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Abstract

This thesis is a detailed description and analysis of a model of direction-selective
simple cells in cat striate visual cortex. There are three main defining features of
our modeling effort compared to previous ones. (1) Local excitatory intracortical
connections, known to be very numerous, are taken into account. (2) The model
is very detailed: compartmental models of neurons are used and spiking is modeled
using Hodgkin and Huxley-like active ionic currents. (3) Model responses are ana-
lyzed through standard electrophysiological methods and are compared in detail to
physiology. Two separate operating modes are described. When the model acts as a
proportional amplifier, contrast-response curves are relatively linear. In the hysteretic
amplifier mode, contrast-response curves are much steeper initially, including an early
portion with expansivity nonlinearity, but saturate abruptly at high contrasts. These
features of the second mode are very similar to cortical contrast-response curves, but
very different from the thalamus’. The second mode also predicts that hysteresis is
latent in cortex, but that because of resetting through inhibition, cortical neurons
do not fire in the absence of stimulation. In both modes, the model achieves strong
amplification of the input through the excitatory cortical feedback. Amplification re-

sults in small changes in conductance for stimuli moving in the null direction, long a
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puzzling experimental finding; direction selectivity also persists during blockade of all
inhibition in a single cell, as observed in recent experiments. Due to the nonlinearity
of this amplification, bandpass velocity-response curves of thalamic neurons can be
transformed into velocity low-pass cortical curves. Direction selectivity is invariant
over a wide range of contrasts and velocities, a prominent feature of direction-selective
cells in cortex. The model also makes specific predictions concerning the effects of
selective blockade of cortical inhibition on direction selectivity at different velocities.
Finally, we address the important issue of testing experimentally the linearity of cor-
tical neurons. The same intracellular linearity test that has been used for cortical
neurons is performed on the model. Although the model has substantial nonlineari-
ties, it appears quite linear according to the linearity test. We explain these surprising
observations in detail, and conclude that such tests are much more limited in useful-

ness than apparent at first.
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Chapter 1

Introduction

This thesis is a detailed description and analysis of a model of direction-selective sim-
ple cells in cat striate visual cortex. The impetus for modeling direction selectivity
arises in part from the large body of experimental data available on these cells, con-
cerning their physiological response properties, single-cell biophysics and morphology,
vand'connectivity. However, there is another focus in this thesis, separate from direc-
tion selectivity. It arises from anatomical and physiological observations that have
recently converged into a novel picture of local cortical circuits.

Cortical direction selectivity (DS) is usually thought to arise from a Barlow and
Levick type feedforward scheme (Barlow and Levick, 1965), in which the response to
the preferred direction of motion arises from the afferent input, while the response in
the opposite (null) direction is suppressed by spatially offset inhibition (Bishop et al.,
1971; Benevento et al., 1972; Emerson and Gerstein, 1977; Torre and Poggio, 1978;
Ganz, 1984; Koch and Poggio, 1985; Ruff et al., 1987; Worgotter and Holt, 1991;
Maex and Orban, 1991; Worgotter et al., 1992). Another class of models of direction
selectivity were derived from spatio-temporal energy models of the psychophysics of

motion detection (Burr, 1981; Watson and Ahumada, 1985; Adelson and Bergen,



1985). They are based on either purely linear spatio-temporal filtering (Reid et al.,
1987, 1991; Hamilton et al., 1989; McLean and Palmer, 1989; Saul and Humphrey,
1990; McLean et al., 1994) or such filtering followed by an expansive nonlinearity
(Albrecht and Geisler, 1991; DeAngelis et al., 1993; Heeger, 1993), and include both
suppression in the null direction and facilitation in the preferred direction.

Variants of the first scheme are inconsistent with a number of features of cortical
DS. In particular, these models fail to account for the massive excitatory interconnec-
tions seen in cortex, which numerically totally overshadow geniculo-cortical synapses.
Indeed, only approximately 5-6% of all excitatory synapses onto a layer 4 spiny stel-
late cell is provided by thalamic afferents (Douglas and Martin, 1991; Peters and
Payne, 1993; Ahmed et al., 1994). Even such an explicit nonlinear model based on
intracellular data as the one by Carandini and Heeger (1994), completely disregards
these anatomical findings.

Also, both classes of models fail to explain that intracellular in vive recordings
in cat simple cells fail to detect any changes in somatic input conductance during
stimulation in the null direction (Douglas et al., 1988; Berman et al., 1991). In
feedforward models, a large input from the direction symmetric lateral geniculate
nucleus (LGN) is needed to generate the high firing rates observed during stimulation
in the preferred direction. In the null direction, large inhibitory conductances changes
would be needed to prevent the cell from firing to this excitatory input even in the
absence of shunting inhibition. Physiological‘ checks, assisted by simulations, have
confirmed that these conductance changes should have been picked up by Douglas et
al. (Koch et al., 1990; Douglas and Martin, 1991; Dehay et al., 1991; Berman et al.,
1992). The remarkable lack of large inhibitory conductance changes has subsequently
been confirmed by other laboratories (Pei et al., 1991; Ferster and Jagadeesh, 1992).

To explain these puzzling observations, Douglas and Martin (1990) proposed the

Canonical Microcircuit of neocortex (Fig. 1.1b; see also Douglas and Martin, 1991a,
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Figure 1.1: Cortical circuitry and the Canonical Microcircuit. (a) The basic
neuronal types in cortex, their typical axonal arborizations and the laminar bound-
aries. Pyramidal cells and spiny stellate cells are drawn in black, while inhibitory,
smooth interneurons are drawn shaded. (b) Cortical amplification in very schematic
form. Superficial (P2 + 3(4)) and deep (P5 + 6) pyramidal cells are interconnected
with a single pool of GABA cells. Open triangles indicate excitation and closed
triangles inhibition (see Douglas et al., 1989; Douglas and Martin, 1991)



Berman et al., 1991), which includes strong local excitatory connections among cor-
tical pyramidal and spiny stellate cells. Only weak LGN input is needed, since in the
preferred direction the cortico-cortical connections amplify the initial excitation com-
ing from the LGN; counteracting the small LGN input in the null direction requires
only weak inhibition below the detection limit of Douglas et al. (1988). In this view,
Barlow-Levick inhibition in the null direction is combined with cortical amplification
in the preferred direction, resulting in a direction-selective cortical cell.

Douglas and Martin (1991a) used computer simulations with continuous, mean-
rate neurons to qualitatively verify some of the key concepts of their model. In this
thesis, we perform much more realistic computer simulations, using spiking neurons
described by compartmental models. We call this detailed model the cortical amplifier
model, and compare in detail the properties of the cortical amplifier with those of a
conventional feedforward model of DS, based on Barlow and Levick’s scheme fof retinal
DS. We provide key insights into the model’s functioning through detailed analysis.
Through the model, we confront biophysics and anatomy with the known physiology.
As a result, we provide novel, detailed explanations of cortical response properties
and experimentally testable predictions. We also test directly the methodology of a
physiological experiment, with surprising results.

In this thesis, we will see that the cortical amplifier circuit comes in two flavors,
depending on the strength of the positive feedback. For moderate feedback strength,
the pyramidal neurons’ response increases proportionally to the stimulus strength
over a substantial range of input values, before saturating very progressively. We call
the model in this mode the proportional amplifier. For higher feedback, the response
increases much faster over a narrow range of stimulus strengths, then saturates. Hys-
teresis is possible if inhibition is too weak, whereby the response persists even after
stimulus withdrawal. We call the model in this mode the Aysteretic amplifier. Since

these two parameter regimes have substantially different response properties and lead



to different interpretations, we will investigate both modes in detail.

1.1 A guided tour

I will give here a quick overview of each chapter, describing briefly the procedures
and main results.

Chapter 2 describes the cortical amplifier model and its components in detail, and
introduces the analytical methods used later.

We first describe the three model neurons that are the basic building blocks of
the direction selectivity model: the lateral geniculate nucleus (LGN) neurons that
are modeled as a series of filters and used as input to cortex, and the compartmental
models of the two cortical cell types (pyramidal or excitatory neurons, and smooth
or inhibitory neurons). We then describe how these components are put together in
the direction selectivity model. Finally, we explain the methods we used to analyze
the model’s output (including how contrast-response and velocity-response curves are
calculated) and the procedures that define some of the experiments that we performed
on the model.

Chapter 3 introduces a simplified theory of amplification in cortex at equilibrium,
and describe the resulting dynamics too, in the linear approximation; two modes of
amplification are discussed, proportional and hysteretic amplification; we demonstrate
that hysteresis is latent in the hysteretic amplifier mode. In the last section of the
chapter, we present a simplified dynamical model, known somewhat whimsically as
DYNAMO.

Chapter 4 is a detailed investigation into the response properties and functioning
of the cortical amplifier operating in the proportional mode, and compares it to a
purely feedforward model of direction selectivity (the feedforward model). Input

conductance changes little in the null direction. The contrast-response curves of the



model match certain cortical responses. Velocity-responses curves of the model are
quite different from the LGN’s and match physiology well. We explain the shape
of the velocity-response curve through detailed analysis. Blocking inhibition in a
single cell results in persistence of direction selectivity, and the model is linear to
grating superposition, as are direction-selective cells in cortex. The model makes
specific predictions concerning the effects of selective blockade of cortical inhibition
on direction selectivity at different velocities.

Chapter 5 essentially parallels Chapter 4, but for the hysteretic amplification
mode. Contrast-response curves are different for the hysteretic amplifier, but are
very similar to those of cortical neurons. Velocity-response curves also match cortex
well. Detailed analysis again allows us to understand the shapes of these curves.
We propose that inhibition has a crucial role in resetting the cortical network after
discharge, and draw parallels between the hysteretic mode and proposals for short-
term memory.

Note that we have attempted to make these two chapters relatively self-contained,
in that it is not necessary to read one of these chapters to understand the other one.

Chapter 6 directly probes the methodology of an intracellular linearity test based
on grating superposition. After noting that the detailed models pass the test, we
find that they present substantial nonlinearities. After showing in this way that the
linedrity test has only very limited usefulness, we proceed to explain its failures in de-
tail. A surprising notion that emerges from this analysis is that cortical amplification
1s invisible if only measuring average intracellular potentials.

Chapter 7 discusses the assumptions behind the model. Assuming that cortex
is in a given narrow> region of a very high-dimensional parameter space is a major
assumption, and we demonstrate that the model is very sensitive to the values of some
parameters. We also describe a technical problem that complicated significantly our

investigations of the hysteretic amplifier model.



Finally, Chapter 8 concludes the thesis by comparing proportional and hysteretic
amplifiers and looking at the general lessons learned, and provides a perspective for

future investigations. A final section gives a list of my publications while at Caltech.



Chapter 2

Building a model of direction

selectivity in striate cortex

2.1 Introduction

This chaptér describes the model and its components in detail, and introduces the
analytical methods used later.

We describe all three models: the feedforward model, and the proportional and
hysteretic ampliﬁers; These models and their context were introduced in Chapter 1.

The models describe events occurring in a small network of simple cells located
in the primary visual cortex of the adﬁlt cat. For simplicity of implementation, only
the ON portion of the X pathway is modeled (Lennie, 1980; Sherman, 1985). Vi-
sual input to the network is provided by a one-dimensional retino-geniculate module,
transforming a given input, usually a moving bar or grating, into a series of spikes
mimicking the output of the geniculate relay cells (Victor, 1987). The lateral genic-
ulate nucleus (LGN) input is integrated by the network of excitatory and inhibitory

neurons, which are identified here as pyramidal and smooth neurons (note, however,



that the excitatory neurons could also be spiny stellate cells in layer 4).

Section 2.2 describes the artificial visual stimuli provided to the model LGN neu-
rons. Section 2.3 is about the LGN neurons; they are modeled as a series of filters.
Section 2.4 gives a description of the compartmental models of the pyramidal and
smooth neurons, including the noise sources present. Section 2.5 is about how these
components are put together in the direction selectivity models. Section 2.6 explains
how response properties are computed from the model’s output, how linearity to
grating superposition is tested, and how GABA blocking experiments are performed.

Section 2.7 describes briefly the computer implementation of the model.

2.2 Visual stimuli

Visual stimuli are provided to the model as 1-D pixel frames (see Fig. 2.3)Awith U
per pixel resolution and an effective frame rate of 10 kHz. The amplitude at each
pixel corresponds to the fractional deviation from the mean luminance. Moving bar
stimuli were modeled by a group of same-valued pixels, moving at a constant velocity.
Drifting sine wave gratings were modeled by moving patterns of pixel values that
are modulated sinusoidally over space, and contrast-reversal stationary gratings by
patterns of pixel values with separable spatial and temporal sinusoidal modulations.
We give here the definition of stimulus contrast used in this paper. For a bar, it is
the Weber contrast:
L—-L,

€ = 10077, (2.1)

where L is the luminance of the bar and L; is the luminance of the background. For

a moving grating, we use the Rayleigh-Michelson contrast:

Lmaa: - Lmin

C =100————+=
OOLmax -+ Lmin ’

(2.2)
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where L. and Ly, are the maximum and minimum luminance in the pattern.

2.3 Retino-geniculate module

The dynamics of the geniculate input to striate cortex needs to be modeled with
some care; because the timing of geniculate input is critical for direction selectiv-
ity, and because the velocity-response curves of our model cortical neurons are only
meaningful if the velocity-response curve of the geniculate input is accurate. Beyond
these considerations, the detailed properties of the retinal and geniculate cells are not
central to our simulétions, and so we simplified the visual input in a number of ways.

Most importantly, the response to visual stimulation of ON geniculate relay cells
of the X type is computed as a transfer function, rather than by simulating their
biophysical properties. As in Wehmeier et al. (1989), we model a patch of retinal
cells located 1 mm away from the area centralis, or about 4.5° eccentricity. Recep-
tive fields at that eccentricity have a difference of Gaussians, center-surround type
of receptive field (Rodieck, 1965; Enroth-Cugell and Robson, 1966; Linsenmeier et
al., 1982; Enroth-Cugell et al., 1983; see Fig. 2.1a) with a center diameter of approx-
imately 30’ (Fig. 2.1c; Peichl and Waessle, 1979, Linsenmeier et al., 1982). The cells
respond to a light stimulus by a transiently high discharge rate that adapts to a main-
tained level (Fig. 2.1d). We used Victor’s model (1987) of the center component of
retinal X cells to simulate the temporal properties of our geniculate cells (Fig. 2.1b).
The Victor model postulates a series of low-pass filters followed by a high-pass filter
and some nonlinear processing at high contrast values. We used identical temporal
filters for both center and surround, neglecting differences in their dynamics (Dawis
et al., 1984). Following Victor’s model, the surround’s response was substracted from
the center’s. The output of a model LGN cell is technically speaking not separa-

ble in time and space, because of a small temporal delay (3 msec) we introduced
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Figure 2.1: Basic characteristics of the LGN model. (a) Spatial filters for
the center and surround, modulating the responses to a thin bar (shown here with 1/
width in the center of the receptive field). The o of the Gaussians is 6’ for the center,
and 24’ for the surround. (b) The impulse responses of the center and surround (to
an impulse lasting 1 msec), summarizing the action of their temporal filters. (c)
The sustained average response of an LGN neuron, in impulses/sec, to a thin bar
(1’ width, 100% contrast). (d) Our geniculate cells respond to input with Poisson
distributed spikes whose rate is modulated by the visual stimulus (superimposed
onto a spontaneous firing activity of 8 Hz). We here show the mean rate of one LGN
cell (in the form of a Post Stimulus Time Histogram; PSTH) in response to 1600
gresentations of a thin bar (1’ width, 100% contrast) at the center of its receptive
eld.



12

between the center and the surround response, consistent with experimental obser-
vations (Enroth-Cugell et al., 1983). The continuous output of this filtering stage
determines the instantaneous rate of a Poisson process that generates discrete im-
pulses (spikes). We superimpose a spontaneous firing frequency of 8 Hz onto the
stimulus-dependent response (Fig. 2.1d). For a 70% contrast bar moving at 10°/sec,
peak firing rates are around 140 Hz (see Fig. 4.8).

We used slightly different parameters values from Victor’s (1987) retinal model,
because of the different response amplitudes of LGN neurons (Bullier and Norton,
1979; Cleland and Lee, 1985; Kaplan et al., 1987). Additional contrast nonlinearities
present in the LGN itself (Kaplan et al., 1987) are probably insignificant in the context
of our simulations, and were not included in the model. |

Only responses of the X pathway were simulated, because it accounts for most
thalamic inputs to area 17 (Sherman, 1985; Ferster, 1989). Furthermore, since cortical
direction selectivity does not require any significant interaction between the ON and
OFF sub-systems (Schiller, 1982, 1992; Sherk and Horton, 1984), only responses of
geniculate ON X neurons were simulated.

Spatially, the centers of the LGN neurons’ receptive fields are positioned at one
of six spatial locations which occur at 5’ intervals (Worgotter and Koch, 1991). To
ensure that each cortical neuron receives input from a realistic number of LGN neu-
rons, the LGN array is two-dimensional: there are 13 LGN neurons at each of the 6
spatial positions (a 6 x 13 array) in the proportional amplifier model, and 208 in the
hysteretic amplifier (a 6 x 208 array). The number of LGN neurons was increased
for the hysteretic amplifier for the same reasons mentioned below for increasing the
number of cortical neurons. Within each group of 13 or 208 cells, the one-dimensional
spatial receptive fields are identical. Pyramidal neurons in cortex receive input from
the first 5 groups of LGN neurons, and smooth neurons receive input from the last 5

groups of LGN neurons (see Fig. 2.3). Overall, there is a spatial offset of 5’ between
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input fields of pyramidal and smooth neurons, providing the spatial asymmetry nec-
essary for direction selectivity. Rather than connecting all 65 (1040) LGN cells to
each cortical neuron, each geniculate afferent connects with a 30% probability to a
given cortical neuron, so that on the average a cortical neuron receives input from
0.3-5-13 = 19.5 (312) LGN cells. For the proportional amplifier, the number is
low in comparison to estimates from experimental data (Tanaka, 1983; Freund et al.,
1985a, 1985b; Peters and Payne, 1993; Peters et al., 1994); however, it is adequate
when one considers that the model simulates only one subfield of cortical neurons and
only geniculate ON afferents. For the hysteretic amplifier, the number is rather high.

However, there are strong indications that it could be made significantly lower.

2.4 Pyramidal and smooth cells

Because we model the detailed dynamics of a network of cortical neurons, it is im-
portant that the underlying single cell model include the essence of most known
dynamical properties of cortical neurons, with direct ties to parameters that can be
measured experimentally. Thus, the cellular model takes into account the known
morphology and biophysics of visual cortical neurons. In particular, our cells re-
spond to synaptic input with a stream of discrete all-or-none action potentials, rather
than with a continuous firing rate as in the vast majority of neural network models.
Anatomical dimensions of a representative layer 5 pyramidal neuron and a smooth
(basket) cell were obtained by reconstructing suitable cortical neurons that had been
labelled intracellularly with horseradish peroxidase during in vivo experiments in the
anesthetized, adult cat (Douglas et al., 1991). The 3-D coordinates and diameters
of the dendritic arbor and soma yielded a model with many compartments that was
reduced in a further step to either 3 or 4 compartments (Douglas and Martin, 1991;

Bush and Sejnowski, 1993; Bernander, 1993). The aim was to capture the essen-
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tial aspects of the neuronal biophysics without the need for the many hundreds of

compartments that would be required for more detailed models.

2.4.1 Pyramidal cells

Each pyramidal neuron consists of an ellipsoidal somatic compartment, and three
cylindrical compartments that represent the dendritic arbor. Each dendritic compart-
ment is assigned a leak conductance (R,, = 10,000 Qcm?) and a particular profile of
synaptically mediated membrane conductances (Fig. 2.2a). The soma contains five
voltage-dependent ionic conductances that are modeled using Hodgkin-Huxley-like ki-
netics with voltage-independent time constants (Bush and Douglas, 1991; Bernander
et al., 1991). The currents are a transient sodium and a delayed rectifier potas-
sium current that underlie action potentials, a high-threshold calcium current, Ig,, a
calcium-dependent potassium current, [4zp, and for the cortical amplifier model, a
transient, A-like potassium current, I4 (not present in the hysteretic amplifier). I,
and I4yp mediate the rapid (time constant 25 — 50msec) adaptation seen in regular
firing pyramidal cells (McCormick et al., 1985). After increasing during an action po-
tential, intracellular calcium (in the somatic compartment) decays exponentially with
a time-constant of 50 msec. This simplified cell’s current-discharge curves (see Sec-
tions 3.2 and 3.4) are very similar to those of a substantially more complex pyramidal
cell model that uses more than 300 compartments (Bernander et al., 1991).

At rest, the somatic input resistance, time constant and membrane potential
of our pyramidal cells are 27.2 M2, 7.75 msec and —66.5 mV in the feedforward
case, 52.9 M, 22.5 msec and —54.2 mV for the proportional amplifier model, and
65.1 MQ, 21.3 msec and —57.0 mV for the hysteretic amplifier model. The input
resistance is much smaller in the feedforward than in the feedback case, since the

LGN to pyramid synaptic weight is much larger (see Table 2.1) and therefore also the
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Figure 2.2: Compartmental models of the pyramidal and smooth neu-
rons. Each compartment includes a number of membrane currents shown in the
diagram. Not shown are the capacitances and axial resistances within and between
each compartment. (a) Pyramidal cells each have four compartments, corresponding
anatomically to the basal dendritic, somatic, proximal, and distal apical dendritic
compartments. (b) Smooth GABAergic interneurons each have three compartments,
for the somatic, proximal, and distal dendritic compartments. Leak: leak conduc-
tance. Na: transient sodium current. Ca: calcium current. DR: delayed rectifier K
current. AHP: calcium-dependent K current. A: transient, inactivating K current
(not present in hysteretic amplifier model). Ezre.: synaptic excitatory current (from

geniculo-cortical and cortico-cortical afferents).
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synaptic background activity from the LGN. A larger input conductance also implies
a smaller membrane time constant. The resting membrane potential is related to
the neuron’s threshold. The neuron’s threshold, together with synaptic inhibition,
contributes to direction selectivity; even if some LGN input is not cancelled by over-
lapping inhibition in the null direction, it will not result in any response as long as
it remains subthreshold. Since the LGN weight is larger in the feedforward case, the

pyramidal neuron’s threshold has to be larger too.

2.4.2 Smooth cells

The smaller, smooth, GABAergic stellate cells are modeled by removing the basal
compartment from our pyramidal cell model (Fig. 2.2b) and adjusting the size pa-
rameters for the remaining compartments (Douglas and Martin, 1991). I¢,, Iagp,
and- I4 were also removed to enable these cells to fire at high sustained rates with-
out showing any adaptation, in agreement with intracellular data (McCormick et al.,
.1985). Smooth cell parameters are identical in the feedforward and cortical amplifier
models; at rest, the input resistance, time constant and membrane potential of these
cells is 65.2 MQ, 11.4 msec and —56.0 mV. Compared to the cortical amplifier’s
pyramidal cells, despite the larger resting LGN input (because of the larger LGN
weight, see Table 2.1), the input resistance is larger because of the smaller membrane

area. The short time constant reflects the effect of the large geniculate background

activity.

2.5 Network connectivity

A connection diagram of the cortical amplifier network in the proportional ampli-

fier configuration is shown in Fig. 2.3. It comprises 40 pyramidal and 10 smoooth
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Figure 2.3: Connectivity diagram of the direction selectivity model in the
proportional amplifier configuration. Input to LGN neurons comes from an
one-dimensional array of retinal pixels. The intensities from those pixels are summed
through difference-of-Gaussians spatial filters onto LGN neurons, with a spatially off-
set filter at each position. There are 13 LGN neurons at each of six spatial positions.
The LGN neurons connect slightly differently with the two populations of cortical
neurons, so that as a group the LGN inputs to the pyramids are spatially offset by 5
with respect to those to the smooth neurons (X indicates convergence of the geniculate
inputs onto cortical neurons). Each geniculate cell independently has a 30 % proba-
bility of making a synapse with its appropriate cortical target (see Section 2.3). The
open triangle symbols denote excitatory connections, the filled triangles inhibitory
GABA 4 connections, and the filled circles inhibitory GABA g connections.
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neurons, respecting the known proportions of cortical neurons (Winfield et al., 1980;
Beaulieu and Colonnier, 1983; Hamos et al., 1983; Gabbott and Somogyi, 1986: Pe-
ters and Payne, 1993). The connections between neurons reflect the connectivity of
the canonical microcircuit with the exception that the pyramidal neurons do not con-
nect to the inhibitory neurons. This lack of feedback inhibition in our current model
substantially simplified our simulations. However, our model is compatible with feed-
back inhibition. Simulations with simplified neuron models (having continuous firing
rate output instead of discrete action potentials, see Section 3.7) showed that suitable
response characteristics can be obtained in the presence of these connections, includ-
ing physiological contrast-response, velocity-response, DI-contrast and DI-velocity
curves. In addition, and in contrast with the detailed simulations, smooth neurons
now showed direction preference.

The hysteretic amplifier configuration is the same as the proportional amplifier,
except that there are 640 pyramidal and 160 smooth neurons instead (in addition to
there being 208 LGN neurons at each spatial position instead of 13, as mentioned
previously). The number of neurons was increased to mitigate certain instabilities
relating to the steepness of the contrast-response curve (see Section 7.4).

Each cortical connection drawn in Fig. 2.3 symbolizes synapses of equal strength
from each neuron of one group to all neurons of the other group. Inhibition is of two
types, GABA4, or transient, and GABAp, or sustained inhibition. As explained in
Section 2.3, the LGN inputs to the smooth neurons are spatially displaced from those
to the pyramidal neurons. Local inactivation experiments using GABA microion-
tophoresis provide some support for the presence of a spatial displacement between
smooth neurons and the direction-selective pyramidal neurons that they inhibit (Eysel
et al., 1988).

For the feedforward model, the connection diagram is similar to Fig. 2.3, except

that there are no excitatory cortico-cortical connections, implementing a Barlow-
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Levick scheme for direction selectivity (Barlow and Levick, 1965); the connection
weights are different, as we will see below.

Because excitatory and inhibitory synaptic inputs change the local membrane
conductance to a certain ion or ions, massive synaptic input can have a dramatic
effect on a cell’s spatio-temporal structure, in particular on the input resistance and
time-constants (Bernander et al., 1991; Rapp et al., 1992). Therefore, it is important
to explicitely model synaptic input as conductance change (in series with a battery),
rather than a simple current injection, as common in nearly all neural network models.

The amplitudes of synaptic conductances and time constants that govern their
behavior have yet to be determined experimentally in detail for pyramidal and spiny
stellate cells in primary visual cortex (see also Bernander, 1993). However, there
are estimates from the literature that can be used for constraining our model. This
data is usually based on in vitro cortical preparations (Jack et al., 1975; Tanaka,
1983; Miles and Wong, 1984; Thomson et al., 1988; Connors et al., 1988; Bekkers
and Stevens, 1989; Busch and Sakmann, 1990; Edwards et al., 1990; Kriegstein and
LoTorco, 1990; Larkman et al., 1990; Lytton and Sejnowski, 1991; LaCaille, 1991;
Mason et al., 1991; Williams and Johnston, 1991).

In the model, the excitatory postsynaptic currents arise exclusively from fast,
voltage-independent- non-NMDA or AMPA synapses located in the proximal den-
dritic compartment (Fi‘g. 2.2). Voltage-dependent NMDA synaptic inputs are not
included in the current version of our model (for discussion, see Section 7.2). How-
ever, because we wanted to retain the slower dynamics of the NMDA receptor, we
adopt the compromise of using voltage-independent excitatory synaptic input with
a decay of 20 msec rather than the few milliseconds appropriate for a pure AMPA
synapse. A second reason for using a 20 msec decaying input is to compensate for
the lack of distal dendritic compartments. The associated low-pass filtering will lead

to a broadening of the synaptic current flowing into the soma.
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Two types of inhibitory postsynaptic currents are included: fast, shunting, chloride
based GABA, inhibitory synapses are located in the somatic compartment, while
slow, hyperpolarizing, potassium-based GABAp inhibitory synapses are located in
the dendritic compartments (Connors et al., 1988; Douglas and Martin, 1991).

