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ABSTRACT

Traditional techniques of polymer synthesis produce macromolecules with

statistical distributions of chain length, composition, stereochemistry, and sequence.

Nature has evolved a complex system for polypeptide synthesis that gives essentially

complete control of chain length and monomer sequence.  Using the natural protein

biosynthesis machinery to produce protein polymers provides not only a unique

opportunity to study the effects of such molecular characteristics on material properties, but

also the possibility of readily incorporating bioactive domains into protein-based materials.

The objective of this thesis work was to expand upon the set of amino acids

available for incorporation into proteins in vivo and to explore applications of the novel

chemistries and physical properties provided by the new analogs.

Chapter 2 describes the incorporation of new unsaturated analogues of isoleucine,

the alkene 2-amino-3-methyl-4-pentenoic acid and the alkyne 2-amino-3-methyl-4-

pentynoic acid, by the wild type E. coli biosynthetic apparatus.  Incorporation was found to

be sensitive to side chain stereochemistry in the case of the alkene analog; the translational

activity of the pairs of enantiomers (SS, RR and SR, RS) were markedly different.  We

concluded that, although the SS-isomer is a good analogue, the SR-isomer is not

incorporated into proteins by this expression host.

Chapter 3 focuses on the incorporation of a fluorine-containing noncanonical

amino acid, 5,5,5-trifluoroisoleucine, into artificial extracellular matrix proteins.  The

fluorinated proteins displayed altered solubility phase behavior and were more resistant to

degradation by the physiologically relevant protease elastase, yet retained the ability to

adhere endothelial cells in a sequence specific manner.
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Chapter 4 describes the incorporation of the photoreactive noncanonical analog

p-azidophenylalanine into artificial extracellular matrix proteins.  Films of the azide-

containing proteins were crosslinked upon short exposure to ultraviolet radiation.  Using

simple patterned masks, we demonstrated the ability to pattern protein films by only

exposing certain regions.  When protein patters were produced on a non-adhesive

background, endothelial cells selectively adhered to the protein regions to create stable cell

patterns.
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       C h a p t e r  I

C h a p t e r  I  C h a p t e r  I

INTRODUCTION

Traditional techniques of polymer synthesis produce macromolecules with

statistical distributions of chain length, composition, stereochemistry, and sequence.

Nature has evolved a complex system for polypeptide synthesis that gives essentially

complete control of chain length and monomer sequence.  Using the natural protein

biosynthesis machinery to produce protein polymers provides not only a unique

opportunity to study the effects of such molecular characteristics on material properties,

but also the possibility of readily incorporating bioactive domains into protein-based

materials.

Biomaterials produced through protein biosynthesis are limited, however, to the

chemical functionality contained within the canonical set of 20 amino acids (Figure I-1).

The incorporation of noncanonical amino acids makes possible the introduction of new

functionality into proteins, creating the potential for novel material properties or

interesting post-translational modifications.  This thesis describes a series of

investigations that i) expand the number of amino acids available for in vivo

incorporation into proteins and ii) use the new physical and chemical properties provided

by noncanonical amino acids to produce interesting materials.

The first step toward the goal of producing polypeptide polymers containing new

amino acid functionality must be an understanding of how proteins are synthesized in

nature.
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Figure I-1.  The 20 canonical amino acids contain a variety of functional groups.
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I.1 Protein Biosynthesis

Synthesis by the natural biosynthetic machinery involves transcription of DNA

into mRNA and translation of mRNA codons into an amino acid sequence by tRNA

(Figure I-2).  Each tRNA contains a three-base anticodon that permits recognition of the

codon(s) for the appropriate amino acid and, at the opposite end of the molecule, an

adenine that serves as the attachment point for the amino acid.  Amino acids are charged

onto the tRNA by aminoacyl-tRNA synthetases (aaRSs); the aminoacyl-tRNAs are then

transported to the ribosome by elongation factor Tu (EF-Tu).  The ribosome, a multi-unit

protein/RNA complex, guides the association of aminoacyl-tRNAs with their cognate

mRNA codons, and a peptide bond is formed between the growing protein chain and the

DNA

CGA
mRNA

amino
acid

GCU

amino acid

GCU
tRNA

 ATP
 Mg2+

protein

translation:
ribosome

tRNA charging:
aminoacyl-tRNA synthetase

transcription:  RNA polymerase

Figure I-2.  During protein biosynthesis the genetic information encoded in DNA is

transcribed into mRNA.  The message is translated into an amino acid sequence in the

ribosome where mRNA codons are “read” by the appropriate tRNA molecule that has been

charged with its cognate amino acid by an aminoacyl-tRNA synthetase.
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amino acid charged to the tRNA.  The selectivity of this process for the

appropriate amino acid is responsible for translational fidelity and is an important

consideration in the attempt to incorporate noncanonical amino acids in vivo.

I.1.1 Fidelity of Protein Biosynthesis

There are a number of points during protein biosynthesis that provide an

opportunity to assure that the correct amino acid is incorporated into the protein chain in

response to a codon.  The aaRSs recognize both the amino acid and one or more of its

cognate tRNAs, EF-Tu binds the aminoacyl-tRNA to deliver it to the ribosome, and the

ribosome itself recognizes the aminoacyl-tRNA.

There is considerable evidence that the aaRSs are largely responsible for the

fidelity of protein synthesis.  The ribosome discriminates between D- and L-α-amino

acids [1-3] and rejects large aromatic analogues with certain geometries [4], but is

otherwise relatively insensitive to amino acid structure.  Indeed, in in vitro translation

systems in which the amino acid is first attached to tRNA by chemical misacylation to

bypass the aaRSs [5], the ribosome has been shown to accept and incorporate dozens of

noncanonical amino acids into growing protein chains.  Incorporated analogues include

α-amino acids with side chains that are much larger and/or very chemically distinct from

the canonical amino acids [6-8] as well as non-α-amino acids [9], including α-hydroxy

acids [1, 10] and N-methyl amino acids [11, 12].

In the case of EF-Tu, it is known that the strength of binding of aminoacyl-tRNAs

is optimized when the amino acid is attached to its cognate tRNA [13]. Yet, again, EF-Tu

is promiscuous enough to transport to the ribosome a large number of misacylated tRNAs
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produced both in vitro [14] and in vivo [15]. The majority of the burden of

choosing the correct amino acid from the available intracellular pool rests with the aaRSs.

Each aaRS recognizes both an amino acid and its cognate tRNA(s).  Although

each aaRS has evolved to recognize a particular amino acid, common structural and

functional domains have been identified (for review, see [16]).  The aaRSs first catalyze

the activation of the carboxyl group of the amino acid by reaction with adenosine

triphosphate (ATP) to produce an aminoacyl adenylate.  The activated ester of the

aminoacyl adenylate reacts with the terminal hydroxyl group of tRNA to produce

aminoacyl-tRNA.  In some cases, the aaRS also catalyzes hydrolysis of improperly

charged and/or activated amino acids.

Once the tRNA is aminoacylated by the aaRS, it is transported by EF-Tu to the

ribosome where synthesis of the polypeptide chain is completed.  Accurate decoding of

genetic information is accomplished by the protein-mediated matching of amino acids

with oligonucleotide sequence.

I.2 Protein Polymers

To the synthetic polymer chemist, an attractive feature of the protein biosynthesis

machinery is its ability to precisely control the sequence of the growing polymer chain.

In nature, such a fine degree of molecular control permits the production of proteins with

invariable sequence and the ability to fold into well-defined, functional three-dimensional

structures.  Using the tools nature has developed provides the chemist with a way to

design and produce protein-based polymers with controlled molecular architecture.
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Early work in the Tirrell laboratory demonstrated the ability to

introduce novel material properties through the precise control of polymer architecture

afforded by the biosynthetic machinery.  The rod-like polymer poly(γ-benzyl-L-

glutamate) (PBLG) has been studied for its ability to form liquid crystalline phases; when

produced with low polydispersity (~1.2) by standard synthetic techniques such as ring-

opening polymerization of α-glutamic acid-N-carboxyanhydride, PBLG forms nematic

liquid crystalline phases [17].  However, when PBLG is prepared through post-

translational modification of bacterially produced poly(L-glutamic acid), a more ordered

smectic phase is formed; mass spectroscopy of such samples show the chain population is

of one uniform length [17].

Genetically templated synthesis also provides a straightforward method to include

bioactive domains in the polymer structure.  For example, the Tirrell laboratory has

produced a family of proteins designed to mimic the natural extracellular matrix [18].

These modular constructs contain repeating blocks of protein sequence, one block

derived from the structural protein elastin to impart appropriate mechanical properties

and another block derived from known cell-adhesive sequences of the natural

extracellular matrix protein fibronectin.  Such proteins, when crosslinked by various

methods, possess moduli within the range of native elastin [19,20] and adhere human

umbilical vein endothelial cells (HUVEC) in a sequence-specific manner [21].  Studies

involving these artificial extracellular matrix proteins (aECMs) will be the focus of

Chapters 3 – 5 of this thesis.
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Although in vivo synthesis of protein polymers has been shown to be a

powerful technique, a clear limitation is the availability of only 20 monomers — the 20

canonical amino acids — with a limited range of functionality (Figure I-1).  Expanding

the number of monomers beyond these 20 would provide access to new chemical

reactivity not available in wild type proteins.

I.3 Strategies for the Incorporation of Noncanonical Amino Acids

The protein biosynthetic machinery makes mistakes; error frequencies for

misreading a codon and incorporating the incorrect canonical amino acid are ~10-4 [22].

It has also long been recognized that certain noncanonical amino acids, e.g.,

selenomethionine [23], can infiltrate the biosynthetic machinery and be incorporated into

proteins in place of a structurally similar amino acid.  Work in several laboratories has

exploited this promiscuity to incorporate amino acids with a variety of functional groups

not contained within the canonical set [24-32].

To further expand the set of functional groups available to protein engineers,

several groups have been developing techniques to incorporate noncanonical amino

acids, both in bacterial and mammalian cells as well as in cell-free in vitro translation

systems.  Figure I-3 schematically illustrates the major strategies being applied for the

incorporation of noncanonical amino acids into proteins in vitro and in vivo.
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Figure I-3.  Schematic representation of the various strategies for incorporating noncanonical

amino acids into proteins.  This figure appeared in [15].
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I.3.1 In vitro incorporation

In the late 1980s Chamberlin [33] and Schultz [34] introduced an in vitro strategy

for incorporation of noncanonical amino acids through nonsense suppression by

chemically misacylated tRNA.  Many groups have since used this technology for site-

specific incorporation to study protein structure and function.

The nonsense suppression strategy uses translational read-through by a

chemically misacylated suppressor tRNA to incorporate noncanonical amino acids site-

specifically in response to a nonsense codon, usually the amber stop codon (TAG).

Because of limitations in suppressor efficiencies, protein yields are generally low (1 – 10

µg/mL) [35], but the precise control of the placement of the noncanonical analogue

makes this a powerful tool for studies of protein structure and function.

For example, Pollitt and coworkers have employed site-specific incorporation in

vitro to cage an aspartic acid side chain of a protein (p21ras) as its o-nitrobenzyl ester,

allowing them to photochemically control its interaction with a protein partner (p120-

GAP) [36].  Koh and coworkers have investigated the role of specific backbone amide

linkages in T4 lysozyme through substitution with ester bonds by incorporation of α-

hydroxy acids [10].

Site-specific incorporation has also been accomplished using codons other than

stop codons.  Frameshift suppression of four-base codons has been used by Sisido and

coworkers to incorporate a fluorophore-quencher pair at selected positions in strepavidin
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[37], and use of unnatural nucleosides iso-C and iso-G enabled the Hecht

group to incorporate iodotyrosine in response to the “65th codon” [38].

I.3.2 In vivo incorporation

I.3.2.1 Residue-specific incorporation (codon reassignment)

By reassigning all of the codons for a particular amino acid to a close structural

analogue, the noncanonical analogue can be incorporated at multiple sites throughout the

protein.  Using this technique, one can significantly change the physical properties of a

protein [28, 39, 40] or provide for multiple reactive sites for chemical modification, such

as labeling [25, 41] or crosslinking (Chapter 4).

Often codon reassignment is accomplished simply by starving an auxotrophic

Escherichia coli (E. coli) strain for a canonical amino acid in medium supplemented with

a close structural analogue.  Tang and coworkers [40] employed this strategy to replace

up to 92% of the leucine resides in the leucine-zipper protein A1 with trifluoroisoleucine.

The fluorinated leucine zippers displayed a 13°C increase in melting temperature (Tm) as

well as increased resistance to chemical denaturation.  Kiick and coworkers [25] also

used this method to incorporate the noncanonical amino acid azidohomoalanine into a

target protein, murine dihydrofolate reductase (mDHFR), which they then

chemoselectively labeled through Staudinger ligation with a phosphine bearing an

antigenic peptide.
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Access to a wider range of noncanonical amino acids for residue-

specific incorporation is provided through alterations of the wild-type biosynthetic

machinery.  Overexpression of the appropriate synthetase can improve the incorporation

of poorly activated analogues [39,42].  A more general strategy involves mutating the

aaRS to alter its substrate specificity at either the synthetic [24,26,43] or hydrolytic

[44,45] active site.  For example, Doring and coworkers demonstrated replacement of

valine by the noncanonical amino acid aminobutyrate in a strain harboring valyl-tRNA

synthetase (ValRS) with multiple mutations in the editing site [45].

A previously characterized mutant E. coli phenylalanyl-tRNA synthetase (PheRS)

[24,46], with an enlarged active site resulting from the mutation of residue 294 from

alanine to glycine, accepts a wide variety of phenylalanine analogues not incorporated by

wild-type E. coli hosts, including the photoreactive amino acid para-azidophenylalanine

[26].  Photocrosslinking of artificial proteins through this noncanonical amino acid is

described in Chapter 4 of this thesis.

I.3.2.2 Site-specific incorporation

Several research groups have developed technologies to site-specifically

incorporate noncanonical amino acids in vivo.  Lester and coworkers first demonstrated

site-specific incorporation in vivo through injection of chemically misacylated tRNA into

Xenopus oocytes [14] and have more recently expanded this strategy to mammalian cells

[47].

Furter [48] developed a successful system for site-specific incorporation in E. coli

by importing a yeast suppressor tRNA and yeast aminoacyl-tRNA synthetase to generate



I-12
a “21st pair.”  Because the native E. coli tRNAPhe/PheRS pair was incapable of

activating p-fluorophenylalanine, this noncanonical analogue was selectively

incorporated by the heterologous 21st pair in response to amber stop codons.

Schultz and coworkers have expanded and improved upon this strategy.  Through

directed evolution of aaRSs that show high specificity toward a noncanoncial amino acid

[49], they have created E. coli hosts with 21st pairs incorporating p-acetylphenylalanine

[50] and benzophenone [51], among others.  They have also generated an organism with

a novel 21st amino acid by inserting an aaRS evolved to incorporate p -

aminophenylalanine and the biosynthetic genes for the amino acid into an E. coli host

[52].  Use of orthogonal 21st pairs has recently been expanded to Saccharomyces.

cerevisiae [53] and Chinese hamster ovary cells [54].

I.3.2.3 Multiple site-specific incorporation

Kwon and coworkers have described a system that takes advantage of the

degeneracy of the genetic code to “reassign” the phenylalanine wobble codon UUU to the

noncanonical amino acid 2-napthylalanine [55].  This technique is complementary to

other missense strategies such as nonsense and frameshift suppression, but offers the

unique ability to efficiently incorporate a noncanonical amino acid at multiple pre-

selected sites, e.g., throughout a single protein domain.

Using the strategies described in Section I.3.2, to date the Tirrell laboratory has

successfully incorporated the set of amino acids shown in Figure I-4 into proteins in vivo.
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Figure I-4.  Noncanonical amino acids incorporated into proteins in vivo by the Tirrell laboratory.  Amino acids in black are accepted by

the wild type E. coli biosynthetic machinery; those in blue require overexpression of the wild type aaRS; those in red require an active site

mutant aaRS; and those in purple require an editing site mutant aaRS.
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I.4 Thesis Objective

The objective of this thesis work was to expand upon the set of amino acids

available for incorporation into proteins in vivo and to explore applications of the novel

chemistries and physical properties provided by the new analogues.

Chapter 2 describes the incorporation of new, unsaturated analogues of isoleucine,

the alkene 2-amino-3-methyl-4-pentenoic acid (E-Ile) and the alkyne 2-amino-3-methyl-

4-pentynoic acid (Y-Ile), by the wild type E. coli biosynthetic apparatus.  The IleRS was

found to be sensitive to sidechain stereochemistry in the case of the alkene analogue; the

translational activity of the pairs of enantiomers (SS, RR-E-Ile and SR, RS-E-Ile) are

markedly different.  We conclude that although SS-E-Ile is a good substrate for the IleRS,

SR-E-Ile is not incorporated into proteins by wild type E. coli translational machinery.  At

least one stereoisomer of the alkyne analogue of Ile is also translationally active, although

the level of stereochemical purity of the amino acid samples was not sufficient to

determine whether a similar stereochemical discrimination existed for Y-Ile.

Chapter 3 focuses on the incorporation of a fluorinated noncanonical amino acid,

5,5,5-trifluoroisoleucine (5TFI), into artificial extracellular matrix proteins.  The

fluorinated aECMs displayed altered phase behavior and were more resistant to

degradation by the physiologically relevant protease elastase, yet retained the ability to

adhere endothelial cells in a sequence specific manner.

Chapter 4 describes the incorporation of the photoreactive noncanonical analogue

p-azidophenylalanine (pN3Phe) into artificial extracellular matrix proteins using an E.

coli host expressing a mutant PheRS (A294G) in which the active site has been expanded
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to accommodate larger amino acids.  Films of the azide-containing aECMs

were crosslinked upon short (~30 s) exposure to ultraviolet radiation at 365 nm.  Using

simple patterned masks, we demonstrated the ability to pattern protein films by only

exposing certain regions.  When protein patterns are produced on a non-adhesive

background, endothelial cells selectively adhere to the protein regions to create stable cell

patterns.

Chapter 5 describes progress toward the cloning of a new aECM construct

containing a very robust cell-adhesive domain as well as regular phenylalanine sites for

incorporation of pN3Phe.
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C h a p t e r  I I  C h a p t e r  I I

STEREOSELECTIVE INCORPORATION OF UNSATURATED ISOLEUCINE
ANALOGUES INTO PROTEINS IN VIVO*

II.1 Abstract

The unsaturated amino acids 2-amino-3-methyl-4-pentenoic acid (E-Ile) and 2-

amino-3-methyl-4-pentynoic acid (Y-Ile) were prepared, and E-Ile was successfully

separated into its SS, RR and SR, RS diastereomeric pairs.  The translational activities of

the SS-E-Ile, SR-E-Ile, and Y-Ile analogues were assessed using an Escherichia coli (E.

coli) strain auxotrophic for isoleucine (Ile).  SS-E-Ile was incorporated into the test

protein murine dihydrofolate reductase (mDHFR) in place of isoleucine at a rate of

substitution of up to 72%, while SR-E-Ile showed no conclusive evidence of translational

activity.  At least one stereoisomer of Y-Ile also supported protein production, but the

stereochemical purity of the amino acid samples was not sufficient to investigate

stereochemical discrimination.   In vitro ATP-PPi exchange assays indicate that SS-E-Ile

is activated by the isoleucyl-tRNA synthetase (IleRS) at a rate comparable to isoleucine;

SR-E-Ile is activated approximately 100 times more slowly.

*Sections of this chapter are excerpted from a manuscript accepted to ChemBioChem by

Marissa L. Mock, Thierry Michon, Jan C. M. van Hest, and David Tirrell, 2005.



II-2
II.2 Introduction

Genetic engineering provides a tool with which one can prepare complex

macromolecules possessing both precisely controlled architectures and specific catalytic

or biological activity.   Recent work has shown the advantages of using the biosynthetic

machinery to produce new materials (for a review see reference [1]).  The use of

monomers other than the twenty canonical amino acids enables the introduction of new

functionality into proteins, creating the potential for novel physical and chemical

properties.  Analogues of many of the canonical amino acids have been incorporated into

proteins in E. coli using the wild-type biosynthetic machinery, e.g. [2, 3], while

modifications of that machinery have permitted the incorporation of a still broader set of

non-canonical amino acids [4-14].  Increasing the number of amino acid monomers that

can be incorporated into proteins, and thereby the range of physical properties and

chemistries available, requires detailed understanding of the biosynthetic apparatus.

Protein synthesis involves transcription of the information contained in DNA into

mRNA and translation of the mRNA into polypeptide chains.  The aminoacyl-tRNA

synthetases (aaRSs) are essential to the fidelity of this process.  Each aaRS selectively

catalyzes the activation of the carboxylate group of the appropriate amino acid by

reaction with adenosine triphosphate (ATP) to produce the aminoacyl adenylate, which

reacts with terminal hydroxyl group of a cognate tRNA to produce aminoacyl-tRNA.

The selectivity of the aaRSs is an important consideration in any attempt to incorporate

nonnatural amino acids into proteins in vivo.  Modifications of the aaRSs, through

enlarging the active site [14-16] or decreasing editing activity [13, 17], have been shown

to permit incorporation of analogues that are not usually incorporated into proteins.  The
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rational modification of aaRSs to allow use of a wider range of nonnatural

amino acids requires an understanding of the mechanism(s) of selectivity of each

individual aaRS.

