows interface to
the program (see Figure 2.10). Using either program, the user has the option of
producing another Sybase table or an ASCII text file. The former is of use if the
user might wish to perform subsequent queries of the resulting table using any of
the available Sybase database management tools. A Sybase table is also the most
appropriate form for a catalog one might wish to make available on-line, through
the Astrophysical Data System, for example. An ASCII file, on the other hand,
though inefficient, is an almost universally accepted format for general purpose or
homemade analysis programs.

We also developed a similar query mechanism and graphical user interface for
filtering and outputting portions of any Sybase table, such as a plate or CCD fea-
tures table, or even an object table produced by the query mechanism. Using these
programs, one can perform all of the same basic filtering and output operations, but
without the functionality related to handling multiple entries per object. Again, the
resulting tables may be produced in either Sybase or ASCII format.

After the successive application of the tools described in this chapter, from cre-
ating individual plate and CCD catalogs, to matched catalog construction, to the
generation of user-specified object catalogs, the user will have reduced the raw pixel
data into a form suitable for systematic study. Following the next chapter, in which
we describe our classification methods in more detail, we will present results derived

from the application of these SKICAT programs to actual DPOSS data.
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2.A Appendix - Database Definitions

Below is a description of the most commonly used database terms within the SKICAT
system:

A feature is the set of measurements (magnitude, surface brightness, position
angle, etc.) of a unique object contained in a catalog. For example, a star may be a
feature within a catalog, as might be a galaxy or a satellite trail detected on a plate.

A table is a collection of data organized by row and column, where each row
has a value (or space for a value) for every column in the table. For example, a
list of galaxies may be organized in the form of a table, with one row per galaxy
(feature) and one column per galaxy measurement. SKICAT tables are stored and
manipulated using Sybase. Therefore, all references to tables refer specifically to the
Sybase data structures of the same name.

A catalog consists of a features table and a header table. These are data sets
produced by Autoplate and AutoCCD. A features table contains one row for each
feature appearing in the catalog. The header table contains information relevant to
the entire catalog (image source, date of creation, etc.) and is generally used for
reference purposes.

An object is a unique image artifact or physical sky object (i.e., star, galaxy,
etc.) to which there may correspond multiple features within distinct catalogs. For
example, the object M87, which lies in the overlap of two plates, would appear as a
feature within both plates’ catalogs.

A matched features table contains features from multiple, matched catalogs.
Features at the same RA and Dec position (within astrometric uncertainty) are
considered to be different measurements or features of the same object. They are
assigned a common object ID during the matching process.

A matched catalog consists of a matched features table and a table listing
those catalogs comprising it. New catalogs are added to it by matching each new

feature with existing matched features (objects). The user controls which subset
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of measurements to include in the matched features table and also specifies param-
eters affecting the matching algorithm. In a reverse operation, selected columns
within catalog features tables may be updated from their corresponding entries in
the matched features table.

Objects tables are produced by filtering and outputting selected columns of
object entries from any individual catalog or the matched catalog. They might be
generated for catalog calibration, specialized scientific analysis, or as distributed data
products (such as the PNSC). These tables may also be queried and manipulated
using the SKICAT table manipulation tools.
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2.B Appendix - Plate Processing Details
2.B.1 Digitized POSS-II Scan Data Format

The plate pixel data, consisting of arbitrarily scaled photographic densities, are
provided by ST Scl as a single file, two bytes per pixel, on a single VMS backup
saveset on exabyte tape. For processing by SKICAT, the single pixel file is transferred
to another exabyte as 23 VMS backup savesets, each containing 23 image ‘blocks’.
The scanned image is broken into these more manageable image blocks, of at most
1024 x 1024 pixels, to facilitate retrieval and processing.

The following additional files produced by ST Scl are also necessary for processing

a plate:

scan_name.gsh - Plate scan header file
snap.name.hhh - Snapshot image header file
snap_name.hhd - Snapshot image pixels

The scan header contains parameters, such as the plate name, band, and astrometric
solution coefficients, which are eventually loaded into the plate catalog header. The
‘snapshot’ image is a sparsely sampled (one pixel per ~ 33 x 33) version of the plate
scan, useful not only as a reality check, but for determining the usable portion of
the scan image. Figure 2.3 depicts such a snapshot.

One must analyze the snapshot image to determine the plate sky and saturation
densities and the image boundaries. These parameters are listed in Table 2.1 The
pixel positions in the snap image should be multiplied by 32.914 to match the plate
dimensions. The pixel values must be multiplied by 1.5259 x 10~* to convert to

properly scaled densities.

2.B.2 Running AutoPlate

AutoPlate is designed to automatically perform all levels of processing for the foot-
prints in all columns of all rows of a plate. However, if it becomes necessary to
restart the script at a particular stage of plate processing (due to, for example, a

prior system failure), control parameters supplied at run time can force it to begin
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at a specified level of the processing of the footprint at a specified column of a spec-
ified row. Any subsection of a plate may be processed or reprocessed with the same
facility. |

The AutoPlate script may be invoked either directly from the C shell prompt
or from within the xautoplate graphical user interface described in the SKICAT
Users Manual (see Figufe 2.6). The parameters that control AutoPlate are specified
in a file, the name of which must be supplied as the sole command-line parameter
when AutoPlate is initiated. The parameter speciﬁcation file details the data to be
processed, the initial processing level, and the footprint row and column at which
to begin and end processing. A detailed description of the parameters in this file
is described in an appendix within the SKICAT Users Manual. It is automatically
produced by a separate initialization program that is run prior to plate processing.

In addition to the parameters file, the only additional inputs required by Auto-
Plate (and referenced in the parameters file) are the file containing the plate density-
to—intensity transform coefficients and the plate header file provided by ST Scl. As-
suming all the necessary image blocks do not already reside on disk, the exabyte

containing the raw pixel data must also be loaded on the appropriate tape device.
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2.C Appendix - Processing CCD Images
2.C.1 Pre-processing

The construction of CCD catalogs is similar to the process of constructing plate
catalogs, although simpler. As with plate data, there are a number of preliminary
steps before an image is ready for processing. In particular, the CCD image should
be reduced (i.e., debiased, flat-fielded, calibrated, etc.) according to standard as-
tronomical procedures. Methods and specific software for performing these tasks
on DPOSS calibration sequences obtained using the Palomar 60 inch telescope are
described in the SKICAT Plate and CCD Processing Cookbook.

After these standard CCD reduction tasks are performed, the image is nearly
ready to be run through the catalog processing script. The user must first run an
initialization script in order to create and load a parameters file containing header
and control information for subsequent processing. To the extent it is possible, this
program loads the necessary values from the image header itself. Otherwise, the
user must enter the values, such as image center RA /Dec, descriptive name, date of

observation, and photometric calibration coefficients manually.

2.C.2 AutoCCD processing

Like its sister AutoPlate, the AutoCCD script takes a parameter specification file as
its sole argument and, in turn, calls a collection of programs, primarily from FOCAS,
to construct a SKICAT catalog from the indicated CCD image. All of the same sky
and object attributes measured for plate images are measured for CCDs, using the
same routines. Unlike AutoPlate, there is not a corresponding X-Windows interface.

