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ABSTRACT
This work presents a detailed theoretical and experimental
investigation of the resonance cone pattern excited by a small antenna
in a warm, magnetized plasma.
The warm plasma theory is developed for an infinite, uniform

1/2

plasma for arbitrary incident frequency w < (wge + wie) in the Timit

that r/Ade >> 1 and r/rle >> 1. Here, Yoe and W.e are the electron
plasma and cyclotron frequencies, respectively, while Xde is the Debye
length, e is the Larmor radius, and r is the distance from the source
to the point of observation. The theory predicts the functional depen-
dence of the angular position of the main resonance cone peak and the
angular spacing between interference peaks on the physical parameters,
The theory for plasmas with nonuniform density is also developed, but
in the cold plasma Timit, leading to predictions that the resonance
cones can reflect off of density gradients.

Experimental work verifying the theoretical picture is presented.

The main cone angle is found to depend on w, w__, w__, and r in a

pe® “ce

manner consistent with the theory, as is the angular interference

spacing. The idea of resonance cones reflecting from density gradients

can explain features of the data that are otherwise incomprehensible.
From the data, values for Yoe

ways, and the results are consistent. The data also yield a value for

are obtained in two independent

the temperature that is appropriate for the afterglow plasma used in
the experiment. Since both density and temperature can be obtained from
the same data, resonance cone measurements are a useful diagnostic for

plasmas in which antennas can be inserted.
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INTRODUCTION

The electromagnetic fields excited by a small, radio frequency
antenna immersed in a plasma in a magnetic field are of interest both
to those who work with ionospheric measurements and to those who seek
to understand laboratory plasmas. The early work on the fields ex-
cited by small antennas was motivated by possible ionospheric applica-
tions, but it was almost entirely theoretical. It is only within the
last six years that experimental applications in the laboratory have
been developed and that theoretical analyses tailored to them have
been made.

The present work is concerned with the laboratory applications.
From this viewpoint, only the qualitative conclusions of the early
theoretical work is of interest; the detailed thrust of their calcula-
tions is somewhat tangential to the present effort. However, for

presented

compieteness, a separate bibliography of the eary work is
in Appendix F,

Most of the early work considered small dipole antennas in
cold, collisionless plasmas. The fundamental conclusion, first enun-
ciated by Kuehl (see Appendix F, 15 and 16), is that the fields
produced by an oscillating point dipole should become infinite along
a conical surface whose apex is the dipole and whose axis is parallel
to the static magnetic field (see Fig. 1). The opening angle of the
cone is a function of the plasma density, the incident frequency, and

the magnitude of the static magnetic field. The shape of the singu-

larity led to the name resonance cone for this phenomenon.
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The presence of this infinity motivated much of the subsequent
theoretical work on antennas in magnetized plasmas. The general con-
clusions were that the singularity was the result of three factors.
First, all the theory was done by linearizing the nonlinear plasma
equations, which meant that none of the nonlinear saturation effects
could limit the amplitude. Second, both collisional and collisionless
damping were neglected by considering the plasma to be cold (T = 0)
and collisionless. Third, the antenna had no dimensions.

The second and third effects can be taken into account without
too much trouble; and either collisions, or a nonzero temperature, or
an antenna of nonzero dimensions is sufficient to keep the fields
finite. (The full nonlinear solution has never been done.) However,
even when the fields rehain finite, there are still pronounced peaks
in the field pattern near the angle where the infinity would have oc-
curred.

Perhaps because much of the early analysis was done in the
electromagnetic far-field, the extensive theoretical controversy about
the infinity in the field pattern sparked very few experimental inves-
tigations of the phenomenon. The first systematic experimental
investigation was that by Fisher [1] and Fisher and Gould [2-4]. They
verified that fhere were pronounced peaks in the field pattern excited
by a small antenna, and that the angular location of these peaks fol-
lows the simple cold plasma predictions. In addition, they found
structure in the angular field patterns due to the presence of warm

plasma waves.
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In order to relate the observed patterns to theoretical pre-
dictions, they analyzed the plasma response in the uniaxial Timit
(Eo + »), using the electrostatic approximation and the collisionless
Boltzmann equation. Simultaneously, Singh [5] and Singh and Gould
[6,7] developed the electromagnetic analysis for the uniaxial plasma.
Both calculations predicted that warm plasma waves, whose phase velo-
city is of the order of the thermal speed, are responsible for the
interference structure observed near the resonance cone.

In spite of the fact that the uniaxial approximation was
invalid for the plasma in Fisher's experiment, the predictions of
that theory which were tested there agreed reasonably well with the
experimental results. To remedy this lack of a finite magnetic field
theory is one of the goals of the present work.

This work is about equally divided between theoretical deri-
vation and experimental work designed to check that theory. The
experimental work is an extension and refinement of the work done by
R. K, Fisher. New experimental equipment has been built so that a
greater range of experimental parameters is more readily available.
The theoretical analysis derives from a suggestion by H. H. Kuehl
that an approkimate expression for the fields of a small antenna
could be obtained by asymptotically expanding the electrostatic
Green's function for an oscillating source in a warm, magnetized
plasma. Kuehl has also developed such asymptotic expansions himself
[8,9]. The analysis given here is somewhat more formal than his, and
is capable of more rapid generalization to’parameter ranges where the

resonance cones do not exist. However, the predictions of each
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development which can be tested experimentally are identical.

The first three chapters of this work are devoted to the
theoretical development, the next three consider the experimental work,
while the Tast contains the conclusions and suggestions for further
work.

In Chapter I, the Green's function for an oscillating source
in an infinite, uniform, warm, magnetized plasma is developed. To get
some of the physics out of this function before doing the asymptotic
expansion, various limiting cases are considered. The cold plasma
limit reveals the basic resonance cone, while the uniaxial Timit gives
some of the properties of the interference structure caused by the
warm plasma waves.

Chapter II is devoted entirely to the asymptotic expansion of
the Green's function in the limit that the point of observation is far
from the source.

Some of the physical predictions of the asymptotic expansion
are obtained in the first part of Chapter III. These include the man-
ner in which the plasma parameters influence the angular position of
the main resonance cone and the interference structure. In the second
part, the Green's function is used to consider how these physical pre-
dictions might be modified for an antenna whose length is much greater
than its width. The final section is devoted to a simple analysis of
some of the effects of a nonuniform plasma density on the resonance
cone pattern.

Chapter IV describes the experimental equipment and measure-

ment procedures. Details of the plasma generation, operating
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conditions, and magnetic field configuration are given. The construc-
tion of the transmitting and receiving probes is shown, and the probe
carriage used to position them in the plasma is discussed. The
details of the experimental electronics used to detect the received
signal are also given.

The measurements of the main resonance cone peak are consid-
ered in Chapter V. The changes of cone angle with probe frequency and
cyclotron frequency are presented and are shown to agree with the
simple cold plasma theory. The slight variations in cone angle caused
by warm plasma effects are illustrated, and are seen to agree with the
warm plasma theory. The chapter concludes with an experimental demon-
stration that the resonance cones can reflect off of density gradients,
as was discussed in Chapter III,

A detailed investigation of the interference structure is pre-
sented in Chapter VI. The angular spacing between peaks is shown to
vary with probe separation, probe frequency, cyclotron frequency, and
plasma frequency in a manner consistent with the theory. Further, the
temperature derived from this spacing using the theory is consistent
with the temperature one would expect in the plasma used in the ex-
periment.

Chapter VII provides the final summary, suggestions for further

work, and a statement of conclusions.
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CHAPTER 1
PRELIMINARY THEORETICAL DEVELOPMENT

1.1 The Basic Equations

In this chapter and the following two, we will develop the
mathematical model which we will need subsequently for comparison with
the experimental results. The basic problem is to calculate the field
pattern of a localized, oscillating electrical source immersed in a
warm, anisotropic plasma. The source of the anisotropy is an exter-
nally imposed, static, uniform magnetic field.

In many laboratory plasmas, and especially in the one used in
this experiment, the ratio of plasma dimensions to electromagnetic
wavelength is such that the radiation pattern of a small source can be
adequately described by solving for the quasi-static, near-field
radiation pattern. This quasi-static approximation is identical with
the electrostatic approximation often made in warm plasma wave theory,
and the complete problem can thus be consistently treated in the elec-
trostatic Timit.

Laboratory plasmas are obviously of finite extent, which brings
up the troublesome problems of density nonuniformities and boundary
conditions at material walls. Some of the effects of finite plasma
dimensions will be handled at the end of Chapter III. However, for
the moment, we will ignore them and assume an infinite, uniform plasma.

Let the z-axis of a Cartesian coordinate system be oriented

along the uniform external magnetic field, so that §0 = B0 82 . The
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motion of the plasma particles will be described using the non-
relativistic Boltzmann equation for the phase Space distribution
function f(x,v,t). In principle, one should have one distribution
function for the electrons and another for the ions. However, at the
frequencies of interest in the experiment (X 50 MHz), the motion of
the ions can be neglected. They will be treated as a uniform back-
ground charge.

The equations that describe the system are the Boltzmann equa-

tion for the electrons

CLIUVINCA Ll LA Fol &
sEr Yot e Gkt Bt 5w T GEleon (1)
and Poisson's equation for the electrostatic potential
24 = - Xty e(n - n) (2)
€ 0

Here, m 1is the electron mass, e the magnitude of the electron
charge, g the ion number density, and n the electron number den-

sity, which is given by

n(x,t) = j dv F(xVst) (3)

The antenna is the source of the external charge density Poyt °

Although the frequencies broadcast by the source are suffici-
ently high that the plasma could be regarded as collisionless, it is
extremely useful in the mathematical derivation if a small collision

term is retained. The collision term will be modeled as
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of (o)

(& = -u(f - f 4

B‘C)con ) (4)
where f(o) is the equilibrium value of f . A collision term of

this form applies best to electron collisions with neutrals, but even
for these it has some unrealistic features (e.g., particles are not
conserved locally). This form does have the great advantage of mathe-
matical simplicity and as long as v 1is small, one can expect the
results to be qualitatively correct.

Unfortunately, the system of Egs. (1)-(4) is nonlinear and no
general method of solution is known. To obtain a mathematically
tractable problem, one can linearize Eq. (1) about an equilibrium
distribution by setting f = f(o) + f(]) and keeping only first order
terms. (The potential ¢ is considered to be first order as well.)
Once a Tinear system has been obtained, arbitrary antenna configura-
tions can be handled, at least in principle, if the Green's function

can be found.

We are thus led to consider the following system of equations

o) ) e et
ot - X m-=- -0 oV
(o)
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Here, 8(x) 1is the Dirac delta function. For the collision model to
be reasonable, it is necessary that v/w << 1,

Equations very similar to this set have been studied reasonably
thoroughly in recent years [10,11]. The solution can be effected most
easily by using Fourier transforms. The details are carried out in
Appendix A. Assuming that f(o) is an isotropic Maxwellian and then
utilizing the cylindrical symmetry about Eo s the solution for the

potential can be written as

—iwt ikez 7 k,J (K p)
6(pyz,t) = 98 fdk e ! f Lo %L

dne, 2 b JUR™Y (@)

where p = (x2+ yz)]/2 is the cylindrical coordinate in the direction
perpendicular to Eo » D(k »ky ) is the electrostatic dispersion func-

tion given by [10,12]

2 2 2 . .
D(%L’%i) = ki + ky + kd (1+1iv/ \1-»1(m+1v J dt exp 51(u&1v)t
0
2 2
“ Veh 2%t 1,2 2.2 (0)
- —5— sin” —— - 7 ly vth
Yee
and where
2
k2 —noe v2 —ZKT
de EOKTe th m

Here Te is the electron temperature and the cyclotron frequency is
defined by Wee = eBO/m .
In Eq. (8) we have the electrostatic Green's function for a

warm, magnetized plasma. It is sufficiently complicated in its present
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form that it is almost impossible to interpret. To do so, one must
either resort to numerical procedures or make further approximations.

Both courses will be followed in the remainder of this chapter.

1.2 The Cold Plasma Approximation

There is one 1imit in which the integrals in Eq. (8) can be

done explicitly. If we let Te +~ 0 , then the dispersion function

reduces to
.2 2
where
w2 (1 + iv/w)
- pe
Kp =1 -3
(wiv)©- Wea
2
®he
Ky =1 - wlw+iv)
Here, the plasma frequency has been defined by w__ = (n e/e m1/?

(Reducing Eq. (9) to this form is one of the places where a nonzero
collision frequency is very useful.)

The integrals in Eq. (8) are now standard forms [13]; hence

-jwt 2 2
qe e+ Z_.]']/Z , (11)

d(psz,t) =
4w€0(K§_K" )1/2 K o Ky

This answer is intuitively very satisfying. In the zero tem-
perature limit, the plasma is just an anisotropic dielectric, and
Ky and K, are the diagonal components of the dielectric tensor.

The potential we have obtained is the usual point source solution,
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but the coordinates parallel and perpendicular to the magnetic field
are scaled with the appropriate dielectric tensor components.

As a dielectric, the cold plasma has one unusual property: the
real part of K; or K, can have either algebraic sign. Since
v/w << 1, this means that it is possible for the square root in Eq.
(11) to be quite small, and for the potential to be very large. If
v = 0 , the potential is infinite when

2
c0t26=.§..=_.|fi_‘.....
of

This points up the most basic fact about the waves excited by
a source in a magnetized plasma. Whenever Re K, /Re K; < 0 , there
are directions in space along which the potential created by a small
antenna can be quite large. Geometrically, the location of these
maxima of |¢(p,z,t)| form conical surfaces in space with the source

......... shown in Fig. 1,

The reason for the large amplitude is that a resonant collec-
tive particle mode is excited by the antenna. Unlike more familiar
resonant systems, it is the collective behavior of a group of particles
with many degrees of freedom that gives this resonance its unique geo-
metrical character. Like all resonant systems, if dissipation is left
out (i.e., v = 0), the amplitude at resonance is infinite. Both col-
lisions and, as we will see later, the effects of finite temperature
will act to limit the amplitude in any actual system.

Since K; and Ky are functions of frequency, the resonance

cones will exist only in certain frequency ranges. These ranges are
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shown in Fig. 2 for the case v =0 . As long as v/w << 1 , the
boundaries shown will be appropriate for the collisional case as well.
As can be seen from Fig. 2, the resonance cones exist for two

frequency regions: 1) 0 < w g_min(wpe,wce), usually called the lower

2 2 \1/2
pe+ wce)
branch. The low frequency end of the lower branch should be shown

branch, and 2) max(wpe,wce) <w< (w . called the upper
dotted, since the motion of the ions becomes important at these low
frequencies.

For future reference, the place where the potential given in
Eq. (11) has its maximum magnitude will be called the cold plasma
resonance cone angle 6_ . If we consider |¢(p,z,t)| as a function
of the spherical coordinates (r,8) with p = r sin & and z=r cos 6,
then one can easily show that 5|¢|/26 = 0 when

2 2 Re Ky (K - KI)

cot™ 6 = cot_ = - — (12)

© Re K(KF -K)

If v=20, this simplifies to
cot™6_ = - R'I— (13)

In the following sections, we will often need to evaluate ex-
pressions Tike (i cot 6_* (Ky /K. )/?) in the Timit v >0 . To know
what value to give this, make the following definition: In the col-
lisionless limit

Ky (172

-im/2,_ W
(g (14)

cot 8. = Tim e
v >0

The square root has positive real part and ec is in the range
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0 O 2T This means that, for v+ 0

Ky 172
H)

'lCOtec“('RI" = 0

Notice that both 6 =16_ and 6= - 6, satisfy Eq. (12). (Includ-
ing a nonzero collision frequency in the problem has made these
definitions much easier than they would have been if we had taken

v = 0 from the start.)

1.3 The Warm Uniaxial Plasma

In order to see how the resonance cones are modified by a non-
zero electron temperature, it is easiest to make the uniaxial approxi-
mation BO +~ o , This means that the electrons can move only along
the magnetic field lines, and the effects that would occur because of
electron thermal motion transverse to go are left out. Further, as
long as w vremains finite, only the lower branch resonance cones are
accessible. Since Weg ” s the dispersion function becomes

D(ky sky ) = kf_ + k‘% + kge(1+iv/w) (1 + i(wtiv) J dt exp {i(w+iv)t
0

1.2 .2 .2
-7 ki Vept'H
The k. integral in Eq. (8) can now be done explicitly [14],
and the potential can be expressed as

oo

-jwt :
d(psz,t) = gg;gg-f dk, cos ky z Ko(pP(k" )) (15)
o0

with
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1 1/2

Pl ) = (kG - 5 K5 (1+iv/w) 7' ((w+iv)/ky vip))
where the square root is defined with Re P(k" )> 0 . The symmetry of
D(KL,k“ ) has been used here to reduce the range of integration to the
positive real axis. After this is done, the integrand in Eq. (15) can
be expressed in terms of Z' , which is the derivative of the plasma
dispersion function [15]. Since Z' s not an even function of its
argument, we may only use it for Re h,,z 0.

Equation (15) can be put in a more succinct form by introduc-

ing the normalized variables p = kdep//f , Z = kdez//f .

~ _ 2, .2\1/2 >
r = kder//? = kde(p f 25)V N2, ko= ky Ve / kge » and
@ = dne r ¢(p,2,t) e'q . Using these,
5(p,7) = %{-J dk cos Kz K (5P(K)) (16)
0
where
o~ o~ - ~ 1/2
(i) = (R - (viviu) 7' ((oriv) R )}

The integral in Eq. (16) can be evaluated numerically without
too much difficulty. The method of integration used is quite stand-
ard, but the efficient evaluation of the Bessel function in the
integrand required the development of new algorithms [16]. The
details are given in Appendix B.

In the cold plasma limit, if the resonance cones exist at all,
they exist at the same value of p/z , no matter how big o or z

are. To compare this behavior with the present case, let o = r sin ©
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~

and z = r cos 6 and consider (p,z) as a function of 6 for fixed

52

Since @(p,z) s an even function of z , we need only consider
O<e=<m/2.

Figure 3 shows the magnitude and phase of &(p,z) for one set
of parameter values. Also shown are the corresponding graphs for the

function

o, = (K, sinze + cosze)"]/2

which is the equivalent form of the cold plasma result in the normal-
ized notation.