The isoleucyl-tRNA synthetase (IleRS) has been well studied, in part because it

must perform a significant feat of selective recognition as it discriminates its cognate

amino acid isoleucine (Ile) from the natural amino acid valine (Val), which differs in

chemical structure by only one methylene group.  Pauling calculated that the additional

binding energy contributed by the extra methylene group should at most result in a

discrimination of 1/20 [18], while the erroneous substitution of Val for Ile actually occurs

at a rate of about 1 in 3000 [19].  In fact, IleRS does misactivate Val (approximately 140

times more slowly than Ile [20, 21]) and later hydrolyzes the misactivated amino acid in

an editing site located ~34 Å from the synthetic site of the enzyme [22-24].  Isoleucine

contains two chiral centers, one at the alpha carbon and another at the beta carbon.  The

stereoisomer of 2-amino-3-methyl-heptanoic acid incorporated into proteins is (2S, 3S),

designated Ile.  L-allo-Ile (2S, 3R) has the correct configuration at the α-carbon, but the

opposite configuration at the β-position.  It is not incorporated into proteins, although

there is evidence that it is bound and activated by IleRS [19, 25-27].

To expand further the chemistries available for the modification of proteins, we

prepared the unsaturated Ile analogues (2S, 3S and 2R, 3R)-2-amino-3-methyl-4-pentenoic

acid (SS, RR-E-Ile), (2S, 3R and 2R, 3S)-2-amino-3-methyl-4-pentenoic acid (SR, RS-E-Ile),

and 2-amino-3-methyl-4-pentynoic acid (as a mixture of the S S, R R , SR, and R S

stereoisomers) (Figure II-1), which have been shown previously to inhibit growth of E.

coli [28].  We are especially interested in unsaturated amino acid analogues because of
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the versatile chemistry of alkenes and alkynes.  For example, supramolecular structures

made up of weakly hydrogen-bonded cyclic peptides can be stabilized through inter-

peptide crosslinking [29] utilizing ruthenium-catalyzed ring-closing metathesis of

pendant alkene moieties [30, 31] and Cu(I)-catalyzed azide-alkyne cycloaddition has

been used to modify E. coli cells [32].  The stereoisomer pairs were evaluated with

respect to incorporation into a test protein, murine dihydrofolate reductase (mDHFR), in

an E. coli strain rendered auxotrophic for Ile.  The kinetics of activation of SS and SR-E-

Ile by the IleRS were also determined in vitro through ATP/PPi exchange.

II.3 Methods

II.3.1 Synthesis of Analogues

II.3.1.1 General procedures

Glassware was dried at 150 °C and cooled under argon prior to use.

Tetrahydrofuran (THF) was freshly distilled from sodium/benzophenone.  Other reagents

were used as purchased.  Cis- and trans-crotyl alcohol were purchased from

Chemsampco, Trenton, NJ.  1H-NMR spectra were recorded on a Varian Mercury 300

MHz spectrophotometer.  Column chromatography was performed on silica gel (300

COOHH2N COOHH2NCOOHH2N

SS-E-Ile SR-E-IleSS-Ile

COOHH2N COOHH2N

SS-Y-Ile SR-Y-Ile

Figure II-1.  Unsaturated isoleucine analogues SS-E-Ile and S R-E-Ile differ in the

stereochemistry at the β-carbon.  The stereoisomer of isoleucine incorporated into proteins (Ile)

is 2S, 3S.
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Mesh, Baker) or alumina (80-200 Mesh, EM Science). Silica (60F254 EM

Science) was used for thin layer chromatography.

II.3.1.2 SS- and SR-2-amino-3-methyl-4-pentenoic acid (E-Ile)

SS- and SR-E-Ile were prepared according to Figure II-2; the stereochemistry at

the β-carbon of the final product was controlled by choosing either cis- or trans-crotyl

alcohol as the starting material (Figure II-3).  N-benzyloxycarbonyl (Cbz)-protected

glycine crotyl esters were prepared according to Hassner and Alexian [33], with slight

modification.  Cbz-glycine (17.44, 83.4 mmol) was dissolved in 100 mL THF under N2.

Either cis- or trans-crotyl alcohol (6.00 g, 83.2 mmol) was added, followed by 17.15 g

(83 mmol) dicyclohexyl carbodiimide and 50 mg (6.1 mmol) dimethylaminopyridine.

An exotherm was observed, and a precipitate immediately formed.  The mixture was

allowed to stir at room temperature for 2 days before being filtered through Celite.  The

or + O

O

N
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OH DCC, DMAP
O

O

N
H

O

O

LDA,
ZnCl2

O

O

N
H

O

OH

trimethylsilyl iodide
H2N

O

OH

HO

HO

Figure II-2.  Synthesis scheme for SS- and SR-E-Ile.  The amine-protected crotyl esters

undergo Claisen rearrangement; subsequent deprotection gives stereochemically enriched

product.
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solvent was evaporated, and the crude product was purified by flash

chromatography (CH2Cl2).  A viscous colorless oil was obtained by evaporation of the

eluent (yield trans-isomer: 65 %, cis-isomer: 32 %).  1H-NMR (CDCl3): δ 1.73 (d, 3H, J

= 6.9, CH3), 3.98 (d, 2H, J = 6.4, CH2-CO), 4.57 (d, 2H, J = 6.7, O-CH2), 5.17 (s, 2H,

Ph-CH2), 5.56 (m, 1H, JE  = 17.4, JZ = 10.2, C=CH-CH3), 5.81 (m, 1H, JE  = 17.4, JZ =

10.2, O-CH2-CH=C), 7.35 (s, 5H, Ph).

N-benzyloxycarbonyl (Cbz)-protected glycine crotyl esters were rearranged

following Kazmaier [34] to N-benzyloxycarbonyl-2-amino-3-methyl-4-pentenoic acid.

Diisopropyl amine (6.9 mL, 45.8 mmol) was dissolved in 40 mL dry THF under argon.

Zn
O NZ

O

ZHN

O

OH

cis S,S

ZHN

O

O

chair-like transition state

Zn
O NZ

O

ZHN

O

OH

S,R

ZHN

O

O

trans chair-like transition state

Figure II-3.  Stereoselectivity in the preparation of E-Ile is a result of a preference for the

chair-like transition state during the Claisen rearrangement, which determines the

stereochemistry at the β-carbon in the product.  The trans-crotyl alcohol yields SR (and RS)-

E-Ile, while the cis-crotyl alcohol gives SS (and RR)-E-Ile.
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The stirred solution was cooled to –20 °C and 26 mL (41.6 mmol) 1.6 M n-

butyl lithium in n-hexane was added.  After 20 minutes, the solution was cooled to –78

°C, and 5.4 g (20.5 mmol) Cbz-protected glycine crotyl ester (either cis or trans) in 20

mL THF and 25 mL of a 0.5 M ZnCl2 solution in THF were added simultaneously over a

30 min period.  The solution remained homogeneous.  After an additional 30 min at –78

°C the solution was allowed to warm to room temperature.  The rearrangement was

monitored by thin layer chromatography (3: 7 ethyl acetate:dichloromethane).  After 5

hours, 30 % (trans) to 50 % (cis) of the starting ester was still present in the reaction

medium.  Additional incubation time did not improve the yield of the rearrangement.

The reaction was terminated by addition of 10 mL 1 M HCl.  The ether phase was

extracted with two 75 mL volumes of 1 M NaOH.  The aqueous phase was neutralized

with concentrated HCl to precipitate the acid product, which was extracted with diethyl

ether (150 mL).  The ether layer was dried over MgSO4, and the solvent was evaporated

to give a yellow oil.  The acids were purified by flash chromatography (99:1 ethyl

acetate:acetic acid).

Either SS, RR or RS, SR Cbz-protected 2-amino-3-methyl-4-pentenoic acid (0.8 g, 3

mmol) was dissolved in 10 mL dry CHCl3 under nitrogen atmosphere.  Trimethylsilyl

iodide (1.2 mL, 8.8 mmol) was added.  After 20 min stirring at room temperature, the

reaction was quenched by addition of 1 mL methanol.  The solvent was evaporated, the

crude product was dissolved in 10 mL 30 % v/v acetic acid, and the solution was washed

twice with 15 mL diethyl ether.  The aqueous layer was evaporated, yielding a yellow oil.

The SR, RS mixture of isomers crystallized upon cooling.  Recrystallization from 4:1

isopropanol:water gave 0.18 g (yield 45 %) of pure amino acid (d.e.=94%).  1H-NMR
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(D2O) δ:  1.08 (d, 3H, J=7.0, CH-CH3), 2.8-2.9 (m, 1H, J1=4.1, J2=7.0, CH-

CH3,), 3.74 (d, 1H, J=4.1, NH2-CH-COOH), 5.20-5.27 (m, 2H, J1=5.9, J2=11.2,

CH=CH2), 5.76-5.88 (m, 1H, J1=6.2, J2=11.6, CH=CH2).

The crude SS, RR-isomer did not crystallize.  It was dissolved in 6 N HCl; the

hydrochloride was isolated by evaporation and dissolved in methanol.  The amino acid

was precipitated by slow addition of propylene oxide.  The precipitate was crystallized

from 4:1 isopropanol:water, yielding 0.116 g (29%) of pure SS, RR-E-Ile (d.e.=78%).  1H-

NMR (D2O) δ:  1.12 (d, 3H, J=7.0, CH-CH3), 2.75-2.85 (m, 1H, J1=6.9, J2=5.8, CH-

CH3), 3.57 (d, 1H, J=5.7, NH2-CH-COOH), 5.20-5.27 (m, 2H, J1=5.1, J2=11.1,

CH=CH2), 5.76-5.88 (m, 1H, J1=7.3, J2=10.1, CH=CH2).

The reaction products were recrystallized 5 times from 5:1 isopropanol:water to

give SS, RR-E-Ile (d.e. = 95%) and SR, RS-E-Ile (d.e. = 98%).

II.3.1.3 2-amino-3-methyl-4-pentynoic acid (Y-Ile)

The synthesis scheme for Y-Ile appears in Figure II-4.  Diphenylmethylene

glycine ethyl ester was prepared according to O'Donnell and Polt [35]. The 1H NMR

spectrum was in accord with Aidene and coworkers [36].

To prepare 3-bromobutyne, 6.82 g (62 mol) PBr3 containing 0.1 mg hydroquinone

and a solution of 10 g (0.14 mol) 3-butyn-2-ol in 1 mL dry pyridine were added dropwise

simultaneously over a 4-hour period to a 50 mL round bottom flask cooled to -15 °C,

maintained under argon, and equipped with a stirrer, an addition funnel, and a gas inlet.

After an additional 30 min of reaction, 20 mL of cold water were cautiously added to stop

the reaction.  The mixture was extracted with ether (3 x 20 mL).  The combined ether

layers were washed consecutively with water (3 x 20 mL), saturated sodium bicarbonate
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(3 x 25 mL), and saturated sodium chloride (2 x 50 mL).  The ether extract was dried

with MgSO4 and filtered.  The dry ether phase was immediately distilled, affording 8.1 g

(45%) of 3-bromobutyne.  1H-NMR (CDCl3): δ 1.90 (d, 3H, J = 7.1, CH3-CHBr), 2.63 (d,

1H, CHBr-CCH), 4.55 (m, 1H, J = 7.1, CH3-CHBr) ppm.

A solution of 1.16 mL (8.22 mmol ) diisopropylamine in 15 mL dry

tetrahydrofuran (THF) was cooled to –20 °C under an argon atmosphere.  A 1.6 M

solution of n-butyl lithium in n-hexane (5.13 mL, 8.22 mmol) was added by syringe, and

the mixture was stirred for 10 min. The lithium diisopropylamide solution was then

cooled to –70 °C, and a solution of 2 g (7.5 mmol) diphenylmethylene glycine ethyl ester

in 3 mL THF was slowly added.  After 30 min stirring, 1.0 g (7.5 mmol) 3-bromobutyne

was added over a 15 min period.  The reaction mixture was allowed to warm to room

NH H2N

O

O N

BrOH PBr3

pyridine

CH2Cl2

LDA

reflux

propylene
oxide

precipitation

O

O

N

O

O

H2N

O

O
H2N

O

OH 1 M HCl
6 M HCl

Figure II-4.  Y-Ile was prepared from diphenylmethylene glycine ethyl ester, which was alkylated

with 3-bromobutyne.  The alkylated product was deprotected to yield a mixture of stereoisomers

of Y-Ile.
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temperature and stirred for an additional 3 hours. The solvent was removed

by evaporation and the product purified by column chromatography (1:1 CH2Cl2:hexane).

The purified product was dissolved in 15 mL diethyl ether, and 15 mL of 1 M HCl was

added.  The mixture was stirred vigorously for 3 hours at room temperature.  The two

phases were separated, and the aqueous phase was washed twice with 10 mL diethyl

ether.  The aqueous layer was concentrated, and the residue was redissolved in 15 mL of

6 M HCl and heated to reflux for 6 hours.  The water was removed, and the residue was

taken up in 10 mL methanol and 5 mL propylene oxide and stirred for 12 hours at room

temperature.  The precipitate that formed was filtered and dried, yielding 0.25 g (27 %) of

Y-Ile.  The 1H-NMR spectrum was in agreement with that reported previously [36].

Statistical mixtures of all 4 stereiosmers were obtained; the product was recrystallized

four times from 5:1 isopropanol:water to give SS, RR-Y-Ile (d.e. = 81%) and SR, RS-Y-Ile

(d.e. = 60%).

II.3.2 Purification of IleRS

E. coli strain MV1184 transformed with the multicopy plasmid pkS21[37]

encoding the IleRS was kindly provided by Valerie de Crécy-Lagard and Paul Schimmel

at the Scripps Research Institute.  IleRS was expressed in 1 L (2xYT) cultures, and the

collected protein was purified by ammonium sulfate fractionation, cold water dialysis,

and anion exchange chromatography following an established protocol [38].  The

concentration of IleRS stock was determined by the Bradford method to be 0.13 mM.

II.3.3 ATP/PPi Exchange
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ATP-PPi exchange assays were performed as previously described

[39] in 150 mL of reaction buffer (pH 7.6, 20 mM imidazole, 0.1 mM EDTA, 10 mM β-

mercaptoethanol, 7 mM MgCl2, 2 mM ATP, 0.1 mg/ml BSA, and 2 mM PPi [
32P sodium

pyrophosphate with a specific activity of 0.1 mCi/ml]) with 75 nM IleRS and

concentrations of analogues from 10 mM to 1 mM.  Aliquots of 15-20 mL of each

reaction were removed at various time points and quenched in 0.5 ml of a solution of 200

mM PPi, 7 % v/v HClO4, and 3% w/v activated charcoal.  The charcoal was washed twice

with 0.5 ml of a solution of 10 mM PPi with 0.5% v/v HClO4 and resuspended in 0.5 ml

of this solution. Each charcoal suspension was transferred to a 20-mL scintiallation vial,

and 10 mL Safety-Solve liquid scintillation cocktail (Research Products Institute, Inc.)

was added before counting on a Beckman Coulter liquid scintillation counter.

II.3.4 Protein expression

To test for analogue incorporation, a 50 mL culture of M9AA medium

supplemented with ampicillin (200 mg/L), chloramphenicol (35 mg/L), 1 mM MgCl2, 0.1

mM CaCl2, 0.2 % glucose, and 1 mg/L thiamine was inoculated with a single colony of

the isoleucine auxotrophic expression system AI-IQ[PQE15] [40].  After overnight

growth at 37 °C, a 5 µL aliquot of culture was used to inoculate 50 mL of supplemented

M9AA medium (for small-scale expressions) or a 1 mL aliquot was used to inoculate 1 L

of medium (for large-scale expressions).  When the culture reached an OD600 of 0.9-1.0,

the cells were sedimented (5000g, 10 min, 4°C), washed twice with 0.9 % NaCl, and

resuspended in 50 mL fresh supplemented M9 medium containing 19 natural amino acids

(20 mg/L) but lacking isoleucine.  For tests of incorporation, the cultures were divided
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into aliquots, to which were added water (negative control), L-isoleucine

(positive control), L-valine, S S-E-Ile, SR-E-Ile, SS-Y-Ile, or S R-Y-Ile.  Tests of

incorporation using once-recrystallized SS-E-Ile (d.e. = 68 %) were performed in 10 mL

cultures; the concentrations of L-amino acid in the medium were 25, 50, and 125 mg/L.

Studies of SS-E-Ile (d.e. = 95 %) and SR-E-Ile (d.e. = 98 %) were performed at 130 mg/L

of the L-amino acid in 5 mL cultures, while studies of SS-Y-Ile (d.e. = 81%) and SR-Y-Ile

(d.e. = 60%) were performed at 100 mg/L in 5 mL cultures.  For large-scale expressions

of protein samples for 1H-NMR studies, the L-amino acid concentrations were 25 mg/L

and 125 mg/L SS-E-Ile (d.e. = 76%) and 70 mg/L SR-E-Ile (d.e. = 91%).  After 10 min of

growth, mDHFR expression was induced by addition of 1 mM IPTG.  After 4 h growth at

37 °C, the cells were sedimented (5000g, 10 min, 4°C), resuspended in 4 M urea, and

frozen at –20 °C overnight.  The cells were thawed, sonicated, and incubated for 30 min

at 37 °C with 10 mg/mL DNase, 10 mg/mL RNase, and 10 mM MgCl2 prior to

purification.  Protein expression was monitored by SDS-PAGE and Western blotting with

antibodies recognizing the histidine tag of mDHFR (Qiagen, Inc., Santa Clarita, CA,

USA) [41].

II.3.5 Mass spectrometry

Expressed mDHFR was purified from cell lysates by Ni affinity chromatography

using a Ni-NTA Spin Kit (Qiagen).  Purified mDHFR was incubated with trypsin in 50

mM ammonium bicarbonate buffer overnight at room temperature.  The proteolysis

product was purified by C18 ZipTip (Millipore), deposited in a matrix of α-cyano-4-
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hydroxycinnamic acid, and analyzed by MALDI-TOF mass spectrometry on

an Applied Biosystems Voyager DE Pro instrument.

II.3.6 1H-NMR spectroscopy

For 1H-NMR, samples of purified protein were dissolved in 0.1% DCl in D2O.

Samples of SS-E-Ile (6 mg/L) were prepared in standard tubes (700 µL volume), while

SR-E-Ile samples (4 mg/mL) were prepared in low volumes (300 µL) in solvent-matched

tubes (Shigemi, Inc.).  Spectra were collected on a Varian Inova NMR spectrometer with

proton acquisition at 599.69 MHz and with water suppression by presaturation.

II.4 Results

II.4.1 Synthesis of unsaturated amino acids

Kazmaier has shown that N-benzyloxycarbonylglycine trans-crotyl ester

undergoes a [3,3]-sigmatropic rearrangement [34] to yield Cbz-protected 2-amino-3-

methyl-4-pentenoic acid (E-Ile).  The reaction is stereoselective, giving mainly the SR, RS

pair of stereoisomers (95%).  Because it was of interest to compare the in vivo

incorporation of the two diastereomers SS-E-Ile and SR-E-Ile, we applied the Kazmaier

method also to Cbz-glycine cis-crotyl ester to obtain SS, RR-E-Ile (hereafter referred to as

SS-E-Ile).  The efficiency of rearrangement was lower than for the trans-ester, and the

work-up requires an additional step because of a lower tendency of the SS, RR-E-Ile to

crystallize, which contributed to a lower overall yield for the SS-analogue.  The amino
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Figure II-5.  1H-NMR spectra of a) S S-E-Ile after 1 recrystallization, b) SS-E-Ile after 6

recrystallizations, c) SR-E-Ile after 1 recrystallization, and d) SR-E-Ile after 6 recrystallizations.
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acids were further purified by multiple recrystallizations to give SS-E-Ile (d.e.

= 95 %) and SR-E-Ile (d.e. = 98 %) as determined by 1H-NMR spectroscopy (Figure II-5).

The preparation of 2-amino-3-methyl-4-pentynoic acid was not stereoselective

and gave a complex mixture of the SS, RR, SR, and RS stereoisomers.  Recrystallization

did not succeed in sufficiently separating SS, RR and SR, RS pairs; final products were ss-

Y-Ile (d.e. = 81%) and ss-Y-Ile (d.e. = 60%) (Figure II-6).

Figure II-6.  1H-NMR spectra of a) SS-Y-Ile (d.e. = 81 %) and b) SR-Y-Ile (d.e. = 60%) after

recrystallization.
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II.4.2 Analogue incorporation

II.4.2.1 SS- and SR-Y-Ile

An E. coli strain rendered auxotrophic for isoleucine was used to assay the extent

of in vivo incorporation of isoleucine analogues into mDHFR, a test protein readily

expressed in bacterial cultures.  SDS-PAGE and Western blotting of the total cellular

protein produced in cultures supplemented with both SS-Y-Ile (d.e. = 81%) and SR-Y-Ile

(d.e. = 60%) indicate expression of target protein (Figure II-7).

In the case of both SS- and SR-Y-Ile, MALDI-TOF mass spectra on tryptic

fragments of mDHFR produced in medium supplemented with the analogue show peaks

with the expected mass difference of -4 for each isoleucine in the peptide (Figure II-8).  It

is clear that we are able to incorporate at least one alkyne analogue into proteins in vivo,

but without more careful purification of the stereoisomers it is impossible to say whether

both or only one of these amino acids is translationally active.