After initial object detection, measurement, and splitting, the script attempts to
automatically generate a list of stars with which to form the empirical PSF estimate.
It tries to do so by first looking for the stellar locus in a plot of intensity weighted first
moment radius (the FOCAS IR1 parameter) versus magnitude. After estimating
the stellar IR1 parameter, AutoCCD uses it to create a filtered catalog of candidate
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stars. It then feeds this catalog to a FOCAS script which iteratively prunes the list
until some maximum level of dispersion in IR1 is achieved. The script then allows
the user to view and prune the candidate stars before actually forming the template.

Next, the script runs the FOCAS ‘resolution’ routine, which measures the same
scale and fraction attributes as described in the AutoPlate section above, and based
upon these values, applies a simple set of default rules for classifying objects as
stars, fuzzy stars, galaxies, or artifacts. The script then allows the user to review the
image in order to facilitate changes to the FOCAS-provided object classifications. If
a good PSF template was formed and the data are of sufficiently high resolution and
quality, FOCAS will do an excellent job of classifying the objects, generally beyond
the detection limits of DPOSS. Even better classifications are no doubt achievable
with the CCD data by applying machine learning to derive more complex rules, and
SKICAT was designed to facilitate just that. However, we found the quality of the
standard FOCAS classifications more than sufficient for our present purposes: to
facilitate photometric calibration and construction of training sets for plate object
classification.

Once the construction of the FOCAS catalog is complete, meaning all attributes
have been measured and classifications assigned, a final routine transforms the FO-
CAS format catalog into a SKICAT catalog. The latter is comprised of the CCD
header, which contains information from both the FOCAS catalog header and the
AutoCCD parameters file, and a features table of the exact same format as that of

a plate catalog.
2.C.3 DPost-processing

Astrometric transformation

One has three options for setting the RA,Dec coordinates of the objects in a CCD
catalog, depending on what, if any, other catalogs covering the same field currently
exist in the SKICAT database. Ideally a plate catalog covering the CCD field has

already been created, in which case a SKICAT tool performs the following operations.
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Using the approximate position of the CCD frame saved in the CCD’s header file,
the program automatically searches the relevant portion of the plate catalog and
tries to match the two. The program automatically restricts the search to objects
classified as stars within an intermediate magnitude range, as one expects these
objects to provide the most consistent and precise astrometry. It then allows the
user to interactively view and correct the matches it finds (see Figure 2.8). One can
accept or reject any of the suggested matches before allowing the program to solve
for the astrometric solution. First, the program finds the transformation matrix from
CCD to plate standard coordinates. Then, the program applies the plate’s standard
to celestial coordinate transformation polynomials to compute RA and Decs. This
same interface would be useful for scientific projects involving the association of
astrometric coordinates with deep CCD images not even used for calibration.

If an overlapping plate catalog is not available, but a CCD catalog is, the user may
execute an analogous script which determines the astrometric solution using the other
CCD’s celestial coordinates. In this case, it derives a single matrix expressing shift,
shear, scale, and rotation for converting directly from X,Y to RA,Dec coordinates.

As a final resort, the RA and Dec values of a CCD catalog may be derived by
assuming the image is rotated counterclockwise relative to nominal (i.e., north to the
top and east to the left) an amount indicated by the header’s position angle column,
and centered on the approximate position saved in the header. This procedure should
only be used in the event no other SKICAT catalog exists covering the same field
of view. Ultimately, all CCD catalogs should be astrometrically calibrated using the
plate catalog to which they most directly apply. This will minimize matching error

when the catalogs are eventually matched.

CCD registration

At this point, the catalog is ready for registration into the SKICAT catalog man-
agement system. As with plate catalogs, a catalog must be registered in order to

be matched with other catalogs or saved off-line in a manner such that it can be
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reloaded by SKICAT.

Photometric calibration

As with the astrometric assignment of CCD catalogs, the user has a choice of pho-
tometric calibration methods, depending on what catalogs are already loaded in the
system. One method performs the calibration assuming a default color term, mean-
ing a user-specified color is applied when performing the instrumental to calibrated
magnitude transformation given by 2.2. Independent default colors are assumed for
stellar and non-stellar objects and are specified within the CCD header file. This
routine also uses header columns containing the magnitude zero point offset term
(A), extinction term (B), color term (C), exposure time (), and airmass (sec(z))
parameters to derive the calibrated magnitude (m) saved in the CCD features table.

These parameters are used in the relation:
m = Mins + 2.5l0g(t) + A+ Bsec(z)+ C(g —r), (2.2)

where m,,,; is the measured instrumental magnitude and (g — r) is the default color
term applied. Any of the four instrumental magnitudes available in the CCD features
table may be substituted for m;,,;

Once red and blue catalogs of the same CCD field have been created and matched
together within SKICAT, one may calibrate the magnitudes of each using actual
color information. One has three options, depending on whether one wants to up-
date either the red or blue catalog, or both. One command takes the names of
corresponding blue and red CCD catalogs and updates the magnitudes of both by
simultaneously solving the relation 2.2 for objects measured in both the blue and the
red. Unmatched objects are not affected. Alternative programs exist in the event

that one only wants to update one of the two catalogs using this method.
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2.D Appendix - Matched Catalog Data Struc-
ture

The primary data structure comprising the matched catalog is the MatchedFea-
tures table, which contains one row for each feature added from each constituent
catalog. The MatchedFeatures table contains a user-defined subset of the columns
from the catalog features tables. Features are linked together by an ObjectId col-
umn which indicates which object each feature is associated with (see Figure 2.9).
A MatchedCatalogs table indicates those catalogs which have been added to the
matched catalog. A third table, named MatchedCount, maintains a running count
of the number of features associated with each ObjectId and is maintained simply
for improved query performance.

The user can modify the parameters which control the matching process by set-
ting parameters in the MatchProc table. The list of columns from the catalog features
table which are included in the matched catalog is maintained in the MatchColumns
table. The parameters which control the process of adding a catalog to the matched

catalog (located in the MatchProc table) are:

NextObjectId: the next unused Objectld used to uniquely identify objects.

MaxObjectDistance: the maximum allowable distance between two matched fea-

tures in arcsec.

XSeg: the number of segments (in X dimension) to break the catalog into for match-

ing.

YSeg: the number of segments (in Y dimension) to break the catalog into for match-

ing.

QSigmaClip: The quartile-sigma clipping threshold for computing offset means

and standard deviations.
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SearchNumSig: The search radius applied for second and subsequent iterations,

in terms of measured offset standard deviations.

ErrMax: the maximum Chi-squared positioning error in X and Y for a match to

be accepted.
ConvergeMode: 0 for automatic convergence, 1 for manual convergence.

ConvergeScale: the maximum allowable average match difference in X or Y, in

terms of estimated error in the mean offset, for convergence.