The time-course of the geniculo-cortical and GABA g synaptic conductance change

is a dual exponential (Wilson and Bower, 1989):
G(t) = e t/m — 7t/ (2.3)

while that for the excitatory cortico-cortical synapse and the GABA 4 mediated re-

sponse is a single exponential:

G(t) = e~t/™ . (2.4)

Final synaptic parameter values are shown in Tables 2.1 (proportional amplifier
and feedforward models) and 2.2 (hysteretic amplifier). For the proportional amplifier
case, each connection’s strength is in the range of individual synaptic conta,cté, while
for the feedforward model some connections would be in the upper range for individ-
ual synaptic contacts; instead, they may correspond to several synaptic contacts; for
the hysteretic amplifier, the connections strengths are significantly lower than exper-
imentally measured values. For the cortical amplifier, the LGN-to-pyramidal weight
was set so as to give a slightly suprathreshold excitation for low contrast values. The
smooth-to-pyramidal GABA 4 and GABA g weights were just large enough to balance
out the LGN excitation in the null direction over a range of velocities. For the propor-
tional amplifier, the setting of the pyramidal-to-pyramidal weight was high enough
to obtain peak firing rates that were compatible with experimental values (Orban et
al., 1981a), but low enough to still have proportional amplification (see Section 3.3).
For the hysteretic amplifier, the weight was high enough to have hysteresis, but low

enough so that inhibition could still turn the network off after stimulation (see Sec-
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Connection strength Peak conductance | Time constants
From To pyramidal  smooth | pyramidal smooth 71 T
FEEDFORWARD
LGN 38.9 10.8 8.65 2.40 4.5 1.8
pyramidal - - - -
smooth GABA 4 45.1 0.39 4.51 0.039 10
smooth GABAg 33.7 3.35 0.211 0.021 80 40
AMPLIFIER
LGN 2.59 10.8 0.576 2.40 4.5 1.8
pyramidal 3.38 - 0.169 - 20
smooth GABA 4 3.34 0.39 0.334 0.039 10
smooth GABAp 2.50 3.35 0.016 0.021 80 40

Table 2.1: Synaptic connectivity of our cortical module for the feedforward and pro-
portional amplifier models. Connections are between all members of the cell types
involved. The connection strength between two neurons is expressed in terms of the
termporal integral over the postsynaptic conductance increase in response to a single
presynaptic action potential, i.e., [ g(¢)dt, in units of pS - sec. The peak conductance
is given in n.S, as well as the synaptic time-constants, 71 and 7, (see eq. 2.3 and 2.4),
in msec. The reversal potentials were 0 mV for all excitatory synapses, —75 mV
for GABA4 and —90 mV for GABAp synapses. All simulations in this paper were
carried out with the same set of parameters.

tions 3.3 and 5.6). For the feedforward model, the LGN-to-pyramidal weight was
large enough to enable model neurons to fire at physiological rates despite the strong

delayed inhibition. Inhibitory connections were set according to the same criterion as

in the cortical amplifier.

2.5.1 Noise

Two external noise sources provide trial-to-trial variability.
Firstly, the geniculate input itself consists of Poisson distributed spikes generated

by the retino-geniculate module (see Section 2.3). Superimposed onto the stimulus
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Connection strength Peak conductance | Time constants
From To | pyramidal smooth | pyramidal smooth T Ty
LGN 0.162 0.67 0.036 0.15 4.5 1.8
pyramidal 0.235 - 0.0117 - 20
smooth GABA 4 0.209 0.024 0.021 0.0024 10
smooth GABAg |  0.156  0.21 0.001 0.0013 80 40

Table 2.2: Synaptic connectivity of our cortical module for the hysteretic amplifier
model. Connections are between all members of the cell types involved. The con-
nection strength between two neurons is expressed in terms of the temporal integral
over the postsynaptic conductance increase in response to a single presynaptic action
potential, i.e. [g(t)dt, in units of pS - sec. The peak conductance (nS), and the
synaptic time-constants, 7, and 7, (in msec; see eq. 2.3 and 2.4), are also given. The
reversal potentials were 0 mV for all excitatory synapses, —75 mV for GABA 4 and
—90 mV for GABAg synapses. All simulations in this paper were carried out with
the same set of parameters.

driven geniculate response is a spontaneous firing activity of 8 Hz (Fig. 2.1d). Since
the LGN weight is larger in the feedforWard model than in the cortical amplifier
model, the fluctuations in the resting somatic membrane potential are higher in the
former case (see Fig. 4.1).

Secondly, some background noise is added to both pyramidal and smooth model
neurons to simulate the effect of spontaneous activity in the numerous cortical neu-
rons outside our network. Noise events are modelled either as conductance changes
or as current injections. Parameters of each conductance change or current injec-
tion function are set so as to model inhibitory (GABA4 or GABAR) or excitatory
non-NMDA synaptic inputs; the locations are the same as for these inputs. In the
pyramidal neurons, we assume that 44% of the noise originates from current injections
and the rest from spontaneous conductance increases (in the proportional amplifier).

There were only conductance increases in the smooth neurons.
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For the feedforward model, the spontaneous firing frequency of the pyramidal and
smooth cells is 0.0464:0.009 Hz and 8.240.2 H z; for the proportional amplifier model,
1.56+0.02 Hz and 8.1 +£0.1 Hz; for the hysteretic amplifier model, 0.126 +0.005 H =z
for the pyramidal neurons, and the same as the other models for the smooth neurons.
Because we wanted to obtain good direction selectivity down to low contrast and low
velocities, the threshold of the pyramidal neurons was higher than that of the smooth

neurons, which explains the lower spontaneous rate of the pyramidal cells.

2.6 Data analysis and special experiments

Standard electrophysiological methods were used for data analyses.

Contrast-Response and Velocity-Response Curves: Contrast-response curves
were obtained from sine wave gratings moving in the preferred direction with optimum
spatial and temporal frequency (1 ¢/deg and 1 Hz), repeated for 26 cycles. Velocity-
response curves were obtained from 0.5° wide bars moving in the preferred direction
with high enough contrast to elicit a strong response (70% contrast), repeated 6 times
with a half-second pause between each presentation. The response measure used was
the peak response, computed from 8 msec binwidth poststimulus time histograms
(PSTHs). Usually PSTHs were summed over all neurons of one group (pyramidal or
smooth) to generate a compound (average) PSTH. The compound peak firing rate

was computed from the compound PSTH as the highest bin in the histogram.

Direction Index: The direction index (DI) was computed from the compound
peak firing rate in the preferred direction, minus the peak spontaneous firing rate

(P), and the compound peak firing rate in the nonpreferred direction, minus the
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peak spontaneous firing rate (NP):
DI =100(1 — NP/P)%. (2.5)

In other words DI = 0 corresponds to a cell that is not at all selective for the direction
of motion while DI = 100% corresponds to a cell that does not fire at all in the cell’s
null direction. Since the spontaneous firing rate is substracted to obtain P and NP,
DI may be larger than 100% if the peak firing rate in the nonpreferred direction is
smaller than the peak spontaneous rate. In one case, DI was computed from the
modulation of the intracellular potential induced by a periodic moving stimulus: in
that case the response (P or N P) was the peak-to-peak amplitude of the modulation
in mV instead of the peak firing rate.

The Mean Direction Index (M DI) is a velocity-averaged direction index. The
average is weighted by the response P; in the preferred direction (Orban, 1984):

r ., BDI
n R ?

=1

MDI = (2.6)

where n is the number of velocities for which the direction index has been computed.

Linearity Test: Ferster and his colleagues (Jagadeesh et al., 1993) carried out an el-
egant set of intracellular experiments in direction-selective simple cells. They showed
that the (somatic) membrane potential signal evoked by a drifting sinusoidal grating
can be predicted from the linear sum of responses to stationary contrast-reversal grat-
ings at several spatial phases, seemingly implying a simple linear feedforward model
of direction-selective simple cells.

The Jagadeesh et al. (1993) linearity test is based on expressing drifting sinusoidal
gratings as sums of eight stationary contrast-reversal gratings at specific spatial and

temporal phases. With w the temporal frequency of the grating and k its spatial
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frequency, simple trigonometry implies

(2.7)

sin(ke + wt) = Zsm /cx-}—nS)-sz'n(wt—%—g:{:n%).

Let R(z) denote the neuron’s somatic membrane potential in response to a stim-
ulus z. If the cell’s response is linear, according to eq. 2.7, the response to a drifting
grating can be predicted from responses to stationary gratings. The predicted re-
sponse can be calculated from the equation:

7
i Z (sm kx + ng) sin(wt + g— F n%)) . (2.8)

Linearity to superposition was assessed for the feedforward and cortical amplifier
models by comparing the response predicted from stationary gratings to the actual
response to drifting gratings.

Practically, fluctuations in somatic transmembrane potential of one neuron in
the model evoked by drifting or stationary contrast-reversal sine gratings (spatial
frequency 1 ¢/deg, temporal frequency 2 Hz) were measured by averaging the response
to 57 cycles of the grating. Action potentials were removed from individual voltage
traces with a median filter (identical to the one used by Jagadeesh et al., 1993) before

averaging. These average potentials were used to perform the linearity test.

Input Conductance: We defined the somatic input conductance as the amplitude
of a small hyperpolarizing current step (injected into the somatic compartment) di-
vided by the resulting change in somatic membrane potential. In practice, we recorded
the somatic membrane potential in one neuron during one particular simulation run
(with a given visual stimulus). We then repeated the identical simulation (including
the same random number seeds) in the presence of the constant current injection and

calculated the somatic input conductance at each time from the difference in these
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two voltage traces. Note that this measure is inaccurate during and immediately after

action potentials, so that it could not be used in the preferred direction.

Blocking GABA: Blocking GABA 4 and GABAg inhibition to all or to one par-
ticular pyramidal neuron in the model is done by simply setting the corresponding
weight to 0.

In one experiment, we blocked inhibition to only one pyramidal neuron in the
model, and measured the direction selectivity index of that neuron before and after
blockade. The experiment was repeated for every pyramidal neuron in the model;
the results were presented as histograms of the distribution of the neurons’ direction
indices before and after blockade, mimicking an experiment in cat area 17 (Nelson
et al., 1994). The stimulus was a standard bar (70% contrast and moving at 2°/sec)
that was repeated 6 times, and the responsre measure was the average number of
spikes produced by a neuron while the stimulus is in the neuron’s receptive field,
corrected for the mean spontaneoﬁs rate. While blocking inhibition in a given cell, a
constant hyperpolarizing current was injected into the cell to bring spontaneous firing
down to values close to the unblocked case. The same manipulation was performed

by (Nelson et al., 1994) to ensure that the neuron’s threshold was not changed by

blocking inhibition.

2.7 Computer implementation

The simulations were carried out on SPARC 2 and 10 UNIX-based workstations. The
program, written in C, was developed by H.S. as part of his Ph.D. thesis. The as-
sociated differential equations were numerically solved using the exponential method
(Wilson and Bower, 1989) with a variable timestep (Press et al., 1992). The shortest

time constant in the system was 0.05 msec, the activation time constant of the tran-
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sient sodium current. The minimum timestep for solving the differential equations
was set to 0.01 msec. On a SPARCstation 10, our program simulated 1 sec of the
proportional amplifier model (with 50 cortical neurons) output for a moving bar in
about 404 sec, not counting the time to simulate the visual input and LGN model
output. The simulation time was approximately linear in the number of neurons,
so that for the hysteretic amplifier the simulation time was approximately 16 times
longer. For instance, producing Fig. 5.7 (see Chapter 6) required about two weeks of

SPARCstation 10 CPU time.

2.8 Summary

We model events occuring in a small network of neurons located in the primary
visual cortex of the adult cat. The cortical network comprises 40 and 640 pyramidal
(excitatory) and 10 and 160 smoooth (inhibitory) neurons for the proportional and
hysteretic amplifiers, respectively. The basic architecture of the cortical amplifier
model is shown in Fig. 2.3. Both proportional and hysteretic amplifiers are similar
except for the values of some parameters. The feedforward model is similar except
that there are no connections between the pyramidal neurons.

Visual input to the cortical network is provided by a one-dimensional retino-
geniculate module, transforming the grating stimulus into a series of spikes mimicking
the output of the geniculate relay cells (Victor, 1987). Spatially, the centers of the
LGN neurons’ receptive fields are positioned at one of six spatial locations which occur
at 5’ intervals (Worgotter and Koch, 1991). Pyramidal neurons in cortex receive input
from the first 5 groups of LGN neurons, and smooth neurons receive input from the
last 5 groups of LGN neurons (see Fig. 2.3). Overall, there is a spatial offset of
5 between input fields of pyramidal and smooth neurons, providing the asymmetry

necessary for direction selectivity.
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The cellular model takes into account the known morphology and biophysics of
visual cortical neurons. In particular, our cells respond to synaptic input with a
stream of discrete all-or-none action potentials, rather than with a continuous firing
rate as in the vast majority of neural network models. Anatomical dimensions of a
representative layer 5 pyramidal neuron and a smooth (basket) cell were obtained by
reconstructing suitable cortical neurons that had been labelled intracellularly with
horseradish peroxidase during in vivo experiments in the anesthetized, adult cat
(Douglas et al., 1991). The 3-D coordinates and diameters of the dendritic arbor
and soma yielded a model with many compartments that was reduced to either three
or four compartments (Douglas and Martin, 1991; Bush and Sejnowski, 1993; Bernan-
der, 1993). Each compartment contains a number of membrane currents, including
synaptic conductance changes. The somatic compartment has Hodgkin-Huxley like
channels that produce action potentials in response to current injection.

Each cortical connection drawn in Fig. 2.3 symbolizes synapses of equal strength
from each neuron of one group to all neurons of the other group. In particular,
pyramids excite each other, and smooth cells inhibit pyramids and each other. In the
current version of the model, we did not include excitatory connections from pyramids
to smooth cells. Excitation is of the non-NMDA or AMPA variety. Inhibition is of two
types, GABAA, or transient, and GABAp, or sustained inhibition. The amplitudes of
synaptic conductances and time constants that govern their behavior have yet to be
determined experimentally in detail for pyramidal and spiny stellate cells in primary

visual cortex. However, estimates from the literature were used to constrain our

model.
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Chapter 3

A simplified theory of cortical
amplification, and the
proportional and hysteretic

amplifiers

3.1 Introduction

The detailed biophysically-based cortical amplifier model is not analytically tractable,
because it is based on a high dimensional system of coupled, nonlinear partial dif-
ferential equations. Nevertheless, it is possible to gain some qualitative insight into
the cortical amplifier model’s behavior through analysis of reduced models (see also
Douglas et al., 1994b). In this chapter, we discuss simplified cortical amplifier models,
by introducing functions that characterize the equilibrium response of the detailed
neuron model, and linearizing these functions; we use these simplifications to solve

for the cortical network’s firing.
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As introduced in Chapter 1, the cortical amplifier model is a circuit that amplifies
the geniculate input to cortex in the preferred direction, through excitatory intra-
cortical connections, and cancels geniculate excitation in the null direction through
inhibition. We refer you to that chapter for the context of the results presented here.

The detailed model itself and the simulation methods are described in Chapter 2.
We describe there the geniculate model we used to provide input to cortex. We refer
you to that chapter for these explanations.

This chapter is about a simplified theory of the operation of the cortical amplifier,
and the two possible amplification modes, depending on the strength of positive
feedback. Both modes were explored using detailed modeling. We have introduced
the parameters and architecture for both models in Chapter 2. The detailed model in
the first mode is called the proportional amplifier model and its response properties
are explored in detail in Chapter 4; the other mode, the hysteretic amplifier, is dealt
with in Chapter 5. In this chapter, we explain the fundamental theoretical differences
between these models, both in their equilibrium responses and dynamics. |

A simplified theory of amplification in cortex at equilibrium is introduced in Sec-
tion 3.2, and the functions that characterize equilibrium behavior are defined and
given, for the proportional amplifier only. Section 3.3 explains the fundamental, defin-
ing difference between proportional and hysteretic amplifiers. Section 3.4 gives for the
hysteretic amplifier the functions that characterize equilibrium response. Section 3.5
derives a simplified equation for the network dynamics by using a linear approxima-
tion for the characterizing functions. We will use this equation in Sections 4.5 and 5.6.
Section 3.6 gives an equation for the dynamics that is valid even in the presence of
nonlinearities in the functions that characterize equilibrium behavior, and gives us
some intuition into the influence of nonlinearities on the network dynamics. In the
last section of the chapter, Section 3.7, we present a simplified nonlinear dynamical

model that gets input from the same LGN model as the detailed model. We name
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this model, somewhat whimsically, DYNAMO.

3.2 Neuronal responses at equilibrium and the
proportional amplifier

In the present section, we introduce functions that characterize the equilibrium re-
sponse of the detailed neuron model, and by linearizing these functions we solve for the
cortical network’s firing. This section is only about the proportional amplifier, one of
the parameter conditions of the detailed model (see Section 2.5). The corresponding
characterization at equilibrium for the hysteretic amplifier is in Section 3.4.

When a constant current is injected into the soma of a single pyramidal cell, the
neuron responds with a stream of action potentials. The relationship between the
current’s amplitude I and the resulting spiking frequency F is known as the current-
discharge curve F = Fj(I). Initially during stimulation, this curve is steep. How-
ever, due to accumulation of calcium and resulting activation of a calcium-dependent
potassium current (adaptation), the slope is later much reduced. The time constant
of this adaptation is 15— 50 msec (Ahmed et al., 1995). The unadapted and adapted
current-discharge relations of a typical model pyramidal cell are shown in Fig. 3.1a.
The slope of the adapted curve is 112 Hz/nA for the first nA of input currents. The
F; function is not strictly linear because of refractoriness and other nonlinearities, but
for the qualitative purposes of the following discussion, the F; curve can be considered
linear. For the moment, let us ignore adaptation. We will see later, however, that
adaptation is important for fully understanding the dynamics of the network (see
Sections 4.5 and 4.8).

At the heart of the Canonical Microcircuit is massive, recurrent excitatory feed-

back, characterized by Irec, the function relating the input frequency of all excitatory,
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Figure 3.1: Steady-state relationships in the proportional amplifier. We
illustrate here a number of steady-state relationships for pyramidal neurons in the
proportional amplifier model, obtained by injecting constant current pulses into the
pyramidal neurons only (in the absence of inhibition or geniculate input). Panels
(a) and (b) are concerned with single-cell properties, and panels (c) and (d) describe
attributes of the whole network. (a) I,.. (dashed line), and the adapted (A) and
unadapted (UA) current-discharge curves F;(I). All curves have been shifted, with
zero current corresponding to the current threshold (rheobase). (b) Pyramidal output
firing rate as a function of the input firing rate (F'(f) of eq. 3.1; dashed line), as
compared against a line of slope one. (c) The cortical amplifier’s maintained firing
rate as a function of the sustained input current injected into all pyramidal neurons.
(d) The cortical amplifier’s firing rate gain, defined as the ratio of the pyramids
maintained firing rate in the cortical amplifier to the pyramidal cell’s firing rate f in
the absence of any recurrent connections, as a function of f. Note that amplification
is much larger at low input values.
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cortico-cortical synaptic inputs to a pyramidal cell (all assumed to fire at the same,
constant frequency) to the maintained current flowing from these synapses into the
soma. I, is estimated indirectly: a certain constant current is injected into the soma
of all pyramidal neurons connected in the cortical amplifier conﬁgurafion (in the ab-
sence of any inhibition), and their maintained firing rate is noted. The total current
producing that firing rate is estimated from the adapted current-discharge curve, and
the injected current is substracted from the total current to yield the contribution
from recurrent excitatory connections. It is sometimes more convenient to display
the inverse of [,.. (Fig. 3.1a).

The adapted F; and I,.. can be used to compute the maintained output firing rate
F(f) in the pyramidal neurons that will result from activating the excitatory cortico-
cortical synapses at a given input rate f, in the absence of inhibitory or geniculate

input (a single-cell function; Fig. 3.1b):
F(f) = Fi(Lree(f)) - (3.1)

Operationally, this current is obtained by clamping the presynaptic firing frequency
of all cortico-cortical fibers at f and then computing the resulting discharge rate of
the pyramidal cells (in the absence of any further feedback).

We can use these relationships to estimate the discharge frequency of the pyrami-
dal cells at equilibrium. It is defined implicitely by the requirement that the current-
discharge curve, appiied to the sum of the input current I;,, (delivered to all pyramidal
neurons either by the LGN or via an intracellular electrode) and the recurrent current
must be equal to the discharge frequency. In other words, the discharge rate f must

satisfy (see also Fig. 3.3):
f = E(Im + [rec(f)) . (32)

This equation is difficult to solve analytically because of the nonlinearities present
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in F; and [I,... However, it can be solved if F; and I,.. are linearized as in:
Fi(I)= kg (I - Ir), I7 : threshold (3.3)
and

]Tec(f) = krecf . (34)

From eq. 3.2, the pyramidal neuron discharge rate at equilibrium is now:

k
f = 1 _Fla(Iin - IT)? (35)

where a = kf k... is the slope of F(f). Since the firing frequency must be positive,
we must have a < 1 for this equation to be valid. As we can see from Fig. 3.1b, this
condition is satisfied for the proportional amplifier model. Linearization implies that
the steady-state firing rate is linear in the input current. As witnessed by Fig. 3.1c,
this holds only approximately. |

Another important steady-state function is the firing rate gain G(f). It is given
by the pyramidal neuron’s maintained firing rate for the cortical amplifier divided by
the pyramid firing rate in the absence of any excitatory cortico-cortical connections
and is expressed as a function of firing rate in the absence of excitatory cortico-cortical
connections f. G(f) measures the effectiveness of the recurrent connections in driving
the pyramidal neurons, relative to the LGN input.

In the linear approximation, the firing frequency in the absence of recurrent con-

nections is given by replacing I by I;,, in eq. 3.3, resulting in a firing rate gain:

G(f) = - (3.6)

As a increases from 0, GG increases, eventually diverging as o — 1.
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The cortical amplifier’s behavior is qualitatively similar, although its gain is not
independent of the input current (Fig. 3.1d). At low firing rates, G(f) is large,
because the slope of F(f) is very close to 1 (see Fig. 3.1b), but for larger inputs
the slope of F'(f) decreases and so does the gain of the cortical amplifier model
(recall that « is the average slope of F(f)). This variation in gain can be traced
to saturation in the F; curve as well as in I,..., which originate for our model in
the biophysics of spike production by Hodgkin and Huxley-like currents, as well as
saturation of the excitatory driving potential in dendritic compartments. So the name
"proportional amplifier” is, in part only, a misnomer. But we will see in Section 3.4
that the hysteretic émpliﬁer is much more nonlinear; in comparison, the proportional
amplifier amplifies rather linearly. But especially, the contrast-response curve of the
proportional amplifier model is quite linear at low contrasts (see Section 4.3).

Since F(f) arises from the combination of the F; and I,.. curves, G(f) can be
increased by adjusting the slope of F(f) to be close to 1 by changing the slope of
either one of these. Increasing the éxcitatory cortico-cortical connection weight will
increase the slope of the /.. curve and so also the slope of F(f).

We conclude that the proportional amplifier’s action on steady stimuli is moder-
ately nonlinear amplification, which can be roughly approximated by linear, propor-

tional amplification.

3.3 Proportional and hysteretic amplifiers

Despite strong positive feedback in the network, the proportional amplifier described
in the previous section has no trouble turning off once the LGN input returns to the
resting level. The explanation lies in eq. 3.5. As long as the input current is smaller
than the neuron’s threshold, the pyramidal neurons do not fire.

However, in the other parameter condition described in Section 2.5, called the hys-
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Figure 3.2: Hysteresis in the hysteretic amplifier. PST histogram of pyramidal
neurons in the hysteretic amplifier model in response to the injection of two consec-
utive pulses of current (shown below the PSTH). The first pulse (upper pulse) was
injected at time ¢ = 200 msec in all pyramidal neurons, while the second pulse (lower
pulse) was injected in the smooth cells at time ¢ = 400 msec. Discharge persists in
the pyramidal neurons after the initiating pulse has been withdrawn, meaning that
hysteresis is present in the system. However, inhibition resulting from the activation
of the smooth cells by the second pulse resets the network to its initial silent state.
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teretic amplifier model, the situation is different, as shown in Fig. 3.2. The stimulus
used in this case is injection of a pulse of current in all pyramidal neurons, followed
by the delayed injection of a second pulse in all smooth neurons; we plot a PST
histogram of the response of pyramidal neurons in the model. Surprisingly, model
neurons do not stop discharging at the end of initial pulse, and fire instead in the
absence of any stimulus until reset by the pulse injected into the smooth neurons. In
other words, the model shows hysteresis.

This phenomenon can be understood graphically by looking at Fig. 3.3. The upper
panel shows that the steady-state pyramidal neuron firing rate is the firing rate for
which the horizontal separation between the two curves I,.. and F; is equal to I;, (a
graphical interpretation of eq. 3.2). For zero input, the equilibrium firing or attractor
is 0 Hz, since that is the firing for which the two curves cross. So the network turns
off without input. The condition depicted in this panel is similar to the situation in
the proportional amplifier model (Fig. 3.1a): the initial slope of I, is larger than
that of Fi: El;: > kp,. If the converse is true, we obtain the situation depicted in
Fig. 3.3b. There are now three crossing points. Although there is still an attractor
at 0 Hz as long as the threshold is nonzero (since the curves still cross there), in
addition there is an attractor for zero input corresponding to the firing rate at the
upper crossing of the two curves; the middle crossing point is not stable. Therefore,
the system of Panel b can fire without any input. In Fig. 3.4a, we will see that the
cortical amplifier model operates in the mode of Fig. 3.3b. This explains that the
model can fire without any input as in Fig. 3.2. However, in most conditions the
model does not fire in the absence of any input, for instance for bar stimuli. We will
explain this behavior later (see Section 5.6).

We now show that the hysteretic amplifier’s equilibrium relationships are indeed

as in Fig. 3.3b.
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Figure 3.3: Determining the steady-state discharge frequency. We represent
here schematically the relations that determine the steady-state discharge frequency
of pyramidal neurons in the cortical amplifier model. (a) For a given input current
I, (vertical arrow), steady-state occurs at the firing rate (horizontal arrow) for which
the horizontal separation between the two curves I,.. and F; is equal to I,. In the
absence of excitatory feedback, the firing rate is lower (follow the vertical arrow up
to the f axis). (b) A steeper F; will intersect I,... In that case, sustained discharge
in the absence of any input is possible, at the firing rate indicated by the horizontal
arrow. In particular, even if the network initially does not fire, any small input will
cause it to reach that high sustained firing rate; even if the input is then withdrawn,

it will maintain the high discharge frequency (hysteretic mode).
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3.4 Hysteretic amplifier at equilibrium

In this section, we describe the steady-state functions of the hysteretic amplifier
model. These functions were already defined in Section 3.2. The unadapted and
adapted current-discharge relations F; of a typical model pyramidal cell are shown in
Fig. 3.4a, together with the recurrent current function I,... We note that the initial
slope of F; is larger than that of I,.. (in the linear approximation, E{I < kr,), as in
Fig. 3.3b, reflecting the fundamental difference between proportional and hysteretic
amplifier models. This corresponds in the network’s steady-state transfer function
F(f) to an initial slope that is larger than one (Fig. 3.4b): in the linear approximation,
a > 1.

For simplicity, we define the threshold current of the neuron’s f-I curve as “zero”
input current for all these characteristics.

Injecting a constant current into all pyramidal neurons in the model and plotting
the resulting firing rate at steady-state results in the equilibrium response function
shown in Fig. 3.4c, that is related to I,.. and F; by eq. 3.2. Since there is an at-
tractor at a high firing rate, the network will reach that firing rate for even a small
suprathreshold input (note that the thresholds are normalized to 0 in Fig. 3.4). When
increasing the input current further, the firing rate rises rather slowly, because of com-
pressive nonlinearities in both I,.. and F'(f). The response is much more nonlinear
than for the proportional amplifier (Section 3.2).

The gain function is plotted in Fig. 3.4. The amplification is subtantial, espe-
cially at low inputs; for very small inputs, the amplification becomes extremely large,
because of the large response to any small current injection that nudges the system
to the high firing attractor (see Section 5.6 for a more detailed explanation of the
hysteretic amplifier’s responses to the injection of current pulses).

