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ABSTRACT

The determination of parameters in dynamical systems, on the basis
of noisy experimental data, is called the parameter estimation problem or
inverse problem. In this dissertation, several methods for parameter
estimation are derived for systems governed by partial differential

equations, so-called distributed parameter systems.

The first class of problems, investigated in Chapter II, is that
in which the parameters fo be estimated are constants. This class of
problems is impoftant for it includes most cases of practica1~interest.
Techniques based on gradient optimization, quasilinearization, and
collocation methods are developed. A method of determining confidence
intervals for parameter estimates is presented, a method which enables
one to design experiments (and measurements) that lead to the best
estimates of the parameters. The effectiveness of these methods for
estimating constant parameters is 1illustrated through the estimation
of the diffusivity in the heat equation, the estimation of the activa-
tion energy for a single reaction from dynamic plug flow reactor data,
and the estimation of the permeabilities in a two-region reservéir
model. The numerical results also show the advantage of using data
taken at optimally chosen measurement locations to estimate the param-
eters. | |

Many physical systems contain spatially Varying parameters, for
example, the permeability distribution in a petroleum reservoir model.
In Chapter III, two approaches are presented for the estimation of

spatially varying parameters. The first is a method of steepest descent
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" based on consideration of the unknown parameter vector as a control
vector. The seCQnd is based on treating the parameter as an additional
state veétor and employing least square filtering. The key feature of
the former method is that the parameters are considered as continuous
functions of position rather than és constant in a certéin number of
spatial regions. This technique may offer significant savings in com-
puting time over conventional gradient optimization methods, such as
steeﬁést descent and Gauss-Newton in which the parameters are consid-
ered as uniform in a certain number of zones. Two examples are
presented to illustrate the use of the method and its comparison to
other algorithms. |

| In certain cases, the location of the boundary of a system may
not be known, such as the boundary of a petroleum reservoir. In the
case of 0il reservoirs it is very important to be able to estimate the
area and shape (or the location of thé boundary) of a reservoir so that
the production policies can be optimized. A method based on the varia-
tion of a funétiona1 defined on a variable region is developed in
Chapter IV. The computational applications of this method are illus-
trated in determining the locations of the boundafies of a one-

dimensional and a two-dimensional petroleum reservoir.
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Chapter 1
INTRODUCTION

A wide variety of physical problems of interest in physics,
chemistry, and engineering are described by partial differential equa-
tions. In general, the form of the partial differential equations can
be constructed from the laws of conservation of energy and of continuity
of material up to a set of unknown parameters, which may be constants
or functions of position, time, or both. Usually, these parameters can
not be measured directly and, in fact,must be determined by minimizing some
measure of the difference between noisy experimental measurements of
the process and the solutions of the partial differential equations
describing the process. This is commonly referred to as a parameter

estimation, identification, or inverse problem. In this dissertation

an attempt has been made to derive methods for determining both con-
stant parameters and spatially varying parameters appearing in partial
differential equations and associated boundary conditions.

In Chapter II three methods are presented for the estimation of
constant parameters in distributed parameter systems. This class of
parameters is important for it encompasses most cases of practical
interest. First, because of the popularity and efficiency of steepest
descent and quasilinearization in the estimation of constant parameters
in ordinary differential equations, these methods are extended to the
distributed parameter case. From a practical point of view, the amount
of computing time required to solve the system model and sensitivity

equations plays an important role because this is the most time
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consuming part of the parameter estimation for distributed systems. With
this in mind, a method based on collocation methods is derived. Three
examples are used to i]1ustrate the performance of these three methods.
The comparison of the performance between the method of steepest descent
and quasilinearization is then attempted.

Obviously, the values of parameters estimated from noisy data are
of Tittle value unless they are accompanied by an estimate of their
reliability or accuracy. Although the méasurements of a distributed
system‘can, in principle, be placed anywhere within the domain of in-
terest, it is necessary to make observations at a limited number of
locations because of difficu]ty, significant expenditure for a compli-
cated system, and the physical inaccessibility in obtaining the data.
This means that we are required to extract as much information as
possible from a small number of sensor locations. The question then
arises--where and when should a fixed number of measurements be taken,
which lead to the best estimates of parameters? Also, it is appropriate
to ask what impro?ement in the accuracy of the estimates can be made
with additional data? From the answer to this question one can justify
Whether the accuracy increase is worth the investment and effort, and
hence whether the additional runs are profitable. fhese questions are
also treated in Chapter II.

The estimation of constant parameters in differential equations
has been studied extensively. However, relatively little has appeared
in the literature concerning the estimation of spatially varying
parameters in distributed parameter systems. In the past, spatially

varying parameters have usually been assumed to be constant in a number
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of zones which cover the whole spatial domain. Then the problem be-
comes the estimation of constant parameters. In Chapter III a new
method, based on an optimal control formulation of the parameter esti-
mation problem is developed. This method not only realistically
treaté the parameter as a continuous function of position, but also
offers significant savings in the computational effort over the con-
ventional "constant zone" methods. It should be noted that the
extension of this approach to estimate time-varying or spatially vary-
ing and time-varying parameters in distributed parameter systems is
straightforward. Two examples are used to examine the feasibility of
this technique. In contrast to the opfima] control formulation, the
parameters can be considered as additional state variables, changing
the problem into one of state estimation. This is also discussed in
Chapter III.

In the above discussions we have assumed implicitly that the
boundary of a distributed parameter system is fixed and the location
of the boundary is specified. However, in some cases the boundary
conditions of the system may be given, but the location of the boundary
is not known. In order to completely define the physical model, the
location of the boundary must be determined. A method for estimating
the location of the boundary of a distributed system is derived in
Chapter IV. From an economic point of view, to be attractive for this
purpose a method should be able to determine the location of the
boundary using observations which are made over a short period. We

present two examples to demonstrate the estimation of the boundaries
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of petroleum reservoirs utilizing data in the so-called late transient
period, rather than requiring measurements in the pseudo-steady-state

period.
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Chapter II
ESTIMATION OF CONSTANT PARAMETERS IN PARTIAL DIFFERENTIAL EQUATIONS

1. Introduction

An important problem in process analysis is the estimation of
parameters in a mathematical model from experimental data. Many systems
of practical importance are described by partial differential equations
containing unknown parameters which cannot be measured directly but
which must be estimated on the basis of experimental data from the

system--experimental data which will, in general, be corrupted by noise

and errors.

Two basic parameter estimation schemes exist: non-sequential
and sequential. In the former the estimation is carried out after all
the data have been obtained, while in the latter the estimation is car-
ried out continuously as the data are received. We will concentrate on
non-sequential estimation since it represents the more common situation
and since it is easier to 1mp1ehent in practice.

Several studies have appeared on the estimation of parameters in
partial differential equations. Collins and Khatri [29] have proposed
that finite differenées be used to approximate the derivatives of state
Qariab]es, and then the unknown parameters, which must appear linearly
in the partia]'different1a1 equations, are expressed as functions of the
state variables at the mesh points. Although the method is conceptually
simple, it is very sensitive to the level of measurement error and not
generally useful. Beck [6-11] used a finite-difference method to solve
the partial differential equation and then employed a least-squares

method to determine the physical properties in the heat conduction
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equafion. This method is shown to be very effective when data with
small errors are available and the initial estimates of parameters are
close to the true values (say 10% in error). The modulating function
method, originated by Shinbfot [71] and utilized by Loeb and Cahen

[54] for determining the parameters of certain lumped systems, has been
extended by Perdreauville and Goodson [63] to determine the parameters
of certain distributed parameter systems. The idea of this method is
that the derivatives are reduced to those corresponding to the avail-
able data by operating on the partial differential equations with a
function of known formM(usua11y powers of sines) and integrating by
parts. The result of the operation is a set of algebraic equations in
the parameters. However, the partial differential equations may contain
terms which cannot be treated by the method, and noise in the data
affects the results significantly. Two extensions have been made based
on the modulating function method. One was by Fairman and Shen [35]
who discretized the derivatives in space to avoid the spatial integra-
tion and chose a modified form of the Poisson probability density
function as the modulating function. The other 6ne was by Tzafestas
[74] who discretized the system in time and chose special modulating
fﬁnctions. It is well known that some classes of partial differential
equations can be converted to a set of ordinary differential equations
using the method of characteristics. Carpenter et al. [26] used this
approach and a recursive stochastic gradient scheme to estimate the
parameters in the resulting ordinary differential equations.

Luckinbill and Childs [55] employed quasilinearization to estimate
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parameters in partial differential equations from exact measurements.
A combination of the method of characteristics and quasilinearization
has been used to determine parameters in hyperbolic systems by Malpani
and Donnelly [56]. Angel [2] presented a method combining Newton's
method and discrete imbedding to estimate parameters in elliptic equa-
tions.

Methods based on the analytical solutions of partial differen-
tial equations have been propased by Jones [48], Burggraf [18],

Cannon et al. [19-24], Anderssenand White [1], Williams et al. [76],
Clements [28], and Bellman et al. [12].

Recently, Polis et al. [64] have proposed an interesting method
based on Galerkin's method which is similar to the collocation method
proposed by Seinfeld and Chen [70]. The basic approach is to reduce the
partial differential equations to a set of ordinary differential equa-
tions containing the parameters and then estimate unknown parameters by
optimization schemes such as the method of steepest descent, search
techniques and nonlinear filtering.

A general nonlinear least-squares filter fdr distributed systems
has recently been derived by Huang, et al. [46] and Seinfeld, et al.
[69]. Sequential parameter estimates can be generated by the filter
from discrete noisy measurements. However, computationally this re-
quires the solution of several partial differential equations, repre-
senting the estimator and covariance equations, and is not efficient
for non-sequential analysis of experimental data.

The process of estimating parameters in models is not complete

without an analysis of the accuracy of these parameters. So far the
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literature available in this field deals only with the accuracy of
parameter estimates in ordinary differential equations from discrete
measurements. The method developed by Rosenbrock and Storey [66] is
extended to parameter estimates in partial differential equations in
this thesis. |

One related important application of the analysis of the
accuracy is to obtain the optimal location of the measurement points
in a distributed parameter process such that the parameters can be
determined as accurately as possible. This problem has been treated
by Beck [7-11] and Badavas and Saridis [4]. Beck found the optimal
measurement location by choosing the point where the sensitivity coef-
ficient is maximum. The latter investigators employed a random optimi-
zation algorithm [59] to detérmine the location of the finite measure-
ment point in a distributed region such that a sensitivity criterion
is maximized. In Badavas and Saridis' paper, a positive definite
matrix is obtained from the performance criterion in terms of the
preselected approximating functions and the measurement points. The
minimum eigenvalue of this matrix, which is generally a multimodal
surface in the measurement points, is chosen as the sensitivity cri-
terjon. Actually, the random optimization technique is a trial and
error procedure (random trials) in some sense. Therefore, what is
lacking is a systematic way of finding the optimal measurement points
in a distributed region. A method is proposed later in this chapter
tp fulfill this requirement. The optimal location of measurements for
state estimation has been investigated by Thau [72], Cannon and Klein

[25] and Yu and Seinfeld [77].
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The following questions are studied in this chapter: 1) Do
techniqdes exist for the estimation of parameters in partial differ-
entia] equations from noisy data that are cdmputationa]1y efficient
and involve no restrictions on the form of the differential equations
or the data? 2) What is the effect of the level of measurement errors
on the parameter estimates? 3) What is the effect of the number of
spatial Tocations at which data are taken? 4) What is the effect of
the number of times data is taken? 58).  What is the effect of the ini-
tial parameter guesses on convergence of the algorithms? 6) How can
one determine the best locations for a fixed number of measurements
such that the resulting parameter confidence intervals are minimized?

To answer questions 1)- 5), parameter estimation schemes based
on gradient optimization methods, quasilinearization, and a collocation
method are tested extensively on three example systems: the estimation
of the diffusivity in the heat equation, the estimation of the activa-
tion energy for a single reaction from steady state and transient p1ug
flow reactor data, and the estimation of the permeabilities in a two-
region reservoir model. To answer questioh 6) and to provide criteria
for the earlier questions, a confidence interval analysis in conjunc-
tion with non]ineak programming to determine the optimal Tocations of
measurements for constant parameter estimates in partial differential

equations is presented.

2. Statement of the Problem

Let us consider the class of systems described by the partial

differential equation
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u(t.x) = Flt.xusu u k) (1)

where u(t,x) is the n-dimensional state vector, u and U, are
partial derivatives with respect to x , and k 1is a p-dimensional
vector of constant parameters. The initial state of the system is

given by

u(0,x) = uo(x) X e (2)

where Q denotes the fixed spatial domain of the system, and the bound-

ary conditions are given by
g(tousu,nk) = 0 x e 0@ (3)

In general the experimental data are related to the system
state by a known functionality. Let the measurements on the system be
represented by the m-dimensional (m < n) vector y and be made at R

values of t,t},tz,--‘,tR and S spatial locations X{sXgst e aXg

Then the measurements are related to the state by

Yp,s = Mt ax,u(tsx)) + oy
r = ]’2’...,R
s = 1,2,++-,S (4)

where n 1is an m-dimensional vector of random error. Given the noisy
observations Yp.g e want to determine k such that the model

3
matches the data in some optimal way. The least-square criterion has

proven most useful in estimation applications, and thus we want to
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determine k to minimize
) = ) 3 ( 2
J(k) = y - h{t ,x_,u(t_,x_,k)) (5)
0= L L g = e utex DI
where u(tk,xs,k) is the solution of (1)-(3) for a given value of k
and Qr S inan mxm symmetric, positive semi-definite weighting

matrix. Also, the norm IIAIIZ is defined by ATQA .

We should note that the problem formulated in (1)-(5) is by no
means inclusive of all parameter estimation problems in partial dif-
feréntia] equations, specifically because of the form of (1) and (4).
Nevertheless, the formulation here is representative of the Targest
class of problems of chemical engineering interest (i.e., parabolic
and hyperbolic systems). Moreover, the techniques used later on can
be extended readi1yvto elliptic systems and observations of forms other

than (4).

3. Computational Methods

The basic problem is to locate the global minimum of J(k) in
the parameter space k . As such, the problem is analogous to that of
the estimation of parameters in ordinary differential equations, a
problem which has been more widely studied than that in distributed
parameter systems. Wide experience in the estimation of parameters in
ordinary differential equations indicates that gradient optimization
and quasilinearization are two of the most efficient techniques and
are thus candidates for the problem of parameter estimation in partial

differential equations. In addition, methods which enable the solution
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of nonlinear boundary value problems by trial function expansions are
particularly attractive because of the explicit form of the solution.
Furthermore, a close look at the formulation of the probiem in the
previous section shows that the parameter estimation problem is the
same as the problem of Optimal control. Therefore, the use of optimal
control theory to determine the parameters would seem natural. Since
optimal control will be explored in great detail in the estimation of
spatially varying parameters later, the derivation and the application
of this method will not be discussed here.:vwe now outline these three

methods.
3.1 Gradient Optimization Methods

Gradient optimization methods were developed to surmount the
inherent difficulty associated with the nonlinear optimization problems.
They are characterized by iterative algorithms for improving estimates
of the parameters, or equivalently, the control variables, so as to come
closer to satisfying the optimality conditions. An initial guess k°®

is improved iteratively by

n+ . - T
ARG (6)
i ok

where k' s the value of k at the ith jteration, v is a scalar
step length, and R is a pxp matrix. The gradient of J fis com-

puted from

R S
297 =-2 7 T At .x)hla, [y

r=1 s=1 ur,S et

Y‘,S_ r"Xs’u(trsxs’k))] (7)
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A, =fAa+f A +Ff A +f (8)
t u U, X Uyy XX k

A(O,X)=O X e 8 (9)
g+ guxAX+ g =0 X € o (10)

where Aij = aui/akj , the sensitivity coefficients of (1).

Various gradient methods differ from each other in the choice of
Y and R . Here we do not intend to list exhaustively all gradient
methods. Instead, four of the most common and éfficient gradient tech-
niques [5], namely, the method of steepest descent, the Newton-Ralphson
method, the Gauss-Newton method, and the Marquardt method will be pre-
sented.