MaxNumPasses: the maximum number of matching passes for auto convergence,

exact number of passes for manual convergence.
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Label Description

Xmin - Minimum useable X coordinate in plate image
Xmax - Maximum useable X coordinate

ymin - Minimum useable Y coordinate

ymax - Maximum useable Y coordinate

spotxmin Beginning of spots boundary in X
spotymax - End of spots boundary in Y

sky Density of the sky at plate center
saturation Saturation density of the plate

Table 2.1: Usable Area, Sky, and Saturation Parameters

48
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Label Description

XC - x position (center of maximum 3 X 3 pixel integrated intensity)

YC -y position

MCore - core magnitude (from maximum 3 x 3 pixel integrated intensity)

MAper - aperture magnitude (from integrated intensity within aperture)

MIso - isophotal magnitude (from integrated intensity within detection
isophote)

MTot - total magnitude (from integrated intensity within ‘grown’ isophote)

SLi - sigma of sky subtracted integrated intensity (luminosity) within
detection isophote

SSBr - local sky sigma

Ispht - isophote brightness (average intensity along detection isophote)

Area - isophotal area (area within detection isophote)

TArea - total area (area within ‘grown’ isophote)

XAvg - average x width

YAvg - average y width

ICX - X intensity weighted centroid

ICY -y intensity weighted centroid

IXX - xx intensity weighted second moment

IXY - Xy intensity weighted second moment

IYY - yy intensity weighted second moment

IR1 - intensity weighted first moment radius

IR3 - intensity weighted third moment radius

IR4 - intensity weighted fourth moment radius

CX - x unweighted centroid

CY -y unweighted centroid

XX - xx unweighted second moment

XY - xy unweighted second moment

YY - yy unweighted second moment

R1 - unweighted first moment radius

Table 2.2: Selected Measured Attributes
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Figure 2.1: SKICAT Overview
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Figure 2.2: Image Blocks
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A plate scan is saved as 23 Vax VMS savesets (rows) of 23 image ‘blocks’ each. Each
image block consists of 1024 x 1024 pixels, except at the right and top edges, where one

dimension is only 512.
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POSS-II Plate J380 (12h24m 4+ 350

Figure 2.3: Snapshot Image
ST ScI produces a ‘snapshot’ image for every plate scan. It contains one sample pixel per
every ~ 33 x 33) in the full scan. The snapshot may be used to quickly and easily check
general qualities of the scan.
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POSS—Il field 380 (12"24™ 35°)
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Figure 2.4
A plate scan is analyzed as a set of 13 x 13 overlapping footprint images of 20482 pixels each.

Not only is this approach computationally convenient, but it provides greater sensitivity

f the overlap regions.

comparison o

to position-dependent plate effects. It also facilitates quality control via the systematic
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Blurred Sky Sigma Correction
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Figure 2.5: Sky Sigma Scale Factor
Given the measured image blur (R?), we establish the appropriate factor by which to scale
the measured sky sigma to approximate that of an unblurred version of the same image.
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Figure 2.7: SKICAT’s Decomposition of Four SAO Stars

RA

RA

The regions surrounding bright stars must be avoided when analyzing the plate catalogs
generated by SKICAT, as it typically splits these objects into dozens, or even hundreds,
of spurious artifacts.
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Figure 2.8: CCD Astrometric Referencing Using a Plate Catalog
SKICAT automatically searches a plate catalog for the region overlapping a CCD frame.
The program returns with a list of suggested matches and displays the overlapping portions
of the two catalogs in graphical form, as shown above (plate to the left, CCD to the right).
The displayed coordinates are those of the plate scan. On a workstation, the matched
objects are color coded as well as numbered, allowing the user to easily identify and remove
spurious matches from the list.
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Figure 2.9: SKICAT Matching Process
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Chapter 3

Object Classification!

Abstract

We describe the automated object classification method implemented in
the Sky Image Cataloging and Analysis Tool (SKICAT) and applied to the
Digitized Second Palomar Observatory Sky Survey (DPOSS). This classifi-
cation technique was designed with two purposes in mind: first, to classify
objects in DPOSS to the faintest limits of the data; second, to fully general-
ize to future classification efforts, including anything from classifying galaxies
by morphology, to improving the existing DPOSS star/galaxy classifiers once
a larger volume of data are in hand. To optimize the identification of stars
and galaxies in J and F band DPOSS scans, we determined a set of eight
highly informative object attributes. In the eight-dimensional space defined
by these attributes, we found like objects to be distributed relatively uni-
formly within and between plates. To infer the rules for distinguishing objects
in this, but possibly any other, high-dimensional parameter space, we utilize a
machine learning technique known as decision tree induction. Such induction
algorithms are able to determine near-optimal classification rules simply by
training on a set of example objects. We used high quality CCD images to
determine accurate classifications for those examples in the training set too
faint for reliable classification by examining the plate scans by eye. Our ini-
tial results obtained from a set of four DPOSS fields indicate that we achieve
90% completeness and 10% contamination in our galaxy catalogs down to a
magnitude limit of ~ 19.6™ in r and 20.5™ in ¢, within F’ and J plates re-
spectively, or an equivalent By of nearly 21.0™. This represents a 0.5™ - 1.0™
improvement over results from previous digitized Schmidt plate surveys using
comparable plate material. We have also begun applying methods of unsuper-
vised classification to the DPOSS catalogs, allowing the data, rather than the
scientist, to suggest the relevant and distinct classes within the sample. Our
initial results from these experiments suggest the scientific promise of such
machine discovery methods in astronomy.

keywords: classification, sky surveys

tAdapted from an article submitted to The Astronomical Journal by Weir, N., Fayyad, U., and
Djorgovski, S.
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3.1 Introduction

The first step in analyzing any imaging sky survey is to identify, measure, and catalog
all of the detected objects into their respective classes. Once the objects have been

measured and classified, further scientific analysis may proceed.

The accuracy of star/galaxy separation generally determines the effective limiting
magnitude, in terms of scientific usefulness, of imaging surveys. This limit is, in
very many respects, more important than the object detection limit in terms of its
impact on the variety of programs for which the data may be used. For example,
in order to effectively use the data to compare against models of star or galaxy
counts or colors, measure the angular correlation function of galaxies, or search for
high redshift quasars, accurate star/galaxy classification is required at the level of
approximately 90%. At the faint end, every additional magnitude to which one can
extend this accuracy limit buys one on order of two to three times more classified
objects in the catalog. Given the enormous resources put into obtaining the survey
data in the first place, it makes sense to fully investigate the very latest technology
when approaching the task of object classification, in the hope of squeezing every last
bit of scientifically useful information from the survey. This was our motivation when
designing and implementing the classification methods described in this paper, which
are currently being applied to the digitized scans of the Second Palomar Observatory

Sky Survey (POSS-II).

