
ROBUST ANALYSIS OF FEEDBACK SYSTEMS WITH

PARAMETRIC AND DYNAMIC STRUCTURED UNCERTAINTY

Thesis by

Ricardo S. Sanchez Pena

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

.Pasadena, California

1989

(Submitted June 3, 1988)

11

Copyright @1989

Ricardo S. Sanchez Pena

All Rights Reserved

111

to M 6nica, Pablo and Lucila

lV

Acknowledgments

I wish to thank the Organization of American States and the Comisi6n Na­

cional de Investigaciones Espaciales who supported me during my first two years

at Caltech. Also the Consejo N acional de Investigaciones CienHficas y Tecnicas

of Argentina for granting me a fellowship for these last two years, as well as the

California Institute of Technology for its financial aid in the form of teaching and

research assistanships.

I would like gratefully to acknowledge my advisor Prof. Athanasios Sideris for

introducing me in the area of parametric uncertainty and for the guidance, help

and friendship he offered me throughout this work. Prof. John Doyle also played

an important role in my education and I owe him many thanks for being always

responsive and for the new world of ideas he lead me into. I especially would like

to mention my gratitude to Prof. Manfred Morari for encouraging me to continue

studying for my Ph.D. in difficult moment~ of my career. Finally I owe a great deal

of thanks to Prof. Pedro Zadunaisky, with whom I had the pleasure to work in

Argentina and who inspired me to pursue a higher academic level.

I also would like to thank other control students I met at Caltech with whom I

had enlightning discussions and who along these years offered me their friendship:

Lane Dailey, Roy Smith, Matt Newlin, Davut Kravanoglu, Gary Balas, Bobby Bo­

denheimer, Marty Brenner and special thanks to Andy Packard who provided useful

comments in the writing of parts of this thesis.

V

I would like to thank my parents who continuously helped and encouraged me

in the pursuit of this objective and finally I owe a great deal of gratitude to my wife

Monica for her love and understanding and to my children Pablo and Lucila just

because they are lovely.

Vl

Abstract

This thesis presents the first general program implementation of the algorithm

by deGaston and its generalization by Sideris and deGaston to compute the Mul­

tivariable stability margin or Structured singular value of a feedback system under

real (independent or related) parametric uncertainty. An improved implementation

of the algorithm mentioned above is also considered, which simplifies significantly

the code and increases the computational speed. The latter also allows a simple

and fast analysis by just checking the extreme values of the set of parameters, with

a high probability of achieving the actual stability margin, this being supported by

an intense statistical analysis performed at the end of this thesis.

A great deal of work has recently been done related to this class of uncertain

systems initiated by the well known theorem of Kharitonov. A connection is made

in Chapter 4 between these procedures and the above ones in terms of generality of

the class of uncertain polynomials conside~ed. A theorem characterizing the set of

polynomials whose robust stability can be determined by a finite number of tests is

addressed. Sufficient conditions to determine when the latter conditions apply are

also given, which in some cases can considerably simplify the analysis. In particular

cases, polynomials with related uncertain parameters can be treated in the same

way as independent parameters as shown in two examples.

The main part of this thesis is concerned with the analysis of more general type

of uncertainties. In particular, the analysis of robust stability for the case when

Vll

unstructured dynamic uncertainty is combined with real parametric uncertainty is

treated in Chapter 5. This can also be applied in the analysis of robust performance

for plants with parametric uncertainty. Chapter 6 generalizes the latter to the most

general case in which structured dynamic and real parametric uncertainty appear

simultaneously in the plant. A computational scheme is given in both cases which

uses the algorithm mentioned in the first part and is applied to several examples.

At the end, an example of the robust analysis of an experimental aircraft demon­

strates how a practical situation can be handled by this procedure.

Vlll

Table of Contents

Acknowledgments

Abstract

List of Tables and illustrations

1. Introduction

1.1 Control Philosophy

1. 2 Background

1.3 Structured uncertainty

1.3.1 Multivariable stability margin

1.3.2 Structured singular value . .

1.3.3 Coefficient uncertain polynomials

1.3.4 More general uncertainty structures

2. Program to compute km: Theory and implementation

2.1 Introduction

2.2 Summary of previous results

2.2.1 km for independent real parameters

2.2.2 km for related real parameters

2.3 Program implementation

2.3.1 Data input modes

2.3.2 Lower bound search

2.3.3 Upper bound search

lV

Vl

Xl

1

1

2

5

5

6

7

8

11

11

11

12

14

17

17

18

21

lX

2.3.3.1 Independent parameters

2.3.3.2 Related parameters

2.3.4 Refinements of the bounds

2.3.4.1 Independent parameters

2.3.4.2 Related parameters

2.3.4.3 Convergence

2.4 Example

2.5 Appendix

3. Eliminate frequency search:

Theory and implementation

3.1 Introduction

3.2 Main results

3.2.1 Theory .

3.2.2 Algorithmic considerations

3.3 Example

4. Applications to coefficient perturbed polynomials

4.1 Introduction

4.2 Main results

4.2.1 Equivalent conditions to chyck only vertices

4.2.2 Relation with other works

4.2.3 Practical considerations

4.3 Examples

4.3.1 Crane model

4.3.2 Combined real parametric

21

22

24

24

24

26

27

29

38

38

38

38

42

43

46

46

48

48

51

54

56

56

and complex dynamic uncertainty 58

5. Stability margin for combined parametric

X

and unstructured dynamic uncertainty

5.1 Introduction

5.2 Problem formulation

5.3 Main results - Computation of rm and km

5.4 Examples

5.4.1 Example 1

5.4.2 Example 2

6. General uncertainty analysis

6.1 Introduction

6.2 Problem formulation

6.3 Main results

6.4 Example .

6.5 Conclusions

7. Program statistics and performance

7 .1 Introduction

7.2 Multilinear complex mapping

7.3 Polynomial complex mapping

7.4 Polynomial real mapping

8. X29 aircraft example

8.1 Introduction

8.2 Model

8.3 Results

9. Future research

References

62

62

63

66

72

72

74

79

79

80

82

88

89

92

92

94

100

103

115

115

115

119

127

129

Xl

List of Tables and illustrations

Figure 1.1 10

Table II.1 30

Table II.2 . 31

Figure 2.1 . 32

Figure 2.2 . 32

Figure 2.3 . 33

Figure 2.4 . 33

Figure 2.5 . 34

Figure 2.5 . 34

Figure 2.7 . 35

Figure 2.8 35

Figure 2.9 36

Figure 2.10 . 36

Figure 2.11 . 37

Figure 2.12 . 37

Figure 4.1 60

Figure 4.2 61

Figure 4.3 61

Figure 5.1 76

Figure 5.2 76

Xll

Figure 5.3 77

Figure 5.4 77

Figure 5.5 78

Figure 5.6 78

Figure 6.1 78

Table VII.I 100

Table VII.2 103

Table VII.3 106

Figure 7.1 107

Figure 7.2 107

Figure 7.3 108

Figure 7.4 108

Figure 7.5 109

Figure 7.6 109

Figure 7.7 110

Figure 7.8 110

Figure 7.9 111

Figure 7 .10 . 111

Figure 7 .11 . 112

Figure 7.12 . 113

Figure 7.13 . 113

Figure 7.14 . 114

Table VIII. I 119

Figure 8.1 123

Figure 8.2 123

Figure 8.3 124

Figure 8.4

Figure 8.5

Figure 8.6

Xlll

124

125

126

1

Chapter 1

Introduction

1.1 CONTROL PHILOSOPHY

In the analyis and design of control systems we need to clearly distinguish two

stages. The first is concerned with the problem of selecting a reasonable mathe­

matical model for the physical system that it will describe, given the set of inputs

and outputs we will be dealing with. A very rich family of these models that will

adequately "fit" many physical systems of interest is the set of finite dimensional,

linear, time-invariant ordinary differential equations (FDLTI). Most of the research

in control theory has dealt with this type of system description and all the material

in this thesis will also deal with these systems.