We conclude that the hysteretic amplifier’s action on steady stimuli is character-
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Figure 3.4: Steady-state relationships in the hysteretic amplifier. We il-

lustrate here a number of steady-state relationships for pyramidal neurons in the
hysteretic amplifier model, obtained by injecting constant current pulses into the
pyramidal neurons only (in the absence of inhibition or geniculate input). Panels
(a) and (b) are concerned with single-cell properties, and panels (c) and (d) describe
attributes of the whole network. (a) I.. (dashed line), and the adapted (A) and
unadapted (UA) current-discharge curves F;(I). All curves have been shifted, with
zero current corresponding to the current threshold (rheobase). (b) Pyramidal out-
put firing rate as a function of the input firing rate (F(f) of eq. 3.1; dashed line), as
compared against a line of slope one. (c) The cortical amplifier’s maintained firing
rate as a function of the sustained input current injected into all pyramidal neurons.
(d) The cortical amplifier’s firing rate gain, defined as the ratio of the pyramids main-
tained firing rate in the cortical amplifier to the pyramidal cell’s firing rate f in the
absence of any recurrent connections, as a function of f.
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ized by highly nonlinear amplification.

3.5 A linear neuronal dynamical equation

Moving stimuli are not steady stimuli, and the cortical amplifier model will generally
not reach equilibrium firing when responding to them. Therefore, it is important
to understand the dynamics of the cortical amplifier model to predict how much
amplification can be achieved under these conditions.

In this section, we derive a simplified equation for the network dynamics by using
a linear approximation for the characterizing functions F; and I.... We will use this
equation in Sections 4.5 and 5.6.

We can write the firing rate of the pyramidal neurons as:
f = E(Im + Irec(f)) . (37)

Although I+ was considered a static, equilibrium function earlier, it can be general-
ized into a filter that gives the time-varying synaptic current for a given time-varying

pyramidal neuron firing rate. Its transfer function is then mainly that of the synapse.

Expression for I,.. The postsynaptic conductance at the synapse between pyra-
midal neurons, G,(t) (pp stands for pyramidal to pyramidal), for an arbitrary presy-
naptic firing rate function f(¢), is a scaling constant g,, times the elementary synaptic

function GY, convolved with the presynaptic firing rate function f(#):

Gpp(t) = gppGgp * f(2). (3.8)
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We have the following expression for the elementary synaptic function between pyra-

midal neurons (see Section 2.5):

1
GO, = ——e7tmvn (3.9)

Tsyn

with 75y, = 20 msec. Making the simplifying assumption that the compartmen-
tal voltages are constant, and that current flowing through the synapses propagates
instantaneously to the soma, the postsynaptic current, I,.., is proportional to the
postsynaptic conductance, so it can be written using a similar formula but changing

the scaling constant g,,. It turns out that this scaling constant is k.. from eq. 3.4:
Lrec(t) = krec Gy * f(2). (3.10)

Expression for I;, We now seek an expression for I;,, which lumps all current
inputs that do not come from the pyramids. Potentially, it arises from two sources, one
excitatory, the other inhibitory: the LGN 'a,nd the smooth cells. We will make another
simplifying assumption: that the elementary synaptic function of both inhibition and

LGN input are the same as GG ,. We can then write a similar expression to eq. 3.10:

Lin(t) = wip Gy, + fi(t) — wyy p,,*fz()» (3.11)

where the weight of the connection and firing rates are wy, and fi(t), and w,, and
fi(t) for the LGN neurons and smooth neurons, respectively (Ip stands for LGN to
pyramidal, and ¢p for inhibitory to pyramidal). The terms wy,fi(t) and wy, fi(t) have
the dimension of currents, and so we will name them LGN and inhibitory currents

respectively (I; and ;). Note, however, that they are not exactly the currents injected,
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because they are just scaled copies of the firing rates. So we now have the equation:
Iin(t) = G+ (I(t) — Li(2)) . (3.12)

Integral and differential equations Going back to eq. 3.7, we linearize F; as in

eq. 3.3, and we now have a linear integral equation for the dynamics of the network:
F(8) = kGO, (I(t) = Ii() — I + af (1)), (3.13)

where we substituted a from eq. 3.5. We can transform this equation into a differential
equation. Assuming that the initial conditions are rest (f(t) = 0, —oco < t < 0), we

will show that the differential equation corresponding to eq. 3.13 is:
df |
Tsy"ﬁ = —f+af+kF,-(Il—'Ii‘—IT)- (314)
To show that, we first multiply Equation 3.14 by (1/7,,,)e!/msvn:

df | |
t/Tsyn___ — t/Tsyn t/'rsyn _ _ ] - .
¢ dt Tsyn) ‘ f + Tsyn ‘ (af + kR(Il L ]T)) : (3 15)

Rearranging this equation we get:

d 1
E(et/ﬁunf) = T__ef/fwn(af + kp (L — I — Ir)). (3.16)
syn

Integrating from 0 to 7' we get:

eT/T“’"f(T) — /T 1 et/‘rsy"(af + kF. (]1 — L — IT))dt . (317)

0 Tsyn
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Rearranging this equation we get:

T 1
f(T) — /0 - e—(T"i)/Tsyn(af + kF,-([l — I, — [T))dt (318)
Isyn

That is exactly Equation 3.13. Equation 3.14 is a simplified description of the dy-

namics of the cortical amplifier model.

Proportional amplifier case For the proportional amplifier, a < 1 (see Sec-

tion 3.2). We can rewrite eq. 3.14 as:

Tsyn df kF‘
Tom Y _ (L~ — Ip). 1
1 —adt f+1—a(1 li=1Ir) (3:.19)

This equation describes a linear system with an impulse response of:
= (3.20)

The pyramid firing rate f settles to steady-state with a certain time constant, the
network’s time constant 7., = 75y,/(1—a). In conditions where there is amplification
of the input, i.e., when « is slightly smaller than 1, the network’s time constant

becomes much larger than Teyn. We will use this equation in Section 4.5.

Hysteretic amplifier case For the hysteretic amplifier, @ > 1 (see Section 3.4).

We can rewrite eq. 3.14 as:

T}yn féf _ jT—F k}%

N (=L~ I). (3.21)

This equation describes a linear system with an impulse response of:

/55 (3.22)
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The pyramid firing rate f increases (or decreases, depending on the sign of I, —
I; — I7) exponentially with a certain time constant, the network’s time constant
Tnet = Tsyn/(@—1). When « is only slightly larger than 1, the network’s time constant

becomes much larger than 7,,,. We will use this equation in Section 5.6.

3.6 A simplified nonlinear neuronal dynamical equa-
tion

an implicit equation for the dynamics of the nonlinear case In this section,
we will try to understand how the nonlinear shape of the F'(f) changes the speed of
the dynamics of the detailed model.

Starting from the equations:

f=Fi(Iiot) (3.23)

‘where: F; is f-I curve and [, is the total input current to the neuron. The current

in steady-state is (valid only approximately: conductances interact nonlinearly):
-[tot = Irec(f) + Il,i (324)

Lr¢c:. current from the excitatory p-p connections; I;;: sum of LGN and smooth
neuron current. This equation should hold also dynamically (note that G9.(t) - see

Equation 3.9 - is a normalized function, such that Ggp* Jo = fo where fy is a constant):
Itot = Irec(Ggp * f) + Il,i(t) (325)

By expanding I,.. to the first term of its Taylor series around Ggp * f (derivative k,.),

one can see that the following equation is approximately equivalent to the previous
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one:
Ii(t
Lyt = Irec(Ggp * f + 2 ( )) (326)
Now, we take ], ;(¢) such that:
(GO, * 12)(t) = Li(1) (3.27)

This deconvolution can be done in the Fourier domain:

[14(w) = Tayn(—— + jw) 1 4(w) (3.28)

syn

where I ;(w) is the Fourier transform of I(1), I ;(w) is the Fourier transform of I;;(¢),
and 1/(7syn(1/7syn + jw)) is the Fourier transform of GY,. Using the newly defined

1,.(t) we get:

It
Lot = Lo Gy + (f + Z—())) (3.29)
Since F(f) = Fi(lree(f)) we get:
It
f=FGS «(f+ ;c( ))) (3.30)
Or: )
I(t
F7U(f) =G * (f + ]’C'( )) (3.31)
As before (see equation 3.13) the corresponding differential equation is:
dF-1 (¢
rsyn—————dt(f ) - ~FH )+ f+ —]’C—L—) (3.32)

This equation can be transformed into an integral equation by integrating on both

sides, from time 0, for which the system is assumed to be at rest (f=0), to time T,
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which is an arbitrary time for which we would like to know the firing rate f(T):

A

/oT dF;z;(f)dt B 'Tslyn /OT(f = (F7H(f) - [Zﬁ)))dt | (3.33)
Since )
[ e = p0ry) - o) (3:34)

and if we define F='(0) as fi,, the firing rate threshold of the F(f) curve, we can

write the final equation as:

1

f(T)=F [fmr + [ = ) - B (3.35)

Tsyn

finr: threshold of the F(f); F(f) = Fi(l )

interpretation: area between f and F(f) Thisequation gives us an understand-
ing of the influence of the shape of F/(f) and the amount of input on the dynamics.
We assume here that the initial slope of F(f) is larger than 1, so that we are in the

hysteretic amplifier case. The term:

f=(F ) == : ) (3.36)

in Equation 3.35, is the distance between f = f (line of slope 1) and the F(f) curve
translated by the amount of input. So the equation giving the firing reached is (F(f)
of) the F(f) threshold plus the area between f = f (line of slope 1) and the F(f)
curve translated by the amount of input, integrated over time. So the larger that
area, the faster the dynamics. In particular, if the F'(f) is very concave (very steep

initially then flattens out), the dynamics are faster than if the F'(f) is rather straight.
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3.7 A simpliﬁed nonlinear dynamical model: halfway

to the detailed models

This section describes a simple nonlinear dynamical model that reproduces many of
the properties of the detailed models, and has been used extensively in this research
project to gain insights into the canonical microcircuit’s properties. We call this
model DYNAMO (DYNAmical MOdel).

In this model, the detailed models are reduced to simulating only two "neurons,”
one pyramidal neuron and one smooth cell. The output of each simplified neuron is
firing rate instead of spikes as in the detailed model, and represents the average firing
rate of the corresponding neuron population in the detailed models. Input to the
model is provided by the same LGN model as in the detailed models, but generation
of Poisson spikes is turned off. Synapses in this model are implemented using the same
transfer functions as in the detailed model, but the input to the synapses is firing rate
instead of sums of spikes. From the resulting conductance change, an input current
can be calculated using a lookup table for either the voltages in the compartments
of the detailed model or the recurrent current function I.... Inhibitory current is
calculated independently from excitatory current and assumed to sum linearly with
excitation. From the total current calculated in this way, the firing rate is calculated
using a lookup table for the current-discharge curve of the detailed model.

Other features of this model are as follows:

e the presence of the membrane and the membrane time constant of the detailed
model are not mimicked in this model; these are rather minor determinants of

the network model’s dynamical behavior

o the presence of adaptation and the resulting variations in the f-I curve with

time are not mimicked either.
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We now describe the DYNAMO model neuron for the special case of one type
of synaptic input. We will assume that this one synapse corresponds to the synapse
from the neuron onto itself. In the full DYNAMO model, there are also synapses
from the LGN and smooth neurons, implemented using the same synaptic filters as

in the detailed models. Again, it is assumed that currents produced by the synapses

sum linearly.

The DYNAMO model consists of a series of differential equations, equations and
tables. The output from the DYNAMO model is produced by solving these equations
in discrete time, as when solving a differential equation.

We start from the equations:

f = Fi(li) (3.37)

f: firing of the DYNAMO model neuron; F;: f-I curve; I,.;: total input current to
the neuron. The f-I curve from the detailed compartmental model is incorporated
directly in the DYNAMO model to calculate its output firing rate at the current
timestep. We can measure the f-I curve of the detailed compartmental model as a
series of current-firing pairs of numbers. Keeping these in a table, we can interpolate
linearly between them to get the firing for any input current. We will now describe
how to obtain [;,; for DYNAMO.

In this simplified case, the total current to the neuron is just the synaptic current

from the one synapse, the recurrent pyramidal synapse:

]tot = I’rec(f,t) (3.38)

I et current from the connection of the DYNAMO model neuron to itself. The form

of I,.. is:

Liee(f1) = Gop(f,t)(V = Erer) (3.39)
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G,p: postsynaptic conductance for the synapse from the DYNAMO model neuron
to itself; V: voltage of the DYNAMO model neuron; FE.,.,: reversal potential of the
synapse. The reversal potential of the synapse is the same as in the detailed com-
partmental model. In general, I,; is a nonlinear function. This equation can be
calculated in two different ways. The functional form of I...(f) for constant f has
been measured for the detailed model. G,,(f,?) reduces to f for time-independent f.
We can assume that the entire time-dependency of I... is in Gy,, calculate G}, at each
timestep, and find I,.. by using the steady recurrent function measured previously as
a lookup table and the current value of GG, as the f value in this lookup table.

An alternative way is to compute a voltage substitute in DYNAMO, using another
lookup table. In the compartmental neuron, the average voltage in any compartment
varies with firing rate quite a lot, because of the presence of the spiking. The higher
the firing rate, the higher the voltage because each spiking event increases the average
potential. It is important to take into account this voltage variation with firing rate,
since it affects the amount of current flowing through the synapses. The voltage of the
DYNAMO model neuron allows us to take into account that voltage variation with
firing rate. We can measure the average voltage in any compartment from the detailed
compartmental model as a series of voltage-firing rate pairs of numbers. Keeping these
in a table, we can interpolate linearly between them to get the average voltage for
any input firing rate. The procedure is then to use the firing rate calculated at the
previous timestep for the DYNAMO model to calculate the model’s voltage at the
current timestep! We assume of course that the timestep is small enough so that the
firing rate is not varying very much.

The last remaining variable that needs to be calculated is G,,. It is calculated
exactly as in the detailed model.

The postsynaptic conductance G,,, for an arbitrary presynaptic firing rate func-

tion f(t), is a scaling constant g,, times the elementary synaptic function Gy, con-
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volved with the DYNAMO model neuron firing rate f(#):
Gpp = gppGgp * f(t) (3.40)

f(t): firing rate of the DYNAMO model neuron as a function of time. g,,: synaptic
weight.
That concludes the description of the DYNAMO model. We will use this model

in Section 7.3.2.

3.8 Summary

We have shown that amplification at equilibrium in the cortical amplifier model can
be analyzed and understood through a series of steady-state characterizing functions.
This analysis allowed us to pinpoint the difference between proportional and hysteretic
amplifier models. Historically, in the course of this research project, these functions
have been crucial for the design of the proportional amplifier model.

We have also developed simplified, linear differental equations for the dynamics
of the models, which appear to show that the hysteretic and proportional amplifier
models are very different. These equations will be important to understand the re-
sponses of the models to transient stimuli. However, we will see later (see Sections 4.8
and 4.5) that the dynamics of the proportional amplifier model are more similar to
those of the hysteretic amplifier than suggested in this chapter, because of adaptation:
the adapted current-discharge curve does not reflect the current-discharge curve of
the proportional amplifier model during the initial portion of the response.

We also provide some insight into the influence of nonlinearities on the model’s
dynamics. Under some conditions, they shorten the time constant. These nonlinear-

ities can be incorporated into a simplified dynamical model, also called DYNAMO.
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Historically, in the course of this research project, this model has been important to
develop intuition and understanding of the models, since it can be simulated numer-

ically much faster than the detailed models and often gives comparable results.
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Chapter 4

Direction selectivity through

proportional amplification

4.1 Introduction

In this chapter, we investigate the response properties and functioning of the cortical
amplifier model in one of its two parameter regimes, proportional amplification, in
comparison to a strictly feedforward model.

As introduced in Chapter 1, the cortical amplifier model is a detailed simulation
of a circuit that amplifies the geniculate input to cortex in the preferred direction,
through excitatory intracortical connections, and cancels geniculate excitation in the
null direction through inhibition. We refer you to that chapter for the context of the
results presented here.

The detailed models and the simulation methods are described in Chapter 2. We
describe there the geniculate model we used to provide input to cortex. We refer you
to that chapter for these explanations.

The proportional amplification mode occurs in the presence of moderate posi-
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tive feedback. We refer you to Chapter 3 for a detailed explanation about the two
modes of operation, and to Chapter 5 for a treatment of the other mode, hysteretic
amplification.

First, Section 4.2 gives an overview of the model’s basic properties, showing that
it indeed amplifies the input strongly, and that in the null direction the model’s input
conductance changes only slightly, in agreement with intracellular data. Sections 4.3
and 4.4 show the model’s responses versus contrast and velocity. Section 4.5 derives
some expressions for the proportional amplifier’s dynamics and uses these to explain
the shape of the velocity-response curve. Section 4.6 describes the outcome of some
GABA-blocking exberiments for the model that show remarkable aggreement with
physiology and generate experimentally testable predictions. Section 4.7 does the
same for a grating superposition test. Next, Section 4.8 make the point that adapta-
tion is crucial to obtaining a sufficient response in the presence of the small spatial
offset between pyrarﬁidal and smooth neurons that is necessary for direction selectiv-
ity. Finally, Section 4.9 discusses the significance of these results within the context

of current knowledge about striate cortex.

4.2 Basic performance

The salient features of the cortical amplifier model’s performance in the context of
direction selectivity can be seen in Fig. 4.1, which shows the somatic transmembrane
potential of a typical model pyramidal neuron during presentation of a bar moving in
the preferred (left-to-right direction on Fig. 2.3) and null directions. The pyramidal
cell is strongly direction-selective: it generates a burst of spikes in the preferred
direction, but only a single spike in the null direction (given a spontaneous activity of
1.5 Hz, we expect 3 spikes to occur during this 2 second period). We conclude that
the smooth-to-pyramidal weight is large enough relative to the LGN-to-pyramidal
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Figure 4.1: Intracellular membrane potential in the preferred and null di-
rections. Somatic potential for a pyramidal neuron in the cortical amplifier model in
the presence of a 70 % contrast bar moving at 2°/sec in the (a) preferred and (b) null
direction. The same responses are shown in (c) and (d) for the feedforward model.
Intracellular recordings from a neuron in primary visual cortex in the anesthetized
cat (Douglas et al., 1991) during stimulation by a bar moving at 3°/sec in the (e)
preferred and (f) null direction. Note in all conditions the presence of more spikes
in the preferred direction than in the null direction. The variablity of the membrane
potential is larger in the feedforward model (see Section 2.5.1).
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weight so that the inhibition completely cancels LGN excitation in the null direction.

In the preferred direction the stimulus reaches the smooth neuron’s receptive field
after stimulating the pyramidal neurons, so that the spike discharge in the preferred
direcﬁon is followed by pronounced hyperpolarization, as observed in intracellular
recordings from cat visual cortex (Fig. 4.1e; Benevento et al., 1972; Creutzfeldt et al.,
1974; Ferster, 1988; Douglas et al., 1991). Our simulations show that this hyperpolar-
ization is not solely caused by inhibitory input from the smooth neurons. There are
contributions also from the calcium-dependent potassium current that was activated
during the spike discharge, and from the withdrawal of spontaneous LGN activity as
the stimulus enters the LGN neurons’ surround subfield.

During null stimulation, our cortical amplifier feedback model shows only mod-
erate hyperpolarization (Fig. 4.1b), as observed in the recordings from cat cortex
(Fig. 4.1f). Indeed, the smooth-to-pyramidal weight is relatively small. It can be
that small without a reduction in direction selectivity because the LGN-to-pyramidal
weight itself is small.

The intracellular response of the feedforward model shows very strong hyperpo-
larization both in the preferred and null directions (Fig. 4.1c and Fig. 4.1d), because
the smooth-to-pyramidal weight is much larger. It has to be larger because the LGN-
to-pyramidal weight is also larger.

The response of all 50 cortical neurons of the cortical amplifier model to the
same stimulus is summarized in the raster plot of Fig. 4.2. For each trial, every
horizontal row shows the spikes in one model neuron as dots, with one row for each of
the 50 neurons in the model. Poststimulus time histograms (PSTHs) for pyramidal
and smooth neurons in the cortical amplifier and feedforward models are shown in
Fig. 4.3. All the pyramidal neurons show strong direction selectivity, while the smooth
neurons respond equally in both directions. Some features of the direction selectivity

mechanism are apparent from these plots. In the null direction the smooth cells receive
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Figure 4.2: Spike raster plots for the cortical amplifier. Response of the
pyramidal and smooth neuron population to a 70% contrast bar moving at 2°/sec in
(a) the preferred and (b) the null direction of motion. Three trials are shown for each
direction. The first 40 rows in each trace indicate spiking activity in the pyramidal
cells. The continuous bar just below these rows indicates when the stimulus is within
the receptive fields of the LGN inputs to the pyramidal cells. The ten rows below
the bar correspond to firing activity in the 10 interneurons. Note the strong direction
selectivity of the pyramidal neurons, whereas the smooth neurons are not direction-
selective. However, this is not an essential feature of our model. The spontaneous
activity in the interneurons is approximately five times higher than the spontaneous
activity in the pyramidal cells.
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Figure 4.3: PSTHs for the preferred and null direction. The post-stimulus
time histograms (PSTHs) for model neurons to a 70% contrast bar moving at 2°/sec
in the preferred and null direction of motion. PSTHs are computed by summing
together the discharge from all pyramidal or smooth neurons (see also Section 2.6).
The PSTHs for the cortical amplifier model in the (a) preferred and in the (b) null
direction (continuous: pyramidal neurons; dashed: smoooth neurons). The PSTHs
for the feedforward model for (c¢) motion in the preferred and (d) in the null direction.
Peak firing rates of the interneurons are two to three times higher than the peak firing
rates of the pyramidal cells.
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Figure 4.4: Profile of the pyramidal neurons’ excitatory subfield. Peak
response of the pyramidal neurons to a thin (2’) bar stimulus as a function of its
position in their receptive field. Position 0° is arbitrary, and corresponds to the
center of the receptive field of the LGN neurons that are at the first spatial position
(leftmost in Fig. 2.3). The width of the positive response is about 0.2°.

LGN input before the pyramidal neurons because the LGN input to the smooth cells
is spatially displaced with respect to that of the pyramidal cells: the spatial offset is
5 and the bar speed is 2°/sec, corresponding to a pyramidal neuron delay of about
42 msec. Thus, in the null direction, the smooth cells are able to prevent any firing
in the pyramidal cells. However, in the preferred direction the pyramidal neurons
begin their discharge before the smooth cells and so the cortical amplification loop
activates.

In the preferred direction, the pyramidal neurons stop firing before the stimulus
leaves their receptive field, because of inhibitory input from the smooth neurons,
combined with the effect of high threshold and calcium-dependent adaptation.

After discharging, the smooth neurons are suppressed when the stimulus enters
their LGN neurons’ surrounds. Subsequently, some discharge occurs due to rebound
as the stimulus leaves the surrounds. There is little late discharge in the pyramidal

neurons because they have a higher threshold.
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Figure 4.5: Current amplification in the preferred direction in the corti-
cal amplifier. (a) Excitatory cortico-cortical current (solid line) compared to that
arriving from the LGN afferents (dotted bold line), for a pyramidal neuron of the
cortical amplifier model during stimulation by a 70% contrast bar moving at 2°/sec
in the preferred direction. The time course of the geniculate current is essentially
given by the passage of the bar over the ON portion of the single subfield. (b) We
here plot the same, excitatory cortico-cortical current (solid line) compared to the net
input current (dotted bold line; see also Fig. 4.9d), defined as the difference between
the excitatory current due to the geniculate input and the combined (GABA 4 plus

GABAQg) inhibitory currents to the pyramidal neuron.

A receptive field profile can be measured for the model, by flashing a thin (2') bar
on and plotting the peak response to this stimulus as a function of its spatial position
(Fig.‘ 4.4). The width of the pdsitive response is about 0.2°; assuming that the
inhibitory subfield corresponding to the action of the smooth neurons has a similar
width, our estimate of the receptive field wavelength is 0.4°. This is rather small
compared to simple cell receptive field profiles (for instance, see Baker and Cynader,
1986). |

High signal amplification is achieved within the canonical microcircuit. Fig. 4.5a

compares the excitatory recurrent current to a pyramidal cell with the excitatory
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current induced by the LGN afferents for a bar moving in the preferred direction.
Clearly the dominating excitatory input during response originates from other corti-
cal neurons rather than the LGN. The LGN-to-pyramidal synaptic weight is small;
nevertheless, the pyramidal neurons discharge strongly because of the current con-
tributed by the connections between the pyramidal neurons. However, the LGN
current is not the input signal being amplified by the network of pyramidal neurons.
Instead, the total input signal to the pyramidal neurons is the LGN input current
minus the total inhibitory current contributed by all smooth neurons: the net input
current. This current is shown together with the LGN current in Fig. 4.5b, for the
same stimulus as Fig. 4.5a. Initially, the net input current is positive because in the
preferred direction the LGN current precedes the inhibitory current. Then, the in-
hibitory current becomes larger than the LGN’s, so the net current becomes negative.
Eventually, the inhibitory current decays, as the stimulus leaves the receptive field
of the inhibitory neurons. The real amplification factor achieved by the canonical
microcircuit is much larger than suggested in Fig. 4.5a: it is about 4.7 in Fig. 4.5b.
In the weak LGN input lies the key to some very puzzling experimental findings.
Direct measurements of somatic input conductance in cat area 17 neurons during
stimulation by nonpreferred stimuli show very small conductance changes, less than
25% (Fig. 4.6c; Douglas et al., 1988, 1991; Pei et al., 1991; Ferster and Jagadeesh,
1992). Having a weak LGN input to the pyramidal neurons allows the network to
be highly direction selective despite relatively weak inhibition. Such weak inhibition
would not lead to large increases in the somatic input conductances during null di-
rection stimulation. Indeed, in our simulations, the somatic input conductance only
increased by at most 60% (Fig. 4.6a). In contrast, the feedforward network’s con-
ductance increased by over three times the baseline (Fig. 4.6b). The conductance
changes in the cortical amplifier model argue in favor of the canonical microcircuit,

and against the feedforward model based on a pure Barlow-Levick scheme.
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Figure 4.6: Somatic conductance changes during null direction motion.
Shown is the percent change in somatic input conductance as a function of time for a
direction-selective pyramidal neuron during stimulation by a bar moving in the null
direction. The input conductance is computed by comparing the intracellular voltages
in response to a bar stimulus with and without injecting a test long pulse of current
(as discussed in Section 2.6). (a) Cortical amplifier model: the small excitatory
input from the LGN afferents can be inhibited by a small inhibitory input, requiring
only a moderate conductance increase. (b) A much larger conductance increase is
required in the feedforward model due to the large LGN-mediated excitation. (c)
Estimated conductance change in a layer 6 pyramidal cell in the anesthetized cat
during null direction stimulation (from Douglas et al., 1988); %g;, is estimated from
the decrement in membrane voltage evoked by hyperpolarizing current pulses (20 —
30 msec, 0.1 — 0.5 nA). No significant conductance change occurs (the significance

level is 25 % of baseline).
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We have seen that the cortical amplifier is direction selective for one stimulus
condition (a high contrast, moving bar). We will now explore more systematically

how directionality depends on contrast and velocity.

4.3 Contrast dependence of response and direc-
tionality

For the cortical amplifier model, the contrast-response curve of pyramidal neurons
in the preferred direction in response to a moving sinusoidal grating (Fig. 4.7b; see
Section 2.6) has a threshold at about 0% contrast and is quite linear on a log-log scale
with a slope of 0.62 (decade Hz/decade % contrast). Although physiologically there is
much variability (Albrecht and Hamilton, 1982), these characteristics are consistent
with physiological data (Dean, 1981; Holub and Morton-Gibson, 1981; Tolhurst et
al., 1981a; Albrecht and Hamilton, 1982; Ohzawa et al., 1982; Albrecht and Geisler,
1991). The feedforward case’s contrast-response function is quite similar to that of the
cortical amplifier, despite small differences in threshold. The LGN contrast-response
curve has a slope that is less than 1 on a log-log plot and compares well with phys-
iological data in both retina and LGN showing a compressive nonlinearity (Shapley
and Perry, 1986; Saul and Humphrey, 1990). The strength of the cortical amplifier’s
response decreases dramatically when the excitatory cortico-cortical connections are
removed (Fig. 4.7h), demonstrating the extent to which they amplify the geniculate
input.