POSS-II (Reid et al. 1991) is more than 60% complete as of August, 1994, and
will eventually cover 894 fields spaced 5° apart in three passbands: blue (Illa-J +
GG 395), red (IITa-F + RG610), and near-infrared (IV-N + RG9). The typical
limiting magnitudes for point sources in the corresponding J, F', and N bands are
22.5™, 21.5™, and 19.5™, respectively. While the photographic survey is still under
way, ST ScI and Caltech have begun a collaborative effort to digitize the complete set
of plates (Djorgovski et al. 1992; Lasker et al. 1992; Reid and Djorgovski 1993). So
far, only a subset of the J, F', and N plates have been scanned and processed. Both
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the photographic survey and the plate scanning are estimated to be > 90% complete
circa 1997. The resulting data set, the Palomar-STScI Digital Sky Survey (DPOSS),
will consist of ~ 3 TB of pixel data: ~ 1 GB/plate, with 1 arcsec pixels, 2 bytes/pixel,
20340? pixels/plate, for all survey fields in all three colors. In conjunction with the
plate survey, we are also conducting an intensive program of CCD calibrations using
the Palomar 60-inch telescope, using the Gunn-Thuan gr: bands. These CCD images
serve both for magnitude zero-point calibration and object classification purposes.
The plate scans, when complete, will be the highest quality set of digital images

covering the entire northern sky produced to date.

The first scientific results obtained using DPOSS, and making use of the classifi-
cation methods described herein, are measures of blue and red galaxy counts in four
POSS-II fields near the North Galactic Pole (Weir, Djorgovski, and Fayyad 1994).
Several additional programs, including a high-redshift quasar search and measures
of galaxy-galaxy angular correlations, are in progress (Weir et al. 1994b).

In order to make most efficient use of DPOSS, and to generally facilitate its sci-
entific exploitation, Caltech Astronomy and the JPL Artificial Intelligence Group
have been engaged in a collaborative effort to integrate state-of-the-art computing
methods for application to DPOSS. The result of our joint effort is the Sky Image
Cataloging and Analysis Tool (SKICAT), a suite of programs designed to facilitate
the maintenance and analysis of astronomical surveys comprised of multiple, over-
lapping images. The classification technology described in this paper was developed

as a part of this effort and is implemented within SKICAT (Weir et al. 1994c).

Historical methods for classifying image features would preclude the identification
of the majority of objects in a DPOSS image, since these objects are too faint for
traditional recognition algorithms, or even object-by-object classification by eye. A
principal goal of SKICAT was to provide an effective, objective, repeatable, and
examinable basis for classifying sky objects at levels beyond the limits of previously
existing technology. Of course, due to statistical fluctuations of the data, one may

never construct a classifier that will be 100% accurate. One may, nonetheless, aim
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for the highest statistical accuracy achievable to the greatest possible depth.

A particular difficulty in classifying DPOSS objects is that the scan images vary
significantly in terms of image quality (e.g., background noise, point spread function
shape, etc.) both within and across plate boundaries. This created an important
demand on the classification method to be able to cope with this variation and
produce consistent results throughout the survey.

The two essential steps in performing automated object classification are to define
the space of discriminating attributes characterizing each object, then determine
a means of distinguishing objects within that space. The first step is key, as it
determines upon what information any classification will be based. We concentrated
a significant amount of effort in deriving a set of object attributes which effectively
remove the intra- and inter-plate variations described above. The second step is
likewise very important, as there are any number of ways, some much more powerful
than others, of designing rules that divide the parameters space into regions of like
objects.

The approach we chose for this second step was one developed in the field of
machine learning, namely using decision tree induction algorithms. These methods
are able to automatically induce classification rules based simply upon user-supplied
examples. This approach not only provided us with the very effective star/galaxy
classifiers that already are being used to produce high-quality DPOSS catalogs, but
it will easily allow future users to re-train specialized classifiers (e.g., to identify
galaxy morphology), or redo existing star/galaxy classifications as more data become

available and/or attribute measurement technology improves.

3.1.1 Historical approaches

The problem of automatic object classification has been addressed for at least two
decades, with a variety of proposed solutions. The most basic approach is to plot
one measured attribute versus another and draw a line within that space best sepa-

rating stars from galaxies. Typically the chosen attributes are magnitude and some
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measure of object ‘peakedness’, such as peak intensity, isophotal area, or intensity
weighted first moment radius. Because in that space point sources are generally dis-
tributed along a fairly well-defined stellar locus, or ridge (see, e.g., Figure 3.3), such
a discriminant function tends to be reasonably accurate down to moderately faint
magnitudes. The shortfalls of this approach are that defining the classifier is very
labor-intensive as well as subjective, and at faint levels, stars and galaxies quickly
blur together around the locus.

The next level of sophistication is to perform star/galaxy separation in a space
defined by some non-linear combination of parameters, rather than raw measure-
ments. For example, simply by plotting the logarithm of isophotal area [log(Area)]
vs. magnitude, instead of just object area, the stellar locus becomes more linear,
making a separator much easier to define and generally more accurate. For classi-
fying objects from COSMOS digitized plate scans, Heydon-Dumbleton, Collins, and
MacGillivray (1989) found it optimal to discriminate using one of three different
pairwise plots depending on an object’s magnitude. The three parameters they plot-
ted versus magnitude were: G, a measure of how effectively an image fills the ellipse
fitted to its major and minor axes, for bright objects; log(Area), for intermediate
objects; and a derived parameter, S, which effectively measures the scale of a best
fit Gaussian to an object’s light distribution, for the faintest objects.

Heydon-Dumbleton, Collins, and MacGillivray (1989) also improved upon the
standard method by making the choice of discriminant line more objective. They
measured the statistical distribution of objects around the stellar locus as a func-
tion of magnitude, setting the star/galaxy separation line some number of standard
deviations above the locus mean.

Picard (1991c), in his analysis of COSMOS scans of POSS-II F' plates, similarly
measured the mean and width of the stellar locus in S vs. magnitude space, defining
a new parameter, @, corresponding to an object’s distance from the locus, normalized
by the width of the locus at that magnitude. He binned all the measurements for a

given plate and computed a value, @., corresponding to three times the estimated
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width of the normalized stellar locus. He would then classify all objects with ¢ less
than ¢, as stars, the rest as galaxies. Uéing this approach, he estimated that he
was able to achieve on average 90% completion (fraction of all galaxies classified as
such) and 10% contamination (fraction of non-galaxy objects classified as galaxies)
in his galaxy catalog down to a magnitude of 19.0™ in r.

The APM group (Maddox et al. 1990b) took a slightly different approach to
classifying objects from their scans of J plates from the Southern Schmidt survey.
Rather than measuring the distance from the stellar locus in the space of one pa-
rameter vs. magnitude, they used a metric involving ten different parameters: peak
density, radius of gyration, and image area above each of eight surface brightness lev-
els. Two additional parameters were used to help them distinguish blended objects
from galaxies, as no deblending algorithm was applied by the APM real-time soft-
ware in the course of processing. Using this approach, APM reported a classification
accuracy comparable to Picard’s at a By magnitude of 20.0™.

A far different method for classifying objects from plate scans was pioneered by
Sebok (1979) in his Ph.D. thesis at Caltech. He introduced the concept of Bayesian
classification to the problem, estimating the most probable classification of each
object based upon its fit to a set of models. While this approach was effective, it

was never widely applied to Schmidt plate surveys subsequently.