The simplest gradient method is the method of steepest descent.
In this method R 1is chosen as an identity matrix and +y 1is taken as
an arbitrary step length. This method usually shows great improvements
in the first few iterations but has poor convergence characteristics as
the minimum of J(k) 1is approached. To increase the rate of conver-

gence, R 1is set equal to the Hessian matrix:

2
Y= 29

;';2' (11)

and vy 1is chosen as one. This is the so-called Newton-Raphson method.
Denoting the right-hand side of (8) by F(u,ux,uxx,x,xx,kxx
left-hand side of (10) by G(u,ux,k,kx,k), the second-order gradient of

,k) and the

J 1is computed from
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2% 2 § § {(h T, (hx)- Ly, - h{tx_,u(t_,x_,k))1T0 azh}
ak? r=1s=1 40 TS rss rest s rS ak2
(12)
B, =FXx+F A+F A +Fp+F p+F, B +F (13)
t u U "X U XX A Ax X Xxx xx k
B(0,x) =0 Xen (14)
Gu)‘+Gux}‘x+GAB+GAXBx+Gk= 0 X € a0 (15)

where Bijz = a)\ij/ak2

The Newton-Ralphson method is the most efficient gradient method
[33] because it possesses quadratic convergence properties as k gets
’c]oser to k*, the true value of the parameter. Unfortunately, this
great advantage is offset by the high cost of computing second order
derivatives and it may have starting difficulties. This leads us to
make use of simpiification of the Newton-Ralphson method,'such as the
Gauss-Newton method. In the Gauss-Newton method R is set equal to
the first term in the right-hand side of (12), in the hope that the dif-
ference between the observation and the solution of the model is small,
then R 1is a good approximation to H . In this case the necessity to
integrate (13)-(15) is avoided. Another modified Newton-Raphson method
is the Marquardt method [57]. In this method we choose

R=(A+gC)) (16)

where A is equal to the first term in the right-hand side of (12), B8

is a positive constant, and C 1is a diagonal matrix with Cii = lAii! .
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The choice of R 1in the form of (16) is to guarantee the positive
definiteness of R provided that B8 1is large enough. |

Recently, a very attractive gradient method called the conjugate
gradient method [17] which does not fit to the form of (6) has been
used in optimization problems. This method has the advantages of the
first-order and the second-order gradient methods without the require-
ment of calculating second order derivatives. However, in the use of
the conjugate gradient method, it is required to find a scalar constant
by a one-dimensional search. This means that we are reqﬁired to solve
(1)-(3) several times, and this is the most time consuming part of the
parameter estimation, especially in the case of distributed parameter
“systems. Therefore, we will not discuss the conjugate gradient method
further.

Equaiions (8)-(10) are called the sensitivity equations. We note
that in the generating sensitivity coefficients the method of solving
the sensitivity equations is superior to the conventional method by
using a finite difference of the form

. k.t AkL) - ous (k.
. Bu; _ u1(kJ AkJ) u1(kJ) (7)

in terms of the computing effort and the accuracy where Akj is a small
fraction of kj . This 1is because the sensitivity equations generate
the sensitivity coefficients exactly, instead of approximate ones, by
means of the finite difference,and we can take the advantage of the
similarity between the sensitivity equations and the state equations in

the numerical calculations.
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In this dissertation we will test only the steepest descent in
the examples considered later. As pointed out before, <y 1is chosen
as a scalar arbitrarily. However, it may sometimes be difficult to
find a scalar +y for which the rate of convergence of the algorithm
is reasonable, and thus it is advisable in those cases to compute vy
as a pxp matrix by (11). In the two examples considered p = 1,
SO to obtain convergence, the choice of vy was a priori generally easy.
Comparison of the two modes of determining 7y yield approximately

equal overall computing times.
3.2 Quasilinearization

By using finite difference approximations to the spatial deriva-
tives in (1) and dividing the region © dinto N mesh points, (1) and
(2) become

du _ ¢ 3 .
at W(t,U,k) | (18)

u(0) = U (19)

T T T\T
Where U= (U'l’uz’.'.3uN)

» then nN-dimensional vector consistsrof
the state vector at each of the N mesh points. In the case that
(1) represents a hyperbolic system, the method of characteristics
instead of finjte difference approximations is used to transform the
partial differential equation to a set of ordinary differential equa-
tions. This is due to the fact that the method of characteristics has

at least two advantages when compared to the method of finite differ-

ence for reducing partial differential equations to ordinary differential
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equations. First of all, a smaliler number of ordinary differentfaT
equations must be solved, and secondly the characteristic differential
equations constitute an exact representation of the partial differen-
tial equation. |

In the form of (18) and (19), the quasilinearization, as
initiated by Bellman and Kalaba [15] and used by Bellman et al. [13-
147 and Lee [53], can be used to estimate the parameters. The quasi-
linearization épproach for the parameter estimation can be formulated
as follows:

(1) Adjoin to (18) and (19) the set of equations

dk _
at = 0 (20)

with unknown initial conditions which are to be determined. The system

we now deal with is the foj]owing

N

dz .. .

at - 9(ts2) (21)
Zi(O) = Uio i=],"'an . (22)
21(0) = 7 i=pN+1,- - ,n+p (23)

where z'= (UT,kT).

(2) Make an initial estimate of k(o) and solve (18) and (19).
This first guessed solution is denoted by 2(0),
(3) Linearize (21) to first order about 2(0). The linearized

version of (21) then becomes

dz(1)

ac 9(2(0),t) + %g_

O EERI O IO
Zz
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ordinary differential equations or a set of algebraic equations so that
the computing time can be shortened. However, these methods are not
promising for the wide class of distributed parameter systems. In this
section trial-function expansions, or more specifically, the collocation
methods, are used to transform the partial differential equations into a
set of ordinary differential equations or a set of algebraic equations.

In these methods the unknown solution is expanded in a series
of known functions of position with undetermined, arbitrary functions of
time. The expansion coefficients are normally determined by variational
principles [39] or by weighted-residual méthods [37,38]. Since the
latter aremore widely applicable, the Qeighted-residua] methods are dis-
cussed here. In the method of weighted residuals the unknown functions
of time are determined by satisfying the partial differential equations
in some average sense, such as Galerkin's method, the least squares
method, or the method of moments or pointwise sense, such és the collo-
cation methods. In determining the unknown functions,the collocation
methods are most direct, requiring only evaluations of the residual,
whereas the other methods require integrations. Furthermore, for prob-
lems involving chemical reactions with a nonlinear rate expression,
only the collocation methods are feasible, since the other methods re-
quire evaluation of‘complicated integrals involving exponential func-
tions [36]. Therefore, the collocation methods will be used in this
study.

If the differential equation and boundary conditions are

written
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LPu(x,t)) = 0 in @ (27)
Laﬂ(u(x,t)) =0 on o (28)

then u(x,t) is approximated by a series expansion

uz(x,t) =

i~
o

a;(t) f4(x) | (29)
1

containing & known functions fi(x) and & unknown functions ai(t).
The unknown functions are then determined by applying (1) and (2) or
(3) at each of the % selected points in @ . There are three

classes of collocation methods, namely, interior, boundary and mixed
[75]. Interior collocation requires a u(z) which satisfies the
boundary conditions identically, and thé function is adjusted to satis-
fy (1) and (2) at % points in @ . Boundary collocation requires a
u(l) which satisfies (1) and (2) identically and is adjusted to satis-
fy (3) at 2 points on 30 . Mixed collocation requires a u(l)

which does not satisfy (1), (2) or (3) and is adjusted to satisfy
(1), (2) and (3) at & points.

The choice of approximating functions can be crucial fn apply-
ing the collocation method. At present there is no way generally
available to choose the best approximating functions for a given prob-
Tem systematically and uniquely. The choice of a trial solution is up
to the ingenuity and experience of the investigator. The more that is
known about the expected behavior of a solution, such as symmetry
properties, the more intelligently can the trial solution be set up.

However, two guidelines which may be used to help in the choice of
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trial functions are: to choose the tria] functions to be members of a
complete set of functions which satisfy the boundary conditions and to
choose the trial functions to be orthogonal in @ [63].
Once the partial differential equation has been transformed into

a set of ordinary differential equations or algebraic equations by the
collocation method, the method of steepest descent or the other
methods can be used to estimate the parameters in the resulting equa-
tions. Since the collocation method will yield an approximate solution
thich is an explicit function of spatial variables, this makes it
easier to determine the optimal measurement locations for the parameter
estimation in distributed processes. This may be considered as a very
desirable feature of thfs method. This will be seen in the next sec-

tion,

4. Accuracy of Constant Parameters Estimated in Partial Differential
Equations

In this section the technique developed by Rosenbrock and Storey
for analyzing the accuracy of constant barameters estimated in ordin-
ary differential equations is extended to parameter estimates in
partial differential equations. The question is: given several esti-
mated values of a certain parameter, for example,as the result of
different methods or different sets of data from various experiments,
which estimate is most reliable? The question is then reduced to a
comparison of confidence intervals for each parameter estimate, or,
equivalent]y, variances of the error in the parameter estimates. The

application of this analysis in the optimal location of measurements

is also discussed here.
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4.1 Theory
The true value k* and the gstimated value K are related by
E = 'k* + K _ ’ (30)

where k is the error in the estimate k . In order to carry out the
analysis it is necessary to assume certain statistical properties of
the measurement errors. For simplicity we assume the errors of the
individual data points are independent and normally distributed with

A

mean zero and covarijance matrix Mr Confidence intervals on k

S
can be obtained from P = E[k KTJ, the covariance of the estimate errors.
The determination of P proceeds as follows when the value k* of k
that minimizes J has been found and the initial conditions are known
exactly. Consider the function J(k* + ) defined by (5). Expanding

J{k* + ) in a Taylor series, and keeping only terms of first order in

K s we obtain

R S
* - _ *
J(k*+ k) = PZ] szl{yr’s h{t..xosu(t.x ,k*))
T e ,

B Gr,skr,sK} Qr,s {yr,s'h(tr’xs’u(tr’xs’k*))“ Gr,skr,sK}

R S T
) rz1 521{”r,s' Gr,skr,sK} Qr,s{”r,s” Gr,sxr,sK} (31)

where
- p—4 —i—-
GY‘,S (Gij)r,s (au hi(trsxssu(trsxssk*))s

J

j=l,-++,n (32)
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A = (Ass) = (%ET ui(tr’xs’k*)) , j=l,-++,n
J
j:]’...,p (33)

Notice that A. . are the solutions of (8)-(10). Let «k be chosen to

make J(k*+ k) a minimum and perform the minimization, obtaining

R S
ol -
r§1 2;1A s8r,s Qs (s G g okb =0 (34)
or
R S
- T T
e 8 521 Mos Brys Qelsess . (35)

where H is a symmetric matrix and defined by

R S

T AT
FX] Sz] ArSSGrESQrasGr!SerS

=
1]

(36)

Now we are in a position to calculate the expected value P of

KKT . By (35)

| S
E[Hek H] = E[ Z Z Z DRV

n n i :Q ) l]
re] p'=] s=1 s'=] (oS eSS LS LS rsS r »S' Y s S

(37)
where E[ ] denotes the expectation operator. Since the errors of
'the individual data points are independent and normally distributed
with mean zero and covariance matrix Mr,s » (37) becomes

T v
HPH = rZT 521 Ar STr, sQr M ,sQe 58 sMr s (38)

This equation determines P if H is nonsingular.
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In the preceding analysis the weighting matrix Qr 5 Was chosen

arbitrarily. A natural conjecture at this point is whether or not one
can find a weighting matrix which is the best in some sense. It is
well known that the choice M;]S , the inverse of the covariance matrix

of the errors of data, for the weighting matrix yields a minimum error

covariance matrix [34,66]. Due to this property, we shall henceforth

1

take Mr,s

as a weighting matrix for the analysis of the accuracy.

. -1 . '
Using Mr,s in the place of Qr,s » we have

P=H'1

R S :
R -1

By (35) the error inh the estimated errors of the parameters is normally
distributed with zero mean and covariance matrix P . Thus the vari-
ance of the Tinear combination bTK of k is

ol = bTPb (40)

where b is a unit p-dimensional vector. Then the confidence interval

T

associated with b'k will be the interval bTE-owb to blk+ao

b
[51]. The value of « depends on the choice of confidence level. For

Tk* lies in the range bT

example, if we assert that b §4-20b , we shall
be right in about 95.45% of cases in a large number of similar estima-
tions. The confidence interVa] for the individual elements of Kk is

determined by setting bi= 1 ;,bj= 0, J #1i . This gives

= P.. (41)
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It must be noted that the confidence interval corresponding to a given

confidence level is not unique and the upper and lower confidence limits

Tﬁ . For instance,with the

T

are not necessary to be equidistant from b

same confidence level, 95.45%, we can assert that b
bT

k* Tlies in the
interval b'k+1.8060, to b'k-2.3265, . We observed that in the first
case the interval length is 4cb, while in the second case the interval
length is 4.1320bv. Thus, in general, we choose the first case in which

the upper .and lower confidence limits are equidistant from bTﬁ .

It should be pointed out that in the calculations of Ar,s and
Gr,s , K is used in place of k* . This is necessary because k* is
unknown, and K 1is the best estimate thch we have of k* . However,
this approximation does not affect the accuracy of the analysis because
the errors caused by this substitution are second order in ¢ . This
is the same order as errors already ignored in the linearization of
Jd(k*+«k) .

It is interesting to note that the nonsingularity of H is a
necessary condition for the local observability of parameters or local
identifiability of parémeters. This condition is equivalent to the
condition given by Hwang and Seinfeld [45], Haddad and Cruz [43], and
Tse [73] . If H' does not exist, one or more elements of P are
jnfinite, indicating one or more parameters cannot be estimated from
the given data. Thus, the local observability depends on n,m,R,S and
the location of the measurements X1aXgst s Xe The concept of local
observability or identifiability of parameters is very important because
most of the nonlinear parameter estimation algorithms are of the type

of local variation.
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4.2 Applications

There are at least two different ways the foregoing analysis
can be employed. The first way is simply the determination of the
reliability of parameters estimated from noisy data. Another use for
this analysis, however, is in the planning of experiments or, more
specifically, the determination of the optimal location of measure-
ments in a distributed region. In the former case, this analysis is
used to determine the accuracy of kinetic parameters estimated from
batch and 1ntegra1 reactor data for four fundamental reactions; and
the reliability of reservoir parameters from history matched drill
stem tests. . The results are presented in Appendices II-B and II-C.
For the Tatter case a method of determining the optimal location of
measurement points is proposed in this section.

The problem which we afe faced‘with in the planning of experi-
ments, the‘bbjective of which is the estimation of unknown parameters .
appearing in the system (1)-(3) based on the observations (4}, is at
what locations, i.e., x],-;-,xs, should the measurements be taken éuch

that the highest accuracy of the estimated parameters is achieved.

Since P = H°!

represents the covariance of estimated errors, the
matrix P will provide useful information on the choice of the optimal
meaéurement points. Several criteria which are some function of the
error covariance matrix P have been proposed in the case in which the
model consists of a set of algebraic rather than differential equations.

Among these are the fo]]owing:
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(a) Maximization of the minimum eigenvalue of H with respect
to measurement points [4]. Note that the measurement "poihté" can be
referred to as the locations in spatial domain, some particular times
in time domain or some independent variables such as temperature, etc.

(b} Minimization of fhe determinant of the matrix P or the
product of its eigenvalues,or maximization of the determinant of the
matrix H or the product of its eigenvalues with respect to the meas-
urement points []6].‘

(c) Minimization of the trace of the matrix P or 1/trace H
with respect to the measurement points [27]. We note that the trace
of P is the sum of the variances of the components of k . Aoki and
Staley [3j show that in the mu]ti-paraméter case the maximization Qf
tr H is asymptotically equivalent to the minimization of tr P‘.