The model pyramidal neurons respond very little in the null direction, and the
direction index (see Section 2.6) is between 80 to 100% for most contrast values
(Fig. 4.7e). The invariance of the direction index over a broad range of contrast is

characteristic of visual cortical neurons (Fig. 4.7e; Dean, 1980; Orban, 1984; Li and
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Figure 4.7: Contrast-response curves. Relationship between the visual contrast
(eq. 2) of a moving sinusoidal grating (1 Hz, 1 ¢/deg) and the peak firing rate for
different stages in our model, compared to physiological data. The peak firing rate is
computed from post-stimulus time histograms summed over the entire population of
pyramidal neurons (see Section 2.6). (a) Peak geniculate response given by the Victor
(1987) model. (b) The amplitude of the first Fourier harmonic component from a
cortical neuron in cat area 17 (label CT; adapted from Albrecht and Hamilton, 1982)
compared to the response in the preferred direction for pyramidal neurons in the
cortical amplifier (AM) and in the feedforward model (FF). The next three panels
show the peak response in the preferred (P) and null direction (NP) of motion as well
as the direction index (DI = (P — NP)/P; eq. 2.5) for pyramidal neurons in the (c)
cortical amplifier or in the (d) feedforward model as well as (e) for a simple cell in
cat area 17 (responding to a 2 Hz drifting sinusoidal grating; adapted from Tolhurst
and Dean, 1991). Both models are direction selective over the full range of contrasts.
(f) Peak response to motion in the preferred direction in the cortical amplifier model
in the absence of any excitatory, cortico-cortical connections.
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Creutzfeldt, 1984; Tolhurst and Dean, 1991). Over 20% of area 17 neurons (and in
particular, area 17 simple cells) have direction indices at the optimal velocity between
80 and 100% (Albus, 1980; Berman et al., 1987; Gizzi et al., 1990; Reid et al., 1991;
Tolhurst and Dean, 1991; DeAngelis et al., 1993; McLean and Palmer, 1994). Even
the Mean Direction Index (MDI, see Section 2.6) is larger than 80% for at least 15%
of neurons (Orban et al., 1981b, 1987; Orban, 1984; McLean et al., 1994).

4.4 Velocity dependence of response and direc-
tionality

A strong test of any model of direction-selective cells in area 17 is whether model
neurons are velocity low-pass, as are 63% of area 17 cortical neurons (Fig. 4.8e; Orban
et al., 1981a; Orban, 1984). These neurons respond very well to low velocities and
little to velocities above 20°/sec. This property does not originate from LGN neurons,
which have tuned, band-pass velocity-response curves with strong responses at high
velocities (Fig. 4.8b; Dreher and Sanderson, 1973; Lee and Willshaw, 1978; Frishman
et al., 1983; Orban et al., 1985; Gulyas et al., 1990). A further test is the extent
to which direction selectivity persists over a wide range of velocities; indeed, velocity
low-pass cells usually have a flat DI-velocity relationship (Orban et al., 1981b; Orban,
1984; Fig. 4.8f).

Model LGN neurons have physiologically plausible velocity-response curves (Fig.
4.8a), and the feedforward model’s dependence on velocity (Fig. 4.8d) is similar, with
the addition of a threshold, further reducing the peak response at low velocities.

In contrast, the cortical amplifier’s velocity tuning curve (Fig. 4.8c) is similar to
area 17 velocity low-pass neurons: its response drops off by only 35% of the maximum

response (70 Hz) at very low velocities but by more than 50% for velocities above
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Figure 4.8: Velocity-reponse curves. Shown is the peak firing rate for a 70 %
contrast bar as a function of its velocity (see Section 2.6) at different stages in our
model, compared to physiological data. (a) LGN model peak response given by the
Victor(1987) model. (b) Peak response of X geniculate cells in the adult, anesthetized
cat (Frishman et al., 1983). The following two panels show the peak response in
the preferred (P) and null direction (NP) of motion as well as the direction index
(DI = (P — NP)/P; eq. 2.5) for pyramidal neurons in the (c) cortical amplifier
or in the (d) feedforward model. Both feedforward and cortical amplifier models
are direction selective over two orders of magnitude of speed. (e) Representative
examples of velocity-response curves from velocity low-pass cells in cat visual cortex
(Orban (1984), Fig. 8/5 C). (f) Examples of flat velocity-direction index (velocity-
DI) curves from recordings in the adult cat (Orban, 1984 : Fig. 8/11 A). Note that by
convention the DI is negative if the preferred direction had a downward component.
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20°/sec. The response at the lowest velocity tested (0.33°/sec) is much larger than
that at the highest velocity (40°/sec).

Similarly to velocity low-pass neurons, the cortical amplifier model’s dependence
of direction index (DI; see Section 2.6) on velocity is relatively flat 6ver two orders
of magnitude (Fig. 4.8c), reflecting the small response in the null direction at all
velocities; this invariance depends on two varieties of GABA mediated inhibition,
as explained in the following section. The Mean Direction Index (MDI; see eq. 2.6,
Section 2.6) is 76%, indicating that the cell is direction-selective in Orban’s (1984)
nomenclature, rather than direction asymmetric. At high velocities, direction selec-
tivity is less strong, which parallels physiological data showing that a majority of
cortical neurons having a direction preference that is stable with temporal frequency
lose part or all of their direction selectivity above 1 or 2 Hz (corresponding to 4 or

10°/sec; Saul and Humphrey, 1992).

4.5 Analysis of the velocity-response curve

The feedback excitatory connections in the cortical amplifier model result in a re-
sponse that decreases much less at low velocities than the LGN model’s (Fig. 4.8).
Furthermore, the response at high velocities (10°/sec and above) is much diminished
compared to the LGN neurons. Moving bars are transient stimuli, and these transfor-
mations are related to whether the network reaches equilibrium for bar stimulus with
a given velocity, which depends in turn on the duration of the stimulus compared
to the network’s time constant. So we will now study the cortical network’s dynam-
ics. Using the linear approximation (eqs. 3.3 and 3.4 in Section 3.2) and neglecting

the membrane time constant, we have seen in Section 3.5 that the system can be
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described by the following differential equation (see eq. 3.19):

kr,
1 —

Toyn df
l—adt

=—f+ a(ll—li*[T) (41)

where 7y, is the decay time constant for the excitatory synaptic conductance change
(20 msec), kr,, the slope of F;, I, the LGN input current, and I;, the inhibitory input
current.

According to this equation, the pyramid firing rate f settles to steady-state with a
certain time constant, the network’s time constant 7,e; = 75y, /(1 — ). In conditions
where there is amplification of the input, i.e., when « is slightly smaller than 1, the
network’s time constant becomes much larger than 7,,,. This should be the case for
the proportional amplifier model (see Fig. 3.1b).

Potentially, this very long time constant could explain the enhanced response
of the cortical amplifier at low velocities, as in Maex and Orban (1992). However,
Fig. 4.9a shows that for a constant current injection lasting 25 msec, the network
already reaches the firing rate that it will eventually settle to (after adaptation is
complete) if the input were sustained. In other words, for a stimulus duration of
25 msec or more, the network’s amplification, measured from its peak firing rate
at that velocity, would be the same as for a sustained stimulus. We can therefore
assume—for the purposes of the velocity-response curve—that 7..: & 25 msec, close
to Teyn. This short network time constant originates in the calcium-dependent adap-
tation in the pyramidal neurons (see Section 4.8). Indeed, the slope of the unadapted
F; is substantially larger than that of the adapted F; (see Fig. 3.1a), so that initially o
is larger than 1 (eq. 35) So the dynamics are similar to the hysteretic amplifier’s (see
Section 5.6). So there is faster growth of the firing rate during the initial portion of
stimulus presentation, resulting in the short time constant demonstrated in Fig. 4.9a.

This initial time constant is too short to account for the sharp decrease in am-
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Figure 4.9: Explaining the cortical amplifier’s velocity-response curve. (a)
For a constant current injection of 0.1 nA into all pyramidal neurons, peak firing
rate as a function of the duration of the stimulus. The inset shows the pyramidal
firing rate as a function of time for the current injection. For 0.1 nA, the steady-
state firing rate is 48 Hz (see Fig. 3.1¢); that firing is reached already in 25 msec,
so in that sense the time constant of the system 7,.; is 25 msec. Notice that due to
adaptation, the maintained firing rate of the system is lower than its peak firing rate.
(b) Velocity-response curve obtained in the preferred direction when all recurrent
synapses have been removed (continuous), compared to the LGN’s velocity-response
curve (dashed; see also Fig. 4.8a). (c) Comparison of the velocity-response curve
for the cortical amplifier in the preferred direction (dashed; see also Fig. 4.8¢) with
an approximating curve (continuous) obtained by multiplying the firing rates in (b)
(continuous) by the firing rate gain G(f) from Fig. 3.1d. (d) The time-course of the
net input current in a pyramidal neuron, defined as the geniculate current minus the
total inhibitory current, for a 70% contrast bar moving at 2°/sec in the preferred

direction (see also Fig. 4.5b).
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plification between low velocities and a velocity of, say, 5°/sec. Fig. 4.9b plots
the velocity-response curve obtained when the cortical amplifier’s excitatory cortico-
cortical connections were removed. The overall shape is very similar to the LGN’s
velocity-response curve after scaling and thresholding. The response at low veloci-
ties is very small. However, as can be seen in Fig. 3.1d, the firing rate gain G(f) is
much larger for small input firing rates than for large ones, due to nonlinearities in
the Hodgkin and Huxley spike production mechanism and dendritic driving potential
saturation. Consequently, the LGN input is more strongly amplified at low than at
high velocities.

This argument can be made more quantitative. We multiplied the firing rates in
the absence of excitatory feedback as a function of velocity (Fig. 4.9b) with G(f)
(Fig. 3.1d). This simple approximation (Fig. 4.9c) is remarkably accurate at 5°/sec
and lower velocities, explaining the strong responses to low speeds, despite changes
by a factor of two in the geniculate firing rate between 0.33°/sec and 5°/sec.

At speeds of 10°/sec and above, the actual amplification is much lower than
predicted (Fig. 4.9c). This reduction arises because the stimulus duration diminishes
with velocity, and at some point is too short to allow buildup of excitation in the
network.

It is important to realize here that stimulus duration is not the same as the dwell
time of the stimulus within the center portion of an LGN cell. Because LGN inputs
to the pyramidal and smooth neurons overlap spatially, inhibition in the preferred
direction arises from the smooth neurons while there is still LGN input to the pyra-
midal neurons. Therefore, the stimulus duration should be estimated instead from
the difference between the excitatory geniculate and total inhibitory currents, called
net input current. Fig. 4.9d represents the net input current to a pyramidal neuron
for a bar moving at 2°/sec in the preferred direction. At rest, the LGN background

activity is responsible for some positive net input current (about 0.02 nA). As the
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stimulus enters the surround of the LGN neurons, their spontaneous response is in-
hibited, reducing the net input current to zero. When the stimulus enters the center
portion of the LGN neurons, the net current quickly increases to about 0.075 nA.
As the LGN input fields of the smooth neurons overlap with those of the pyramidal
neurons, inhibitory current from the smooth neurons quickly reduces the net current
to —0.08 nA. Subsequently, the net current first increases due to rebound when the
stimulus leaves the pyramids’ surround, then goes negative with rebound from the
smooth neurons’ surround, before reverting to its spontaneous background value.

Stimulus duration can be estimated from the largest positive phase of the net
input current trace, and is on the order of 50 — 100 msec. Since the stimulus duration
is inversely proportional to velocity, at 10°/sec the duration is 10 — 20 msec, which
is slightly less than the system’s 25msec time constant. This explains the reduced
amplification at high velocities.

In summary, two processes are responsible for transforming the LGN’s velocity-
response curve into the cortical amplifier’s. First, in contrast with Maex and Orban
(1992), the elevated response at low velocities does not originate in the network’s
time constant being lengthened by the excitatory feedback; instead, it results from
nonlinear amplification that is larger at low than at high LGN inputs. Secondly, the
upper cutoff velocity is determined by the duration of the positive phase of the net
input current and by the network’s time constant, which in this case is only about

25 msec, due to calcium-dependent adaptation.

4.6 GABA blocking experiments

In the model, GABA 4 receptors give rise to short-latency, transient inhibition; in con-
trast, GABAp is associated with long-latency, prolonged inhibition (see Table 2.1).
Paralleling these differences in dynamics, GABA4 and GABAjg are responsible for
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model direction selectivity at different velocities. At low velocities, there is a large
time difference in the onset of the LGN input to smooth and pyramidal neurons, and
GABApg mediates the inhibition that vetoes the response in the null direction. At
high velocities, the difference in time of onset is small, requiring short—létency GABA 4
inhibition for direction selectivity. Therefore, the model can be used to make spe-
cific predictions about the effect of blocking GABA4 or GABAp or both. Fig. 4.10
illustrates how the cortical amplifier’s velocity-response and DI curves transform un-
der partial or complete block of inhibition, as in physiological experiments involving
iontophoresis of antagonists (see for instance Sillito, 1977).

In the null direction, blocking GABA 4 receptors increases the response dramati-
cally at high velocities, thereby abolishing direction selectivity (Fig. 4.10c). It has lit-
tle effect at low velocities. Conversely, blocking GABA g receptors strongly increases
the null response at low velocities—eliminating direction selectivity here—but very
little at high Ve‘locitie's. As expected, blocking both varieties of inhibition abolishes
direction selectivity at all velocities. These results can be contrasted with the out-
come of physiological experiments, where direction selectivity diminishes strongly or
disappears under GABA 4 blockade (Sillito, 1975, 1977; Wolf et al., 1986) but does
not appear to be reduced by GABAp blockade (Baumfalk and Albus, 1988). The
velocities at which the experiments were performed were not reported.

In the preferred direction, blocking GABA 4 results in a velocity-response curve
that is velocity broadband (for the definition of velocity broadband see Orban, 1984)
and quite similar to the LGN model’s curve (Fig. 4.8a), except at low velocities.
In particular, the response at velocities higher than 20°/sec is large, as in LGN
neurons and unlike area 17 velocity low-pass neurons. GABA 4 feedforward inhibition
is responsible for the upper velocity cutoff.

A variant of that experiment is to block both GABA,4 and GABAg receptors

onto a single pyramidal cell and to measure direction selectivity in that particular
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Figure 4.10: Blocking inhibition and direction selectivity. The first two panels
show the peak firing rate for a 70% contrast bar as a function of velocity for motion
in the (a) preferred and in the (b) null direction. The N curve indicates the normal
response for the cortical amplifier. The peak firing rate increases when fast “shunt-
ing” GABA, inhibition is blocked (curve A). Removing only slow hyperpolarizing
GABA g inhibition leads to curve B, while curve AB is obtained in the absence of any
inhibition. The associated progressive loss in direction selectivity is documented for
the pyramidal cells in (c). Blocking fast GABA 4 inhibition leads primarily to a loss
of DI at high speeds, while the blockade of GABAp inhibition primarily affects DI
at low speeds. In these simulated experiments, inhibition to all cells was eliminated.
In (d) we demonstrate the effect of blocking both GABA 4 and GABAg inhibition
to a single pyramidal cell (see also Section 2.6). Such an experiment was carried out
by Nelson et al. (1994) using GABA blockers intracellularly. DI was assessed with a
70% contrast bar. The average DI for all 40 pyramidal cells in the normal case (solid
boxes) is 108% + 2%. When blocking inhibition to a single pyramidal cell only, DI in
that cell is reduced to 68% + 8% (dashed boxes; here carried out for each pyramidal
cell in the network).
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neuron before and after the block. Such an experiment can be repeated for each
neuron in the cortical amplifier in turn, and the results plotted as histograms of
the distribution of direction selectivity indices before and after blockade (see also
Section 2.6; Fig. 4.10d). The response measure used in this case was the average
number of spikes while the stimulus is in the neuron’s receptive field; the neurons’
firing rate was depressed below the spontaneous level in the null direction, resulting in
direction selectivity indices larger than 100% for all neurons. Blocking inhibition in a
single neuron gives strikingly different results from blocking inhibition in all neurons.
Direction selectivity diminishes but is by no means abolished; similar results were
obtained experimenﬁally (Nelson et al., 1994).

The cortical amplifier model maintains direction selectivity down to velocities as
low as 0.33°/sec (see Fig. 4.8), in agreement with physiological data (Orban, 1984;
Duysens et al., 1987; Saul and Humphrey, 1992). We have seen above that direction
selectivity at low velocities depends on GABAp; in addition, it depends on having a
small spatial offset between the recéptive fields of pyramidal and smooth neurdns. We
demonstrate this in Fig. 4.11. In this figure, we change the offset from one spacing
between geniculate cells (5') as in the current model, to two spacings (10') and plot
the response in the preferred and null direction, and the direction index, as a function
of bar velocity. Direction selectivity at the lowest velocity is abolished.

There is a direct numerical relationship between this low velocity limit and offset
and duration of GABAg inhibition. For motion at low velocities in the null direction,
there is a time interval when the bar has left the smooth neurons’ receptive field but
is still stimulating the pyramidal neurons; since the spatial offset is 5’, this interval
lasts 250 msec at 0.33°/sec, approximately equal to the duration of GABAg synaptic
conductance changes in the model; larger spatial offsets or lower velocities would
imply a loss of direction selectivity. In the model, the ratio of the spatial offset

and GABAp’s time constant will determine the lowest velocity for which direction
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Figure 4.11: Spatial offset and direction selectivity. The first two panels show
the peak firing rate in pyramidal neurons for a 70% contrast bar as a function of
velocity for motion in the (a) preferred and in the (b) null direction. The N (contin-
uous) curve indicates the response for the normal cortical amplifier. OFF (dashed)
is the response in a modified cortical amplifier where the spatial offset between the
receptive fields of pyramidal and smooth neurons has been doubled, from 5’ to 10.
The associated loss in direction selectivity at low velocities is documented in (c).
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Figure 4.12: Blocking inhibition and contrast-response curve. This figure
shows the peak firing rate for a moving sine grating (1 Hz, 1 ¢/deg) as a function of
contrast for motion in the preferred direction, for the cortical amplifier model (N) and
while blocking both GABA 4 and GABA (AB). Blockade dramatically increases the

initial gain of the contrast-response curve, as well as the firing rates at high contrast,
but does not prevent saturation of the response.

selectivity is still observed.

In addition to its role in direction selectivity, inhibition has a strong influence on
the contrast-response curve, too. Fig. 4.12 compares the response to contrast when
blocking both GABA 4 and GABAp to the regular case (as in Fig. 4.7b). The initial
gain of the contrast-response curve is very much increased by blockade. Although

saturation still occurs under blockade, the model neurons discharge at far higher

rates for saturating contrasts.

4.7 Linearity to superposition

Ferster and his colleagues (Jagadeesh et al., 1993) carried out an elegant set of intracel-
lular experiments in direction-selective simple cells. They showed that the (somatic)

membrane potential signal evoked by a drifting sinusoidal grating can be predicted
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Figure 4.13: Superposition test for the detailed models and cat cortex The
first four panels compare the modulations in membrane potential evoked (continuous)
by a 1 cycle/deg sine wave grating, drifting in two directions at 2 Hz (2°/sec), and
the response predicted (dashed) from summing stationary contrast-reversal gratings
(see Section 2.6), for one cell in both cortical amplifier and feedforward models. Each
trace is an average of the response to 57 grating cycles, and shows two copies of
the average response to one grating cycle side by side. The last two panels compare
evoked and predicted response for a simple cell in cat visual cortex (Jagadeesh et al.,
1993). (a) Preferred and (b) null direction for the cortical amplifier model (100 %
contrast gratings), (c) preferred and (d) null direction for the feedforward model (50
% contrast gratings), and (e) preferred and (f) null direction for the simple cell in

cat visual cortex. Surprisingly, superposition holds for both feedforward and cortical
amnlifier networks as in cat simnle cells.
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from the linear sum of responses to stationary contrast-reversal gratings at several
spatial phases, seemingly implying a simple linear feedforward model of direction-
selective simple cells. The reader is referred to Section 2.6 for a detailed description
of this test.

In the preferred and null directions, the average membrane potentials could be
predicted with an accuracy comparable to the experimental results (Fig. 4.13). There
was no need to adjust any parameters specifically to obtain the fit. For the cortical
amplifier, this result is surprising in view of the importance of amplification for the
model’s functioning.

The preferred direction of motion as well as the direction index measured from
the modulations of the intracellular somatic membrane potential (see Section 2.6)
could be predicted from the responses to the stationary gratings. The actual indices
were 43.5% and 33.3% for the cortical amplifier and feedforward models respectively,
while the predicted indices were 66.0% and 39.4%. The direction index measured
intracellularly was much smaller than the direction index measured from the peak
firing rate in both cortical amplifier (43.5% versus 93.2%) and feedforward models
(33.3% versus 97.4%), as has been observed in cat visual cortex (Jagadeesh et al.,
1993).

Since there are many nonlinearities in the cortical amplifier, an explanation of
why that model passes the superposition test requires detailed analysis. The reader
is referred to Chapter 6. In summary, nonlinearities in both feedforward and cortical
amplifier models originating from half-wave rectification of LGN inputs cancel because
of spatial summation in the cortical neurons and spatio-temporal summation through
the superposition test. Nonlinearities originating from amplification in the positive
phase of the input current to the pyramids are mitigated by current sinking during

spike production.
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4.8 Adaptation is crucial

Linear dynamics (Section 3.5) would predict a network time constant of Tnet =
Tsyn/(1 — @), where 7., is the time constant of the excitatory synapse (20 msec)
and o is the initial slope of F/(f). Since the steady-state gain of the proportional
amplifier is as large as 8 (see Section 3.2), 7,.; might be as large as 160 msec. For
direction selectivity at low velocities, a small spatial offset between pyramidal and
smooth neurons is necessary (see Fig. 4.11); however, it also implies a short duration
of the net input. For the 5 spatial offset used in the model, the stimulus duration will
be about 80 msec for a grating moving at 1 deg/sec, which is the stimulus used for
the contrast-response. Potentially, the network time constant is much larger than the
stimulus duration, which could imply only small peak responses. However, we have
seen in Section 4.5, Fig. 4.9, that the network’s time constant is 25 msec. Indeed,
adaptation is present in pyramidal cells (see Section 2.4), so that initially during
the response pyramidal cells fire much more strongly; this is reflected in the slope
of the unadapted Fj, which is substantially larger than that of the adapted F; (see
Fig. 3.1a). The result is that initially during response « is larger than 1 (eq. 3.5),
so the dynamics are similar to the hysteretic amplifier’s (see Section 5.6). There is
growth of the firing rate during the initial portion of stimulus presentation according
to an exponential with a positive exponent, much faster than an exponential with a
negative exponent, resulting in the short time constant.

We can confirm directly that the response to transient stimuli is increased by the
stronger discharge in the unadapted state (Fig. 4.14). We can accelerate the dynamics
of calcium in the model, while maintaining the same equilibrium calcium concentra-
tions. The result is that adaptation sets in much faster, so that the unadapted
current-discharge curve already is partly adapted and so is shallower (Fig 4.14a),

but the adapted current-discharge curve does not change (Fig 4.14b). Since the un-
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Figure 4.14: Effect of adaptation on the contrast-response curve. (a) Un-
adapted current-discharge curve (initial firing rate to a pulse of current) of a pyra-
midal neuron in two parameter conditions of the model: a condition similar to the
normal proportional amplifier model (continuous) and a condition where the calcium
dynamics were accelerated, from 50 msec to 10 msec, so that substantial adapta-
tion was already present from the start of the response (dashed). (b) Adapted
current-discharge curve for the same two parameter conditions as (a). They are
nearly identical. (c) Contrast-response curves, to bars (2 deg/sec) for the two pa-
rameter conditions. Although the adapted current-discharge curves are the same,
the contrast-response curves are quite different, showing that the response to tran-
sient stimuli is strongly influenced by the discharge behavior of the neurons before
adaptation sets in.
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adapted state is now shorter, we would expect that the responses to transient stimuli
become smaller. Indeed, the contrast-response curve is more shallow, especially at or
around 20 Hz, which corresponds to when the unadapted current-discharge curves
of both cases start diverging. Note that we would expect an even larger decrease if
adaptation was present from the very start of the response. Here, adaptation is not

present until 10 msec into the response.

4.9 Discussion

The canonical microcircuit (Fig. 1.1b) is the embodiment of compelling anatomical
observations showing massive excitatory cortico-cortical feedback connections among
spiny stellate and pyramidal cells in mammalian visual cortex (Berman et al., 1992;
Peters and Payne, 1993; Ahmed et al., 1994; Peters et al., 1994). Physiological sup-
port derives primarily from intracellular recordings in response to electrical pulse
stimulation of cortical afferents (Douglas and Martin, 1991) and from pharmacolog-
ical blockade experiments (Grieve and Sillito, 1991). We have examined how such
recurrent excitation provides a powerful computational principle in the operation of
cortical circuits, within the context of a realistic simulation of the dynamics of a small
set of cortical neurons, operating in the proportional amplifier mode (the hysteretic

amplifier mode is studied in Chapter 5).

4.9.1 Basic mode of operation

The results described above provide a strong case in favor of the canonical microcir-
cuit. As argued previously (Douglas et al., 1988), feedforward models of DS, such
as the Barlow and Levick (1965) model, require large conductance changes in the

null direction, greater than 100% (Fig. 4.6b). However, direct measurements of so-
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matic input conductance in the null direction have only demonstrated surprisingly
small conductance changes (Fig. 4.6a; Douglas et al., 1988, 1991; Pei et al., 1991;
Ferster and Jagadeesh, 1992). In our detailed simulations, we find that the canonical
microcircuit shows relatively small changes in conductance (Fig. 4.66), confirming a
previous report with much more simplified neurons (Douglas and Martin, 1991).

The recurrent feedback acts as a current amplifier (Fig. 4.5), enabling a compara-
tively weak geniculate input to be greatly amplified. In this view, DS arises through
inhibition in the null direction combined with amplification of the signal in the pre-
ferred direction. Recurrent excitation together with feedforward inhibition realizes
a selective cortical amplifier, which amplifies the direction-selective signal only. The
result is strong DS at all contrasts and velocities for which there is a response.

This strong amplification does not prevent the cortical neurons from ceasing to
respond once the visual input moves out of their receptive fields. Although slightly
higher intracortical excitation would allow the network to function in a “hysteretic”
mode of operation (Fig. 3.3b), even then inhibition would prevent the network from
firing in the absence of stimulus. In the present simulations, the role of inhibition is
to bound the overall level of excitation, to control the gain of the contrast-response
curve and to impose direction selectivity.

The cortical amplifier’s unique characteristics are strikingly highlighted by the
persistence of DS in a neuron despite blocking both the neuron’s GABA 4 and GABAg
receptors (Fig. 4.10d). This is explained by noting that other cortical cells that retain
their direction selectivity provide recurrent, excitatory connections to the fiducial
neuron. Firm experimental support for this result (Nelson et al., 1994) provides a
strong argument in favor of the canonical microcircuit.

The model’s DS is relatively invariant with contrast (Fig. 4.7), as observed exper-
imentally (Dean, 1980; Orban, 1984; Li and Creutzfeldt, 1984; Tolhurst and Dean,
1991). In the model, this invariance is dependent on a high enough setting of the
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smooth-to-pyramidal GABA 4 and GABAp weights; but especially, it requires smooth
neurons’ thresholds that are low, to ensure inhibition in the null direction even at low
contrasts.

The cortical amplifier model includes many nonlinear elements:; ﬁevertheless, it,
like the feedforward model, behaves remarkably linearly to grating superposition
(Fig. 4.13), similarly to simple cells in area 17 in the anesthetized cat. We dis-
cuss this result more in detail in Chapter 6. But the significance of these findings is
also that linear summation contributes in our model to direction selectivity to sine
wave gratings, in aggreement with physiological data (Reid et al., 1987, 1991; Al-
brecht and Geisler, 1991; DeAngelis et al., 1993; McLean and Palmer, 1994). Fig. 6.2
in Chapter 6 indicates also that the temporal phase of the response to a stationary
grating varies linearly with spatial phase, as expected in a linear model of direction

selectivity and measured in striate cortex.