Figure II-7. a) SDS-PAGE and b) Western blot of proteins produced in Ile auxotrophic E.

coli cultures supplemented with the 19 amino acids (lacking Ile) and 1) nothing, or 100 mg/L

of 2) Ile, 3) Ile, 4) SR-Y-Ile, or 5) SS-Y-Ile.  A + indicates induction of mDHFR expression;

expression was not induced in lane 2.  A similar amount of mDHFR is produced in cultures

supplemented with SS-Y-Ile (d.e. = 81 %) and in those containing SR-Y-Ile (d.e. = 60%).
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II.4.2.2 SS- and SR-E-Ile

In cultures supplemented with SS-E-Ile (d.e. = 95 %), SDS-PAGE and Western

blotting again indicate that target protein is expressed in amounts comparable to the

positive control (Ile); in contrast, cultures supplemented with SR-E-Ile (d.e. = 98 %)

yielded significantly less protein (Figure II-9).  This result is consistent with either a low

level of translational activity of SR-E-Ile or with incorporation of residual SS-E-Ile in the

amino acid sample.  As discussed below, we believe the latter interpretation is correct.

MALDI-TOF mass spectra on tryptic fragments of mDHFR produced in medium

supplemented with SS-E-Ile (d.e. = 95%) show signals shifted by the expected mass

difference of -2 for each isoleucine residue in the peptide (Figure II-10).  The MALDI

Figure II-8. MALDI-TOF spectra of tryptic fragments of mDHFR produced in medium

supplemented with a) Ile, b) SS-Y-Ile (d.e. = 81 %), and c) SR-Y-Ile (d.e. = 60 %).  Mass shifts

of –4 per Ile residue in the peptide INIVLSR (residues 86 – 92, m/z = 814.5) in panels b) and

c) indicates incorporation of an alkynyl analogue.
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Figure II-9. a) SDS-PAGE and b) Western blot of proteins produced in Ile auxotrophic E. coli

cultures supplemented with the 19 amino acids other than Ile and 1) nothing, or 130 mg/L of 2)

Ile, 3) Ile, 4) norvaline, 5) Val, 6) SS-E-Ile, 7) SR-E-Ile.  A + indicates induction of mDHFR

expression; expression was not induced in lane 2.  Significantly more mDHFR is produced in

cultures supplemented with SS-E-Ile (d.e. = 95%) than in those containing SR-E-Ile (d.e. = 98%).

Figure II-10. MALDI-TOF spectra of tryptic fragments of mDHFR produced in medium

supplemented with a) Ile, b) SS-E-Ile and c) SR-E-Ile.  Mass shifts of –2 per Ile residue in the

peptide INIVLSR (residues 86 – 92, m/z = 814.5) in panel b) indicate incorporation of SS-E-

Ile.  A lesser extent of incorporation of an unsaturated amino acid is also evident in proteins

produced in culture supplemented with c) SR-E-Ile (d.e. = 98%).
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spectra of fragments of target protein expressed in medium containing SR-E-

Ile (d.e. = 98%) also show evidence of incorporation of an amino acid with a mass

difference of -2.  It is apparent that an unsaturated analogue did replace a fraction of

isoleucine in each of these proteins, but of course it is not possible to distinguish between

incorporation of SS-E-Ile and incorporation of SR-E-Ile from these data.

To determine the identity of the unsaturated amino acid that was incorporated into

mDHFR in experiments with the SR-isomer, we purified protein from large-scale

expressions conducted in medium supplemented with 70 mg/L SR-E-Ile (d.e. = 91%);

protein yield was 4.1 mg/L.  The alkene region of the 1H-NMR spectrum of this protein

(Figure II-11a) is identical to that of a protein expressed in medium supplemented with

SS-E-Ile (d.e. = 76%) (Figure II-11b).  In the amino acid spectra, the multiplet assigned to

the internal alkene proton, Hi, is sensitive to stereochemistry; the chemical shift of this

Figure II-11.  1H-NMR spectra of mDHFR produced in medium supplemented with a)

SS-E-Ile (d.e. = 76%) and b) SR-E-Ile (d.e. = 91%).  Spectra of mDHFR containing only

canonical amino acids show no peaks in this region.
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proton differs by 0.1 ppm for the SS- and SR-isomers.  We find it unlikely that

this resonance would lose its sensitivity to stereochemistry in the protein context.  We

conclude that SR-E-Ile is a poor substrate for IleRS and that it is unable to compete with

residual SS-isomer with respect to in vivo incorporation into proteins under the conditions

used here.

To determine the extent of incorporation of ss-E-Ile, we prepared mDHFR in

cultures supplemented with different levels of the analogue.  SDS-PAGE and Western

blotting of the total cellular protein produced in cultures supplemented with increasing

concentrations of once-recrystallized SS-E-Ile (d.e. = 68 %) indicate increasing levels of

target protein expression (Figure II-12).  Integration of 1H-NMR spectra of mDHFR

produced in large-scale expressions in medium supplemented with 25 mg/L or 125 mg/L

SS-E-Ile (d.e. = 76%) indicate levels of replacement of isoleucine by analogue of 63%

and 72%, respectively.  Protein yields are 12 and 22 mg/L, respectively.

Figure II-12. a) SDS-PAGE and b) Western blot of proteins produced in Ile auxotrophic E.

coli cultures supplemented with the 19 amino acids other than Ile and 1) nothing, 2) 25 mg/L

Ile, 3) 25 mg/L Ile, 4) 25 mg/L ss-E-Ile, 5) 50 mg/L ss-E-Ile, and 6) 125 mg/L SS-E-Ile.  A +

indicates induction of mDHFR expression; expression was not induced in lane 2.  mDHFR is

produced in cultures supplemented with all concentrations of SS-E-Ile (d.e. = 68 %) in this

range.
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II.4.3 Kinetics of Activation of E-Ile by IleRS

The activation of the analogues by IleRS in vitro was investigated by ATP/PPi

exchange.  Interestingly, SS-E-Ile was activated as fast as (or somewhat faster than) the

natural substrate, Ile (kcat/KM = 0.30 µM-1 s-1) [42], while SR-E-Ile was activated 40-fold

more slowly than Ile (Table II-1).  Because of the ~100-fold difference in the rates of

activation of the SS- and SR-isomers, it not surprising that residual SS-E-Ile in the sample

of the SR-isomer is responsible for the small amount of mDHFR produced in medium

supplemented with SR-E-Ile (d.e. = 98 %).

II.5 Discussion

Incorporation of amino acids analogues into proteins in vivo requires that the

analogues (i) cross the cellular membrane; (ii) be charged to one or more tRNA(s); (iii)

and be delivered to the growing end of the polypeptide chain.  Our work indicates that

none of these steps precludes efficient incorporation of at least one stereoisomer of both

2-amino-3-methyl-4-pentynoic acid (Y-Ile) and 2-amino-3-methyl-4-pentenoic acid (E-

Ile).  In the case of the alkene analogue, we show that the SS-isomer is greatly preferred

Table II-1.  Kinetics of Activation E-Ile by IleRS

analogue Vmax (M s-1) KM (µM) kcat (s
-1) kcat/KM (µM-1 s-1) Relative to Ile

SS-E-Ile 2.04 x 10-7 32.9 ± 13 20.35 ± 0.23 0.756 ± 0.32 2.5

SR-E-Ile 4.54 x 10-8 432 ± 101 4.53 ± 0.51 0.026 ± 0.0013 1/40

Ile 2.5 x 10-7 58.2 ± 7.6 17.5 ± 4.5 0.3 ± 0.14 1
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over the SR-isomer by the natural biosynthetic machinery of E. coli; indeed,

we find no conclusive evidence of translational activity for SR-E-Ile.

Following cellular uptake and activation, the analogue must circumvent the

editing pathways that normally limit misacylation of tRNAs.  The selectivity (s) of an

aaRS toward an amino acid is defined as the ratio of the rate of editing to the rate of

activation [21].  The editing mechanism of E. coli isoleucyl-tRNA synthetase (IleRS) has

been extensively studied [43, 44], and its selectivity for natural amino acids is high,

ranging from s = 6000 for valine to s = 8.5 x 106 for alanine [21].  IleRS possesses two

active sites:  a synthetic site for binding of the amino acid prior to activation through

formation of the aminoacyl adenylate and an editing site for removal of amino acids

smaller than isoleucine (which fit into the editing pocket) [22, 23].  The SS-analogues

tested in this study appears to circumvent the editing mechanism of IleRS, possibly

because they are too large to fit into the editing site.

Our results show that IleRS is sensitive to stereochemistry at the β-carbon of E-

Ile; only the SS-isomer of the isoleucine analogue is incorporated into protein at a

measurable rate, and it is activated by the IleRS ~100-fold more rapidly than SR-E-Ile.

This result is in agreement with previous binding studies that demonstrated that L-2-

amino-3S-methylhexanoic acid binds preferentially to IleRS (Ka = 20 mM-1); its

diastereomer L-2-amino-3R-methylhexanoic acid binds to the enzyme with much a lower

affinity (Ka = 0.6 mM-1) [45].  It is also consistent with the fact that IleRS distinguishes

L-isoleucine from L-allo-isoleucine [25, 27, 46].  Our data do not preclude the

possibility, however, that discrimination between the SS- and SR-analogues occurs not in
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the synthetic active site of IleRS but rather during some other translational

step, such as editing by IleRS or binding to elongation factor-Tu or the ribosome.

Finally, the efficiency of substitution of SS-E-Ile and Y-Ile for Ile in recombinant

proteins provides a simple and useful method for the incorporation of terminal double

and triple bonds into proteins, giving the chemist access to versatile functional groups in

proteins and protein-based materials.
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CONTROLLED DEGRADATION OF A CELL-ADHESIVE, ELASTOMERIC
PROTEIN THROUGH INCORPORATION OF A FLUORINATED AMINO ACID*

III.1 Abstract

The design of biomaterials with controlled mechanical, cell-adhesive, and

degradative properties is a common goal in tissue engineering and drug delivery systems.

Towards this goal, a series of protein-based biomaterials were synthesized in an

engineered bacterial production system.  These modular proteins include domains from

fibronectin that are known to adhere endothelial cells and elastin-derived repeating units

to provide mechanical integrity.  Fluorination of the protein by in vivo replacement of the

amino acid isoleucine with the noncanonical amino acid 5,5,5-trifluoroisoleucine (5TFI)

resulted in a tenfold decrease in degradation by the enzyme human leukocyte elastase

compared to non-fluorinated protein.  However, even after significant fluorination, the

materials retain their ability to adhere endothelial cells in a sequence-specific manner.

Incorporation of a noncanonical amino acid, without requiring a change in the encoding

genetic sequence, represents a novel strategy to tune the rate of degradation of protein-

based biomaterials without compromising cell adhesion.

*Manuscript prepared for submission by Sarah C. Heilshorn,* Marissa L. Mock,* and

David A. Tirrell.

*These authors contributed equally to this work.
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III.2 Introduction

Genetic engineering techniques allow the templated production of protein

polymers with precisely controlled sequence, molecular weight, and functionality using

microbial biosynthesis.  Such techniques have been employed in the de novo design and

synthesis of engineered proteins with a variety of novel physical and biological activities

[1-8].  These materials have demonstrated potential in tissue engineering and

reconstruction and drug delivery.

Elastin-like domains are of particular interest for engineered, protein-based

biomaterials due to their high expression levels, ease of purification, biocompatibility,

and tunable mechanical properties [9-14].  The extensive work of Urry and coworkers on

the family of elastin-like polypentapeptides (VPGZG)x, where Z is any amino acid,  has

shown that the hydrophobicity of the biopolymer can be used to tune the lower critical

solution temperature (LCST) [15, 16].  Polymers are soluble at temperature below the

LCST but phase separate into a polymer-rich coacervate as the temperature is increased.

This LCST phase transition allows straightforward purification of elastin-like polymers

after biosynthesis using a simple thermal cycling technique.

We have employed this method to purify a set of engineered proteins designed for

use as implantable biomaterials.  The protein sequences (Figure III-1) are a result of a

modular design incorporating domains from fibronectin to adhere endothelial cells [10,

11], which are important for a healthy vasculature, and elastin-like domains to provide

mechanical integrity [17, 18].  Sequence CS5 contains the authentic cell-binding domain,

which adheres human umbilical vein endothelial cells (HUVEC) in a sequence-specific
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manner [11].  As a negative control, sequence SC5 contains a scrambled cell-

binding domain incapable of promoting sequence-specific HUVEC adhesion [19].

Figure III-1.  Amino acid sequences of the engineered proteins.  Each protein has three cassettes

of a cell-binding domain interspersed with an elastin-like domain.  Protein CS5 contains the

authentic CS5 binding domain[11] while SC5 contains a negative control, scrambled domain.

Proteins CS5-F and SC5-F are identical to CS5 and SC5, except they are synthesized in medium

supplemented with 5TFI.

Depending on the specific medical application, e.g., drug delivery or tissue

regeneration, the success of implanted biomaterials will depend on optimization of the in

vivo degradation characteristics.  Often, it is desirable to combine multiple degradation

rates in one material.  For example, a single system could combine rapid delivery of a

pharmaceutical along with sustained release of growth factors for cell infiltration.

Protein-based materials are degraded by a class of enzymes called proteases; however,

native elastin is resistant to many of these proteases with the notable exception of elastase

[20].  Human leukocyte elastase (HLE) is the predominant form of this protease that

circulates the body in the blood stream [21].  HLE preferentially cuts after small,

hydrophobic amino acids, and previous work in our laboratory showed that HLE prefers

to cut after isoleucine in protein CS5 .  We hypothesized that we could alter the

Proteins CS5 (I=isolecuine) and CS5-F (I=5TFI):
M-MASMTGGQQMG-HHHHHHH-DDDDK-{LD-GEEIQIGHIPREDVDYHLYP-G[(VPGIG)2VPGKG(VPGIG)2]4VP}3-LE

Proteins SC5 (I=isolecuine) and SC5-F (I=5TFI):
M-MASMTGGQQMG-HHHHHHH-DDDDK-{LD-GEEIQIGHIPREVDDYHLYP-G[(VPGIG)2VPGKG(VPGIG)2]4VP}3-LE

T7 tag His tag Cleavage
site

CS5 binding domain Elastin-like domain

T7 tag His tag Cleavage
site

Scrambled CS5 binding domain Elastin-like domain
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degradation properties of this engineered protein by replacing isoleucine with

a noncanonical amino acid.

The introduction of functional groups not contained within the 20 canonical

amino acids into proteins is a valuable tool for the protein engineer, providing access to

new chemical reactivity [22-26] and physical properties [27-31].  In many cases it is

desirable to retain the biological activity of a protein upon introduction of these novel

properties, requiring minimal disruption of the active, folded structure and making

fluorinated amino acids of special interest.  While fluorine is similar in size to hydrogen,

the hydrophobicity of the CF3 group is higher than the CH3 group due to the low

polarizability of fluorine [32], giving fluorination of proteins the potential to dramatically

change physical properties of the protein without impairing its biological function [31,

33].  The ability to tune the rate of degradation of a biomaterial by varying the extent of

incorporation of a noncanonical amino acid without requiring a change in the encoding

genetic sequence would provide powerful control in target applications ranging from

drug delivery to tissue engineering.

III.3 Methods

III.3.1 5,5,5-Trifluoroisoleucine (5TFI) synthesis and purification

5TFI was synthesized as previously described [33, 34] with minor modifications.

Stereochemical purity was assessed by HPLC on a CROWNPAK CR (+) chiral column

(Chiral Technologies, Inc.) with 1% perchloric acid/0.3% trifluoroacetic acid as the

mobile phase.  The crude product was a mixture of equal parts of the four stereoisomers
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of 5TFI (D, L-, D-allo, L-allo-5TFI).  It was recrystallized 3 times from 20%

aqueous ethanol; in the final crystals only 1.7 % L-allo-5TFI remained.

The mixture of L- and D-5TFI was acetylated.  D, L-5TFI (2.0 g, 0.013 mol) was

suspended in 7 mL of 2 N NaOH and stirred in an ice bath.  Another portion of 2 N

NaOH (6 mL) and acetic anhydride (0.6 mL) were added.  This addition was repeated 8

times at 2-minute intervals.  The resulting clear solution was kept cold and stirred for 2 h

before being neutralized with 18 mL of 6 N H2SO4.  The solution was extracted with

ether (3 x 50 mL), and the ether was dried over sodium sulfate and evaporated under

vacuum.  The yellow oil obtained was recyrstallized from 1:1 ethyl acetate:hexane,

yielding 1.5 g white, crystalline N-acetyl-D, L-5TFI (74%).

N-acetyl-D, L-5TFI was enzymatically deacetylated to give pure L-5TFI.  The

acetylated amino acid (1.5 g, 0.0098 mol) was dissolved in 400 mL of 100 mM KH2PO4

(pH 7).  Acylase I from porcine kidney (Sigma, 10 mg) was added, and the reaction was

incubated at 37°C and followed by thin layer chromatography (4:1:1 n-butanol:acetic

acid:water) with ninhydrin detection.  When the concentration of free amino acid was no

longer increasing (3 – 4 days), the reaction was acidified to pH 5 with concentrated HCl,

filtered through a 0.22 µm filter, acidified further to pH 2, and extracted with ethyl

acetate (3 x 75 mL).  Evaporation of the ethyl acetate layer gave N-acetyl-D-5TFI.  The

aqueous layer was evaporated under vacuum, and the residue was taken up in methanol

and filtered to remove a large portion of salt.  The methanol was evaporated and the

residue was dissolved in 100 mL of 0.1 N HCl and applied to an ion exchange column

(Dowex 50WX4-100, Sigma).  L-5TFI was eluted with 1 N NH4OH and obtained as a

white powder upon evaporation of the eluent under vacuum (150 mg, 10%).  The final
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product, by HPLC, is 2.7 % L-allo-5TFI and 3.2 % D-amino acid (a mixture

of D-5TFI and D-allo-5TFI, which do not separate under the HPLC conditions

employed).

III.3.2 Protein expression and purification

Proteins CS5 and SC5 were expressed as previously described [11].  To express

proteins CS5-F and SC5-F, a competent isoleucine auxotrophic derivative of E. coli

strain BL21(DE3), designated AI (E. coli B F- ompT hsdS(rB
- mB

-)gal dcm λ(DE3)

ilvD691), constructed in our laboratory [33] and harboring the plasmid pLysS (Qiagen),

was transformed with, respectively, the plasmids pET28-CS5 and pET28-SC5 [17] to

yield strains AI-pET28-CS5 and AI-pET28-SC5.  To express proteins from these strains,

a culture was grown overnight in 2xYT medium and used to inoculate 1 L of M9AA

medium supplemented with the antibiotics chloramphenicol and kanamycin.  At an OD600

of 0.8-1.0, the M9AA cultures were induced by adding 1 mM IPTG.  After 20 additional

minutes of growth, the cells were washed twice with 0.9% NaCl and resuspended in M9

medium containing 19 amino acids (excluding isoleucine) to a final volume of 1 L.  The

cultures were supplemented with 400 mg/L of 5TFI (effectively 100 mg/L of L-5TFI)

and grown for 2 h.  Fluorinated proteins were purified by Ni-affinity chromatography

using Qiagen Ni-NTA agarose resin.  Purity was assessed by SDS-PAGE and Western

blotting with anti-T7 tag-horseradish peroxidase conjugate antibody (Amersham).  Level

of 5TFI incorporation was assessed by amino acid analysis at the University of

California, Davis Molecular Structure Facility (Beckman 6300 amino acid analyzer).
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3.2. Tryptic digest/MALDI

Purified proteins CS5-F and SC5-F were incubated with trypsin (50 mM

ammonium bicarbonate buffer, overnight, room temperature).  The proteolysis products

were purified by eluting from a C18 ZipTip (Millipore) with 75:25 acetonitrile:0.1%

trifluoroacetic acid, spotted on an analysis plate at 4°C, and analyzed by MALDI-TOF

mass spectrometry on an Applied Biosystems Voyager DE Pro instrument.

III.3.3 LCST measurement

The LCST of proteins CS5 and CS5-F was measured at 10 mg/ml in phosphate

buffered saline (PBS), pH 7.4, by increasing the temperature at a rate of 30°C/h and

measuring the percent transmission (measured in volts) at 300 nm on an Aviv model

62DS spectrophotometer (Lakewood, NJ).

III.3.4 Analysis of elastase degradation

For quantification of full-length chains, the degradation reaction was carried out

at 37°C for 3 days in sodium borate buffer, pH 8, with 0.22 µM human leukocyte elastase

(HLE, Elastin Products Company, Owensville, MO) and 100 µM protein.  Samples were

taken at 0, 1, 3, 6, 12, 24, 48, and 72 h and diluted with an equal amount of 2x SDS-

sample buffer with β-mercaptoethanol and frozen at -20°C.  Samples were boiled for 5

min, run on a 12% Tris-tricine gel at 150 V for 1 h, and transferred to poly(vinylidene

fluoride) (PVDF) membrane for Western blot analysis using an anti-T7 tag-horseradish

peroxidase conjugate antibody (Amersham) with a 10 second exposure.  Densitometry

was performed on Western blots using Image J (National Institutes of Health freeware

image analysis program) to quantify the amount of whole-length protein remaining at
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each time point.  Control curves run in parallel indicated a linear relationship

between protein concentration and Western blot intensity for both CS5 and CS5-F

(supporting information, Figure III-8).