Before proceeding to choose the criterion, we assume that we
are interested in all P parameters. For the single parameter case
X1ttt sXg are chosen to minimize P or maximize H directly, since
P or H is a scalar. It is clear that the best choice for a criterion
of optimality is not obvious for the multi-parameter problem and we |
are not to expect that these three criteria will Tead to the same
optimal measurement locations. Since it is assumed that the values of
all the parameters are of equal interest to the experimenters, a
reasonable criterion is that it should minimize the volume of the joint
confidence region of the parameters. This leads us to choose the
criﬁerion (b) as a criterion of optimality because the square root of

the determinant of H 1is inversely proportional to the volume of the



-28-
joint confidence région and note that det H = 1/det P . This
criterion may possess the undesirable characteristic that the resulting
shape of the joint confidence region may be a highly elongated hyper-
ellipsoid in spite of the fact that the minimum volume has been
achieved. 1In this situation some of the P parameters may be i11-
determined. We note that the criterion (c) also possesses this charac-
teristic. However, the ability of the criterion (b) to lead to precise
parameter estimates in a small number of data has been demonstrated by
Kittrell et al. [52], Graham and Stevenson [42], Sater and Stevenson
[67], and Juusola et al. [49]. In addition, the criterion (b) is more
tractable analytically or numerically than the criteria (a) and (c).
Thus, fhe criterion (b) will be used in this study.

In order to make the problem more manageable, the following
assumptions are made: |

(a) The errors in measurement are random. On the other hand, we
do not know in advance where we cah get the most accurate observations.

(b) The number of times at which data are taken is fixed. If
the observations are taken at some particular spatial Tocations con~‘
tinuously, the beridd over which the observations are made is fixed.

(c) The number of_measurement ]ocafions is fixed.

(d) A method exists to estimate the parameters.

The criterion will be independent of the values of parameters if
the solution of (1)-(3) is a linear function of parameters. In general,
the solution of (1)-(3) is nonlinear in parameter k , therefore the

criterion is a function of parameters. This means that the choice of
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the optimal Tocations depends on the actual values of the P parameters.
This is the reason we make the assumption that there exists a method to
estimate the parameters. In fact if we know nothing about the param-
eters, we cannot design the experiments for the estimation of parémeters.
Due to the dependence of the criterion on the values of parametérs, an
iterative method seems to be the most plausible one to solve this prob-,
lem. We use the preliminary estimate values of parameters K instead
of thé true values of parameters k* in the criterion to determine the
optimal locations, the results of which are used to design the experi-
ments and obtain the new éstimates of parameters, and so on.

‘In summary, the problem of optimal locations of measurements can
be stated as follows: - Detérminé the S Tlocations (xs), s=1,"**,S to

maximize |H| subject to the constraints

Xg €5+ 30 s=1,+++,S (42)

[xi= x;1 2 e i £ (43)

where e s some prescribed constant. The first constréint states
that the locations be placed on the boundary or within the boundary. The
second constraint is attributed to physical limitations. This means
that we cannot place two sensors too close. As posed above, this is a
nonlinear programming problem. The gradient projection method developed
by Rosen [65] can be applied to solve this problem.

" We can now formulate the following algorithm for solving this

problem:
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(a) Make an initial estimate of k° and solve (1)-(3) and

(b) Assume values for the S observation points (xs),
s=1,---,S . Denote these initial guesses by (xg),vs=1,2,~--,5.
(c) Compute |H| by (39). In the calculation of |H| , it

¢ where 02 denotes the common variance of

is assumed that M = Io
each observation. Denote this value of |H| by [H®| .

(d) Use a gradient projection method to determine the optimal
locations  x., s=1,---,5 . Note that this is the optimal solution for
k = k°. Denote these new points by (x;), s=1,<++,S . In the process
of using the gradient projection method we are requived to calculate
the gradient 3H|/ axs .severa1 times. There is not any difficulty in
calculating this gradient because [H] is a function of A at the ob-
servation points and we have already calculated the value of X over
all the whole domain in (a). The gradient is calculated by the finite
difference of the form

T T T U LG ER

i
Xy
i Axi

(44)

where AXx; is a small fraction of Xj -

(e) Take measurements at (x;), s=1,---,S and estimate the
parameters based onvthese new observations. Denote the new estimates
by k' .

(f) Return to step (a) and replace k° by k' and (x?) by
(xé),v§=1,---,s . |

(g) Continue iterating until subsequent changes in (xs)s

$=1,-++,S are less than a certain level,
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where & 1is a preset convergence criterion.

A simple sub-optimal way called "imbedding" technique proposed by
Jamshidi [47] and emp]dyed by Yu and Seinfeld [77] to determine the
optimal measurement points for the state estimation can be applied to
solve this problem.

The method proposed in this section can be applied to determine
the optimal input (assumed the measurement locations are fixed), for
instance the heat flux, for constant parameter estimation as well. This
problem has been treated for estimating constant parameters in ordinary
differential equations or difference equations by Kalaba and Spingarn

[50], Mehra [60], Aoki and Staley [3], and Nahi and Wallis [62].

5. Examples

In this section a few computational examples are presented to

 supplement the theoretical discussions given above.

5.1 Example 1: Estimation of the Diffusivity in the Heat Equation

We consider a system governed by the heat equation

ut(t,x) = kuxx(t,x) (46)
u(0,x) = sin mx 0<x<1 | (47)
u(t,0) = u(t,1) =0 0<tsT (48)

in which observations of the state are made at R times and S spatial
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locations,

Ypos = u(tr,xs) + (errors) (49)
r=1,2,++,R
S =1,25°+-,S

The noisy measurements are generated artificially by

YY‘,S = U*(trsxs) ('l + o Gauss(a,b)) (50)

where u*(tr,xs) is the exact solution of (46)-(48) with k equal to
the assumed true value of one, and Gauss(a,b) is a normally distributed
random variable with mean a and standard deviation b . The problem

is to determine k to minimize

R S 2
JK) = Ly o ultaxgsk) (51)
r=1 s=1 ?
where Q. has been taken as I . Each of the six questions in the

beginning of this chapter is studied in this example.

5.1.1. Steepest Descent and Quasilinearization

The effect of the level of measurement error was studied with
R=200, S=9, N=9, k% 0.5, T=0.2, a=0 and b=0.3 . The conver-
gence criterion used was €=0.005 and in steepest descent v=0.5 .
The results for o= 0.9, 0.3 and 0.5 are shown in Table II-1. Neither
method is overly sensitive to the level of measurement error, with
approximately two percent maximum error in k . This result is en-
couraging, although necessary, for the general use of both methods.

Steepest descent is slightly more accurate and éomewhat faster
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Table 11-1., Effect of Level of Measurement Error on
o} Steepest Descent Quasilinearization
k 1.01558 0.97934
iterations 14 4
0.1 4 epror 1.56 2.07
comp. time, sec. 16.40 15.24
k 1.01733 0.97894
iterations 14 6
0.3 % error 1.73 2.11
comp. time, sec. 16.01 18.67
k 1.01902 0.97050
iterations 14 8
0.5 4 error 1.90 2.95
comp. time, sec. 16.31 23.03

éomputationa?]y, although the differences are not significant. Computing

times reported are for an IBM 360-75.

The effect of the number of times R at which data is taken was

studied next with $=9, N=9, T=0.2, k°= 0.5, a=0, b=0.3, ¢ =0.3,

vy=0.5, and €=0.005. The results for R=200, 100, 20 and 10 are

shown in Table 1I-2. For small values of R it appears that the accuracy

of steepest descent deteriorates faster than that of quasilinearization.

At Targe values of R computing times are roughly comparable for the

two methods, although as R decreases, steepest descent becomes more

than twice as fast. A constant value of v was used for the results in

Tables II-1 and 1I-2. As we outlined, Yy can also be computed from.
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Table II-2. Effect of Number of Measurement Times R on k
R Steepest Descent Quasilinearization
k 1.01733 0.97894
- iterations 14 b
200 % error ].73 2.11
comp. time, sec. 16.01 18.67
k 1.02600 0.98176
iterations 14 5
100 % error v 2.60 1.82
comp. time, sec. 10.61 14.56
k 1.02058 0.98314
jterations 10 6
20 % error 2.06 1.69
comp. time, sec. 6.57 15.44
k 1.07617 0.97324
iterations 1 13
10 % error 7.62 2.68
comp. time, sec. 6.64 18.33

(11). The R =20 case in TableII-2 was repeated using the second varia-

tion (11), with k=0.99875

in four iterations and 6.39 seconds. It

thus appears that <y can be chosen arbitrarily or computed from (11)

with roughly similar results.

Use of (11) requires the extra computa-

tions of (13)-(15) and thus will not save computing time substantially

over a guess of vy based on the relative magnitudes of k and J .
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The effect of the number of spatial locations S at which
data is taken and the location of these measurement; was studied with
R=20,k%=&5,T=02,N=9,y= 0.5, 0=0.3, a=0, and b=0.3.
The results for $=9, 2 and 1 are shown in Table II-3; for S=2,
X]= 0.1 and x=0.4, and for S=1, x=0.1, 0.3 and 0.5. The last
three cases were included to study the effect of the location of the
single measurement if only one can be used. We see that there is
essentially no difference between K for S=9 and S=2, and, in
fact, k for S=2 are slightly better, a fact which can only be
attributed to the different shape of the J(k) surface and the parti-
cular iterations. Thus, in this system S=2 is sufficient for
highly accurate k . Also we note that locating the measurement at
0.5 dppears to yield the best estimates. We will consider this point

’shortly.

Finally, the effect of the initial guess k° Qas examined.
In the steepest descent it is necessary to adjust vy , or use (11),
when initial guesses are poor. Although we will not present the
results, convergence was obtained for k° as small as 0.00071 and as
large as 2.5 in both methods. As K° s poorer, the final estimates

are not as accurate.
5.1.2 Interior Collocation

Of the three collocation methods, the interior collocation is
more versatile, since it can be used for nonlinear differential equa-

tions. Thus, the interior collocation will be used in this study. The
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Table II-3. Effect of Number and Location of Measurements on k

S | : Steepest Descent Quasilinearization
k 1.02058 0.98314
iterations 10 )
9 % error 2.06 1.69
comp. time, sec. 6.57 15.44
k 1.01928 0.99198
iterations 7 5
2 % error 1.93 0.80
comp. time, sec.. 5.26 o 12.71
k 0.86169 0.93997
1 iterations A 7 5
(x1=0-1) ¢ appor 13.83 | 6.00
comp. time, sec. 4.80 12.22
k 1.06112 | 0.93712
1 iterations 7 5
(x120-3) ¢ epror 6.11 6.29
comp. time, sec.. 4.51 12.13
k 1.03217 0.92916
1 iterations 6 5
(x1=0.5) ¢ qppor 3.22 7.08

comp. time, sec. 4.53 12.43
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interior collocation requires that the approximate function satisfy the
boundary conditions identically and be adjusted to satisfy the partial
differential equations and initial condition at a number of points. We

assume the approximation function
- 1 2 1 4
u(t.x) = A(t) + B(t)(5 - x)"+C(t)(5-x) (52)
In order to satisfy (48) we choose
At) = - 2 B(t) - 1= C(t) (53)
- 4 16 |
and (52) becomes

u(t.x) = - 3 B(t) -z () +B(1)(F - 0Z + c(t)(z - 0 (54)

Let us use x = %— and x = %- as collocation points. Evaluating (54)
at t =0 and using (47) we find B(0) = -4.90625 and C(0) = 3.625 .
Evaluating (54) for t>0 we obtain

4BL) - 4.5k B(t) + 18.75k C(t) (55)
delt) - 5ok B(t) - 75k C(t) (56)

the solutions of which are

B(t) = 0.053¢ 00-6kt _ 4 ggge=9-9KE (57)

C(t) = 0.188e 60-6kt 4 3 gpge2-9kt (58)

Comparison of (54) with (57) and (58) to the previously usedAfinite dif-

ference solution revealed that the collocation solution is slightly more
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accurate.

The value of k that minimizes (51) can be readily determined
using (54), (57) and (58). We obtain k = 0.99120, as compared to
1.03217 and 0.92916 for the conditions of the last entry in Table II-3.
It thus appears that partial differential equation solution methods based
on trial-function expansions may be not only a desirable alternative to

finite differences but also a powerful tool for parameter estimation.

5.1.3 Confidence interva] Analysis and Optimal Measurement
Location

A confidence interval analysis for the estimation of k 1in (46)-

(48) was carried out. If it is assumed that M. ¢ = cZI , then the

variance of the error in estimates of k 1is given by

2
. R S kTt -1
2 2 2 r . 2
P=gi=o0 [ 7Y (v t. e 7 sinomx) ] (59)
k r=1 s=1] r S
It can be seen that P does not become infinite on 0 < x <1 and that
the system is observable. If, however, the initial condition (47) were

uo(x) = sin 4mx , the variance of the error in k is

2

RS ~16knlt -1
2?7 J (-16n%t e " sin dmx_)® (60)
k r=1 s=1 r S

Now, if the measurements are only at the nodes 0.25, 0.50, 0.75,
oﬁ + o and the system is unobservable. One measurement at a point other

than a node will make the system observable.



-39-

Figure II.1 shows the dimensionless variance Ui/kzo2 vs. kT for

various values of R and S =9 . A minimum value of the dimensionless
variance exists for every R at kT = 0.156 . Given several values of
k from different estimation schemes (and not knowing the true value),
one can determine the most accurate value from Figure II.1. Figure I1.2
shows the relationship between oﬁ/kzo2 and R as a function of kT .
The dimensionless variance is a strong function of R for R < 20 and
a weak function of R for larger values of R . This is consistent
with the results in Table II-2.

| Confidence intervals for the estimates of k can also be deter-
mined by performing a large number of computer experiments which differ
only by the set of experimental errors genefated. Such an analysis
appears.in Appendix II.A.

Since the parameter is a scalar, the problem of selecting an

optimal measurement location reduces to the minimization of P or
oﬁ by choice of X atersXg - For this particular example, the choice
of optional measuremeht location js-independent of the value of k .
Thus, sequential eXperimenta] design is not necessary. To illustrate,
first let us consider one measurement case, i.e., S =1 . Fdr this

case, the variance of the error in estimate k 1is given by

-kﬂzt

R
P =l - 02[{r§1 (-r’t e )2 sinn x,17] (61)

Clearly, the minimum value of oi is achieved at Xy = 0.5 . However,
for the case of two measurements the optimal Tocation is not so

obvious. Let us consider the optimal location of two observations in
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two cases: (i) u(0,x) = sinmx , and (ii) wu(0,x) = sin 2mx .

In case (i) it is required to determine Xy and X, to
minimize

-kTth 2
P = di = 02[{ (—wztre "

} (sinznx]+ sinznxz)]—] (62)
r

I~ 0

1

subject to the constraints

1-x >0 ‘ (63)
X2 >0 . . (64)
Xy X~ 0.1 20 (65)

Now apply the gradient projection method and start from Xq= 0.85 and
Xp= 0.75 . The optimal measurement points are found at Xq= 0.55 and
Xo= 0.45 . This is a‘constrained minimum, i.e., optimal points lie on
the boundary. The optimal locations of measurements are found at
Xy = 0.50 and Xo= 0.40 or Xo= 0.60 1if the "imbedding" technique is
employed. Obviously, this solution is not the optimum.

In case (ii), it is required to choose X; and x, to minimize.

-4kt

R 2 -
P = oi = 02[ " (—4w2tre ) } (sin22nx]+ sin22wx2)] 1

r=1 (66)

subject to (63)-(65). Apply the gradient projection method again and
start from Xy= 0.55 and Xy= 0.45 . The optimal locations are

x1=k0.75 and X o= 0.25 . This is an interior minimum, i.e., optimal

locations are in the interior.
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From co]dmn 3 of Table II-3 we can see that the percent error
~in the estimate of k 1is 13.83% for one observation at x;= 0.1 and
3.22% for one measurement at Xq= 0.5 which is the optimal location.
The results clearly show the advantage of taking the measurements at

the optimal location.