There are several important differences between ¢ and . -
First, even though v = 0, || is finite for all 6 , which shows
that a nonzero temperature limits the amplitude of the resonance.
Second, the largest maximum of |®| occurs at an angle slightly smal-

ler than the cold plasma resonance cone angle
2
cot ec = "'K“

Third, there is a series of subsidiary maxima that occur inside the
resonance cone. These are due to the presence of electrostatic waves
propagating in the plasma. In a warm magnetized plasma, the wave-
Tength of an electrostatic wave depends on its direction of propagation
relative to the magnetic field [17]. The subsidiary peaks represent

an interference between the quasi-static electromagnetic field and the

electrostatic waves.
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respectively.
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This numerical example has revealed most of the qualitative
modifications that occur when the temperature is nonzero. However,
we need more than just a qualitative understanding. One would like to
be able to make quantitative predictions of how ¢(p,z,t) changes
when the plasma parameters change. One could try to do this in a
brute force fashion by grinding out a multitude of numerical examples,
but even if one had the time and money to do it, it is difficult to
get functional relations out of computer solutions. The asymptotic

expansion developed in the next chapter overcomes these problems.
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CHAPTER II
ASYMPTOTIC EXPANSION OF THE ELECTROSTATIC
GREEN'S FUNCTION

Even though the integral in Eq. (8) cannot be done analytically,
if we let p=rsind and z = r cos 6 , then we can get explicit
asymptotic approximations for ¢(p,z,t) in the 1imit r >« . It is
the goal of this chapter to develop these expansions. Physically, this
means that we will be able to compute ¢(p,z,t) if there are many wave-
lengths of the warm plasma waves between our point of observation and
the source.

A number of authors have worked on the asymptotic expansion of
multidimensional Fourier integrals [18,19,20]. Unfortunately, their
results are only of marginal use here, since they are not uniformly
valid for angles near the cold plasma r;senance cone angle. One is
thus forced to develop asymptotic expansions from first principles.

Consider the integral over k in Eq. (8). By using the iden-

tities [21]

and the fact that D(Kl,k“ ) is an even function of k, , we may write

(o]

J Dk Lk ) 2 f - DKy sky )
0 o
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This latter integral can be done,at least formally, by using the

residue theorem. Hence, if p # 0,

Tdo(klp)k_Ldkl

D(k.L’kN ) i Z R (k" ) (17)

Here k; = 1Pn(k" ) is one of the solutions to D(k,,k, )= 0 and

NIRRT
_ 3D
Rn(ku ) = NN
a(kp) |2 - _p2
L n

The quantity Pn(k" ) is chosen so that Re Pn(klﬂ)z_O .

In obtaining Eq. (17) we have assumed that all the zeros of the
dispersion relation for which k; # 0 are simple. This is mathemati-
cally equivalent to saying that Rn(k" ) #0 . It is not obvious that
‘this is always the case. It will be shown in Appendix C that for the
ky's involved in the asymptotic expansion, Rn(k” ) # 0

We may now write the Green's function as

-fwt o
8(psz) = L ] L (0.2) (18)
4 € n=0
where the ega are the remaining integrals
40
o, K (oP (k)
a ikz "0'"'n
& (0,2) = Jdke TR (19)

=00

In Eq. (19), the subscript on k" has been dropped; from now on, it

will be left off, except in cases where ambiguity would result.
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If the integrand in Eq. (19) could be put in the proper form,
the method of steepest descents [22] could be used to asymptotically
expand the integral. If Pn(k) were never zero and if sin 6 # 0,
then as r > = , one could use the asymptotic form of the Bessel func-
tion

T -z
Ko(z)q'\/ii'e
which would give an integrand of the right type.
We thus need to investigate whether Pn(k) can ever be zero
for real k . If one considers the dispersion function, Eq. (9), then
D(KL,k” ) =0 and Pn(kH ) = 0 dimply that

2

G+ (14 1v/0) (1 + iluriv) [ dt exp filwriv)t
0

1,2 .2 .2

This is the well known electrostatic plasma wave dispersion
relation first obtained by Landau [23] for the case v = 0 . Landau
showed that for all real k" # 0 , the only solutions to this equation
demand w complex and Imw < 0 . Since v # 0 Jjust adds more damp-
ing, there are still no solutions with real w and k" # 0 . Clearly,
ky =0 is a solution to Eq. (20). Accordingly, we have Pn(kH ) =0
for real k” if and only if Kk, =0 .

Let us now investigate D(k ,k; ) = 0 under the condition

k” = 0 , We then obtain
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K+ K5, (T+iv/w) (1 + i(wtiv) f dt exp{i(wtiv)t
0
.
k-L \
- P sin® Jut) =0 (21)
wCE

This is the cyclotron harmonic wave dispersion relation, first obtained
by Bernstein [10],again for the case v = 0 . Obviously, k1_= 0 is a
a solution to Eq. (21), no matter what the value of the plasma param-
eters. Consequently, there is at least one Pn(k" ) that approaches
zero as ky » 0 . Since D(ky,k; ) is an even function of k; , there
will be more than one Pn with this property if BZD/BKE = 0 when

k, and k, are both zero, From Eq. (9),

- K
%
o

Thus, as long as K, # 0, there is only one Pn(k“ ) that is zero for

kH real.

It is possible to have K, = 0 only if v=0 and w= Wyy

where Wy is the upper hybrid frequency, defined by wﬁH = wz + mz

pe “ce ’
In the case v = 0, there are also solutions with k; = 0 when
W = Mg (m=2,3,4,+-+) [24]. However, as shown by Shkarofsky and
Johnston [25], both the nonrelativistic Boltzmann equation, Eq. (1),
and the electrostatic approximation are not valid near the cyclotron

harmonics. Consequently, we will limit our investigation to frequen-

cies © # mw_, (m=1,2,3,°°*).
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The P_'s will be ordered so that PO(O) = 0, while P](D) =0
only when v =0 and w = Oy For simplicity, we will confine our
attention to frequencies w < Wy - This simplifies the mathematics,

but is still sufficiently general for our later applications.

Accordingly, for all n > 1 we have

40
exp{ikz - oP (k)}
ﬂ;‘(p,z) u %f dk 5 ” P1/Z(k) (22)

~00

By using the method of steepest descents, one can show that, as r >«

exp{r[ik_ 460 0 - sin © Pn(knj)3}

&, (0:2) v = . (23)
ntv? r ) . 2.91/2
J R (k nj)[cos e+-QDn (knj)s1n 6]
Here, the knj are the solutions of the stationary point condition
Pn(knJ) = 1 cot 6 (24)

and we have allowed for the possibility that there may be more than one
k which will solve Eq. (24) for a given n . The function EZ%(knJ

the derivative of

B (k) = 5 S PE(K)

%'Q.

1] — 2 ]
Also, we have used the identity Pn(knJ)P (k ) = cot™6 + EZ%(knj)

In making this expansion, we have 1mp11cit1y assumed that
Rn(knJ) # 0 and that P“(k .) # 0 . This latter statement is equiva-
lent to saying that cos e +£Z%(knj)sin26 # 0 , or to saying that each
stationary point is isolated.

The stationary point condition, Eq. (24), has a very useful

geometrical interpretation [26]. Since kJ_= 1Pn(k" ) is one root of
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the dispersion relation, Eq. (24) may be restated as

= = -cot © (25)

Differentiating the dispersion relation D(%L,k" )= 0, we obtain

W = ¢cot © (26)
If we define the group velocity of a wave as duw/3k , then the angle
that the group velocity makes with the magnetic field is

aD/3ky
tan ¢ = 5§7§ﬁ§;»

Hence, ¥ = 8 , and the stationary point condition tells us that the
group velocity is directed from the source to the point of observa-
tion.

Having this seemingly infinite number of egz's,each of which
may have several terms, appears to be extremely unwieldy. However,
almost all the eﬁg‘s are so strongly damped that their contributions
to the potential are negligible for r - o ., Electrostatic waves in
a warm, magnetized plasma are damped, even when v = 0 , whenever a
solution to the dispersion relation exists with k; # 0 [11,17]. We
can use this fact in investigating the assumptions made in obtaining
Eq. (23).

In going from Eq. (22) to Eq. (23), we assumed that Rn(knj)
# 0 and P;(knj) # 0 . If either of these were not true, the form
of the asymptotic expansion would have to be modified. Such changes

would be important only if they occurred in one of the egz‘s that is
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Tightly damped. These terms with n > 1 do not enter into our applica-

tions of the asymptotic expansion in later chapters; however, they are

of theoretical interest, so we discuss whether any changes need to be
made in Appendix C.

Let us now turn to the most difficult terms n = 0 . For this
case, the Bessel function in Eq. (19) may not be automatically replaced
with its asymptotic form because PO(O) = 0., To cope with this, we
need to investigate how Po(kll ) behaves when %l is small. Expanding

the dispersion function, Eq. (9), for small k; and ky > one obtains

- 2 2

which is the same as the cold plasma result. Hence, for small ky

v 2
Polky ) = Vky Ky /K (28)

where the square root has positive real part. Equation (27) also shows
that RO(O) = K_L
These 1imiting forms suggest one way to take care of the fact

that PO(O) = 0: add and subtract the cold plasma result in Eq. (19)

2 2 .
F(0:7) = ——Tgry (B )
° (K7K

SR )]/2 RI K“
+oo
o K (P (K)) K (olk| VK 7KL)
+ f di e’k {2 Ro?k) - =2 R } (29)

The remaining integrand is zero at k = 0 ; thus, as r > © 4 the in-

tegral is asymptotic to

TRV r it SPOT00) el Rilh)
. R (KPL/2(k) Ky ([K] KyTRD
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If we now split the above integral into two, consideration of

their forms shows that each is a convergent integral, one of which can

be done exactly. Accordingly,

K, -1/2 Kg -1/2 j’K,,
i 2, 27 ]
%(P,Z) v KJ_ 3 (Z tp Ko - (ZQjKJ_ [(p‘ -

L
/K -
+ 1.Z)—1/2 + (o jo__ iz) 1/2]2

+oo ,
. (llg]/z J " explikz - pPo(k)]

N NOENATS

(30)

The term in braces in Eq. (30) is finite and 0(1/r) for all o and

z , even if v =0 , Thus, the procedure used to obtain Eq. (30) has

not introduced any singularity at the cold plasma resonance cone angle.
The final term in Eq. (30) has most of the interesting physics

in it. Defining it to be a new quantity H(p,z) . it can be rewritten

in the form

o0

exp[ikz - pPO(k)]

Hipz) = ()12 | dk {
Ze L R (k) P1/2(k)
expl-ikz - pPO(k)]
.

(0 Pl/z(k) (31)
Here we have used the fact that Po(k), Tike all the Pn s 1S an even
function of k . By restricting k to Re k > 0, we no longer have
to worry about the fact that Pé(k) is discontinuous at k=0 (see
Eq. (28)).

When asymptotically expanding integrals with finite limits of

integration, one must consider in addition to the contribution from
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the stationary points, the contributions from the end points [27]. If
Po(k) were finite at k = 0 and if it had a continuous first deriva-
tive there, then the end point contributions from the two terms in Eq.
(31) would cancel each other., However, PO(O) = 0 and Eq. (28) shows
that

Tim P'(k) = - Tim Pé(k) #0
k ~0- © k + O+

To handle this manifestation of the fact that PO(O) = 0

change variables to n2= k . This yields

om /2 | 2 2
H(p,2z) = (— dn -pP (
(ps2) = (=) tg e )P1/2( ) exp[in“z - pP (n7)]

+ | dn ] exp[ - in?z - oP _(n?)] (32)
£ R, ()P (nE) "o

The factor multiplying the exponential in each integral in Eq. (32)

is now finite for all n .

When we asymptotically expand the integrals in Eq. (32), the

stationary point condition becomes

nlic cos 8 - SiTlGPé(nZ)] =0

where o = +1 for the first integral in Eq. (32) and o = -1 for

the second. One set of solutions to this is

Pé(nz) = ju cot O Re ”2 >0 (33)

which is just what Eq. (24) becomes under the change of variable. The
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other solution is n = 0 , which is a new stationary point located at
the Tower limit of integration. If all the solutions of Eq. (33) also
%pt(n?) # 0, then

Ky -1/2 K -
H(p,2) ~ - (zp/I—) Lo/ =t 1)

exp{r[1on2 cos 6 - sin 0P, ]}
1/2

satisfy n

Ky 172,
LTSRS
J

0( ; [cos 0 +QD (n sin e]

The quantities n§ are the solutions to Eq. (33).

At first glance, we seem to have reacquired singularities at
the cold plasma resonance cone angle when v = 0 . Equation (34),
however, is not valid for cotze = cotzec. To see this, consider the
fact that Pﬁ(k) is an even function of k and is proportional to

K2 for small k (see Eq. (28)). Thus, near k = 0 , we must have

Consequently, for Re k > 0

K Ky o
u L 2
P (k) =k (1 + gp—— k" + -+4)

This means that PS(O) = 0 . Further, from the form of Po(k), k=0
(i.e., n2 = 0) is a solution to Eq. (33) when cotze = cotzeC and
v =0 . Hence, Eq. (34) is valid only for angles sufficiently far
from the cold plasma resonance cone angle.

Mathematically, the problem is that one of the oF approaches

the stationary point at n = 0 as cotze > cot26C . Accordingly, we
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need a method of asymptotic expansion which can handle integrals with
coalescing stationary points. One such method has been worked out by
Chester, Friedman and Ursell [28]. It consists of changing variables
in the integral in question to obtain more analytically tractable forms
while preserving the nature of the stationary points.

In general, for o=+1 there is one n% that approaches zero
as 6 - ec , while for o = -1 another n? approaches zero in the
same manner when 6 - W-ec . Consequently, the contribution due to the
first two stationary points in each integral in Eq. (32) will have to
be modified for certain angles, The contributions of all other station-
ary points are still given by the sum in Eq. (34).

We are thus led to consider the large r expansion of integrals

of the form
M,
N 2n (1/2 n .2
G, (r,6) = (F"ETE"EQ j dn ~ 2)P]/2( 2) exp[+irn“cos 6
0 o' /g AN

- r sin 8 Po(nz)] (35)

where M_JC = Mi(e) is chosen so that only the first nonzero stationary
points of the exponent are included in each range of integration. Let
us name these two stationary points ni . In Eq. (34), we already have
the asymptotic expansions of Gi(r,e) when ni are not near n =0 .
Consequently, we only need consider the cases where one of them is
small.

The form of the change of variable is suggested by the small

n expansion of the exponents in Eq. (35), but its validity is not
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dependent on having n small, Let

iinzcos g - sin 6 Po(nz) = %—uﬁ - ci(e) S(uz) u2 (36)
where
+1 Re z > 0
S(z) =
-1 Re z < 0

With the inclusion of S(uz), both the right and left hand sides of
Eq. (36) have two stationary points for [n| <M,
For the change of variable to be one to one, we require dn/du

to be finite and nonzero in the range of interest. Since
2n[+i cos 6 - sin o P!(n)] b = ulu®- 2¢,(0) S(u")]

this means that the points u =0 and Wl = (22;i)1/2 must correspond

to n=0 and n2= ni(e) . Consequently,

2 2/3

£, (8) = - J {3 sin e[+ coten; + iP_(n2)]} (37)

Notice that the <z, go to zero when ni -0 .

We can now write Eq. (35) as
| e iT/6

1/2 d
6, (r,0) = (21— du 3 .
+ /2
Yy sin OJ u ( )P ( )

xexplr(g u®- o u%)]

Here we have replaced the finite upper limit of the integral in Eq.

(35) by infinity. This produces a negligible error in the asymptotic
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in/6

Timit. The factor e. insures that the path of steepest descent
is taken as u >« .,

We are concerned with cotze near cotzeC ; thus, the two
stationary points are close together. Accordingly, in the asymptotic

1imit, the factor in front of the exponential can be evaluated at

u =0 and taken out of the integral. Consequently,

(2 )1/2 Ky -1/4 -z, (8) 1/2
6, (r,0) r2/3ﬂ. 7 = 72
sin 8 L i cot 0 - (K"/K_‘_)

where

F(x) = eiﬂ/G f d) exp(- %-A6 - x2]/3 eiﬁ/3A2)
0

It is easy to show that

This is the differential equation satisfied by the product of Airy
functions [29]; hence, its three linearly independent solutions are
Aiz(x), Ai(x)Bi(x), and Biz(x). By considering the values of F(0),

F'(0), and F"(0), one may show after a bit of algebra that

3/2
F(x) = g7 ATGTBI () + i1 (x)] (39)

It is this function which will control the primary contribu-

tion to the asymptotic expansion near the resonance cone. As long as
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F(2—1/3r2/3ci) is 0(1), then Gi(r,e) are O(r'2/3). Contrast this
with all the other terms in the expansion, which are at most O(r']).
In Fig. 4, we show the magnitude and phase of Ai(x)[Bi(x)+ iAi(x)] far
real values of x . Note that the magnitude plot has qualitative
features similar to those shown by the magnitude plot in Fig. 3. This
combination of Airy functions will give us the mathematical description
of the interference structure in the asymptotic limit.

The Airy functions do not give the whole story, of course. The
complete expansion will never have points where the magnitude of the
potential is zero. Near the points where |F(x)| = 0, the o(r )
terms in the expansion give important contributions., This fact will
also affect the phase. However, the location of the maxima in the
interference structure will be given by the maxima of |F(2']/3r2/3ci)|.
Furthermore, in the complete expansion, ci(e) will generally be com-
plex, due to Landau damping. Only near ¢, = 0 will they be predom-
inantly real.

The asymptotic expansion is now complete; however, the results
are scattered over the last ten pages and involve a host of intermedi-
ate functions., By simple manipulations, everything can be related back

to the dispersion function. The result is

-iwt K -1/2
e 2 " . 2
o(psz,yt) v 3;7;?—-(Kf%-{(cos 6 + sz-s1n 0)
0
1 Ky =174 _ [Ky -172 0 [Ky 172

(Ki) [+ T oot o) "+ (fg==-1cote) "]

/2 sin @ 3
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Fig. 4 Magnitude and phase of Ai(x)[Bi(x) + 1Ai(x)].