In the second step we directly work on the mathematical model selected and try,

by using feedback, to make the closed loop system stable and obtain an adequate

performance defined in some sense. Two conceptually different kinds of unknown

perturbations will make this task nontrivial. First, the unavoidable presence of ex­

ternal noise and disturbances introduced additively into the system, due to sensor

noise and in general by the interaction with the external environment. Usually per­

formance is defined in terms of minimizing the effect of these type of perturbations

at the output of the feedback loop.

The second kind of perturbation gives us the connection between the physical

system and the mathematical model and is described as an uncertainty in the latter.

In this way, we are dealing not with a single model, but with a family of models

2

that will hopefully include the actual physical plant. Model uncertainty will arise

due to two main reasons. The first one has to do with the limitations on the

structure of the model and appears because of linearization errors and neglected

higher order dynamics. The second type of model uncertainty is due to errors in

the parameters of the model which naturally arise in the parameter identification

process. Both kinds of uncertainty can appear independently and in general will

also appear simultaneously.

There is an important conceptual difference in FDLTI models between the two

types of perturbations described before. The first type (noise, disturbances) can

deteriorate significantly the performance, but the second kind (model uncertainty)

can make the closed loop system unstable which invalidates even the definition of

performance. This is the main reason why an increased interest in this last kind of

perturbation has arisen in the last years.

Before we continue with the analysis of model uncertainty, a brief historical

overview will introduce the subject of robustness - the guarantee of stability and

performance in the presence of model uncertainty.

1.2BACKGROUND

Classical control methods have been very effective in dealing with the design

and analysis problems stated above. Even today, many control systems are de­

signed and built following its simple procedures. The main characteristics of this

approach are the following. It is restricted to Single Input Single Output (SISO)

systems and reduces the whole system to be analyzed to a dominant second order

differential equation, the performance objectives being easily translated from time

domain specifications to frequency domain specifications. The latter also allows the

designer to have a better insight into the conflicting requirements of the system.

3

Also the simplicity of working in the frequency domain (i.e. with the eigenvalues of

the FDLTI operator) has been one of the fundamental legacies of classical control

theory to the methods used nowadays. In terms of robustness, the concepts of phase

and gain margin were useful to deal with many of the problems encountered. The

names of Bode, Nyquist, Evans and Nichols are associated with these initial steps

in control theory.

Although this worked in many situations, the trial and error approach and the

oversimplification of the physical system makes this design methodology ineffective

for complex system descriptions and for more stringent requirements. In the late 50's

the state space description of systems entered the picture which basically allowed

designers to treat SISO and Multiple Input Multiple Output (MIMO) systems in

the same way. The fast development of computers directs the approach to an

algorithmic straightforward design methodology. The theory of systems becomes

more mathematically elegant although less insightful. The concept of optimality

alters the designer's question from - "Can the system meet the specifications ?"

to - "What is the best we can achieve with this system ?". Finally, the dual

theory of optimal regulators and optimal observers leads to an algorithmic design

procedure known as LQG (Linear Quadratic Gaussian). From this period, the state

space model remained as the most efficient way to deal computationally with the

analysis and design of control systems. The names of Kalman, Bucy, Pontryagin

and Luenberger among others defined this stage.

Although this was an important step towards a theory that could deal with

more "realistic" situations, robustness against plant model uncertainties was still

an unsolved issuel1l. Only by assuming perfect measurements could we arrive at

a good robust design[2l. The concept of plant model uncertainty and robustness

motivated most of the research efforts from that point on.

4

A way to recover the robustness characteristics of the optimal regulator (LQR)

in the LQG design was developed by Doyle and Stein[3l, called the LQG Loop

Transfer Recovery (LQG/LTR) procedure. A generalization of the concept of loop

shaping for MIMO systems by using the singular values of the closed loop matrix

introduced the robustness issue into the design procedure in a way similar to the

classical control methodsl3.4l.

Finally, the H 00 design methodology appeared as an algorithmic procedure that

would shape the singular values of the feedback system matrix to solve the problem

of robustness for the case of unstructured dynamic uncertainty in the plant model.

It was introduced by Zames[sJ and developed by many others [e,7 ,s] during these last

years. Very recently Doyle et al. developed a computationally more efficient[9l way

to solve this problem, as well as a duality theorem similar to the one in the LQG

procedure.

Still the limitation is that the unstructured dynamic model uncertainty consid­

ered above can be very conservative in describing many practical examples. One

of these situations appears in plants with uncertainty described by unknown real

parameters in the differential equations of .the model. Another example is the case

were we have dynamic uncertainty in different components of the system. Both these

situations can be described mathematically as a block diagonal uncertainty matrix

~, its elements being either the real parameter errors or the dynamic block uncer­

tainty of each of the different components of the model, respectively (see figure 1.1).

This type of uncertainty is defined as structured uncertainty and depending on

the nature of this structure we will use different approaches to analyze these kinds

of plants.

5

1.3 STRUCTURED UNCERTAINTY

In the analysis of feedback control systems it is important not only to determine

the stability and performance properties of the nominal closed loop system, but also

to guarantee that such properties are robust with respect to certain plant model

uncertainty. Thus the issues of robust stability and performance have been given

considerable attention in the control literature and depending on how the set of

plant perturbations is defined, various results have been proposed to check these

feedback properties.

Most notable measures of robustness which have been proposed in the literature

are the Multivariable Stability Marginfto) and the Structured Singular Valuef16l.

These measures are defined next for easy reference and some related results are

briefly summarized.

1.3.1 Multivariable Stability Margin (MSM)

In (10] Safonov considered a canonical block diagonal perturbation system ob­

tained by rearranging uncertainty blocks and parameters from various plant lo­

cations into a block diagonal form (see figure 1.1). The condition for the robust

stability of the feedback system is given in terms of the multiloop stability margin

km, which is defined as

km def inf{k E [O,oo) I det(I + kt::i.M) = 0 for some t::i. Ed} (Ll)

where

(1.2)

and the t::i./s are norm bounded, i.e. by using stable and minimum phase weighting

factors incorporated in the nominal block M(s), we can assume with no loss of

6

generality that u(~i) 5 1 for all w, where u(•) denotes the maximum singular

value, i.e. p(~T~i) being p the spectral radius and ~i the conjugate transpose of

~i-

Then robust stability is assured if and only if km ~ l for all w. Clearly km

is a function of frequency, of the nominal plant and also of the block uncertainty

structure. In [11,12] an algorithm is derived that exactly calculates km in the case

of unrelated real parametric uncertainty, i.e. ~i = hi En.

This corresponds to having a closed-loop characteristic polynomial with coeffi­

cients being multilinear functions of the parameters h

In [13] this algorithm is extended to the case of polynomially related real pa­

rameters, that is the case of closed-loop characteristic polynomials with coefficients

being general multivariate polynomials in the bi's. For a computer implementation

of the algorithm in [13] see [14]. Another algorithm in the same spirit is reported

in [15].

1.3.2 Structured Singular Value (SSV)

On the other hand, Doyle defines in [16] the structured singular value µ(•) as:

{

0 if det (I + ~M) =/- 0 V ~ E ~
µA(M) = or

[infAEA {maxi (1 (~i) I det (I+ ~M) = o}r1
(1.3)

where~ is defined as in (1.2). From (1.1) and (1.3) we observe that

µA (M) = km -i (M) (1.4)

In the case of unrepeated complex blocks ~i, the calculation ofµ is achieved by the

use of the following upper and lower bounds:

(1.5)

7

where

..6. def { diag (~i, ... '~i, .•• '~n) I ~i E cm;xm;}

U def { diag (U1, ... , ui,. ·•,Un) l UtUi = I}

1Jdef {diag(dif, ... ,dJ, ... ,dnI) I di En+}

(1.6)

(1.7)

(1.8)

Robust performance is also naturally addressed in this framework[Ie] as an ex­

tension of the concept of robust stability, by considering an extra performance block

in the uncertainty structure ..6..