For quantification of the number of cleaved peptide bonds, the degradation

reaction was carried out at 37°C in sodium borate buffer, pH 8, with 0.22 µM HLE and

50 µM protein under constant mixing.  The extent of reaction was characterized using

2,4,6-trinitrobenzene sulfonic acid at 4°C to quantify the number of N-termini in solution

at 4 h.

III.3.5 Cell adhesion

Human umbilical vein endothelial cells (HUVEC, Bio Whittaker) were

maintained in a 37°C, 5% CO2 humidified environmental chamber.  The cells were

grown in Endothelial Growth Medium-2 (5% serum, Bio Whittaker), which was replaced

every two days.  Near confluent HUVEC cultures were passaged non-enzymatically by

treatment with 0.61 mM EDTA (Gibco).  Passages 2-5 were used.

Solutions of engineered proteins (1 mg/ml in PBS) and fibronectin (10 µg/ml in

PBS) were adsorbed onto tissue culture polystyrene overnight at 4°C.  Surfaces were

rinsed with PBS, blocked with 0.2% heat-inactivated bovine serum albumin (BSA

fraction V, Sigma) for 30 minutes, and rinsed.

HUVEC in suspension were labeled with a 5-µM solution of calcein

acetoxymethyl ester (Molecular Probes) in serum-free Endothelial Basal Medium (EBM,

Cell Applications, San Diego, CA) at room temperature for 30 min.  Cells were rinsed

twice and resuspended in EBM at 2.67x105 cell/ml.  Cells (150 µl/well) were added to
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adsorbed protein substrates in 96-well plates and incubated for 30 min.  A

solution of 21% w/w PercollTM (Sigma) and PBS was added (200 µl/well) and plates

were centrifuged at 100g for 10 min.  Non-adherent cells were removed using harvesting

frames (Molecular Devices) with the filters removed.  PBS (100 µl/well) was added and

fluorescence was measured using a Perkin Elmer HTS 7000 Bio Assay Reader at an

excitation of 485 nm and emission of 538 nm.  A cell adhesion index was calculated as

the fluorescence reading of a test well divided by the fluorescence reading of HUVEC

attached to fibronectin subjected to 1 g.  The detachment force applied was estimated to

be 26 pN using Archimedes’ theorem [19].

III.4 Results and discussion

III.4.1  Protein synthesis and characterization

Using an engineered bacterial strain, the genetic message encoding the CS5

protein can be alternatively read to produce protein CS5-F, a fluorinated version of CS5.

The high isoleucine content of the CS5 protein permits extensive fluorination through

incorporation of the noncanonical amino acid 5TFI, which has demonstrated levels of

isoleucine replacement from 85 – 93% in bacterial systems [33].  5TFI was prepared as

previously reported [33, 34] and used to express proteins CS5-F and SC5-F with yields

of 0.83 mg/g and 0.71 mg/g wet cell mass, respectively.  Nickel column purification

yielded 5.4 mg pure CS5-F and 3.6 mg pure SC5-F from 1 L shake-flask fermentations.

In contrast, proteins CS5 and SC5 express well and are easily purified using the thermal

cycling technique to provide multi-gram quantities [17, 19].  Typical yields are 2-5 g pure
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protein from 10 L batch fermentations.  Further optimization is required to

synthesize the fluorinated proteins above milligram yields.

To confirm the replacement of isoleucine with 5TFI, the engineered proteins were

digested with the protease trypsin to yield protein fragments of predicted sequence, which

were then analyzed by MALDI-TOF mass spectroscopy (Figure III-2).  The peak at

approximately 2576 Da has been assigned to two proteolytic fragments consisting of

residues 136-161 and 262-286.  These identical fragments contain five potential

isoleucine replacement sites.  Accordingly, the higher mass peaks are assigned to

fragments with incorporation of one, two, three, four, and five 5TFI residues, each with a

shift of 53.88 Da corresponding to the mass difference between isoleucine and 5TFI.

Subsequent amino acid analysis reported 5TFI replacement of 82% of isoleucine residues

2550 2650 2750 2850

+ 1 5TFI

+ 2 5TFI

+ 3 5TFI

+ 4 5TFI

Residues 136-161, 261-286
GVPGIGVPGIGVPLDGEEIQIGHIPR

2576.12

a.
+ 5 5TFI

2550 2650 2750 2850

Residues 136-161, 261-286
GVPGIGVPGIGVPLDGEEIQIGHIPRb.

2576.80

+ 1 5TFI

+ 2 5TFI

+ 3 5TFI

+ 4 5TFI

+ 5 5TFI

Figure III-2.  MALDI-TOF of tryptic digest fragments of a) CS5-F and b) SC5-F.  The

expected mass of the unsubstituted peptide fragments comprising residues 136-161 and

261-286 = 2576.  Peaks are apparent at masses expected for replacement of 1 through 5

isoleucines with 5TFI.
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in CS5-F and 92% in SC5-F.  This is consistent with results from previous

studies demonstrating high incorporation efficiency of 5TFI into recombinant proteins

[33].

We were interested in the effect of fluorination on the thermodynamic phase

behavior of these proteins, as they are commonly purified through thermal cycling [7, 9].

As discussed above, proteins with elastin-like domains are known to exhibit an inverse

temperature transition that is affected by the identity of the amino acid in the Z position

[15, 16, 30, 35].  Relative to the most common pentapeptide repeat in bovine and porcine

elastin, VPGVG [36, 37], the LCST is lowered when the amino acid occupying the Z

position is more hydrophobic than valine and raised when Z is more hydrophilic.  As

expected, introducing the highly hydrophobic amino acid 5TFI into the Z position of the

elastin-like domain results in a decrease of the LCST by more than 20°C (Figure III-3).
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Figure III-3.  Replacement of 82% of the isoleucine residues in CS5 with a fluorinated

amino acid (CS5-F) decreases the LCST by 20°C, as evidenced by the turbidity of a 10

mg/ml in PBS solution, pH 7.4.
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Therefore, the LCST of elastin-like proteins can be tuned by incorporation

of fluorophilic 5TFI side chains, which may aid in optimization of thermal cycling

purification techniques.

III.4.2 Protein degradation

Previous work in our laboratory has identified isoleucine as the favored HLE cut-

site in these engineered, elastomeric proteins (S. C. Heilshorn, P. J. Nowatzki, T.

Yamaoka, and D. A. Tirrell, manuscript in preparation).  Therefore, incorporation of

5TFI into the isoleucine position was explored as a method to enhance HLE resistance.

Due to the low expression levels of CS5-F, full kinetic analysis of the degradation

reaction on the fluorinated protein was not possible.  However, previous research in our

laboratory has demonstrated that degradation of CS5 follows traditional Michaelis-

Menten kinetics with a catalytic constant, kcat, of 0.033 s-1 and a Michaelis constant, Km,

of 2451 µM (supporting information, Figure 1II-7).  Using these parameters, it is possible

to predict the degradation rate of CS5 and CS5-F, assuming that only the peptide bonds

following isoleucine residues can be cleaved.  The actual number of cleaved bonds in a

reaction mixture can be quantified using 2,4,6-trinitrobenzene sulfonic acid to detect the

concentration of N-termini.  After 4 h of HLE degradation, 90% fewer peptide cleavages

were observed on the fluorinated protein compared to the non-fluorinated protein (Figure

III-4).  These experimental results were in good agreement with the values predicted

using the Michaelis-Menten model, which supports the assumption that HLE can only

cleave peptide bonds following isoleucine in the fluorinated elastomer.
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Figure III-4.  HLE degradation of CS5-F produces 90% fewer new N-termini per original

molecule than CS5 after 4 h of reaction.  Observed data represent two independent experiments,

both testing three replicates of each substrate; error bars represent one standard deviation.

Predicted data are based on the assumption that the reactions follow Michaelis-Menten kinetics

and only the peptide bonds following isoleucine residues can be cleaved.

To examine the time course of degradation of CS5 and CS5-F, Western analysis

was used to determine the amount of full-length, intact protein remaining after HLE

exposure for various times, and densitometry was employed to quantify the percent of

full-length protein remaining at each time point (Figure III-5).  Incorporation of 5TFI into

the elastin-like protein significantly inhibited elastase activity.  At 6 h, 46% of CS5-F

remained intact, compared to 0% of CS5.  Furthermore, full-length CS5-F was still

detectable after 24 h exposure to HLE.  Similar to the analysis performed above, the

degradation reaction rates can be predicted using the Michaelis-Menten parameters for

peptide cleavage after isoleucine residues.  Using the simple assumption that each peptide

cleavage results in the loss of one full-length protein chain, the predicted degradation

rates for CS5 and CS5-F are in good agreement with the observed values.
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Figure III-5.  HLE degradation of protein was monitored by Western blot and quantified using

densitometry analysis of CS5 () and CS5-F () protein.  No full-length CS5 was observed

after 6 h, while nearly half of CS5-F is still intact. The rate of chain degradation was predicted for

CS5 (dashed line) and CS5-F (solid line) using Michaelis-Menten parameters for the cleavage of

peptide bonds after isoleucine residues.

III.4.3 Endothelial cell adhesion

We also investigated the ability of the fluorinated proteins CS5-F and SC5-F to

promote cell adhesion.  CS5 was previously reported to be adherent to HUVEC in a

sequence-specific manner [11].  Such adhesion is mediated through interactions with the

REDV minimal binding sequence within the CS5 cell-binding domain.  We wished to

confirm that sequence-specific HUVEC adhesion would not be compromised by

significant fluorination of the elastin-like regions.  The ability of these engineered

proteins to adhere HUVEC was examined using a buoyant centrifugation assay (Figure

III-6).  At a detachment force of 24 pN, protein CS5-F exhibited HUVEC adhesion

greater than that of protein CS5 and negative control proteins SC5-F and SC5, which

contain scrambled cell-binding domains.  Adhesion to fibronectin, which contains

multiple cell-binding domains, was included as a positive control.
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Figure III-6.  Percent of HUVEC remaining adherent to adsorbed fibronectin and engineered

proteins after 10 min exposure to 24 pN detachment force (100 g) relative to HUVEC remaining

on adsorbed fibronectin after 10 min exposure to 0.24 pN (1g).  Data represent three independent

experiments in which six replicates of each substrate were tested; error bars represent one

standard deviation.

These results suggest that 5TFI incorporation into these artificial proteins does not

inhibit sequence-specific HUVEC binding.  Therefore, fluorination of this engineered

protein can successfully alter the thermodynamic behavior and proteolytic susceptibility

without impairing the desired biological activity.  While the observed increase in

HUVEC adhesion to the fluorinated protein CS5-F relative to the non-fluorinated protein

CS5 is interesting, these results require further investigation.  Ongoing research in our

laboratory has shown similar context-dependence of adhesion strength to engineered

proteins containing the CS5 domain.

We have demonstrated the ability to control the rate of proteolysis of elastin-like

biomaterials through the incorporation of a noncanonical amino acid.  From a single

genetic message, two protein-based materials with varying degree of fluorination were

created.  Fluorination of the engineered elastomer retards elastase degradation of the
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protein while also altering the thermodynamic phase behavior.  The ability

of the material to adhere endothelial cells through the sequence-specific interaction with

the CS5 cell-binding domain is unaffected.  Residue-specific incorporation of

noncanonical amino acids into proteins is an additional tool for the biomedical engineer

in the attempt to precisely control the material properties and biological activity of

protein-based biomaterials.
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III.5 Supporting information

Figure III-7.  Kinetic analysis of HLE degradation of CS5.  Error bars represent a 90%

confidence interval.  The dashed line represents a best fit of the observed data to the Michaelis-

Menten kinetic model.

Figure III-8.  Control curves for densitometry analysis of Western blots for CS5 () and CS5-F

() with best-fit lines.  Band intensity showed a linear increase with concentration up to 1 mM

for both proteins.
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C h a p t e r  I V

C h a p t e r  I V  C h a p t e r  V I

LITHOGRAPHIC PATTERNING OF AN INTRINSICALLY PHOTOREACTIVE
CELL-ADHESIVE PROTEIN*

IV.1 Abstract

This chapter describes a novel, simple method for the photolithographic

patterning of cell-adhesive proteins.  Intrinsically photoreactive proteins are synthesized

in Escherichia coli (E. coli) through incorporation of the noncanonical photoactive amino

acid para-azidophenylalanine.  Upon ultraviolet irradiation at 365 nm, proteins form

crosslinked films with elastic moduli that can be tuned by varying the concentration of

photoreactive amino acid in the expression medium.  Films of these proteins can be

directly patterned using standard photolithographic techniques.  Processing of irradiated

films is performed under mild aqueous conditions, allowing these proteins to retain

biological activity.  We demonstrate the utility of this method of protein patterning by

creating stable arrays of endothelial cells on an engineered protein “photoresist.”

*Reproduced in part with permission from the Journal of the American Chemical Society,

submitted for publication:  Isaac S. Carrico, Sarah C. Heilshorn, Marissa L. Mock, Julie

C. Liu, Paul J. Nowatzki, Stacey Maskarinec, Christian Franck, Guruswami

Ravichandran, David A. Tirrell, Lithographic Patterning of Intrinsically Photoreactive

Cell-Adhesive Proteins.  Unpublished work copyright 2005 American Chemical Society.
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IV.2 Introduction

Control of the spatial arrangement of proteins on surfaces is an essential factor in

a number of emerging biotechnologies.  Defining the location of specific proteins on the

micro- or nanoscale improves the quality of protein microarrays, increases the sensitivity

of biosensors [1, 2], and allows tissue engineering scaffolds to interact with multiple cell

types [3].  Patterning is also a powerful tool in cell biology, where cell arrays are used to

elucidate key factors that mediate migration, growth, and cell-cell interactions [4-6].

Although photolithography holds a preeminent place as a method to create

patterns in the microelectronics industry, optical lithography of proteins has been

hampered by the need either to use traditional chemical photoresists or to modify proteins

chemically by attachment of photoactive functional groups; both methods can

compromise protein function [7].  To circumvent these issues, new techniques such as

microcontact printing and dip-pen nanolithography have emerged that allow direct

placement of adhesive proteins or peptides on a surface [8, 9].  Despite these advances,

the hallmarks of photolithography — high registry, throughput, and fidelity — are not yet

matched by current methodologies.

Production of a protein “photoresist” without the need for post-translational

chemical modification would require an intrinsically photoreactive protein.  Recently, the

incorporation of photoreactive noncanonical amino acids into proteins has been reported

using both site-specific [10, 11] and residue-specific techniques [12].  Here we describe

the microbial expression of artificial protein bearing the photosensitive noncanonical

amino acid para-azidophenylalanine (pN3Phe).  Aryl azides have been previously shown
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to mediate crosslinking efficiently in sensitive biological systems [13].  The

recombinant proteins, designated artificial extracellular matrix proteins with aryl azides

(aECM-N3), belong to a family of engineered proteins designed to exhibit mechanical

properties similar to those of native elastins [14], and to support adhesion of endothelial

cells through a cell-binding domain derived from the CS5 region of fibronectin (Figure

IV-1a) [15].  We demonstrate that these proteins can be efficiently crosslinked upon

irradiation at 365 nm.  The physical properties of the crosslinked films can be tuned by

changing the extent of pN3Phe incorporation, which is accomplished simply by changing

the concentration of the noncanonical amino acid in the expression medium.

Furthermore, thin films of such proteins can be patterned on surfaces using simple

photolithographic techniques.  We demonstrate the utility of the method by creating cell

arrays through endothelial cell attachment to lithographically prepared protein patterns.

IV.3 Methods

IV.3.1 Protein expression

Samples of aECM-N3 were expressed using a phenylalanine auxotrophic

derivative of E. coli strain BL21(DE3), designated AF-IQ [16] and harboring the plasmid

pNS-CS5-ELF [17], which encodes both the desired aECM sequence and the phes* gene

for the A294G mutant E. coli PheRS.  To express proteins from these strains, a culture

was grown overnight in 2xYT medium and used to inoculate 1 L of M9AA medium

supplemented with the antibiotics chloramphenicol and kanamycin.  At an OD600 of 1.0,

expression of target protein and T7 RNA polymerase was induced by adding 1 mM

IPTG.  After 10 additional minutes of growth, the cells were washed twice with 0.9%
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NaCl and resuspended in M9 medium containing 19 amino acids (excluding

phenylalanine) to a final volume of 1 L.  The cultures were supplemented with either 25

mg/L phenylalanine (positive control) or up to 250 mg solid pN3Phe and grown for 4 h.

Protein expression was monitored by SDS-PAGE and Western blotting with anti-T7 tag-

horseradish peroxidase conjugate antibody (Amersham).

IV.3.2 Protein purification

The aECM-N3 protein was purified using a modified temperature cycling

procedure previously described for elastin-containing aECM constructs [18, 19].

Expression cultures were pelleted at room temperature (10000g, 10 min, 25°C),

resuspended in 20 mL of TEN buffer (10 mM Tris, 1 mM EDTA, 0.1 M NaCl) by

sonication with a probe sonicator, and frozen at –20°C.  To frozen lysate, 1 mM PMSF

and 10 µg/mL each of DNase and RNase was added.  This mixture was agitated for 4 h at

37°C and then centrifuged at room temperature (22000g, 60 min, 25°C), which is above

the expected lower critical solution temperature of aECM-N3.  The target protein was

extracted from the pellet by stirring overnight in 4 M urea at 4°C.  This suspension was

centrifuged (22000g, 60 min, 2°C), and the supernatant was dialyzed in 12-14 kD

MWCO dialysis tubing against cold (4°C) distilled water for three days with six water

changes.  Precipitate formed during dialysis was removed by centrifugation (22000g, 60

min, 2°C).  The supernatant, which contained aECM-N3, was lyophillized.
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IV.3.3 1H-NMR of aECM-N3

Purified aECM-N3 proteins were lyophilized completely and dissolved in DMSO-

d6 at 40 mg/mL.  Spectra were collected on a Varian Inova NMR spectrometer with

proton acquisition at 599.69 MHz

IV.3.4 FTIR spectroscopy

Infrared spectra were taken using a Perkin Elmer 1600 series FT-IR.  Protein

samples were drop-cast onto zinc selenide wafers from DMSO. To measure azide

decomposition kinetics, a 10% aECM-N3 solution in DMSO was spun onto a ZnSe

crystal at 2000 rpm for 100 seconds.  The resulting film was dried for 2 minutes at 50°C.

Films were irradiated at 365 nm through at transparent mask in a Karl Suss mask aligner

to mimic the protein lithography conditions.  Infrared spectra were taken of the irradiated

film at various time points until the azide peak was no longer changing.

IV.3.5 Mechanical testing of bulk films

Flims were prepared by drying aECM-N3 solutions (10 wt % in DMSO) at 50°C

overnight in Teflon molds followed by irradiation for 30 s approximately 8 inches from

an unfiltered Oriel 100W medium pressure mercury lamp.  The crosslinked samples were

removed from the mold and immersed in 4°C water overnight to fully hydrate.  Swollen

flims were cut into testing strips of approximately 3 mm x 10 mm.

Tensile testing was performed using an Instron device with a constant strain rate

of 10 % per minute on films equilibrated in a bath of PBS buffer at 37°C.  Elastic
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modulus (E) was obtained from the slope of the steepest part of the initial

plot.  Each protein sample was tested 3-6 times.

IV.3.6 Preparation of aminated glass surfaces

Glass coverslips were sonicated for 15 min in a saturated solution of potassium

hydroxide in ethanol.  Clean coverslips were rinsed under a stream of filtered (0.2 µm)

doubly distilled water followed by a stream of ethanol, dried briefly with canned air, and

then dried at 50°C for 30 min.  Dried coverslips were immersed for 30 min in a freshly

prepared solution of 1 mL 3-(trimethoxysilylpropyl)diethylenetriamine (DETA), 2.5 mL

acetic acid, and 46.5 mL filtered water (2 % DETA in 5% acetic acid).  Aminated

coverslips were rinsed under a stream of water, rinsed under a stream of ethanol, dried

with canned air, and cured for 4 h at 50°C.

IV.3.7 Preparation of PEG-modified slides

Aminated coverslips were placed in a covered dish containing a reservoir of

pyridine.  The coverslips were covered dropwise with a 100 mM solution of PEG-SPA-

5000 (Nektar Therapeutics) in pyridine.  After 12 h, the PEGylated coverslips were

rinsed under a stream of water, rinsed under a stream of ethanol, dried with canned air,

and used immediately.

IV.3.8 Spin coating of protein films

A 12.5 mg/mL solution of aECM-N3 in DMSO was centrifuged for 1 min at

14000 rpm.  This solution was added dropwise to cover the top of a PEGylated 12 mm

circle glass coverslip (~8 µL). The coverslip was spun for 100 s at 1400 rpm on a
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Specialty Coating Systems model P-6000 spin coater.  Protein-coated slides

were dried at 50°C for 30 min.  Exposure of protein to sunlight was avoided until protein

photolithography was complete.

IV.3.9 Protein lithography

Protein-coated slides were exposed for 30 s in a Karl Suss mask aligner (365 nm)

under a chrome-on-quartz mask prepared by Dr. Michael Diehl at the California Institute

of Technology by chrome deposition and stripping from a 3000 dpi transparency [20].

Irradiated slides were washed overnight in 0.05 % sodium dodecyl sulfate (SDS) to

remove uncrosslinked protein from the masked regions and then rinsed for 6 h in doubly

distilled, filtered water.