Sebok’s classification method preceded the similar approach devised by Valdes
and implemented in modern versions of FOCAS (Valdes 1982a). Valdes also applied
a technique premised on Bayesian probability theory, but more significantly, he in-
troduced a measurement procedure that results in extremely discriminating object
attributes. By selecting a number of objects in an image that are ‘sure-thing’ stars,
FOCAS adds the rasters of the central pixels of these objects to form an empirical
estimate of the point spread function (PSF) for that image. Using the ‘resolution’
routine, FOCAS then fits a model to each object consisting of a pure PSF component
and a blurred version of the same. The best-fitting fraction of blurred component

and its scale are the two attributes resolution measures and uses for performing
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object classification. These attributes have never been used in large scale digitized
plate surveys to date because computing technology prevented the repeated access
to the pixel data, which this technique requires.

FOCAS provides a default set of rules specifying to which class different portions
of fraction vs. scale space correspond. Because the distribution of objects in the
space of these attributes tends to be relatively invariant from image to image (PSF
variations are effectively taken into account by the fitting process), the default rules
are found to provide excellent classification accuracy down to fairly faint levels for a
wide variety of images. The user has the option of changing these classification rules,
but FOCAS does not provide a way of allowing for more attributes in the rules, or
a systematic way for determining a new, optimal set of rules for a particular type of

image.

3.1.2 The machine learning approach

Drawing upon these previous efforts, we chose to measure and calculate those object
attributes found to provide the best star/galaxy discrimination. However, unlike
most previous approaches, we chose to apply modern methods from the field of ma-
chine learning to determine the optimal discriminant functions, or set of classification
rules, within the multi-dimensional space of these measurements. The goal when ap-
plying these methods is to provide enough examples of accurate classifications to the
algorithm to allow it to infer the rules for distinguishing objects in that space. An
important advantage of this approach is that one can typically feed a relatively large
number of input parameters to the algorithm, allowing it to determine classification
rules more complex than those typically devised by humans, generally as a result
of examining pairwise plots of attributes. The extra degrees of freedom provided
by learning in multi-dimensional parameter space often lead to substantially more
accurate classifications. In addition, the rules are formed in an objective, repeatable
fashion.

Others have also begun exploring the use of new machine learning methods for
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the purpose of object classification, perhaps most notably the APS group in Min-
nesota, who have digitized the plates of the original POSS (Odewahn et al. 1992).
They applied artificial neural networks to the task of automatically inducing a set
of classification rules for objects in their catalog. We, too, experimented with neu-
ral nets; however, for reasons discussed below, we chose to use a method involving
decision trees, based on the work of Fayyad (1991), for creating the production-line

classifier implemented within SKICAT and used on DPOSS.
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3.2 Classifier Induction

For a detailed discussion of decision trees and associated methods of machine learn-
ing, we refer the reader to Fayyad (1991) and Fayyad and Irani (1992). Below we
include a brief discussion and history of these methods, in particular those we utilize

within SKICAT, in addition to a comparison of this approach with neural networks.

3.2.1 Decision trees

A particularly efficient method for extracting rules from data is to generate a deci-
sion tree (Quinlan 1986). A decision tree consists of nodes that represent tests on
attribute values. The outgoing branches of a node correspond to all the possible
outcomes of the test at the node, thus partitioning the examples at a node along the
branches. For example, as illustrated in Figure 3.1, at the top-most (root) node, the
tree may branch left or right depending on whether the object has log(Area) less
than or greater than A,. In turn, either of these branches may lead to a node that
conditions on the same attribute, a different one, or any combination of the same
[e.g., “branch left if (mag < m,) and (¢ > ¢,)”]. The final nodes in the tree, the
leaves, would correspond to an actual classification: star, galaxy, artifact, etc.

In Figure 3.2 we illustrate a portion of a much larger actual decision tree generated |
by the O-Btree algorithm (described below) for performing star/galaxy classification.
The interval appearing above each node indicates the range in value of the attribute
specified in the node above that an object must meet for it to pass along that branch.
The dark branches lead to actual classifications. A full path from the root to any
particular leaf corresponds to a single classification rule. The number in parentheses
within each leaf indicates the number of training examples classified correctly by
that rule.

A well-known algorithm for generating decision trees is Quinlan’s ID3 (Quinlan
1986) with extended versions called C4 (Quinlan 1990). ID3 starts with all the

training examples at the root node of the tree. An attribute is selected to partition



CHAPTER 3. OBJECT CLASSIFICATION 69

the data. For each value of the attribute, a branch is created and the corresponding
subset of examples that have the attribute value specified by the branch are moved
to the newly created child node. The algorithm is applied recursively to each child
node until either all examples at a node are of one class, or all the examples at that
node have the same values for all the attributes. Every leaf in the decision tree
represents a classification rule. Note that the critical decision in such a top-down
decision tree generation algorithm is the choice of attribute at a node. Attribute
selection in ID3 and C4 is based on minimizing an information entropy measure
applied to the examples at a node. The measure favors attributes that result in
partitioning the data into subsets that have low class entropy. A subset of data has
low class entropy when the majority of examples in it belong to a single class. For a
detailed discussion of the information entropy selection criterion see Quinlan (1986),

Fayyad (1991), and Fayyad and Irani (1992).

The GID3* and O-Btree algorithms

The attribute selection criterion clearly determines whether a “good” or “bad” tree
is generated by a greedy algorithm (see Fayyad and Irani 1990 and Fayyad 1991 for
the details of what we formally mean by one decision tree being better than another).
Since making the optimal attribute choice is computationally infeasible, ID3 utilizes
a heuristic criterion which favors the attribute that results in the partition having the
least information entropy with respect to the classes. There are weaknesses inherent
in algorithms like ID3/C4 due to the fact that, for discrete attributes, a branch is
created for each value of the attribute chosen for branching. This overbranching
is problematic since in general it may be the case that only a subset of values of
an attribute are of relevance to the classification task while the rest of the values
may not have any special predictive value for the classes. The GID3* algorithm was
designed mainly to overcome this problem, generalizing the ID3 algorithm so that it
does not necessarily branch on each value of the chosen attribute. GID3* can branch

on arbitrary individual values of an attribute and “lump” the rest of the values in a
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single default branch. Unlike the other branches of the tree which represent a single
value, the default branch represents a subset of values of an attribute. Unnecessary
subdivision of the data may thus be reduced. See Fayyad (1991) for more details
and for empirical evidence of improvement.