5.2 Example 2: Estimation of the Activation Energy for a Single
Reaction
Let us consider the problem of estimating the activation energy
for a single reaction from steady state and transient data in an
adiabatic plug flow reactor. If the reaction is irreversible and first
order, physical‘properties are constant, and the effect of radial
gradients and turbulent axial diffusion are negligible, the transient

behavior of the reactor is described in dimensionless terms by

-u]t+ uy = -exp(kuz/(¢ + uz))u] ‘ (67)
X , ,
u2t+ Uy = exp(kuz/(¢ + u2))u] (68)
X v ,
uy (0.x) = uy (x) (69)
0
u,(0,x) = uzo(x) - (70)
u](tso) = U](t) ' (71)
Uy(£,0) = Ty(t) (72)

Uy (x) and Uy (x) are the steady state solutions to (67) and (68)
o o
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with U& =1 and Ué= 0 . We assume measurements of both concentra-
tions uy s and temperature u, , may be made at R times and S

locations, -

y]r S= ul(tr,xs) + (errors) (73)

Yo = uz(tr,xs) + (errors) (74)
r,s
We desire to estimate the dimensionless activation energy k from both
steady state and transient experimental data. Artificial measurements

are generated by

_ ok
Y5 a ui(tr’x

) [1 + o Gauss(a,b)], i=1,2 (75)
Y,S ’

S

where u*(t,x) is the solution of (67)-(72) with ¢ = 7.1203 and the
assumed true value of k = 30.1588, values taken from Crider and Foss
[32]. In the transient case ﬁ}(t) = 1+ 0.005t and Ué(t) =0 . In
practice it is easier to measure temperature than concentration, so in
addition to the questions raised in the beginning of the paper we want
to study the effect of the number of state variables measured. For all
@ses a =0 and b = 0.3 in (75).

Let us first consider the estimation of k from stéady state
temperature measurements only. Since the system is now governed by one
ordinary differential equation, the steepest descent and quasilineariza-

tion methods need nof be detailed. First, we examine the effect of the

i

level of measurement error. The results for S = 20 (x1 0.025,¢+,

X50= 0.50) and k%= 15 are shown in Table I1I-4 for o = 0.1, 0.3 and



-43-

0.5. Again the results are relatively unaffected by the level of error.
Computing times for all the steady state examples Were two to three
seconds. The effect of the number of locations S was studied next
for o = 0.3, k%= 15, the results of which are shown in Table I1I-5. For
S =25, Xq= 0.],---,x5= 0.5, and for S =3, Xq= 0.2, Xo= 0.35 and

X3® 0.50. As S decreases the estimate errors increase, as expected.

Table 11-4. Effect of Level of Measurement Error on K (Steady State,
Temperature Measurements Only)

o Steepest Descent Quasilinearization

® 30.33215 29.96521
0.1 iterations 5 5

% error 0.58 0.64

k 30.10222 30.11076
0.3 iterations 4 4

% error 0.19 0.16

k ' 29.46460 30.07391
0.5 iterations 8 4

% error . 2.30 0.28

It is ihteresting to explore the advantage of measuring the con-
centration in addition to the temperature when the number of measurement

Tocations is sma]]f. If the concentration is also measured in the S= 5

"Since concentration and temperature are not independent in the adiabatic
steady state case, this results in m > n .
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case in Table II-5, we obtain k = 30.07054, an error of 0.29%, by
steepest descent. If concentration is measured in the S = 3 case
in Table II-5, k = 30.51721, an error of 1.19% by quasilinearization.
Thus, highly accurate estimates can be obtained by measuring both
temperature and concentration at a few points as well as by measuring

only temperature at many points.

Table II-5. Effect of the Number of Measurements on k (Steady State
Temperature Measurements Only)

S ' Steepest Descent ~ Quasilinearization

k 30.10222 30.11076
20 iterations 4 4
- % error 0.19 0.16

K 28.92407 29.92207
5 iterations : 18 o 8
9 error ‘ 4.10 _ 0.78

K  28.57324 28.91307
3 iterations 20 4

% error 5.03 | 4.15

Now let us consider the estimation of k from transient exper-
imental data. Of interest will be comparisons of the accuracy of E
and computing times for transient vs. steady state experimental data.
As before, we first consider the effect of the level of measurement

errors on k . The transient experiment is assumed to be run from

t=0 to T=0.6 with measurements made only at the outlet of the
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reactor (S=1) with the dimensionless length x = 0.12. In addition,
only measurements of temperature will be made. Results for R = 30,
N =12, K% 15, y = 2x10%, o = 0.1, 0.3 and 0.5 are shown in Table
II-6. Steepest descent appears to be more sensitive to the level of
errors as o increases. Computing times for the results in Table
I1-6 are approximately 20 secohds for steepesf descent and 40 seconds

for quasilinearization.

Table 1I-6. Effect of the Level of Measurement Error on k (Transient
Case, Temperature Measurements Only)

o Steepest Descent Quasilinearization

k 30.26595 ©30.27132
0.1 iterations 5 4

% error 0.35 0.37

k 29.92751 | 30.48781
0.3 iterations 5 4

% error 0.77 1.10

k- 34.0526] 29.77492
0.5 ° iterations - 8 4

% ervor 12.98 1.20

The effect of R for S =1, N =12, k% 15, ¥ = 8x 10°,

o = 0.3 is shown in Table II-7. As R decreases, the error increases,
both methods yielding almost identical results. Again quasilineariza-

tion takes roughly twice as long as steepest descent. It is now
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interesting to see whether the errors can be decreased significantly by
also measuring the concentration at the reactor outlet. We consider the
case then S =1 with R =10, N =12, 0 = 0.3, in comparison with the
R = 10 case ih Table I1-7. When both variables are measured E = 30.74994
(1.97% error) and 30.68687 (1.75% error) for steepest descent and quasi-

Tinearization, respectively.

~

Table II-7. Effect of Number of Measurement Times R on k (Transient
Case, Temperature Measurements Only)

R ‘ Steepest Descent Quasilinearization
k- | 30. 48145 30.48781

30 jterations 5 4
% error | 1.07 1.10
K 29.58272 29.58610

15 iterations 7 4
% error 1.92 : 1.91
K 31.49580 31.53761

10 iterations 9 4

% error 4.46 4.60

5.3 Example 3: Estimation of Petroleum Reservoir Permeabilities

The pressure behavior of a reservoir in the vicinity of a single
producing well can be described by a radial form of the heat equation
in which there are two concentric regions of different permeabilities,

an inner region and an outer region [59]. A technique for determining
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reservoir properties in the vicinity of a well is a drillstem test in
which the reservoir bressure at the well is measured during a period of
constant production followed by a shut-in period. If u](xst) and
uz(x,t) represent the pressures in the inner and outer regions, respec-
tively, where x 1is the distance from the wellbore, the transient

pressure behavior is governed by

Ky

-2\X
U, = —e u 0<x<x (76)
]t o ]xx a
u, = -Iige-Z}‘X u X, < X <1 (77)
2t o : 2xx a
u](x,O) u2(x,0) = Py (78)
u; = £ qt) x =0 (79)
1 k
X 1
u, = 0 X =1 (80)
X
u](xa,t) = “2(Xa’t) (81)
Kquy = knu X = X
1 ]X 2 ZX a
1100 bb1/day 0<tx<tg
q(t) = (82)
lo T2t t

The problem is to estimate the two permeabilities k1 and k

from measurements of the well pressure,
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y(O,tr) = u](O,tr) + (errors) r=1,2,---,R (83)

We employ the following parameter values: o = 0.00289 darcymmin,

A = 10.074, Xy = 0.36, Py = 400 psi, B = 36.35 psi--darcy/cu.ft/min,

te=100 min and T = 200 min. The true values of K and k2 are

both assumed to be 10 md. As before, the noisy observations are gen-

erated by
y(O,tk) = u?(O,tr) [1 + o Gauss(0,b)] (84)

where u¥ s the solution of (76)-(82) with k;= k,= 10 md.

The results of steepest descent are presented in Table 1I-8.
Even in the case of no measurement errors, both k] and k2 are esti-
mated relatively inaccurately. With one percent error, the k2 esti-
mate deterijorates considerably. Since the only measurement is at the

x = 0 boundary, it is necessary to observe the response as long as

possible to ascertain the effect of k, on uT(O,t) .

Table II-8. Results of}Estimation of Permeabilities by Steepest Descent

Initial Guess

o b R k k2 k1 ky Iterations Time (sec)

1

0 0 20 15.0 15.0 10.284 9.608 10 160
0.1 0.1200 15.0 15.0 9.748 11.293 7 114
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5.4 Conclusions

The following conclusions can be drawn from the computational
results:

(1) Steepest descent is s]ight]y movre sensitive to the level of
experimental error-than is quasilinearization; however, both methods
are generaT]y effective at levels approaching 15% error.

(2) Steepest descent is roughly 1.5 to 2.0 times as fast as
quasilinearization for the specific computations reported. This com-
parison will depend in general on k%, y , and N .

(3) The range of initial guesses for which convergence can be
obtained for the steepest descent method is larger than that of the
quasilinearization. |

(4) The quasilinearization converges faster than the method of
steepest déscent and the quasilinearization exhibits quadratic conver-
gence, if convergent at all. The choice of the step length vy s
important for the rate of convergence in steepest descent. If vy is
chosen arbitrarily, numerical experiments are necessary to determine
the range of Y values necessary for convergence. Otherwise, y can
be computed from the second variation of J at the expense of the addi-
tional computing required.

(5) In the first two examples highly accurate estimates were
obtained with measurements at only a few spatial locations. A possible
conclusion js that better estimates can be obtained by taking data for
as long a time as possible at a few locations rather than at many loca-

tions for a short time. However, this question is very much dependent
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on the initial condition uo(x) ahd the shape of u(x,t) and may not
be true in generé].

(6) Estimates of k in the plug flow reactor were improved
markedly by measuring both concentration and temperature at the reactor
outlet as opposed to temperature only. The general strategy of measur-
ing as many state variables as possible has also been shown for ordinary
differential equations [68].

(7) A confidence interval analysis can be used to select the
best estimate from a group of estimates. In addition, computation of
H represents a necessary condition for observability, which depends
in general on n, m, p, R, and S as well as on the location ofkthe S
measurements. The optimal location of S measurements can be deter-
mined by minimizing the variances of the paramefer estimates. The
results show the advantage of using the observation$ taken at the
optimal measurement locations to estimate the parameters.

(8) The trial-function expansion is not only a desirable method
for solving partial differential equations but also a useful tool for
parameter estimation because it could considerably simplify and shorten
the computational effort involved in determining the parameters in com-

plicated systems.
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Figure II-1: Dimensionless variance of parameter estimate in heat

equation for various values of kT
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Figure 11-2. Dimensionless variance of parameter estimate in heat
equation for various values of R .
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Appendix II-A
ANALYSIS OF THE GENERATION OF EXPERIMENTAL ERRORS

The value of k estimated by any technique will be a random
variable because it is based on a particular set of experimental errors
generated on thé computer. Although in different computer experiments
errors were generated with the same mean and standard deviation, dif-
ferent sample values were generated. In order to examine the distribu-
tion of estimated values, 50 sets of data were used to estimate k in
(46) by steepest descent with k%= 0.5, S =9, R=20,T =0.2, a =0,
b=0.3,0=03and y=0.5. This distribution of K values ob-
tained is shown in Figure II-3.

Since every Q "is a function of the sample values, each E
is a random variéb]e. If we assume the 50 values of k are samples
from a normal distribution with mean u and variance 02 s wWe can
estimate u ‘and og from these 50 values. Let L 5genote the mean
value of k from the 50 samples, and let 52 = Z%'1§1 (E1~ E)Z .

Then the varijable 7(E— u)lg obeys the Student's distribution. In
this set of k , k = 1.0132 and S = 0.967x1072 . For a 90% confid-

ence level, the true value of u can be expected to lie between

1.0109 < u < 1.0155

We note, of course, that u will not necessarily be equal to K* and
from this set of 50 estimates it appears very unlikely that for a very

large number of experiments u does equal k* .
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We can use the exact confidence interval analysis presented
earlier for k = 1.0132, from which we obtain a standard deviation of
1.22=<10'2. This is reasonable agreement with the value computed from
the experiments in Figure II-A.1. Note that in the calculation of the
standard deviation the variance of the errors of data is approximated
by
2:

0" = E] E] [¥p, 6™ ultyaxgsk)] (11-A.1)

where n is the number of experimental data.
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Figure II-A-1: Number of occurrences of k from 50 experiments
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Appendix II-B

The Accuracy of Kinetic Parameters Estimated
from Batch and Integral Reactor Data

A. L. RAVIMOHAN, W. H. CHHEN and J. H. SEINFELD

Department of Chemical Engineering, Califn:)rnia Institute of Technology, Pasadena, California 91109, U.S.4.

The accuracy of rate constant estimates obtained by
minimizing the sum of squares of differences betwcen ob-
served and calculated concentrations is considered. Closed
solutions are obtained for some basic types of first order
reaction schemes. The results are presented in the form of
plots of the dimensionless variance of parameter estimates.
The kineticist can use the plots both in analyzing experi-
menis and in planning them for maximum economy. Such
sdvance studies are capable of providing valuable insight
into questions of experimental design even when the
reaction scheme is unknown,

he estimation of rate constants from experimental con-
centration-time measurements in batch and tubular flow
reactors is an.important problem in chemical engincering. Two
.steps are involved in the overall problem. First, estimates of the
rate constants must be obtained. It is now recognized that the
correct procedure that must be used is least squares analysis of
the measured dara. Since, for experimental reasons, the measured
quantities are usually the concentrations, the least squares
criterion must be applicd to the raw concentration vs. time data.
This step can be conveniently carried out using quasilineariza-
tion *.23, Tt is the object of this paper to consider the second
step, namely the analysis of the accuracy of kinetic parameter
estimates, for the four reaction schemes:
k&
A-—B
&
AeB

b ks
A—-B-—C

fe is shown that in addition to this type of post-facto analysis,
the results can also be used for the systematic planning of
" kinetic experiments.

Rosenbrock and Storey® present a general technique for the
determination of cenfidence intervals for parameter estimates in
ordinary diffcreatial equations. Heineken, er a9 used this
procedure to determine confidence intervals for parameter
estimates in the cnzymatic reactions

b ks

S+ Eka C—P+E
-t

Seinfeld and Gavalas® uscd quasilinearization to estimare the

rate constants and Rosenbrock and Storey’s procedure to analyze

the estimates in the pyrolytic dehydrogenation of benzene to

diphenyl and triphenyl,

Reprinted in Canada from

On a étudié I'exactitude des estimés relatifs & la cons-
tante de vitesse qu’on obtient en minimisant la somme des
carrés des différences entre les concentrations observéces et
eelles gqu'on a caleulées. On obtient des solations fermées
pour eertains genres fond taux de systeé de réaction
de premier order. On présente, sous forme de graphiques,
les résultats de la variance sans dimensions des estimés des
paramétres. Le préposé a la cinétique peut utiliser les dits
graphiques pour analyser le travail expérimental et le plani.
fier pour minimiser son coiit. Des études préliminnires de
ce genre permetient d’obtenir une connaissance précieuse
des questions relatives & la conecption de travacx expeéri-
mentaux, lorsqu’on ne it pas le systé de réaction,

2C¢H¢ & CisHyo 4+ H:
CeHe + CiaHipp w2 CisHic + Hs

The present work represents a continustion of the effort to
provide experimental kineticists with easily-interpretable resules
on the accuracy of rate constant estimates in common reactions.
The gencral problem may be stated as one of estimating the
parameters in a sct of ordinary differential Kiquations <. "The
state of a system is governed by the set of ordinary diffcrential
Equations
t=12,...,u

5 = fi(s,0.) 5i(t) = xig. ... (1)

which contain p unknown paramecters, @; k = 1,2,..., p.
Experimental observations z;, j = 1,2,..., m, are made at R
values of 1, 1, 1,. . ., Ir, and are known functions of the system
state, g;(%), but contain additive random experimental eriors 7,

(51')1 = gi[x(’r)] + (ﬂi)ﬂ
j=02,. .. omir=12,, . R............ 2)

The error vectors w, corresponding to different sets of measure-
ments are assumed to be statistically independent.” The errors
in the individual elements of each vector m, are assumed to be
normally distributed with zero mean and covariance matrix M,.
The paramcters @ are estimated to minimize the weighted sum
of squares

5% = é 17, — glelat)]* M [z — glel@i))]. ... ()

where x(a,1,) is the solution of Equation (1), with known initial
conditions.