IV.3.10 Cell culture

Human umbilical vein endothelial cells (HUVEC) were purchased from Clonetics

and maintained in endothelial growth medium-2 (EGM-2, 2% serum, Clonetics,

Walkersville, MD).  Cells were kept in a humidified, 5% CO2 environment at 37°C and

passaged non-enzymatically using a 0.61 mM EDTA solution (Gibco, Grand Island, NY).

Cells between passages 3 and 8 were used for all experiments.

All coverslips were sterilized by immersion in a 75% aqueous ethanol solution for

at least 2 min and then dried using canned air.  Substrates were placed in sterile 6-well

polystyrene culture plates and blocked with a solution of 2% heat-denatured BSA in PBS

for 30 min.  For cell patterning studies, freshly harvested HUVEC cells were plated on

the prepared substrates at a density of 4.2 x 104 cells/cm2.  Cell viability was measured
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using a standard Wst-1 assay and cell adhesion was quantified using the

buoyant centrifugation method described in Liu and coworkers [21].

IV.3.11 Phase contrast and fluorescence microscopy

Phase contrast pictures were taken on a Nikon Eclipse TE 300 microscope.

Fluorescence pictures were taken on a Zeiss Axioplan II fluorescence microscope

equipped with a monochrome Axiocam.  To fix and fluorescently label cell patterns, the

coverslips were placed in a 6-well plate, and each well was washed 3 times with 2 mL

PBS before 1 mL ice-cold acetone was applied for exactly 1 min.  The wells were again

washed 3 times with 2 mL PBS before 2 mL of a 10% BSA solution was applied for 30

min at room temperature.  After blocking, 0.2 µL of anti-T7 primary antibody (Novagen)

was added and allowed to incubate at room temperature for at least 6 h.  The wells were

then washed three times with 2 mL PBS for 5 min without agitation.  A secondary

antibody/phalloidin solution composed of 862 µL PBS, 100 µL secondary antibody (Cy2-

labeled anti-mouse, 0.5 mg/mL, Chemicon) and 38 µL rhodamine-phalloidin (Molecular

Probes) was incubated with the samples in the dark for 1 h.  Labeled samples were

washed with 2 mL PBS for 10 minutes with agitation followed by 2 mL PBS for 5

minutes without agitation.  The samples were then incubated with 1 mL of DAPI solution

(0.3 µM in PBS) for 5 minutes at room temperature.  Samples were rinsed 3 times with 2

mL PBS and mounted to a glass slide using filtered mounting solution of 1:1

PBS:glycerol and clear fingernail polish as sealant.

IV.3.12 Atomic force microscopy
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Atomic force microscopy was conducted on dried, patterned aECM-

N3 protein films on PEGylated coverslips in constant-force, non-contact mode with an

autoprobe M5 atomic force microscope (Parker Scientific).

IV.4 Results and Discussion

Large-scale production of the aECM-N3 protein was accomplished through

residue-specific incorporation of pN3Phe in E. coli.  This method of incorporation relies

on competitive activation of phenylalanine and pN3Phe by the phenylalanyl-tRNA

synthetase, the enzyme responsible for charging phenylalanine to its cognate tRNA.  The

phenylalanyl-tRNA synthetase used for this study was a previously characterized mutant

with relaxed substrate specificity [12, 22].  Proteins were expressed in a phenylalanine-

auxotrophic E. coli strain grown in cultures supplemented with pN3Phe and purified by

taking advantage of the inverse temperature phase behavior of proteins with elastin-like

repeats [23].  Incorporation efficiency was determined by integration of the aromatic

proton signals in the 1H NMR spectra of the purified proteins (Figure IV-1b); the extent

of phenylalanine replacement varied from 13% to 53% depending on the concentration of

pN3Phe in the expression medium (Figure IV-2).
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Figure IV-1.  Design and production of aECM-N3.  (a) The aECM-N3 primary sequence encodes

a cell-binding domain (the CS5 region of fibronectin) and a structural domain (the pentapeptide

VPGVG elastin-like repeat with periodic phenylalanine sites for incorporation of pN3Phe).  (b)
1H NMR (600 MHz, DMSO-d6) of the artificial protein expressed in the presence of

phenylalanine (bottom spectrum) or in the presence of 250 mg/L pN3Phe (top spectrum).

Integration indicates 53% pN3Phe incorporation.

MMASMTGGQQMGRKTHHHHHHMG{LDGEEIQIGHIPREDVDYHLYPG[(VPGVG)2(VPGFG)(VPGVG)2]5LP}3LE

CS5 domain Elastin-like sequence
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Understanding the response of the designed photoreactive protein to irradiation is crucial

for high-resolution pattern formation.  We measured the rate of azide decomposition

under irradiation by monitoring loss of the characteristic infrared (IR) asymmetric stretch

at 2130 cm-1 (Figure IV-3a) [24].  Measurements were performed on thin films of aECM-

N3 spin-coated directly onto zinc selenide wafers and irradiated using a Karl Suss contact

aligner filtered to 365 nm in constant intensity (7 mW/cm2) mode, with a quartz wafer in

place of the mask.  Azide loss under these conditions was rapid, following first-order

kinetics with a half-life of 34 seconds (Figure IV-3b).  It is noteworthy that none of the

other infrared bands were noticeably altered, implying that irradiation under the

conditions used here specifically affects the aryl azide without substantial modification of

any of the canonical amino acids.  This is expected given that none of the canonical

amino acids absorb above 310 nm [25].
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Figure IV-2. Incorporation of pN3Phe into aECM-N3 as a function of concentration in the

expression medium.
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Elastic moduli of irradiated aECM-N3 bulk films were determined through

uniaxial tensile testing under physiological conditions (Figure IV-3c).  As expected, the

elastic modulus correlated with the extent of pN3Phe incorporation.  Irradiated aECM-N3

films in which 30, 41, and 53% of the encoded phenylalanine residues were replaced with

pN3Phe yielded elastic moduli of 0.53 ± 0.10, 0.94 ± 0.09, and 1.39 ± 0.09 MPa, which

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40
Strain (%)

St
re

ss
 (M

Pa
)

51.5

52.5

53.5

54.5

55.5

56.5

57.5

2030208021302180

Increasing 
irradiation
time

cm-1

a. b.

c.
53% pN3Phe

41% pN3Phe

30% pN3Phe

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60

Incorporation of pN3 (%)

S
h

e
a
r 

M
o

d
u

lu
s
, 
G

 (
M

P
a
)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

E
la

s
tic

 M
o

d
u

lu
s
, E

 (M
P

a
)

d.

0

50

100

150

200

0 40 80 120 160

Pe
ak

 A
re

a

Irradiation time
(seconds)

G = 0.014x + 0.18

E = 0.037x + 0.59
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are in the range of native elastin (0.3 – 0.6 MPa) [26].  Replacement of less

than 20% of the encoded phenylalanine residues gave films that were too weak to test,

and films made without pN3Phe yielded no evidence of crosslinking.  The fact that the

modulus can be controlled simply by changing the pN3Phe concentration in the

expression medium is an attractive feature of the method, as recent work has highlighted

the role of mechanical transduction mechanisms in mediating the physiology of adherent

cells [27, 28].

To investigate the potential of our photoreactive proteins as substrates for studies

of cell adhesion and growth, we created patterns of adherent endothelial cells on proteins

patterned by photolithography.  Protein films created by spin-coating 12.5% solutions of

protein in dimethylsulfoxide directly onto prepared poly(ethylene glycol) (PEG)-coated

glass coverslips were clear and homogeneous by optical microscopy.  These protein films

irradiated for 30 seconds at 365 nm through a chrome-on-quartz mask using a Karl Suss

contact aligner.  Stripping of the masked areas was accomplished by washing in mild

aqueous detergent (0.05% aqueous sodium dodecasulfate).

Fluorescence immunolabeling with anti-T7-tag IgG antibody revealed that the

aECM protein was localized only within the irradiated areas of the pattern (Figure IV-4a).

Films prepared from protein lacking pN3Phe formed no detectable patterns even after

prolonged exposure times.
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Figure IV-4.  Characterization of photopatterned aECM-N3 features by fluorescence and atomic

force microscopy. (a) Fluorescence microscopy of photopatterned aECM-N3.  PEGylated glass

slides were spin coated with aECM-N3, irradiated for 30 seconds, and washed overnight in 0.05%

SDS to produce well-defined protein features on a non-adhesive background.  Protein patterns

were immunolabeled with an anti-T7-tag primary antibody and an anti-mouse Cy2-conjugated

secondary antibody. (b) AFM image of patterned aECM-N3.  The image was taken of a dried

aECM-N3 patterned film in constant-force, non-contact mode with an autoprobe M5 atomic force

microscope.

a.

b.
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The edge roughness of protein pattern features is a consequence of

the roughness of the mask (created from a 3000 dpi print) and not the inherent resolution

of the films (Figure IV-5). Non-contact AFM of dried aECM-N3 patterns demonstrated

uniform features, which varied in height depending upon the conditions used for spin

coating.  Films spun at 1400 rpm were 84 nm thick (Figure IV-4b), whereas those spun at

2000 rpm were approximately 4 nm thick.  Protein patterns stored either dry or in

aqueous solutions were stable for weeks.

Figure IV-5. Phase contrast images of the chrome mask used in photopatterning (left

panels) compared with fluorescence microscopy images of the protein patterns (right

panels).  Scale bars represent 50 microns.  In the top panels (lower magnification), the

protein pattern could be visually matched to precisely the region on the mask that created

it.  The bottom panels (higher magnification) show two separate regions with features of

similar sizes.
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To create cell arrays, HUVEC were plated on aECM-N3 patterns in

the absence of serum.  After six hours of incubation, the medium was supplemented with

2% serum.  After 24 hours of incubation, HUVEC exhibited a well-spread morphology

(Figure IV-6a) and had proliferated to confluence exclusively within the patterned areas

(Figure IV-6b).  HUVEC monolayers in the interior of the patterned regions displayed

morphology indistinguishable from monolayers grown on homogenous fibronectin

coatings; however, HUVEC positioned along the aECM-N3 pattern edges were elongated

and oriented parallel to the pattern border (Figure IV-6a), consistent with previous

studies.  As expected, actin stress fibers within these elongated cells were aligned with

the pattern edges (Figure IV-6b).  Similar to other endothelial cell patterning techniques,

this parallel cell alignment was generally observed for the first two to three cell layers

adjacent to the pattern edges; therefore, cell alignment was enhanced on patterns with

smaller feature sizes [29].
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Figure IV-6. (a) Phase contrast and (b) fluorescence microscopy of HUVEC attached to

photopatterned aECM-N3.  Cells were plated onto the prepared surfaces in serum free media and

allowed to incubate 6 hours prior to supplementation with 2% serum.  After 24 hours, the cells

and substrates were fixed with acetone, immunolabeled with an anti-T7-tag primary antibody and

anti-mouse Cy2-conjugated secondary antibody, and stained with phalloidin (specific to the actin

cytoskeleton) and DAPI (specific to the nucleus).

a.

b.
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In serum, HUVEC patterns were stable for 48 hours after reaching

confluence, consistent with known behavior of PEG coatings as cell-resistant

backgrounds [30].  At longer times, cells began growing beyond the protein pattern at the

corners, probably in concert with synthesis and secretion extracellular matrix proteins.

The availability of intrinsically photoreactive proteins enables a facile new

method for the patterning of proteins and cells.  The technical simplicity of the method

allows rapid production of samples with a variety of feature shapes and sizes, while

permitting straightforward engineering of the elastic modulus of the crosslinked protein.

The method represents a promising new approach to the study of adherent cells by

providing exquisite control over mechanical properties, ligand-receptor interactions, and

geometric shape.  Applications in medical devices, tissue engineering, and array

technologies are readily imagined.
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C h a p t e r  V

C h a p t e r  V  C h a p t e r  I

PROGRESS TOWARD CLONING THE GENE OF AN RGD-CONTAINING
PROTEIN FOR PHOTOPATTERNING*

V.1 Abstract

We have previously described a new method for the production of cell-adhesive

photolithographic protein patterns (Chapter 4) using the noncanonical amino acid p-

azidophenylalanine (pN3Phe).  We demonstrated the procedure using an artificial

extracellular matrix (aECM) protein [1] containing the CS5 cell-binding sequence

derived from the IIICS region of fibronectin that is known to selectively adhere

endothelial cells [2].  Previous work in our group has shown that endothelial cells attach

both more quickly and strongly to an aECM protein containing an RGD-based sequence

[3] from the CCBD of fibronectin [4].  We wished to create an expression strain

harboring a plasmid encoding the artificial gene for an RGD-based sequence with

phenylalanine residues within the elastin-like domain, which would permit

photopatterning through the incorporation of pN3Phe.  The cloning strategy and progress

toward the final construct will be described in this chapter.

*This work was performed with Stacey Maskarinec.
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V.2 Introduction

As described in Chapter 4, we have recently demonstrated that incorporation of

the noncanonical amino acid p-azidophenylalanine (pN3Phe) into a protein, dubbed

artificial extracellular matrix protein with aryl azides (aECM-N3), permits patterning of

the protein on a surface using traditional photolithographic techniques.  Further, we used

this technique to create cell patterns through selective attachment of human umbilical

vein endothelial cells to the aECM-N3 protein, which contains a known endothelial cell-

binding domain, when patterned on a non-adhesive background of poly(ethylene glycol)

(PEG).

The sequence of the aECM-F protein we studied (Figure V-1) contained elastin-

like repeats to provide structural integrity, regular Phe residues within the elastin-like

regions as sites of crosslinking, and repeats of a cell-adhesive sequence (CS5) derived

from the IIICS region of fibronectin that is known to adhere endothelial cells but not

MMASMTGGQQMGHHHHHHMG(LD-GEEIQIGHIPREDVDYHLY-PG((VPGVG)2VPGFG(VPGVG)2)5VP)3-LE

MASMTGGQQMGHHHHHHMKL{LDASFLD-YAVTGRGDSPASSKPIA-ASA[(VPGVG)2VPGFG(VPGVG)2]5VP}3LE

MASMTGGQQMGHHHHHHMKL{LDASFLD-YAVTGRDGSPASSKPIA-ASA[(VPGVG)2VPGFG(VPGVG)2]5VP}3LE

MASMTGGQQMGHHHHHHMKL{LDASFLD-GEEIQIGHIPREVDDYHLY-ASA[(VPGVG)2VPGFG(VPGVG)2]5VP}3LE

CS5-F:

SC5-F:

RGD-F:

RDG-F:

Figure V-I.  Amino acid sequences of the artificial extracellular matrix proteins.  The CS5-F

protein was previously cloned by Nandita Sharma [1] and is discussed in Chapter 4.  The target

proteins for cloning are a construct containing a different cell-binding domain (RGD-F) and the

negative control proteins for both cell-binding domains (RDG-F and SC5-F).
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fibroblasts, platelets, or smooth muscle cells [2].  We will refer to this

construct as CS5-F.  Previous work in our laboratory on similar constructs (lacking Phe

residues) [3] showed that endothelial cells form stronger attachments and form them

more quickly when aECM proteins with repeats of an RGD-containing sequence derived

from the CCBD region of fibronectin [4] are used.  We wished to create an expression

strain harboring a plasmid copy of the artificial gene for the RGD-containing version of

the aECM protein we used previously.  We also undertook to clone the appropriate

negative control proteins for both the CS5-F and RGD-F sequences; these are designated

SC5-F and RDG-F, respectively.  The set of proteins is generically designated CBD-F for

cell-binding domain construct with Phe residues.  The sequences of the CBD-F (Figure

V-1) proteins were designed based on CS5-F to contain repeats of the appropriate cell-

binding domains as well as regular Phe residues within the elastin-like regions to permit

photocrosslinking.

V.2.1 Cloning strategy

The cloning strategy to obtain this sequence (Figure V-2) was based on one

developed by Liu and Tirrell [5].

Synthetic DNA oligonucleotides encoding the desired CBDs (Figure V-3) were

designed and ordered commercially.  Phosphorylated oligonucleotides were ligated into

the pUC19 vector at the EcoR I / BamH I sites.  The cell-binding domain regions were

cut out of the pUC19-SC5, pUC19-RGD, or pUC19-RDG vectors with EcoR I / BamH I
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pUC19

CBD oligo

ligase

Eco RI
Bam HI

pUC19-CBD

Eco RI
Bam HI

pEC2

Eco RI
Bam HI

ligase

pEC2-CBD

Ban I
CIP

pUC19-ELF

Ban I
ligase

ELF5

ligase

Sal I
Xho I pEC2-CBD-ELF5

CBD-ELF5

CBD-ELF5

Xho I
CIP

pET28cylPheRS*
ligase

pET28cylCBDELF5

Xho I
CIP

Xho I
CIP

ligase

ligase

ligase

Sph I
CIP

pET28cyl

PheRS*

pET28cylCBDELF5

ligase

Nhe I
CIP

CBD’

pET28cylCBD’ELF5

Figure V-2.  The cloning strategy for CBD-F proteins.

I.

II.
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digestion and ligated into Ban I-linearized pEC2 vector [6] to produce pEC2-SC5, pEC2-

RGD, and pEC2-RDG.

ELF monomer (Figure V-4) was obtained through Ban I digestion of pUC19-ELF

[1].  The 75-bp fragment was multimerized through ligation with T4 DNA ligase, and the

multimerization mixture was run on a 2% agarose gel.  The band corresponding to

pentamer (375 bp) was cut out and extracted from the gel.  The pentamer DNA was

ligated into pEC2-SC5 vector that had been digested with Ban I and dephosphorylated

with CIP to yield pEC2-SC5-ELF5.

Figure V-3.  DNA oligonucleotide sequences encoding a) the RGD cell-binding domain

and b) the scrambled RDG and c) scrambled REVD negative control domains were

designed and ordered commercially.

a)

b)

c)
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Meanwhile, the gene encoding the A294G mutant PheRS (phes*) was cut from

pUC19-FS [1] with Sph I.  It was ligated into the Sph I site of pET28cyl [5] to create

pET28cyl-phes*.  The pEC2-SC5-ELF5 vector was digested with Xho I / Spa I, but

attempts to ligate it into the pET28cyl-phes* failed.  Sequencing revealed a second Xho I

site on the pET28cyl-phes* between the Sph I ligation site and the start of the phes* gene.

Future work will focus on removing this cut site through site-directed mutagenesis.

V.3 Methods

V.3.1 pET28cyl-phes*

The phes* gene was isolated from pUC19-FS [1] through digestion with Sph I

(NEB).  It was ligated using T4 DNA ligase (NEB, room temperature, overnight) into

pET28cyl [5] that had been linearized with Sph I (37°C, overnight) to produce pET28cyl-

phes*.  The A294G mutation was confirmed through DNA sequencing.

V.3.2 pEC2-RGD, RDG, and SC5

The cell-binding domain oligonucleotides (Figure V-4) were ordered from Qiagen

and resuspended at 5 µg/µL in 10 mM Tris buffer at pH 8.1.  A 10-µL aliquot of each

strand was added to 80 µL of annealing buffer (100 mM NaCl, 20 mM MgCl2) and

Figure V-4.  DNA and protein sequence of the ELF monomer digested from pUC19-ELF.
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heated to near boiling for 2 to 3 minutes.  The solution was allowed to cool

slowly back to room temperature and run on a 2 % agarose gel.  The bands corresponding

to the expected DNA (SC5 = 105 bp, RGD and RDG = 99 bp) were cut from the gel and

extracted using a QIAquick Gel Extraction Kit (Qiagen).

The cell-binding domain fragments were phosphorylated using T4 polynucleotide

kinase (NEB).  Purified DNA was incubated at 37°C for 2 h with kinase in the supplied

kinase buffer.  The phosphorylated cell-binding domains were ligated (T4 DNA ligase

[NEB], room temperature, 2 h) into pUC19 vector [1] that had been digested at 37°C

overnight with EcoR I (NEB) and BamH I (NEB).  The pUC19-RGD, RDG, and SC5

vectors were transformed into XL-1 Blue competent cells (Stratagene).

The XL-1 Blue strains harboring the plasmids pUC19-RGD, RDG, and SC5 were

grown in 5 mL overnight 2xYT cultures, and the plasmid DNA was isolated using a

Miniprep Kit (Qiagen).  The vectors were digested at 37°C overnight with EcoR I and

BamH I, the digestion mixtures were run on a 2 % agarose gel, and the appropriate cell-

binding domain fragments were excised and extracted using a QIAquick Kit.  Purified

fragments were ligated into pEC2 plasmid [7] that had been digested with EcoR I and

BamH I to create pEC2-RGD, RDG, and SC5.

V.3.3 pEC2-SC5-ELF5 and ELF6

The DNA fragment encoding one repeat of the desired elastin-like region with

Phe sites, designated ELF (Figure V-5), was obtained through digestion of pUC19-ELF

(Nandita Sharma).  The plasmid DNA was isolated from a 500-mL overnight 2xYT
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culture using a MaxiPrep Kit (Qiagen) and digested at 37°C overnight with

Ban  I (NEB).  The digestion mixture was run on a 3 % agarose gel, the band

corresponding to ELF monomer (75 bp) was excised, and the DNA was extracted with a

Zymoclean Gel DNA Recovery Kit (Zymo Research).  Two separate strategies were

employed to multimerize the ELF monomer and insert it into the pEC2-SC5 plasmid.  In

the first scheme, the ELF monomer was self-ligated with T4 DNA ligase in the supplied

ligase buffer at 0°C for <5 min before the ligation mixture was immediately loaded onto a

2 % agarose gel.  The 375-bp band, corresponding to and ELF pentamer (ELF5), was

excised from the gel, and the DNA was extracted with a QIAquick Kit.  The pEC2-SC5

plasmid was digested with Ban I (37°C, overnight) and dephosphorylated with calf

intestine phosphatase (CIP, NEB, room temperature, 5 min) before being purified on a 2

% agarose gel.  Linearized and dephosphorylated pEC2-SC5 was ligated for 3 h at room

temperature with the purified ELF pentamer fragment, and the ligation mixtures were

transformed into JM109 competent cells (Stratagene).  Transformation colonies were

test-digested with Xho I and Sal I; a band is expected at 468 bp if ELF pentamer

successfully inserted into pEC2-SC5.  A colony was isolated that carried the desired

plasmid, designated pEC2-SC5-ELF5.