The main theorem in [16] establishes in (1.5) equality for the lower bound for

any n, and also for the upper bound for n ~ 3. However the optimization problem

defining the upper bound for µ is convex while the one defining the lower bound

is not. Therefore the SSV is usually estimated by using its upper bound. Efficient

algorithmic procedures can be found in [17,18,19).

Although the upper bound has been found to be in general tight for complex

uncertainty blocks for any n > 3, it can be arbitrarily conservative in the case of

real parametric uncertainty.

Thus the approach of replacing real parameters with complex ones leads to

conservative results in many cases of practical interest. Attempts to reduce such

conservatism by exploiting the degrees of freedom in covering the variation of a

real parameter by that of a complex one, while in special cases are successful, in

general demonstrate that the real parameter case is fundamentally different from

the complex one.

1.3.3 Coefficient uncertain polynomials

The problem of robust stability in systems with real parametric uncertainty is

also the subject of intense research from the viewpoint of looking at the coefficients

8

of the closed loop characteristic polynomial as functions of the uncertain param­

eters. The problem reduces to check if the roots of the closed loop characteristic

polynomial (CLCP)

(1.9)

are inside a particular region in the complex plane, where p E 1?/ is the set of

parameters with Pi E [ai, bi]. This region could be the open left-half plane to check

for robust stability, a smaller region for robust performance defined in the sense

of closed-loop pole locations or the unit disc if instead of (1.9) we have a similar

equation in the z-transform to analyze a digital system.

The approach is to determine if the roots are inside or outside the given region

by testing the stability of a subset of polynomials in the family described by (1.9).

It has been initiated by Kharitonov[20l and has led to many interesting works in

the area[21
-

21l. Some of them make a qualitative analysis of robustness[20•23•24•25•26l,

while others give a quantitative answer of robustness in terms of a single scalar

value[21 ,22l. The main restriction is given by the fact that the coefficients ci(•) need

to be either all independent[20- 23l, even and odd sets independent[24J or linear in the

parameters[25•26l. This completely restricts the applicability of this analysis. As we

can see, even in the simple case of two uncertain pole locations of the form:

P1,P2E[O,l]

we cannot handle it in a nonconservative way by using [20-24] because it has depen­

dent coefficients or by the "edge check" of [25,26], not being a polytopic coefficient

region.

9

1.3.4 More general uncertainty structures

There have been some recent results dealing with the problem of computing

a robustness measure for systems combining both real parametric and complex

dynamic uncertainty. In [28], the case of real parameters and one unstructured

complex block is discussed for SISO and minimum phase plants. In [29], the anal­

ysis is applied to SISO plants with the same uncertainty structure but with the

parameters varying inside a polytope. In [30], the case of non-repeated real param­

eters and simultaneous unstructured dynamic uncertainty is treated in the case of

MIMO systems.

The main objective of this thesis is to obtain a procedure to compute in a non­

conservative way the stability margin defined in 1.3.1 and 1.3.2 for more general

uncertainty structures - that is the combination of real (possibly related) uncertain

parameters and structured dynamic uncertainty. Furthermore, an efficient imple­

mentation of this procedure for the real parametric uncertainty case that could

be extended to the more general situation is also addressed. The contents are as

follows. Chapter 2 will describe the theory to compute exactly km in the case of

real related parameters as well as details on the implementation of this procedure

in a computer code. Chapter 3 will describe another implementation of this pro­

gram that will increase significantly the computational speed. Chapter 4 will relate

this approach with the ones described in section 1.3.4 and will give some shortcuts

that can simplify the statement of complicated problems in many cases. Chapter 5

addresses the exact computation of these stability margins for the important case

of real related uncertain parameters combined with unstructured dynamic uncer­

tainty. The next chapter generalizes this last approach to the more general case

of structured dynamic uncertainty. All the chapters just mentioned will also show

10

with examples the application of their contents. Chapter 7 describes a statistical

analysis on the performance of the algorithm implementations described in Chap­

ters 2 and 3 and Chapter 8 gives a detail of a practical application of this analysis to

an experimental aircraft. Finally conclusions and directions for future research are

drawn in Chapter 9. Parts of this thesis have been already published or submitted

for publicationf14,49,so,5tJ.

- -
61

62
A

•
• "

•
6n

- -
~

..
'V

M(s)

Figure 1.1: General uncertainty description and nominal sys­
tem.

11

Chapter 2

Program to compute km:

Theory and implementation

2.1 INTRODUCTION

A computer program implementing the algorithm in [11-13] for computing the

Multivariable Stability Margin to check the robust stability of feedback systems

with real parametric uncertainty is proposed. An example demonstrating the per­

formance of the program is discussed. This chapter reports the first general imple­

mentation of this algorithm for the case of independent parameters. More specifi­

cally, all possible cases that can arise in applications of the theory have been given

consideration and programmed accordingly. Furthermore, this algorithm is perhaps

the first to treat the related parameter case as reported in [13].

The contents of this chapter are as follows. In section 2.2, a compact description

of the results in [11-13] is presented. In section 2.3, we describe in some detail

important aspects of the program and apply it to an example in section 2.4. Finally

an Appendix details one of the procedures in the program.

2.2 SUMMARY OF PREVIOUS RESULTS

In the algorithm of [11-13] for the exact computation of km, we can identify

two mechanisms. The first is used to produce upper and lower bounds on km. The

second is used to refine these bounds, so that an increasing sequence of lower bounds

and a decreasing sequence of upper bounds that converge to km are produced. In

12

order to simplify the exposition we first explain the algorithm for 8ts independent

of each other. The more general case is treated next.

2.2.1 km for independent real parameters

The derivation of upper and lower bounds on km is based on the observation

that the function f : 8 = (81 , ... , 8n) E nn ----+ ¢, defined by:

f(8) = det[I + k~M] (2.1)

is multilinear, i.e. linear (to be more precise affine) in each of the 8:s. This prop­

erty of J(·) is responsible for the following lemmas[11- 12l. We first introduce some

notation. Let

(2.2)

denote the nth dimensional hypercube, and

(2.3)

be the vertices of V. Let also f(V) denote the image of V and Mi = f(½) the

images of the vertices of V by f. Finally let co{Mi} denote the convex hull of the

complex points Mi, i = 1, ... , 2n (i.e. tl~e smallest convex set that contains the

Mfs).

Lemma 2.2.1.1 (see figure 2.1):

f(V) is contained in co{Mi}-

Lemma 2.2.1.2 (see figure 2.2):

Let Ji and h be defined by (2.1) fork= k1 and k = k2 respectively. Then for

k1 > k2 it holds f1('D):) h(V), and co{Mi}k==ki :) co{Mi}k==k
2

•

13

Lemma 2.2.1.3 (see figure 2.1)

The image of an hypercube edge½½ is the line segment MiM;.