4.9.2 Velocity dependence

Most area 17 cortical neurons are low-pass in velocity and temporal frequency. This
behavior must be generated in cortex, since geniculate neurons show very different
response properties (Dreher and Sanderson, 1973; Tkeda and Wright, 1975; Movshon
et al., 1978; Lee and Willshaw, 1978; Derrington and Fuchs, 1979; Orban et al., 1981a,
1985, 1986; Frishman et al., 1983; Gulyas et al., 1990; Saul and Humphrey, 1992; Maex
and Orban, 1992). Moreover, the membrane time constant of cortical neurons is too
short to provide this low-pass filtering in a feedforward model (Wérgdtter and Holt,
1991).

We confirm the validity of this argument, since the feedforward model’s velocity-
response is far from being low-pass (Fig. 4.8). In addition, we propose a specific

mechanism for the strong response at low velocities, based on our simulations of the
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canonical microcircuit. As shown in Section 4.5, the recurrent feedback connections
have a far larger gain G(f) at low than at high inputs (Fig. 3.1d), due to nonlinear-
ities in the biophysics of our compartmental models. This nonlinear amplification is
responsible for the strength of the model’s response at low velocities, rather than a
very long network time constant as in Maex and Orban (1992). The response at very
low velocities depends much more on feedback strength than the response at higher
velocities. A prediction is that experiments that reduce the amount of excitatory
cortical feedback to a neuron, such as that done by Grieve and Sillito (1991), should
affect neuronal responses preferentially at low velocities, and the velocity-response
curve might no longer be low-pass in character (see Fig. 7.4c, Section 7.3.3).

GABA 4 feedforward inhibition is responsible for the velocity upper cutoff (Fig. 4.10)
by shortening the stimulus duration at velocities above 20°/sec, leading to a Weak re-
sponse despite the strong LGN input. That inhibition is responsible for the absence of
response at high velocities has been hypothesized before (Goodwin and Henry, 1978;
Duysens et al., 1985b). As in experimental observations (Duysens et al., 1985a),
inhibition overlaps spatially with excitation in the model.

In our model, DS persists down to low velocities (0.33°/sec here), as observed
physiologically (Orban et al., 1981b; Orban, 1984; Duysens et al., 1987; Saul and
Humphrey, 1992). The model predicts that the ratio of the optimal spatial displace-
ment for DS (Baker and Cynader, 1986) and the GABAp’s time constant should be
approximately equal to the lowest direction-selective velocity (see Section 4.6). The
optimal spatial displacement for DS corresponds approximately to the spatial dis-
placement between pyramidal and smooth neurons (5'), a small fraction of the Gabor
wavelength of a pyramidal neuron’s receptive field profile (24’; see Fig. 4.4), as found
in cortical neurons by Baker and Cynader (1986).

The small spatial offset in our model means that direction selectivity is generated

by very local inhibition within the cortical microcircuitry. Besides being compatible
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with the data of Baker and Cynader (1986), this small spatial offset is needed to
obtain direction selectivity at the low velocities corresponding to experimental obser-
vations (Fig. 4.11), given the biophysical and experimental constraints on GABAg
inhibition’s time constant.

DS is relatively independent of velocity in velocity low-pass direction-selective
neurons (Orban et al., 1981b; Duysens et al., 1987). In our model, rapid-onset inhibi-
tion mediated by GABA 4 contributes to DS above 2°/sec, while persistent inhibition
mediated by GABAg is exclusively responsible for DS at lower velocities (Fig. 4.10).
Indeed, these differential roles of GABA 4 and GABAg in DS lead to specific model
predictions. In past experiments (Sillito, 1975, 1977; Baumfalk and Albus, 1988), the

influence of velocity has not been tested.

4.10 Conclusions

From the early days of Hubel and Wiesel (1962) until today (e.g., Carandini and
Heeger, 1994), it has always been assumed that geniculate input provides the domi-
nant excitatory drive to striate cortex. From an anatomical point of view, given the
small number of geniculate synapses on spiny stellate cells, it could be argued that
the geniculate input only provides a minor fraction of the excitatory input, the major-
ity originating in neighbouring and recurrently connected cortical cells. As we have
shown here, such circuitry, embodied in the Canonical Microcircuit, can reproduce in
a quantitative manner a host of experimental results pertaining to direction-selective
cortical simple cells. Furthermore, our model makes specific predictions that can be
tested using current experimental techniques.

Our efforts represent a starting point for explaining other receptive field proper-
ties of visual neurons, such as their orientation, disparity tuning, spatial or spatio-

temporal separability, within the framework of massive recurrent excitation. Fur-
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thermore, a similar network architecture could also be used to explain receptive field
properties in other sensory cortical areas. The high degree of cortical interconnec-
tivity raises the possibility that receptive field properties are much less determined
by proper wiring of the incoming geniculate input than by collective computation in
cortical networks. If true, this would imply that such static concepts as the "center
of the receptive field” or the "optimal orientation” might be to a considerable ex-
tent dependent on the exact stimulus arrangement and behavioral state of the animal
(Allman et al., 1985; Gulyas et al., 1987; Gilbert and Wiesel, 1990; Press et al., 1994;
Sillito et al., 1994).

4.11 Summary

Nearly all models of direction selectivity (DS) in visual cortex are based on feed-
forward connection schemes, where geniculate input provides all excitatory synaptic
input to both pyramidal and inhibitory neurons. Feedforward inhibition then sup-
presses feedforward excitation for non-optimal stimuli. Anatomically, however, the
overwhelming majority of asymmetric, excitatory, synaptic contacts onto cortical cells
is provided by other cortical neurons, as embodied in the Canonical Microcircuit of
Douglas and Martin (1991). In this view, weak geniculate input is strongly amplified
in the preferred direction by the action of intracortical excitatory connections, while
in the null direction inhibition reduces geniculate-induced excitation. We investigate
analytically and through biologically realistic computer simulations the functioning of
a cortical network based on such circuitry. Here, the network was in the proportional
amplification mode, which is present when positive feedback is moderate rather than
strong.

The behavior of our network is compared to physiological data as well as to the

behavior of a purely feedforward model of DS. Our model explains a number of puz-
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zling features of direction-selective simple cells: the small somatic input conductance
changes that have been measured experimentally during stimulation in the null di-
rection, the persistence of DS while fully blocking inhibition in a single cell, and that
cortical cells are velocity low-pass while their geniculate inputs are velocity tuned.
Both model and cells in cat cortex are linear to grating superposition. Finally, we
make specific predictions concerning the effect of selective blockade of cortical inhi-

bition on the velocity-response curve.
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Chapter 5

Direction selectivity through

hysteretic ampliﬁcatibn

5.1 Introduction

In this chapter, we investigate the response properties and functioning of the cortical
amplifier model in one of its two parameter regimes, hysteretic amplification.

As introduced in Chapter 1, the cortical amplifier model is a circuit that amplifies
the geniculate input to cortex in the preferred direction, through excitatory intra-
cortical connections, and cancels geniculate excitation in the null direction through
inhibition. We refer you to that chapter for the context of the results presented here.

The detailed model itself and the simulation methods are described in Chapter 2.
We describe there the geniculate model we used to provide input to cortex. We refer
you to that chapter for these explanations.

The hysteretic amplification mode occurs in the presence of strong positive feed-
back. We refer you to Chapter 3 for a detailed explanation about these two modes,

and to Chapter 4 for a treatment of the other mode, proportional amplification.
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First, Section 5.2 gives an overview of the model’s basic properties, showing that
it indeed amplifies the input strongly, and that in the null direction the model’s input
conductance changes only slightly, in agreement with intracellular data. Sections 5.3
and 5.4 show the model’s responses versus contrast and velocity. Section 5.5 describes
for the model the outcome of a linearity test using grating superposition that shows
remarkable agreement with physiology. Experimentally testable predictions based
on this linearity test are made in Chapter 6. Starting from the theory presented in
Chapter 3, Section 5.6 derives simplified dynamics for the model and uses these to
explain hysteresis to pulses of current and responses to visual stimuli. The simplified
dynamics are also used in Section 5.7 to explain the shape of the contrast-response
and velocity-response curves. Finally, Section 5.8 discusses the significance of these

results within the context of current knowledge about striate cortex.

5.2 Basic performance

The salient features of the cortical amplifier model’s performance in the context of
direction selectivity éan be seen in Fig. 5.1, which shows the somatic transmembrane
potential of a typical model pyramidal neuron during presentation of a bar moving in
the preferred (left-to-right direction on Fig. 2.3) and null directions. The pyramidal
cell is strongly direction-selective: it generates a burst of spikes in the preferred
direction, but none in the null direction. We conclude that the smooth-to-pyramidal
weight is large enough relative to the LGN-to-pyramidal weight so that the inhibition
completely cancels LGN excitation in the null direction.

In the preferred direction the stimulus reaches the smooth neuron’s receptive field
after stimulating the pyramidal neurons, so that the spike discharge in the preferred
direction is followed by pronounced hyperpolarization, as observed in intracellular

recordings from cat visual cortex (Fig. 5.1c; Benevento et al., 1972; Creutzfeldt et al.,
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Figure 5.1: Intracellular membrane potential in the preferred and null
directions. Somatic potential for a pyramidal neuron in the cortical amplifier model
in the presence of a 70 % contrast bar moving at 2°/sec in the (a) preferred and (b)
null direction. Intracellular recordings from a neuron in primary visual cortex in the
anesthetized cat (Douglas et al., 1991) during stimulation by a bar moving at 3°/sec
in the (c) preferred and (d) null direction. Note in all conditions the presence of
more spikes in the preferred direction than in the null direction. The variablity of the
membrane potential in the model originates from spike input from the LGN and the
background synaptic noise and current noise.
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1974; Ferster, 1988; Douglas et al., 1991). Conversely, during null stimulation, our
cortical amplifier feedback model shows only moderate hyperpolarization (Fig. 5.1b),
as observed in the recordings from cat cortex (Fig. 5.1d). Indeed, the smooth-to-
pyramidal weight is relatively small. It can be that small without a reduction in
direction selectivity because the LGN-to-pyramidal weight itself is small.

The response of 50 cortical neurons of the cortical amplifier model to the same
stimulus is summarized in the raster plot of Fig. 5.2. For each trial, every horizontal
row shows the spikes in one model neuron as dots, with one row for each of 50 model
neurons; the first 40 rows are pyramidal neurons, while the last 10 rows are smooth
neurons. All pyramidal neurons show strong direction selectivity, while the smooth
neurons respond equally in both directions. Some features of the direction selectivity
mechanism are apparent from these plots. In the null direction the smooth cells receive
LGN input before the pyramidal neurons because the LGN input to the smooth cells
is spatially displaced with respect to that of the pyramidal cells: the spatial offset is
5" and the bar speed is 2°/sec, corresponding to a pyramidal neuron delay of about
42 msec. Thus, in the null direction, the smooth cells are able to prevent any firing
in the pyramidal cells. However, in the preferred direction the pyramidal neurons
begin their discharge before the smooth cells and so the cortical amplification loop
activates. However, inhibition soon develops, and the pyramidal neurons are silenced.

High signal amplification is achieved within the canonical microcircuit. Fig. 5.3a
compares the excitatory recurrent current to a pyramidal cell with the excitatory
current induced by the LGN afferents for a bar moving in the preferred direction.
Clearly, the dominant excitatory input during response originates from other cortical
neurons rather than the LGN. The LGN-to-pyramidal synaptic weight is relatively
small; nevertheless, the pyramidal neurons discharge strongly because of the current
contributed by the connections between the pyramidal neurons. However, the LGN

current is not the input signal being amplified by the network of pyramidal neurons.
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Figure 5.2: Spike raster plots for the cortical amplifier. Response of pyramidal
and smooth neurons to a 70% contrast bar moving at 2°/sec in (a) the preferred and
(b) the null direction of motion. Three trials are shown for each direction. The first
40 rows in each trace indicate spiking activity in 40 pyramidal cells. The continuous
bar just below these rows indicates when the stimulus is within the receptive fields
of the LGN inputs to the pyramidal cells. The 10 rows below the bar correspond
to firing activity in 10 smooth cells. Note the strong direction selectivity of the
pyramidal neurons, whereas the smooth neurons are not direction-selective. There is
spontaneous activity in the smooth cells, while it is essentially absent in the pyramids.
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Figure 5.3: Current amplification in the preferred direction in the corti-
cal amplifier. (a) Excitatory cortico-cortical current (light line) compared to that
arriving from the LGN afferents (bold line), for a pyramidal neuron of the cortical
amplifier model during stimulation by a 70% contrast bar moving at 2°/sec in the
preferred direction. The time course of the geniculate current is essentially given by
the passage of the bar over the ON portion of the single subfield. The cortical current
is larger than the geniculate current. (b) Same excitatory cortico-cortical current as
(a)(light line) compared to the net input current (bold line), defined as the differ-
ence between the excitatory current due to the geniculate input and the combined
(GABA 4 plus GABAR) inhibitory currents to the pyramidal neuron. The net input

current is strongly amplified by the intracortical connections, with a delay of about
150 msec.
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Instead, the total input signal to the pyramidal neurons is the LGN input current
minus the total inhibitory current contributed by all smooth neurons: the net input
current. This current is shown together with the LGN current in Fig. 5.3b, for the
same stimulus as Fig. 5.3a. At rest, the LGN background activity is responsible for
some positive net input current (about 0.02 nA). As the stimulus enters the surround
of the LGN neurons, their spontaneous response is inhibited, reducing the net input
current to zero. When the stimulus enters the center portion of the LGN neurons,
the net current quickly increases to about 0.075 nA. As the LGN input fields of
the smooth neurons overlap with those of the pyramidal neurons, inhibitory current
from the smooth neurons quickly reduces the net current to —0.08 nA. Subsequently,
the net current first increases due to rebound when the stimulus leaves the pyramids’
surround, then goes negative with rebound from the smooth neurons’ surround, before
reverting to its spontaneous background value. The real amplification factor achieved
by the canonical microcircuit is much larger than suggested in Fig. 5.3a: it is about
3.9 in Fig. 5.3b. Inhibition is necessary for direction selectivity, but strongly reduces
the input current even in the preferred direction; fortunately, amplification by the
canonical microcircuit amplifies strongly the remaining input.

In the weak LGN input lies the key to some very puzzling experimental findings.
Direct measurements of somatic input conductance in cat area 17 neurons during
stimulation by nonpreferred stimuli show very small conductance changes, less than
25% (Douglas et al., 1988, 1991; Pei et al., 1991; Ferster and Jagadeesh, 1992). Having
a weak LGN input to the pyramidal neurons allows the network to be highly direction
selective despite relatively weak inhibition. Such weak inhibition does not lead to
large increases in the somatic input conductances during null direction stimulation,
as shown in Fig. 5.4 (the peak change is 60% over baseline). In contrast, a model that
would not include excitatory cortical feedback would show much larger conductances

changes in the null direction (see Section 4.2), and so is not compatible with this
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Figure 54: Somatic conductance changes during null direction motion.
Shown is the percent change in somatic input conductance as a function of time
for a direction-selective pyramidal neuron in the hysteretic amplifier model during
stimulation by a bar moving in the null direction. The input conductance is computed
as discussed in Section 2.6. The small excitatory input from the LGN afferents can
be inhibited by a small inhibitory input, requiring only a moderate conductance
increase, 60% over baseline. Experimental data shows no measurable changes in the
input conductance. The cortical amplifier model is in much closer agreement to the
experimental data than the feedforward model, where the input conductance increases

several times over baseline (see Fig. 4.6).
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experimental data.

We have seen that the cortical amplifier is direction selective for one stimulus
condition (a high contrast, moving bar). We will now explore more systematically

how directionality depends on contrast and velocity.

5.3 Contrast dependence of response and direc-
tionality

Fig. 5.5 shows contrast-response curves in the model for both LGN and pyramidal
neurons. The LGN contrast-response curve (Panel 5.5a) has a slope that is less than 1
on a log-log plot and compares well with experimental data in retina and LGN showing
a compressive nonlinearity (Shapley and Perry, 1986; Saul and Humphrey, 1990).
Panel 5.5b compares the pyramidal response with a sample experimental contrast-
response curve and reveals considerable agreement. Both have an initial portion that
is rélatively linear on a log-log scale with slopes that are much larger than the LGN’s:
they are 2.87 and 3.77 decade Hz/decade % contrast for the model and cortical
neuron, respectively. Since these slopes are larger than one, the initial portions of
both contrast-response curves increase faster than linearly. This expansivity is a
general feature of neurons in visual cortex. Albrecht and Geisler (1991) have fitted
the initial portion of neuronal contrast-response curves with a power function and
have found an average exponent of 2.5, comparable to the model’s slope.

The model contrast-response curves shows abrupt saturation following the curve’s
initial steep portion. This is a usual feature of contrast-response curves in primary
visual cortex (Albrecht and Hamilton, 1982; Albrecht and Geisler, 1991), but it is not
observed in both model and actual retinal and LGN neurons.

The model pyramidal neurons respond very little in the null direction, and the
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Figure 5.5: Contrast-response curves. Relationship between the visual contrast
(eq. 2.2) of a moving sinusoidal grating (1 Hz, 1 c¢/deg) and the peak firing rate for
different stages in our model, compared to physiological data (see Section 2.6). (a)
Peak geniculate response given by the Victor (1987) model. (b) The amplitude of
the first Fourier harmonic component from a cortical neuron in cat area 17 (label
EXP; adapted from Albrecht and Hamilton, 1982) compared to the response in the
preferred direction for pyramidal neurons in the cortical amplifier model (MOD). The
next two panels show the response in the preferred (P) and null direction (NP) of
motion as well as the direction index (DI = (P — NP)/P; eq. 2.5) for pyramidal
neurons in the (c) cortical amplifier model as well as (d) for a simple cell in cat
area 17 (responding to a 2 Hz drifting sinuosidal grating; adapted from Tolhurst and
Dean, 1991). Both model and cat cortical neuron are direction selective over the full
range of contrasts. ‘
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direction index is between 80 to 100% for nearly all contrast values (Fig. 5.56). The
invariance of the direction index over a broad range of contrast is characteristic of
visual cortical neurons (Fig. 5.5¢; Dean, 1980; Orban, 1984; Li and Creutzfeldt, 1984;
Tolhurst and Dean, 1991). Over 20% of area 17 neurons (and in i)articular, area
17 simple cells) have direction indices at the optimal velocity between 80 and 100%
(Albus, 1980; Berman et al., 1987; Gizzi et al., 1990; Reid et al., 1991; Tolhurst and
Dean, 1991; DeAngelis et al., 1993; McLean and Palmer, 1994).

5.4 Velocity dependence of response and direc-
tionality |

A strong test of any model of direction-selective cells in area 17 is whether model
neurons are velocity low-pass, as are 63% of area 17 cortical neurons (Fig. 5.6e; Orban
et al., 1981a; Orban, 1984). These neurons respond very well to low velocities and
little to velocities above 20° /sec. This property does not originate from LGN neurons,
Which have tuned, band-pass velocity-response curves with strong responses at high
velocities (Fig. 5.6b; Dreher and Sanderson, 1973; Lee and Willshaw, 1978; Frishman
et al., 1983; Orban et al., 1985; Gulyas et al., 1990). A further test js the extent
to which direction selectivity persists over a wide range of velocities; indeed, velocity
low-pass cells usually have a flat DI-velocity relationship (Orban et al., 1981b; Orban,
1984). ‘

Model LGN neurons have physiologically plausible velocity-response curves (Fig.
5.6a). In contrast, the cortical amplifier’s velocity-response curve is very different
(Fig. 5.6c), but is similar to area 17 velocity low-pass neurons: its response barely
shows any decrease at very low velocities, but drops off by more than 50% for velocities

above 20°/sec.
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Velocity-reponse curves. Shown is the peak firing rate for a 70 %

contrast bar as a function of its velocity at different stages in our model, compared to

physiological data. (a) LGN model peak response given by the Victor(1987) model.
(b) Peak response of X geniculate cells in the adult, anesthetized cat (Frishman et
al., 1983). (c) Peak response in the preferred (P) and null direction (NP) of motion

as well as the direction index (DI = (P — NP)/P; eq. 5) for pyramidal neurons in
the cortical amplifier model. Model neurons are direction selective over two orders of
magnitude of speed. (d) Representative examples of velocity-response curves from
velocity low-pass cells in cat visual cortex (Orban, 1984, Fig. 8/5 C).
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Figure 5.7: Grating superposition test. Comparison between the modulations in
membrane potential evoked (continuous) by 1 cycle/deg, 70% contrast sine wave grat-
ing, drifting in two directions at 2 Hz (2°/sec), and the response predicted (dashed)
from summing stationary contrast-reversal gratings, for one cell in the cortical ampli-
fier model. Each trace is an average of the response to 57 grating cycles, and shows
two copies of the average response to one grating cycle side by side. (a) Preferred
and (b) null direction. Superposition holds, as in cat simple cells (Jagadeesh et al.,
1993).

Similarly to velocity low-pass neurons, the cortical amplifier model’s dependence
of direction index (DI; see Section 2.6) on velocity is relatively flat over two orders
of magnitude, reflecting the small response in the null direction at all velocities. The
Mean Direction Index (MDI; see eq. 2.6, Section 2.6) is 95.7%. This invariance de-
pends on the presence of both transient (GABA 4) and sustained (GABA g) inhibition,
and on the small spatial offset between pyramidal and inhibitory neurons, as discussed
in detail in Chapter 4, GABA 4 and GABAp are responsible for direction selectivity

at high and low velocities, respectively.

5.5 Linearity to superposition

Ferster and his colleagues (Jagadeesh et al., 1993) carried out an elegant set of intracel-
lular experiments in direction-selective simple cells. They showed that the (somatic)

membrane potential signal evoked by a drifting sinusoidal grating can be predicted
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from the linear sum of responses to stationary contrast-reversal gratings at several
spatial phases, seemingly implying a simple linear feedforward model of direction-
selective simple cells. The reader is referred to Section 2.6 for a detailed description
of this test.

In the preferred and null directions, the average membrane potentials could be
predicted with an accuracy comparable to the experimental results (Fig. 5.7; see
Jagadeesh et al., 1993). Furthermore, there was no need to adjust any parameters
specifically to obtain the fit. This result is surprising in view of the importance of
amplification for the model’s functioning, and the nonlinearity of this amplification
(see Discussion); Chapter 6 explains in detail why the linearity test holds despite

nonlinear amplification.

5.6 Simplified dynamics: response through hys-
teresis

We now seek to understand the shape of the contrast-response and velocity-response
curves of pyramidal cells in the model. Both curves are very different from those of
model LGN neurons. In Section 3.4 we have examined the steady-state responses
of the hysteretic amplifier, and have found that its action is nonlinear amplification.
However, moving bars and gratings are transient stimuli; to understand the response
curves, we must understand how reaching the equilibrium firing depends on the con-
trast or velocity of a bar or grating. This depends for instance on the duration of the
stimulus compared to the network’s time constant. So we will now study the cortical
network’s dynamics and responses to transient stimuli.

A good starting point for understanding the hysteretic amplifier’s response to

transient stimuli is the response sequence shown in Fig. 3.2. We can understand the
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Figure 5.8: Simplified representation of the cortical amplifier model. By
using a linear recurrent current function I,... and a current-discharge curve F; that
has a threshold Iz, then is linear up to saturation at a firing rate f,,;, we can obtain
a situation that is similar to the cortical amplifier model, where there are two equi-
librium firing rates or attractors in the absence of any input, one at 0 Hz, the other

at a high firing rate, in this case f,q4;.
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dynamics analytically by considering a simplified system with F; and [, functions
that are similar to the cortical amplifier model’s (Fig. 5.8). In this system, I, is

linear, while F; is linear up to saturation, corresponding to the equations:

0 I < IT
Fi(l)=9 kr(I-1Ir) Ir <1< I,y (5.1)
fsat ] > Isat
and
Lee(f) = kreef . (5.2)

As mentioned in Section 3.4, and to mimick the condition depicted in Panel 3.3b, we

have the additional constraint in the hysteretic amplifier model:

1

- (5.3)

ke, >

Neglecting the membrane time constant, the system can be described by the following
differential equation as long as 0 < f < fs,: (see Section 3.5):

YV (0= 1)f + kel = I — Ip) (5.4)

Tsyn 5=
Y dt

where Ty, is the decay time constant for the excitatory synaptic conductance change
(20 msec), a = kg k.. is the slope of the F(f) corresponding to F; and [, (see
eq. 3.1), I and I;, the (possibly time-dependent) LGN and inhibitory currents. As
soon as f = f:, €q. 5.4 is valid only if the right-hand side is negative. Otherwise,
df /dt is 0. Similarly, if f = 0, the equation is valid only if the right-hand side is posi-
tive; otherwise, df /dt is 0 again. Note that a is greater than one, given equation 5.3.

We can now examine the responses of such a system to a sequence of inputs

similar to that shown in Fig. 3.2; since the simplified model is similar to the cortical
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amplifier model, its responses will be similar, too, and will explain the detailed model’s
behavior. As in Fig. 3.2, we assume initially that the system is at rest: f = 0. Since
initially there is no input (I, = 0, I; = 0) and the threshold is positive nonzero
(I > 0), the right-hand side of eq. 5.4 is negative and the network’s firing remains 0.
This observation explains why the cortical amplifier model does not always discharge
at a high rate in the absence of any input.

As soon as a constant positive suprathreshold input is given, i.e.:
]1 > Ir 5 (5.5)

the right-hand side becomes positive; since the coeflicient in front of f is positive,
the impulse response of the system is an exponential with a positive exponent (see

Section 3.5):

gll et (5.6)

?

where 7,.; = T,y /(. — 1). So the response to a constant input will be an exponential

with a positive exponent; for an input starting at ¢ = 0:
f = kFi (Il - [T)Tnetet/Tmt . (57)

If the input is presented long enough, the system reaches fi,:, and remains at this
firing rate.

If the positive input is now withdrawn (I; = 0), the right-hand side of the equation
does not become negative, again since the coefficient in front of f is positive. So the
firing rate does not decrease; instead the system stays at fy,; | This is the explanation
for the hysteretic behavior of the cortical amplifier: firing persists despite withdrawal
of the input that initially caused the firing.

However, if we now present a constant negative input large enough for the right-
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hand side to become negative, i.e.:
szui'*'[Tl > (Ot-—- nf, (5.8)

the firing rate will decrease according to an exponential with the same positive expo-
nent as previously, until the discharge rate reaches 0. If we bring the input back to 0,
the right-hand side of eq. 5.4 stays negative and the firing rate remains 0. Although
the network will generally keep discharging after a positive input, applying inhibition
resets the system to a low firing rate.

We conclude that the simplified system described by eqgs. 5.1, 5.2, and 5.4 explains
the cortical amplifier’s hysteretic behavior as presented in Fig. 3.2. Hysteresis comes
from the switching between two separate attractors (equilibrium firing rates) in the
cortical amplifier model, one at 0 Hz, the other at a high firing rate. Switching from
the lower to the upper occurs in the presence of a large enough positive input, while
the converse results from a large enough negative input.

The cortical amplifier’s responses to visual stimuli rely on principles similar to
those illustrated in Fig. 3.2. At a first glance, it is puzzling that the model’s discharge
does not persist after withdrawal of a visual stimulus, such as the bar moving in the
preferred direction shown in Fig. 5.2. However, excitatory input from the LGN is
followed by inhibition from the smooth neurons, as shown previousiy for a bar in
Fig. 5.3b, before reverting to its spontaneous background value. Clearly, a short pulse
of LGN input is followed by a pulse of inhibition, similarly to Fig. 3.2. Therefore,
as in that figure the initial excitation nudges the cortical network to its high firing
attractor, and the subsequent inhibition resets the network to its low firing attractor.
Furthermore, hysteresis can be observed directly in the response to the moving bar.
Indeed, the pyramids’ response does not start decreasing as soon as the net input

current starts decreasing. Instead, it is still increasing, and only decreases when the



106

net input current becomes substantially negative.

Note, however, that although the principles underlying both simplified and de-
tailed models are similar, there are also differences. In the simplified model the slope
of F(f) is constant (equal to ) and larger than 1, while in the detailed model the
slope varies and is only initially larger than 1 (Fig. 3.4b). Therefore, the approach
to the upper attractor follows an exponential with a positive exponent only initially.

Closer to the attractor, the dynamics slow down substantially, as can be seen in

Fig. 3.2.

5.7 Analysis of the contrast-response and velocity-
response curves

The contrast-response curve has a sigmoid shape with a steep maximum slope, fol-
lowed by quite abrupt saturation. In contrast, the LGN input increases much more
proﬁortionally to contrast (Fig. 5.5b). We can understand these differences in terms
of the hysteretic behavior of the cortical amplifier model.