We present only the formulas required to compute confidence
intervals. If the experimcental error variances are small enough
for linearization to be valid, the error in the parameter estimates
obrained by minimizing $? will be normaliy distributed with zero
mean and coviriance matrix P. If the initial conditions s, are
known without €rror

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING
Vol. 48: 420427: August 1970
A Publication of The Chemical Institute of Canada
151 Slater Street, No. 906, Ottawa 4, Ontario




where
H = §. DG M5 GD,............... (s)
and
D= AD + B
................... 6)
D) = 0
_{of
A= {44} (5;,)“
af;
B = {Bu} = (&—‘) e 6]
ag(
G = [G,} = 73.;1)“.

a* being the valuc of @ minimizing §*. Heineken, ez 41.® show
that as R — o the matrix H defined in Equation (5) rapidly
approaches

T
/ DTG M@ty G@) D(yde. .. .(8)
L

R

“The variance of any linear combination of the a for an arbitrary
vector B is o = b7 Complete derails are given by
Rosenbrock and Storey(®,

In the analysis to follow we make the assumptions:

. The initial concentrations are known without error.
. The initial charge in each case consists of pure 4.
. The concentrations are measured directly.

B W e s

. Unless otherwisc indicated, the covariance matrix of experi-
mental errors, M(7) has the simple form ot

We examine the effect of the following on the confidence
1intervals of the rate constant estimates:

i. How many data poinis R should be wken and over what
range in order to attain a given accuracy of paramcter
estimates.

2. What effect does the level of experimental error have on the
problem.

3. Above what value of R can Equation (8) be taken as an
adequate representation of Equarion (5).

4. How many of the » independent concentrations should be
measured, and which ones chosen in the event of a choice
being available.

5. What advantage can be gained by measuring more than the
independent number of concentrations.

6. Instead of spacing the observation points equally in the rime
interval (5,7, might it not be advantageous to space the
same number of points in a different manner. In particular,
what is the effect of spacing them equally in the conversion
interval (1,£) rather than the corresponding time interval
(7).

7. 1f concentration-time data from runs at different remperatures
are used to detenmine the rate constants and activation
energies, how accurate would these estimates be. At how
many tempcraturcs should observations be taken in order to
achieve a given accuracy.

Questions (1) and (2) are answered for all the four reaction

schemes. (3) is considered for the schemes 4 #* Band 4 —
B — C. (4) and (5) are thoroughly discussed for the scheme

421

A< » and question (5) is taken up again for the schame 4A—~B
~C

where the matrix of experimental errors M(f) has a form
diff znt from the o] usually assumed. The simple scheme
A — B is also used to illustrate how the same techniques can
be used to answer the more complicated questions (6) and (7).

Results

Following Heineken et al., dimensionless parameters of the

%R
type s = l_z;i; were used to correlate the results. Here, &
= :

is the mean value and 0,? the variance of an estimated para-
meter, R the number of data points, and o? the variance of the
dimensionless forms of the experimentally measured concentra-
tions. The ¥, are obtained as diagonal elements of the matrix
PR/o%*, where P == h'/R for large R and P = H™ in
general. The ¥, parameter contains information regarding the
b
accuracy of an estimate (the larger the value of = the more
o
accurate is the estimate), for any given value of the experimental
ecror. ' It also incorporates the number of observations R, and
can be used to decide what value of R is necessary in order to
et an acceptable accuracy of the estimate. Plots of y, are there-
ore 2 concise and convenient representation of the results of the
study. They can be used to plan kinctic experiments which seek
to obtain accurate estimates of parameters when approximate
values are known from a less sophisticated analysis.

Fi o R 0%, R

igure 1 presents ¥, = _kn—’;_’_ and ¢, = e versus &7

b [ "xR

for the isothermal scheme 4 = B. The curve of Yy = ——
ks blg?

. b
for the scheme 4 — B is also shown for comparison. Figures
b ks

2 and 3 show the same type of plots for 4 — B — Cand
k
a
A\ when the number of components measured is the same as
—-sC
ks

the number of independent components == 2, and these are chosen
to be A and B.

Figure 4 illustrates some typical results when the exace
formula P = H~is used for computation instead of the approxi-
1
mation P = F-1/R in the isothermal scheme 4 = B. Similar
ks
bk
curves for A — B — C are shown in Figure 5. Figure 6 is a
cross-plot of Figure 5 in which the asymptotic approach to the
approximatc formula as R increases is clearly seen.

Figure 7 is an atrempt to answer the question of how many
components and which ones should be measured in the isothermal

b

—B
scheme A<

. Itindicates specifically che influence of changes

4
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in the G matrix on the accurIa‘? of estimation, and D matrix
remaining the same and the matrix continuing to be o2l
This important question is raised again for the isothermal

1]
scheme A — B, but this time the G matrix is kept constant at

col [I — 1]. The source of variation now is the matrix of
) . o’ O .
experimental errors M. M is taken to be BE which
L ]

represents independent measurements on A and B with different
variances. This, of course, is a more realistic assumption than

o,
M=o 5= 2 is allowed to vary, and the results are shown
ags

in Figure 8.

In Figure 9, the effect of uncqual division of the time interval

ky

is explored for the isothermal scheme 4 — B. When the time
interval (1,7°) is equally divided by R points, it can be shown
that

_o%W R R
= BT T 9)
2': (k]f') exp('—Zkl’v)
where .
"=’°+L§£——R—‘°) r=1,...R

When the conversion interval (1, §) is equally divided by R
points, the corresponding result is

¢I G"AIR_ R
) B e e B e

ko
v i: (x, In x,)?

where
r(l — E_)

7 r=1% .. R

X, = 1 -

and
£=exp{—k (T-1)}

As R becomes large, Equations (5) and (8) should converge to
the same value.

In Figurc 10, the dimensionless variances of the frequency
factor and activation cnergy estimares are plotted against the
number of temperaturcs at which observations are taken.

TR ke
Go* Gl

Yo =

UigR . }er
Ee*  E'o%h

h L 1 f D DDy d‘(
P2 g DD, Dy t) oD

1)

Ve =

where

[

It must be noted that Fquation (1) represents a hybrid expres-
sion which is B from the point of view of cach run but is actually

L

H from the point of view of £ . Henee, P = h'/R and no
ladd

division by L is necessary. Very: large values of L are experi-

mentally unrcahstic as the pumber of temperatures at which
isothermal runs are conducted seldom exceeds 10,

Discussion of resulis

The discussion of each figure appears below the figure.
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Figure I-——Dimensionless variance of parameter estimates
1
vs, dimensionless time in the reaction scheme A 2B,

2
when only component A is measured and the number of
observations R is large.

Fig. | ks
For each value of ¢ = ; there exists a minimmum value of

1
¥ and ¥ corresponding to a particular kT, As g decreases,
the value of &7 at which the minimum occurs at first increases.
This is because as k,/k, decreases, more B is present at equili-
brium and it takes longer for the reaction to achieve equilibrium.
In order to obtain maximum accuracy it is necessary in this case
to continue taking measurements for a longer time. However,

when — becomes very small, the amount of A present at

librium tends to zero. Due to the error in measuring A, there
is not much point in taking 3 large number of observations when
its concentration is very low. Hence the optimum value of

k
kT stares decreasing as i approaches 0.
i

For small values of /T, k; can be estimated more accurately
than k,. In this range, the smaller the value of ¢, the greater the
accuracy that can be obtained in . Conversely, in this rarige,
the smalier the valus of ¢, the lesser the accuracy that can be
obtained in .. This is because the smaller the value of g the
more significant is the forward reaction. 1f, on the other hand,
mcasurements arc continued for a long time (high k7)), this
difference gets narrowed down. This is because more of the
observations are now being taken close to equilibrium and are
effectively being wasted.

Fig < For small values of 4T (small extent of reaction) the di-

mensionless variance ¥, tends to zcro, because only the first
step in the reaction is important and k; can be estimated accu-
rately by a large number of measurements carried out over the
interval (0,7). As g increascs, the rare of the second reaction
relative to the first increases and ¢ increases for small values
of kT, This is because it becomes harder to estimate &, from
observations over the fixed interval (0,7) due to the increasing
effect of the second reacrion,

For small values of k7', . increases rapidly because of the
inability to observe the effect of the second reaction which is

422
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Figure 2—Dimensionless variance of parameter estimates

1
;s. dimensionless time in the reaction scheme A — B
2
.-+ C, when components A and B are measured and the
number of observations R is large.

necessary to estimate k;. Conversely, ¥, for small k7T, as
q increases, ¥ decreascs, because the second reaction beeomes
important,

For large valucs of &7, both Y1 and ¥, increase with 4T,
the more accurate estuimates corresponding to smaller values of
4. Smaller values of ¢ correspond to a longer time necessary for
complete conversion to C and the ability to obtain imore informa-
tion on a fixed interval (0,77). As a result, the ¥, curves exhibit
2 minimum coupled with 2 reversal of the dependence on g.
For g = 3 the ¥, curve also exhibits a minimum (a relative
minimum) reflecting the trade-off between the increase in ¥y
at high valucs of k7, the decrease in ¢y at low values of &7
and the effect of a large ks/k which causes an increase in ¥
for moderate values of £,7".

Fig. 3 For very small and very large values of &7 both ¢, and ¢,
beeome large. In the former case it is because neither reaction
has proceeded to any appreciable extent. In the latter casc, the
low accuracy is duc to the fact that most of the measurements are
being Wasted in measuring values of A4 and B which have, for
all practical purposes, long since reached their final values. The
trade-off between these two considerations results in 2 minimum
ky
in both the ¥ and ¥, curves for all values of g = T
1

As g increases, the value of /7T corresponding to the mini-
mum value of the ¢, and ¢, curves decrcases. This is a direct
consequence of measurements being taken on 4 and Bonly. The
higher the value of ¢ for a given &, the more important the
second reaction becomes. It is then advantageous to take
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Figure 3~—~Dimensioniess variance of parameter estimates
. 1

B
vs. dimensionless time In the reaction scheme A<
- G

ks
when components A and B are measured and the number
of observations is large.

measurements on A and B before all the 4 is converted o €
by the second reaction and the value of B becomes static. The
optimum value of kT thercfore becomes smaller as g increases.

For values of g less than about 2, ¥y is less than o, fe by s
estimated more accurately than k. But for higher values of 7,
the situation is cxactly the opposite. 'This eftect is important
for low values of &7, and is again a consequence of the fact that
we arc obscrving only A4 and B. We may think of the measure-
ments on A as determining (b + k5) and the measurements on
B as derermining k. As ¢ increases, it becomes less and fess
profitable to measurc B as the predominant reaction is the second
onc, Hence the ki estimates start getting less and less accurate.
However, under these circumstances, (b 4~ &,) becomes very
nearly the same as &, ttself, and thercfore the accuracy of the £,
estimate does not suffer as much. For low values of g, on the
other hand, the situation is exactly the opposite; k; estimates are
poor because we are cffectively taking no observations on the
second reaction.

7 Ingeneral, as R is increased the accuracy of the estimates of
ky and £ is increased.

For small valucs of &7, smaller values of ¥ and ¢, arc
obtained with fewer measurements. This is because ¥, and .
depend on the product of 0.2 and R, and as R decreases, the de-
crease in R more than compensates for the increase in o2
For large values of /T, as R decreases, o:? increases faster than
R decreases and ¢, and ¢, increase. A large values of & T,
and ¥: depend very strongly on R, and it is in this range that R
should be made as large as possible.

5, 10, 20, ¥y and ¢, are
not strongly dependent on R. If R = =, a significant decrease
in ¥y and ¥, occurs. For large values of &7, ¢ and ¢, are
strong functions of R. Thus, if the reaction is allowed to proceed
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Figure 6~-Effect of number of observations R on the
1

accuracy of k, estimate in the reaction scheme A — B

3

— C, when components A and B are measured and q =

z—z = 0.5 (cross-plot of Figure 5).
1

substantially toward the complete conversion to C, it is important
for a fixed valuc of T that one make as many measurements as
possible. If the reaction is stopped early, then the number of
observations is not as important. These conclusions are clearly

. .
visible in Figure 6 in which E‘ is plotted against R for constant

values of £, T.

“§.7 "Vhe number of independent components in a reaction scheme

must be equal to the number of independent reactions. Also,
they must be chosen in such a way that the stoichiometric
matrix A relating them to the extents of the independent reactions
be non-singular.

Ci ¢
V=al.
C.I g:ﬂ

In many problems of kinctic parameter estimation, there is a
choice regarding which comiponcnts are to be measured. Seinfeld
and Gavalas’® come to the conclusion that one should try and
measure as many of the R independent concentrations as possible;
and that if a choice must be made, intermediates give better
parameter estimmates than primary constituents.

In the present study, this question was thoroughly examined
k&
—B

for the isothermal scheme A< . Figure 7 is an example of the

!

ks
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-the D7G'GD matrix (and hence the H matrix) for that case.

'
i
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Figure 7——Eﬂeét of number of components measured on

the dimensionless variance of k, estimate vs, dimensionless
3

-y
time in the reaction scheme A< , when the number of
— C
ks

ohservations R is'large and g = l—;—’- = §.5.
1

large number of plots that were obtained for various values of
ky . o .

;. The only conclusion that is valid for all these plots is that
1

the most accurate estimates of & and &, are obtained when all
the three components are measured. However, a certain combi-
nation of two components always comes very closc to the
(A + B+ O) curve. Hence it would appear that there is little
advantage in measuring morce than the mdependent number of
concentrations when the crror matrix M has the form o?I.

For specific guidance in an actual problem, it is necessary to

k

look at the plot for the relevant value of :. Consider, for ex-

ky . . .
ample, l-_ = 0.5 which is illustrated in Figure 7. Further, let us

1

confine our attention to the ¢, curves which give information
regarding the accuracy of the & estimate. Icre, the best two
componenes to measure are obviously A and B. Mcasuring
€ and A is bewer for high values of ;T but B and C is better
for lower values of 57 Near the optimum valucs of & T there
is little to choose between these two combinations.

The best single component to measure is B, Measurement
of € alone is likely to lead to extremely inaccurate estimates.
Of course, measurement of A alone will not give us b, and &,
separately, a fact that is strikingly evident in the singularity of
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- cedure of Rosenbrock and Storey(¥. Evidence from the present

Fig.8 For a given o, and a given number of observations R, the

':"j J The limiting valucfplot(ed in Figure 9 is strictly valid for

001
1-Lzexp(-KT)
Figure 8—Effect of measuring more than the number of

independent components on the dimensionless variance of
parameter estimate vs. conversion in the reaction scheme
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Figure 9—Effect of distribution of ezperimental observa-
tions on the dimensionless variance of parameter estimate

1
vs. number of observations in the reaction scheme A — B.

The existence of H™ is an essential requirement in the pro-

work confirms that the non-singularity of H is a sufficient
condition for the estimability of parameters in a system of first
order linear ordinary differential equations.

accuracy of estimation improves as s increases. This is correct
as increasing s means increasing accuracy of measuring B. The
curve for s = O corresponds to extremely imprecise measure-
ments on B, which is cquivalent to measurcinent of A alone.

Measuring more than the number of independent components
is advantageous under all circumseances except s = 0. Further,
for every valuc of n, there is 2 minimum which represents the
point at which the reacrion must be skipped to ger maximum
accuracy of estimate.

As T o (£ — 1), all the curves go up to infinity. This is
obvious as there can be no estimates when the reaction is not
carried out ac all,

a very large number of observations. This limit is approached




-62-

level from the computed variance of the rate constant crror
diseribution. “The second and more important use is in planning
experiments to obtain maximum kinetie information without
sacrifice of accuracy. Questions such as how many data points
to take and 1n what range, which components should be measured
in the event of a choice being available, and what effect the level
] of cxperimental crrors has on the problem, were answered.
The same technique was also extended to answer some novel

uestions such as how to distribute the observations in a given
. ume interval, and at how many temperatures isothermal runs
must be conducted to get acceptable estimates of the frequency
factor and activation energy. The practising chemical engineer
should find the procedure extremely useful even when confronted
by reaction schemes more complex than the ones considered here.
E_vcn if this type of complete analysis is not undertaken, the
20k N simple first order schemes should give him a feel for t!'\‘c cffech
of features like reversibility, parallelism and consecutiveness in
the reaction mechanism on the propagation of error.