Lemma 2.2.1.1 allows a very efficient procedure for obtaining a lower bound on

km. More specifically we compute k10 w, the smallest value of kin (2.1) for which the

origin of the complex plane belongs to co{Mi}. Note that fork= 0, f('D) = {1}, and

by increasing k, co{Mi} expands because of lemma 2.2.1.2 . Since f('D) C co{Mi},

it follows that O (t f('D) fork< k1ow and definition (1.1) gives k1ow < km. To obtain

an upper bound on km, we compute kupper, the smallest value of k in (2.1) for which

a point on some edge of 'D maps onto the origin. This can be easily done since

by lemma 2.2.1.3 the images of the hypercube edges are line segments joining the

images of the hypercube vertices. Since for k < kupper some point in 'D other than

on an edge may be mapped onto the origin, we have km~ kupper·

We remark that the previous bounds on km are cheaply computed by mapping

the vertices of 'D on the complex plane by f for various values of k. These bounds

can be made to approach km as closely as desired. The basic idea is as follows. At

the first step the hypercube is divided in two parts, and bounds are computed for

each part as before (see figure 2.3). It can be shown that the bounds for each part

can be combined to produce tighter bounds on km. This procedure is continued by

subdividing at each step the subdomains of 'D derived at the previous step.

The number of subdomains at each step would increase exponentially and the

algorithm would have been impractical, if there was no way to drop the majority

of subdomains at each step. The mechanism to do this is again based on the lower

and upper bounds obtained for each subdomain. Such a subdomain need not be

considered any further, if its lower bound is greater than the upper bound of any

of the other subdomains. This situation has been verified in computer simulations

14

and as a consequence rapid convergence to km is observed.

A byproduct of the above algorithm is the combination of parameters that causes

instability, if this is the case. This information is expected to enhance considerably

the designer's intuition about the system.

2.2.2 km for related real uncertain parameters

A crucial assumption in the previous section was that the uncertain system

parameters were unrelated, i. e., there are no functional relationships among the

b/s. However, this is usually not the case in practice. For example suppose that

the closed loop characteristic polynomial is given by

(2.4)

where (and Wn are uncertain. To bring the closed loop system to the canonical

diagonal form of figure 1.1, we have to select as our uncertain parameters b1 = (wn,

b2 = w! or b1 = (, b2 = Wn, 03 = w!, and in both cases the bi's are obviously

related. In such cases where uncertain parameters are related, the algorithm of the

previous section fails because J(b) = det[I + k.6.G(jw)] is not defined on all of the

hypercube D. Thus this algorithm will produce in general only a lower bound on

km and the stability test will be conservative. In the following steps we show how to

reformulate the problem in a way that this conservatism is eliminated. We assume

that the relations among the parameters are polynomial. This is flexible enough

to cover most cases of practical interest, but also any smooth nonlinear function

of the bfs can be approximated on a compact set of nn as closely as desired by a

multivariable polynomial[31l. Details and proofs can be found in [13).

15

Step 1 (Modification of the mapping function)

In order to define f as given by (2.4) on an hypercube, we select as our uncer­

tain parameters exactly those that are independent (e. g. in the previous example

81 = (, 82 = wn)- However the resulting mapping function f is not multilinear

and the procedure for obtaining upper and lower bounds on km breaks down. This

situation is rectified as follows. Let m(i) be the highest degree of {ii in f(ti). Con­

sider fictitious variables 8i1 , ... , liim(i), i = 1, ... , n and replace inf(8) each 8; with

8i18i2 ... 8ip• Define:

(2.5)

where n = Li=l m(i), and

(2.6)

Note that 1) is embedded in 1) in a canonical manner. In fact

V={8EV/8ik=8i1, i=l, ... ,n, k,l=l, ... ,m(i)} (2.7)

The above construction results in a multilinear function f(b) on V, such that

f (8) = J(8) on V. To illustrate the above transformation consider the previous

example. Let 81 = (, 82 = Wn· Then J (81, 82) = s2 + 28182 s + 8~. Now define

- - - • --- 2 - - - -
61 = 81, 82 = 82, 83 = 82. We obtam f(81, 82, 83) = s + 281 · 82s + 82 · 03 defined on

the unit cube in nn, which is a multilinear function in 8 and reduces to f(b) if we

restrict f to the diagonal plane 82 = 83 (see figure 2.4).

Step 2 (Derivation of bounds on km)

Since 1) C 1) as explained above, the lower bound mechanism as applied to 7
and 'D will still result in a lower bound on km, However, this is not the case for

16

the upper bound mechanism, because not all of the edges of 1) belong to 1). This

is fixed as follows. Consider the edges of 1J. If an edge of 1J is also an edge of 1)

(for example edges Vi½, Vs Vs in figure 2.4), then it is mapped by f on a straight

line segment because of lemma 2.2.1.3 . If an edge of 1J is not an edge of 1J (for

example edges Vi Vs, ½ V8 in figure 2.4), we want to find an easily constructed region

on the complex plane that contains the image of that edge. To this end consider

the smallest face of 1J (obtained by fixing the values of some coordinates at their

extreme values 1 or -1), that contains the edge (for example in figure 2.4 for edge

Vi. Vs such face is Vi Vi Vs V6)- The convex hull of the image of such faces of 1J by f is

easily obtained by mapping the vertices on the face and using lemma 2.2.1.1. Next

let k in (2.4) increase until the images of the edges of 1J, or of the faces containing

these images in case these edges are only diagonals of 1J, go over the origin (see

figure 2.4). In this last case, we should also check that the line connecting both

constrained vertices goes through the origin an odd number of times. The value of

k thus obtained is an upper bound on km.

Step 3 (Refinement of the bounds on km)

The bounds on km obtained in step 2 can be made to approach km arbitrarily

close by the subdivision procedure outlined in subsection 2.2.1. However, we can

take great advantage of the canonical constraints among the 8:s to reduce the com­

putations in this procedure. A subdivision of 1J by a plane vertical to one of its

coordinates can be clearly identified with that coordinate. Then we prescribe that if

a coordinate 8i is subdivided in the process of subsection 2.2.1, all other coordinates

related to 8, by equality constraints as in (2.7) are also subdivided. In this manner

1J is split to 2m(i) parts, where m(i) is the number of variables constrained to be

equal to 8i in (2. 7). But from these subdomains of 1J only two contain parts of 1J

17

and the rest can be dropped from any further consideration (see figure 2.4).

We remark that the algorithm of this section retains the essential characteris­

tics of the algorithm of subsection 2.2.1, and although it handles a more difficult

problem, it requires a computational amount of the same order.

2.3 PROGRAM IMPLEMENTATION

There are three main procedures in the program which will be explained sep­

arately. Differences in each procedure in the independent or related parameter

cases are pointed out. Before going into this we discuss how data is inputed to the

program.

2.3.1 Data input modes

There are two basic ways to input the closed-loop system, k and the set of

variations A to define the mapping function. One is by using the structure in

figure 1.1, in which case the mapping function is given by:

f(s, kti) = det [I+ ktiM(s)] (2.8)

with ti defined in (1.2). The other is by using the closed loop characteristic poly­

nomial J, as a function of the parameters p,

](s,p) = J(s, kti)

i = 1, ... , n}
(2.9)

and ti as before.

In the second case we can also perform a preliminary test, this is checking if all

coefficients of the s powers are positive fork = 1. If this is the case we can proceed,

otherwise we can easily find km < 1 for which one of these coefficients vanishes and

the corresponding p for which this occurs, with no further computations to be done.

18

2.3.2 Lower bound search

An important difference in the two cases mentioned above is that the nominal

value in (2.8) is f(s, 0) = z0 = 1 while in (2.9) it is }(s, 0) = z0 EC in general. This

fixed point z0 will be contained in all convex hulls fork E [0, oo), according to [13].

The segment on the boundary of co{Mi} which first meets the origin and which

determines the lower bound k10 w, is defined by two points Ma(k) = f(Va, k) and

Mb(k) = f(½, k) above and below Oz0 respectively, where Va and½ are vertices of

'D defined as critical vertices in [11,12]. It would be convenient to know beforehand

among the 2n vertices in 'D, which will be the critical ones.