The peak firing rate will not increase much with contrast as long as the LGN’s
synaptic input current is smaller than the threshold of the current-discharge curve.
As soon as the contrast is large enough for that limit to be exceeded, the network
switches quickly to the high firing rate attractor, according to an exponential with
a positive exponent (eq. 5.7), resulting in the steep slope observed in the contrast-
response curve. The positive exponent even explains the expansivity in the initial
portion of that slope; indeed, increasing contrast also increases the duration when the
net input current (see Fig. 5.3) is larger than the threshold of the current-discharge
curve (I7), increasing the duration of exponential growth of firing rate, and therefore

increasing the peak firing rate in the contrast-response curve exponentially too.
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At high contrasts, the system reaches the upper attractor at the peak discharge.
The attractor’s firing rate will not change much with the input strength, because the
slope of the transfer function F'(f) is small at the attractor (Fig. 3.4b). This results
in the relatively small slope of the contrast-response curve at high contrasts. This is
also reflected in the shallow slope of the steady-state response as a function of the
constant input current (Fig. 3.4c).

Between the two shallow portions of the curve, the slope is rather steep. However,
there is a small but sizable range of contrasts for which the system’s response is
intermediate. So, although the response is not strictly proportional to contrast, for
an interval of contrasts the response is graded. This relative gradedness depends
on the dynamics of switching from lower to upper attractors. If the dynamics were
very fast, compared to the time available for switching, as soon as a given contrast
results in a suprathreshold LGN input current, the network would switch to the upper
attractor; the peak response would never be in the range intermediate between the
two attractors. The gradedness depends on the time constant of these dynamics
being rather similar in value to the time available for switching. The time that is
available for the network to switch is the period from when the input is suprathreshold
(eq. 5.5) to when inhibition is large enough to reset the network (eq. 5.8). Assuming
that these two values are close to 0, this period is approximately equal to the time
interval from when the stimulus enters the receptive field of the pyramids to when it
enters that of the smooth cells. Given that the spatial offset between the two cortical
neuron groups is 5’, this duration will be about 80 msec for a grating moving at 1
deg/sec, which is the stimulus used for the contrast-response. The time constant of
the network dynamics is 7,y,/(a — 1); the average slope a of the F(f) curve over
the first four points in Fig. 3.4b is 1.16, so that an estimate of the network’s initial
time constant is 120 msec. It is not very different from the duration available for

switching, explaining that the slope of contrast-response curve is not too steep, but
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that nevertheless within the limited time available the network’s firing nears that of
the upper attractor.

We conclude that we explain the three segments observed in the contrast-response
curve: the initial slow increase below threshold, the steep rise, and the.shallow portion
when the high rate attractor is reached.

The most striking aspect of the velocity-response curve is the constancy of the
peak response at low and intermediate velocities. This constancy occurs despite large
variations in firing rates of the LGN input (Fig. 5.6). As for the contrast-response
curve, this constancy is explained by the existence of an attractor with a high firing
rate. Aslong as the attractor firing rate is reached, the input will not have much of an
influence on the network’s discharge rate. However, the duration of the net current’s
positive phase is inversely proportional to velocity, and at high velocities the input
does not last long enough, and the system does not reach the higher attractor. So
the constancy of peak firing rate disappears at higher velocities.

Invariance of the response with velocity is also enhanced by the increased duration
of the LGN input at 10W velocities. Although the LGN input decreases with decreasing

velocity, the network has no trouble reaching the high firing attractor because of the

increased duration.

5.8 Discussion

The canonical microcircuit (Fig. 1.1b) embodies compelling anatomical observations
showing massive excitatory cortico-cortical feedback connections among spiny stel-
late and pyramidal cells in mammalian visual cortex (Berman et al., 1992; Peters
and Payne, 1993; A‘hmed et al., 1994; Peters et al., 1994). Physiological support
derives primarily from intracellular recordings in response to electrical pulse stim-

ulation of cortical afferents (Douglas and Martin, 1991) and from pharmacological
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blockade experiments (Grieve and Sillito, 1991). The role of the present chapter is
to examine some of the computational principles underlying the operation of this
recurrent excitation and its implications on response properties of cortical circuits,
within the context of a realistic simulation of the dynamics of a small set of cortical
neurons, operating in the hysteretic amplification mode. We have called this model
the hysteretic amplifier model.

Indeed, there are two operating modes of this cortical amplifier circuit, depending
on parameter values. In the first mode, the pyramidal neurons’ response increases
proportionally to the stimulus strength over a substantial range of contrasts, before
saturating. We examine in Chapter 4 operation in this mode, which we call propor-
tional amplification. In the second mode, the response increases much faster over a
narrow range of contrasts, then saturates. We study this parameter regime in detail
in this chapter.

Analytically, one can define a steady-state transfer function for the network of
pyramidal neurons (F'(f), see eq. 3.1). In the proportional amplification mode, the
transfer function has a slope (corresponding to « in the linear case, see eq. 5.4) that
is less than 1. However, for the model presented in this chapter, the slope at low
firing rates is larger than 1 (Fig. 3.4); then, there are two attractors or equilibrium
firing rates without any input to this system, one with a firing rate at or close to
0 Hz, the other with a high firing rate (Figs. 3.3b and 5.8). Since the slope of the
transfer function F'(f) is the product of the current-discharge curve’s slope and the
recurrent current function’s slope (equation 3.1), if we increase the steepness of either
of these functions in a model that is in the proportional amplification mode, we will
transform it into the present model. In particular, increasing the strength of the
connection between the pyramidal neurons will increase the slope of the recurrent

current function.

The existence of the high rate attractor has a strong influence on the response
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properties of the model. The steep slope in the contrast-response curve corresponds
to when the network is switching quickly between the two attractors. Even the expan-
sivity in the initial portion of that steep rise results from the dynamics. Saturation
at high contrasts corresponds to when the network has reached the attractor firing
rate, which does not depend very strongly on the input. Constancy of response with
velocity up to high velocities also occurs because of the attractor.

It 1s striking that these features of contrast-response and velocity-response curves
have all been clearly observed experimentally in primary visual cortex and have not
been explained previously in a single consistent framework. An explanation is clearly
needed since these properties are not present in retinal and LGN neurons. In a purely
feedforward model, where excitatory synaptic input comes only from the LGN, none of
these properties can be explained (Chapter 4). Although Albrecht and Geisler (1991)
base their predictions of direction indices on expansivity of the contrast-response
curve, similarly to DeAngelis et al. (1993) and Heeger (1993), a detailed explanation
for its origins has not yet been proposed. Saturation at high contrasts is é promi-
nent feature of most neurons, and several explanations have been advanced, including
a contrast-set gain control mechanism (see for instance Albrecht and Geisler, 1991;
Heeger, 1992). The velocity-response curves of most area 17 cortical neurons are
velocity low-pass and often show remarkable constancy at low velocities (Orban et
al., 1981a; Orban, 1984). Local excitatory cortical feedback operating in the mode
described in this paper straightforwardly éxplains these properties in a unified frame-
work. Especially, the shape of the contrast-response curves seen in cortex appears
very suggestive of this mode of operation. Furthermore, massive local excitatory con-
nections are prominent in cortex. The present model is consistent with the linearity
test of Jagadeesh et al. (1993). We show also that a model based on excitatory feed-
back explains the small changes in conductance demonstrated in direction-selective

cortical neurons in the null direction (Douglas et al., 1988; Berman et al., 1991; Pei
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et al., 1991; Ferster and Jagadeesh, 1992), as well as the persistence of direction se-
lectivity in experiments where inhibition is blocked in a single neuron (Nelson et al.,
1994). Taken as a whole, these are strong arguments in favor of the present model.

A particularly intriguing aspect of the model is the possible occurrence of hystere-
sis when the model switches between two attractors. Hysteresis is characterized by
the persistence of a high discharge rate despite withdrawal of the initial stimulus, as
the network remains at the upper attractor (Fig. 3.2). This has not been observed
in primary visual cortex. However, we have noted that for a moving stimulus the
excitatory discharge is always followed by activation of the smooth cells, and inhibi-
tion resets the network to the lower attractor. Furthermore, withdrawing a stimulus
flashed on in an ON subfield of a simple cell in primary visual cortex results in in-
hibition, most likely originating from activation of the OFF system and feedforward
inhibition in cortex, and would reset the network. We conclude that attractor dynam-
ics could very well underlie cortical information processing, even though hysteresis

"has'not been observed experimentally.

Our model’s behavior parallels observations and proposals relating to short-term
memory in infero-temporal cortex. Fuster and colleagues have observed in this portion
of visual cortex patterns of persistent firing during memory tasks (Fuster and Jervey,
1980, 1982; Fuster, 1990). Models of these phenomena have been proposed, also based
on intracortical excitbatory feedback and attractor dynamics (Zipser et al., 1993; Amit
et al., 1994).

Experiments have shown that saturation of contrast-response curves is not related
to hard saturation of the neuron’s spike mechanism. Indeed, when spatial frequency
or direction of motion are varied (Albrecht and Hamilton, 1982; Tolhurst and Dean,
1991), the shape of the contrast-response curves remain invariant while the saturation
firing rate varies. The present model is in principle consistent with these findings.

Indeed, the spike mechanisms of neurons in the model are not saturated at the at-
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tractor frequency (Fig. 3.4). Furthermore, the attractor firing rate depends directly
on the recurrent current, and could be modulated by changing the effective strength
of connections by inhibition (Heeger, 1992) or any other mechanism. In Section 7.3,
we show that changing the inhibition or feedback strength by small amounts in the
present model can lead to changes in the saturation firing rate of the contrast-response
curve.

We conclude that the canonical microcircuit’s local excitatory connections can
explain a range of cortical properties when combined with attractor dynamics. In
such models, hysteresis is theoretically possible, but is not observed for visual stimuli
because excitation is followed after stimulus withdrawal by inhibition that resets the

network to a low firing rate.

5.9 Summary

Almost all models of orientation and direction selectivity in visual cortex are based
on feedforward connection schemes, where geniculate input provides all excitation to
both pyramidal and inhibitory neurons. The latter neurons then suppress the response
of the former for non-optimal stimuli. However, anatomical studies show that up to
90% of the excitatory synaptic input onto any cortical cell is provided by other cortical
cells. The massive excitatory feedback nature of cortical circuits is embedded in the
canonical microcircuit of Douglas and Martin (1991). We here investigate analytically
and through biologically realistic simulations the functioning of a detailed model of
this circuitry, operating in a hysteretic mode. In the model, weak geniculate input
is dramatically amplified by local intracortical excitation, while inhibition has a dual
role: (i) to prevent the early geniculate-induced excitation in the null direction and
(ii) to restrain excitation and ensure that the neurons fire only when the stimulus is

in their receptive-field. The model relies on the presence of an attractor at a high
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firing rate; strong discharge occurs when the network switches to this attractor. This
paper complements the previous chapter that describes a similar model operating in
the proportional amplification mode. The present mode of operation is compatible
with several important findings from that chapter. In addition, resﬁonse invariance
with velocity that has been observed in velocity low-pass neurons can be explained
by the presence of the attractor. The model also allows us to understand the origin
of expansive and compressive nonlinearities in the contrast-response curve of striate
cortical neurons. Surprisingly, the model postulates that hysteresis is latent in striate
visual cortex and underlies some aspects of the responses, paralleling recent proposals

for short-term memory.
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Chapter 6

Linearity to grating superposition
does not imply linearity of the

underlying biophysics

6.1 Introduction

This chapter is about the intracellular grating superposition test of linearity used
by Jagadeesh et al. (1993) on direction-selective cells. We provide a detailed expla-
nation of the cortical amplifier model’s linearity to this test and explore the test’s
methodology.

A fundamental question about information processing in primary visual cortex
is whether simple cells sum their spatial and temporal inputs linearly. Many experi-
ments have attempted to answer this question (Ferster, 1987; Jones and Palmer, 1987;
Ferster and Jagadeesh, 1992; McLean and Palmer, 1994; see Shapley and Lennie,
1985 for a review), with some focusing on linearity of direction selectivity (Palmer

and Davis, 1981; Reid et al., 1987, 1991; Albrecht and Geisler, 1991; DeAngelis et
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al., 1993; McLean et al., 1994). An especially detailed investigation has tested in
direction-selective simple cells the linearity of modulations in intracellular potential
induced by gratings (Jagadeesh et al., 1993), and has concluded that the mechanism
of direction selectivity is linear summation of synaptic potentials without any need
for nonlinear processes.

This conclusion seems at odds with the existence of nonlinear processes in dendritic
trees, such as synaptic nonlinearities and voltage-dependent mechanisms (see Mel,
1994 for a review), which could substantially enhance the computational power of
a single neuron. Furthermore, strict linearity would require elaborate processes to
compensate exactly for the many stages of half-wave rectification (in the retina and
lateral geniculate nucleus - LGN) prior to integration of inputs in cortex.

Such linearity would also appear to argue against the cortical amplification process
embodied in the Canonical Microcircuit of neocortex (for a description, see Chap-
ter 1). Amplification must be nonlinear, since it requires action potentials in the
cortical neurons, and so occurs orﬂy if the membrane potential exceeds a certain
threshold voltage; thresholding is inherently nonlinear.

In this chapter, we evaluate whether these nonlinearities are incompatible with
the data of Jagadeesh et al. (1993), through detailed computer simulations of the
cortical amplifier model (here in the proportional amplification mode, but the same
holds for the hysteretic amplifier), and the feedforward model, a strictly feedforward
version of this model.

As introduced in Chapter 1, the cortical amplifier model is a detailed simulation
of a circuit that amplifies the geniculate input to cortex in the preferred direction,
through excitatory intracortical connections, and cancels geniculate excitation in the
null direction through inhibition. We refer you to that chapter for the context of this
model.

The proportional amplification mode occurs in the presence of moderate positive
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feedback. We refer you to Chapter 3 for a detailed explanation about the two modes of
operation, and to Chapters 4 and 5 for a thorough description of response properties
and functioning in both modes.

The proportional amplifier and feedforward models themselves and the simulation
methods are described in Chapter 2. We describe there the geniculate model we used
to provide input to cortex. We refer you to that chapter for these explanations.

The linearity test of Jagadeesh et al. (1993) is based on intracellular experiments in
direction-selective simple cells. They showed that the (somatic) membrane potential
signal evoked by a drifting sinusoidal grating can be predicted from the linear sum
of responses to stationary contrast-reversal gratings at several spatial phases. The
reader is referred to Section 2.6 for a detailed description of this test.

We find that both detailed models conform to the linearity test mentioned above
(Jagadeesh et al., 1993). To understand why these models satisfy the linearity test,
despite the nonlinearities present in the biophysics, we introduce and simulate a series
‘of simplified models that capture the essential nonlinearities of the detailed models. In
addition, we introduce a modified grating superposition test that detects the models’
nonlinearity. Our results challenge the interpretation that the observations of Ja-
gadeesh et al. (1993) reflect the fundamental linearity of neuronal operations, rather

than system and stimulus related properties.

6.1.1 Guided tour

Section 6.2 demonstrates the models’ linearity to grating superposition in more detail
than previously (see Sections 4.7 and 5.5). Next, Section 6.3 shows the nonlinearities
present in the feedforward model and explains linearity to grating superposition in
that model, through a series of simplified representations. Section 6.4 is about why the

proportional and hysteretic amplifiers satisfy grating superposition. Next, Section 6.5



117

22°

=

-
T

50
67°

L+

00
112°
135°

M1 57°

Figure 6.1: Responses to stationary gratings Fluctuations in membrane po-
tential evoked by a 100 % contrast, 1 cycle/deg, 2 Hz contrast-reversal stationary
sine wave grating, presented at eight different spatial phases, for (a) a neuron in cat
visual cortex (data from Jagadeesh et al., 1993) and (b) a pyramidal neuron in the
cortical amplifier model. Responses were averaged over 57 grating cycles, and each
trace shows two copies of the average response to one grating cycle side by side (see
Section 2.6).

presents a modified grating superposition test and predicts that linearity of simple
cells in cortex will break down under this test. Finally, Section 6.6 discusses the
significance of these results within the context of related research about neurons in

visual cortex.

6.2 Superposition holds for the detailed models

The responses to stationary gratings at the eight spatial phases for the cortical am-

plifier model are compared to the experimental results (Jagadeesh et al., 1993) in
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Figure 6.2: Temporal phase of the responses to stationary gratings. Phase
of the first Fourier component of the fluctuations in membrane potential evoked by
a 100% contrast, 1 cycle/deg, 2 Hz contrast-reversal stationary sine wave grating,
presented at eight different spatial phases, as a function of the spatial phase of the

grating, for a pyramidal neuron in the cortical amplifier model. The stimulus and
response phases vary only over 180 degrees, so the graph was extended by duplication
over the remaining 180 degrees of the full cycle.

Fig. 6.1. The feedforward model’s responses to stationary gratings are similar. In
both cases, the response was a periodic fluctuation of the intracellular membrane
potential at the same temporal frequency as the stimulus. There are strong similar-
ities in shape between the model and the data. For instance, compare the 6th trace
from the top (112°) in both panels. But most importantly, the temporal phase of the
response depends on spatial phase, showing in the model a phase lag that increased
linearly with spatial phase (Fig. 6.2). Such phase shifts have been found in direction-
selective simple cells and have been proposed as the basic mechanism of direction
selectivity in these cells (Hamilton et al., 1989; Saul and Humphrey, 1990; Reid et
al., 1991; Albrecht and Geisler, 1991; DeAngelis et al., 1993; Heeger, 1993; McLean
et al., 1994). Indeed, Fig. 4.13, from Chapter 4, shows that both models’ responses
to moving gratings are direction-selective, paralleling the results of Jagadeesh et al.
(1993) for neurons in cat visual cortex: the amplitude of the periodic modulation is
larger in the preferred than in the null direction.

Surprisingly, however, the preferred and null direction responses could be pre-

dicted (by linear summation of responses to stationary gratings, see Section 2.6) for
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both feedforward and cortical amplifier models with an accuracy comparable to the
experimental results, with no parameters needing to be adjusted specifically to re-
produce this result. The preferred direction of motion as well as the direction index
measured from the modulations of the intracellular somatic membrane potential could
be predicted from the responses to the stationary gratings. The actual indices were
43.5% and 33.3% for the cortical amplifier and feedforward models respectively, while
the predicted indices were 66.0% and 39.4%. The direction index measured intra-
cellularly was much smaller than the direction index measured from the peak firing
rate in both cortical amplifier (43.5% versus 93.2%) and feedforward models (33.3%
versus 97.4%), as has been observed in cat visual cortex (Jagadeesh et al., 1993).
What makes this result surprising is that model pyramidal cells have many non-
linearities, particularly in the cortical amplifier model, as we will see in the next
sections. However, we will provide an explanation for the apparent linearity of the
models in spite of these nonlinearities, first for the feedforward model, then for the

cortical amplifier model.

6.3 Explaining superposition for the feedforward

model

In this section, we first give a simple, general overview of the feedforward model’s
nonlinearities and explanation for superposition in the feedforward model. Next, we
construct a representation of the feedforward model using a series of simplified, formal
models, to demonstrate the nonlinearities and superposition in more detail, too.
Nonlinearities in the feedforward model originate mainly from half-wave rectifica-
tion in the LGN: LGN ON neurons only fire during the positive phase of the sinusoidal
input. Although we do not model LGN OFF cells, eliminating half-wave rectification
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totally with LGN OFF cells would require very precise balancing, which may not be
biologically plausible. This half-wave rectification gives rise to half-rectified excitatory
LGN current and half-rectified inhibitory current to the pyramidal neurons.

These nonlinearities produce higher-order Fourier components in the responses
to stationary and moving gratings. For the linear, 1st Fourier components of the
gratings superposition holds trivially as for sinusoids, from equation 2.7. In other
words, the sum of the fundamentals of the responses to stationary gratings is equal to
the fundamental of the response to a moving grating. However, as soon as there are
nonlinear, higher-order Fourier components, superposition does generally not hold.

However, in a sum with many temporally offset waveforms, higher harmonics
cancel, as we will see later. The response to moving gratings is predicted using such
a sum. A similar phenomenon occurs for the actual response to moving gratings.
Indeed, each model pyramidal and smooth cell gets input from five spatially diplaced
LGN subunits. For a moving grating, the spatial displacement results in temporal
phase offsets between subunit respo.nses. The total response is again the sum of several
(this time five) nonlinear, temporally offset waveforms. Since the higher harmonics
cancel for both actual and predicted responses to moving gratings, leaving only the
Oth and 1st Fourier components, superposition holds trivially.

That this is indeed happening can be seen directly from the responses of the
models and those of the neuron in cat cortex. The waveforms of the responses to
stationary gratings are highly nonlinear (Fig. 6.1), while the predicted and actual
responses to moving gratings are quite sinusoidal (Fig. 4.13).

We now demonstrate that higher-order Fourier components indeed cancel in sums
of temporally offset nonlinear waveforms. Let us show this for the sum of equation 2.8,

in the case where the model’s response (R(z), see equation 2.8) is a simple half-wave
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rectification:

z ifz>0
R(z) = p1ja(z) = o (6.1)
0 otherwise

We evaluate equation 2.8 for z = 0:

- Z sin( p1/2 [szn(t + = 5 + ng )} . (6.2)

Now, we approximate a half-wave rectified sinusoid by the first three terms in its

Fourier series:

p1ya2lsin(t)] = ;1; + —;—Sin(t) - 3—27r—cos(2t). (6.3)

In the following, we discard the higher-order terms. We now introduce this approxi-

mation into the previous equation for the predicted response to a moving grating:

7

1 1 w1 ., om 2 s
ZZ [szn +szn( 8)2sm(t+ 5 +n8) ~52n(n§)3~ﬂcos(2t+ﬂ+nz)] .
(6.4)

n=0

Keeping in mind our goal of demonstrating that the sum of equation 2.8 is nearly
sinusoidal with respect to time, we note that the first two terms in this equation are
compatible with this notion. The first term is simply a constant with respect to time.
The second term is sinusoidal. The third term, however, adds a higher harmonic
to the predicted response, that may render it nonsinusoidal. However, we will see
later numerically that the sum over n of this term is actually very small. We can
also demonstrate analytically a similar result by discarding the spatial phase term,

sin(nk), and evaluatmg the sum:

27: cos(2t + 7 + n%) : (6.5)

n=0
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It can be rewritten as:

> [cos(?t +7+nT) + cos(2t + ng)} . (6.6)

n=0

Each of these pairs of terms is 0, because of the 7 phase offset. Second-order com-
ponents cancel due to summation of waveforms with temporal offsets of . More
generally, sinusoids with widely different temporal phases cancel out in sums, and
although in the sum of the first Fourier component the phase differences are at most
7, in the sums of higher components phases are spread out over the entire 27 range.
Although we only considered half-wave rectification here, this argument should hold
at least in part for most nonlinearities.

In conclusion, Fourier components of order higher than 1 in the responses to
stationary gratings average out in the superposition sum, resulting in a predicted
response to the moving gratings that is similar to that of a linear system, almost
sinusoidal. A similar phenomenon occurs for the actual response to moving gratings,
resulting in superposition.

After giving this general argument, we now present simplified models that ap-
proximate the functioning of the feedforward model and examine more in detail this
model’s nonlinearities and how closely superposition holds. In the following analysis,
instead of using a single neuron model that produces action potentials, neurons have
a graded output that can be identified both as voltage and spiking rate. In fact, the
network has only two neurons, one pyramidal cell and one smooth neuron.

We call F,(t) the voltage output of our model pyramidal neuron for a certain
stimulus s. The stimulus can be a sine wave grating moving in the preferred (+) or

null (—) directions:

s(z,t) = Spmovs(z,t) = sin(kz F t), (6.7)

where z is spatial position, ¢ time and k spatial frequency (assuming that the temporal
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frequency is 1 Hz); or a stationary contrast-reversal sine wave grating at several spatial

phases (n=0,..,7):
s(z,t) = Srepn(z,t) = sin(kz + n%)szn(t) . (6.8)

In this notation we can write conveniently the two equations expressing sine wave
gratings moving in the preferred (4) or null (—) directions in terms of the superpo-
sition of eight contrast-reversal sine wave gratings:

s

1 7
3mov:i:(£7t) = Z Z Srev,n(xa t+ ) * n%) . (69)

n=0

We now construct a representation of the feedforward model using three simplified
models that each build on the previous one by adding an important feature of the
feedforward model. The first simplified model only includes half-wave rectification in
the LGN, without direction selectivity or any other cortical processing. The model
pyramidal neuron receives excitatory synaptic current from a half-wave rectified LGN
neuron, and the waveform of the pyramidal neuron’s voltage is similar to that current’s
waveform. So, assuming a neuron centered at spatial position zq = 0, the first

approximation to the feedforward model’s voltage output is:
FD(t) = p1jals(zo, 1)]. (6.10)

Fig. 6.3 shows this model’s response to the stationary gratings and to a moving
grating, as well as the predicted response to the moving grating, based on superpo-
sition. Although the responses to the individual stationary gratings are half-wave
rectified, the predicted voltage to the moving grating is close to a full sinusoid. The
prediction for this model actually evaluates numerically equation 6.2. This equation

is approximated by equation 6.4. That the result is close to a full sinusoid means that
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Figure 6.3: Superposition test for the first simplified model. Responses of a
simplified model (F(!)(t), see equation 6.10), which approximates the voltage output
of the detailed feedforward model; it is an approximation that includes only the effect
of half-rectification in LGN input to the pyramidal neurons. Shows the responses to
two grating cycles. (a) Responses to stationary contrast-reversal sine wave gratings at
eight different spatial positions (from top to bottom n = 0 to n = 7; see equation 6.8).
(b) Response to a moving grating (+ direction, shown with continuous line; see
equation 6.7) compared with the response predicted from summing stationary gratings
(dashed). Superposition holds only very approximately, because of the rectification
nonlinearity.
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the sum over the second Fourier component in that equation is very small. So we
confirm the statement made above, that higher-order harmonics cancel out in sums
with temporal phase offsets. However, the response to the moving grating is half-
wave rectified and so does not match the prediction well, as expected from nonlinear
processing in the presence of only one spatial subunit.

The next most basic operation in the detailed model is inhibition, mediated by
GABA,4 and GABAp processes, and responsible for direction selectivity. To a first
approximation, the smooth neuron’s firing rate output is also given by half-wave
rectification of the stimulus, but at a spatially displaced location. The spatial offset
is 5" = 1/12°. Denote z, = n/12°. The smooth neuron’s firing rate for stimulus s is

then:
p12s(z1,1)]. (6.11)

Theé transformation giving the GABA 4 and GABA g synaptic current from the smooth
neuron’s firing rate is a filtering operation. Its impulse response 45 is determined
by the functions, weights and time constants of the detailed model (see Section 2.5).
Adding inhibition to our first simplified model F{V)(¢) by convolving the smooth

neuron’s firing rate with y4p gives the second simplified model:
FO(t) = p1/2[s(zo, )] — vaB * pryals(z1,1)]. (6.12)

We show in Fig. 6.4 this model’s response to the stationary and moving gratings,
as well as the predicted response to the moving gratings, based on superposition.
The model is direction-selective. Again, the predicted voltage traces are quite sinu-
soidal, although the responses to stationary gratings have a very complicated, tem-
porally nonlinear shape, due to the combination of rectification in the LGN currents
to pyramidal and smooth neurons. However, the responses to moving stimuli show

higher-order Fourier components and do not match the predictions well.
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Figure 6.4: Superposition test for the second simplified model. Responses
of a simplified model (F{*)(t), see equation 6.12), which approximates the voltage
output of the detailed feedforward model; it is an approximation that includes the
effects of half-rectification in the LGN and GABA 4 and GABA g inhibition (including
rectification in the LGN inputs to the smooth neuron). Shows the responses to two
grating cycles, for gratings with spatial frequency k£ = 2x. (a) Responses to stationary
contrast-reversal sine wave gratings at eight different spatial positions (from top to
bottom n = 0 to n = 7; see equation 6.8). (b) Response to a grating moving in the
preferred direction (continuous) compared with the response predicted from summing
stationary gratings (dashed). (c) Response to a grating moving in the null direction
(continuous) compared with the response predicted from summing stationary gratings
(dashed). In both directions of motion, superposition holds only very approximately,
because of the rectification nonlinearities.
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There is another important property of the detailed model that has not been
taken into account in the simplified models. Both pyramidal and smooth neurons
receive input from LGN neurons at five spatial positions, instead of one. The five
inputs to the smooth neurons are displaced by 1/12° from the inputs to the pyramidal
neurons. Incorporating this arrangement in the previous simplified model gives the

third simplified model:

FO(t) = };()Pl/z[s(fcn,t)] — Y vaB * prja[s(za, 1)]. (6.13)

n=1

The actual and predicted responses are shown in Fig. 6.5. The predicted voltage
traces are highly sinusoidal, despite the presence of higher-order Fourier components
in the individual responses to stationary stimuli. But in addition, the responses to
moving stimuli are highly sinusoidal, and match the predictions very well. Indeed,
as discussed previously, summation of the subunit responses results in cancellation of
higher harmonics.