In the second procedure attempted to produce pEC2-SC5-ELF5, the linearized and

dephosphorylated pEC2-SC5 plasmid was added directly to the ELF monomer ligation

mixture 30 s after ligation was initiated by the addition of T4 DNA ligase.  The ligation

was allowed to proceed for 3 h before transformation of the mixture into JM109
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competent cells.  A colony was isolated that harbored a plasmid designated

pEC2-SC5-ELF6; the multimer that had been inserted was the hexamer of ELF.

V.4 Results

Progress was made in the attempt to clone an artificial extracellular matrix protein

containing the RGD cell-binding domain from fibronectin and regular Phe residues for

incorporation of the analogue p-azidophenylalanine (RGD-F) along with negative control

proteins RDG-F and SC5-F.  The cloning strategy is depicted in Figure V-2.

A pET28cyl-phes* vector containing the A294G mutant phenylalanyl-tRNA

synthetase was created and confirmed through sequencing.  ELF monomer, isolated from

the digestion of pUC19-ELF, was successfully multimerized with T4 ligase (Figure V-5).

100 bp 
ladder

--100

--200

--300
--400
--500
--600
--700

ELF multimerization

ELF pentamer --
(375 bp)

Figure V-5.  Representative 3% agaraose gel of a multimerization reaction.  ELF monomer

DNA (with Ban I sticky ends) was incubated with T4 DNA ligase at 0°C for 3 min before

being loaded onto the gel.
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Excising the 375-bp band from the agarose gel and ligating the

extracted DNA into a linearized pEC2-SC5 cloning vector resulted in a colony harboring

a pEC2-SC5-ELF5 (pentamer, Figure V-6).  In a separate experiment, ELF monomer was

multimerized in the presence of linearized pEC2-SC5 vector, followed by transformation

of the crude multimerization mixture.  This method produced a colony harboring pEC2-

SC5-ELF6 (hexamer, Figure V-6).

Pentamer DNA In situ100 bp 
ladder

100--

200--

300--
400--
500--
600--
700--

100 bp 
ladder

Figure V-6.  Test digestions (with Xho I and Sal I) of colonies of cells transformed with

ligation mixtures of pEC2-SC5/Ban I and ELF monomer with Ban I sticky ends.  Transformants

in lanes 2 to 9 resulted from ligations of pEC2-SC5/Ban I with ELF pentamer DNA that had

been excised from a 3% agarose gel of the ELF multimerization.  The circled band in lane 5

indicates presence of pEC2-SC5-ELF5 (pentamer).  Transformants in lanes 10 to 12 resulted

from in situ ligations of pEC2-SC5/Ban I with ELF monomer.  The circled band in lane 12

indicates the presence of pEC2-SC5-ELF6 (hexamer).
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V.5 Conclusions

The progress made in cloning the desired artificial extracellular matrix protein

constructs, especially in the difficult multimerization step, will facilitate future

production of these proteins.  The proteins, one containing the RGD cell-binding domain,

and negative control proteins for both the RGD and CS5 cell-binding domains, will

enable studies of cellular behavior on photocrosslinked substrates through the

incorporation of the photoreactive amino acid p-azidophenylalanine.
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A.1 pETcyl-phes* plasmid information

Submitted by: Stacey Maskarinec, Marissa Mock Date 4/22/04

Strain name: XL-1 blue (SupE44 hsdR17 recA1 endA1 gyrA46 thi relA1 lac-

F’[proAB+ lacIq lacZΔM15 Tn10(tetr)] (From Stratagene) ) / pET28cyl-phes*

Vector  (kb): pET28cyl-phes* (7.0)

Cloning  site: See plasmid map.

Construction of pET28cyl-phes* plasmid:

The phes* gene was cut from pUC19-FS (Nandita Sharma) with Sph I.  It was ligated
into the Sph I site of pET28cyl (Charles Liu).

Source available :

 12    % Glycerol culture in Marissa-3 freezer box
Culture conditions: 2xYT, 37°C
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A.1.1 Plasmid map

A.1.2 Position of elements

       bp
Vector size ................................................................................................................ 7003
Full insert region ................................................................................................ 532-2233
PheRS* gene...................................................................................................... 992-1073

pET28cyl-phes*
(7003 bp)

phes*

XhoI (167)

SphI (527)

XhoI (862)

SphI (2228)
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A.1.3 Full sequence (pET28cyl-phes*)

ATCCGGATATAGTTCCTCCTTTCAGCAAAAAACCCCTCAAGACCCGTTTAGAGGCCCCAAGGGGTTATGCTAGTTATT

GCTCAGCGGTGGCAGCAGCCAACTCAGCTTCCTTTCGGGCTTTGTTAGCAGCCGGATCTCAGTGGTGGTGGTGGTGGT

GCTCGA ctt act cga gaa gct t CAT GTG GTG GTG GTG GTG GTG ACC CAT TTG CTG TCC

ACC AGT CAT GCT CGC CAT gGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGAGGGGAATTGTTAT

CCGCTCACAATTCCCCTATAGTGAGTCGTATTAATTTCGCGGGATCGAGATCTCGATCCTCTACGCCGGACGCATCGT

GGCCGGCATCACCGGCGCCACAGGTGCGGTTGCTGGCGCCTATATCGCCGACATCACCGATGGGGAAGATCGGGCTCG

CCACTTCGGGCTCATGAGCGCTTGTTTCGGCGTGGGTATGGTGGCAGGCCCCGTGGCCGGGGGACTGTTGGGCGCCAT

CTCCTTGCATGccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcct

ctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaac

gcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtgga

attgtgagcggataacaatttcacacaggaaacagctatgaccatgattacgccaagctcgaaattaaccctcactaa

agggaacaaaagctggtaccgggccccccctcgaggtcgacggtatcgataagcttgatatcgaattcccccgggacc

aaaatggcaagtaaaatagcctgatgggataggctctaagtccaacgaaccagtgtcaccactg

TAGGCCTATATCAAGGAGGAAAGTCGTTTTTTGGGGAGTTCTGGGCAAATCTCCGGGGTTCCCCAATACGATCAATAA

CGAGTCGCCACCGTCGTCGGTTGAGTCGAAGGAAAGCCCGAAACAATCGTCGGCCTAGAGTCACCACCACCACCACCA

CGAGCT gaa tga gct ctt cga a GTA CAC CAC CAC CAC CAC CAC TGG GTA AAC GAC AGG

TGG TCA GTA CGA GCG GTA cCATATAGAGGAAGAATTTCAATTTGTTTTAATAAAGATCTCCCCTTAACAATA

GGCGAGTGTTAAGGGGATATCACTCAGCATAATTAAAGCGCCCTAGCTCTAGAGCTAGGAGATGCGGCCTGCGTAGCA

CCGGCCGTAGTGGCCGCGGTGTCCACGCCAACGACCGCGGATATAGCGGCTGTAGTGGCTACCCCTTCTAGCCCGAGC

GGTGAAGCCCGAGTACTCGCGAACAAAGCCGCACCCATACCACCGTCCGGGGCACCGGCCCCCTGACAACCCGCGGTA

GAGGAACGTACggcttgctggctcgcgtcgctcagtcactcgctccttcgccttctcgcgggttatgcgtttggcgga

gaggggcgcgcaaccggctaagtaattacgtcgaccgtgctgtccaaagggctgacctttcgcccgtcactcgcgttg

cgttaattacactcaatcgagtgagtaatccgtggggtccgaaatgtgaaatacgaaggccgagcatacaacacacct

taacactcgcctattgttaaagtgtgtcctttgtcgatactggtactaatgcggttcgagctttaattgggagtgatt

tcccttgttttcgaccatggcccgggggggagctccagctgccatagctattcgaactatagcttaagggggccctgg

ttttaccgttcattttatcggactaccctatccgagattcaggttgcttggtcacagtggtgac

XhoI (167)

SphI (527)

XhoI (862)

1

79

157

215

287

365

443

521

599

677

755

833

911
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acacaatgaggaaaaccatgtcacatctcgcagaactggttgccagtgcgaaggcggccattagccaggcgtcagat

gttgccgcgttagataatgtgcgcgtcgaatatttgggtaaaaaagggcacttaacccttcagatgacgaccctgcg

tgagctgccgccagaagagcgtccggcagctggtgcggttatcaacgaagcgaaagagcaggttcagcaggcgctga

atgcgcgtaaagcggaactggaaagcgctgcactgaatgcgcgtctggcggcggaaacgattgatgtctctctgcca

ggtcgtcgcattgaaaacggcggtctgcatccggttacccgtaccatcgaccgtatcgaaagtttcttcggtgagct

tggctttaccgtggcaaccgggccggaaatcgaagacgattatcataacttcgatgctctgaacattcctggtcacc

acccggcgcgcgctgaccacgacactttctggtttgacactacccgcctgctgcgtacccagacctctggcgtacag

atccgcaccatgaaagcccagcagccaccgattcgtatcatcgcgcctggccgtgtttatcgtaacgactacgacca

gactcacacgccgatgttccatcagatggaaggtctgattgttgataccaacatcagctttaccaacctgaaaggca

cgctgcacgacttcctgcgtaacttctttgaggaagatttgcagattcgcttccgtccttcctacttcccgtttacc

gaaccttctgcagaagtggacgtcatgggtaaaaacggtaaatggctggaagtgctgggctgcgggatggtgcatcc

gaacgtgttgcgtaacgttggcatcgacccggaagtttactctggtttcggcttcgggatggggatggagcgtctga

ctatgttgcgttacggcgtcaccgacctgcgttcattcttcgaaaacgatctgcgtttcctcaaacagtttaaataa

ggcaggaatagattatgaaattcagtgaactgtggttacgcgaatgggtgaacccggcgattgatagcgatgcgctg

tgtgttactccttttggtacagtgtagagcgtcttgaccaacggtcacgcttccgccggtaatcggtccgcagtcta

caacggcgcaatctattacacgcgcagcttataaacccattttttcccgtgaattgggaagtctactgctgggacgc

actcgacggcggtcttctcgcaggccgtcgaccacgccaatagttgcttcgctttctcgtccaagtcgtccgcgact

tacgcgcatttcgccttgacctttcgcgacgtgacttacgcgcagaccgccgcctttgctaactacagagagacggt

ccagcagcgtaacttttgccgccagacgtaggccaatgggcatggtagctggcatagctttcaaagaagccactcga

accgaaatggcaccgttggcccggcctttagcttctgctaatagtattgaagctacgagacttgtaaggaccagtgg

tgggccgcgcgcgactggtgctgtgaaagaccaaactgtgatgggcggacgacgcatgggtctggagaccgcatgtc

taggcgtggtactttcgggtcgtcggtggctaagcatagtagcgcggaccggcacaaatagcattgctgatgctggt

ctgagtgtgcggctacaaggtagtctaccttccagactaacaactatggttgtagtcgaaatggttggactttccgt

gcgacgtgctgaaggacgcattgaagaaactccttctaaacgtctaagcgaaggcaggaaggatgaagggcaaatgg

cttggaagacgtcttcacctgcagtacccatttttgccatttaccgaccttcacgacccgacgccctaccacgtagg

cttgcacaacgcattgcaaccgtagctgggccttcaaatgagaccaaagccgaagccctacccctacctcgcagact

gatacaacgcaatgccgcagtggctggacgcaagtaagaagcttttgctagacgcaaaggagtttgtcaaatttatt

ccgtccttatctaatactttaagtcacttgacaccaatgcgcttacccacttgggccgctaactatcgctacgcgac

 M  S   H  L   A   E   L   V  A   S   A   K  A   A   I   S   Q  A   S   D 

 V  A   A   L   D  N  V  R   V  E   Y   L   G  K  K  G  H  L   T   L   Q  M  T   T   L   R

  E   L   P   P   E   E   R   P   A   A   G  A   V  I   N  E   A   K  E   Q  V  Q  Q  A   L   

N  A   R   K  A   E   L   E   S   A   A   L   N  A   R   L   A   A   E   T   I   D  V  S   L   P  

 G  R   R   I   E   N  G  G  L   H  P   V  T   R   T   I   D  R   I   E   S   F   F   G  E   L

  G  F   T   V  A   T   G  P   E   I   E   D  D  Y   H  N  F   D  A   L   N  I   P   G  H  

H  P   A   R   A   D  H  D  T   F   W  F   D  T   T   R   L   L   R   T   Q  T   S   G  V  Q 

 I   R   T   M  K  A   Q  Q  P   P   I   R   I   I   A   P   G  R   V  Y   R   N  D  Y   D  Q

  T   H  T   P   M  F   H  Q  M  E   G  L   I   V  D  T   N  I   S   F   T   N  L   K  G  

T   L   H  D  F   L   R   N  F   F   E   E   D  L   Q  I   R   F   R   P   S   Y   F   P   F   T  

 E   P   S   A   E   V  D  V  M  G  K  N  G  K  W  L   E   V  L   G  C  G  M  V  H  P

  N  V  L   R   N  V  G  I   D  P   E   V  Y   S   G  F   G  F   G  M  G  M  E   R   L   

T   M  L   R   Y   G  V  T   D  L   R   S   F   F   E   N  D  L   R   F   L   K  Q  F   K 

975

1052

1129

1206

1283

1360

1437

1514

1591

1668

1745

1822

1899

1976

1

21

46

72

98

123

149

175

200

226

252

277

303
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ggcaggaatagattatgaaattcagtgaactgtggttacgcgaatgggtgaacccggcgattgatagcgatgcgctg

gcaaatcaaatcactatggcgggcctggaagttgggggatccactagttctagagcggccgccaccgcggtggagct

ccaattcgccctatagtgagtcgtattacaattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggc

gttacccaacttaatcgccttgcatgCACCATTCCTTGCGGCGGCGGTGCTCAACGGCCTCAACCTACTACTGGGCT

GCTTCCTAATGCAGGAGTCGCATAAGGGAGAGCGTCGAGATCCCGGACACCATCGAATGGCGCAAAACCTTTCGCGG

TATGGCATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGATGTCGCAG

AGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAA

AAAGTGGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTT

GCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCG

ATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAAT

CTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGC

CTGCACTAATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAG

ACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAAGT

TCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAACG

GGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTTCCCACTGCGA

TGCTGGTTGCCAACGATCAGATGGCGCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGGAT

ATCTCGGTAGTGGGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTTAACCACCATCAAACAGGATTT

TCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGT

TGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGAT

TCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTAAGTTAGC

TCACTCATTAGGCACCGGGATCTCGACCGATGCCCTTGAGAGCCTTCAACCCAGTCAGCTCCTTCCGGTGGGCGCGG

GGCATGACTATCGTCGCCGCACTTATGACTGTCTTCTTTATCATGCAACTCGTAGGACAGGTGCCGGCAGCGCTCTG

GGTCATTTTCGGCGAGGACCGCTTTCGCTGGAGCGCGACGATGATCGGCCTGTCGCTTGCGGTATTCGGAATCTTGC

ACGCCCTCGCTCAAGCCTTCGTCACTGGTCCCGCCACCAAACGTTTCGGCGAGAAGCAGGCCATTATCGCCGGCATG

GCGGCCCCACGGGTGCGCATGATCGTGCTCCTGTCGTTGAGGACCCGGCTAGGCTGGCGGGGTTGCCTTACTGGTTA

GCAGAATGAATCACCGATACGCGAGCGAACGTGAAGCGACTGCTGCTGCAAAACGTCTGCGACCTGAGCAACAACAT

GAATGGTCTTCGGTTTCCGTGTTTCGTAAAGTCTGGAAACGCGGAAGTCAGCGCCCTGCACCATTATGTTCCGGATC

ccgtccttatctaatactttaagtcacttgacaccaatgcgcttacccacttgggccgctaactatcgctacgcgac

cgtttagtttagtgataccgcccggaccttcaaccccctaggtgatcaagatctcgccggcggtggcgccacctcga

ggttaagcgggatatcactcagcataatgttaagtgaccggcagcaaaatgttgcagcactgacccttttgggaccg

caatgggttgaattagcggaacgtacGTGGTAAGGAACGCCGCCGCCACGAGTTGCCGGAGTTGGATGATGACCCGA

CGAAGGATTACGTCCTCAGCGTATTCCCTCTCGCAGCTCTAGGGCCTGTGGTAGCTTACCGCGTTTTGGAAAGCGCC

ATACCGTACTATCGCGGGCCTTCTCTCAGTTAAGTCCCACCACTTACACTTTGGTCATTGCAATATGCTACAGCGTC

TCATACGGCCACAGAGAATAGTCTGGCAAAGGGCGCACCACTTGGTCCGGTCGGTGCAAAGACGCTTTTGCGCCCTT

TTTCACCTTCGCCGCTACCGCCTCGACTTAATGTAAGGGTTGGCGCACCGTGTTGTTGACCGCCCGTTTGTCAGCAA

CGACTAACCGCAACGGTGGAGGTCAGACCGGGACGTGCGCGGCAGCGTTTAACAGCGCCGCTAATTTAGAGCGCGGC

TAGTTGACCCACGGTCGCACCACCACAGCTACCATCTTGCTTCGCCGCAGCTTCGGACATTTCGCCGCCACGTGTTA

GAAGAGCGCGTTGCGCAGTCACCCGACTAGTAATTGATAGGCGACCTACTGGTCCTACGGTAACGACACCTTCGACG

GACGTGATTACAAGGCCGCAATAAAGAACTACAGAGACTGGTCTGTGGGTAGTTGTCATAATAAAAGAGGGTACTTC

TGCCATGCGCTGACCCGCACCTCGTAGACCAGCGTAACCCAGTGGTCGTTTAGCGCGACAATCGCCCGGGTAATTCA

AGACAGAGCCGCGCAGACGCAGACCGACCGACCGTATTTATAGAGTGAGCGTTAGTTTAAGTCGGCTATCGCCTTGC

CCTTCCGCTGACCTCACGGTACAGGCCAAAAGTTGTTTGGTACGTTTACGACTTACTCCCGTAGCAAGGGTGACGCT

ACGACCAACGGTTGCTAGTCTACCGCGACCCGCGTTACGCGCGGTAATGGCTCAGGCCCGACGCGCAACCACGCCTA

TAGAGCCATCACCCTATGCTGCTATGGCTTCTGTCGAGTACAATATAGGGCGGCAATTGGTGGTAGTTTGTCCTAAA

AGCGGACGACCCCGTTTGGTCGCACCTGGCGAACGACGTTGAGAGAGTCCCGGTCCGCCACTTCCCGTTAGTCGACA

ACGGGCAGAGTGACCACTTTTCTTTTTGGTGGGACCGCGGGTTATGCGTTTGGCGGAGAGGGGCGCGCAACCGGCTA

AGTAATTACGTCGACCGTGCTGTCCAAAGGGCTGACCTTTCGCCCGTCACTCGCGTTGCGTTAATTACATTCAATCG

AGTGAGTAATCCGTGGCCCTAGAGCTGGCTACGGGAACTCTCGGAAGTTGGGTCAGTCGAGGAAGGCCACCCGCGCC

CCGTACTGATAGCAGCGGCGTGAATACTGACAGAAGAAATAGTACGTTGAGCATCCTGTCCACGGCCGTCGCGAGAC

CCAGTAAAAGCCGCTCCTGGCGAAAGCGACCTCGCGCTGCTACTAGCCGGACAGCGAACGCCATAAGCCTTAGAACG

TGCGGGAGCGAGTTCGGAAGCAGTGACCAGGGCGGTGGTTTGCAAAGCCGCTCTTCGTCCGGTAATAGCGGCCGTAC

CGCCGGGGTGCCCACGCGTACTAGCACGAGGACAGCAACTCCTGGGCCGATCCGACCGCCCCAACGGAATGACCAAT

CGTCTTACTTAGTGGCTATGCGCTCGCTTGCACTTCGCTGACGACGACGTTTTGCAGACGCTGGACTCGTTGTTGTA

CTTACCAGAAGCCAAAGGCACAAAGCATTTCAGACCTTTGCGCCTTCAGTCGCGGGACGTGGTAATACAAGGCCTAG

SphI (2228)

1976

2053

2130

2207

2284

2361

2438

2515

2592

2669

2746

2823

2900

2977

3054

3131

3208

3285

3362

3439

3516

3593

3670

3747

3824

3901

3978
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TGCATCGCAGGATGCTGCTGGCTACCCTGTGGAACACCTACATCTGTATTAACGAAGCGCTGGCATTGACCCTGAGT