The originality in our implementation of this procedure is based on the fact that

we guess two vertices Va and ½ to be the critical ones.

Guessing of the critical vertices is done by determining the widest angle mea­

sured among all Mi above and Mj below Oz0 , which is defined as the worst segment

and is denoted by MaMb. Once MaMb has intersected the origin, we verify if our

choice for Ma and Mb was correct. If this is the case k1ow is obtained, otherwise

another pair of vertices is guessed as being critical and the procedure is repeated.

Practice shows that only a few such iterations are necessary to obtain the critical

vertices and k1ow- Therefore computational savings result since most of the time we

work with only two vertices. The whole procedure can be defined in three steps,

starting from the highest possible kmax and decreasing until we obtain k1ow• A

searching range [kmin, kmax] C [0, oo) can be easily selected at the outset.

Step 1 (Selection of worst segment)

Define

½ E 'D}

19

and

Mb(k) def {M;(k) = f(Vj, k) I /3 = mjn/3;
J

Vj E '.D}

where the angles O:i and /3; are measured in the interval (-180°, 180°]. We now

define MaMb as the worst segment for a particular k (see figure 2.5).

Step 2 (k-search until segment intersects origin)

A zero crossing and/or minimization routine is used to calculate the k for which

the angle 01 = (180° - f3 + a) becomes zero as in [11,12]. At this k = k1 the segment

MaMb intersects the origin (see figure 2.6).

Step 3 (Verify that MaMb is worst segment)

For the new k = k1 , we should check that MaMb is still the worst segment as

defined in Step 1. This is done by checking that all other points Mi are in the region

bounded by the line MaMb and which contains z0 • If this is the case then k1ow = k1 .

Otherwise we find a new worst segment and return to Step 2, until k1ow is found

(segment M1M4 in figure 2.6).

There are several comments to be made at this point.

(i) The criterion adopted at Step 1 in selecting the worst segment is not always

the best one can do but results in efficient computation. This can be seen

in figure 2.5 where M2M6 is actually further away from Oz0 , although M2M5

has been selected as the worst. However when decreasing k to k1 , the whole

configuration of points may change, so the sophistication of the criteria adopted

is not important at this stage. Nevertheless at Step 3 for k = k1 our criteria

will evaluate correctly if there is a segment that already crossed the origin for

20

(ii) There are three problems that can occur at Step 2. One is when the segment

"skips" the origin as k decreases and then both Ma and Mb remain above (or

below) line U':z;. In this case there will be no k for which 01 goes to zero (see

figure 2.7). The second one occurs when the segment "skips" the origin but

latter while decreasing k crosses again Oz0 as in figure 2.8. For this case the

function 01 (k) will be discontinuous at the zero crossing (angles measured in

[0°, 360°]). Both problems can be solved by finding the k at which the segment

goes above (or below) line Oz0 and for that value start again Step 1, so that other

segment will be selected. The last problem is really generic in zero crossing

(minimization) routines and has to do with missing the root (or minimum) of

01(k) because of a large step size. The only solution is to decrease the search

step 8k.

(iii) In Step 3, while we search for a worst segment we also check if some of the points

are close enough to the origin.This is done without additional computations and

if this is so and a worst segment has not been found, we directly determine km,

the worst perturbation being at a vertex of V. Also, when starting Step 1 if we

find fork= kmax the worst segment to have a negative 01, we have that co{Mi}

does not reach the origin and km > k10 w > kmax- Therefore no more calculations

are necessary.

(iv) The most costly computation in the search for k10 w is the calculation of the

images of all 2n vertices of the hypercube for a given k. This has to be repeated

for many different k's as we search for the zero crossing of each segment. In the

procedure given in this section, this search is made only over one single segment

at Step 2 most of the time, which explains the increase in speed. However this

algorithm still requires 0(2n) computations for the lower bound. Possibilities

for obtaining a polynomial time algorithm are currently being investigated.

21

2.3.3 Upper bound search

From subsection 2.3.2 and in the independent parameter case, we obtain k10w

and either a single vertex V for which this bound is achieved, or a pair (Va,¼)

of critical vertices such that MaMb intersects the origin at k = k1ow• We then

distinguish the following cases. The first situation is defined in [11,12] as Case 1

corresponding to the worst perturbation being a vertex V. In the second situation

Va¼ are vertices of an edge of the hypercube 'D defined as Case 2[11 ,12] and the worst

perturbation is located at some point in the edge Va¼, which is easy to determine.

In both cases km = k1ow and no further computations are necessary.

Finally when both critical vertices Va and Vi, are not over the same edge of 'D

we obtain Case 3[11 ,12l. In this case k10 w < km and we need to search for kupper•

In the related parameter case we have the following modifications. Case 1 1s

obtained if vertex V also satisfies constraints (2. 7). Case 2 is obtained if vertices Va

and Vi, and the segment Va Vi, satisfy constraint (2. 7) and Va Vi, is an edge of 'D. In

these cases km = k1ow and no further computations are necessary. Case 3 is obtained

in the remaining situation and km > k1ow•

The algorithms in Case 3 for independent and related parameters are next

described separately.

2.3.3.1 Independent parameters

As explained in section 2.2, the upper bound is found by increasing k E

[k10 w, kmax] until the map of an edge of the hypercube intersects the origin. Defining

m as the number of coordinate changes between both critical vertices, we know

m > 1 according to the above. All paths connecting Va and Vi, consisting of m

edges are called "minimal" and will be denoted by MP(Va, Vi,). As in [11,12] we

consider edges contained in these paths in the search for kupper•

22

To this end we classify (see Appendix) all pair of vertices(¼, 'Vi) differing in only

o~e coordinate (edges) and belonging to all minimal paths MP(Va, ½), to pursue

the search for kupper• The main difference with searching for the lower bound is that

we are not dealing with the expansion of a convex set anymore, which makes this a

more difficult task.

The procedure is the following:

Step 1 (Determine set of edges)

Determine all edges ¼'Vi that belong in minimal paths MP(Va, ½).

Step 2 (Selection of worst edge)

From the above set, select the edge V0 V/9 whose image MaM/9 at k = k10 w forms

the widest angle I with respect to the origin.

Step 3 (k-searcb until edge intersects origin)

By using the same routines as in subsection 2.3.2, we find ki for which 0u =

,(k1) - 180° becomes zero. This is taken as kupper = k1 .

Note that a re-check of the worst edge as in Step 3 of last section is meaningless

here due to the nonconvexity of the set of edges defined in Step 1. When there is

no intersection of the images of any edge in a critical path with the origin we set

2.3.3.2 Related parameters

To determine in this case an upper bound, we need to find k = kupper for which

the mapping of a constrained edge of 7J satisfying (2. 7) intercepts the origin. To

this end we first increase k starting at k1ow until a segment MacMbc joining the

mapping of two vertices of a constrained edge Vac ½c goes through the origin at

23

k = kint• This is only a necessary condition for the crossing of the image of Vac ½c

through the origin. As in [13] we can define a "generalized constrained edge" (gee)

as the smaller hyperface of 'D that contains all M P(Vac, ½c), By finding the convex

hull of this gee and increasing k from kint until this hull crosses the origin, while

simultaneously checking that the segment MacMbc goes through the origin an odd

number of times, we have a sufficient condition for the above and thus obtain kupper•

The idea is to establish that Mac and Mbc are in different components of the image

of the gee which are defined by the path of the origin through it.

The need for such complication can be easily seen in figures 2.9 through 2.11.