-35-

explir(k I ncos 8+ k, sin 6)]
+ G (r )+ G (ry0) + L7 n n (40)
¥ - " OIS
where
1
2 2 2 =
1 3D 2 D 2 2
Q(KL,k )= [—E—- ok (cos“e §-§-- 2 sin o cos G—F"TWR'+S1H 0 g—%»)]
ak J ok
L il
and where the (gln,kun) are almost all the solutions to
D(KL,k“ ) =0 Imk >0 (41)
3D/ 3ky
= cot © 42
A (42)

The solutions to Egs. (40) and (41) which are not included in (
are the one that approaches (0,0) as 6 - 6> which will be ca11ed
(k " ky4) s and the one that approaches (0,0) as 6 ~ M-8, s which will

be cal]ed (k, _skjy_). Notice that kj,(8) =k, _(w-6) and k, k (6) =
"‘ku _(”T—e) °
If 6 is not near 6 (for +), or -6 (for -)

Ky =174 K¢ _ -1/2

Gi(r:e) v T () KIf-+ i cot B)

K r/2 sin 6 K

explir(k, , cos8+ k;, sin 8)]

Q( .-L“" )

+
i
———
S
w
N

If 6 1is near N (for +), or near ™0, (for -)

1/3.2 Ky -1/4 z+(0) 1/2
6.(r,0) v 2 (T ]
£ e K (Ky/k) V2 T coto

X Ai(X Y[Bi(X 4—1A1(X )] (44)
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where

X,(0) = 271323 (6) = - 3D 3(cos o Ky, + sin 6 k)%

The asymptotic expansion was derived under the assumption that
sin 8 # 0 and w < OUH - However, the result is finite as sin 6 » O,
The terms in the braces in Eq. (40) which appear to give an infinite
result are exactly canceled by two corresponding terms in Gi(r,e).
One can show that as long as KJ_ # 0, the expansion in Eq. (40) is
also correct as sin 6 - 0. This proof requires the results in
Appendix C, and so will be done in Appendix D.

In Egs. (40)-(43) we have the asymptotic expansion for the
electrostatic Green's function for frequencies w < WO - (See Appendix
C for a discussion of some restrictions on the region of validity of
the terms in the sum in Eq. (40).) The frequency range could be ex-

v e e

o~ f1ay =2 - ~e
g. (1o} 1N a Mmanney

m

tended to w < wyy by handiing the n = 1 term in
similar to that used for the n = 0 term. However, that would have
made the expansion needlessly complex. The present expansion is

sufficient for our purposes.
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CHAPTER III
FURTHER THEORETICAL CONSIDERATIONS

3.1 Physical Predictions from the Asymptotic Expansion

The results in Eqs. (40)-(44) are still of a rather formal
nature. To get the physics out of them, we need more explicit informa-
tion on the solutions to Egqs. (41) and (42). If one needed all the
solutions to these equations, he would have to resort to numerical
procedures; the dispersion function is much too complicated to be
handled in general by analytic means. Special cases, however, can be
done by explicit analysis.

One quantitative result can be obtained immediately. In an
anisotropic medium, the phase and group velocities of a wave do not
have to be parallel; in general, there can be an arbitrary angle be-
tween the two vectors. By considering the form of (KL+’HI+) for ©
near 6. , one can show that the phase and group velocities of this
mode are actually orthogonal at 6 = ec when v =0 .

For 6 near 6C » both kJ_+ and kﬁ+ are small; hence the

dispersion relation becomes

ne

2 2
Kikpe * Ky ks

At 6 = ec , the angle between the phase velocity and the magnetic

fField is
2
k K
cotzxC = lim '2” I (45)

We have shown in Chapter II that 6 is the angle between the group
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velocity and the magnetic field. Since cot26C = —K" /KL when v = 0,
Ac and ec are complementary angles; thus, the group and phase veloc-
ity are orthogonal on the resonance cone. (A similar proof can be car-
ried out to show that the same conclusions hold at 6 = ﬂ'-ec).
One qualitative prediction can also be made rather easily. Due
to Landau damping, only solutions to Eqs. (41) and (42) with small ky
will contribute significantly to the potential in the asymptotic Timit.
Consider k" = 0 1in order to find what terms in Eq. (40) might be sig-
nificant in the lower and upper branches. In the lower branch
(w g_min(wpe,wce)), the only solutions to the dispersion relation that
have k, vreal when ky =0 are (kj,.ky,) at e =6 and (k .ky )

at o6 = w-ec [30]. Consequently, none of the terms in the sum in

Eq. (40) is significant. In the upper branch (max(wpe,wce) <w 3'wUH)’
in addition to the previous solution, the Bernstein mode solution
exists. Since this has k;, real and nonzero for k" =0 , at least
one of the terms in the sum in Eq. (40) can contribute appreciably to
the potential.

More detailed predictions take further analysis. To make
these, it would be useful to have approximate forms for Ly when they
are small; this would allow detailed computations of parts of the

resonance cone structure.

Returning to the original definition in Eq. (37), we see that

we need to know ni to find Ci(G) . For small n2

Ky 172 5 4

Pon) ¥ (gt o) e (46)
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Thus, when each ni is small, the solution to the stationary point

condition, Eq. (33), yields

Ky 172
e i oot o - (29 (47)
0) L

Using these approximations,

[1 sin 6]1/3[
Pm (0)

0

z,(0) = - scoto + 1 (g /2] (48)

Since ky = iPo(k" ) is one of the solutions to the dispersion

relation, one can show by differentiating three times that

- 3, oky 3 3 oky 2

i . 1 37D, 7+ 3 5°D L

P (0) =1 Tim -~( ) + ( )

ky 0

3 ok 3 2 ok, 8%k 2 3%k

L3 2D D% k" D,33D°°L% 3 3% 1%
k § k 2 5k 2 k 2
L ailak e Lok k] T ek L ok aky oky

The evaluation of this expression fs straighfforward but
1aborion. First, one must relate BZKL/BKS and  3k; /dky to deriv-
atives of the dispersion function D(KL’k“ ). Once this is done,

Eq. (9) can be used to compute explicitly the derivatives of D(KL’HI)'
Fortunately, all the resultant integrals can be done analytically in
the 1imit that ky +0 and KL'+ 0 . The result is

Ky )_]/2 9w (1+1v/w) th
Ky 204

Po (0) = RI(
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where R L \2 2 4
L .(MW)Z.‘ 1.6(wtiv) = 3(wtiv) Weat Voo I];!-.-
YA Y 2 42
3[(wiv)~- wce] [(w+iv)© = wce] 1
_ 3(wriv)? Ki )2
(w+iv)2— 4w2 Ky

ce

The combination Kg(K& /K.L)]/2 has been left in this form so that the
proper sign can be obtained in the v - 0 Timit.

Using Eq. (49), we have

1/2 2 4 1/3
X, = 271/32/3 (8) = [i sin% 5422 )2 s /
9wpe(1+1v/w)vthA
Ky 172
x [+ cot & + i(p—) ] (50)
Ky

For each sign, this result is only valid when I;i(e)l‘<< 1 for that
sign.

Having Eq. (50), we can predict where the local maxima in
|¢(p;2,tﬁ will occur. These maxima are controlled solely by one or
the other of the Gi(r,e) terms in the asymptotic expansion; thus, the
maxima occur wherever [Ai(X,)(Bi(X,) + iAi(X,))] have relative maxima.
For v= 0, the values of Xithat give the maxima are real, Their values,
computed by methods given in Appendix B, are given in Table 1.

By differentiating the potential, one can get the electric field
components. For future reference, the values of X, that give the

maxima in the magnitude in the electric field components are also listed

in Table 1, again with v =0 .
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Table 1

Location of the Maxima of |F(x)| and |F'(x)| where F(x) =
Ai(x)(Bi(x) + 1Ai(x))

n =X —xﬁ

1 0.78543 1.63257
2 3.22483 3.65280
3 4.80934 5.16230
4 6.15677 6.46978
5 7.36759 7.65439
6 8.48502 8.75271
7 9.53270 9.78552

Notice from the table (or from Fig. 4) that all the maxima
occur for X, < 0. Since X, = 0 on the cold plasma resonance cone,
it is more useful to discuss the location of the peaks relative to the
cold cone. Define Aen =6, 0, where 6 1is the angular position
of the nth maximum; the maximum closest to ec is numbered n =1 .

Consequently, as r > , we have, when v=20 ,

9u? vE sine 4 1/3
48 =‘X[zp3t y 1/2]
n "L ru sign(KL)(4§'Kl) )

(51)

where the X, are given in Table 1. The original definition of A6,
is appropriate to X 5 for X_ the analogous definition would be

Ap, = (w—ec) - 6, and these 46~ are just the negative of the ones

given in Eq. (51).
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Equation (51) will be used quite extensively in Chapter VI,
so it is worth discussing in some detail. First, notice that each of
the A8, has the same dependence on the plasma parameters. All the
Aen just differ by a scale factor. This leads to an interesting pre-
diction: the ratio Aen/Aem should be a constant, independent of the
plasma conditions, whose value depends only on m and n . Second,

the dependence on temperature and radius is particularly simple: Aen

is proportional to T;/3 and to r"2/3. The dependence on w, wpe’
and  w.  is a good deal more complicated.

To study the dependence on the frequency parameters, define

9ul i, sinfo s ) V3
A(w,wpe,wce) = 4p
w sign(KL)(-KL K“)

1/2 (52)

Using this,

Vo ‘2/3
thy ™" 4

A = -x
n n Y‘U)Ce

Considering the definitions of ec and A 4 it is easy to show that
LA depends only on the dimensionless ratios w/wce and wpe/

Wea To show the functional form of A , it has been plotted in

Figs. 5 and 6 for the case v =0 . In Fig. 5, we have A vs w/mce

for various values of wpe/wce ,» while in Fig. 6 we see A vs
wpe/mce for w/wce <1 . Figure 5 is very similar to a plot given by
Kuehl [8]. 1In the upper branch region in Fig. 5, the plot has been

stopped at A =0 . One can show that A >« as w~> Wy The asymp-

totic expansion is not valid, however, for frequencies too near the
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Fig. 5 Dependence of A on w/w with w e/wce as a parameter
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upper hybrid. Since A =0 at a frequency just a bit below o
it is a convenient place to stop.

From Fig. 5, it is obvious that A can have either sign.
Hence, the interference structure can appear either inside the cold
plasma cone angle (A > 0) or outside it (A < 0). Also, as is apparent
from Fig. 5, and obvious from Fig. 6, A 1is independent of wpe/wce
for frequencies in the lower branch when w__/w is large enough.

pe’ “ce
Except for w/wce near 0.7, w__/w is large enough when

pe’ “ce
wpe/wce > 2.

We now have the predictions which we must have to compare with
the experimental investigations discussed in the last three chapters
of this work., There is much more that we could investigate about this
asymptotic expansion. For example, it would be interesting to compare
the complete asymptotic expansion in the upper branch with Kuehl's

numerical results [8]. However, since we have what we need, we will

have to forego the pleasure of further investigation.

3.2 The Line Source Antenna

In any experimental investigation, the actual antenna is, of
course, not a point source. One can regard it as such only if the
antenna dimensions are much smaller than the wavelength radiated. The
antennas used in the present experimental work are long, thin wires,
0.25 mm in diameter and 3.5 or 7.5 cm in length. The wavelengths in-
volved are usually greater than 1 mm, so the antennas can be suitably
modeled as a finite length line source. Unfortunately, the easiest

Tine source to handle mathematically is one that is infinitely long.
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However, ihis model will not give too inaccurate a comparison with the
experimental data as long as those data are taken close to the actual
antenna.

Model the antenna as an oscillating line source of charge den-
sity cG(x)@(z)e'iwt. Just as in the case of a line source in
electrostatics, the potential in this case will not approach zero as
r o ,. This leads to Fourier integrals which are defined only as
generalized functions, and these are difficult to expand asymptotically.
However, the integrals for the electric fields are well defined in the
classical sense, and we will work with them rather than with the poten-
tial.

Using the representation in Eqs. (18) and (19) for the electro-
static Green's function, we can find the electric fields by first dif-
ferentiating with respect to x or =z , and then integrating over the

new charge distribution. The results are

Ue—iwt © exp[ikz —xPn(k)]
Ex(x,z,t) = _Z?E;“ A J dk Rn(k) (53)
i e—iwt o % ik explikz -xPn(k)]
E,(x.2,t) = G4mo 1 j 4ok R(k) (54)

Each integrand in Eq. (54) differs from the one in Eq. (53) by
the factor ~ik/Pn(k) . Since this is well behaved for all k , we
may asymptotically expand the integrals in Eq. (53) and then obtain

Eq. (54) simply by multiplying each term by the appropriate factor.
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In doing the asymptotic expansion, we learned that the interest-
ing physics comes out of the n =0 term. The expansion of all the
other terms can be done by standard methods, so we will concentrate on
that term.

From our previous work, we know that Pé(k) is discontinuous

at k =0 ; hence, it is worth defining the analog of H(p,z) as

explikz - xPO(k)] exp[-ikz —xPO(k)]

H(x,z) = J dk Rn(k) + J dk Rn(k) (55)
0

it

If we now define z = r cos 6 and' X =1y sin 6 , we can attempt to
expand H(x,z) as r >« ,

Just as in the former case, we attempt to do the asymptotic
expansion using ‘the method of steepest descent. However, we know from
our previous work that for 6 near the resonance cone, one of the

stationary point conditions P'(k) = xi cot 8 will have a solution

"(k) will also be quite small, and the

1
0
PO

with k smaii. Accordingly,
usual steepest descents formula will no longer apply. Unlike the
earlier case, we do not have two stationary points which approach each
other as cotze - cotzeC ; we simply have an exponent that violates
one of the usual assumptions made in the method of steepest descents.
Scorer [31] has developed a method to handle exponents of the
type that occur here. His arguments are based on the stationary phase
approach, but this method and the more exact steepest descents proce-
dure always agree on the first term in the asymptotic expansion [22].

Adapting his results to our notation, we obtain
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T exp[r(xi cos 6 -sin ePo(k))]
dk

J R_(k)

0 0

: 1/3 8,
=21 ]/ e T[Ai(X,)+i6i(X,)]  (56)

n T [
Ro(ki) r sin o P;‘(ki)

Here, ki are the solutions to Pé(ki) =+ cot 6 , Gi(X) is a rela-

tive of the Airy function [29], and

, (Ph(k,))
8, = r{xik cos 6-sin 0[P (k,) - 5____“;,.__.2_]%
23 (e (k,))
(P! (k,))°
x = (rsin 8)2/3 0\ s
£ 2 (ipn(k,)) Y3
The expansion in Eq. (56) is valid for all © . One can show,

although it is a bit laborious, that if Pg(ki) is sufficiently large
that |Xi] >> 1 , then this expansion reduces to the one given by the
standard steepest descents methods. |

If we are interested in angles 6 near SC (for +) or near

-0, (for -), then the right hand side of Eq. (56) can be simplified to

m -2 1/3
7 L ] Ai(X,) + 1 Gi(X (57)
L v sino Py (0) [AR) + 5 Gilx,) ]
where )
25020 1/3 Kg 172
xi=-[3-‘-!—s-l’1—9-]/ [+ cote+i(K;—'-—)/] (58)

p. (0)
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The quantities X, that were defined in the earlier asymp-
totic expansion have exactly the same functional form as the ones
given in Eq. (58), but the previous ones are smaller by a factor of
22/3. Since the functional form is the same; all of thevdiscussion in
Section 3.1 on how X, depend on the physical parameters holds here,
too.
To show what the interference structure looks like in this

case, in Fig. 7 we have plotted the magnitude and phase of
Ai(x) + 1 G6i(x) for real x, The qualitative features
are much the same as before; specifically, the interference structure
still occurs only on one side of the cold plasma resonance cone angle.

To relate the angular interference spacing to the physical
parameters, we can again define A8, to be the spacing between the

cold plasma cone angle and the nth interference peak. In terms of our

previously defined functions, as r »

Vin, 2/3

v (= (59)

AB = =
n n ce

where Yy = 2'2/3xn . and where ‘X, are the values of X at which

|Ai(x) + 1 Gi(x) | has a maximum. In Table 2, we give x  and

Y, as computed by the numerical methods given in Appendix.B,

If one wishes to compare the line source results with the pre-

vious point source prediction, the Yn in Table 2 should be contrasted

i

with the Xn in Table 1. (To compare the Yq with the x_ in Table

n
1 is to compare the incommensurable, since there is no reason to believe

that the potential has its maximum modulus at the same point where the
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TABLE 2

LOCATION OF THE MAXIMA OF |Ai(x) + iGi(x)]

n n Yn T '2-2/3Xn
1 1.84481 1.716216
2 5.42096 3.41499
3 7.88888 4.96969
4 10.0018 6.30074
5 11.9065 7.50062
6 13.6675 8.61000
7 15.3204 9.65127

electric fields do.) Except for the first element in each list, the

Yn and xa are approximately equal. More importantly, the first
differences of the elements agree within 1%, again excepting the ones
involving the first elements. These differences also agree with those
taken among the Xn of Table 1. Since the interpretation of the ex-
perimental measurements will depend on these differences, it is good to
know that these numbers agree so closely.

In summary, consideration of a line sourcé, rather than a point
source, has not modified any of the qualitative features of the reson-
ance cone structure, nor has it affected the way these features depend
on the plasma parameters. Only a few of the numerical details have

changed somewhat.
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3.3 'The Influence of Density Gradients

Up to this point, we have confined our attention to infinite,
uniform plasmas. Wave propagation in plasmas with density gradients
is a Vast subject, and if the plasma in a given situation is uniform
enough, it is a subject that one usually ignores in the first analysis.
In this experiment, however, certain major features seen in some of the
data could only be explained by considering some of the effects of the
density gradient that exists in any laboratory plasma.

We are interested in the effect that a density gradient has on
the location of the resonance cone. As a first attempt (which turns
out to be good enough), let us try the simplest model possible. To
make the geometry as simple as possible, consider a line Source
UG(X)G(Z)e-iwt in a plasma that is infinite, uniform in the y and z
directions, and that has a density gradient in the x direction. To
simplify the plasma dynamics, let the plasma be cold.

Under these conditions, the plasma is an anisotropic dielectric
with a dielectric tensor that is now a function of position. The elec-

trostatic potential is governed by

2 (K (%) £ + K (%) 2;22" = - ch; é(x—xg)é(Z)e'i‘Ot (60)
where ,
o -1 - u:iifiizu :(2::)/&)
by (%)

k() =1 - SeE)
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In the source function we have inserted the parameter X SO that
the source can be located at an arbitrary point relative to the den-
sity gradient. From now on, the time harmonic factor e'iwt will be
suppressed.