The O-Btree algorithm (Fayyad and Irani 1992) was designed to overcome prob-
lems with the information entropy selection measure itself. O-Btree creates strictly
binary trees and utilizes a measure from a different family of measures that detect
class separation rather than class impurity. Information entropy is a member of the
class of impurity measures. O-Btree employs an orthogonality measure rather than
entropy for branching. For details on problems with entropy measures and empiri-
cal evaluation of O-Btree, the reader is referred to Fayyad (1991) and Fayyad and
Irani (1992). Both O-Btree and GID3* differ from ID3 and C4 in one additional as-
pect: the discretization algorithm used at each node to discretize continuous-valued
attributes. Whereas ID3 and C4 utilize a binary interval discretization algorithm,
we utilize a generalized version of that algorithm which derives multiple intervals
rather than strictly two. For details and empirical tests showing that this algorithm
does indeed produce better trees, see Fayyad (1991) and Fayyad and Irani (1993).
We have found that this capability improves performance considerably in several

domains.

3.2.2 The RULER system

There are limitations to decision tree generation algorithms that derive from the
inherent fact that the classification rules they produce originate from a single tree.
This fact was recognized by practitioners early on (Quinlan 1986). The basic problem
is that in even a good tree, there are always leaves that are overspecialized or predict
the wrong class. For example, if there are any measurement errors in the attributes,
the decision tree will tend to fit to the noise and, hence, not generalize well to data
that are out of sample. The very reason that makes decision tree generation efficient

(the fact that data is quickly partitioned into ever smaller subsets) is also the reason
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why overspecialization or incorrect classification occurs. It is our philosophy that
once we have good, efficient decision tree generators, they can be used to generate
multiple trees, and from these, only the best rules in each are kept. To implement
this strategy, the algorithm RULER was developed (Fayyad et al. 1992a).

In multiple passes, RULER partitions a training set randomly into a training
subset and test subset. A decision tree is generated from the training set and its
rules are tested on the corresponding test set. Using Fisher’s exact test (Finney et al.
1963), the exact hyper-geometric distribution, RULER evaluates each condition in
a given rule’s preconditions for relevance to the class predicted by the rule. It
computes the probability that the condition is correlated with the class by chance*.
If this probability is higher than a small threshold (say 0.01), the condition is deemed
irrelevant and is pruned. In addition, RULER also measures the merit of the entire
rule by applying the test to the entire precondition as a unit. This process serves as
a filter which passes only robust, general, and correct rules.

By gathering a large number of rules through iterating on randomly subsampled
training sets, RULER builds a large rule base of robust rules that collectively cover
the entire originai data set of examples (i.e., every example is classified by a rule). A
greedy covering algorithm is then employed to select a minimal subset of rules that
covers the examples. The set is minimal in the sense that no rule could be removed
without losing complete coverage of the original training set. Using RULER, we
can typically produce a robust set of rules that has fewer rules than any of the
original decision trees used to create it, and that generalizes better to out-of-sample
data. The fact that decision tree algorithms constitute a fast and efficient method for
generating a set of rules allows us to generate many trees without requiring extensive
amounts of time and computation.

We implemented the RULER algorithm, in conjunction with GID3* and O-Btree,
within SKICAT for the purpose of inducing classification rules by example, and it

*The Chi-square test is actually an approximation to Fisher’s exact test when the number of
test examples is large. We use Fisher’s exact test because it is robust for both small and large data
sets.
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was used to produce the particular star/galaxy classifiers described subsequently.
Throughout this paper, we generally refer to our technique as decision tree induction
and the rules as decision trees. We simply note that in practice we are actually
referring to the use of decision trees in conjunction with the RULER tree pruning

and combining algorithm.

3.2.3 Decision trees vs. neural nets

In order to compare against other learning algorithms, and to preclude the possibility
that a decision tree based approach is imposing a priori limitations on the achievable
classification levels, we tested several neural network algorithms for comparison. The
results indicate that neural nets achieve similar performance as decision trees. The
learning algorithms we tested were traditional backpropagation, conjugate gradient
optimization, and variable metric optimization of a two-layer perceptron (see Hertz,
Krogh, and Palmer 1991 for an excellent introduction to perceptrons and neural
methods of computation). The latter two are training algorithms that work in batch
mode and use standard numerical optimization techniques in changing the network
weights. Their main advantage over backpropagation is the significant speed-up in
training time.

The results of our comparison between these approaches and decision trees can be
summarized as follows. The performance of the neural networks was a fairly unstable
function of the random initial network weights chosen prior to training and produced
accuracy levels on a sample test set of data varying between 30% (no convergence)
and 95%, compared with a 94% accuracy level for a decision tree classifier. The
most common range of accuracy averaged between 76% and 84%. To achieve these
levels of accuracy, we had to perform multiple trials, each time varying the number
of internal nodes in the hidden layer, the initial network weight settings, and the
learning rate constant for backpropagation.

Upon examining the results of this empirical study, we concluded that the neural

net approach did not offer any clear advantages over the decision tree based learning
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algorithms. Although neural networks, with extensive training and several training
restarts with different initial weights to avoid local minima, could match the per-
formance of the decision tree classifier, the decision tree approach still holds several
major advantages. For one, the tree is more easily interpreted than the weights in
a neural network (although, admittedly, a list of 20 rules that condition on up to
eight parameters is not entirely transparent either). More importantly, the learning
algorithms we employ do not require the specification of parameters such as the size
of the neural net or the number of hidden layers, nor do they call for random trials
with different initial weight settings. There are, in fact, very few free parameters.
This makes the decision tree algorithm much easier to implement as a generic tool
within SKICAT. Also, the required training time is orders of magnitude faster than
the training time required for a neural network program (i.e., seconds rather than

dozens of minutes in some cases).
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3.3 Classification Attributes

In classification learning, the choice of attributes used to define examples is by far
the single most important factor determining the success or failure of the learning
algorithm. The attributes we use for classification are computed through a combi-
nation of image processing and statistical measurement techniques. While they are
not expected to be the final advancement in this area, we did find them to provide
the most discriminating and uniform characterization of objects detected in DPOSS
of any other set of attributes we have encountered. This section provides a detailed

description of these attributes and how they are computed.

3.3.1 Base-level attributes

The eight attributes we use in object classification include a compendium of measures

found to be most useful and discriminating in previous surveys. They include:
MTot - the FOCAS total instrumental magnitude;

MCore - the core magnitude, measured from the brightest 3 x 3 pixel region in the

object;
log(Area) - the log of the isophotal area of the object;
Ellip - the ellipticity;

IR1 - the intensity weighted first moment radius:

2k LkTk

IR1 = >
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where z; is the intensity of pixel k£ and r; is its distance from the object’s

centroid;

S - the parameter defined by Heydon-Dumbleton, Collins, and MacGillivray (1989)

and used by Picard (1991c), which is a function of object area (a), core intensity
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(lcore, the sum of the central 3 x 3 pixels), and the average intensity along the

detection isophote (p):

a

> = gl O X P

We chose FOCAS total magnitudes for our standard brightness measure for its de-
creased sensitivity to the surface brightness threshold relative to aperture or isophotal
magnitudes (see Weir, Djorgovski, and Fayyad 1994). The other attributes measure
the object’s symmetry or compactness in one way or another. FOCAS measures the
two listed magnitudes and IR1 directly, while the other three are easily computed
from actual measurements. We tested the use of a few additional object parameters,
such as additional image moments, but found that they contributed little additional
discriminatory power due to their high correlation with one or more of these pa-
rameters. There is always the possibility that future researchers will find that some
unconsidered parameter helps result in significantly improved classifications, and the
machine learning software is fully capable of incorporating additional new parameters
as they are discovered. For now, however, we found that this list is sufficient.