We observe that if the origin goes only through the hull (figure 2.9), or only across

segment MacMbc (figure 2.10) or goes through the hull but an even number of times

through this segment (figure 2.11), we will not have any guarantee that the line

f(lli) = M1 has been crossed. The algorithm is:

Step 1 (Selection of constrained segment)

Define the set of segments joining the images of each pair of vertices which define

an edge of the constrained set 'D satysfying (2. 7). The worst segment MacMbc over

this set is determined with the same criterion as in Step 1 of 2.3.3.1, but now at

k = kint ~ k1ow•

Step 2 (Convex hull of gee completely crosses origin)

Determine the convex hull of the image of the gee corresponding to the above

constrained edge Vac ½c• Increase k until the whole hull intercepts the origin while

checking the number of crossings of MacMbc•

This last procedure is similar to the one that searches for k10 w, the difference

being that now we increase k until the hull completely crosses the origin.

24

2.3.4 Refinements of the bounds

This is acomplished by subdividing the domains and repeating the calculations

over each new set of hypercubes. An upper and lower bound for this set of domains

is defined as in section 2.2, and the procedure is repeated until (kupper -k10 w) is below

a given error tolerance. The subdivision of the hypercubes is explained separately

for the independent and related parameter cases.

2.3.4.1 Independent parameters

As addressed in [11,12] to obtain a strictly increasing sequence of lower bounds

we should subdivide in a way so that Va and ½ defined above, remain in different

hypercubes. In general there is more than one way to achieve this. The criterion

adopted in [11,12] is that the cut should be made over the coordinate that has

been subdivided the least number of times. This is, by defining both vertices as

Va = [a1 , ••• , an]t and½ = [b1 , •.. , bn]t, the set of coordinate changes between them

is U def {1 ~ i ~ n I (Va - ½)i =/= O}. The coordinate along which we will cut is then

i* def {i I (Va - Vb)i ~ (Va - ¼)j i,j EU}. This avoids the problem of getting

into very narrow and long subdomains which can decrease the convergence speed.

2.3.4.2 Related parameters

The procedure here is the following. If both critical vertices Va and Vi, satisfy

the constraints in (2. 7), we partition so that both belong in different domains. If

only one is constrained we subdivide so that the other vertex is eliminated from the

new set of domains. If none of the critical vertices satisfy (2. 7) we try to eliminate

both by means of the partition.

Each partition is always made along the coordinate axis which have the greatest

number of equality constraints, to reduce in this way the remaining volume. Also

as in 2.3.4.1 we preserve the proportions of the hypercube avoiding narrow and

25

long subdomains. All of the above result in increased computational speed. The

following steps will explain this procedure.

Step 1

Determine if both vertices Va and ½ meet the constraints. If this is the case,

find all sets of constrained coordinates in a minimum path joining both Va and ½.

In other words, define each set of constrained coordinates Ai def {(i1 , .•• , im{i))

8i1 = ... = 8im(i)} for i E U and U as in 2.3.4.1 and consider the set U def {A1

(Va - ½)i =/- 0

Step 2.

Step 2

j E Ai i = 1, ... , n}. Then continue with Step 4. Else go to

Determine if one of the two vertices, say Va does not meet the constraints and

if so which are the sets Ai ; i EU of constrained coordinates which are violated by

- def { this vertex. In other words we need to find the set U = Ai I ai, =/=- aik

Ai i EU}. Then continue with Step 4. Else go to Step 3.

Step 3

In this step we know that both Va and Vi, violate the constraints. First define

the sets of coordinates which both violate,. i.e.

Next define either the intersection or the union depending if both Ua and Ub are

disjoint, i.e.

if Ua nub= 0
otherwise.

26

and go to Step 4.

Step 4

For the set f1 obtained above we shall determine the set of coordinates Ai with

the highest number of parameters, i.e.

£ def {Ai I m(i) 2:'.: m(j)

with m(i), m(j) defined at Step 1. If £ has only one set Ai•, cut over all its

coordinates and stop. Else go to Step 5.

Step 5

Finally over the set £ find the element Ai• with the least number of cuts as

defined in subsection 2.3.4.1 and cut over all coordinates of this set, then stop.

We conclude this section by saying a few words on convergence.

2.3.4.3 Convergence

To increase the convergence rate we need mechanisms that will reduce the

amount of computation over the exponentially increasing number of domains. There

are several mechanisms that contribute to this.

At partition r, at the end of the procedure over the whole set of domains,

we should select among the pairs (k1ow, ku.pper) of each domain, the new k10 w(r)

and ku.pper(r) for the whole set of domains, as described in section 2.2. At the

next partition we can always discard a new domain whose k1ow 2:'.: ku.pper(r) and no

further calculations need to be made over this domain. This is the main mechanism

to reduce the number of new hypercubes[11 ,12l.

Whenever a domain is in Case 1 or 2, we do not need to continue subdividing it.

This means that at each new partition this domain will not need to be recalculated

27

and even more important, will not generate new domains.

A third mechanism is when the upper bound of a certain domain at partition

r increases above the upper bound of the last partition kupper(r - 1). We do not

need to continue the calculations, being that this will not influence the choice of the

new upper bound as explained in section 2.2. This reduces the calculations at each

partition by effectively reducing the ranges of k's in which to conduct the search.

2.4 EXAMPLE

The lateral directional control system of a particular aircraft is analyzed. The

linear model has been obtained for a Mach number of 0.6 and an altitude of 15,000

ft. as the nominal flight conditions. The plant has 4 states and 2 inputs as defined

below:

X = [,8 p r <Pt

with

,8 : sideslip angle

p: roll rate

r : yaw rate

<P : roll angle

8a : aileron deflection

Dr : rudder deflection

The rolling and yawing moment parameters will have constant but uncertain

values around the nominal and appear in the system matrices as:

A= Lf3
[

-0.186

Nf3
0

0.068
-2.782
-0.110

1

-0.998
1.099

-0.078
0.069 Tl [

-0.7e-3

B = Lsa
Nsa
0

0.76e-3]
Lsr
Nsr

0

with

28

Lf3 = -11.02 ± 33%

Nf3 = 5.64 ± 11%

Loa. = 1.48 ± 8%

Noa= 0.16 ± 43%

Lor= 0.19 ± 13%

Nor = -0.05 ± 14%

The controller has been designed for particular values of these parameters which

are supposed to be the worst ones in terms of stability according to physical intu­

ition.

To analyze robust stability we open the loop between plant and controller so

that the mapping function used by the program is det [I+ I{ (jw) G (jw, ~)]. This

gives us a total of 8 parameters, 4 independent and 4 related by the constraints

described in (2.7). The value of the Multivariable Stability margin was km = 3.7

and the worst combination of parameters:

L{3 = -14.69

Loa= 1.36

Lor= 0.21

N{3 = 5.02

Noa= 0.094

Nor= -0.048

The nominal system has a closed loop pole at 0.011 rad/sand for the set of param­

eters above we can verify that it moves 30% towards the instability bound (l).

It is important to note that the parameters N /3 and Nor used to design the

controller do not coincide with the worst ones mentioned above, in fact they are

both in opposite sides of the uncertainty interval. Although this is not important in

this case being km > l it shows how engineering common sense can be misleading.

(l) In particular this pole is unimportant even if it is unstable, being slow enough to be controlled
by the pilot

29

2.5 APPENDIX

Assume two vertices of the hypercube defined as in 2.3.4.1 Vx = [x1 , ... , xn]t

and Vy = [Yi, ... , Yn]t and also (xi - Yi) =/. 0 for i E {Zi, ... , lm}, i.e. there are

m! minimum paths of length m between both vertices. In this context the general

formulation of the problem is:

"Given (Vx, Vy) as above, find all pairs of neighbor vertices (¼,"Vi) in all mini­

mum paths going from Vx to Vy."

To solve this we can go through the following procedure.