In sumrﬁary, by breaking down the feedforward model into some of its basic com-
ponents, half-wave rectification, GABA 4 and GABAp inhibition, and summation of
spatial subunits, we note important sources of nonlinearity in the feedforward model.
However, we can explain the success of the superposition test by ﬁoting that higher-

order Fourier components average out in sums of terms with various temporal phases.

6.4 Influence of the cortical amplifier’s feedback
connections

Both cortical amplifier and feedforward models are based on rather similar mecha-
nisms, so their nonlinearities arise from some of the same sources: half-wave rectifi-

cation in both excitatory and inhibitory currents. However, excitatory intracortical
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Figure 6.5: Superposition test for the third simplified model. Responses
of a simplified model (F®)(t), see equation 6.13), which approximates the voltage
output of the detailed feedforward model; it is an approximation that includes the
effects of half-rectification in the LGN, GABA4 and GABAjg inhibition (including
rectification in the LGN inputs to the smooth neuron), and spatial summation of
LGN inputs in the cortical neurons. Shows the responses to two grating cycles, for
gratings with spatial frequency k = 27. (a) Responses to stationary contrast-reversal
sine wave gratings at 8 different spatial positions (from top to bottom n = 0 to
n = 7; see equation 6.8). (b) Response to a grating moving in the preferred direction
(continuous) compared with the response predicted from summing stationary gratings
(dashed line). (c) Response to a grating moving in the null direction (continuous)
compared with the response predicted from summing stationary gratings (dashed).
For both directions of motion, superposition holds well, because of cancellation of the
nonlinearities through summation.



129

connections (also called feedback connections) are an additional source of nonlinear-
ity in the cortical amplifier. Indeed, amplification occurs only when the pyramidal
neurons are spiking, which requires that the membrane voltage exceeds the spiking
threshold. As a first step, to underscore the apparent paradox, we show using a sim-
plified model that because of this nonlinearity the superposition test should not hold
for the cortical amplifier model. Since the superposition test still holds, as we have
seen above, we explain thereafter why the simple model does not apply and why the
superposition test holds.

To model the effects of the canonical microcircuit’s amplification, we modify one
of the models preseﬁted in the previous section (F®)(¢)), by multiplying the voltage
by a constant factor, say 4 (see Section 4.2 for a justification of this value), if the

output is larger than 0:

AFO(t) if FO(t) > 0

S

F®(t)  otherwise

8§

F(t) = (6.14)

Fig. 6.6 presents this model’s responses to stationary and moving gratings, as
well as the predicted responses. Superposition does not hold. Indeed, for stationary
contrast-reversal sine wave gratings the feedback current is half-wave rectified, so in
the waveform of the response the positive phase will be in general much larger than
the negative phase. For a grating moving in the null direction, the response will be
approximately the same as in the F(®)(¢) model, given the high degree of direction
selectivity of the neuron that we chose to model. For the F{®)(¢) model, the sum of
responses to stationary gratings added up with appropriate phases to the response
in the null direction. For the F¥(t) model, waveforms to stationary gratings are
different, with a much larger positive phase. The sum is not going to add up to the

same response in the null direction. Clearly even the average value of that sum is not
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Figure 6.6: Superposition test for a simplified model of the cortical am-
plifier. The simplified model F(*)(¢) (see equation 6.14) is an approximation that
includes the effects of half-rectification in the LGN, GABA 4 and GABAg inhibition
(including rectification in the LGN inputs to the smooth neuron), spatial summa-
tion of LGN inputs in the cortical neurons, as well as amplification by the excitatory
loop: Shows the responses to two grating cycles, for gratings with spatial frequency
k = 2r. (a) Responses to stationary contrast-reversal sine wave gratings at eight
different spatial positions (from top to bottom n = 0 to n = 7; see equation 6.8). (b)
Response to a grating moving in the preferred direction (continuous) compared with
the response predicted from summing stationary gratings (dashed). (c) Response
to a grating moving in the null direction (continuous) compared with the response
predicted from summing stationary gratings (dashed). Although superposition holds
well in the preferred direction, it does not hold in the null direction, because of non-
linear amplification that operates for stationary gratings and for gratings moving in
the preferred, but not in the null direction.
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going to be the same anymore.

We have shown that amplification by the canonical microcircuit should result
in significant nonlinearity to grating superposition. However, such is not the case
in the detailed cortical amplifier model (see Fig. 4.13a and b). We now explain
why the F{*)(t) model is not an appropriate description of the cortical amplifier.
Understanding this will then allow us, surprisingly, to reduce the cortical amplifier
model back to the simplified model without amplification, F{(3)(¢).

The F(#(t) model is not appropriate because in the detailed model action poten-
tials occur during the positive phase of the average voltage trace. Although these
action potentials are stripped by the median filter mentioned above, and so at a first
glance do not seem to affect the average voltage trace, they create a maximum volt-
age, the spike initiation threshold, that will never be exceeded. While the membrane
is at this maximum voltage, any additional current will not translate into an increase
in average voltage. Instead, the current will result in an action potential, and after
the spike the voltage will be brought back below the spike threshold; once the spike is
stripped by the median filter, it is as if the current had never been present. Current
is "sunk” in the action potentials (Bernander et al., 1994), and F{*)(¢) does not take
into account the sinking of this current.

The amount of current sunk can be revealed by blocking the currents responsible
for the action potentials (fast sodium Na and delayed rectifier potassium Kppg; see
Section 2.4) in only one pyramidal neuron and recording the average membrane po-
tential in that cell. Compared with the unblocked case (Fig. 6.7a), the voltage is much
larger in the positive phase of the response. The current sunk that the F(*)(¢) model
does not take into account is large. So, while the simplified analysis describes well the
net current in the coftical amplifier case, it falls short of predicting the corresponding
voltage in the positive phase of the response.

It is not surprising, therefore, that F(*)(t)’s prediction that linear superposition
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Figure 6.7: Analysis of the cortical amplifier’s intracellular response. Mod-
ulations in membrane potential evoked in one model neuron by a 100% contrast,
1 cycle/deg sine wave grating, drifting in the preferred direction at 2 Hz. (a) Corti-
cal amplifier (dashed); after blocking the action potentials (by removing fast sodium
and delayed rectifier potassium currents) in the fiducial cell (continuous). A large
current is sunk in the action potentials. (b) After blocking action potentials in the
fiducial cell (continuous); after in addition removing all feedback excitatory connec-
tions (dashed). There is a large feedback current during the positive phase of the
response. (c) Cortical amplifier (continuous); after removing all feedback excitatory
connections (dashed). Most of the feedback current gets sunk in the action potentials.
(d) After removing all feedback excitatory connections in the cortical amplifier model
(dashed); after in addition blocking action potentials in the fiducial cell (continuous).
Little LGN current is sunk in the action potentials. We conclude that for the purpose
of predicting the intracellular response, we can reduce the cortical amplifier to the
feedforward model.
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should not hold, is not borne out by the detailed cortical amplifier model. However,
this does not explain the detailed model’s linearity to grating superposition. The
explanation is that most excitatory intracortical current is sunk before affecting the
voltage, while the LGN current remains essentially intact, as we will see shortly. In
other words, surprisingly, we can reduce the cortical amplifier model to the feedfor-
ward model, for the purposes of predicting the average voltage. We have already seen
that linearity holds for the simplified feedforward case F3)(t).

The large feedback current can be demonstrated by blocking action potentials
in the fiducial cell only and comparing the potentials with and without excitatory
cortical connections (Fig. 6.7b). That most of this current is sunk in the action
potentials can be seen by comparing the average potentials in the unblocked case
with and without cortical feedback (Fig. 6.7c). They are very similar.

After removing all excitatory feedback in the cortical amplifier case, we can com-
pare the average membrane potential with and without blocking the currents respon-
sible for the action potentials (Fig. 6.7d): little LGN current is sunk in the action
potentials. That is because for the contrasts used in the test, which are just large
enough to produce strong firing in the pyramidal neurons, the LGN input by itself
would result in only very few spikes in the pyramidal neurons, bringing them barely
above threshold. However, there is some sinking even in this case, meaning that the
average membrane potential reaches its maximum. This observation explains that
nearly all excitatory cortical current is sunk, since this current occurs when pyrami-
dal neurons are spiking even without cortical feedback, and so have already reached
their maximum potential.

So the excitatory intracortical current has very little effect on the membrane
potential. In addition, only a small portion of the LGN current is sunk in the action
potentials. We conclude that, surprisingly, £®)(¢) can be used to model the cortical

amplifier’s membrane potential.
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6.5 Superposition test using only two stationary
gratings

Jagadeesh et al. (1993) used eight stationary gratings in their superposition test.

However, a moving grating can be written as sum of two stationary gratings only:

sin(krtwt) = sin(lm—f—n%)-sz'n(wt-f—gZFnz)—{nsz'n(ls::vﬂ-ng+z)-sz’n(wH—z:f?nI

iy
8 5 2 T"g Ty

(6.15)
This equation is valid for any of n = 0,..,3. It allows us to formulate a modified
superposition test that uses only the responses to two stationary gratings to predict
the responses to moving gratings. The cortical amplifier’s actual response to a grating
moving in the null direction is compared in Fig. 6.8a-d to the four predictions (n =
0,..,3) from this superposition test. The outcome of the eight grating superposition
test is shown in Fig. 6.8e for comparison. Although with two gratings the prediction’s
Ist Fourier component is the same vas that of the evoked response, the overall shape
of the prediction is very different due to discrepancies in higher-order components.
The average mean square error is 0.64 mV'? for the prediction with eight gratings and
1.95 mV? for those with two gratings. Since there is little noise in the two grating
prediction (Fig. 6.8f), noise due to less averaging is not by itself the cause of the
mismatch.

Rather, it originates in the large nonlinear components in the responses to station-
ary gratings (see Fig. 6.1). As we noted above (see equation 6.6), the second Fourier
components cancel in sums of nonlinear waveforms with temporal offsets of %, and
so they will cancel partially even for the two grating superposition sum. However,
cancelling higher-order components require more terms in the sum. For instance,

cancelling the fourth Fourier component will require in addition terms with temporal

offsets of I
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Figure 6.8: Superposition test using only two stationary gratings. The
first four panels (a,b,c,d) compare the modulations in membrane potential evoked
(dashed) by a 100% contrast, 1 cycle/deg sine wave grating, drifting in the null direc-
tion at 2 Hz, and the response predicted (continuous) from summing four different
pairs (n = 0, .., 3 in equation 6.15) of stationary contrast-reversal gratings, for one cell
in the cortical amplifier model. Each trace results from averaging the responses to 57
grating cycles. (e) Compares the modulation evoked (dashed) in the null direction
and the response predicted (continuous) from summing eight stationary gratings (as
in Fig. 4.13b) : the prediction is much more accurate when summing eight stationary
gratings. (f) Compares the prediction for n = 0 (dashed) with the same predic-
tion, but from a run with a different random seed (continuous): there is little noise
in the prediction that uses two stationary gratings. We conclude that linearity to
superposition holds only under narrowly defined conditions.
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The two grating superposition test detects the model’s nonlinearity, and its out-
come is consistent with our explanation of why the eight grating superposition test
holds. We conclude that full linearity to grating superposition cannot be inferred

from the eight grating superposition test.

6.6 Discussion

Jagadeesh et al. (1993) have proposed that their experimental results showing linear-
ity to grating superposition argue strongly against nonlinear processing in direction-
selective cortical cells. In addition, we note that linearity of these cells would require
a precise mechanism in cortex to compensate for half-wave rectification in the retina
and LGN. However, we argue that determining if a given nonlinear model can truly
be ruled out by these results has to be done directly by performing the same grating
superposition test on model neurons. The role of the present chapter is to evaluate
the test’s sensitivity by applying it to two models of direction selectivity that include
substantial nonlinear processing, one based on a scheme originally proposed by Barlow
and Levick (1965), the feedforward model, and the other one based on the canoni-
cal microcircuit, the cortical amplifier model. The model’s responses to stationary
gratings are very similar to experimental results in overall shape, and their tempo-
ral phase varies linearly with the gratings’ spatial phase, as observed experimentally.
For both models, the fluctuations in membrane potential evoked by moving sine wave
gratings were well predicted by linear summation of stationary contrast-reversal sine
wave gratings, paralleling the results of Jagadeesh et al. (1993) for neurons in cat
visual cortex.

Using simplified models, we have demonstrated that indeed substantial nonlin-
earities are present in these models: half-wave rectified thalamic input, half-wave

rectified firing pattern of inhibition, and amplification with a threshold using the
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canonical microcircuit. So superposition for these models is unexpected. However,
we have provided an explanation for our observations, again using these simplified
models. We have noticed that summing nonlinear waveforms with temporal phase
offsets will result in partial cancellation of the higher harmonics, 1ea§ing mostly the
zeroth and first Fourier components. This cancellation occurs when the responses
to stationary gratings are summed to perform the superposition test, resulting in a
predicted waveform that is highly sinusoidal. It occurs also within the model neurons
for moving grating stimuli, because inputs from LGN neurons at many spatial offsets
are summed in the pyramidal neurons. The remaining contributions to the responses
are sinusoids, and for sinusoids superposition holds trivially. Nonlinear amplification
in the cortical amplifier model requires a separate explanation. The feedback cur-
rent occurs at a moment in the cycle when the pyramidal neurons are already firing
in response to the LGN input, even only moderately, so that the average potential
is already close to its maximum (the spiking threshold). So the feedback current
is sunk in the spike mechanism of the neurons, and does not influence the average
membrane potential. It is very striking that withdrawing this large current results
in very little change in the average potential (Fig. 6.7), and contrasts dramatically
with the effect of withdrawing the feedback current on peak firing rates: they drop to
near-zero values (see Fig. 4.7). That this large current is not reflected in the average
intracellular potential demonstrates that its measure is not a substitute for counting
action potentials.

While our simplified models do not address directly the issue of whether Jagadeesh
et al.’s results argue against nonlinear synaptic mechanisms, such as silent or shunting
inhibition (Torre and Poggio, 1978; Koch and Poggio, 1985; Koch et al., 1990), the
feedforward model does. For this model (see Section 4.2), there are large inhibitory
conductance changes in the null direction, mostly mediated by GABA 4 through chlo-

ride channels, and the reversal potential for chloride is —75mV, close to the average
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potential in the null direction (Fig 4.13d), so shunting inhibition is occurring; never-
theless, there is linearity to superposition. So this test cannot detect the presence of
shunting inhibition, either.

It is surprising that such an elaborate test of linearity is not able to detect the
presence of these substantial nonlinearities. We have shown that a superposition test
that uses two stationary gratings only yields a far different result, demonstrating the
models’ nonlinearity. So linearity to grating superposition itself is very relative. We
conclude that linearity tests that require much averaging and use grating stimuli can
be misleading. More generally, it is important to evaluate rigorously physiological

experiments by directly testing their methodology through detailed modeling.

6.7 Summary

Jagadeesh et al. (1993) studied the linearity of direction selectivity in simple cells us-
ing an intracellular grating superposition test and concluded that the mechanism of
direction selectivity is linear summation of synaptic potentials without any need for
nonlinear processes. The role of the present chapter is to evaluate whether this linear-
ity test can rule out nonlinear models by testing through detailed computer simula-
tions two models of direction selectivity that include substantial nonlinear processing,
one based on a feedforward scheme and the other featuring nonlinear amplification
through excitatory cortical feedback. We demonstrate that substantial nonlinearities
are present in these models, including shunting inhibition in the feedforward model.
However, we find that both models are linear according to the grating superposition
test. We explain these surprising results, again using the simplified models. F irst,
we notice that summing nonlinear waveforms with temporal phase offsets will result
in partial cancellation of the higher harmonics, leaving mostly the zeroth and first

Fourier components. This cancellation occurs when the responses to stationary grat-



139

ings are summed to perform the superposition test, resulting in a predicted waveform
that is highly sinusoidal. It occurs also within the model neurons for moving grating
stimuli, because pyramidal neurons receive inputs from LGN neurons at many spa-
tial offsets. The only remaining contributions to the responses are sinusoids, and for
sinusoids superposition holds trivially. Surprisingly, we show that action potentials
absorb the excitatory feedback current completely, so that the membrane potential is
identical with or without excitatory intracortical connections, and nonlinear amplifi-
cation does not interfere with superposition. Finally, the models make the testable
prediction that linearity breaks down when tested with superposition of two gratings,
instead of eight as iAn Jagadeesh et al. (1993). We conclude that linearity tests that
require much averaging and use grating stimuli can be misleading and that detailed

modeling is crucial for the interpretation of physiological experiments.
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Chapter 7

Methodological Considerations

7.1 Introductory remarks

In this chapter, we discuss methodological considerations about our models and sim-
ulations. For any model of visual cortex, a large number of assumptions must be
.ma,d'e. These assumptions reflect both the limits of current scientific knowledge, and
current computational limits. It is not feasible to model a network of neurons that
each has thousands of compartments such as in Bernander (1993). But even the
present model stretched probably beyond some practical limits. Indeed, the simu-
lations discussed here involve numerical solutions to a large number (about 1000 in
the proportional amplifier, about 16 times more in the hysteteretic amplifier) cou-
pled partial differential equations, with a sizable fraction thereof nonlinear, including
about 140 cellular and network parameters. For instance, producing Fig. 5.7 (see
Chapter 6) required about two weeks of SPARCstation 10 CPU time. Indeed, in the
hysteretic amplifier model, the computational problem was exacerbated by a noise
amplification process described later in this chapter. This problem necessitated large

increases in the number of neurons in the network.
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Making this computational problem much worse is the challenge of identifying a
regime in this high-dimensional parameter space that (1) was compatible with the
available experimental literature on synaptic inputs and single cell properties and (2)
that reproduced the known response curves. This search for “optimal” parameters
provided major impetus for simplifying our model through assumptions presented in
this chapter.

Indeed, this parameter search problem is quite acute, because the model is strongly
sensitive to certain parameters, for instance neuron threshold and weight of the con-
nection between pyramids. We will see in this chapter the extent to which this
parameter sensitivity restricts the range of optimal parameter values.

Section 7.2 discusses the general assumptions made in the models. Section 7.3
discusses parameter dependency of the models. Parameters discussed include neuron
threshold, shape of the network transfer function, feedback strength, and inhibition
strength. Section 7.4 presents the noise amplification process in the hysteretic am-

plifier model, a problem that provided much of the impetus behind the analysis in
Chapter 3.

7.2 Assumptions

Both morphology and physiology of our model neurons were derived from experimen-
tally recorded neurons. Nevertheless, these neurons were extensively simplified so as
to remain within the practical limitations of large scale digital simulations (Wilson
and Bower, 1989; Bush and Sejnowski, 1993); in particular, model cells only had three
or four compartments, which did not allow modeling of nonlinear synaptic interac-
tions or local membrane nonlinearities such as dendritic spikes. At the moment, we
do not have any direct evidence that these phenomena are important to understand

the properties considered in this paper. Furthermore, because of a lack of quantita-
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tive data about the strength and distribution of NMDA synapses in visual cortex, we
omitted any voltage-dependent synaptic transmission in our network.

The general results reported in this paper were generally not critically dependent
on any particular parameter.. There are a few spectacular exceptioﬁs, that are dis-
cussed in Section 7.3. The primary exception is the parameter «, corresponding to
the slope of the F'(f) curve. Stability of the proportional amplifier model requires
a <1 (see eq. 3.6, Section 3.2). In particular, this meant that the weight controlling
the strength of the cortico-cortical feedback strongly affects the slope of the contrast-
response curve.

We modeled a patch of cortex as if it were a small (50-800) group of direction-
selective neurons that are fully interconnected with each other and that are not con-
nected to any neurons outside the group. From what we know about the weak colum-
nar organization of direction selectivity (Payne et al., 1980; Tolhurst et al., 1981b;
Berman et al., 1987) and the high divergence and convergence of cortical networks,
including long-range connections (Gilbert and Wiesel, 1983; Martin, 1984; Martin
and Somogyi, 1985; Gabbott et al., 1987; White, 1989; Braitenberg and Schiiz, 1991;
Ahmed et al., 1994), these assumptions are unlikely to be true. However, they repre-
sent a valid starting point for grasping the cortical network’s function. Also, neurons
with similar response properties are likely to be more strongly connected, due to
Hebbian mechanisms operating in cortex (Miller, 1992; Bliss and Collingridge, 1993).

In order to facilitate our task, the smooth neurons received only feedforward input,
thereby rendering them insensitive to the direction of motion (Fig. 4.3). However,
identified smooth (basket) cells in visual cortex are known to share direction selectivity
and other receptive field properties with their excitatory neighbors (Martin et al.,
1983). As mentioned in Section 2.5, we have verified in a simpler cortical amplifier

model (with continuous firing rates) that inhibitory interneurons can have direction

preference too.
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of the pyramids’ current-discharge curve. (a) Current-discharge curve of the
pyramidal neurons in a parameter condition similar to the proportional amplifier (con-
tinuous) and current-discharge curve in an otherwise identical parameter condition
where the amplitude of excitatory synaptic noise events was reduced (dashed); the
corresponding reduction in the total current injected by these events was 50 pA on
the average. (b) Contrast-response curves corresponding to the two cases shown in
panel (a), to moving gratings (1 Hz, 1 ¢/deg). Increasing the threshold of the current-
discharge curve by only 50 pA results in a very large reduction in the response over
the whole range of contrasts.

7.3 Parameter dependence

7.3.1 Dependence on neuron threshold

In the model, responses depend exquisitely on the neurons’ thresholds. Indeed, the
net input is very small (Fig. 4.5b, Section 4.2), so that any increase in threshold
will cut the suprathreshold input substantially. The decrease in net input will be
amplified, resulting in a large drop in the response.

This phenomenon is illustrated in Fig. 7.1 for the contrast-response curve. An
increase in the threshold of all pyramidal neurons of only 50 pA causes the response

to drop almost to 0 Hz.
When the threshold is diminished by just 10 pA for all pyramidal neurons in
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Figure 7.2: Dependence of the velocity-response curve on the threshold
of the pyramids’ current-discharge curve. Velocity-response curves to moving
bars (2 deg/sec) for the normal proportional amplifier (N, continuous), and when
the threshold of all pyramidal neurons has been increased by injection of 10 pA of
negative DC current. Increasing the threshold of the current-discharge curve by only
10 pA results in a large reduction in the response, especially at low velocities.
the cortical amplifier model, the response diminishes by a factor of 3 at low veloc-
ities (Fig. 7.2). Indeed, the input is especially small at low velocities (Fig. 4.8 in
Section 4.4). Also, amplification is largest at low velocities (Section 4.5).

Clearly, obtaining the desired value of the threshold required extensive fine-tuning

of the parameters. The resulting parameter condition was very sensitive to any mod-

ification in one of the currents that can influence the threshold.

7.3.2 Shape of the network transfer function

Small differences in the shape of the network transfer function F(f) (for a definition,
see Section 3.2) can also result in large differences in the contrast-response curve.
Fig. 7.3 shows an instance of this sensitivity. A linearized F(f ) is quite linear indeed,
but the corresponding contrast-response curve is much shallower than the linear case.
The contrast-response curves were obtained for the same LGN inputs as in the detailed

model, but the neurons were simulated average firing rate neurons (one pyramidal and
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Figure 7.3: Dependence of the contrast-response curve on the shape of the
network transfer function F(f). This figures shows (a) two different network
transfer functions and (b) the corresponding contrast-response curves for bars that
are generated using the corresponding average rate dynamical model (DYNAMO; see
Section 3.7). The first case (dashed) has an F(f) that is linear up to saturation
with slope very close to 1. In the second case (continuous), F(f) is computed from a
recurrent current function /... that is similar to that of the proportional amplifier (see
Fig. 3.1a, Section 3.2), and a current-discharge function F; that was measured from a
pyramid in a cortical amplifier model whose parameters were optimized with the goal
of linearizing F'(f). Although the resulting F'(f) is quite linear, the small deviations
from linearity are enough to result in very different contrast-response curves. In the
case that is only approximately linear, the response is small.
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one smooth) with the corresponding F(f) curves (see Section 3.7).

7.3.3 Feedback strength

The gain of the proportional amplifier is I—l—a’ where « is the slope of the F(f) curve
in the linear case (eq. 3.6, Section 3.2). Since « is already close to 1, the gain (and
the response) should be very sensitive to the exact value of a. For the hysteretic
amplifier, the slope of F(f) is very close to 1, and if diminished it might become
less than 1 and transform into the proportional amplifier model. Again, the response
should be very sensitive to this parameter.

Increasing the strength of the feedback excitation between pyramidal neurons will
increase the slope of the recurrent current curve I,.., and «, too. Fig. 7.4 depicts
the effect of decreasing this connection weight by 5% on the contrast-response and
velocity-response curves. The hysteretic amplifier’s contrast-response changes very
substantially, and becomes much more linear, as in the proportional amplifier model.
For bars moving at 2 deg/sec, the proportional amplifier’s contrast-response curve is
not much affected. But at low velocities the response shows a large decrease. The
selective action at low velocities is explained by the much larger gain (and larger «)

at those velocities (see Section 4.5).

7.3.4 Inhibition strength

Inhibition shortens the duration of the stimulus by cutting off the LGN input (see
Fig. 4.5b, Section 4.2). Increasing inhibition by 20% should shorten the stimulus
duration and decrease the response if it is limited by the network dynamics. There is
a strong effect in the hysteretic amplifier’s contrast-response curve, but no significant
change for the proportional amplifier (Fig. 7.5a and b). In this figure, we increased
only GABA, inhibition for the proportional amplifier, and not GABApg, but the
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Figure 7.4: Dependence of the contrast-response and velocity-response
curves on feedback strength. (a) Contrast-response curve to moving gratings
(1 Hz, 1 ¢/deg) for the normal hysteretic amplifier (N, continuous) and when the
strength of the excitatory connection between pyramidal cells has been diminished
by 5% (DIM, dashed). (b) Same as (a) but for the proportional amplifier. (c¢) Same
as (b) but velocity-response curve to bars (2 deg/sec) instead of contrast-response
curve. The hysteretic amplifier shows the largest decrease in firing rate, but in the
proportional amplifier the response diminishes very substantially at low velocities.
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Figure 7.5: Dependence of the contrast-response and velocity-response
curves on inhibition strength. (a) Contrast-response curve to moving gratings
(1 Hz, 1 c/deg) for the normal hysteretic amplifier (N, continuous) and when the
strength of both GABA,4 and GABAp inibition are increased by 20% (INC, dashed).
(b) Same as (a) but for the proportional amplifier, and only GABA 4 inhibition is
diminished. (c) Velocity-response curve to bars (2 deg/sec) for the proportional
amplifier (N), when GABA, inhibition only is increased by 20% (INC), or decreased
by 20% (DIM). There are very subtantial changes in the contrast-response curve for
the hysteretic amplifier, and at high velocities for the proportional amplifier, showing
strong parameter sensitivity.
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difference can probably not be attributed to that. Indeed, GABAR’s onset is delayed
and so it probably does not influence stimulus duration much. Rather, the difference
can probably be attributed to the hysteretic amplifier’s higher threshold, which can
be noticed by comparing Fig. 7.5a and b; the higher threshold results in a shorter
stimulus duration, so that the response tends to be more strongly limited by the
dynamics.

Inhibition is also responsible for direction selectivity by cancelling out the LGN
input in the null direction. Increasing or decreasing GABA 4 inhibition should change
the responses in the null direction, especially at high velocities. We note just that
in the velocity-respénse curve for the proportional amplifier model (Fig. 7.5¢). The

changes in firing rate are substantial, showing strong parameter sensitivity.