Notice that in the collisionless case, in frequency ranges where
the resonance cones could exist, we have K (x)/KL(x) < 0 . This
means that, in the collisionless 1limit, Eq. (60) is not an elliptic
differential equation, but rather a hyperbolic one.

Since the plasma is uniform in the z-direction, and since Eq.

(60) is even in the z-coordinate, the solution can be effected by a

Fourier cosine transform

2

d(x,k) dz cos kz ¢(x,2z)

d(x,z) = dk cos kz ¢(x,k)

2|

o § O~—— 8

Using this, Eq. (60) becomes

Q0 3 60x,k)) = KKy () 6(x,k) = -

Q
o~
m!a

= - 6(x~x0) (61)

In general, Eq. (61) cannot be solved unless we know the func-

2
P

and if we stay away from points where K,;(x) Kj (x) = 0 , then we can

tional form of w e(x) . If the density gradients are gentle , however,

get an approximate solution using the JWKB method. First, we need to
make the standard transformation into JWKB form [32], and then the

method can be applied. The solution is
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s0xK) = 52 K (x) K (x )18 [F(x k) Flx,k)17%
(o}

X

x exp (- f [F(z.k)1Y2 dc (62)

*

where
: Ki(x) ] Ki(x) 2 5 Ky (x)

FOok) =z oy - A TR R

it

[

and where x_ = max(x,xo) and x_ = min(x,xo).

The functional form of F(x,k) is such that the inverse Fourier
transform to obtain ¢(x,z) cannot be done in general, However, in
the collisionless case, it is easy to see where the resonance cones
lie. |

Consider the large k behavior of the integrand in the inverse
Fourier transform; it is proportional to

X\

cos kz {e -k - [KII((Z)]U2 dc}
K 18xp K (2) &
<

Since K“(x)/ﬁL(x) < 0, both the cosine and the exponential are
oscillatory functions. If they oscillate in phase, the k'1 factor
is not enough to make the integral converge. Consequently, the reson-
ance cones are located along the Tines
B k() 172
7 = +i [ KT

<

This can be rewritten as a differential equation for the cone location.



Ky(x) 172
dx _ ..
& - o [‘m“ T (63)

Equation (63) is very suggestive. It says that the resonance
cones in an inhomogeneous, collisionless plasma propagate along the
characteristics of the hyperbolic differential equation, Eq. (60).

One might have expected such a result solely on the basis of the theory
of such differential equations. It is well known [33] that singulari-
ties in the solution of hyperbolic differential equations propagate
along the characteristics. We have confirmed this fact for Eq. (60)
in the JWKB Timit., However, the argument from the theory of differen-
tial equations indicates that the resonance cones should follow charac-
teristics even when the JWKB solution is not appropriate, e.g., even
when Kl(x)Kls(x) is near zero.

To see what can happen near the point Klfx)K“(x) = 0 , take the
simplest case possible. Llet v =0, Weo > and let the density be

a linear function of x . Accordingly, Eq. (61) becomes

iﬁg -1 (K (0) + K)o = - < 5(x) (64)
X ] X €y

Here, K"(O) is the value of Ky at x =0, and we have taken

Xq = 0 . There is no loss of generality in this choice of Xo s be-

cause we can change the density at the antenna by changing K"(O).
In taking the v =0 1imit, we have made it difficult to

uniquely determine the solution to Eq. (64). (When v # 0, in addi-

tion to the damped solutions, there can be solutions to the differen-

tial equation which grow without bound; one naturally picks the damped
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solutions.) Let us agree that the solution we want is the one that,
as A >« , agrees with the v »~ 0 1limit of the solution of Eq. (60)
for a homogeneous, collisional plasma.

We can put Eq. (64) in a more succinct form by the substitution

£ = Ky(0) + x/X . Hence,

2
92%-- Ka%eg = - Ok g(c - KiK0)
d 0

The method for solving this is the standard method for obtaining the
Green's function for an ordinary differential equation. Using it, and

then writing the inverse Fourier transform, we have

[ee)

1/3
8(x,2) = 9 f dk 9ﬁ§7§£ Ai((k0) 4 3 ) IBi (k1) 3 )
(0]
0

vt avan Rs anAd Da
wiici < ALoaniu D

are the Airy functions [
€ min(E,MKO» .

As with the JWKB solution, we again have a Fourier integral
that is difficult to do in general. The resonance cone location can
again be found'by considering the large k behavior of the integrand,
and looking for the parameter combinations that make the integral
diverge.

If we are in the region where the resonance cones can exist

(Kﬁ(x) < 0), then both g, and &_ are negative. Consequently, as

k = o
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Rilkn) 232 ) 181 (k)% 32) - Ai (k0?3 )]

v 10073 (el ()2 - (2]

3/2

- expl- & l(-5) Y2 + (- )¥A)])

When this is multiplied by k-2/3

cos kz , we obtain an integrand that
can be expressed as the sum of four complex exponentials, multiplied by
k']. If the argument of any one of these is zero, the integral in

Eq. (65) is divergent. The loci of points where this happens is
(-6)%/% =+ (ky(0)) 3% = 3Z (66)

Equation (66) is actually four equations; all possible sign combinations
that yield £ < 0 are to be taken.

The loci described by Eq. (66) are graphed in Fig. 8. As is
clear from the figure, the resonance cones Taunched by the source into
the region of decreasing density are reflected when K“(x) =0 and
travel back into the high density region, Furthermore, Eq. (66) is
just the solution for this case of the equation of the characteristics,
Eq. (63). Consequently, the resonance cones propagate along the
characteristics of Eq. (64), but they are confined to the region
K“(x) < 0 , where the characteristics are real.

The equations that describe the turning point where KL(x) =0
are much more difficult to solve. To avoid more mathematical complex-
ity, I would 1like to build a model, which is motivated by the foregoing

discussion, but which would be quite difficult to derive from it
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rigorously. (Reflection from the layer where KL(x) = 0 may require
Te # 0, as in the case of the Buchsbaum-Hasegawa resonances [58], or as
discussed in Stix [11, Chapter 10].)

Assume that the resonance cones propagate everywhere along the
characterfstics of Eq. (61), which are given by the solution to Eq.(63).
Assume further that the resonance cones are confined to the region
Klfx)K'l(x) < 0, and that they can reflect from these boundaries.

We would like to apply this model to a plasma that approximates
the one used in the experiment. Consider a collisionless plasma whose
density is an even function of x and which decreases as Ix] increases.
Place an oscillating line source in the plasma at some point where
KJ_(x)K"(x) < 0 . Using the model, what do the resonance cone patterns
look 1ike in this plasma?

For the experiment, two cases need to be considered: either
Kl’(x) < 0 but Klfx) > 0 in the region from x = 0 to the source
(w in the lower branch), or KJ!x) <0 and K‘l(x) > 0 in that region
(w in the upper branch). (The third case, where Kll(x)Kle) <0
only in regions that do not contain x = 0 , is neglected because the
antenna configuration in the experiment precluded taking any data in
this case.) We can indicate the general features of the solution with-
out knowing wge(x).

In the first case, since Kl!(x) < 0 at the source,
the turning points occur when Kli(x) =0 . (In this case,

Klfx) <0 for all x.) This is very similar to the

problem we just solved in Eq. (65), and the resonance cone patterns
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can easily be sketched (see Fig. 9a). Near the lines K“ (x) =0,
these patterns have the same qualitative features as Fig. 8; however,
the maximum in the density at x = 0 has made multiple internal
reflections possible,

In the second case, the turning points occur when Kljx) =0 .
(For this case, Kn (x) >0 for all x .) Consider Eq. (63) in the
collisionless limit near the turning point x = Xy > 0 , where
) = 0 . Since the density gradient is monotonic, Eq. (63) can be

4 (x

u
rewritten as

Ky(x )
£ - Gy o 0"

Thus, the resonance cone path turns around at x= Xy and proceeds
back into the plasma. This gives rise to the type of solution sketched
in Fig. 9b. Again, multiple internal reflections occur.

It is these multiple internal reflections that give rise to
experimentally observable effects. In the experiment, if the receiv-
ing antenna happens to go through any of the reflected resonance cones,
the received signal will increase markedly. The increase will be par-
ticularly great at the points labeled A in Fig. 9. The location of
point A in each half of Fig. 9 has a simple geometrical relationship

to the location of the source.



67~

SOURCE/%
Z/2\
\ ,

e oL o a. LOWER BRANCH

b. UPPER BRANCH

SOURCE —

-

Z/

A \

2L

T
¥

Fig. 9 Sketch of the location of the resonance cones excited by a
line source perpendicular to the magnetic field and to the
density gradient in a cold plasma with a symmetric density
profile. a) K;(x)<0 and Ki(x)>0 in region from symmetry
axis to the source. b) Kj;(x)>0 and Kiix)<0 in that region.
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Define L to be half the period of the patterns in Fig. 9. If
the distance between the source and point A is r , and if the line
between them makes an angle 6 with the magnetic field, then the

geometry of the patterns shows that
cos 8 = L/r (67)

This equation must hold, no matter what the density profile is,
| To investigate these observable effects further, we can write
down the formal solution to Eq. (63) and use it to obtain L . If we

distinguish the upper and lower branch cases with subscripts,
X

e Ky (8)_172
Ll,u =2 J dg [- KIKET“J (68)
0
Here, Xo > 0 satisfies Kli(xz) =0, while X, > 0 satisfies
K-L(Xu) = 0 ®

For any symmetric density profile, there are several qualita-

tive features that can be obtained from Eq. (68), even without knowing

2

the exact form of wp

e(x) .

First, as the resonance cone angle at x = 0 decreases, i.e.,
as lKl|(O)/KLfO)| increases, L increases. Since the density de-
creases as NG increases, then as IK‘E(O)/KL(O)| increases, both
x, and X, increase. Further, the integrand in Eq. (68) is a
monotonic function of & . Consequently, as |K" (0)/%1!0)] increases,

the 1imits on the integral and the integrand itself both increase.

Thus, Lu and LQ increase.
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Second, given a lTower and an upper branch pattern that have the
same value of K||(0)/§L(O), it is usually the case that L, < Lu .
To see this, consider two frequencies, one in the lower branch, Wy
and one in the upper branch w, s such that Ky (0)/%L(O) is the same

for both. If we assume that wge(x) and w are the same through-

ce
out, then by considering the functional form of Ky and K , it is

easy to show that

2

2 2
wy *ow, = wpe(O) t Wi

Using this, one may show that X and X, are related by

1

2 2 2
wpe(xg) + wpe(xu) wpe(O)

The integrand in Eq. (68) is a monotonically increasing func-

tion of & for w = w,  , but it is monotonically decreasing for

u
W= W Accordingly, a sufficient condition for having Lﬁ < Lu is

: P 2 _ 2
that x, < x, . Since Kyp (x,) = 0 implies w, wpe(xz

wge(O)/wz > 0.5, then the fact that the density is a monotonically

) , if

decreasing function of x gives Xo S X, Consequently,

wge(O)/wi_z 0.5 s a sufficient condition to insure that L, < Lu .
In fact, this condition is much too strong; for any given case, more
detailed analysis can find a better limit. However, it is good
enough for our present purposes.,

We now have all the theoretical results thét we will need to

make comparisons with the experimental data, and we can move on to

discuss those data.
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CHAPTER IV
EXPERIMENTAL EQUIPMENT

4,1 The Type of Plasma

The experiment was performed in the afterglow of a repetitively
pulsed, argon plasma. The pulsed plasma has several advantages over a
steady state plasma, even though the associated electronics are some-
what more complex. First, in the afterglow, the strong electric fields
that are associated with plasma generation are absent, and cannot
affect the wave propagation that we wish to study. Second, as the
plasma decays in the afterglow, the velocity distribution function of
the particles quickly becomes isotropic and nearly Maxwellian, thus
facilitating comparison with the theory. Third, a whole range of plasma
densities is easily available simply by taking data at different times
in the afterglow. Fourth, such plasmas have low electron temperature,
which makes the wavelength of the warm plasma waves very short, and
makes it easier experimentally to attain the asymptotic limit for which
the theory was developed in Chapters II and III.

The plasma used in this experiment had a density of the order

8cm_a. Its temperature, at the times in the afterglow where

of 5x10
data were taken, was usually near 300°K. Using the measured argon col-
Tision cross section [34], the electron-neutral collision frequency was

found to be near 1 x'106sec_].

The electron Coulomb or self-collision
frequency, as computed from the collision time given by Spitzer [35],

was also of the same order.
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4,2 'Plasma Generation and Confinement

The plasma was produced in the apparatus shown in Fig. 10. It
was contained in a glass vacuum vessel constructed with standard sec-
tions of Pyrex conical glass pipe (inside diameter =15 cm). One end
of the vacuum vessel was connected to a vacuum station consisting of
an oil diffusion pump and a mechanical forepump. It could produce an
ultimate base pressure in the system of 5 xlO"7 torr,

Research grade argon gas was introduced into the system
through a variable leak valve. Gas purity wés insured by maintaining
a small, continuous flow of gas through the system while the plasma
discharge was in progress. The argon pressure, as measured by an
ionization gauge just above the diffusion pump, was in the range
1.0><10'4 to 2)(]0"2 torr, with most work being done at ':':x’IO"3 torr.
The ionization gauge was a Veeco RG-75 gauge tube operated by a Varian
gauge control unit (Model 971-0003); the accuracy of this combination
is about 20%.

The external magnetic field was produced by a pair of water-
cooled pancake coils in Helmholtz configuration (the glass pipe was
aligned along the symmetry axis of the coils.) Driven by a voltage
regulated power supply (Christie Electric Corp.), the coils were
capable of producing a maximum field of 1.68 kG; however, the fields
used in the experiment were usually about 100 G. The voltage across
a-current shunt in series with the coils was calibrated in terms of
the electron cyclotron frequency by using an NMR unit (Alpha Scientific

Laboratories, Model 675). By measuring the voltage with a digital volt-

meter (Keithly Instruments Model 160), a calibration accuracy of 0.2%
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could be obtained.

The plasma was generated by gas discharge breakdown in an RF
electric field. The field was produced by a two-tube, push-pull,
power oscillator designed and built in our laboratory. In principle,
the design is capable of producing a maximum output power of 400W, but
since total power output was never a problem, this was never measured.
When driving a resistive load, the oscillator frequency can be tuned
continuously between 3 and 7 MHz. However, the coupling to the plasma
is so strong that the oscillator usually works at about 30 MHz when
the plasma is present. To generate the plasma, the oscillator is
gated on once every 7 msec for about 100 usec., No experimental meas-
urements were made while the oscillator was on.

Originally, the output of the oscillator was coupled to the
plasma by means of the two copper bands around the glass tube (see
Fig. 10). In an attempt to obtain more plasma at lower argon gas
pressures, the set of aluminum grids shown in Fig. 10 was inserted in
the tube. This failed to produce more plasma, but it led to a much
quieter, more reproducible one. The grids are usually connected in
the following fashion: the grids closest to the probes are connected
together, but are otherwise free to assume any potential; the grids
farthest from the probes are tied to electrical ground; and the remain-
ing grids and the copper bands are capacitatively connected to two
symmetric taps on the coil in the resonant circuit in the power oscil-
lator. Other configurations were also used, but any which involve the
grids couple the oscillator so tightly to the plasma that its operation

is seriously affected by the state of the plasma.
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Each time the oscillator is gated on, the increasing plasma
density between the grids causes the conductivity to increase markedly.
It goes so high, in fact, that the oscillator can no longer maintain
oscillation. If allowed to continue, this process would result in a
relaxation oscillation. The density would rise, and this would shut
the oscillator down; the plasma would then decay, allowing the oscil-
lator to come back on, and the process would repeat itself. It was
experimentally observed, however, that if the oscillator was gated
off just after the plasma had stopped its oscillation for the first
time, then a very reproducible discharge was obtained. Apparently,
the density that is reached is determined by the fixed circuit
elements in the oscillator, and thus is nearly the same every time.
These elements do not control the density completely, for if several
relaxation oscillations are allowed to occur before the oscillator
is gated off, then the plasma is much noisier.

One could avoid this relaxation oscillation mode by changing
the background gas pressure or the DC supply voltage to the oscilla-
tor. However, the mode with one relaxation oscillation is so quiet
and so reproducible that almost all data were taken using it. The
peculiar properties of this mode will not affect the experimental
results, since, in the afterglow, the detailed characteristics of the
plasma generation mechanism are quickly destroyed by the randomizing
effects of collisions between the plasma particles and the background

gas.
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4.3 The Probe System

As indicated in Fig. 10, both the transmitting and receiving
probes are mounted opposite each other on the same rotating structure,
so that they each rotate about a common center at equal distances from
it. In contrast to the probe configuration having one centrally
located fixed probe with another probe rotating about it, this probe
configuration allows the probes to be twice as far apart and still re-
main in the region of relatively uniform density near the center of a
plasma whose density decreases near the walls.

The complete probe carriage is shown in Fig. 11. In addition
to rotating through a full 360°, the probe separation can be varied
continuously from 1.5 to 11 cm by means of rack and pinion gears. The
whole assembly is made of nonmagnetic materials, and all metal pieces
near the probes are tied together by multiple ground paths, so that
they will remain at the same electrical potential,

The electrical signals are brought in and out through 50 &
semi-rigid coaxial cables (Phelps Dodge CT .020-50) which have solid
copper outer conductors. The solid conductor cuts down on cross-talk
between the cables. In areas where flexibility is needed, it is ob-
tained by winding the cables into spirals and using the flexibility
of these springs. This puts about 1.5m of cable between the probes
inside the vacuum and the connectors outside it.

The whole probe carriage is mounted in the side arm of a Pyrex
glass cross (15 cm inside diameter), as shown in Fig. 13. (The main
stem of the cross is the cylinder shown in Fig. 10.) The side arm is

long enough so that only the probes reach the main body of the plasma.
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Fig. 11 Engineering drawing of the probe carriage (scale 0.25:1).
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The probes themselves are shown in more detail in Fig. 12.
Particular care was taken when building the transmitting probe to make
the tip of the smallest wire that would not bend under its own weight.
Stainless steel tubing of 250 um outside diameter and 125 um inner
diameter was chosen and was inserted in place of the inner conductor
of the semi-rigid coax. (The smaller the wire, the larger the electric
field at the surface, and the better it will be able to affect the
plasma particles near it.) The outer conductor of both probes was
sheathed in Teflon tubing to prevent sputtering. SMC connectors were
used on all cable inside the vacuum system.