100~
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APPENDIX: THE WORKING EQUATIONS

We will illustrate the details of the analysis for the scheme

2+ -
. &
B
1 { 1 | ) A
i 2 3 10 20 50 100 — C
L ks .
Figure 10~Effect of number of isothermal runs on the Under the assumptions in the introduction, the reaction is
dimensionless variances of the frequency factor and described by -
Gaexp{—-E/0) dx,
activation energy estimates in thesch A B i (B 4 ky) 21 a(0) = 1
®0) 1 &L) 1t
with G T = 10, -~ = -, -~ = —.
4 E S E 3 '—l—"=k.x.:xz(0)==0
dt
rapidly from the lower side when the time interval (o, T) is “;lhefe 2 =hM,lG[Ao] ?i“d xs = [B|/[Ad] %r*\ld A[and B have been
equally divided. However, if the same number of observations chosen as the independent components. Therefore,
are taken at intervals of equal conversion, the results arc pro- xn o= exp[— (& 4+ k)]
foundly different. For high values of £ (e.g. 0.9), it is possible '
to achieve much greater accuracies by this device. For low a3 = e (1 — exp | = (b + ks)t}]
R .13 ;

values of £ (e.g. 107%), on the other hand, this must not be done
as errors increase greatly. In fact, for low £, the limitas R — o

3 A Inthiscase,n = 2, p = 2and Disa 2 x 2 matrix governed b
is approached from the upper side. . We therefore conclude that ! ? & y

taking a finite number of observarions at equal conversion éDy
imcrgals will be useful when the reaction has fg be stopped far & -7 G+ k) Du — 25 Du(0) = 0
from completion. The physical meaning of this is that when
concentrations are changing rapidly, obscrvations must be taken : Du 4 k) Dy — x; Dia(0) = 0
more frequently, but when they are changing slowly, the time dt
period between observations can be lengthened. The experi- ap
mental kineticist very often makes usc of this trick while col- LB e B Dy4x:  Da(0) =0
lecting his data. di
Fig 10 The accuracy of estimation of G4 and E improves almost in dD1e
direct proportion to the number of temperatures at which e kb Dy Du(0) =0

observations are taken.
In the limited range considered, the activation energy. is The integrated forms are

estimated more accurately than the frequency factor. This Du = — texpl—(k + ks)i]

would indicate that non-linear regression of the pooled data

yields a better estimate of E than that obtained by regressing the Dis = — texp[— (ki + k4)t]

estimated rate constants at different temperatures. In such cases, )

]

the_ te.chniquc prescntgd_in this paper could be ir}valuablc in Dy = s il 3 exp{— (ko)) —
assigning confidence limits to the parameters obtained by the v+ ks
non-linear analysis. 3 :
Conclunion. | g (= b -
nelusion
The statistical structure of several basic first order reaction byt
schemes was analyzed. No analysis of experimental kinetic Du =5 s expl— (b + ki) +
data is complete without a good estimate of the accuracy of the '
rate constants derived therefrom. The first use of the present L fexp{ — (b + ko)) — 1]
results is in obtaining such estimates for any desired confidence (ks 4+ Ba)* ! ?
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When, for example, only .1 iy measured, G = {1 0], and
Dy

' Do I
D'G'GD = [
Dys Du Dyt

h is now easily obtained from Equation (8). The results of other
cases are summarized below.

Isothermal case

k-
a)A—=B.u=1p=1
D= — texp(—ki)
k
b)AzlzB.n= 1,p=2
D= -t Lexp |~ (k- k) t)
‘ (k1+kz)'_(k‘{k)’ ep {=(hot ki) +
(k‘ + k)zcxp{ kA k) t)
ky
D; = W E**_F—k; texp{—(k + k) t} —
b,
TR - exp | — (ki + k3) ¢}
b ke
)A—=B-C n=2p=2
Dy = — texp (—kt)
Dy =0
k k
Dy = PRy texp(—kt) + (’;l__———z?!—)’ exp (-—_ k)
ky
poEr i
k
Dy = — i Tzlexp(—kal) + (T-—_‘;T)’ exp(—kaf)
— ‘(‘k:j'k:y, exp (— k)

lsolhermal runs at different temperatures
.

H'A — B and kb, = G4 exp (—E/0) we will consider the It*
experiment with temperature ;. Since n = and p = 2 (G4 and
E), D is given by

Dy = —texp[—tG, exp(—E/8) — E/6]
16, E\ E
oo v (-5) -]

j}_

Nomenclature

a
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c
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ABSTRACT . to the analysis of the accuracy of the parameter
. values from the history match. Without such an

An important use of simulation is to analysis, parameter estimates from history

determine reservolr properties by interpreting matching might be meaningless. The problem is

transient well tests. In general, this deter— to estimate errors in parameter values determined

mination is carried out by systematically by history matching.

varying reservoir properties until the pressures o

computed by the simulator match pressures The theory that is presented in the Appendix

measured during the well test - a procedure is applicable in general to multiphase, itwo-

known as history matching. Reservoir properties | dimensional simulators. However, as an illustra-

determined by history matching are subject to tion, we apply the theory to the well known

error. Here we present a methcd of estimating radial form of the diffusion equation,

this error. As an example, we studied the 3

problem of estimating porosity end permeability a(kriﬁ;) 3

in both a homogeneous reservoir and one in which T = ¢uC5%' B Y ¢ B

damage is present in the vicinity of the well.
Results presented indicate that the accuracy of | describing the transient behavior of pressure in

calculated reservoir paraneters depends on (1) a radial, horizontal reservoir containing a
the type of parameter estimated, (2) the number | single-phase fluid of small and constant compres-
of parameters estimated, (3) the true value of sibility. The equation allows for permeabilities
the parameters and (4) the design of the well to change with radial distance from a wéllbore -
test. a situation that might be encountered if damage
is present. We assume that the reservoir is
INTRODUCTION - finite, Furthermore, we assume that the well
produces at a constant rate for a certain time
Research efforts in history-matching and then is shut in. Thus, both drawdown and
reservolr simulators have principally been buildup takes place. No wellbore storage effectd

directed toward improving and extending existing] are considered.
techniques with. respect to decreasing computing

time. Tittle attention has been raid, however, The history-matching procedure that is
Illustrations at cnd or paper.
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generally used to find the permeability, k,
and the porosity, ¢, in a reservoir is asg
follows.

1. Make an initial guess of k and ¢.

2, Run the simulator with these values of
k and ¢.

3. Compare well pressures computed by the
simulators to those measured in the well.

4.  1If these pressures do not match,
change the parameters k and ¢ and make repeated
runs until an acceptable match is obtained.

In this report we are not concerned with
the procedure used to obtain a match, but are
concerned with errors associated with the
parameters obtained by history matching., A
parareter is any quantity that is both (1)
unknown and (2) affects the behavior of the
mathematical model, A parameter can be some
readily identifiable physical quantity, such
as permeability or porosity. It can also be
more abstract, such as the rate of change of
permeability with radial distance from a well-
bore.

ir 6%Ue 35 the true, but unknown value
of Parameter 1 and OIGSt is its value that has
been estimated by some history-matching process,
then the error can be defined as
true est

a8, {error) = 8y - 8 .. (@)

_We can never determine the exact error in esti-~
mating any particular parameter, but we can
compute statistical properties that give us a
measure of the error. A statistical property
of importance is the standard deviation of the
error, Op . A large standard deviation would

indicate %hat the estimated value for that
parameter is probably not accurate. The
mathematical procedure used to compute standard
deviations is given in the Appendix.

APPLICATION TO DRILLSTEM TESTS

We now present the results of the applica-
tion of the theory in the Appendix to deter-
mining the reliability of parameters estimated
from history-matched drillstem tests. We
assume that the reservoir behavior is described
by Eq. 1.

In order to generalize our results, we
considered the dimensionless parameters defined
below:

¢ (“"porosity") =

r
¢he 1n <F£> rw2 Pe

256.68 L .. (3)
t, a8
K{x) ("permeability“) =
hp
1.1215 x 1073 e - k(x),

. r
pIn{-8)qs8
(ve)

D A 9 ]

where all symbols except ty and x are standard
SPE symbols. We assume that the well test is a
fairly simple one, namely, one flow period
followed by one shut~in period. The total test
period in days is ty. The spatial variable, x,
is the dimensionless distance from the wellbore
defined as in(r/r)/ln(re/ry)e K(x) can be a
function of distance from the wellbore. In the
homogeneous case, K(x) is a constant.

Using the dimensionless time r = t/t; and

dimensionless pressure p* = p/pi, the reservoir
model is

ap exp (-2 1n(re/rw)x)
ot ¢

%;lk(x)%?;*—J e ()
0

p*{x,0) = 1 <x <1 .. (5)

aE.: = 1 ‘(7)

X |,.p 2mK(O] Oty

3p* = 0 t, <1 <1 (8)‘

X y=0 f -

w70 0cTl,
x:

where ty is the fraction of the total test time
during which flow takes place.

Case 1 - Homogeneous Reservoir
(K and ¢ Gonstant)

In this case we considered either K or ¢
or both to be unkncwn and computed standard
deviations of the errors in each parameter.
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Numerical experiments revealed that these
standard deviations varied, depending on which
parameters were being estimated, the values of
the parameters, the number of parameters esti-
mated, and the design of the well test. In
Figs. 1 and 2 we show the results of cases in
which either porosity only or permeability only
are determined by history matching. A1l other
parameters are assumed to be known.

Determining ¢ Only

A measure of the error in 9 is the func-

tion,; ¢g. Where
o .
L)
¥, = EEﬁJ y o s e s e e e s e o s (10)

0@ is the standard deviation of the error in ¢,

and is the standard deviation of the well

. pressure measurements. In Fig. 1 we show Yg as
a function of dimensionless permeability for a
given value of ¢. Also shown is ¥g for two
different values of tg. tp is the ratio of the
flow period to the total test period (flow plus
buildup). From Fig. 1 we can see that yg in-
creases with K. This means that the accuracy

- with which porosity can be determined decreases
with increased permeability. For a given value
of K, however, ¢4 decreases with increased toe
This indicates that porosity can best be
determined if the flow portion of the test is ag
long as possible (ty = 1.0).

Determining K Only

A measure of the error in K is the func-

tion, ¢g. Where
Ty = KG; B € 5 )

is the standard deviation of the error in K.
Fig. 2 shows Yy as a function of dimensionless
permeability for each of two different constant
values of porosity and two different values of
tge ¢ can be seen to increase with perme-
agility in all cases. Thus, the accuracy with
which permeability can be determined decreases
with increased values of permeability. Fig. 2
also shows that smaller values of porosity
improve the accuracy with which permeability can
be estimated by history matching. In addition,
Fig. 2 shows that larger values of ty result in
better estimates of permeability.

Determining Both @ and X

In Figs. 3 through 5; we show the results
of cases in wiilch both porousity and permeaviiity
are simultaneously determined by history match-
ing. All other parameters are assumed to be
known. TFigs. 3 and 4, when compared to Figs.

1 and 2, show that each parameter is determined

with less accuracy than if only one is to be
determined.

The dependence of ¥ and ¢y on ty is not
as straightforward as in the above cases in
which only one parameter is to be determined.
Fig. 5 shows that ¢g and yg actually pass
through minima at tf—‘0.65. This indicates
that, under the specific conditions outlined in
Fig. 5, namely that K = 4.45 x 103 and ¢ =
6.45 x 10~7, the optimum well test design would
be to flow the well approximately 65 percent of
the total test time, For this flow time,
parameter accuracy would be maximum.

Case 2 ~ Permeability Varies
With Distance From Wellbore

In this case we considered a situation in
which permeability varied with distance from
the wellbore. The dependence of permeability
on distance was assumed to be

K(x) = Ky ¢+ Kox o 0o iu v e (12)
Ky is the permeability at the wellbore. Kj is
the rate of change of permeability with dis-
tance, A positive value of Ky would indicate
that permecability is increasing away from the
wellbore.

Fig. 6 represents the case when both K;
and X, are to be estimated by history matching.
All other parameters are assumed 1o be known.

¢K1 and ¢K2 are shown as functions of K. Ir
ckl and °k2 are the standard deviations of Kl

and Ko, respectively, and ¢, is the standard
deviation of the pressure mgasurements, then

and
g
K2

= =

2 ch'cu-eou.cc-.o(lh)

¥

The standard deviations of both parameters in
Fig. 6 increase with Ky, Also, both vk, and

¢K are lower when permeability is decreasing
with distance from the wellbore (K2 = 'Kl) than
when permeability is increasing (K2 = +Ky).
This latter observation indicates that, In the
situation studied, the dependence of perme-
ability on distance from the wellbore {Eg. 12)
can be best determined when permeability
decreases away from the wellbore.

Fig. 7 shows ¥y and ¢K2 as functions of
tf for fixed values of K4 and Ky As in the
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case of estimating both ¢ and K in the homo-
geneous reservoir, minima occur, indicating
optimum test shuti-~in times for minimizing
standard deviations in the estimated parameters.

Case 3 - Two-Region Permeability

Another ideal situation studied was one in
which the reservoir is represented by two con-
centric regions of different permeabilities.

We assumed that these permeabilities were the
only parameters to be estimated and that the
boundary location, x¥, between the two regions
was known.

The two permeabilities are denoted by Kj
(internal) and K, {(external). The variables
considered are (1) the ratio of K3 to K
(8=K3/Ke) and (2) the fraction, tg, of the
-time during which the well flows.

Fig., 8 shows ¢ki angd ¢Ke vs K3 for g= 0.1,

1 and 10 and @ = 6.47 x 1074, tp = % and x* =
0.36. As Ki decreases, both ¢K1 and ¥ de-
e

crease significantly; that is, the decreases in
oki and 0K, are more than enough to compensate

for the decrease in Kj. There is very little

effect of B on ¢K§' However, B has a much
stronger effect on g . At large values of K;
it appears that both ¢Ki and ¢Ke go through a
maximum, indicating that the rate of increase of
oke decreases as K; increases. Clearly, the
estimates of Ki and Ko will be more accurate if

both Ky and Ko are small and will improve as B
increases.

Fig., 9 shous ¢Ki and wKe vs the flow

fraction of the total test for 8= 0.1, 1 and
10. Fig. 9 could be used to design single well
tests, since the time at which the well is shut
in can be controlled in the test. Although the
effect of the variation in shut-in time is not
dramatic, we note that better estimates of Kj
and K, can be obtained if the production period
is extended as long as possible. - Again,
significantly better estimates of K can be
obtained if B is large, and the value of B is
much more important in the estimation of K than
in Kj.

CONCLUSIONS

A method has been developed to obtain
standard deviations for reservoir parameters
estimated from history matching. The studies
presented indicate that the accuracy of calcu~
lated reservoir parameters depends on the
following points.

1. The type of parameter estimated. Some

parameters can evidently be determined with
more accuracy than others.

2. The number of parameters estimated.
The greater the number of parameters estimated,
the greater the error in determining the value
of each. :

] 3. The true values of the parameters. In
some cases, errors in estimating parameters- were
found to be functions of the actual value of
the parameters.

L. The design of the well test. Errors in
the values of porosity and permeability were
shown to be functions of the relative times of
shut-in and buildup periods in a drillstem
test,

Point A4 indicates that the analysis
presented is useful in designing optimum drill~
stem tests to determine reservoir properties
with optimum accuracy.

APPENDIX

Petroleum reservoirs are commonly modeled
using a set of partial differential equations
derived from conservation laws. Unless we have
perfect knowledge regarding the rock and fluid
properties of the reservoir system of interest,
these eguations contain unknown parameters.
Typical examples of these parameters are perme-
ability and porosity. .