7.4 Bimodality: why 800 neurons in the hysteretic
amplifier

When simulating the hysteretic amplifier, 800 cortical neurons and 1248 LGN neurons
were needed, compared to only 50 cortical neurons and 65 LGN neurons for the
proportional amplifier. If 50 cortical and 65 LGN neurons are used in the hysteretic
amplifier, the responses show a surprising phenomenon. We show a raster plot (see
Sections 4.2 and 5.2 for explanations about this plotting format) with several trials
(Fig. 7.6a) and analyze the peak firing rates for each trial in Fig. 7.7a. Here, each
data point plots the peak firing rate of the compound Post-Stimulus Time Histogram
(PSTH), generated from all pyramidal neurons in the model (see Section 2.6), for
a moving bar (2 deg/sec) as function of the bar’s contrast, for each of many trials
at a given contrast. The distribution of the peak firing rates per trial is clearly

bimodal, showing firing rates that are almost exclusively either very low or very high.
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a) b)
c)

Figure 7.6: Bimodality in the raster plots for the hysteretic amplifier with
few neurons. Response of pyramidal and smooth neurons to a bar moving at 2°/sec
in the preferred direction of motion. Six trials are shown for each of three parameter
conditions of the cortical amplifier model. The first 40 rows in each trace indicate
spiking activity in 40 pyramidal cells. The continuous bar just below these rows
indicates when the stimulus is within the receptive fields of the LGN inputs to the
pyramidal cells, and i1s approximately 300 msec in duration. The 10 rows below the
bar correspond to firing activity in 10 smooth cells. (a) Hysteretic amplifier model
with 50 cortical and 13 LGN neurons, 41% contrast. (b) Hysteretic amplifier model
with 800 cortical neurons and 1248 LGN neurons, 52% contrast (c) Proportional
amplifier model with 50 cortical and 13 LGN neurons, 30% contrast. The firing rate
variability among trials is large in the hysteretic amplifier case with few neurons, but
not in the other parameter conditions.
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Figure 7.7: Bimodality in the distribution of peak rates per trial for the
hysteretic amplifier with few neurons. For each of many individual trials of a
moving bar stimulus (2 deg/sec) at many contrasts, peak firing rate for the pyramidal
neurons (from the Post-Stimulus Time Histogram - PSTH summed over all pyramidal
neurons) for (a) hysteretic amplifier model with 50 cortical and 13 LGN neurons; (b)
hysteretic amplifier model with 800 cortical neurons and 1248 LGN neurons; (c)
proportional amplifier model with 50 cortical and 13 LGN neurons. Bimodality of
the distribution of peak firing rates is seen in the hysteretic amplifier case with few
neurons only.



152

In other words, at each trial all model neurons either fail to discharge, or discharge
very strongly. This phenomenon is apparently not seen in cat cortical neurons (see
for instance Tolhurst et al., 1983). However, if we increase the number of neurons
to 800/1248, we obtain the situation of Figs. 7.6b and 7.7b. While there is still a
latent tendency for the peak firing rates to group around two values at intermediate
contrasts, this trend is weak and over all contrasts the peak firing rates span the
entire range. This situation can be contrasted with the proportional amplifier model.
Even with few neurons, bimodality is not observed (Figs. 7.6¢c and 7.7c).

We provide the following explanation for this large trial-to-trial variability in the
case with few neurons, with the caveat that we do not justify it in detail. Essen-
tially, trial-to-trial noise in the system is amplified by the excitatory feedback. The
mechanism for amplification of the noise is the exponential dynamics with positive
exponent (see Sections 3.5 and 5.6). Noise in the individual neurons (originating
from the current and synaptic noises, and the LGN input; see Section 2.5.1) causes
random spikes when the stimulus brings the cortical neurons near threshold, resulting
in firing rate noise in the network. Whenever the firing noise in the network is larger
than the threshold of F'(f), the network turns on according to an exponential with a
positive exponent. The stimulus duration is apparently considerably longer than the
time constant of the network (and there are some indications that the time constant
is shorter when there are few neurons); so for most trials, either the firing rate noise
did not reach the network’s threshold for the whole duration of the trial and the peak
firing rate in the trial is small; or the firing rate noise reached at some point the
threshold and the network has had time to rise to upper attractor’s firing rate, so
that the peak firing rate is large. The trials that have intermediate peak firing rates
are only those few trials for which the firing noise reached the network’s threshold
within less than a time constant from the end of the trial.

How does this mechanism depend on the number of neurons? The spike mecha-
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nism itself acts as noise amplifier. Indeed, small amounts of noise in a single neuron
will result in a spike. The network average firing rate corresponding to this one spike

at time ¢, i.e., the corresponding firing rate noise, is a delta function:
t) = —=6(t 7.1
£ty = 5 8(0), (1)

where N is the number of neurons in the network (of course, in a discrete-time
digital simulation, the delta function becomes a discrete-time impulse, with a finite
height). The resulting firing rate noise is large for small neuron numbers, and becomes
vanishingly small for very large neuron numbers. As a result, this noise amplification
process becomes less and less prevalent as N increases, and the orderly buildup of
network excitation with stimulus strength increasingly dominates, as in a firing rate
model (see Sections 3.5 and 5.7).

Both current and synaptic noise of different neurons are not correlated, so that the
firing rate noise averaged over all neurons originating from these sources will decrease
quickly as IV increases. However, single neuron noise resulting from the LGN input
shows correlations due to common LGN inputs, and will not decrease as quickly (if
at all). So increasing the number of LGN neurons is needed to reduce the correlated

single neuron noise and ensure that the firing rate noise is small enough.

7.5 Conclusions and summary

Assumptions made in the model were simplified model neurons, that did not in-
clude many biophysical nonlinearities, the assumption of excitatory interconnections
between neurons with similar direction selectivities, and the lack of excitatory connec-
tions from pyramids to smooth neurons. Because of amplification, model responses

depend very strongly on some parameters, for instance neuron threshold, shape of the
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network transfer function, and the strength of feedback excitation and feedforward
inhibition; so, a major assumption of the model is that parameters of cortical neu-
rons can be fine tuned to that extent by biological mechanisms. Possibly, adaptive
mechanisms could help keep neurons in a valid operating range, as in Abbott and
LeMasson (1993).

However, this strong parameter sensitivity also suggests that transmitters that
modulate ionic currents even slightly could easily exert strong control on cortical
responses, just as long as each neuron in the network is modulated in the same way
at the same time. C'a®* currents can be blocked or modulated by various transmitters
(Fisher et al., 1990;'Plummer et al., 1991; Swandulla et al., 1991; Sayer et al., 1992;
Cox and Dunlap, 1992). An M current can be reduced by activation of muscarinic
receptors (McCormick and Williamson, 1989), and muscarinic fibers innervate cortex
(Bear et al., 1985; De Lima and Singer, 1986). The presence of these transmitters
even suggest experimental predictions. These transmitters could be applied to cortex
during physiological experiments in amounts that result in only small modifications of
neuronal thresholds (that can be measured by recording neuronal responses to visual
stimuli or intracellular current injections). Such minute changes in thresholds might
be expected to produce large changes in contrast-response curves.

Also, substances that change the amount of excitatory feedback, such as NMDA
antagonists, are expected to change the contrast-response curve. However, the pre-
dictions are a lot more specific: NMDA antagonists should change more strongly hys-
teretic amplifier-type contrast-response curves and less strongly proportional amplifier-
type curveé. Also, hysteretic amplifier-type curves should be changed into propor-
tional amplifier-type curves.

Finally, we have suggested that bimodality of the distribution of peak firing rates
per trial originates from noise amplification through the attractor dynamics, and was

a major problem for the hysteretic amplifier, but can be overcome by increasing the
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number of neurons in the simulation.
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Chapter 8

Conclusions

Interest in computational neuroscience has been sparked by the realization that exper-
imental analysis is not enough to understand the information processing performed by
neurons. This realization has been more acute in some cases, such as the cerebellum,
whose function is still not very well understood; although its circuitry shows strik-
ing regularities, it has been difficult to correlate it with the underlying information
processing task.

Visual cortex, however, has always seemed more accessible to immediate under-
standing. Response properties of neurons can be directly correlated with parameters
of visual stimuli, leading to such intuitively appealing properties as retinotopy, re-
ceptive fields, direction selectivity, orientation selectivity, color opponency, and the
like.

Nevertheless, there has also been a realization that vision is a very complex pro-
cess; computer vision has been an ongoing research topic for many years, and even
some simple tasks cannot be performed by artificial systems. With that realization,
neuroscientists have had to confront the reality that understanding visual processing

in the brain will require a combination of experimental and computational techniques.



There is a wealth of physiological and anatomical data about visual cortex and
especially about primary visual cortex. A obvious first step for understanding the
information processing is to understand the relations between the physiological and
anatomical descriptions at the level of, say, primary visual cortex. This thesis fits in
this framework, by attempting to provide an explanation for some response properties
of visual cortex, in terms of the underlying circuitry, in this case a combination of
feedforward, spatially displaced inhibition, and feedback excitation.

There are striking similarities between cortical responses and the model’s re-
sponses, to moving bars and stationary and moving gratings. Furthermore, some
of the radical transformations in response properties between LGN and cortex might
be explained by the positive feedback, including strong responses at low velocities in
cortex, and expansive and compressive nonlinearities in contrast-response curves.

This model clearly shows predictive power. Some of the results presented in
this thesis came from predicting rather than fitting experimental data: for instance
linearity to grating superposition and the experiment of Nelson et al. (1994). Further
predictions were generated, about ways of modifying velocity-response and contrast-
response curves selectively, and about a modified linearity test.

This model is also an example of how a hypothesis about cortical circuitry can
be tested. Recent experimental results have provided firm support for the canonical
microcircuit model (Douglas et al., 1988; Berman et al., 1992; Peters and Payne, 1993;
Ahmed et al., 1994; Nelson et al., 1994; Peters et al., 1994). This model helps interpret
these experimental results in a precise, quantitative way, and confirms intuition about
the canonical microcircuit. By generating detailed predictions about cortical response
properties, and confirming that the canonical microcircuit can explain many features
of cortical response, this model goes a step further towards establishing it on sound
theoretical foundations.

The model also demonstrates how the methodology of a physiological experiment
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can be tested, and why it should be tested. The Jagadeesh et al. (1993) linearity test
has been shown to lack sensitivity.

The model also made a provocative proposal about the operation of primary visual
cortex: it may operate through hysteresis and attractor dynamics.

We have shown the extent of this model’s parameter sensitivity, that is directly
related to amplification. This sensitivity suggests that adaptive mechanisms in single
cortical cells may be even more important than previously thought. Future research
on the biological implementation and computational foundations of such adaptive
mechanisms is needed.

This model has only scratched the surface of what can be modelled in visual
cortex. The model is one dimensional, represents motion detection at only one spatial
position, and we have examined its responses to only a subset of the stimuli that have
been presented to cortical neurons. This is only a model of simple cells, aﬁd does
not explain developpement of direction selectivity: neither does it deal with NMDA
transmission. Validating other linearity tests is also a major possible application of
future modeling.

Finally, we have not examined issues such as ”Why amplification in primary visual
cortex ?”. "Why is the canonical microcircuit useful ?”. Possibly, excitatory connec-
tions would allow responses in primary visual cortex to be selectively and strongly
modified by visual memories stored in synaptic weights. Noise can be filtered out
(Douglas et al., 1994a). Higher areas can influence the responses of visual cortical
neurons, rather than having thalamic input provide most of the drive, possibly al-
lowing the influence of higher cognitive processes. We leave these future exciting

explorations to you, dear reader.
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Chapter 9

Appendix: model parameters

9.1 Retino-geniculate module

The visual input to the entire model is a one-dimensional array of Np;; (150 in the
model) real-valued image pixels. As in Victor (1987), the average luminance over
both space and time was taken to be constant (Lo = 100 cd/m?), and the input to
the model (the value of the image pixels) was the fractional deviation from this mean
luminance (the signed Weber fraction). Thus, the luminance L(X,¢) of the stimulus

at a pixel X (0 < X < N,;) and time ¢ is:
L(X,t) = Lo[l 4 s(X, t)]. (9.1)

s(X,t) is the value of the image pixels input to the model.

The input to the cortex itself is provided by bur LGN model, which models the
filtering operations of both retina and LGN as a single unit. A summary of the model
parameters and their values is shown in Table ??.

A conduction delay D = 4.4msec between LGN spikes and cortical synapses was

also used , as in Victor (1987). This represents only the delay between the generation
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Ts 0.1 msec | Sampling interval

Ao 300 z Gain

My 8 H:= Spont. firing rate

K. 2 Strength of the ctr

o, 6 Std dev. of ctr's Gaussian fltr
K, 1.88 Strength of surr.

O 24 Std dev. of surr.’s Gaussian fltr
TL 1.94 msec | Time cst of 1st lowp. fltr

H | 0.806 Strength of highp. fltr

7o | 0.193 sec Baseline time cst of highp. fltr
co | 0.054 See eq. 9.8

To 15 msec | Time cst for contrast measure

Table 9.1: Parameters of the LGN model For full definitions of the parameters,
see text
of spikes in retinal ganglion cells and their arrival at the point in the optic tract where

recordings are made.
The LGN output y(¢) consists.of a center and a surround component. The output
of the surround component is delayed by 3 msec with respect to the center response

(Enroth-Cugell et al., 1983) and then substracted from the center output. The firing
rate output r(¢) of the LGN model is computed as:

r(t) = |Aoy(t) + Mol (9.2)

For the values of Ag and M, see table 9.1. Spikes are then generated at each moment in
time ¢ from a Poisson process with mean r(¢). Both center and surround components

have a similar structure: a Gaussian spatial filter acting on the image pixels

K T—1z0 2
e~ (9.3)

G(z,z0) =

2o

is followed by a series of temporal filters that are responsible for the dynamics of
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the LGN response (Victor, 1987). The only difference between the center and the
surround lies in their spatial filters. Their temporal filters are identical.

Now we describe these temporal filters. Lowpass filters in the model are derived
from the first-order leaky integrator. Its impulse response is a decaying exponential

(time constant 7), in continuous time!:

h(t) = %e‘t/T (9.4)

or in discrete time % ( T is the sampling interval - the inverse of the sampling rate,
a=e T/

h[n] = (1 — a)a” (9.5)

and is implemented efficiently, in discrete time, using a difference equation (z[n] and

y[n] are the filter’s input and output at time n):
y[n] = (1 - a)z[n] + ay[n - 1]. (9-6)

In the series of temporal filters for each of the center and surround, the first is a
nz-th order lowpass filter (ng, = 16 throughout this study; Victor, 1987), implemented
as ny, first-order lowpass filters in series, each with time constant 77, (see table). The
second filter is a highpass filter, derived in the following way from the output I[n] of

a lowpass filter with time constant 7s:
y[n] = z[n] — H[n] (9.7)

A particularity of this highpass filter is that 75 is not constant; rather, a “neural

INote that this filter is normalized, meaning that for a constant input, its output is the same as
the input
ZNote that this filter also normalized
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measure of contrast” ¢(t) is computed, as we will explain, and the value of 75 is given

by

TS = 1—;-—6_(?5 (98)

co
Thus the dynamics of the LGN response change when the neural measure of contrast
changes. Usually this happens when the strength of the input changes. Indeed, to
compute the neural measure of contrast, the output of the highpass filter is rectified

by passing it through the following nonlinearity:
yln] = |z[n]| (9.9)

A first-order lowpass filter (time constant 7¢) is connected in series with the rectifier,
and its output is the neural measure of contrast ¢(?).

The values for most parameters of the LGN model were set to values that were
found to be average for retinal ganglion cells (Victor; 1987), reflecting the similarity
‘of retinal and LGN dynamics. However, the gain and spontaneous firing rate of the
LGN neurons is different, so we chose for Ag and My values that were correspondingly

different from those of retinal ganglion cells.

Choice of spatial filter parameters Enroth-Cugell and Robson (1966) and Lin-
senmeier et al. (1982) report a ratio o,/o. of 4. This is the value chosen by Wehmeier
et al. (1989) in their simulations. We choose the same value. The ratio of the inte-
grated center response to full field stimulation over the integrated surround response
is 17/16 according to these two papers. Defining (as in Wehmeier et al., 1989, but
differently from Enroth-Cugell and Robson, 1966; Linsenmeier et al., 1982) the spatial

filter in two dimensions as:

K, -2 K, -2
Yo Tt ¢ ol (9.10)



Compartment Diameter | Length | Electrotonic length |
um um um
Pyramidal
Distal Apical 3 200 330
Proximal Apical 7 200 750
Soma ' 12.6 17.8
Basal 15 200 486
Smooth
Distal 5.4 140 330
Proximal 14.3 140 486
Soma 16.9 24.1
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Table 9.2: Compartmental parameters of the simplified model for the pyramidal and
smooth neuron. Values of the diameter, lengths, and desired electrotonic lengths for
each of the compartments of the two neurons. The somas are revolution ellipsoids
and the other compartments are cylinders. For the somas, the diameter is the length
of the ellipsoid in the two dimensions where the length is the same, and the length is
the length in the third dimension. These dimensions were derived from dimensions of
cells reconstructed from horseradish peroxidase injections. The desired electrotonic
length is the electrotonic length estimated for the corresponding compartment in
those reconstructions; the constraint that the compartments in the model have those

electrotonic lengths is enforced by eq. 9.13.

where r is the distance from the center. The ratio of the integrated responses is
K./ K,; Arbitrarily choosing K. = 2, we arrive to a value of K, = 1.88. If we choose
o, = 6 (and thus o, = 24’, the size of the effective center will be 30', as in Peichl and
Wassle (1979) at 4.5° eccentricity, which is the eccentricity we chose as in Wehmeier
et al. (1989). Note however that we use the spatial filter in only one dimension, with
the formula:

K owm_ K = (0.11)

e27rcr _ e

Varo, V2o,
It gives the same ratio of integrated center and surround response, and the same

receptive field size.

9.2 Single cortical cell model and synapses
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Each simplified compartmental neuron consists of an ellipsoidal somatic compart-
ment, and two to three cylindrical compartments that represent the dendritic arbour
(Table 9.2). The sizes of the compartments were obtained from summing the areas
of the compartments obtained from reconstructing neurons injected with horseradish
peroxidase. The termination conditions for the branches are sealed-end. The passive

leak current is modeled as:
Ileak - Gleak(v - Eleak) (912)

where V is the membrane potential. FEj..x is given in Table 9.4. Gk is computed
from R,,, the surface membrane resistance, and the membrane area of the compart-
ments, and the membrane capacitance is computed from C,, in a similar way. The
axial resistance between two compartments was calculated so that the electrotonic
length between the soma and any compartment of the simplified neurons is the same
as in the neurons reconstructed from the horseradish peroxidase injections (and mod-
eled by Befnander, 1993). To enforce this constraint, the intracellular resistivity
was corrected for each compartment according to the desired electrotonic length; for

compartment k, it is called Rgf? and given by:

d(k)

e ) (9.13)

k
R =R
d®) is the diameter of compartment k and A(¥) is the desired electrotonic length of the
compartment. The axial resistance between two compartments (say 1 and 2) is the
sum of half of the axial resistance in each compartment, and depends on the corrected

intracellular resistivity for each compartment, and the lengths and sections /*) and
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Compartment Area | Axial Res. to next comp.
103 um? 1089
Pyramidal
Distal Apical 1.88 105.6
Proximal Apical 4.4 8.09
Soma 0.64 8.99
Basal 9.42 -
Smooth
Distal 2.37 44.5
Proximal 6.29 6.6
Soma 1.16 -

Table 9.3: Membrane areas and axial resistances for the compartmental models of
the pyramidal and smooth neurons. The membrane areas of each compartment are
given in pm?, enabling the computatation of the leak resistances and capacitances
of each compartment. These membrane areas can be computed from the diameters
and lengths of the compartments given in Table 9.2. The axial resitances between
each compartment and the next one in the table are also given, in (, enabling the
computation of the currents flowing between compartments from the differences in
potential between compartments. These axial resistances can be computed from the
sizes of the compartments and the membrane resistance per unit area according to

eq. 9.14 and 9.13.

S() of the two compartments:
— /53 (9.14)

The axial resistance of the soma, is small, so it is not included in this calculation.
The results of these calculations, in terms of the membrane areas of the individual
compartments and axial resistances between compartments, as used directly in the
parameter files of the computer simulations, are shown in Table 9.3.
Synaptic conductances changes are described in Chapter 2, Section 2.5. Connec-
tion weights and time constants of the synapses are shown in Tables 2.1 and 2.2. The

impulse responses of the synapses were implemented as two leaky integrators placed
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Ch 2 pFem™* | Membrane cap. / area I
R, 10000 $em? | Membrane leak res. / area
Eng 30 mV Na rev. potential

Ey -90 mV K rev. potential

Eq -5 mV Cl rev. potential

Ec, 115 mV Ca rev. potential

Eieor 60 mV Leak rev. potential

E... 0 mV Exc. syn. rev. potential

Table 9.4: Other single cortical cell cortical parameters.

in series or a difference of two leaky integrators placed in parallel, or a plain leaky
integrator (see eq. 96) All reversal potentials are shown in table 9.4. The reversal
potential used to calculate the current flowing through a given synapse are that of Cl
for GABA 4, K for GABABg, and E.,. for the LGN and cortical excitatory synapses.
A synaptic delay of 0.8 msec (Wilson and Bower 1989) was used for all synapses,
except the GABAp synapse where the delay was 2 msec.

The active ionic currents, Na, DR, Ca, Ca-K, A, and Na,p (Table 9.5 and 9.6),
have corresponding gating “particles” m and h with first-order kinetics, as in the

Hodgkin-Huxley model:

dX (X = X) X:morh (9.15)

dt T
The current depends on powers of m and A and on the driving potential:

I=Gmaz-m* b (V-E,.,) (9.16)

where E,., is the ion’s reversal potential; the reversal potentials for the different ions
are given in Table 9.4, and the powers k and [ and . A sigmoid function allows

the computation of the steady-state value of any particle X,, from the membrane
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N Gmazx Vise T
mS/em? mV I mV | msec
I Na m?h | 200 (150) | -40[-45 | -3|3 | 0.05]0.5 ||
DR m? | 120 (50) -40 -3 3(2)
Ca m? | 0.75 (0) | -30 | -4 2
Ca-dep K | m?* 3.2 (0) 0.04 3 2
A m?h | 0.5 (0) | -65-60 | -2]4 | 20100
Table 9.5:  Parameters of the active ionic currents for the proportional amplifier

model. Na is the fast Hodgkin-Huxley like sodium current, responsible for spiking,
together with the delayed rectifier potassium current DR. Ca is the calcium current,
activated after spiking. Ca-dep K is the calcium-dependent potassium current, ac-
tivated by the calcium influx, and responsible for adaptation. A is the A- current
which allows firing at low rates for small input currents. Note that there is no persis-
tent sodium current Na,p in the proportional amplifier, in contrast to the hysteretic
amplifier model. Values of the peak conductance Gmaz, the half- activation V;/,, the
steepness of the activation 6, and the time constant 7. Parameter values for both
the m and the h particle are given separated by a |. Wherever applicable, parameter
values for the smooth neurons are given in parenthesis when different. Note that for
the calcium-dependent K current, V},; is in mmol/l and 6 is a unitless quantity.

Vije

Gmaz 0 T

mS/em? | mV | mV | msec

Na m?h | 200 (150) | -40]-45 | -3|3 | 0.05]0.5

DR m? | 100 (50) -40 -3 | 4.5 (2)
Ca m? | 04(0) | 25 | 4 2
Ca-dep K | m? 5 (0) 0.04 3 2
Na,p m? 1 (0) -40 -7 2

Table 9.6: Parameters of the active ionic currents for the hysteretic amplifier. Pa-

rameters of the active ionic currents for the proportional amplifier model. Na is the
fast Hodgkin-Huxley like sodium current, responsible for spiking, together with the
delayed rectifier potassium current DR. Ca is the calcium current, activated after
spiking. Ca-dep K is the calcium-dependent potassium current, activated by the cal-
cium influx, and responsible for adaptation. Na,p is a pers1stent sodium current.
There is no A-current for the hysteretic amplifier, in contrast to the proportional
amplifier model. For these currents, the table lists values of the peak conductance
Gmaz, the half-activation Vj/,, the steepness of the activation #, and the time con-
stant 7. Parameter values for both the m and the A particle are given separated by
a | when both particles exist. Wherever applicable, parameter values for the smooth
neurons are given in parenthesis when different. Note that for the calcium-dependent
K current, Vi, is in mmol/l and 4 is a unitless quantity.
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potential:
1

YAV (9.17)

XSS

There is one exception: the m particle of the Ca- dependent K current does not
depend directly on the membrane voltage. Rather, its steady-state value depends on

the concentration of calcium ¢ (in mmol/l):

0-c
= 9.18
C+‘/1/2 ( )

mss

c is computed from the Ca current through a first-order differential equation:

é=ale, — < (9.19)

TCO

with & = 10'® mmol/(l- A - s) and 7., = 50 msec. Another exception is that the h
particle of A-current was reset to 1 whenever the neuron started a spike.

The excitatory and inhibitory noises represent the synaptic input from neurons
outside the small network. This is one of the sources of random noise in the model.
Transient events produced at random times are of two different kinds: either synaptic
conductance changes or current injections. Events are generated from a Poisson

process with a set rate R, The time course of each event is a dual exponential:
G(t) = e t/m — ¢tm (9.20)

or single exponential:

G(t) = e t/m . (9.21)

The amplitude of these conductance or current events can be measured by the integral
of the transient conductance or current change over time, in units of pS-secor pA-sec,

and is given in Tables 9.7 and 9.8, as well as the time constants, for both smooth
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Cond. or curr. Rate of events Integrated | strength Time | constants
In pyr./sm. Pyramidal | smooth T T2

Exc. conductance 4000 0.432 0.220 10 2

GABAg inh. cond. 500 0 8.28 40 10

Exc. current 200 0.3 0 10

GABA 4 current 200 0.3 0 10

Table 9.7: Parameters for the noise events in the proportional amplifier model. There
are two types of noise events, conductance changes and current injections. There are
both excitatory and inhibitory subtypes of noise events, distinguished by their re-
versal potential for the conductance noise, and their sign for the current noise. The
inhibitory noise events are either GABA 4 or GABA g, distinguished by their time con-
stants and reversal potentials. The number of noise events per second (rate) are given
for each of the types of noise. Noise events are generated from a Poisson distribution
at those rates. The integrated strength of each noise event is the integral over time
of the conductance or current increase, in units of pS - sec or pA - sec, respectively, as
in Tables 2.1 and 2.2, and is given for the noise events in both pyramidal and smooth
neurons. The time courses of the noise events are either exponentials or differences of
two exponentials, as in those tables, and the corresponding time constants are given,
in msec.
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Cond. or curr. Rate of events Integrated | strength Time | constants
In pyr./sm. Pyramidal | smooth T T2
Exc. conductance 4000 0.096 0.220 10 2
GABAg inh. cond. 500 0 8.28 40 10
Exc. current 200 0.3 0 10
| GABA 4 current 200 0.3 0 10

Table 9.8: Parameters for the noise events in the hysteretic amplifier model. There
are two types of noise events, conductance changes and current injections. There
are both excitatory and inhibitory subtypes of noise events, distinguished by their
reversal potential for the conductance noise, and their sign for the current noise. The
inhibitory noise events are either GABA 4 or GABAg, distinguished by their time
constants and reversal potentials. The number of noise events per second (rate) are
given for each of the types of noise. Noise events are generated from a Poisson distri-
bution at those rates. The integrated strength of each noise event is the integral over
time of the conductance or current increase, in units of pS - sec or pA - sec, respec-
tively, as in Tables 2.1 and 2.2, and is given for the noise events in both pyramidal
and smooth neurons. The time courses of the noise events are either exponentials or
differences of two exponentials (see eqs. 9.20 and 9.21). as in those tables, and the
corresponding time constants are given, in msec.
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and pyramidal neurons. For the excitatory conductance noise, the reversal potential
is E.z. (see Table 9.4) and for the inhibitory GABA g conductance noise the reversal
potential 1s that of K.

In addition to the leak current Ij.,; mentioned above, there is another constant
leak conductance, in the smooth neurons only. This is an excitatory current with a
reversal potential at 0 mV and a conductance of 0.75 n.S. The main purpose of this

current is to set the threshold of the smooth neurons appropriately.
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