Finally, potentiometers were attached to the gears which
rotated the probe assembly and altered the probe separation; thus, a
voltage proportional to these quantities could be obtained. The
potentiometers are linear to within 0.25%. Since the probes are
rotated continuously from stop to stop when data are taken, backlash
in the gears is no problem; hence, the voltage is proportional to the
angle to within 0.25%, Backlash is always a problem in the gears which
drive the potentiometer that gives the probe separation; consequently,

the separation can only be determined to within 0.1 cm.

4,4 The Experimental Electronics

A block diagram of the experimental electronics is given in
Fig. 13. The master pulse generator (Data Pulse Type 101) controls
the repetition rate of the experiment and the duration of plasma gen-
eration by gating the RF oscillator on and off. It also triggers the

sample~hold module, which samples the received signal at a definite
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time in the afterglow and maintains its output at that level until the
next sample is taken. One may sample at any time in the afterglow.

The sample-hold unit is either a PAR Boxcar Integrator (Prince-
ton Applied Research Model 160) or a unit, constructed by the author,
with much the same characteristics, but without the nanosecond response
time of the PAR boxcar. The second unit consists of a Datapulse 101
pulse generator, which accepts the trigger pulse and, after a variable
delay, generates the sample command; a Burr-Brown sample-hold module
(SHM-41); and a two-pole, Tow pass active filter with variable cutoff
frequency, which integrates the output of the SHM-41. The 5 usec sample
time of the SHM-41 is more than adequate for this experiment, where the
characteristic time for density variation is greater than 100 usec.

The input signal for the transmitting probe is generated by a
General Radio unit oscillator (GR 1208B) whose frequency is variable
from 65 to 500 MHz . The frequency is measured by a 500 MHz frequency
counter (a GR 1157B 100:1 scaler driving a Hewlett Packard 524D
counter), which has 8-digit accuracy (many more than are necessary).
The 20 db directional coupler (HP 778D) and the 20 db attenuator
enable the power meter (HP 432A) to read the input power directly.

It was found empirically that an input power of more than 20 W
changed the appearance of the resonance cones; however, the appearance
was independent of input power for any level below that. During data
taking, the input power was held below 10 W, and was usually 6 uW.

One should expect nonlinear effects to enter when the power level is

too large, and this should bring with it a whole new class of phenomena.)
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The received signal is detected either in the traditional
superheterodyne receiver shown in the main body of Fig. 12, or with
the HP Network Analyzer shown in the inset. The first detector uses a
GR 874MRAL mixer, a GR 1208B as local oscillator, a GR 1236 IF ampli-
fier, and an HP 421A crystal detector. The tuned filter helps with
noise rejection, but serves primarily to keep the 30 MHz RF that gener-
ates the plasma from periodically saturating the 30 MHz IF amplifier.
The preamplifier in the second detector is an Avantek UTA 68231 and two
GR 1237B's in series. Both detectors are sensitive to the amplitude
of the received signal,

Most of the datawere taken with the superheterodyne receiver.
The 500 kHz bandwidth of its IF amplifier insures more than enough fre-
quency response. The 10 kHz bandwidth of the network analyzer is
adequate, but some smoothing of rapidly varying features is noticeable.
Also, until the Avantek preamplifier was acquired Tate in the experi-
ment, we did not have enough low noise UHF preamplifiers to boost the
received signal to a level that the network analyzer could use.

Without plasma in the glass tube, the signal passing between
the probes is attenuated by about 60 db. Although the level with p]asma
is some 20 db higher, thermal noise in the receivers was always some-
what of a problem.

After the detector output is sampled by the sample-hold
module, it is applied to the Y-axis of an X-Y recorder (HP Mosley 7004B).
The X-axis is driven by the potentiometer voltage which is proportional
to the angular location of the probes. One thus obtains a graph of

received signal vs angle relative to the magnetic field.
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Not shown in Fig. 13 is the oscilloscope thatws used to
monitor the experiment. By using a dual-beam oscilloscope (Tektronix
type 555) and two multi-trace plug-in units, it is possible to con-
tinuously monitor six different signals as they vary with time in the
afterglow. The oscilloscope was also used to measure the time inter-
vals in the experiment (e.g, the time in the afterglow where the
sample-hold unit takes its sample was determined from the oscilloscope

display).

4.5 Langmuir Probes

In order to investigate the density profiles in the plasma,
the current to a Langmuir probe was measured at various locations in
the plasma. The probe itself was built as a double probe, but often
one-half of it was used as a single probe. The double probe consisted
of two pieces of semi-rigid coax (2.2 mm 0.D.) located side by side
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m 0.D.) exposed to the
plasma. The two pieces of coaxial cable were soldered into a 0.25"
brass tube which passed through a rotating vacuum feedthrough. The
Langmuir probes entered the plasma through a plate in the arm of the
glass cross opposite the probe carriage, and they could be moved
radially into the plasma until they ran into the probe carriage.

The currents produced by the probes were of the order of 1 uA,
and their time variation in the afterglow required a detector with
bandwidth of 50 kHz. To monitor the current, commercial integrated
circuit operational amplifiers were used to build a current to voltage

converter that had a conversion ratio as high as 1 M2, but an input
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impedance of only 20Q . The output of the converter was sent to the
sample-hold module so that the current at a specific time in the

afterglow could be determined.
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CHAPTER V
RESONANCE CONE LOCATION

By far the most prominent feature in the experimental data is
the resonance cone peak itself (see Figs. 14 and 15). The interference
peaks are never as large as the theoretical development (see Figs. 3,
4, and 7) would suggest; in fact, as illustrated in Fig. 16, on many
experimental graphs they are invisible. This mismatch is due to a
defect in our model of the antenna.

Any material object in an actual plasma is surrounded by a
plasma sheath, a boundary layer where static electric fields exist and
where the electron and ion number densities fall from their value in
the plasma to a much lower value (almost zero) right at the body. Since
the sheath scale length is of the close order of the electron Debye
Tength Me T kZl , in a plasma with equal electron and ion tempera-
tures, and since the hot plasma waves have wavelengths that can be as
small as Xde , the sheath affects these waves greatly.

Typically, the present plasma has Ade = 40 um. Consequently,
the near-field electromagnetic part of the fields radiated by the probe
is not affected by the sheath. One would thus expect the relative
amplitude of the main resonance cone peak and the interference peaks to
be much different from that predicted by the theory developed in
Chapters I-1II.

A theoretical investigation of the RF properties of the sheath

is far beyond the scope of this work. We will consequently confine
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ourselves to investigating those aspects of the data which should be
insensitive to the detailed antenna characteristics. These include the
angular resonance cone location, the angular interference spacing, and
the possibility of reflected resonance cones.,

The raw data shown in Figs. 14, 15 and 16 exhibit four reson-
ance cone peaks. Consequently, two independent determinations of the
cone angle can be obtained from each original graph by measuring the
distance between peaks. (By measuring from peak to peak, one avoids
any possible errors that might occur due to shifts in the zero point.)
Each data point considered in this chapter is thus the mean of two
measurements. The errors quoted are simply the measurement errors in
the particular quantities, combined by means of the usual mean square

formula.

5.2 RF Probe Measurements

Since no general theory of antennas in plasmas exists, it is
impossible to predict whether the small receiving probe is sensitive
to the local value of the RF electric fields, or to the local value of
the potential. Leuterer [36], by building on an equivalent circuit
model of the antennas, has advanced theoretical reasons for believing
that the receiver is sensitive to the potential difference between
transmitter and receiver. The model's credibility is enhanced by how
well its predictions match his measurements.

The equivalent circuit model is constructed by assuming that
the coupling between the signal in the plasma and the receiving probe

is through an equivalent, plasma-filled capacitor. To compute the
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capacitance, the (unknown) free space value is multiplied by the plasma
dielectric constant, which is computed using cold plasma theory. In
Leuterer's work, the antenna is parallel to the magnetic field, which
means that the dielectric constant chosen is KL_’ the perpendicular
component of the dielectric tensor. The dependence of Ky on wpe
then leads to some experimentally verifiable consequences.
Unfortunately, the antennas in the present work are perpendicu-
lar to the B-field, so what dielectric constant we might use becomes
somewhat problematical. In the absence of any firm prediction, at
points where there is a difference, both the theoretical results com-
puted for the potential and for the electric fields will be compared

with the experimental results.

5.3 Dependence of Main Peak Location on w/wce and mpeigce

As was first shown experimentally by Fisher and Gould [4], most
of the dependence of the angular resonance cone position on m/wce and
wpe/

Eqg. (13). The results of the present work confirm that statement.

Wee Can be accounted for by the collisionless cold plasma formula,
In Fig. 17, four sets of data are presented, showing the
measured resonance cone angle as a function of m/wce . Within each
set, the plasma conditions were kept constant, so that wpe should be
constant, The solid lines in the figure are computed from Eq. (13),
and it is clear that the theoretical curves and the experimental points
correspond rather well, Fisher [1,4] has shown that the density ob-

tained from plots like this one agrees with the density obtained from

nicrowave interferometer measurements.
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A comparison of the experimentally measured values (points)
of the resonance cone angle with the theoretical values
(solid Tines) for a cold plasma. The errors shown are the
estimated measurement errors. All four sets of data were
taken with the 35 mm transmitting antenna and with r25 cm.
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We can use the density that is obtained by inserting the meas-
ured cone angle in the cold plasma cone formula as another check on
the consistency of our theoretical interpretation of the data. By
taking measurements at different times in the afterglow, different
plasma densities can be obtained. In an afterglow plasma, simple dif-
fusion theory predicts that the density should decay exponentially with
time [37]. We can check to see that the density we infer from the
measured cone angle has this behavior.

Two different plots of the inferred density vs time in the
afterglow are given in Fig. 18, using a semi-logarithmic scale. If
one considers only propagation of measurement errors, the error in the
points is about the size of the symbols used in the plot. The density
decays exponentially with time, as expected. The two sets of data have
different slopes because the data were taken with different background
pressures (which would change the diffusion coefficient), and with
different electrical connections to the grids (which would change the
loss processes). Gonfalone [38] has also reported similar density
measurements using the resonance cones,

Figures 17 and 18 indicate that, as long as one knows w and
Wee 5 8 measurement of the resonance cone angle is a useful way to
determine the plasma density. This is the method used in the rest of
the experiment to find the density.

One should, however, be aware of two sources of systematic error
that can affect this method of density determination. First, if the
density between the probes is not uniform, Fig. 9 shows that the

measured angle from the transmitting to the receiving probe will
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Fig. 18 Density versus time in the afterglow for two sets of data.
The density was obtained from the resonance cone angle using

the cold plasma formula.
transmitting antenna.

A1l data were taken with the 75 mm
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underestimate the maximum density. Second, as the theory for a warm,
uniform plasma shows, the actual cone angle depends on the separation
v between the transmitting and receiving probes. (This will be dealt
with more fully in the next section.) These systematic effects, and
any random measurement errors as well, can have serious consequences
if one is trying to find the density when wpe/wce > 1> w/wce . A
glance at Fig. 17 shows that the cold plasma cone angle is very insen-
sitive to the density in this parameter region. Consequently, any

error in the measured cone angle can have a large effect on the inferred

density in this region.

5.4 Dependence of Main Peak Location on Antenna Separation

In this section, we would Tike to make the first comparison
between the data and the warm plasma theory developed in Chapters II
and 111, That theory is an asymptotic theory, valid in the limit
where the probe separation is much larger than the scale lengths of
the warm plasma waves. The characteristic lengths of the plasma waves
are the Debye length Ade s and the Larmor radius Yoo = Vth/“ce . We
will be in the region of validity of the asymptotic theory if

. )

r/rge >> 1 and rihge >> 1. Since r>1.5cm and T v 300K,

and since wpe/ZW and wce/2ﬂ are usually around 300 MHz

Y% 290
"oe

%.% 400
de

We are definitely working in the asymptotic limit,
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From the work in Chapter III, we know that the main resonance
cone peak occurs at an angle e] = ec - A61 . In our work in the last
section, we implicitly neglected A8y s but here we would 1like to con-
sider its effect. From Eq. (57) or Eq. (59), we have A8y « K R
while 6C does not depend explicitly on r . If all other parameters
are held constant as r varies, the predicted dependence on antenna
separation would be easy to check.

In Fig. 19, we show a plot of the angular location of the
main peak and the first interference peak as a function of r"2/3.
(Recall that the first interference peak should be located at
By = 6, - 48, and that A8, « r'2/3.) The solid 1lines through the
data points are lines of best fit as determined by a linear least-
squares procedure. Since the data have errors in both the abscissa
and ordinate, the procedure used is not the standard one; the details
are given in Appendix E.

The linear fit is consistent with the data, thus confirming
the prediction. Additional confirmation comes from the fact that, as
predicted by theory, the intercepts of the two lines on the vertical
axis agree within the experimental error. The least squares fit
yields an intercept for the line through the main peak data of
30,49 = 0.40, while the intercept for the data for the first interfer-
ence peak is 30.6% + 0.7° . Further confirmation is given by the
fact that the sign and relative magnitudes of the slopes agree with
the theoretical predictions. Since w/wce = 0.497, Figs. 5 and 6 show

that A > 0 , and consequently the slopes should be negative, as they-

are. The ratio of the slopes should be given either by x2/x] » Or
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xé/xi from Table 1, or Y,/yy from Table 2. The experimental value
is 5.4 + 2.8, while x2/x1 =-4,10581, xé/xi = 2.23745 and yz/y1 =
2.93848. (Unfortunately, without an independent knowledge of the tem-
perature, we cannot check the absolute magnitude of the slopes.)

Notice that the data presented in Fig. 19 were taken under con-
ditions such that it is difficult to determine the density with any
accuracy. Mindlessly applying the cold plasma cone angle formula
yields wpe/Zw = 894 MHz and wpe/wce = 4,47, which is in the region
where the cold plasma cone angle is very nearly density independent.
The choice of this operating region was deliberate. It was found ex-
perimentally that the presence of the probes in the plasma affected
the plasma density, and that the density in the region between the
probes varied somewhat with the antenna separation. As Fig. 19 demon-
strates, the variation in e] due to Ae] is slight., If the data
had been taken with wpe/wce < 1 , the density variation caused by the
presence of the probes would have caused ec to vary so much that the
change 1in 0 due to A8, would have been undetectable.

A graphic illustration of what happens as the density drops is
given in Fig. 20. Here we show the main peak angular location vs

r_2/3

with time in the afterglow as a parameter. Early in the after-
glow, when the density is high and ec is nearly density independent,
the slope of the data is negative, in agreement with the theoretical
prediction. However, as the density falls, the slope gradually changes
from negative to positive. Since the antennas act as sinks for the

plasma, one would expect the density between the antennas to be smaller

when the separation is smaller. As can be seen from Eq. (13), or
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Fig. 20 Measured values of the resonance cone angle at various values

of r and taken at different times in the afterglow. Note the
change in slope as the time in the afterqlow increases. The
data were taken with the 35 mm transmitting antenna.
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graphically from Fig. 17, this would produce a larger cone angle, in
agreement with Fig. 20. The change in cold plasma cone angle with
density is not linear; in the lower branch, the smaller the overall
density is, the bigger the change in ec will be for a given fractional
change in density.

In order to see whether the magnitude of the change in density
necessary to produce the changes seen in Fig. 20 was reasonable, the
relative density changes were measured with a Langmuir pfobe. The tip
of the Langmuir probe was inserted into ‘the region between the antennas,
and, as shown in Fig. 21, the current was recorded as the antenna
separation was varied. Since the density is directly proportional to
the probe current, we see that the density changed by a factor of about
1.7. The change in density needed to account for the variation in cone
angle for the t = 4.0 msec data in Fig, 20 is about 1.6 . This figure
is arrived at by ascribing all variation in the measurement to changes
in the density. If we try to be a bit more sophisticated and recall
that the density changes will also have to overcome the changes due to
the r dependence of Ae] , we find the density must vary by a factor
of 1.7 . (The close agreement of this last figure with the Langmuir
probe results is fortuitous. The probe data are taken under somewhat
different plasma conditions and at a different time in the afterglow.)
Consequently, we see that density changes can account for the variations
in the data.

In summary, we see that if the density were to remain constant
as r varies, then Eq. (51) or Eq. (59) accounts rather well for the

changes in cone angle. The changes due to Ae] are small, which
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explains why the cold plasma cone angle formula worked so well in the
last section. The small hot plasma correction can easily be over-

shadowed by variations in the density that occur when the antenna

separation changes.

5.5 The Reflected Resonance Cones

In Figs. 14 and 15 we see the normal appearance of the resonance
cones and the associated interference structure. Being used to their
appearance, it was somewhat startling when data like those in Fig. 22
were obtained. The peaks that look 1ike interferences are much larger
than any of the interference peaks caused by the warm plasma waves, and
they have much different characteristics. As will be seen, they are
actually due to the reflections that were investigated in Section 3.3.

Consider the sequence of graphs shown in Fig. 23. Six sets of
data are shown, with the antenna separation as a parameter. Notice
that for small values of r , the main resonance cone peaks alone can
be seen, but as r dincreases, additional structure becomes apparent.
Notice also that the new structure appears first near the axis of the
plasma (i.e., near 6 = 0° or 180°) and then spreads to other angles
as r increases.

From other sets of data, we see that this structure is present,
even for r = 9.5 cm, only when the main resonance cone angle is large
(usually 70° or greater).

If the structure seen in Fig. 23 for r = 9.5 cm were caused by

a warm plasma wave, then that wave would also seriously affect the

v = 4,0 cm data, for it would be even stronger there. The fact that
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the structure only appears for r sufficiently large shows that the
signal which appears there must have arrived by a roundabout route.