Step 1

Assign a number to each vertex starting from Vx --+ 0 to Vy --+ (2m - 1). The

most appropiate way to do this is by assigning a binary O to the upper (or lower)

bounds of each parameter we find at each coordinate of Vz and proceed counting in

binary until we reach Vy. The binary l's will be the corresponding lower (upper)

bounds taking Vx as the reference. Finally transform from binary to decimal. \Ve

will have a total of 2m - 2 vertices and E~c/ (7) (m - i) edges. This is smaller than

the total number of paths times the number of edges at each path m.m!, because

there are repeated edges at each path.

Step 2

Generate Table II. I where each entry corresponds to a vertex numbered as

described above.

Step 3

The neighbor edges(¼,½) to be generated are the ones going from each element

in the left column to each element in the corresponding row. In this way we generate

all E~ci1 (7)(m -i) = m.2m-1 edges in all minimum paths without any repetition.

30

Note: If we just generated all vertices in between Vx and Vy and calculated

the neighbor vertices for each one of them, we would actually calculate m.2m pairs

(¼, 'Vj) which is exactly twice as much as we have done above.

---+

---+

---+

(20 + 21) ---+ (20 + 21 + 22)

(20 + 22) ---+ (20 + 22 + 21)

~m-1 2i ___,_ ~i-:/=O -----,

~m-1 2i ___,_ ~i,;= 1 -----,

~~-12i
~,=1

Table II.1

(20 + 21 + 2m-l)

(20 + 22 + 2m-l)

31

Example:

For the three parameter case of figure 2.12 the table will take the form:

O(½) ---+ 1(½) 2(Vi) 4(Vs)

l(Vi) ---+ 3(Vi) 5(V6)

2(Vi) ---+ 3(Vi) 6(V1)

4(Vs) ---+ 5(V6) 6(Vi)

3(Vi) ---+ 7(Vs)

5(V6) ---+ 7(Vs)

6(Vi) ---+ 7(Vs)

Table 11.2

32

Im[det[I-kM])

cler{I- lDG)
(~,egioll)

Figure 2.1: Three dimensional parameter space and complex

image.

Im(det(I-ltAG)]

Re[det[I-ltAG1}

co{det(I-•1DG(;wJ)}

· o{det(I-k2DG(iw))}

co{ det(I-• 5DG(iw)J}

Figure 2.2: Hypercube's image for different values of k.

Mi

. Mz

33

Ms

Figure 2.3: Hypercube's partition.

Figure 2.4: Constrained (diagonal plane) and generalized

(cube) sets of parameters.

34

k_= ktnc1X

Figure 2.5: Convex hull of a general hypercube and choice of

critical vertices (worst segment MaMb).

Figure 2.6: Last choice of critical vertices (MaMb) and new

one (M1M4).

35

Figure 2. 7: "Skipping" of the origin by the image of an hy­

percube's edge.

~

~ I

Figure 2.8: Discontinuity of the angle 81(k).

k

36

Figure 2.9: Origin crosses convex hull of generalized con­

strained edge but avoids segment M 2M7 •

I
I

Z=Q~ /' ,,.
I

I
I

Figure 2.10: Origin crosses M 1M 3 but not completely the

convex hull of generalized constrained edge.

37

J(·)
~

Figure 2.11: Origin crosses completely the convex hull of

generalized constrained edge, an even number of times M2M7 ,

but not M1.

I
I
I
I

V. I
~---

Figure 2.12: Example for defining neighbor vertices in all

minimal paths.

38

Chapter 3

Eliminate frequency search:

Theory and implementation

3.1 INTRODUCTION

In this chapter we propose a new method for computing km for real parametric

uncertainty. By using the well-known Routh-Hurwitz stability criterionf32 ,33] we

transform the search over all frequencies involved in the computation of km to a finite

number of real-valued conditions that can be checked by using the method of [11-13].

Moreover the fact that these conditions are real-valued entails several simplifications

in the algorithm and a significantly faster computation of kmin def minkm (w).
w

The contents of this chapter are as follows. In section 3.2, we present the main

result and in section 3.3, we discuss an example which has been worked out with

both the new algorithm and the one in Chapter 2 which demonstrates the previous

points.

3.2 MAIN RESULTS

3.2.1 Theory

The algorithmic procedure described in Chapter 2 allows the computation of

the Multivariable Stability Margin km(w) for real parametric uncertainty at each

fixed frequency w. Therefore a frequency search for computing

kmin = min km (W)
w

(3.1)

39

to verify that kmin > l and thus check robust stability, is necessary.

In this chapter such a search is avoided by using the well known Routh-Hurwitz

stability criteria[32•331. The resulting algorithm is applicable to both the independent

and related parameter cases.

Consider the closed loop characteristic polynomial f (s; 8) as a function of the

Laplace variables and the unknown parameter vector 8 = [81 , ... , Snt Thus

(3.2)

We assume that the functions ai(8) , i = l, ... , n are multivariate rational func­

tions in the Si's bounded for 8 E V. This assumption is usually satisfied by most

systems of interest, but in more general cases our technique can be applied by first

approximating the ai(8) by multivariate rational functions on the hypercube V.

Consider now the Routh array for f (s; 8), and by means of it define the functions

gi(8), i = l, ... ,n

Sn 1 a2 a4

Sn-I a1 = g1(S) a3 as

sn-2 b1 = g2(8) b2 b3

In general the coefficient of sn is a0(8) whose positiveness can be tested at the

beginning; thus we can assume without loss of generality that a0 (8) = l. Also note

that all entries in the array are multivariate rational functions in the 8/s. Therefore

we can write:

i = 1, ... ,n (3.3)

and define

i = 1, ... ,n (3.4)

40

where the ni (8) , di (8) are multivariate polynomials in the 8/s. From the Routh­

Hurwitz stability criterion we obtain:

Lemma 3.2.1:

The closed-loop system is robustly stable if and only if

fi(8)>0 V8E7J and i=l, ... ,n (3.5)

Proof

For a fixed 8 E 1) , Ji (8) > 0 , i = 1, ... , n is equivalent with 9i (8) > 0,

i = 1, ... , n since di (8) -=/=- 0 from the boundedness of the ai(b), i = 1, ... , n for

8 E 7J. Therefore from the Routh-Hurwitz stability criterion, (3.5) is a necessary

and sufficient condition for robust stability.

■

The Multivariable Stability Margin kmin defined in (3.1) can be computed as

follows:

Theorem 3.2.1:

Define

kmi def min { k E [O, oo) I /i (kb) = 0 for some 8 E 7J} (3.6)
6E1J

then

(3.7)

Proof

For k = . min kmi there exists by assumption a b* E 1) such that Ji• (kb*) = 0
i=l, ... ,n

forsomei* E {1,2, ... ,n}.

Lemma 3.2.1 implies that for the parameter values kb* the closed loop system

is unstable and from definition (1.1) we obtain

(3.8)

41

Conversely, fork = kmin there exists 8* E 'D such that for kmin8* the closed loop

system is unstable. This implies that for some i*,

(3.9)

Note next that Ji (0) > 0 Vi= 1, ... , n where 8 = 0 is the nominal parameter vector.

This follows by nominal closed loop stability, which is a prerequisite for checking

robust stability.

Since Ji (S) are continous real valued functions of 8, Ji (kmin'D) must be an

interval on the real axis, and therefore (3.9) implies

(3.10)

From (3.8) and (3.10) we obtain (3.7) and the proof is complete.

■

We remark that each of the kmi's can be computed by using the procedure for

computing km (w) at a particular w in [11-13] and which was outlined in section 2.2.

It should be clear that the calculation of km (w) for each w is now replaced by n

such calculations, where n is the degree of the closed loop characteristic polynomial.

This offers a clear advantage over the previous algorithm since accurate com­

putation of kmin might require an extensive frequency search, and indeed given the

fact that km (w) can be a discontinous function[13l of w.