GATTTTTCTCTGGTCCCGCCGCATCCATACCGCCAGTTGTTTACCCTCACAACGTTCCAGTAACCGGGCATGTTCAT

CATCAGTAACCCGTATCGTGAGCATCCTCTCTCGTTTCATCGGTATCATTACCCCCATGAACAGAAATCCCCCTTAC

ACGGAGGCATCAGTGACCAAACAGGAAAAAACCGCCCTTAACATGGCCCGCTTTATCAGAAGCCAGACATTAACGCT

TCTGGAGAAACTCAACGAGCTGGACGCGGATGAACAGGCAGACATCTGTGAATCGCTTCACGACCACGCTGATGAGC

TTTACCGCAGCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACA

GCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGC

AGCCATGACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAG

AGTGCACCATATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTCTTCCGCTTC

CTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGT

TATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAG

GCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTG

GCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCC

TGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTAT

CTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTT

ATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGA

TTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACA

GTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAAC

CACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTT

TGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAACAATAAAACT

GTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAGCCATATTCAACGGGAAACGTCTTGCTCTAGGCCGCGAT

TAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATC

TATCGATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTAC

AGATGAGATGGTCAGACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTG

ATGATGCATGGTTACTCACCACTGCGATCCCCGGGAAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGT

GAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTTTAACAG

CGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACG

ACGTAGCGTCCTACGACGACCGATGGGACACCTTGTGGATGTAGACATAATTGCTTCGCGACCGTAACTGGGACTCA

CTAAAAAGAGACCAGGGCGGCGTAGGTATGGCGGTCAACAAATGGGAGTGTTGCAAGGTCATTGGCCCGTACAAGTA

GTAGTCATTGGGCATAGCACTCGTAGGAGAGAGCAAAGTAGCCATAGTAATGGGGGTACTTGTCTTTAGGGGGAATG

TGCCTCCGTAGTCACTGGTTTGTCCTTTTTTGGCGGGAATTGTACCGGGCGAAATAGTCTTCGGTCTGTAATTGCGA

AGACCTCTTTGAGTTGCTCGACCTGCGCCTACTTGTCCGTCTGTAGACACTTAGCGAAGTGCTGGTGCGACTACTCG

AAATGGCGTCGACGGAGCGCGCAAAGCCACTACTGCCACTTTTGGAGACTGTGTACGTCGAGGGCCTCTGCCAGTGT

CGAACAGACATTCGCCTACGGCCCTCGTCTGTTCGGGCAGTCCCGCGCAGTCGCCCACAACCGCCCACAGCCCCGCG

TCGGTACTGGGTCAGTGCATCGCTATCGCCTCACATATGACCGAATTGATACGCCGTAGTCTCGTCTAACATGACTC

TCACGTGGTATATACGCCACACTTTATGGCGTGTCTACGCATTCCTCTTTTATGGCGTAGTCCGCGAGAAGGCGAAG

GAGCGAGTGACTGAGCGACGCGAGCCAGCAAGCCGACGCCGCTCGCCATAGTCGAGTGAGTTTCCGCCATTATGCCA

ATAGGTGTCTTAGTCCCCTATTGCGTCCTTTCTTGTACACTCGTTTTCCGGTCGTTTTCCGGTCCTTGGCATTTTTC

CGGCGCAACGACCGCAAAAAGGTATCCGAGGCGGGGGGACTGCTCGTAGTGTTTTTAGCTGCGAGTTCAGTCTCCAC

CGCTTTGGGCTGTCCTGATATTTCTATGGTCCGCAAAGGGGGACCTTCGAGGGAGCACGCGAGAGGACAAGGCTGGG

ACGGCGAATGGCCTATGGACAGGCGGAAAGAGGGAAGCCCTTCGCACCGCGAAAGAGTATCGAGTGCGACATCCATA

GAGTCAAGCCACATCCAGCAAGCGAGGTTCGACCCGACACACGTGCTTGGGGGGCAAGTCGGGCTGGCGACGCGGAA

TAGGCCATTGATAGCAGAACTCAGGTTGGGCCATTCTGTGCTGAATAGCGGTGACCGTCGTCGGTGACCATTGTCCT

AATCGTCTCGCTCCATACATCCGCCACGATGTCTCAAGAACTTCACCACCGGATTGATGCCGATGTGATCTTCCTGT

CATAAACCATAGACGCGAGACGACTTCGGTCAATGGAAGCCTTTTTCTCAACCATCGAGAACTAGGCCGTTTGTTTG

GTGGCGACCATCGCCACCAAAAAAACAAACGTTCGTCGTCTAATGCGCGTCTTTTTTTCCTAGAGTTCTTCTAGGAA

ACTAGAAAAGATGCCCCAGACTGCGAGTCACCTTGCTTTTGAGTGCAATTCCCTAAAACCAGTACTTGTTATTTTGA

CAGACGAATGTATTTGTCATTATGTTCCCCACAATACTCGGTATAAGTTGCCCTTTGCAGAACGAGATCCGGCGCTA

ATTTAAGGTTGTACCTACGACTAAATATACCCATATTTACCCGAGCGCTATTACAGCCCGTTAGTCCACGCTGTTAG

ATAGCTAACATACCCTTCGGGCTACGCGGTCTCAACAAAGACTTTGTACCGTTTCCATCGCAACGGTTACTACAATG

TCTACTCTACCAGTCTGATTTGACCGACTGCCTTAAATACGGAGAAGGCTGGTAGTTCGTAAAATAGGCATGAGGAC

TACTACGTACCAATGAGTGGTGACGCTAGGGGCCCTTTTGTCGTAAGGTCCATAATCTTCTTATAGGACTAAGTCCA

CTTTTATAACAACTACGCGACCGTCACAAGGACGCGGCCAACGTAAGCTAAGGACAAACATTAACAGGAAAATTGTC

GCTAGCGCATAAAGCAGAGCGAGTCCGCGTTAGTGCTTACTTATTGCCAAACCAACTACGCTCACTAAAACTACTGC

4055

4132

4209

4286

4363

4440

4517

4594

4671

4748

4825

4902

4979

5056

5133

5210

5287

5364

5441

5518

5595

5672

5749

5826

5903

5980

6057
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AGCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCATAAACTTTTGCCATTCTCACCGGATTCAGTCGTC

ACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGT

CGGAATCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAAC

GGCTTTTTCAAAAATATGGTATTGATAATCCTGATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTC

TAAGAATTAATTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTC

CCCGAAAAGTGCCACCTGAAATTGTAAACGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCA

TTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGT

TCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCG

ATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCT

AAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGG

AGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGC

TACAGGGCGCGTCCCATTCGCCA

TCGCATTACCGACCGGACAACTTGTTCAGACCTTTCTTTACGTATTTGAAAACGGTAAGAGTGGCCTAAGTCAGCAG

TGAGTACCACTAAAGAGTGAACTATTGGAATAAAAACTGCTCCCCTTTAATTATCCAACATAACTACAACCTGCTCA

GCCTTAGCGTCTGGCTATGGTCCTAGAACGGTAGGATACCTTGACGGAGCCACTCAAAAGAGGAAGTAATGTCTTTG

CCGAAAAAGTTTTTATACCATAACTATTAGGACTATACTTATTTAACGTCAAAGTAAACTACGAGCTACTCAAAAAG

ATTCTTAATTAAGTACTCGCCTATGTATAAACTTACATAAATCTTTTTATTTGTTTATCCCCAAGGCGCGTGTAAAG

GGGCTTTTCACGGTGGACTTTAACATTTGCAATTATAAAACAATTTTAAGCGCAATTTAAAAACAATTTAGTCGAGT

AAAAAATTGGTTATCCGGCTTTAGCCGTTTTAGGGAATATTTAGTTTTCTTATCTGGCTCTATCCCAACTCACAACA

AGGTCAAACCTTGTTCTCAGGTGATAATTTCTTGCACCTGAGGTTGCAGTTTCCCGCTTTTTGGCAGATAGTCCCGC

TACCGGGTGATGCACTTGGTAGTGGGATTAGTTCAAAAAACCCCAGCTCCACGGCATTTCGTGATTTAGCCTTGGGA

TTTCCCTCGGGGGCTAAATCTCGAACTGCCCCTTTCGGCCGCTTGCACCGCTCTTTCCTTCCCTTCTTTCGCTTTCC

TCGCCCGCGATCCCGCGACCGTTCACATCGCCAGTGCGACGCGCATTGGTGGTGTGGGCGGCGCGAATTACGCGGCG

ATGTCCCGCGCAGGGTAAGCGGT

6134

6211

6288

6365

6442

6519

6596

6673

6750

6827

6904

6981
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A.2 pEC2-SC5, -RGD, -RDG plasmid information

Submitted by Marissa Mock Date 4/22/04

Strain name/ XL-1 blue (SupE44 hsdR17 recA1 endA1 gyrA46 thi relA1 lac-

F’[proAB+ lacIq lacZΔM15 Tn10(tetr)] (From Stratagene) )/ pEC2-SC5
pEC2-RGD
pEC2-RDG

Vector  (kb) :   pEC2-SC5
pEC2-RGD
pEC2-RDG

Cloning  site: See plasmid map.

Construction of pEC2-CBD plasmids

The cell binding domain region was cut out of the appropriate pUC19-SC5, pUC19-
RGD, or pUC19-RDG vector with EcoR I/ BamH I digestion.  The pEC2 (Eric Cantor)
vector was cut with EcoR I/BamH I and ligated with the inserts to produce pEC2-SC5,
pEC2-RGD, and pEC2-RDG.

Plasmid map and full sequence are shown only for pEC2-SC5; others are similar.

Source available :

12    % Glycerol culture in Marissa freezer box
Culture conditions: 2xYT, 37°C
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A.2.1 Plasmid map

A.2.2 Position of elements

      bp
Vector size ................................................................................................................ 4110
SC5 insert ............................................................................................................ 314-420
RGD insert........................................................................................................... 314-414
RDG insert .......................................................................................................... 314-414

pEC2-SC5
(4110 bp)

EcoRI
BanI

BamHI
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A.2.3 Full sequence (pEC2-SC5)

GTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAA

AGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACT

TCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGG

GAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAgatctgatcag aat tcg tcg

acg cta gct tcc tcg atg gtg aag aga tcc aga tcg gcc aca tcc cgc gtg aag ttg atg

att acc acc tgt acg cta gcg cgg tgc cgc tcg agg gatccatctagagtcgacgtcggccgttaaccta

ggagatctgcaGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAAT

AGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCT

GGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACA

CGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCgtgcCTCACTGATTAAGCATTGGT

AACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGAT

CCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCTTAATAAGATGATCT

TCTTGAGATCGTTTTGGTCTGCGCGTAATCTCTTGCTCTGAAAACGAAAAAACCGCCTTGCAGGGCGGTTTTTCGAAGGTTC

TCTGAGCTACCAACTCTTTGAACCGAGGTAACTGGCTTGGAGGAGCGCAGTCACCAAAACTTGTCCTTTCAGTTTAGCCTTA

ACCGGCGCATGACTTCAAGACTAACTCCTCTAAATCAATTACCAGTGGCTGCTGCCAGTGGTGCTTTTGCATGTCTTTCCGG

GTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGACTGAACGGGGGGTTCGTGCATACAGTCCAGCTTGGAG

CGAACTGCCTACCCGGAACTGAGTGTCAGGCGTGGAATGAGACAAACGCGGCCATAACAGCGGAATGACACCGGTAAACCGA

CAACTGCGGCCCGTTCTCGTTGAGCCAGCGGCGTATGTGATAAGAGTCTTACTGAACCAACTCATGAGTGGTCAGTGTCTTT

TCGTAGAATGCCTACCGTACTGTCATTCTCTTAATACGTCACGACGGTATTGGTACTCACTATTGTGACGCCGGTTGAATGA

AGACTGTTGCTAGCCTCCTGGCTTCCTCGATTGGCGAAAAAACGTGTTGTACCCCCTAGTACATTGAGCGGAACTAGCAACC

CTTGGCCTCGACTTACTTCGGTATGGTTTGCTGCTCGCACTGTGGTGCTACGGACGTctagactagtc tta agc agc

tgc gat cga agg agc tac cac ttc tct agg tct agc cgg tgt agg gcg cac ttc aac tac

taa tgg tgg aca tgc gat cgc gcc acg gcg agc tcc ctaggtagatctcagctgcagccggcaattggat

cctctagacgtCGTTACCGTTGTTGCAACGCGTTTGATAATTGACCGCTTGATGAATGAGATCGAAGGGCCGTTGTTAATTA

TCTGACCTACCTCCGCCTATTTCAACGTCCTGGTGAAGACGCGAGCCGGGAAGGCCGACCGACCAAATAACGACTATTTAGA

CCTCGGCCACTCGCACCCAGAGCGCCATAGTAACGTCGTGACCCCGGTCTACCATTCGGGAGGGCATAGCATCAATAGATGT

GCTGCCCCTCAGTCCGTTGATACCTACTTGCTTTATCTGTCTAGCGACTCTATCCACGcacgGAGTGACTAATTCGTAACCA

TTGACAGTCTGGTTCAAATGAGTATATATGAAATCTAACTAAATTTTGAAGTAAAAATTAAATTTTCCTAGATCCACTTCTA

GGAAAAACTATTAGAGTACTGGTTTTAGGGAATTGCACTCAAAAGCAAGGTGACTCGCAGTCTGGGGAATTATTCTACTAGA

AGAACTCTAGCAAAACCAGACGCGCATTAGAGAACGAGACTTTTGCTTTTTTGGCGGAACGTCCCGCCAAAAAGCTTCCAAG

AGACTCGATGGTTGAGAAACTTGGCTCCATTGACCGAACCTCCTCGCGTCAGTGGTTTTGAACAGGAAAGTCAAATCGGAAT

TGGCCGCGTACTGAAGTTCTGATTGAGGAGATTTAGTTAATGGTCACCGACGACGGTCACCACGAAAACGTACAGAAAGGCC

CAACCTGAGTTCTGCTATCAATGGCCTATTCCGCGTCGCCAGCCTGACTTGCCCCCCAAGCACGTATGTCAGGTCGAACCTC

GCTTGACGGATGGGCCTTGACTCACAGTCCGCACCTTACTCTGTTTGCGCCGGTATTGTCGCCTTACTGTGGCCATTTGGCT

 L   D  G  E   E   I   Q  I   G  H  I   P   R   E   V  D  

D  Y   H  L   Y  

PstI EcoRI

NheI

NheI BanI XhoI BamHI

PstI

1

83

165

247

324

384

454

536

618

700

782

864

946

1028

1110

1192

1274

1

17
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AAGGCAGGAACAGGAGAGCGCACGAGGGAGCCGCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACC

ACTGATTTGAGCGTCAGATTTCGTGATGCTTGTCAGGGGGGCGGAGCCTATGGAAAAACGGCTTTGCCGCGGCCCTCTCACT

TCCCTGTTAAGTATCTTCCTGGCATCTTCCAGGAAATCTCCGCCCCGTTCGTAAGCCATTTCCGCTCGCCGCAGTCGAACGA

CCGAGCGTAGCGAGTCAGTGAGCGAGGAAGCGGAATATATCCTGTATCACATATTCTGCTGACGCACCGGTGCAGCCTTTTT

TCTCCTGCCACATGAAGCACTTCACTGACACCCTCATCAGTGCCAACATAGTAAGCCAGTATACACTCCGCTAGCGCTGAGG

TCTGCCTCGTGAAGAAGGTGTTGCTGACTCATACCAGGCCTGAATCGCCCCATCATCCAGCCAGAAAGTGAGGGAGCCACGG

TTGATGAGAGCTTTGTTGTAGGTGGACCAGTTGGTGATTTTGAACTTTTGCTTTGCCACGGAACGGTCTGCGTTGTCGGGAA

GATGCGTGATCTGATCCTTCAACTCAGCAAAAGTTCGATTTATTCAACAAAGCCACGTTGTGTCTCAAAATCTCTGATGTTA

CATTGCACAAGATAAAAATATATCATCATGAACAATAAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAGC

CATATTCAACGGGAAACGTCTTGCTCGAGGCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTC

GCGATAATGTCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGG

CAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATC

AAGCATTTTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGATCCCCGGGAAAACAGCATTCCAGGTATTAGAAG

AATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTG

TCCTTTTAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGAGTGATTTT

GATGACGAGCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCATAAGCTTTTGCCATTCTCACCGGATTCAGTCG

TCACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGTCGG

AATCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTT

CAAAAATATGGTATTGATAATCCTGATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTAATCAGAATTGG

TTCCGTCCTTGTCCTCTCGCGTGCTCCCTCGGCGGTCCCCCTTTGCGGACCATAGAAATATCAGGACAGCCCAAAGCGGTGG

TGACTAAACTCGCAGTCTAAAGCACTACGAACAGTCCCCCCGCCTCGGATACCTTTTTGCCGAAACGGCGCCGGGAGAGTGA

AGGGACAATTCATAGAAGGACCGTAGAAGGTCCTTTAGAGGCGGGGCAAGCATTCGGTAAAGGCGAGCGGCGTCAGCTTGCT

GGCTCGCATCGCTCAGTCACTCGCTCCTTCGCCTTATATAGGACATAGTGTATAAGACGACTGCGTGGCCACGTCGGAAAAA

AGAGGACGGTGTACTTCGTGAAGTGACTGTGGGAGTAGTCACGGTTGTATCATTCGGTCATATGTGAGGCGATCGCGACTCC

AGACGGAGCACTTCTTCCACAACGACTGAGTATGGTCCGGACTTAGCGGGGTAGTAGGTCGGTCTTTCACTCCCTCGGTGCC

AACTACTCTCGAAACAACATCCACCTGGTCAACCACTAAAACTTGAAAACGAAACGGTGCCTTGCCAGACGCAACAGCCCTT

CTACGCACTAGACTAGGAAGTTGAGTCGTTTTCAAGCTAAATAAGTTGTTTCGGTGCAACACAGAGTTTTAGAGACTACAAT

GTAACGTGTTCTATTTTTATATAGTAGTACTTGTTATTTTGACAGACGAATGTATTTGTCATTATGTTCCCCACAATACTCG

GTATAAGTTGCCCTTTGCAGAACGAGCTCCGGCGCTAATTTAAGGTTGTACCTACGACTAAATATACCCATATTTACCCGAG

CGCTATTACAGCCCGTTAGTCCACGCTGTTAGATAGCTAACATACCCTTCGGGCTACGCGGTCTCAACAAAGACTTTGTACC

GTTTCCATCGCAACGGTTACTACAATGTCTACTCTACCAGTCTGATTTGACCGACTGCCTTAAATACGGAGAAGGCTGGTAG

TTCGTAAAATAGGCATGAGGACTACTACGTACCAATGAGTGGTGACGCTAGGGGCCCTTTTGTCGTAAGGTCCATAATCTTC

TTATAGGACTAAGTCCACTTTTATAACAACTACGCGACCGTCACAAGGACGCGGCCAACGTAAGCTAAGGACAAACATTAAC

AGGAAAATTGTCGCTAGCGCATAAAGCAGAGCGAGTCCGCGTTAGTGCTTACTTATTGCCAAACCAACTACGCTCACTAAAA

CTACTGCTCGCATTACCGACCGGACAACTTGTTCAGACCTTTCTTTACGTATTCGAAAACGGTAAGAGTGGCCTAAGTCAGC

AGTGAGTACCACTAAAGAGTGAACTATTGGAATAAAAACTGCTCCCCTTTAATTATCCAACATAACTACAACCTGCTCAGCC

TTAGCGTCTGGCTATGGTCCTAGAACGGTAGGATACCTTGACGGAGCCACTCAAAAGAGGAAGTAATGTCTTTGCCGAAAAA

GTTTTTATACCATAACTATTAGGACTATACTTATTTAACGTCAAAGTAAACTACGAGCTACTCAAAAAGATTAGTCTTAACC

1356

1438

1520

1602

1684

1766

1848

1930

2012

2094

2176

2258

2340

2422

2504

2586

2668

2750

2832
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TTAATTGGTTGTAACACTGGCAGAGCATTACGCTGACTTGACGGGACGGCGGCTTTGTTGAATAAATCGAACTTTTGCTGAG