The reflected resonance cone patterns sketched in Fig. 9 have
the properties exhibited by the data in Figs. 22 and 23. The signal
érrives by means of reflection off of the density gradient, and conse-
quently can be seen only for r sufficiently large. How large r
must be depends on the main cone angle at the center of the plasma; as
it gets larger, the reflection pattern will be seen for smaller r .
This is consistent with the experimental observation that the new
structure is seen only when the main cone angle is large. Further,
the shape of the patterns in Fig. 9 shows that, as r increases, the
reflections will be observed first when the antennas are near the axis
of the plasma. (In this context, please recall that the transmitting
and receiving probes are mounted on the same structure and both rotate
simultaneously.) Finally, the reflections should produce structure
that is visible only at angles closer to the axis than the main reson-
ance cone angle. The data in Fig. 22 exhibit this behavior for
frequencies in both the lower and upper branches.

In Section 3.3, we showed that if the antenna separation and
angular position are related by r cos 6 = L , then the received signal
would increase greatly. A bit more consideration of Fig. 9 will show
that this is the condition which will give the peaks in Fig. 23 nearest
to the main cone, if those peaks in the data are indeed due to reflec-
tions,

Figure 24 presents plots of cos 8 vs 1/r for the peaks in

the data nearest the main resonance cone. Data from both the upper and
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lower branches, including that shown in Fig. 23, are presented.
Clearly, as predicted by the reflection idea, a straight 1line through
the origin fits the data quite well.

We have verified that reflections of the resonance cones can
account for the data, but one question remains. Is the turning point
somewhere in the density gradient, or is the energy really reflecting
of f the glass vacuum vessel? Even if the latter were true, the natural
density gradient of the bounded plasma is affecting the path that the
energy takes. If the signal were almost unaffected in passing through
the density gradient and if it then were reflected by the glass, re-
flection patterns for frequencies in the upper and Tower branches
would look the same when the resonance cone angles were the same.
Figure 22 shows that this is not the case. In Section 3.3, we showed
that a Tower branch pattern has a smaller period L than one in the
upper branch when the resonance cone angles of both are the same. This
predicts that, for the same antenna separation, data taken in the lower
branch will exhibit more peaks due to reflections than data taken in
the upper branch. This is the behavior shown in Fig. 22.

It is Fig. 25 that really settles the question of possible
reflections from the glass. This is a plot of received signal vs
angular position with no plasma present., If reflections off the glass
were important, the received signal graph would have a sinusoidal
shape. In fact, the data arealmost constant, with only a small
sinusoidal component due to reflection. A reflection of this small an
amplitude is not enough to account for peaks of the height seen in

Figs. 22 and 23.
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Consequently, the model of the energy in the resonance cone
reflecting off of the density gradient definitely accounts for the

observed data.
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CHAPTER VI
ANGULAR INTERFERENCE SPACING

6.1 Introduction

The presence of the interference structure near the resonance
cone is the most striking difference between the simple cold plasma
theory and the warm plasma theory developed in Chapters II and III.
The aspect of the data that is most easily related to the nonzero
plasma temperature is the angular spacing between the various inter-
ference peaks and the main resonance cone peak. The theory predicts
that these should be governed by the A8, defined in Eq. (51) or Eq.
(59). In this chapter, we will present a series of parameter studies

designed to verify the theoretical predictions.

6.2 Dependence of Angular Spacing on Antenna Separation

According to the work in Chapter III, the A6  are propor-

tional to r_2/3

if all the other parameters are constant as r
varies. However, we saw in Section 5.2 that the plasma density varies
somewhat as the antenna separation changes. Fortunately, the resultant
change in the plasma frequency is only about 30% and, as shown in Fig.
6, there is a large range of parameter values where a 30% variation in
wpe will have a small effect on the theoretically predicted interfer-
ence spacing. Consequently, if we have wpe/wce > 1, a simple plot of
the observed angular interference spacing vs. r°2/3 can be used to
check the theoretically predicted radial dependence.

In Fig. 26, we present a graph showing the angular spacing be-

tween the main peak and each of the first five interference peaks
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plotted vs p2/3

The data were taken at two different frequencies
but under the same plasma conditions, with wpe/wce ~ 1 . Each point
plotted represents the mean of four measurements. The error is the
standard deviation of the mean, or the basic measurement error, which-
ever is greater. The solid lines through the data points are the
lines of best fit as determined by the least squares fit procedure
given in Appendix E. This 1ine is constrained to go through the
origin.

Since the lines of best fit in Fig. 26 match the data so well,

the assumed theoretical dependence of p2/3

is the correct one. The
data for the first three interference peaks give an especially good
test of the theory, since the error is smaller for these data. Whether
the slopes of the lines of best fit have the proper magnitude will be

dealt with in the next section.

6.3 Ratios of Interference Spacings

The interference spacings considered in the last section can

be expressed in terms of the A®, of Chapter III as

AO_ = AB

R I

The theory predicts that all the A8, should be proportional to each
other, i.e., that there should exist numbers Con = Aen/Aem which

“should be constant. We will examine the data to see whether this pro-
portionality holds and whether the proportionality constants have the

theoretically predicted values.
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The theoretical values of the o are easily obtained from
the numbers in Table 1 (for a point source) or in Table 2 (for a line
source) and they are given in Table 3 for m,n <5 . Since o
1/anm
Since we also have o = agn/azm for any & 4 there are only four

mn
independent elements in each part of Table 3. The different predic-

, only the upper, off-diagonal elements of the matrix are given.

tions cover the alternatives: a transmitting antenna that acts either
Tike a Tine source or a point source and a receiving antenna that is
sensitive either to the potential or the electric fields. (One is
missing, since the potential excited by a line source was analytically

intractable.)

TABLE 3
THEORETICAL RATIOS OF INTERFERENCE SPACINGS

Point Source

(Potential) (Electric Field)
1.6496 2.,2019 2.6983 3.1564 1.7472 2.3944 2.9808 3.5244
1.3348 1.6358 1.9134 1.3704 1.7060 2.0172
1.2254 1.4335 1.2449 1.4720
1.1698 1.1824
Line Source
(Electric Field)

1.6901 2.2810 2.8136 3.3060

1.3496 1.6647 1.9561

1.2335 1.4494

1.1750
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Since the data in Fig. 26 can be fit with a set of straight
1ines, this shows that the Aen with n <5 vremain proportional as
r varies. From the slopes of the Tines of best fit, experimental
values for the o can be found by taking ratios. These experimen-

tal values, along with their errors, are given in Table 4.

TABLE 4
EXPERIMENTAL RATIOS OF INTERFERENCE SPACINGS
(From Data in Fig. 26)
w/2m = 98.8 MHz

Ratios Errors in Ratios
1.656 2.183 2.770 3.135 .071 .082 114 122
1.318 1.672 1.893 .048 .059 .061
1.269 1.436 .043 .045
1.132 .034

w/2w = 124.7 MHz

Ratios Errors in Ratios
1.619 2.169 2.586 3.107 .067 .08 .101 .117
1.340 1.597 1.918 040 .047  .053
1.192 1.432 .031  .035
1.201 .028

The experimental values of the o

nn  adree reasonably well

with both the theoretical predictions for the potential of a point
source and the electric field of a line source. They do not agree
nearly as well with the predictions based on a point source transmit-

ter and a receiver sensitive to the electric field.
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As identified in Fig. 26, these data were taken, as most were,
with the short, 35 mm antenna. Some data were taken with the 75 mm
antenna, which should be a better approximation to a line source.
Since these data were taken with time in the afterglow as the variable,
we can also use them to check whether the LCH remain proportional as
the density varies,

An example of the raw data taken with the 75 mm antenna is Fig.
14; these data also form the basis for Fig. 18 and 29, At most, four
interferences are visible in them; hence, only three of the o are

mn
independent.,

In Fig. 27, we show plots of 0B, vs. 18 for m<n<4 and
m=1,2,3 . The solid lines in the figure are the lines of best fit,
which are constrained to go through the origin as theory demands.
(Please note that the origin of the plot has been shifted for the m=2
data). Clearly, the various A@n are proportional. The experimentally
determined %om * which are the proportionality constants, are given in
Table 5.

The sets of data that went into Fig. 27 were taken with r and
w/w constant; the change in the 20, is caused by the variation in

ce

the plasma frequency, 0.56 5~wpe/wce < 1.12 . As theory predicts, the

A@n vary proportionally as the density varies. Furthermore, the %

calculated for a line source fit the data best.

Finally, to verify that the Aen remain proportional as
w/wCe varies, we make the plot in Fig. 28 of AOy vs. 40, . Since
these two are proportional as r and wpe/wce vary, no attempt was
made to restrict the data to sets with constant values of these
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For clarity, the set of data with m = 2 has been disB]aced
4° to the right, and all error bars have been suppressed
Errors ranged from 0.4° to 1.1°, All data were taken with
the 75 mm transmitting antenna.
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TABLE 5
EXPERIMENTAL RATIOS OF INTERFERENCE SPACINGS
(From Data in Fig. 27)

Ratios Errors in Ratios
1.689 2.263 2.815 .025 .035 .051
1.343 1.667 .019 027

1.240 .021

parameters, The frequency varies in the range 0.32 5_m/wce_g 1.24
in this plot, and most of the points in the third quadrant come from
upper branch measurements.

Figure 28 confirms that Ae1 and Aez are proportional. The
sTope of the line of best fit that passes through the origin gives a
value Gqyp = 1.692 £0.013, which compares quite well with the line
source prediction. Indeed, it is somewhat startling that the agree-
ment is so good, for all these data were obtained with the 35 mm
antenna,

In summary, we have verified that the A@n are proportional
to each other when r wpe/mCe , and w/wce are varied, as predicted
by theory, and that the proportionality constants agree with the

theoretical predictions.

6.4 Interference Spacings as a Function of wpelgce and w/mce_

Since the interference spacings are proportional, they all
have the same dependence on the physical parameters. It will thus
only be necessary to investigate that dependence for AO] s which is

the easiest of these quantities to measure in the data. As Sections
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have been suppressed.



-111=

3.1 and 3.2 show, the dependence of AG] on wpe/wce and w/mce
is embodied in the function A .

The data used to investigate the dependence on wpe/wce were
originally taken in an attempt to see how the plasma temperature de-
cayed with time in the afterglow. By assuming the theory to be correct,
one can invert Eq. (51) or Eq. (59) and find the temperature. However,
the derived temperature always came out near 300%K. (The raw data in
Fig. 14 and the data used to form Figs. 18 and 27 are all part of this
data.) If we assume that the temperature is constant, we can attempt
to verify the dependence of Ae] on wpe/wce’

In Fig. 29, Ae] is shown as a function of w_ /w The

pe’ “ce °
solid line through the data is the theoretical function, with the tem-
perature adjusted to give the best fit., Recall that the temperature
enters only as a multiplicative scale factor. The shape of the curve
(see Fig. 6) is independent of Tg .

As we saw in the last section, the constants from the line
source work are appropriate for the long antenna. Using this, the
temperature that gives the best fit is 330 +31°K, It is quite believ-
able that a temperature this close to room temperature can persist for
the interval of 4 msec in the afterglow during which the data were
taken,

Several different methods were tried in an attempt to obtain
an independent measure of the temperature. All failed. ‘They involved
determining the temperature from the dispersion curves for various

types of electrostatic warm plasma waves whose behavior has been

studied previously. The waves included Bernstein, or cyclotron
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branch. The -75 mm transmitting antenna was used for these
data.
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harmonic waves, which propagate perpendicular to the magnetic field,
and Landau waves and ion acoustic waves, which propagate parallel to
the field. A1l proved to be undetectable. The failure is, at least,
consistent with the low temperature inferred from the interference
spacing. If Te = 300%, the wavelength of the Bernstein and Landau
waves when w/2m, wpe/2ﬂ, wce/Zw ~ 300MHz would be so short (< 1 mm)
that detection would be difficult, while ion acoustic waves should be
very strongly damped in a plasma with equal electron and ion tempera-
tures. Even in the absence of an independent determination, the fact
that a temperature which is constant in time is also found to be quite
near room temperature tends to confirm the accuracy of the measurement.

Other sets of data were taken to see how ch varied with
w/wce . Figure 5 shows how the theoretical predictions behave for this
case. One interesting prediction is that, even in the lower branch,
the interference structure can appear outside the resonance cone
(A®, A< 0) for certain values of w/w, if wpe/wce is large enough.
The plot in Fig. 30 demonstrates that this is indeed the case.

The data presented in Fig. 30 were taken with fixed antenna
separation and fixed plasma frequency. A nonlinear least squares fit
[39] was used to obtain the temperature and wpe/wce . The best fit
values were Te = 800 +100°K and wpe/wce N 1015. The absurdly large
value of the plasma frequency occurs because the density is sufficiently
high that the interference spacing is quite insensitive to its value.
The resonance cone angle itself yields wpe/wce v 2 , which is in the
region where the cone angle, too, is very insensitive to w__ . All

pe
that can be said with certainty is that wpe/wce >2 .
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The temperature is found by using the constant computed for a
line source., If the point source results were used, the computation
for the potential would result in a temperature smaller by a factor of
1.2696, while that for the electric field would give one larger by
1.3867. These different factors, of course, do not affect the fit to

the data, since the theoretical function just contains the product of

, TeV3 and an appropriate numerical factor.
The upper branch is much more challenging experimentally,
since AG? changes much more rapidly with w/wCe and wpe/wCe . As

shown in Fig. 31, reasonably good data were obtained here also. The
three sets of data shown were taken at several frequencies and radii,
but the plasma conditions were kept constant. The theoretical lines
fitted to the data yield the parameter values given in Table 6. The
temperature was again computed using the constant appropriate for a
line source. The internal agreement of the best fit parameters pro-

vides a check of the self-consistency of our theoretical interpretation

of the data.
TABLE 6
BEST FIT PARAMETERS FROM Fig. 31
Sepgggi?gﬁ (cm) wpe/wce Te(OK)
5.0 0.931 = .053 868 * 82
6.5 0.948 = ,067 771 £ 91
8.0 0.962 + .095 796 + 138

Another check of internal consistency can be made by compar-

ing the values of wpe/wce in Table 6 with that derived from the main
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The 35 mm transmitting antenna was used for these data.
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resonance cone angle, using the cold plasma cone angle formula. Since
w 1is in the upper branch, the cone angle should give a good measure

of wpe/wce’ A Teast squares fit to the data giving the cone angle as

a function of frequency yields Jw_ = 0,989 + ,008. These two

wpe ce
methods of measuring the plasma frequency are independent; their agree-

ment confirms that the theoretical development is correct.
In conclusion, in this chapter we have verified that the inter-

ference spacing depends on the antenna separation as r"2/3 as

predicted by theory; that all the spacings remain proportional as r

bl
wpe/wce,and w/wCe vary, with proportionality constants that agree with
theoretical predictions; and that the spacing changes with m/wCe

and w in a manner consistent with the theory.

pe/wce
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CHAPTER VII

CONCLUSION

7.1 Summary and Evaluation

In this thesis, we have presented a detailed theoretical and
experimental investigation of the resonance cone pattern excited by a
small antenna in a warm, magnetized plasma.

The warm plasma theory, valid for arbitrary o < WUH
has been developed for a uniform plasma in the limit that r/xde >> 1
and r/rZe >> 1 ., This led to predictions about the functional depend-
ence of the angular position of the main resonance cone peak and the
angular interference spacing on the physical parameters r, w, wpe, wce
and Te . The theory for plasmas of nonuniform density was also
developed, but in the cold plasma limit, leading to predictions that
the resonance cones could reflect off of density gradients.

Tlr ; A " ‘a2 \ we [

1e experimental work verified t h

he theoretical picture. The main
resonance cone angle was shown to depend on w , wpe’ Yoo and r in

a manner consistent with the theory, as did the angular interference
spacing. In addition, the idea of resonance cones reflecting from
density gradients was able to explain features of the data that were
otherwise incomprehensible.

From the data, values of plasma frequency could be derived in
more than one way, and the results were consistent. The temperature
obtained from the data was appropriate for the afterglow plasma em-
ployed in the experiment. Since both wpe and Te can be obtained
from one experimental trace, resonance cone measurements are an
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important diagnostic technique for any plasma in which one dares to

put antennas.

7.2 Suggestions for Further Work

The theory developed in this work is incomplete in two respects.
First, it proved to be extremely difficult to evaluate the electro-
static potential excited by a line source, so we could not check
whether the receiving probe was sensitive to the potential or the
electric field. Perhaps a calculation for an antenna of finite length
could remedy this. Second, the effects of the sheath around the
antenna were neglected. If theoretical calculations could be done
including it, they cdu]d probably be checked by comparing their pre-
dictions of the relative height of the main peaks and the interference
peaks to the actual measurements.

The work done here on the propagation of the resonance cones in

a plasma with nonuniform density was somewh
energy travels in a nonuniform plasma is a vast subject, but one of
particular interest for fusion applications. Further investigations
in this area would be most useful.

The present investigation was confined to frequencies suffici-
ently high that the motion of the ions in the plasma could be
neglected. Some theoretical work [40] has been done for frequencies
where ion motion is important, but a more complete study would be
useful. I made an attempt to see the cones that exist at these Tow
frequencies, but it was inconclusive. Since these cones are sensi-

tive to ion temperature, if they could be seen they would provide
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another useful diagnostic technique.

Finally, especially for ionospheric applications, a warm plasma
theory should be developed for antennas in a flowing plasma separated
by only a few wavelengths of the warm plasma waves. This would enhance
the usefulness of resonance cone measurements made in the ionosphere

by spacecraft.
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APPENDIX A
DETAILS OF THE GREEN'S FUNCTION SOLUTION

In this appendix we will carry out the solution to Egs. (5)-(7),
which describe the Green's function. In order to keep our notation:
consistent with those who obtain the electrostatic approximation as
the ¢ » « Timit of the electromagnetic solution, we will take a
roundabout route, and use the continuity equation to modify Eq. (6).