In this section we will present the methods
used in this study to compute standard devia-
tions of reservoir parameters determined from
history-matched drillstem tests. These methods
are also applicable to large-scale simulation
models. However, the computing time necessary
to compute standard deviations of parameters for
large~scale systems may be excessive.

Consider a function p;y (f}. p represents
wellbore pressure, ¢ represents a set of param-—
eters (95, 3=1, 2,...N) and i is an index
representing points in time. For the sake of
illustration let us consider a case in which
only one parameter, the j“® parameter, has been
estimated by some history-matching process. If
6, est is the estimated value of the parameter

d ojtme is the true, but unknown, value of
the parameter, then define an error, AGJ, as
follows.

- true est
ABJ-BJ 'ej ‘octlﬁl(ﬁ-l)

piobs is the observed pressure at the i'h time,

It is a function of the true, but unknown, value
of the jth parameter so that
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obs true where tp_1,,/2 is the t-statistic for m=1

Py = Py .(ej ) degrees of freedom and (1-a) confidence limits.

t Similar reasoning can be used in the case
=Py (e est 4 ae A T (A-2) | vwhere there are two or more parameters to be
3 J estimated. Eq. A~3 now becomes
Let us now represent the function p; est =
(63 est + A6.) by a first-order Taylor'sl Pi (e 48)

series. We have assumed here .that the history
match is sufficiently close (A€ small) so that N
the higher order Taylor series terms are esty .

- essentially zero. , Py (67" J.g] )"ij 48y, . .aT)

est )
Py (Oj + Aej) = where the 6's now represent the set of all
parameters (83, j=1, 2, ...N). The op2's are
elements of the main diagonals of the symmetric

' matrix C, where
P (eje5t9 L T P P -
2 2
where A3 is a "sensitivity coefficient" de- 08] e 06]92
fined as * )
ap . o, 2
- est : 8
AU = —~—aej evaludted at ej = GJ- . . 2
A ¢ W' c-l: .
If we have M observations of pressure, p,°PS . )
{i=1, 2, ...M),. then we can obtain an estimate . :
of the parameter, 03, from the following : .
formula. *
2. . )
. % = GE = o 2 o, ¢
0 m 918, 8y
b} 2
2 A
=1 Y - -

T ¢ ]
variance of parameter 63 . . . .. (A-5) (a-8)

N . . The diagonal elements are the variances of each
Eq. A-—.5 was obtained by taking the variance of parameter and the off-diagonal elements are
both sides of the least-squares estimate of A6 covariances. We did not make use of the co-
from Bq. A~3. It was assumed that the Aij are variances in this study. They serve primarily
known exactly and that the variance of the error to indicate thg amount of correlation between

in the observed wellbore pressures, % is - the parameters and do not affect cur
constant and does not vary with time. conclusions.

If the errors in the observed wellbore
pressures are normally distributed with a mean
?LQE of zero and a standard deviation of o =

o <, then we can place statistical confidnce C = (ATI\)_] sz Y e}

The matrix C is computed from the sensitiv~
ity coefficients A3 by

lin¥ts on the true value of the jth parameter.
Thus, there is a 1-~a probability that the true

where — -3
4 TU€ falls within a certain range: My 22 00 0 )‘IN
t
est _ Ip*m-1,0/2 true est -
9 (ZAHZ);&_‘.OJ <8 . 22
3 13 A= N
s Zptm-l,ar2 : "
"Q‘___f» ‘
(iz Aij )2 s s e oo (A-B) )‘M’i XMN
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In the foregoing analysis it was assumed
that the sensitivity coefficients Ajj were
available. There are two ways to compute A's.

Finite Differences

Here the A's are computed by (for one
parameter)

P1 (ejest + 595) . p-i
i ° 58,

B (10

est
A o5 ).

Sensitivity Equations

In this case, the sensitivity coefficients
are determined from solutions to a partial
differential equation for A4. This equation is
derived from the original mathematical model
represented by Eq. 1. If we differentiate °
both sides of Eq. 1 with respect to 63, we can
obtain an equation that has A; as a dependent
variable instead of p. The sgnsitivity
coefficient Ay (Aj evaluated at time, i) can
be found. In ghis study, sensitivity co-
efficients were obtained from numerical solu-
tions of these sensitivity equations.,
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Chapter III
ESTIMATION OF SPATIALLY-VARYING PARAMETERS IN
PARTIAL DIFFERENTIAL EQUATIONS

1. Introduction

A11 of the results in Chapter II deal with the estimation of con-
stant parameters in partial differential equations. Many important
physical systems have parameters which vafy over the domain of the
system. Perhaps one of the most important examples of this type of
system is a petroleum reservoir, in which the permeability, porosity,
and thickness generally vary throughout the reservoir. To date most
of the reported approaches to estimate spatially varying parameters are
to divide the space of interest into zones, in each of which the
parameter is considered to be constant, thereby’converting the problem
into the estimation of constant parameters. From the previous chapter
we can see that if there are a large number of zones the computing
effort required may be prohibitive for practical application. Ideally,
we would like to be able to estimate the parameters as a continuous

function of spatial position as, in fact, they are.

In this chapter optimal control theory in conjunction with the
method of steepest descent is proposed to estimate spatially varying
parameters in partial differential equations. In this approach the
parameters to be estimated are considered as control variables which
are by nature continuous functions of position. This method may con-

siderably reduce the computing time over the existing methods. The
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extension of this approach to estimate time-varying or time and
spatia]iy,varying parameters is straightforward.

In the body of this chapter we present oh]y the general formula-
tion df the problem. The detailed derivation and application to
estimate the permeability distribution in a two-dimensional, one-phase
petroleum reservoir are given in Appendix III-A and Appendix III-B,

respectively. Appendix I1I-C presents the method for a two-phase petro-

leum reservoir.

2. General Formulation of the Problem

Let us consider the class of systems described by the partial

differential equation
ut(taXSY) = f(t9x’y,u ’ux’uy’uxx’uyy’k(x’y) skx(x:v.V) sky(x:.Y)) (])

where u(t,x,y) is the n-dimensional state vector: Ugs Ug,> and kg

are partial derivatives with respect to x ; uy, , and k6 are

Uyy y
partial derivatives with respect to y ; and k is a p-dimensional
vector -of spatially varying parameters. The initial state of the sys-

tem is given by

u(0,x,y) = uo(x,y) X,y € Q (2)

where € denote the fixed spatial domain of the system, and the bound-

ary conditions are given by

g(t,u,ux,uy,k) = 0 X,y € o9 (3)



-74-
The observations of the system consist of the m-dimensional

vector Y(x,y,t), related to the state by

X,y e + 9Q

Y(x5¥,t) = h(X,y,t,u(x,y,t)) + (errors)

where the observations Y(x,y,t) may be continuous functions of x, vy,
and t or carried out only at a discrete number of spatial points and
a discrete number of times.

The estimation problem is to determine the parameter k(x,y)
such‘that some measure of the difference between the predicted and
observed data is a minimum. A popular objective function which will
be emp]oyed here is the least-square functional

T

J = J) IQJ JQJ [Y(x,¥>t) = h(xsystsu) 1T QUx,y,rss,t)[¥(r,s,t)

- h{r,s,t,u)]drdsdxdydt (5)

where Q(x,y,r,s,t) .is an mxm positive definite weighting matrix,
and Y(x,y,t) is a continuous function of x, y, and t . If Y(x,y,t)
is a discrete function of x, y, and t , the integrations in (5) are
replaced by summations. In (5) u(x,y,t) denotes the so1u£ion of (1)-
(3) for a given k(x,y).

A close examination of this formulation of the estimation problem
reveals that the problem of parameter estimation is intimately related
to certain optimal control‘problems. In fact this problem can be con-

sidered formally as an optimal control problem: It is desired to
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determine the control policy k(x,y) over the domain Q such that J
is minimized subject to the constraints (1)-(3). Therefore, the optimal

control approach can be used to solve the estimation problem. The

detailed derivations are given in Appendices III-A and III-B.
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Appendix III-A

INT. J. CONTROL, 1972, voL. 15, No. 3, 487-405

Estimation of spatially varying parameters in
partial dlfferentlal equationst

W. H. CHEN and J. H. SEINFELD

Department of Chemical Engineering,
California Institute of Technology, Pasadena, California 91109

[Received 21 April 1971]

The estimation of a vector of unknown spatially varying parameters in non-linear
partial differential equations from noisy observations is considered. Two algorithms
are presented. The first is a method of steepest descent based on consideration of
the unknown parameter vector as a control vector. The second is based on treating
the parameter as an additional state vector and employing least-square filtering.
Computational results are presented on the estimation of the diffusivity in the heat
equation.

1. Introduction

The estimation of constant parameters in partial differential equations from
noisy observations has recently received attention (Beck 1970 a, b, Fairman
and Shen 1970, Phillipson 1971, Seinfeld and Chen 1971). We consider here the
estimation of spatially varying parameters in partial differential equations, as
arising, for example, in the estimation of the thermal diffusivity of an aniso-
tropic medium or in the estimation of the permeability of a reservoir from
pressure measurements at wells. Some special linear cases of this problem have
been considered by Cannon (1963, 1968). We consider the general problem of
estimating a vector of unknown spatially varying parameters in non linear
partial differential equations (P.D.E.’s) from noisy observations of the system
state.

We assume the system is governed by the general P.D.E.:

x, = f(t,r, %, 2,k k,), (1)
where x(r,t) is the n-dimensional state vector, { is the time variable, r is the
spatial variable, defined on the normalized domain [0, 1], x, denotes dxz/0t, etc.

The p-dimensional parameter vector k is assumed to be a_ function of r only.
The initial condition for eqn. (1) is assumed known:

2(r, 0) = z,(r) (2)
and the boundary conditions are expressed in the general form:

golt,x,2,) =0, r=290, (3)

gy(t,x,z,) =0, r=1 (4)

The observations of the system are given by the m-dimensional vector y(r,?).
The observations are related to the state by:

y(r,t) = h(r,t, x(r,t)) + (errors), (5)

where the observations y(r,¢) may be continuous funetions of  and ¢ or carried

out only at a discrete number of spatial locations, r,,...,7g, and a discrete
number of times, t,,...,{5.

+ Communicated by Dr. A. T. Fuller.
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The problem is to determine k(r) such that some measure of the difference
between the predicted and observed data is a minimum. A popular objective
function is the least-square functional:

T MM
J =f f f [y(r,t) —h(r,t,2)]T Q(r, 5,t) [y(s,t) — h{s,t,x) ds dr dt, (6)
0 0JO

where Q(r,s,t) is an m x m positive semi-definite weighting matrix. This form
is for the case in which y(r,t) is a continuous function of r and ¢t. If y(r,¢) is a
discrete function of r and ¢, the integrations in eqn. (6) are replaced by sum-
mations. In eqn. (8), x(r,t) represents the solution of eqns. (1)-(4) for a
given k(r).

There are essentially two ways to approach this problem. The first is to
approximate k(r) by a function of » of known form containing a number of
unknown constant coefficients. Then the problem becomes one of estimating
a set of constant parameters in partial differential equations. In order to
simulate k(r) accurately a large number of coefficients may be required. Since
this approach is well-developed, we will not consider it further.

The second approach deals directly with k(r) as a function of r. k(r) may be
considered either a control variable or an additional state variable. In either
case the objective is to choose k to minimize J subject to eqns. (1)-(5). If k
is treated as a control variable, the problem becomes one of the optimal control
of a distributed parameter system with a control variable that is time indepen-
dent. On the other hand, if k is considered an additional state variable, state
estimation or filtering, techniques applicable to partial differential equations
can be used. The only differences between the two. ways of treating k lie in the
final algorithms for estimating k. We will now develop these two approaches.

2. Method of steepest descent

The method of steepest descent is a popular one for the solution of the
two-point boundary value problems arising in the optimal control of lumped
and distributed parameter systems (Denn 1969). In this section we derive a
method of steepest descent to determine k(r) to minimize J subject to eqns. (1)—
(5). Let us begin by defining the additional state variable x, () by:

Tury, = fo’ fo‘[ym )= h(r, t, 2)JTQ(r, 8,0) [y(s, )~ h(s, &, x) dsdr,  (7)

x,,,(0) = 0. (8)

Thus, z,,,(T) = J. Henceforth, the state vector « and the function f will have
dimension n+ 1, with f,, equal to the right-hand side of eqn. (7).

Let us find the perturbation in x, ,(7') resulting from a perturbation 8k in &
in order to develop a method of steepest descent. Corresponding to a per-
turbation 6k is a perturbation &z, governed by:

82 = [0 + [, 57, + [, 2,y + [,k + fr, Ok, (9)
g(o)x‘sx'*'g(()).r,gxr = 0? ro= 0.‘ (10)

911 0% + 9., 82, = 0, =1 (11)
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Introduce the (n+ 1)-dimensional adjoint vector (r,t) and form the inner
product of  and eqn. (9) to obtain:

(7 &), = " dm + 7T f, Sx + YT [, S, + YT [y, 82y + YT fi 8k + YT fi, Ok, (12)

Integrating both sides of eqn. (12) over r from 0 to 1 we obtain:

U ol ¥ oe d’], = f:W YT [ — T fr )+ (BT s, ) ) S

4 f W o (4T, )] kdr
0

+ [l/’fo, - (‘/‘fo,,)r] 8x ‘:(1)
+ 4T e, 82,725 + 4 i, SRIZH: (13)
Let us define the adjoint vector (r,t) by the following equations:

‘l’tT = ¢'fo + (¢sz,)r - (‘pr:t,,)rr? (14)
Y(r,T)=0, i=12,..,n, (15)
Yoa(T) = 1, (16)
¢‘sz,'— (‘I’Tfa:,,)r_‘ﬁTf.z"g(O)x,_l Tz = 0, r=0, (17)
¢fo,_ ('/‘fo")r_‘l"rfx,,g(l)x,_l Je = 0, r=1, (18)

Using eqns. (14)-(18) in eqn. (13) we obtain:
A [wrsear| = [(wrs- s o0dr + 47, sk, (19)

LJo it Jo

Integrating eqn. (19) from 0 to T';

T 1 ’ T
- f f [T fy — (7 fi )]k dr dt + f WS SkIZdL.  (20)
=T 1] 0 Fi]

f YT Se dr
1]

However, from eqns. (15) and (16), the left-hand side of eqn. (20) is simply
8x,.4(T), or, equivalently, 8J. The order of integration can be interchanged in
eqn. (20) to yield:

1 T
8 = [ [T = Wi b = )~ BN e, (21)

where 8(r) is the Dirac delta function.

This is our desired result, namely the perturbation in J resulting from a
perturbation in k. Since we want to minimize ./, we want to choose 8k such
that 8J is non-positive. Therefore, we choose:

Sk(r) = — W(r) { f:[sﬂfk“ W o)+ 07 f, 87— 1>—¢Tfk,6<r>1dt}T, (22)

where W(r) is a positive-definite p xp weighting matrix. Because of the
definition of z,,,,, only the first n components of 4 and f will enter into the
computation of eqn. (22).
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Summarizing, the method of steepest descent is as follows:

1. Make an initial guess k(®(r) and choose a weighting matrix W(r).

2. Solve eqns. (1)-(4) from ¢ = 0 to ¢t = T. Evaluate J. Then solve eqns.
(14)-(18) from t = T to £t = 0.

3. Compute 8k from eqn. (22).

4. Repeat step 2. Continue until subsequent chanes in J are less than a
preset criterion, (J¥ —JEHD}JH g,

3. Filtering in distributed systems

Filtering in linear distributed systems with whlte noise disturbances has
been considered by Balakrishnan and Lions (1967), Tzafestas and Nightingale
(1968, 1969 a), Meditch (1969), Thau (1969) and Kushner (1970), wherein
results analgous to the Kalman filter were obtained. Filtering in non-linear
distributed systems has been considered by Tzafestas and Nightingale (1969 b),
Seinfeld et al. (1969, 1970 a, b), Hwang et al. (1971) and Lamont and Kumar
(1971). A general non-linear filter, applicable to both boundary and volume
disturbances, has been derived by Hwang et al. (1971) based on an optimal
control approach and invariant embedding.