Like previous researchers (e.g., Valdes 1982a; Heydon-Dumbleton, Collins, and
MacGillivray 1989; Picard 1991c), we quickly determined that the distribution of
these base-level attributes does not exhibit the required invariance between different
regions of a single plate, much less across plates. This was exhibited by the low
out-of-sample accuracy of the classifiers we produced by training on these attributes
alone. Their variability is also clearly evident when one looks at the distribution of
these parameters across or within plates. For example, in Figure 3.3, we plot the
distribution of log(Area) vs. MTot for two 2048 pixel sections of plates J380 and
J442. We analyze each plate in image sections of this size (which we call footprints)
to help account for variations in image quality across the plate (see Weir et al. 1994c
for a full discussion of our plate reduction procedure). Note that the stellar loci for
these two footprints are nonlinear and do not overlay one another. The implication

1s that a classifier optimized for one of the images would not only be difficult to
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construct due to the nonlinearity of the stellar locus, but it would certainly be less
than optimal for the other image.

Raw measurements of object shape are inherently sensitive to the local back-
ground sky level, seeing, and the pixel blurring induced by the scanning process. We
therefore expect these measurements to vary from plate to plate and even footprint
to footprint. For any learning algorithm to be able to produce robust classifiers

consistent across a large survey area, different attributes are clearly required.

3.3.2 Derived attributes

As we discussed in Section 1, the resolution routine of Valdes (1982a) provides two ex-
tremely powerful classification parameters that, by construction, are very uniformly
distributed from image to image. In fact, a preliminary study by Weir and Picard
(1991) indicated the significant benefits of using the FOCAS approach to object
classification on digitized Schmidt plates. They found that using the PSF-fitting al-
gorithm, one could extend the limiting magnitude of classified Schmidt plate catalogs
nearly a full magnitude beyond previous limits achieved using historical approaches.

An essential task in employing the resolution technique, however, is to establish
an accurate estimate of the PSF for a given image. Only after this is obtained can
the resolution scale and fraction parameters be measured. The problem, therefore,
naturally breaks up into two separate steps: (1) star selection, the process of auto-
matically deriving a list of candidate stars for generating an empirical PSF template;
and (2) final classification, in which the resolution parameters, possibly along with
others, are used for assigning all objects to a particular class.

As previous surveys indicate, certain rather simplistic methods are perfectly ad-
equate for performing accurate star/galaxy separation at bright to moderately faint
magnitudes: a method involving PSF-fitting is necessary only when approaching a
magnitude or so within the detection limit. One need not approach this limit just to
produce lists of stars for empirically estimating the PSF template. Using a straight-

forward approach similar to ones used for final classification in previous surveys, we
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were able to develop a technique for robustly selecting candidate PSF stars, up to
some limiting magnitude, uniformly within and among plates.

The solution we employ is to fit, on a footprint by footprint basis, the stellar
locus within four separate parameter vs. magnitude projections, measuring four
new attributes in the form of the distance of each object from the stellar ridge
in each dimension. We compute these so-called ‘revised’ attributes for the Meore,
log(Area), IR1, and S parameters described above. We find that in these new
parameter spaces, the line distinguishing stars from galaxies is roughly linear and
does not vary much froni image to image.

Measuring the distance of an object from the stellar locus first requires the ability
to delineate the location of the locus. The method we use for automatically track-
ing the locus in an attribute vs. magnitude parameter space works by computing a
histogram of the attribute value in a set of 0.5™ bins spanning the instrumental mag-
nitude ranges 15.5™ —21.5™ in Ji,y and 15.5™ —20.5™ in F,,;. Objects brighter than
the lower magnitude limit are typically saturated and must be classified separately;
and one has little hope of forming accurate star lists using this type of method at
magnitudes fainter than the upper limit.

Our locus tracking algorithm next computes robust estimates of the mode and
width of the histogram for each magnitude bin. These mode values and their error
estimates (specified by the widths) are then fit by a fourth or fifth order polyno-
mial as a function of magnitude (see Figure 3.4). The fit is subtracted from each
object, effectively bringing the stellar ridge close to the abscissa on an attribute vs.
magnitude plot. To assure an optimal fit to the stellar ridge, the algorithm applies
the same fitting and subtraction procedure a second time, this time using a third
or higher order polynomial. The optimal orders used to perform the fit in the first
and second iterations were found to be very consistent across all DPOSS images and
were determined separately for each of the four parameters. These fitting parameters
were ultimately hard-coded into the measurement process. Other researchers found

it useful to renormalize the new attribute values by the width of the stellar locus.
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Our tests did not indicate significant variations in the widths of the revised attribute
distributions from footprint to footprint, so we eliminated this step.

The distribution of the revised parameters derived for the objects shown in Fig-
ure 3.3 appear in Figure 3.5. As demonstrated in this example, we find that the
distribution of objects in revised attribute space differs little between plates. The
same holds true for the other revised attributes we compute, as well.

Along with magnitude and ellipticity, the four revised attributes now form a
six-dimensional parameter space in which we perform star/galaxy separation. To
produce our star selector classifier, we trained the decision tree induction software
on a set of over a thousand objects which one of us (NW) classified by eye from
the digitized scans of plates J380 and J442. Subsequent comparison with several
hundred much more reliable classifications obtained from CCD images indicated an
error rate of less than 5% in the training list constructed by eye.

The star selector we produced had an error rate of less than 3% percent on an
out-of-sample list of objects from the same two plates in the instrumental magnitude
range 16.5™ to 19.0™. Subsequent application of the classifier on independent J and
F data resulted in lists of candidate stars in this magnitude range which we found
to be more than accurate enough for use in constructing the PSF template required
by FOCAS resolution. Whereas the typical footprint contains between 3500 to 4500
abjects, the star selector returns between 500 and 600 objects in the magnitude range
listed above. This list of candidate stars is provided to a FOCAS routine which
averages the central nine by nine pixels of each object to form the PSF template.

Armed with the template, one is then able to run the FOCAS resolution routine
on each object. As described previously, this routine determines the best-fitting scale
(o) and fraction (f) values, which parameterize the fit of a blurred (or sharpened)
version of the PSF to each object. The template used to model each object is of the

form:
t(r:) = Bs(ri/a) + (1 — B)s(r:)

where r; is the position of pixel i, a is the broadening (sharpening) parameter,
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and f is the fraction of broadened PSF. In turn, the resolution parameters are

combined with the previous six used for star selection in order to perform final

object classification.
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3.4 Classification Results

In the course of processing each plate, the attribute measurement tasks described
in the previous section, including revised attribute measurement and star selection,
are performed fully automatically, as is the task of final object classification. How-
ever, in order to produce the classifiers implemented within the DPOSS reduction
programs, we were required at some point to manually produce large samples of clas-
sified objects for training and testing purposes. We describe how we produced these
training samples below. The same steps would be required of any user who might
wish to construct their own, specialized classifier, or to improve upon or monitor the
quality of the existing classifiers on future data. We follow this discussion with an

examination of the results of applying these classifiers to actual DPOSS data.