Conservation of charge demands

ap
— e J =
5t FLoL=0

where pp is the charge density and J 1is the current density. Since

the charge density in the plasma is p

b = -n]e , and since n varies

as e "W Eq. (6) becomes

J
7 U T T g=£ Y
Vi + 3 ] = - 8%
- TWE €

w (o] 0

e-iwt (A1)

T, \MRe V)

g

s [
= A

I

To close the system, we replace Eq. (7) with

e ¥ cyomen’

Jd=-e f dv v f(”(xav,t) (A.2)

Equation (5) remains unchanged, but we will drop the superscript on
f(1)(53x,t) from now on for ease of notation. Also, we will replace
(o)
f by o -
It is easiest to solve Eq. (5) for f(x,v,t) in terms of ¢ by

using the method of characteristics. Since
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v X = -
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where A 1is the azimuthal angle in velocity space, the equations for

the characteristics are

dX
‘a'"l = A
T vp cos
dY .
=, = V_sin A
dt 0
dZ _
T T V2
dr _
dat' = Yce

where vp =JVyx + vy and v, are constants of the motion, and where

t' s a coordinate along the characteristic. If the characteristic is
to pass through the phase space location (x,y,z,vx,vy,vz) when
t = t', then the phase space coordinates of the characteristics (X, Y,

Zy Vys Vy, VZ) are given by

v

N(t-t') = v

X

1}

]
=
—
c—*
]
pas
~—
°
<
+
x

where V and v are velocity vectors, X and x are position vec-

tors, and

in 0
(033 wcer S wcer

N(t) = [-sin w et €OS W, T 0 ‘ (A.3)

0 0 |
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sin WeaT 1~-cos WeaT 0
= ....1... - i
M(t) iy 1+ cos Voo T sin w T 0 (A.4)
0 0 WegT

. . -iwt R .
Since f(x,v,t) varies as e t, in characteristic coordinates

Eq. (5) becomes

df  ruriv)f o - £20 . 2o
i i(wHiv)f = - = v

3% (A.5)

where all variables are evaluated on the characteristic. Using the

fact that e WiVt o ishes as t > —o , the solution to Eq. (A.5)
is
¢
Flx,vot) = - = [ 39 —-Q-exp[ i(wtiv)(t'-t)]
oL m X av.
If we Tet T = t-t’',
F(x,vat) = %f ar 3¢ - T exp[-1 (wHiv)T] (A.6)
5 v

The vertical bar has been inserted in the integrand to remind us that
all functions are evaluated on the characteristic.

By Fourier transforming in space, Eqs. (A.1), (A.2) and (A.6)
can be solved for the potential. We will denote the Fourier transform

of a function h(x) by

() - [ axnio) e

Using this,
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| of

dt exp[i(wtiv)t] 579

—'1
———
{=
w0
<
“w
ot
-
il

- &
m

o 8

e 8fo
= i r-nuq,( ,t) j dr k === exp[i(wtiv)T-ik - M- v] (A.7)
5 v

Combining this with the transforms of Eq. (A.1) and (A.2) yields

keKok olk,t) = etk
0

where K is the k-space dielectric tensor

.2 2 of

-7 _ _le 0
K=1 mue Idly_!dT oV
0 0

exp[i(w+iv)T = ik M- v] (A.8)

oo

The dispersion function for the problem is D(k) = k-K-k .
The expression for D(k) can be greatly simplified if we define the

normalized velocity space Fourier transform of fo(x)

FE) = o= [ dv e 8L r ()
o

Using this, we find

o0

() = & + L wivze) [ar ke kTR ()
0

Consequently,

-9 omiwt 1
ok, t) e e h1(3) (A.10)
If we now specialize to an isotropic Maxwellian, then

n

2
= 0 -
fo(!_) W exp( ‘\72")
th th
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where V%h = ZKTe/m . This produces

F(B) = exp(- 1 8°v5,)

Using this, and the identity

I=

%{(_M_’K.)2=2.'i' -k

we can write D(k) = D(k .k, ) as

D(ky ok ) = K + K+ K5 (1+iv/w) (14 (wtiv) [ dt exp{i(wiv)T
0

(A1)

K2 2
L th .21 1.2 . 2.2
- wz sin —fzwcet -7 k“ Vtht b
ce

2 _ 2 2 -
where KL = kX + ky and k" = kZ
Equations (A.10) and (A.11) complete the solution for the

Fourier transform of the potential. The inverse transform is dealt

with in the main text.
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APPENDIX B
NUMERICAL RESONANCE CONE CALCULATIONS

A variety of numerical procedures are referred to in the text.
Some are standard, and some were developed specifically for this work.
Those that deal with theoretical predictions of resonance cone struc-
ture and location are the subject of this section. Others may be found
in Appendix E. The procedures presented here are the numerical evalua-
tion of the integral in Eq. (16) and evaluation of the various Airy
functions needed in Chapter III.

To perform the integration in Eq. (16), we need both an integra-
tion procedure and a method of evaluating the special functions in the
integrand. The evaluation of Ko(z) for complex z has been published
elsewhere [16], so only the calculation for Z'(z) needs to be dis-

cussed here.

ka\ s
tnc P

error function [41] by
2

2(z) = i/mw(z) = i/ie % erfc(-iz)
Gautschi [42,43] has written an algorithm to calculate w(z) . Since
Z'(z) = -2(1 + zZ(z)), in principle one could use his algorithm to find
Z'(z). Unfortunately, this approach loses accuracy due to round off
error when |z| > 4 . One must either carry more significant digits in
the calculation, which leads to a slow routine, or write another pro-
cedure.

The complex error function and w(z) are special cases of the
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confluent hypergeometric function. Using this fact, a number of
authors [44,45,46] have developed continued fraction representations
for them. Although somewhat of a mathematical curiosity, continued
fractions [47] can be the basis for extremely rapid numerical methods

of function evaluation. Adapting these fractions to the present case,

we have
2 2°3 4.5
7'(z) = ces
27% -3 = 22° -7 - 22° -1
. _E%ﬁgﬂill__ Imz >0 (B.1)
- 22" - (4n+3)
and

2

7'(z) = -2i/7 ze~% -‘22 1 8/3 16/525

2%k 2+ 2720 65 + 27%- 239
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£ 772 L 6/[(an+1)(4n-3)]

The continued fraction in Eq. (B.1) is an adaptation of the
Laplace continued fraction. Even though it is not convergent when z
is real, Gautschi [43] has shown that it is an asymptotic approxima-
tion to Re Z'(z) when z is large enough (e.g., z % 5). (For
z real, Im Z(z) = -2i/7 z exp(—zz), of course.) Due to its rapid con-
vergence for large |z| , Eq. (B.1) is useful there, while Eq. (B.2)
is good for small z .

Equations (B.1) and (B.2) were used tb develop the Fortran

subroutine presented in Fig. 32. Some preliminary computer runs were



-128-
CCHPLEX FUNCTION ZPRIME(Z)

THES FUNCTION SUBPRUGRAM EVALUATES THE DERIVATIve OF THE
PLASHA DISPERSION FUNCTION FUR COMPLEX VALUES UF THE ARGUMENT.
THE COMPUTATION IS PERFURMED BY USING THWO COnTINUED

FRACTIUNS, ONE FOR SMALL ARGUMENT AND THE UTHER FUR LARGE.

THE FRACTION USED FOR SMALL ARGUMENT wWwAS UEVELOPED FROM THE
PCWER SERIES EXPANSIUN OF THE FUNCTICN BY USING THE @D
ALGCRITHM. ITS COEFFICIENTS ARE STORED In THE AKRAYS A AND B.
THE FRACTION FOR LARGE ARGUMENT I> THE TRAULITIUNAL LAPLACE
CCNTINUED FRACTIONe THE NUMBER UF CONVERGENTS UF EACH
FRACTION THAT IS5 USED IS CHOSEN 8Y EMPIRICAL FURMULAS THAT
WERE DEVELUPED DURING SUME INITIAL TRIAL RUNDs ThHE AGSOLUTE VALUE
OF THE RELATIVE ERROR IN THE RESULT IS5 LtdS THAN 6.0E~6

OOOOOOAOONODO0

INTECER I,M
CORFLEX 1, ZPRINME
REAL XsVeX2eV2oREIMRZI2:122,LsT,A(201+8(20)4R
CATA A/=1.772454D 00y 2.1983890~0ls~1.9297800-uUle~1+94555060~4l,
£-1.825269D-01s~1.7035090~0U1+~1:5967960-0Le~L.5053940~Ul,
E~1.4248360-01s~1.4168620-U1s T.8798Ll60-0U3y 3.5863540~uly
£E-1.4315930-01y 4«5679100~01lo~2:.0357710~Cly 5.2354vBU-uUl,
8~3,60C042D-0ky 365209490-01:-2.53198LD~01¢~8sl8obbpU~02/
CATA B/1.14159D £0:7.4095410-025
£ 4.5087870~02y 3.110706L-Uds £.3629250-02¢ L.901%wol-02,
£ 1.55C4480~-02y L.3065660~02y 4.1834150~02s L.%055890-04,
E-4,E8240880-02, 5.5404400-02,y=1.7284040~Cdy L.itdlu890~01,
£~8,0650290-03; 1.9215830=04,-5.80462030~03¢ L.2443750-ul,
£E-1.542373D-02, 1.7422640-01/
X=REAL(Z)
Y=A[MAG( L}
R=CAES{L)
TF{YoCEol4oTO-X)%(0,112%%+0,369)) GU TO 50
IF(R.ME-DL.0) GO TO 10 “
IPRIFME={-2.040.0)
RETLEN
10 C=1.C/{R¥R}
x2=-Y#D
Y2=z-X%D
Fx3.(5%R¢4, 79
RE=Xzc+A(M}
Iv=v2
30 P=wp-1
C=R(M)/(RE®RE+IMS M)
RE=XZeA{M)+DERE
IM=Y¥2-0%iM
IF{P.CT4ld GU TG 30
==2,C/{RE*RE¢IM&IM)
T=C#(RE*X2¢IM#&Y2)
Io=0* (REXY2-1M®X2)
RE=T
ZPRIME=CMPLX(REy IM)
RETULEN
50 RIZ2=(Xx-Y)}*x{XeY)
122=2 0% X*Y
X2=2.0%R22-3.0
Y2=2.C%112
[=18.45/R¥2,.12
Pz42]
I=2%142
RE=X2-M
I¥=y2Z
7C M=p-4
1=1-2
C=T#*({[¢L)/{RE*RE ¢ {M*]IM)
RE=X2-M~D*RE
Ip=y2¢D=IM
[F{M.CT.0) GO TU 70
£=2.C/{REXRECINB M)
RE=RE=®D
Iv==CoM
IFIY.EQoOo0 ANDABS(RLZI LT ohoUQ) [M=-3.56490TTUsKEEXPI~RLL)
IPRIME=CMPLXIRE ¢ I M)
RETURA
ENC

Fig. 32 Algorithm to calculate the derivative of the plasma
dispersion function Z'(z) for z with O< arg z < n/2.
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used to decide how many convergents of each fraction to use and in
what region of the complex plane each fraction should be used. As
presently written, the subroutine is valid only for z in the first
quadrant of the complex plane. The accuracy of the procedure was
checked against the tabulated values of Z(z) [15] and against the
value obtained from a double precision evaluation of Gautschi's
algorithm [42]. A1l numerical work was performed on an IBM 370-158.

Once the special functions in the integrand were known, Eq.
(16) was evaluated using Filon's quadrature method [48,49].

We now turn to the evaluation of the Airy functions needed for
the work in Chapter III: Ai(x), Bi(x), Gi(x) and their derivatives.
Gordon [50] has developed an algorithm for Ai(x), Bi(x), Ai'(x) and
Bi'(x) wvalid for all real x . The remaining functions, Gi(x) and
Gi'(x), are computed in two different ways, one for positive x and
the other for negative.

For x < 0 , we employ the auxiliary function Hi(x) [29],

which satisfies

Gi(x) + Hi(x) = Bi(x) (B.3)

and which is defined by
Hi(x) = l-j dt exp(- l—t
T 3
0

3, xt) (B.4)
The integrand in Eq. (B.3) is a positive function of t , and is thus
ideally suited for numerical integration using Simpson's rule [51].

Once Hi(x) s known and Bi(x) is obtained from Gordon's algorithm,

Gi(x) is easy to find using Eq. (B.3). By using the derivatives of
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Egs. (B.3) and (B.4), Gi'(x) can be found in an analogous manner.
Unfortunately as x - +~ , Bi(x) and Hi(x) both grow without
bound. Consequently, round off error precludes use of Eqs. (B.3) and

(B.4) to find Gi(x) for x > 0 . Instead, we start with the identity
[31]

lo]

Ai(x) + iGi(x) = %-f dt exp[%—t3 + ixt]
0

and then, for x > 0 , deform the path of integration in the complex

t plane to yield the representation

6i(x) = H dt exp[F(x,t)] (B.5)
0
where
«xt+%—t3 t < x1/?
f(X,t) =
9v+=__8_+3 +>v]/2
‘ [ Sy . " 3 ¥ | A )

The path of integration is now the path of steepest descent, and
exp[f(x,t)] 1is a positive monotonically decreasing function of t .
Again, the integrand is easily evaluated using Simpson's rule.
Evaluation of the derivative of Eq. (B.5) would yield Gi'(x), but
it was never needed for x > 0 .

The derivatives of the Airy functions, in addition to the
functions themselves, were required so that the maxima of the functions
used in Chapter III could be found from the zeros of the derivatives

of those functions.
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APPENDIX C
MODIFICATIONS TO THE ASYMPTOTIC EXPANSION

In Chapter II we found that the form of the asymptotic expan-

sion would change if either Rn(knj) 0 or Pn( nJ) =0 for n>0.

Since the contribution to that expansion is strongly damped if Im knj
is appreciable, these changes will be important only if Im knj is

very small when Rn(knj) = 0 or when Pn(knJ) 0 . It is the goal

of this appendix to show that there do exist points where the expansion
contained in Eq. (23) or Eq. (40) must be modified if one wishes to have
a complete, uniform asymptotic expansion.

A word should be said about why the heavily damped terms in
Eq. (23) do not contribute, when it appears that the denominators of
some of them vanish. In actuality, the denominators of several terms

vanish simultaneously, and an accurate asymptotic expansion shows that

the final result still remains finit T

(=}
(%)
m

initce.

once, consider the dispersion relation and the stationary phase condi-

tion, which can be written

D(k ,k“ Y =0 (C.1)
aD 3D
- cot 6 =0 (c.2)
3, 3k

The theory of implicit functions [52] shows that there is a unique

solution to these two equations whenever

cot’e - 2 cot © + 40 c.3
Z ok; 3ky akﬁ
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By differentiating the dispersion relation, Eq. (C.1), and
using the stationary point condition, Eq. (C.2), one can easily show

that the denominators in Eq. (23) can be written

2 , L2 /2 172 ;2 3%p
Rn(knj)[cos 6 + EZ%(knj)s1n 8] = [?'Rn(knj)] {cos“s ggi
2 201/2
- 2 sin ecose«gﬁégg—-+ sin%o 9—%} (C.4)
Lo Bku k“ = knj
KL = 1Pn(knj)

Since P;(knj) =0 dimplies cosze + Q@'(knj)sinze =0 and
since Rn(knj) = 0 implies 9D/3k = 0 , we see that if the denomin-
ators in Eq. (23) vanish at a point in (%L,k" ) space, the solution
to Eqs. (C.1) and (C.2) is not unique in the neighborhood of that
point. This indicates that at least two otherwise distinct solutions
meet at this point, and that the asymptotic expansion has a place
where stationary points coalesce. - Near any such points, the method
of Chester, Friedman and Ursell [28] can be used to do the asymp-
totic expansion. The result will be finite, and of O(r'5/6) at
most [19]. However, any damping will make these terms of much higher
order, so we only need to consider 1lightly damped solutions to Egs.
(C.1) and (C.2).

First, we will consider whether it is possible to have

R (k

0 nj) =0 ., We will be able to prove that Rn(knj) # 0 for all

important cases simply by showing that Rn(kﬂ ) # 0, without having

to consider that knj satisfies Eq. (24).
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For Re k% > 0 , the dispersion function D(KL,k“ ) defined
in Eq. (9) is an entire function of the complex variable ki. of order
one. According to Hadamard's factorization theorem [53], it can thus

be expressed as
D(ky oKy ) = exp(Q(kE,ky ) PE) (c.5)

where Q 1is a polynomial in Ki, of degree one or less, and & is
the canonical product of the zeros of D(KL,k“ ), defined in the follow-
ing manner. Let E(u,0) = 1-u and E(u,M) = (1-u) exp(u + u2/2 + soe
uM/M) where M 1is an integer. We then have

2

k
PUE) = T E(- 5
=0 Pm(kll)

M) (€.6)

where M <1 . This decomposition of D(KL,k" ) is valid as long as
P%(k“ ) # 0 for all m, i.e., as long as there are no solutions to
D(Elfku ) = 0 that also have k;=0.

Using Egs. (C.5) and (C.6), we can write

R (k) = —2D
LN R Y
R AT
2
o P (kyy )
_Q n il
=% 1 E(-irw——— oM) (c.7)
m=0 Pm(k“)
m#n

o e 20y o2
Thus, Rn(kgg) =0 if and only if Pn(k!i) = Pm(kl!) for some m .

However, we can also write
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2
. p! (k ) oo P (kyy )
SQE"‘ ) ) = -2 P W 1o g " M) (c.8)
i Ki_= —Pn(ku ) n' U m=0 Pm(ku )

m#n

This shows that any solutions to the dispersion relation that yield
R, =0 when Pn(k“ )# 0 also must have 3D/aky | =

This particular conclusion may seem esoteric, but it has an
important physical consequence. If Rn(kil) = 0, then the component
of the group velocity perpendicular to the magnetic field is zero. We
have shown that the component parallel to the magnetic field is also
zero as long as Pn(kié) # 0. Since a ky that gives Pn(ku ) =0
is a root of the Landau dispersion relation, Eq. (20), we have shown
that, except for the Landau modes, the group velocity vanishes if its
perpendicular component is zero.

We will now show that in the frequency range of interest,
W< Wy s the assumption Rn = 0 leads to a contradiction for all
Tightly damped modes.

From Eﬁe (9), R, and aD/akgg can be explicitly evaluated.