If we adjoin to eqn. (1) the p relations:

k=0 (23)
and define the (n+ p)-dimensional state vector z as (2T, pT)T, then eqn. (1)
takes the form:

2= F(r,t, z,z2,2,), (24)

where F = (fT,0)T. The initial condition for eqn. (24) is:
2(r,0) = zo(r), 1=12,...,n, (25)
zr,0) =% di=n+1,..,n+p. (26)

The boundary conditions, eqns. (3) and (4), then apply to the first n components
of z.

The optimal least-squares filteririg problem is to determine 2(7') such that
J is minimized, subject to eqns. (3), (4) and (24)-(26). If we denote the optimal
filtering estimate by Z(r,t), then the filter is (Hwang ef al. 1971):

8= F(r,t £ 5,3,)
11
+ fo J‘o P(r,L, TYh,T(, T,2)QL,v, T) [y, T) = (v, T, £)]dldv, (27)
B(r,p,t) = B P+ PE™p)+ B, (r) P+ B, E,"(p)+ B, P, + B, B, T

2pe L

1 1
+ f f P(r, L, T) V(L,v, T) Plw, 5, T) dL dv, (28)
0JO0

VL, T) = AT T8 QU v, T) (y(v, T) — by, T, )1, (
4(r, 0) = 4alr), (
golt,2,4,) =0, r=20, _ (
gl(téz‘)—O r=1, (32
P(r,5,0) = Ry, p), (
I P75 p, t)+g(o),,P,(r, pt) =0, r=0, (
. P(rs p, ) + gy, B(ripst) = 0, r=1, (

oo
g
g
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where the initial conditions, £,(r) and Fy(r, p), must be guessed a priori, and
P(r, P t) = P(P:'r’t)T'

The problem of estimating k(r) has now been converted into the problem of
estimating z(r,f) given the noisy data, y(r,t), 0<t<T. Of course, since the
initial conditions for the first » components of z are known, eqn. (25), the filter
will, in effect, be estimating only k(r), the last p elements of z. As we note, the
filter requires the solution of n+p state estimate equations, eqn. (27) and
(n + p)? auxiliary Riccati-type equations, eqn. (28). Even though the filter of
eqns. (27)—(35) will, in principle, yield estimates for k(r), if the dimension of
either x or k is large the computing required to solve eqns. (27) and (28) may
be prohibitive.

4. FEstimation of the diffusivity in the heat equation
Let us consider the problem of estimating k(r) in the heat equation: ‘
= (er)r’ (36)

x(r, 0) = z4(r); (37)
2(0,¢) = 0, (38)
xz(1,t) = 1, (39)

from discrete noisy measurements of z(r,¢) at § locations:
ylr,t) = x(r,ty+ (errors), +=1,2,...,8. (40)
In order to test the two algorithms we will assume that the true value of k is:
» k(r) =1+r (41)

and generate the noisy observations by:

y(rpt) = 2(r, H)*[1 +aQ(0,0)], i=1,2,...,8, (42)

where x(r;,t)* is the solution of eqns. (36)-(39) and (41) and G/(0, o) is a normally
distributed random variable with mean zero and standard deviation o.

Using this example we will study several questions related to the two
algorithms developed for estimating &:

(1) The effect of the number of measurement locations S.

(2) The effect of the level of the observation noise, a and o.

(3) The effect of the choice of the weighting matrices @(r,s,¢) and W(r).

Let us consider first the results using the method of steepest descent. We
take the initial condition xy{r) =r% and 7 = 0-2. For simplicity, we take
@Q(r,s,t) to be a function of » and s only, since we will assume that there is no
reason to weigh measurements at different times differently. In particular, we
will use the form @ = exp (—¢|7—8|), since the strongest weighting in J should

naturally occur when » = s. The selection of W(r) deserves some consideration.
In this example, eqn. (22) reduces to:

sk = W) f "4z dt. (43)
(1]

The initial condition xy(r) méy serve as a guide-line for the form of W(r). We
presume that we want 8k from eqn. (43) to be the same order of magnitude at
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all 7. Since we know zy(r), we can compute dzy/dr as a rough guide to z,. For
zo(r) = r%, z, increases with r. Therefore, we would want W(r) to decrease with r.
The absolute magnitude of W(r) can only be determined by trial. Both con-
gtant values and decreasing functions of » were used for W(r) in the present
study. It was found that the accuracy of the estimates is not too sensitive to
the choice of W(r).

Fig. 1
T T i T
i-s:9
20l (04,02, ,09)
: 4 ITERATIONS
2~5:5

(r =0.1,0.3, 0.5,0.7,09)
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3-5-=3 ]
18k (r=0.1,05,09)
: 11 ITERATIONS
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v INITIAL GUESS
| e ERLARLLN T

\—— TRUE VALUE

| ! 1 1
02 04 68 08
r
Effect of the number of spatial measurements S on the estimated value of k(r) using the

method of steepest descent.

Figure 1 shows the effect of the number of measurement locations, S, on
the estimated value of k(r). The following parameters were used in generating
these results: ¢ = 15, ¢ =001, = 0, ¢ = 0 and

80— 1207, 0<r<0-25,
Wr) = (44)
50, 0-25<r<]1,
Indicated on fig. 1 are the locations of the measurements and the number of
iterations for the three cases. We note, as we would expect, that the accuracy
of the estimates decreases as S decreases.
Next, the effect of the level of measurement noise was studied with ¢ = 15,
e=001, § =9 and W(r) given by eqn. (44). The three cases, a = 0, o = 0;
a=01 06=01; and a = 0:3, ¢ = 0-3, were studied. It was found that there
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was essentially no effect on the estimated k(r) of the level of noise at these levels
(0, 3 and 99,), for which reason we have not shown the results, which closely
conform with curve one in fig. 1.

Finally, the effect of @ was considered. Figure 2 shows the k(r) profiles for
q¢=5,10and 15, with § =9, ¢ = 0-01,a = 0,0 = 0 and W = 50. Although as ¢
increases, the accuracy of the estimate increases, it does not appear to be a
significant effect. From results not shown it was also found that as § decreases,
@ must be increased. The choice of @ becomes more important as § decreases.

Fig. 2
T T T T
{—q=5 ,
200 7 ITERATIONS 2
2-g 10 3
Lol 5 ITERATIONS -
3-q =15
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INITIAL GUESS
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] |- l [

0.2 04 06 [eX-}
r

Effect of the value of ¢ in Q(r, 8, t) = exp { —g]r—s]) on the estimated value of k(r) using
the method of steepest descent.

Figure 3 presents the results of estimating k(r) by the non-linear filter. In
this case x,(r) was taken as sinn7, and five measurement locations {(§ = 5) were
used: r = 0-1, 0:3, 0-5, 0-7 and 0-9. Two curves are shown in fig. 3. The one
labelled a = 0, ¢ = 0 corresponds to error-free observations, while the curve
labelled @ = 0-3, o = 0-3 corresponds to a 99, error. As we see, there i3 not a
significant difference between the two cases, as we have already observed in the
method of steepest descent. Because the non-linear filter requires a solution of
the matrix Riceati partial differential equation in two spatial variables, it is not
as efficient for parameter estimation as the steepest descent algorithm, which
only requires solution of the n-dimensional adjoint equation. Nevertheless, the
results shown in fig. 3 indicate that the non-linear filter can be used to estimate
parameters in P.D.E.
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Fig. 3

[ 5l e e e e L INITIAL  GUESS
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Effect of the level of error on I?(T) at T = 0-2 using the non-linear flter.

i ~4

5. Summary .

Two algorithms for the estimation of spatially varying parameters in non-
linear P.D.E. have been presented. The method of steepest descent appears to
be computationally more efficient than non-linear filtering because fewer
P.D.E. must be integrated in steepest descent. Both algorithms were applied to
estimate the diffusivity in the heat equation from discrete noisy state measure-
ments. '
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ABSTRACT

A new algorithm is presented for the deter-
mination of reservoir parameters, such as per-
meability and porosity, from well pressure meas-
urements. The key feature of the algorithm is
that reservoir properties are considered as con-
tinuous functions of position rather than as
uniform in a certain number of zones. The meth-
od, based on an optimal control formulation of
the history matching problem, may offer signifi-
cant savings in computing time over conventional
gradient optimization methods, such as steepest
descent and Gauss—Newton. A numerical example
is presented to illustrate the use of the method
and 1ts comparison to other algorithms.

INTRODUCTION

The process of determining unknown param-
eter values, such as permeability and porosity,
in a mathematical reservoir model, that give
the closest fit of measured and calculated pres-
sures is commonly called "history matching.”
Knowing the reservoir properties, one can then
use the mathematical model (or, simulator) to
explore various future production policies that
optimize some economic criterion of performance.
The simplest approach to history-matching is a
trial and error procedure of visually examining
the output of each simulator run and adjusting
one or more of the parameters by intuition or
References and illustrations at end of paper,

experience and trying again. Large portions of
the time and cost of a simulator study are often
attributable to history matching, particularly
when a trial and error procedure is used. 1In
principle, one would like an automatic routine,
applicable to simulators of varying complexity,
one that will not require inordinate amounts of
computing time to achieve a set of parameter
estimates.

In recent years & number of authors have
investigated the subject of history matchingl'e.
All of the reported approaches involve dividing
the reservoir into a number of zones, in each of
which the properties to be estimated are assumed
to be uniform. (These zones wmay, in fact, cor-
respond to the spatial grid employed for the
finite~difference solution of the simulator.)
Then the history matching problem becomes that
of determining the parameter values in each of,
say, N zones, kis Kgsevnrs kN, such that some
measure (usually a sum of squares) of the de-
viation between calculated and observed pres-
sures 18 minimized. A typical measure of devia-
tion is

-

o

M
Z [pobs(rj,t) . pcal

(rj,t)lzdt <o (1)
j=1 -

where pObs(g ,t) and pca}(g ,t) are the observed
and calculated pressures at” the jth well, which

SPE 4545]
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is at location ry = (x4,y4), 3 = 1,2,..., M, cal
- N 3 tik,,...
and T is the total timg pgriod over which obser- + P (EJ’ S S kN)Ak .(6)
vations are available. For the case of meas- 421 Ak, 2
urements made at discrete times the performance
index can be defined as follows. If we have nj We can substitute Eq. (6) into Eq. (1), making J

measurements at well 1 at ny different times,

np measurements at well 2" at n, different times,
«e+y and ny measurements at well M at ny differ-
ent times, we define the performance index as

¥ obs
I I (xyoty) - ¢

e ,e)12 ... (@)
j=1 1=1 W30
This index can be placed in the form of Eq. (1)
as follows
T M Y
s- [ 13 6®0agn
J=1 i=1 ~
o
- p“l(rj.:)]2 St -tpdt . . ... (3

where §(+) is the Dirac delta functiomn.

Sincé Eq. (2) can be written in the form of
Eq. (1), we shall henceforth take Eq. (1) as the
. general performance index for history matching.

To perform the minimization of Eq. (1),
most methods rely on some type of gradient op~-
timization procedure. Two common methods of
iteratively improving an initial guess of the
N unknown parameters are the steepest descent
method and the Gauss-~Newton method. In the for-
mer method, the (j+ l)st iterate of kj, ki*l is
determined from

13 aJ
ki k + Y ak s e e s e e e e e

where v < 0 and SJ/Bki can be determined from
Eq. (1) by

T M
3J J

2L a L2 2[
3k, 5

rj,t)
- |t)] de .

-j .(5)

In the Gauss-Newton methoed, on the other hand,
we assume that each kj differs from the initial
guess by an amount &ky; and that the calculated
pressure can be expanded in a Taylor series
about the initial guess,

cal(rj,t ky + ok Ky + 8ky)

1reees
cal .
< Ptk aeees ky)

a function of the Aky. Then setting 3J/34ky = 0
yields N simultaneous linear equations for the
Aky, the solution of which ylelds the recursion
formula

T
k3+1= i Y ) <gi> e e e e D

where (R 1)i is the ith row of the NxN matrix
g‘l, whére the 1,2 element of R is defined by

_JT M 3p°? (rjjt) ap© (gj,t) '
R.. ={2 = dej. (8)
i% =1 Bki 3kz
o
aJ 3J aJ 3J
and == = [- s T seees ——-} ,» an N-dimension-
ok akl akz akN

al row vector.

We note that R represents an approximation
to g, where H is the Hessian matrix.. This can
be seen from the definition of Hessian matrix:

8%
H &=
12 akiakl
( T M chal(rj,t) apcal(fj,t)
- \f J jzl B, %, dt
o
T M b
-2 f I 0%%¢,,0
j=1 -3
[+]
cal 32 cal(g £)
-Pp (xj,t)] T ded . .. . . (9

If the second term is neglected, in the hope thaf
the residue is small, then R is a good approxi-
mation to H. When R =H, we have the so-called
Newton method?® The hlgh cost of computing
second order derivatives leads one to make use
of simplifications of the Newton method, such as
the Gauss-Newton method. Reported computational
results indicate that the Gauss-Newton method is
one of the most efficient gradient methods!?®

We note that in both of these methods above
it is necessary to compute the densLlfivity co-
efficients, 3pcalfoky, 1 = 1,2,..., N, i.e. the
first partial derivative of pressure with re-
spect to each parameter. The sensitivity co-
efficients can be computed, in principle, in
geveral ways:

1. Make a simulator base run with all N param-
eters at their initial values. Then,
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perturbing each pafameter a small amount,
make an additional simulator run for each
parameter in the system. Sensitivity co-
efficients may then be determined using
the finite difference formula,

e,

aki

cal
‘{ (r,t5ky kg ey Ry ook bAkg Gk s ky)

- pcal(f,t;kl,..., kN)} N )

2. Derive a set of "sensitivity equations”
from the original partial differential
equations describing the reservoir system.
In this new set of equations in partial
differential form, the dependent variables
will be the sensitivity coefficients. The
finite difference equivalent of the sen-
sitivity equations will then be solved
simultaneously with the original pressure
equation. A closely related alternative
would be to derive sensitivity equations
from the finite difference form of the
simulator equations.

3. Assume that the difference between the ob-
served and calculated pressures is a lin-

ear function of the parameters“. That is
N
pobe ) - p e - 2, E a, k
i R it

J=1,..., T ... .....Q0D
where I is the total number of measure-
ments. Therefore, the sensitivity coef-
ficients become independent of the param—
eter values. Experience with real prob-
lems, however, has indicated that the sen-
sitivity coefficients are not constant over
a wide range of parameter values, and, con-
sequently, this approach is not a gener-
ally valid one for history-matching.

With N parameters, method 1 requires N + 1
simulator runs for each step in the iteration
of improving the guesses. Method 2 also re-
quires the solution of N + 1 partial differen-
tial equations per iteration (1l simulator rum
plus N sensitivity equations). Herein lies the
basic computational inefficiency in the multi-
zonal approach to history-matching when N is
large, namely the large number of repetitive
solutions of partial differential equations that
are required in each iteration.

In this paper we propose a new approach to
the history-matching problem which is designed

to circumvent the excessive computational re-
quirements of standard methods. In essence, we
treat the reservoir property being estimated,

say permeability, as a conti{nuious function of
location rather than as one assuming discrete
values in a number of zones. To solve the prob-
lem we seek that function, for example, k(x,y),
that minimizes the objective function J. Such
an approach is, of course, in keeping with the
probable physical nature of an actual reservoir.
The key feature of the new approach is that it
requires the solution of only two partial dif-
ferential equations per iteration
(one simulator run plus one adjoint equa-
tion) no matter how fine the spatial resolution.

The method we present 1s essentially a gra-
dient optimization method, in which an initial
guess k°(x,y) is improved iteratively. How-
ever, the treatment of the unknown property as
a function as opposed to a set of constant
parameters enables us to avoid the sensitivity
equations arising in the multi~zone approach.

In the next section the method is summar-
1zed. Then follows a computational example
illustrating the use of the method and giving
a detailed comparison of this new algorithm to
two conventional constant zone approaches,
steepest descent and the Gauss-Newton method,
for a single-phase hypothetical reservoir. The
full .derivation of the algorithm 