TTGAAGGATCAGATCACGCATCTTCCCGACAACGCAGACCGTTCCGTGGCAAAGCAAAAGTTCAAAATCACCAACTGGTCCA

CCTACAACAAAGCTCTCATCAACCGTGGCTCCCTCACTTTCTGGCTGGATGATGGGGCGATTCAGGCCTGGTATGAGTCAGC

AACACCTTCTTCACGAGGCAGACCTCAGCGCTCAAAGATGCAGGGGTAAAAGCTAACCGCATCTTTACCGACAAGGCATCCG

GCAGTTCAACAGATCGGGAAGGGCTGGATTTGCTGAGGATGAAGGTGGAGGAAGGTGATGTCATTCTGGTGAAGAAGCTCGA

CCGTCTTGGCCGCGACACCGCCGACATGATCCAACTGATAAAAGAGTTTGATGCTCAGGGTGTAGCGGTTCGGTTTATTGAC

GACGGGATCAGTACCGACGGTGATATGGGGCAAATGGTGGTCACCATCCTGTCGGCTGTGGCACAGGCTGAACGCCGGAGGA

TCgatcCTAGAGCGCACGAATGAGGGCCGACAGGAAGCAAAGCTGAAAGGAATCAAATTTGGCCGCAGGCGTACCGTGGACA

GGAACGTCGTGCTGACGCTTCATCAGAAGGGCACTGGTGCAACGGAAATTGCTCATCAGCTCAGTATTGCCCGCTCCACGGT

TTATAAAATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGA

CGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCT

CATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTT

ATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGT

TGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCC

AATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGT

AATTAACCAACATTGTGACCGTCTCGTAATGCGACTGAACTGCCCTGCCGCCGAAACAACTTATTTAGCTTGAAAACGACTC

AACTTCCTAGTCTAGTGCGTAGAAGGGCTGTTGCGTCTGGCAAGGCACCGTTTCGTTTTCAAGTTTTAGTGGTTGACCAGGT

GGATGTTGTTTCGAGAGTAGTTGGCACCGAGGGAGTGAAAGACCGACCTACTACCCCGCTAAGTCCGGACCATACTCAGTCG

TTGTGGAAGAAGTGCTCCGTCTGGAGTCGCGAGTTTCTACGTCCCCATTTTCGATTGGCGTAGAAATGGCTGTTCCGTAGGC

CGTCAAGTTGTCTAGCCCTTCCCGACCTAAACGACTCCTACTTCCACCTCCTTCCACTACAGTAAGACCACTTCTTCGAGCT

GGCAGAACCGGCGCTGTGGCGGCTGTACTAGGTTGACTATTTTCTCAAACTACGAGTCCCACATCGCCAAGCCAAATAACTG

CTGCCCTAGTCATGGCTGCCACTATACCCCGTTTACCACCAGTGGTAGGACAGCCGACACCGTGTCCGACTTGCGGCCTCCT

AGctagGATCTCGCGTGCTTACTCCCGGCTGTCCTTCGTTTCGACTTTCCTTAGTTTAAACCGGCGTCCGCATGGCACCTGT

CCTTGCAGCACGACTGCGAAGTAGTCTTCCCGTGACCACGTTGCCTTTAACGAGTAGTCGAGTCATAACGGGCGAGGTGCCA

AATATTTTAAGAACTTCTGCTTTCCCGGAGCACTATGCGGATAAAAATATCCAATTACAGTACTATTATTACCAAAGAATCT

GCAGTCCACCGTGAAAAGCCCCTTTACACGCGCCTTGGGGATAAACAAATAAAAAGATTTATGTAAGTTTATACATAGGCGA

GTACTCTGTTATTGGGACTATTTACGAAGTTATTATAACTTTTTCCTTCTCATACTCATAAGTTGTAAAGGCACAGCGGGAA

TAAGGGAAAAAACGCCGTAAAACGGAAGGACAAAAACGAGTGGGTCTTTGCGACCACTTTCATTTTCTACGACTTCTAGTCA

ACCCACGTGCTCACCCAATGTAGCTTGACCTAGAGTTGTCGCCATTCTAGGAACTCTCAAAAGCGGGGCTTCTTGCAAAAGG

TTACTACTCGTGAAAATTTCAAGACGATACACCGCGCCATAATAGGGCA

2914

2996

3078

3160

3242

3324

3406

3488

3570

3652

3734

3816

3898

3980

4062
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A.3 pEC2-SC5-ELF5 and -ELF6 information

Submitted by Marissa Mock Date 4/22/04

Strain name: JM109 (e14–(McrA–) recA1 endA1 gyrA96 thi-1 hsdR17 (rK–
mK+) supE44 relA1 £G(lac-proAB) [F´ traD36 proAB lacIqZ£GM15). (From Zymo
Research) )/ pEC2-SC5-ELF5

or  / pEC2-SC5-ELF6

Vector  (kb): pEC2-SC5-ELF5 (X)
pEC2-SC5-ELF6 (X)

Construction of pEC2-CBD plasmids

ELF monomer (see sequence below) was obtained through Ban I digestion of pUC19-
ELF (Nandita Sharma).

pEC2-SC5-ELF5:
The 75 bp fragment was multimerized through ligation with T4 DNA ligase for 3 minutes
at 0°C.  The ligation mixture was run on a 2% agarose gel, and the band corresponding to
pentamer (375 bp) was cut out and extracted from the gel.  The pentamer DNA was
ligated with pEC2-SC5 vector that had been digested with Ban I and dephosphorylated
with CIP, to yield pEC2-SC5-ELF5.

pEC2-SC5-ELF6:
The 75 bp ELF fragment was mixed with T4 ligase at 0°C for 30 s and added directly to
pEC2-SC5 vector that had been digested with Ban I and dephosphorylated with CIP.  The
entire ligation mixture was transformed in JM109 competent cells; screened colonies
revealed a strain containing pEC2-SC5-ELF6.

ELF monomer sequence:
ggtgccgggtgtgggcgttccgggcgtgggtgtaccgggcttcggtgtcccgggcgtaggtgttccgggtgtcggggtgcc

Plasmid map and full sequence shown only for pEC2-SC5-ELF5; other is similar.

Source available :
12    % Glycerol culture in Marissa freezer box
Culture conditions: 2xYT, 37°C                       
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A.3.1 Plasmid map

A.3.2 Position of elements

      bp

Vector size ................................................................................................................ 4485
SC5 cell binding domain ...................................................................................... 314-406
ELF pentamer ...................................................................................................... 407-782

pEC2-SC5-ELF5
(4485 bp)

EcoRI
SalI NheI

NheI

XhoI

BamHI

SalI

XhoI
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A.3.3 Full sequence (pEC2-SC5-ELF5)

GTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACA

GAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCC

AACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGC

CTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAgatctgatc

ag aat tcg tcg acg cta gct tcc tcg atg gtg aag aga tcc aga tcg gcc aca tcc cgc

gtg aag ttg atg att acc acc tgt acg cta gcg cg gtgccgggtgtgggcgttccgggcgtgggtg

taccgggcttcggtgtcccgggcgtaggtgttccgggtgtcggggtgccgggtgtgggcgttccgggcgtgggtgtac

cgggcttcggtgtcccgggcgtaggtgttccgggtgtcggggtgccgggtgtgggcgttccgggcgtgggtgtaccgg

gcttcggtgtcccgggcgtaggtgttccgggtgtcggggtgccgggtgtgggcgttccgggcgtgggtgtaccgggct

tcggtgtcccgggcgtaggtgttccgggtgtcggggtgccgggtgtgggcgttccgggcgtgggtgtaccgggcttcg

gtgtcccgggcgtaggtgttccgggtgtcggg gtg ccg ctc gag g gatccatctagagtcgacgtcggccgt

taacctaggagatctgcaGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGG

CAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTT

ATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCC

CGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCg

CAACTGCGGCCCGTTCTCGTTGAGCCAGCGGCGTATGTGATAAGAGTCTTACTGAACCAACTCATGAGTGGTCAGTGT

CTTTTCGTAGAATGCCTACCGTACTGTCATTCTCTTAATACGTCACGACGGTATTGGTACTCACTATTGTGACGCCGG

TTGAATGAAGACTGTTGCTAGCCTCCTGGCTTCCTCGATTGGCGAAAAAACGTGTTGTACCCCCTAGTACATTGAGCG

GAACTAGCAACCCTTGGCCTCGACTTACTTCGGTATGGTTTGCTGCTCGCACTGTGGTGCTACGGACGTctagactag

tc tta agc agc tgc gat cga agg agc tac cac ttc tct agg tct agc cgg tgt agg gcg

cac ttc aac tac taa tgg tgg aca tgc gat cgc gc cacggcccacacccgcaaggcccgcacccac

atggcccgaagccacagggcccgcatccacaaggcccacagccccacggcccacacccgcaaggcccgcacccacatg

gcccgaagccacagggcccgcatccacaaggcccacagccccacggcccacacccgcaaggcccgcacccacatggcc

cgaagccacagggcccgcatccacaaggcccacagccccacggcccacacccgcaaggcccgcacccacatggcccga

agccacagggcccgcatccacaaggcccacagccccacggcccacacccgcaaggcccgcacccacatggcccgaagc

cacagggcccgcatccacaaggcccacagccc cac ggc gag ctc c ctaggtagatctcagctgcagccggca

attggatcctctagacgtCGTTACCGTTGTTGCAACGCGTTTGATAATTGACCGCTTGATGAATGAGATCGAAGGGCC

GTTGTTAATTATCTGACCTACCTCCGCCTATTTCAACGTCCTGGTGAAGACGCGAGCCGGGAAGGCCGACCGACCAAA

TAACGACTATTTAGACCTCGGCCACTCGCACCCAGAGCGCCATAGTAACGTCGTGACCCCGGTCTACCATTCGGGAGG

GCATAGCATCAATAGATGTGCTGCCCCTCAGTCCGTTGATACCTACTTGCTTTATCTGTCTAGCGACTCTATCCACGc

 L   D  G  E   E   I   Q  I   G  H  I   P   

R   E   V  D  D  Y   H  L   Y   A   S   A   V  P   G  V  G  V  P   G  V  G  

V  P   G  F   G  V  P   G  V  G  V  P   G  V  G  V  P   G  V  G  V  P   G  V  G  V  

P   G  F   G  V  P   G  V  G  V  P   G  V  G  V  P   G  V  G  V  P   G  V  G  V  P   

G  F   G  V  P   G  V  G  V  P   G  V  G  V  P   G  V  G  V  P   G  V  G  V  P   G  

F   G  V  P   G  V  G  V  P   G  V  G  V  P   G  V  G  V  P   G  V  G  V  P   G  F   

G  V  P   G  V  G  V  P   G  V  G 

EcoRI NheI

NheI

XhoI BamHI

1

79

157

235

313

372

438

516

594

672

750

822

900

978

1056

1

13

35

61

87

113

139
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tgcCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTT

TTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCA

CTGAGCGTCAGACCCCTTAATAAGATGATCTTCTTGAGATCGTTTTGGTCTGCGCGTAATCTCTTGCTCTGAAAACGA

AAAAACCGCCTTGCAGGGCGGTTTTTCGAAGGTTCTCTGAGCTACCAACTCTTTGAACCGAGGTAACTGGCTTGGAGG

AGCGCAGTCACCAAAACTTGTCCTTTCAGTTTAGCCTTAACCGGCGCATGACTTCAAGACTAACTCCTCTAAATCAAT

TACCAGTGGCTGCTGCCAGTGGTGCTTTTGCATGTCTTTCCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGC

AGCGGTCGGACTGAACGGGGGGTTCGTGCATACAGTCCAGCTTGGAGCGAACTGCCTACCCGGAACTGAGTGTCAGGC

GTGGAATGAGACAAACGCGGCCATAACAGCGGAATGACACCGGTAAACCGAAAGGCAGGAACAGGAGAGCGCACGAGG

GAGCCGCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCACTGATTTGAGCGTCAGATTTCG

TGATGCTTGTCAGGGGGGCGGAGCCTATGGAAAAACGGCTTTGCCGCGGCCCTCTCACTTCCCTGTTAAGTATCTTCC

TGGCATCTTCCAGGAAATCTCCGCCCCGTTCGTAAGCCATTTCCGCTCGCCGCAGTCGAACGACCGAGCGTAGCGAGT

CAGTGAGCGAGGAAGCGGAATATATCCTGTATCACATATTCTGCTGACGCACCGGTGCAGCCTTTTTTCTCCTGCCAC

ATGAAGCACTTCACTGACACCCTCATCAGTGCCAACATAGTAAGCCAGTATACACTCCGCTAGCGCTGAGGTCTGCCT

CGTGAAGAAGGTGTTGCTGACTCATACCAGGCCTGAATCGCCCCATCATCCAGCCAGAAAGTGAGGGAGCCACGGTTG

ATGAGAGCTTTGTTGTAGGTGGACCAGTTGGTGATTTTGAACTTTTGCTTTGCCACGGAACGGTCTGCGTTGTCGGGA

AGATGCGTGATCTGATCCTTCAACTCAGCAAAAGTTCGATTTATTCAACAAAGCCACGTTGTGTCTCAAAATCTCTGA

TGTTACATTGCACAAGATAAAAATATATCATCATGAACAATAAAACTGTCTGCTTACATAAACAGTAATACAAGGGGT

GTTATGAGCCATATTCAACGGGAAACGTCTTGCTCGAGGCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGG

TATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAAGCCCGATGCGCCAGAG

TTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGAA

acgGAGTGACTAATTCGTAACCATTGACAGTCTGGTTCAAATGAGTATATATGAAATCTAACTAAATTTTGAAGTAAA

AATTAAATTTTCCTAGATCCACTTCTAGGAAAAACTATTAGAGTACTGGTTTTAGGGAATTGCACTCAAAAGCAAGGT

GACTCGCAGTCTGGGGAATTATTCTACTAGAAGAACTCTAGCAAAACCAGACGCGCATTAGAGAACGAGACTTTTGCT

TTTTTGGCGGAACGTCCCGCCAAAAAGCTTCCAAGAGACTCGATGGTTGAGAAACTTGGCTCCATTGACCGAACCTCC

TCGCGTCAGTGGTTTTGAACAGGAAAGTCAAATCGGAATTGGCCGCGTACTGAAGTTCTGATTGAGGAGATTTAGTTA

ATGGTCACCGACGACGGTCACCACGAAAACGTACAGAAAGGCCCAACCTGAGTTCTGCTATCAATGGCCTATTCCGCG

TCGCCAGCCTGACTTGCCCCCCAAGCACGTATGTCAGGTCGAACCTCGCTTGACGGATGGGCCTTGACTCACAGTCCG

CACCTTACTCTGTTTGCGCCGGTATTGTCGCCTTACTGTGGCCATTTGGCTTTCCGTCCTTGTCCTCTCGCGTGCTCC

CTCGGCGGTCCCCCTTTGCGGACCATAGAAATATCAGGACAGCCCAAAGCGGTGGTGACTAAACTCGCAGTCTAAAGC

ACTACGAACAGTCCCCCCGCCTCGGATACCTTTTTGCCGAAACGGCGCCGGGAGAGTGAAGGGACAATTCATAGAAGG

ACCGTAGAAGGTCCTTTAGAGGCGGGGCAAGCATTCGGTAAAGGCGAGCGGCGTCAGCTTGCTGGCTCGCATCGCTCA

GTCACTCGCTCCTTCGCCTTATATAGGACATAGTGTATAAGACGACTGCGTGGCCACGTCGGAAAAAAGAGGACGGTG

TACTTCGTGAAGTGACTGTGGGAGTAGTCACGGTTGTATCATTCGGTCATATGTGAGGCGATCGCGACTCCAGACGGA

GCACTTCTTCCACAACGACTGAGTATGGTCCGGACTTAGCGGGGTAGTAGGTCGGTCTTTCACTCCCTCGGTGCCAAC

TACTCTCGAAACAACATCCACCTGGTCAACCACTAAAACTTGAAAACGAAACGGTGCCTTGCCAGACGCAACAGCCCT

TCTACGCACTAGACTAGGAAGTTGAGTCGTTTTCAAGCTAAATAAGTTGTTTCGGTGCAACACAGAGTTTTAGAGACT

ACAATGTAACGTGTTCTATTTTTATATAGTAGTACTTGTTATTTTGACAGACGAATGTATTTGTCATTATGTTCCCCA

CAATACTCGGTATAAGTTGCCCTTTGCAGAACGAGCTCCGGCGCTAATTTAAGGTTGTACCTACGACTAAATATACCC

ATATTTACCCGAGCGCTATTACAGCCCGTTAGTCCACGCTGTTAGATAGCTAACATACCCTTCGGGCTACGCGGTCTC

AACAAAGACTTTGTACCGTTTCCATCGCAACGGTTACTACAATGTCTACTCTACCAGTCTGATTTGACCGACTGCCTT
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TTTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGATCCCCGGG

AAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGC

CGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGA

ATGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACGAGCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAA

ATGCATAAGCTTTTGCCATTCTCACCGGATTCAGTCGTCACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGAC

GAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGTCGGAATCGCAGACCGATACCAGGATCTTGCCATCCTATGG

AACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTGATATGAAT

AAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTAATCAGAATTGGTTAATTGGTTGTAACACTGGCAGAGCATT

ACGCTGACTTGACGGGACGGCGGCTTTGTTGAATAAATCGAACTTTTGCTGAGTTGAAGGATCAGATCACGCATCTTC

CCGACAACGCAGACCGTTCCGTGGCAAAGCAAAAGTTCAAAATCACCAACTGGTCCACCTACAACAAAGCTCTCATCA

ACCGTGGCTCCCTCACTTTCTGGCTGGATGATGGGGCGATTCAGGCCTGGTATGAGTCAGCAACACCTTCTTCACGAG

GCAGACCTCAGCGCTCAAAGATGCAGGGGTAAAAGCTAACCGCATCTTTACCGACAAGGCATCCGGCAGTTCAACAGA

TCGGGAAGGGCTGGATTTGCTGAGGATGAAGGTGGAGGAAGGTGATGTCATTCTGGTGAAGAAGCTCGACCGTCTTGG

CCGCGACACCGCCGACATGATCCAACTGATAAAAGAGTTTGATGCTCAGGGTGTAGCGGTTCGGTTTATTGACGACGG

GATCAGTACCGACGGTGATATGGGGCAAATGGTGGTCACCATCCTGTCGGCTGTGGCACAGGCTGAACGCCGGAGGAT

CgatcCTAGAGCGCACGAATGAGGGCCGACAGGAAGCAAAGCTGAAAGGAATCAAATTTGGCCGCAGGCGTACCGTGG

ACAGGAACGTCGTGCTGACGCTTCATCAGAAGGGCACTGGTGCAACGGAAATTGCTCATCAGCTCAGTATTGCCCGCT

CCACGGTTTATAAAATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAAT

AAATACGGAGAAGGCTGGTAGTTCGTAAAATAGGCATGAGGACTACTACGTACCAATGAGTGGTGACGCTAGGGGCCC

TTTTGTCGTAAGGTCCATAATCTTCTTATAGGACTAAGTCCACTTTTATAACAACTACGCGACCGTCACAAGGACGCG

GCCAACGTAAGCTAAGGACAAACATTAACAGGAAAATTGTCGCTAGCGCATAAAGCAGAGCGAGTCCGCGTTAGTGCT

TACTTATTGCCAAACCAACTACGCTCACTAAAACTACTGCTCGCATTACCGACCGGACAACTTGTTCAGACCTTTCTT

TACGTATTCGAAAACGGTAAGAGTGGCCTAAGTCAGCAGTGAGTACCACTAAAGAGTGAACTATTGGAATAAAAACTG

CTCCCCTTTAATTATCCAACATAACTACAACCTGCTCAGCCTTAGCGTCTGGCTATGGTCCTAGAACGGTAGGATACC

TTGACGGAGCCACTCAAAAGAGGAAGTAATGTCTTTGCCGAAAAAGTTTTTATACCATAACTATTAGGACTATACTTA

TTTAACGTCAAAGTAAACTACGAGCTACTCAAAAAGATTAGTCTTAACCAATTAACCAACATTGTGACCGTCTCGTAA

TGCGACTGAACTGCCCTGCCGCCGAAACAACTTATTTAGCTTGAAAACGACTCAACTTCCTAGTCTAGTGCGTAGAAG

GGCTGTTGCGTCTGGCAAGGCACCGTTTCGTTTTCAAGTTTTAGTGGTTGACCAGGTGGATGTTGTTTCGAGAGTAGT

TGGCACCGAGGGAGTGAAAGACCGACCTACTACCCCGCTAAGTCCGGACCATACTCAGTCGTTGTGGAAGAAGTGCTC

CGTCTGGAGTCGCGAGTTTCTACGTCCCCATTTTCGATTGGCGTAGAAATGGCTGTTCCGTAGGCCGTCAAGTTGTCT

AGCCCTTCCCGACCTAAACGACTCCTACTTCCACCTCCTTCCACTACAGTAAGACCACTTCTTCGAGCTGGCAGAACC

GGCGCTGTGGCGGCTGTACTAGGTTGACTATTTTCTCAAACTACGAGTCCCACATCGCCAAGCCAAATAACTGCTGCC

CTAGTCATGGCTGCCACTATACCCCGTTTACCACCAGTGGTAGGACAGCCGACACCGTGTCCGACTTGCGGCCTCCTA

GctagGATCTCGCGTGCTTACTCCCGGCTGTCCTTCGTTTCGACTTTCCTTAGTTTAAACCGGCGTCCGCATGGCACC

TGTCCTTGCAGCACGACTGCGAAGTAGTCTTCCCGTGACCACGTTGCCTTTAACGAGTAGTCGAGTCATAACGGGCGA

GGTGCCAAATATTTTAAGAACTTCTGCTTTCCCGGAGCACTATGCGGATAAAAATATCCAATTACAGTACTATTATTA
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GGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTC

AAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCA

ACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAA

AGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGA

GAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGT

CCAAAGAATCTGCAGTCCACCGTGAAAAGCCCCTTTACACGCGCCTTGGGGATAAACAAATAAAAAGATTTATGTAAG

TTTATACATAGGCGAGTACTCTGTTATTGGGACTATTTACGAAGTTATTATAACTTTTTCCTTCTCATACTCATAAGT

TGTAAAGGCACAGCGGGAATAAGGGAAAAAACGCCGTAAAACGGAAGGACAAAAACGAGTGGGTCTTTGCGACCACTT

TCATTTTCTACGACTTCTAGTCAACCCACGTGCTCACCCAATGTAGCTTGACCTAGAGTTGTCGCCATTCTAGGAACT

CTCAAAAGCGGGGCTTCTTGCAAAAGGTTACTACTCGTGAAAATTTCAAGACGATACACCGCGCCATAATAGGGCA
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