3.4.1 Classifier training

In order to obtain training data for classifying faint objects in DPOSS, especially
those too faint for recognition by human inspection of the plates alone, we made
use of higher resolution (and narrower field of view) CCD imagery obtained from
the Palomar 60” telescope. CCD iinages are being collected systematically in order
to photometrically calibrate the Survey (see Weir, Djorgovski, and Fayyad 1994);
however, they serve this very important role in the object classification process as
well.

For classification purposes, the obvious advantage of a CCD image relative to
a plate is higher resolution and signal-to-noise ratio at fainter levels. By matching
a CCD image with the corresponding (small) portion of the plate that it covers,
one can determine the classes of objects too faint to classify by eye on the plate.
By training learning algorithms to classify these faint objects correctly using the
attributes derived from the plate image, SKICAT can conceivably classify objects
from the survey that even humans would have difficulty classifying.

The training and test data consisted of objects collected from four different plate
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fields from regions for which we had CCD image coverage, as well as the by-eye
classifications used to construct the star selector described in the previous section. To
adequately test the reliability of the classifier, we divided the data into independent
training and test sets from different plates. The F' plate training sample totaled 1239
objects from plates F381 and F442, while the J sample consisted of 2563 objects from
plates J380 and J342.

We trained the decision tree induction and combining algorithms, O-Btree and
RULER, separately on the J and F' data in order to produce independent classifiers.
As a matter of future research, one might attempt to train a classifier which combines
the information available for objects matched in multiple images, particularly in two
colors. The results of our training were a list of 84 rules for the F' plate classifier and
96 for the J’s. Each rule is effectively an “if...then...” statement assigning a class
to any object meeting its conditions. For both classifiers, each rule conditions upon
anywhere from three to six different parameters. By construction, as described in
Section 3.2.2, the rules will generate a unique classification for any object within the

training set’s multidimensional parameter space.

3.4.2 Comparisons with training and test data

We tested the classifiers on a sample of 1539 objects from plates F380 and F382 and
589 objects from plates J381 and J382. Testing consisted simply of keeping track of
the fraction of objects classified correctly or incorrectly as a function of magnitude.
It is noteworthy that for a large fraction of these objects, an astronomer would have
difficulty reliably determining their classes by examining the corresponding digitized
plate images. As an example, see Figure 3.6, which depicts a star and galaxy as it
appears on a plate and on a CCD. These objects are representative of those with
a magnitude at the limit of which we would like to perform accurate star/galaxy
separation. We have begun spectroscopic follow-up observations of a sample of the
small, faint objects, providing another independent check on our faint classifications.

The accuracy we achieved from applying the classifiers on the training and test
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DPOSS data sets appears in Tables 3.1 and 3.2. We estimate the accuracy by
measuring the completeness and contamination of a galaxy catalog formed from the
sample data. The training results reflect the in-sample accuracy of the classifier,
which is largely irrelevant and included only for completeness. The test set results
are indicative of the accuracy of the classifier on independent data and, therefore,

reflect the true quality of the classifier. These results are plotted in Figure 3.7.

Note that on our test data, we achieve approximately 90% completeness and 10%
contamination down to r ~ 19.6™ and g ~ 20.5™, or an equivalent B; of approxi-
mately 21.0™. This reflects an accuracy rate comparable to what previous surveys
attained, but at magnitude levels 0.5™ to 1.0™ fainter. Our limited spectroscopic

follow-up observations to date are fully consistent with these results.

Though not listed here, we also computed the results of the J classifier on a test
set of data from the same plates on which the classifier was trained. The completeness
and contamination closely matched that of the test set from independent plates.
Therefore, we can expect the performance of the classifiers to be virtually the same
for large catalogs of objects from either the training or test sets of plates. We can
help confirm this expectation by comparing the consistency of classifications from

plate to plate, as we do below.

We also confirmed the relative importance of the resolution attributes for object
classification. When the same experiments were conducted using only the six at-
tributes used in star selection, the results were significantly worse. The error rates
jumped above 20% for O-BTree, above 25% for GID3*, and above 30% for ID3 at
a magnitude of approximately 20.0™ in g. The respective sizes of the trees grew
significantly as well. This clearly demonstrates that although learning algorithms
improve matters considerably by allowing one to optimally and objectively make use
of multiple parameters in the classification process, the choice of parameters is still

of first order importance.
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3.4.3 Comparisons in plate overlaps

The tests described above indicate an overall classification accuracy of approximately
90% at a magnitude of approximately 19.6™ in r and 20.5™ in g. If we assume that the
probability of an object being correctly classified is independent from plate to plate,
this would imply a consistency of classification of approximately 82%. This is the
sum of the probabilities of both classifications being correct (0.9?) or incorrect (0.12).
Measuring the consistency of classifications from plate to plate across many different
plates provides some measure of the uniformity of plate classification accuracies, if
not their actual levels of accuracy. In Tables 3.3, 3.4, and 3.5 we list the consistency
of object classification for the large number of objects measured in each pair of
overlapping plates of the same color and overlapping plates of the same field but
different color. Note that at each magnitude level, the consistencies are in line with
the accuracies listed in the previous section assuming independent classifications.
Also notice that the consistency of the classifications between the pairs of plates
on which the classifiers were trained (F381/F442 and J380/J442) does not signifi-
cantly differ from the consistency of other measured pairs. This corroborates the
notion that the classification accuracy for these plates as a whole is no better or
worse than that for the test plates, despite the fact that the classifiers were trained

exclusively on objects from those plates. In this sense, the classifiers are truly robust.
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3.5 Initial Experiments with Unsupervised Clas-
sification

We have also begun exploring the application and implementation of unsupervised
classification techniques like Autoclass (Cheeseman et al. 1988) for the purpose of au-
tomated machine discovery. Unlike the so-called supervised methods of classification
that we have described so far, where the computer learns how to distinguish user-
specified classes within the data, unsupervised classification consists of the computer
identifying the statistically significant classes within the data itself. For example,
one could employ this type of method to try to systematically detect new classes of
objects within astronomical catalogs.

Our own initial experiments in applying Autoclass to DPOSS appear to confirm
the validity and usefulness of this approach. After supplying Autoclass with the
eight-dimensional feature vectors from a sample of several hundred objects from our
four fields, it analyzed the distribution of the objects in this parameter space and
suggested four distinct classes within the data. Representative objects from these
four classes are presented in Figure 3.8. Visually, the classes seem to divide into
stellar objects, stellar-like objects with a low surface brightness halo, and diffuse
or irregular objects with and without a central core. Its success at distinguishing
these apparently physically relevant classes based just upon eight image parameters
suggests that far richer and innovative results may be in store when ones matches
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