. 2 VAL
21 wpe(w+1v)

R (ky) =1 - : J dt sin® %-mcet e (t) (C.9)
w w
ce 0
2, 2w

3D . Tup o (wHiv) 1 2.2 h(t)
G| - sy 2l ‘“‘f;“"r—"fdt?%et el

. nt il Yee 0 (C.10)

2 2 .2

o . 2 2 , 2 .21 1
where h(t) = i(wtiv)t + (Pn(k“ )vth/wce)s1n 7 Weet- kN Vipt

If Rn(kﬁl) = 0, we have seen that aD/aklll =0 as well, If

the latter is zero because the factor in brackets in Eq. (C.10)
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vanishes, then it is necessary that

f dt(-ZI 2 t2 - sin® lwietz) ) - g (c.11)
0

2
k=

true. If it were true, then we would have

However, there is no k!ﬁ with Re 0 such that Eq. (C.11) is

oo

J dt(4 wge 2 . s1‘n2 %wwcet) cos[Im h(t)] exp[Re h(t)] =0
0

(C.12)
[ delhulyt? - sin® Foc ) sinlin h(t)] explRe h(£)] = 0

0

Except for the trigonometric functions, the integrands in Eq. (C.12)
are positive definite. Consequently, if either integral is to vanish,
it must do so by cancellation due to the trigonometric function.
However, sin and cos are 90°% out of phase, and it is thus impos-
sible to have both integrals vanish simultaneously. (This proof
requires Re k% > 0 ; however, waves with k||'s that violate this
are too strongly damped to be important.

If we are to have aD/akIll = 0, Eq. (C.10) requires that
k!i= 0 . With this assumption, the dispersion relation becomes iden-
tical to that for Bernstein waves, Eq. (21). For w < Wy 0 there
are no solutions to this dispersion relation with aD/agl_= 0 [24].
Hence we have Rn # 0, and we have reached a contradiction. Conse-
quently, the original assumption is invalid, and Rn(kll) # 0 for all
kyy for which Pn(k!!) #0 .
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If Pn(kll) =0 for n> 0, then k“ is one of the higher
order Landau roots [54]. A1l of these are strongly damped. Accord-
ingly, all terms which could contribute significantly to the asymptotic
expansion have Rn(k!i) #0 .

We now must turn to the question of whether we can satisfy
P;(knj) =0 . We will show that the answer is affirmative. The
easiest place to see this is when cot 6 = 0 , which yields propaga-
tion of energy perpendicular to the magnetic field.

Since cot 6 = 0, Eq. (C.2) can be satisfied by requiring
kyy= 0 , which means that Eq. (C.1) reduces to the Bernstein wave
dispersion relation, Eq. (21). Since solutions to this for w < Wy
and w #m ée have Rn # 0 and Pn #0 for n>1, if we are to
violate the uniqueness condition, Eq. (C.3), by having P;(O) = 0, we

must have

=0 (C.13)

To find a point where E = 0 requires that one take the col-
lisionless 1imit, v = 0 . As defined in Eq. (9), it is difficult to
evaluate derivatives of the dispersion function D(kj,ky ) with
respect to kEB when klE= 0 . We will consequently employ the series
representation, obtained from Eq. (9) by using the following identities

+o0 .
o/2)1 = e? ] 1 (z) ™

n=-o

expl-z sinz(

and



-137-

2 12 2
7 (z) = 2i e f dt et

where In are the modified Bessel functions, and Z is the plasma

dispersion function. Using this, Eq. (9) can be restated as

2 2 2 { w -2 z ) (w+nw }
D(ky, sk ) = ki + ki + k 1+ e I (n) Z )
N 1] b i de k" Vth == El th
(C.14)
_ .2 2 2
where A= k_l_vth/Zwce

From Eq. (C.14), we obtain the usual series expression for

the Bernstein wave dispersion function

-\ +oo I (}\)

el (C.15
et BP0 ’

2
D(k),0) = K{ + kG, {1 - we

The expression for E 1is also easily developed

+o0 I (2)

s=2fl - e ] —1] (C.16)
P n==c0 (w+nmce)

The values of A to be used in Eq. (C.16) are the ones that make
D(KL,O) = 0 true. There are real X that satisfy this dispersion

relation., Hence, except for poles at w = Mg »

function of the parameters w , wpe s and Wea

We will now show that it is possible for Z to change sign

= 1is a continuous

for some mw_, < w _5_(m+1)wCe . First, consider the case w - Wy -

For this we have X - 0 ; hence
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2
w
5 > ]—~%¢—>0 (C.17)
“UH
Second, consider w -~ mwce+ . As is well known [24], Kl. and
A become infinite as w - mwce+ . Accordingly, an approximate solution

to D(k;,0) = 0 can be obtained by using the asymptotic form

e In(x) ~ (2mn) 172 A >

in Eq. (C.15), and keeping only the largest terms. The result is

3V 1,3 w
k..L = ?' kde a;—e' COt(ﬂw/wce) (C.]B)

In obtaining this result, we have used the identity [55]

1 . 2% . 1
cot X = — + = -
™ T 21 x%-

Substituting Eq. (C.18) in Eq. (C.16), we find

2 {1 - W [w cot ﬂw/wce 2/3
. w
w__sin ﬂw/wce pe

It is clear that % » ~» 3as w - mwce+ .

Since E is continuous for mw., 2w < (m+1)

< Wea for all m,

then we must have = = 0 somewhere in the range che <w < Wy e
where M 1is such that Wy < (M+1)wCe . Consequently, it is possible
to have Pg(knj) = 0 . If one wishes to obtain a complete, unifokm
asymptotic expansion, some of the terms in the sums in Eqs. (23) and
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(40) must be modified in parameter ranges where P;(knj) =0.

Kuehl [8] has presented graphs of numerical solutions of the
full dispersion relation D(glfk“ ) = 0 that change their curvature
from positive to negative as kj varies. Since P;(k") is related
to the curvature, his numerical calculation confirms what we have ob-
tained here by analytic methods. He finds such behavior only for w
near wyy and it appears to be connected with the multi-wave inter-
ference patterns that he presents in this frequency range. No experi-
mental evidence of such patterns was seen, perhaps because they depend

so strongly on w for w near OUH that density fluctuations could

e
broaden them unti? they are unrecognizable.

In conclusion, we have seen that there are parameter values
for w > w.e for which P;(knj) = 0 . This would require modification
of the asymptotic expansion if we needed the n > 1 terms in Eq. (18).
A11 of the experimentally observed features seem to be connected with
the n =0 term; we will leave the complete asymptotic expansion for

Tater work,
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APPENDIX D
ASYMPTOTIC EXPANSION WITH sin 6 =20

In Chapter II, the asymptotic expansion of the electrostatic
Green's function was obtained under the assumption that sin 6 # 0 .
As was noted there, the expansion was still finite when sin 8 = 0
and we will now demonstrate that the sin & - 0 Timit of that expan-
sion is indeed correct.

Returning to Eq. (8), for sin & = 0 , the electrostatic

Green's function can be written as

o-iut 7 b ez
$(0,2z,t) = 1—;—-—[ dk, k f dyy BT
4o € 0 + 1'_w WD Klf ||)
. -jwt w exp[ik_(k,)z]
R e T (0.1)
4t EO n=0 0 '—é-k—'
W kyy =k, (ky)

The last step in Eq. (D.1) follows from the first by use of the residue
theorem. Here ky = kn(EL) is a solution of the dispersion relation
D(51.=ku) =0 with Im kn(KL)~Z 0.

As z » » , there are three possible contributions to the
asymptotic expansion of the integrals in Eg. (D.1): the endpoint con-
tribution, contributions from stationary points of the integrand, and
contributions from any integrable singularities of the integrand. We
will show that the first is O(z’]), while the latter two are 0(2_2)
at best, so that the first dominates as z » = .

A stationary point exists if
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ok

L = 0 (D.2)
Bk__L

By differentiating the dispersion relation, we get

ok
oD n ., ab
+ =0 (D.3)
Bkl kg Bk

where the vertical bar is to remind us that the derivatives are evalu-
ated at one of the solutions ky = kn(gl) . As long as kn(gl) # 0,
aD/akl'} is an analytic function of Kl.; hence, for all finite EL
such that k (k;) # 0, aD/dky | is finite. If k (k) =0, then
we have 3D/3ky | = 0. Accordingly, for all k; , the stationary
point condition, Eq. (D.2), is equivalent to requiring
aD

=0 (D.4)
o)

In Appendix C we showed that when w < w,, » it is impossible
to have a solution to the dispersion relation with aD/aglj = 0 when
: ij# 0 . Thus, the only possible stationary point is at %L =0 .
However, as long as aD/akul #0 at ky =0, the integrand in Eq.
(D.1) vanishes at kj = 0 . Thus, any contribution to the asymptotic
expansion is at most 0(2'2) . The case 3D/dky| =0 at kj =0
will be dealt with as part of the endpoint contribution.

In the frequency range W < W < Wy s it is possible to
have kn(gl) =0 for kj #0 . This is, of course, the Bernstein
mode solution. Such a solution would lead to a singularity in the

integrahd in Eq. (D.1), since aD/3ky =0 for ky=0.
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Since amD/akﬁ =0 at k“= 0 for all odd m, near the
Bernstein mode solution, the dispersion relation must have a solution

of the form

2m

k() = Ky (0) + aky m> 1 (D.5)

with m>1 , we have allowed for the possibility that some of the
higher order even derivatives of k; may vanish at ky =0 .
For the moment, consider m =1 1in Eq. (D.5). Inverting that

equation, for one definite n we get

ky - k(0]

o

- ky(0)

. k
ko (k) = exp{ - 5 [sign(—é'-—-&—w——)-ﬂ} (D.6)

(Implicitly, Eq. (D.6) has been specialized to the collisionless case
v =0 3 hence o 1is real. The calculation with v =0 is the most

difficult; v # 0 is easily
The contributions to the asymptotic expansion come from the
neighborhood of the singularity, so they are given by
Kul9)*e | explik (k)]
dky — 4
4 BD/Bkul.

ky (0)-e
. KL(?;( ky exp{-z[(k, (0) - Kl)/lul]]/z}
= -
10)2 oy (0) - k)7
ky(Qre T (ke = k. (0 1/2
X dk‘L _Lexp{TZ[(_L ..L( ))/IO‘I] } (D.7)

1/2
ky = k(0
(0 (k). - K, (0))
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where B = Tlim L 1_9D_|

gk, (0) ol 72 R 2N Jig, = k()

If we let 2% = k, (0) - ky ~ in the first integral in Eq. (D.7)
and AZ = %L - _lﬂO) in the second, the right hand side of that equa-
tion becomes

Ve

_ 4 %1/2 j dr (k) (0) - 2%) exp(-z[a| /)
0
12 E
+ Zlg%____f dx(glﬂo)-+x2) exp(iz[al'l/zx)
0

As z - » , using the asymptotic forms given in Copson [22], this
becomes

2ilal /%y (0) 2i]a| %k, (0)
) B

1

+ =0
1 1/2 2

| / B z]all/

z|o

Consequently, any contribution to the asymptotic expansion
must be 0(2"2) at most.

If m>1 1in Eq. (D.5), one can go through an analogous deri-
vation. The change of variable would then be K2m = KL.“ ngO), which

2(m-1)

would produce an integrand proportional to A Since this

vanishes at A = 0 , the contributfon to the asymptotic expansion is
still 0(2'2) . i

Finally, we come to the endpoint contribution. It, too, would
be 0(2—2), except for the fact that there is one kn(ﬁl) (the inverse
of Po(k!B) in the main text) that approaches zero as k; = 0 . If we

call this kO(KL), the work in the main text shows



e
=~

'..
<
N

o %l (- )

where Im(—KL/K" )]/2 > 0 . Using this, we find that the endpoint

contribution yields
-iwt

6(0,2,t) ~ ﬁé——g—i (D.8)
o

If one takes the sin 6 -~ 0 1limit of Eq. (40), it is identical

with Eq. (D.8). Accordingly, Eq. (40) is valid for all 0 <6 < 7.
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APPENDIX E
LEAST SQUARES FIT WITH ERROR IN
BOTH VARIABLES
The conventional method of fitting an assumed theoretical

equation y = a + bx to a set of N data points (Xi’yi) with errors
op in the Y5 involves minimizing the 1likelihood function
(y; -a-bx)?

pa
1 o

—
it
e~

i
with respect to a and b. However, Lindley[56] has shown that if

(Xi°y1) have errors (0X1’O ), the appropriate likelihood function

yi
is
2
N yi - a- bxi)
L= ] —7—77 (E.1)
i=] Gyi + b Oy

In order to find the a and b that minimize this new L, one
must usually resort to iterative solutions on a computer; the
extremum conditions

ol _ _ oL
= =0= = (E.2)

are polynomials in b of order 2(N+1). By using the a and b from
the conventional fit as a starting point, the iterative solution
converges quite rapidly, so that the lack of an analytical solution
presents no practical difficulty.

The error in the fitted parameters is determined from the

usual error propagation formula [57]
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N
2 _ {0z y2 2 3z 2 2
0, = 121 [(—ryi) oyq * (——axi) ox{] (E.3)

where z stands for either a or b. ( This holds as long as the errors
in x and y are independent.) The partial derivatives needed can be
found by differentiating the extremun conditions Eq. (E.2) and then
solving the pairs of linear equations that result.

Consequently, using this procedure, one can obtain a and b
and their errors when fitting a straight line to experimental data
which have errors in both the independent and dependent variables.

Occasionally, a one parameter least squares fit was needed
for a case where the theory predicted a relationship of the form
'y = bx. The likelihood function in Eq. (E.1) is still valid for this
case if we set a = 0. The extremum cdnditions Eq. (E.2) and the

error calculations Eq. (E.3) are then executed with b as the only
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APPENDIX F

Presented here is a bibliography of the work done before 1970

on small antennas in magnetized plasmas. This work provides a back-

ground for the present study, but few of the detailed calculations in

these works were used,

Arbel, E. and Felsen, L. B., "Theory of Radiation from Sources in
Anisotropic Media, Part I: General Sources in Stratified Media",

Jordan, E. C., Editor, Proc. Symp. on Electromagnetic Theory and

Antennas, Pergamon Press, Inc., New York (1963), pp. 391-420.

Arbel, E., and Felsen, L. B., "Theory of Radiation from Sources in
Anisotropic Media, Part II: Point Sources in Infinite, Homogeneous
Medium", Jordan, E. C., Editor, Proc. Symp. on Electromagnetic
Theory and Antennas, Pergamon Press, Inc., New York (1963),

pp. 421-459.

Balmain, K., "The Impedance of a Short Dipole Antenna in a Magneto-
plasma", IEEE Trans. Ant. Prop. AP-12, 605 (1964).

Bunkin, F., V., "On Radiation in Anisotropic Media", Soviet Phys.
JETP 5, 277 (1957).

Clemmow, P. C., "The Theory of Electromagnetic Waves in a Simple
Anisotropic Medium", Proc. IEE 110, 101 (1963).

Clemmow, P. C., "On the Theory of Radiation from a Source in a Mag-
neto-Ionic Medium", Jordan, E. C., Editor, Proc. Symp. on Electro-
magnetic Theory and Antennas, Pergamon Press, Inc., New York
(1963), pp. 461-475,

Chen, H., C., "Radiation Characteristics of an Electric Dipole in a
Warm, Anisotropic Plasma", J. Appl. Phys. 40, 4068 (1969).

Deschamps, G, A. and Kesler, A. B., "Radiation on an Antenna in a
Compressible Magnetoplasma", Radio Science 2 (new series), 757
(1967).



10.

11.

12,

13.

14,

15.

16.

17.

18.
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Kaiser, T. R., "The Admittance of an Electric Dipole in a Magneto-
Ionic Environment”, Planet. Space Sci. 9, 639 (1962).

Kenney, J., "Electric Dipole Radiation in Isotropic and Uniaxial
Plasmas", Antenna Laboratory Report No. 44, California Institute
of Technology, Pasadena, California (1968).

Kogelnik, H. and Motz, H., "Electromagnetic Radiation from Sources
Embedded in an Infinite Anisotropic Medium and the Significance of
the Poynting Vector", Jordan, E. C., Editor, Proc. Symp. on
Electromagnetic Theory and Antennas, Pergamon Press, Inc., New

York (1963), pp. 477-493.

Kogelnik, H., "The Radiation Resistance of an Elementary Dipole

in Anisotropic Plasmas", Fourth Int. Conf. on Ioniz. Phenomena in

Gases, Uppsala, ITIC, North Holland Publishing Company (1960),
pp. 721-725,

Kogelnik, H., "On Electromagnetic Radiation in Magneto-Ionic
Media", J. Res. Natl. Bur. Stds. (U.S.) 64D, 515 (1960).

Kononov, B., Rukhadze, A. A., and Solodukhov, G. V., "Electric
Field of a Radiator in a Plasma in an External Magnetic Field",
Zh. Tekh, Fiz, 31, 565 (1961) [Translation: Soviet Phys. Tech,
Phys. 6, 405 (1961).

Kuehl, H. H., "Radiation from an Electric Dipole in an Anisotropic
Cold Plasma", Antenna Laboratory Report No. 24, California
Institute of Technology, Pasadena, California (1960).

Kuehl, H. H., "Electromagnetic Radiation from an Electric Dipole
in a Cold Anisotropic Plasma", Phys. Fluids 5, 1094 (1962).

Kuehl, H. H.. "Resistance of a Short Antenna in a Warm Plasma",
Radio Science 1 (new series), 218 (1966).

Lee, S. W. and Mittra, R., "Transient Radiation of an Electric
Dipole in a Uniaxially Anisotropic Plasma", Radio Science 2, 813
(1967).
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20.

21,

22.

23.

24.
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26,
27.
28.

29.
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Lee, K.S.H., and Papas, C.H., “Irreversible Power and Radiation
Resistances of Antenna in Anisotropic Ionized Gases", J. Research
NBS/USNC-URSI 69D, 1313 (1965).

Lee, K.S.H., and Papas, C. H.y "A Further Explanation of the New
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Media", Radio Science 1, 1020 (1966).

Lee, K.S.H., and Papas, C. H., "On Walsh and Weil's Defense of
the Conventional Method", Radio Science 1, 1027 (1966).

Mittra, R. and Deschamps, G. A., "Field Solutions for a Dipole in
an Anisotropic Medium", Jordan, E. C., Editor, Proc. Symp. on
Electromagnetic Theory and Antennas, Pergamon Press, Inc., New
York (1963), pp. 495-512,

Seshadri, S. R., "Radiation Resistance of a Linear Current Fila-
ment in a Simple Anisotropic Medium", IEEE Trans. on Antennas and
Propagation, Sept. 1965, p. 819,

Seshadri, S. R., "Radiation Resistance of Elementary Electric-
Current Sources in a Magneto-Ionic Medium", Proc. IEE 112, 1856
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