The parameter combination and the frequencies where robust stability is worse

or even fails can be obtained as follows. Let i* be such that kmin = kmi• in (3.7). As

a byproduct of the computation of kmi• we obtain 8* E 'D such that fi•(k*8*) = 0.

Then 8* satisfies (see (3.2)):

f(jw*; kmin8*) = 0 for some w* (3.11)

42

and f(jw; kS) =fa O fork< kmin, SE 1) and w E [O, oo). Thus S* is a worst parameter

combination. Solving the polynomial equation (3.11) in w for its positive real roots,

we obtain the frequencies at which robust stability first fails.

Another important point is that the functions h (8) are real valued. In the

following we show how this can be taken advantage of in order to greatly expedite

the computation of kmin•

3.2.2 Algorithmic considerations

The main procedures in the algorithm of [11-13] (see Chapter 2) are the compu­

tation of lower and upper bounds for km (w) and the subdivision of the parameter

hypercube to improve these bounds.

The following simplifications in these procedures for computing kmi result from

the real valuedness of the functions Ji (8).

First we extend the parameter hypercube 'D to 15 by introducing fictitious pa­

rameters as in (2.5). The mapping functions h (8) are transformed accordingly to

multilinear functions h (8), 8 E 15 (see subsection 2.2.2).

Step 1 (Computation of the lower bound)

A lower bound li on kmi is found as the minimum k for which a vertex of the

hypercube k15 is mapped by h (·) onto zero.

The lower bound on kmi is obtained as the minimum value of k for which O E

co { h (kV) } , where V is the set of vertices of 15. Note that co { h (kV) } is a real

interval because of the real valuedness of Ji (8) with ends being images of some

vertices of k15.

43

Step 2 (Computation of the upper bound)

An upper bound ui on kmi is found as the minimum k for which a constrained

vertex of the hypercube fJ is mapped onto zero.

That Ui ~ kmi is clear since by definition, constrained vertices of fJ correspond

to the actual vertices of 'D. In the procedure of [13] an upper bound is found as the

minimum k for which the image of a constrained edge or generalized constrained

edge cross the origin. These cases all reduce here to checking for constrained vertices

of fJ mapping onto the origin.

Step 3 (Refinements of the bounds)

This procedure remains unchanged with respect to the algorithms of [11-13]

Thus in the computation of the lower and upper bounds on kmi, we need only

check the vertices of fJ and not be concerned with the images of edges or generalized

edges "skipping" the origin, which accounts for the complexity and the major part

of the computations in the program. In the algorithm of this paper we need only

to compute the smallest positive real root of the real valued functions h (k 'Vj) m

k, where½ are the vertices of V.

3.3 EXAMPLE

In this section we demonstrate the method for computing km of section 3.2 by

means of the following example.

Suppose that the closed loop characteristic polynomial is given by:

(3.12)

The independent parameters p1, p2 , p3 and their variation 1s defined around the

44

nominal values as follows,

-0.25 < 81 $; 0.25

-0.20 $; 82 $; 0.20 (3.13)

It is easy to see that all the coefficients of (3.12) are positive for the set of parameters

defined in (3.13) and k = 1. Applying now the Routh-Hurwitz procedure, we obtain:

s4 1 2 2
P1P2P3 p~

s3 3
P1P2

3 2
P1P2P3 0

s2 p~p3{pf-p3}

Pi
p~

2 4 4 1 4
s1 PaPl P1 P2- -P2P3 0

P2 pf-p3

so p~

We should now find the smallest k that meets one of the following constraints with

equality,

f1 = P~P2 > 0 (3.14)

f2 = p3 (Pi - p3) > 0 (3.15)

h = P1P2 [Pi (Pi - l) -· PiP3] (Pi - p3) > 0 (3.16)

f4 = p~ > 0 (3.17)

where we have simplified all parameters with even order exponents. Condi­

tions (3.14) and (3.17) are trivial to check. For both of them the smallest k is

km4 = 4 for which p3 vanishes. For (3.15) and (3.16) we used the computer program

implementing the algorithm of section 3.2 and found km2 = 1.5 and km3 = 1.09

respectively. Therefore km = 1.09 and this means that the system is robustly

45

stable for the set of parameter variations described above. The worst parame­

ter combination is outside the region described in (3.13) and it was found to be

p* = [l.128 1.282 1.018] corresponding to condition (3.16) being equal to zero.

For this parameter combination the closed loop characteristic polynomial has a pair

of poles at s = ±jl.1. The calculation time for all four conditions was in the order

of seconds. For comparison the same example was solved by using the algorithm in

[14]. We observed that the computation of km for certain frequency points w was

well in the order of minutes.

46

Chapter 4

Applications to coefficient perturbed polynomials

4.1 INTRODUCTION

As mentioned in subsection 1.3.3, there are basicallly two approaches in the

robust analysis of uncertain polynomials. The first one gives a qualitative answer

to the question of robust stability of the system(20,23- 261 while the second offers

a quantitative answer in terms of km or µ[11 - 15•21 •221, although any of these two

approaches can be easily reduced to the other.

The material in Chapters 2 and 3 falls into this last category and takes into

consideration the most general class of coefficients c(p) as functions of the set of

parameters p (see (1.9)) that can arise in FDLTI control systems. The setting

in this chapter is similar to the one in Chapter 3, in the sense that we use the

Routh-Hurwitz procedure[32,33] to transform the stability test of a single n th order

CLCP of the form (1.9) to the positivity test of n real equations.

In terms of the computational effort it takes to do the analysis, it is natu­

ral to expect it will increase as we treat more general classes of polynomials. In

[23] the positivity of 2, 6 or 12 equations have to be tested to analyze 2nd, 3rd

or 4th order polynomials with the set of coefficients varying inside an hypercube,

which is equivalent to checking the stability of 1, 2 or 3 fixed polynomials, respec­

tively. For a general n th order polynomial of the above class, by using Kharitonov's

theorem[2o-23l, we need to check positivity of (4 • n) equations instead. In (24], the

number of equations to be tested will increase to (m · n) for the class of polynomials

47

having odd and even coefficients varying inside two independent polytopes, were m

are the extreme points of these polytopes. In [25] the class of polynomials whose

coefficients are linear in the parameters the latter varying within real intervals (i.e.

all coefficients varying inside a polytope) is treated and positivity of (l • n) equations

as functions of a variable t need to be tested, being l the number of edges of the

coefficient polytope. This t-sweep has been transformed in [26] to an eigenvalue test

of a certain matrix. In [34] linear programming has been used in determining km

for the last class of problems.

In Chapters 2 and 3 the analysis is extended to the more general cases when

the coefficients care multilinear in the parameters (independent parameter case) or

polynomial in the parameters (related or repeated parameter case). In this situation

we need to test positivity of n equations as functions of all parameters p through the

iterative procedure explained before. Some recent results are being investigated that

would reduce this test to the set of parameters contained in only the 2-dimensional

faces of the hypercube for the multilinear casef35l. We can compare in figure 4.1

how the family of polynomials in (1.9) increases the complexity of the image of the

parameter hypercube for each of the cases mentioned above.

The classes of polynomials with coefficients linear, multilinear or polynomial in

the set of parameters p depart from the more simpler cases in the sense that no longer

a finite number of tests need to be done, but instead an iterative procedure should

be applied to obtain the answer, due to their increased generality. In this chapter a

theoretical characterization of the class of polynomials of the form (1.9) which can

be analyzed by a finite number of tests (at most over all vertices of the parameter

hypercube) is given. Furthermore sufficient conditions. are derived to determine

when this is the case. The procedure allows in many cases to consider functions

which are polynomic in the parameters as if they where multilinear, not having

48

to create fictitious parameters as in (2.5). We will also show how as we gradually

increase the functional complexity of the polynomial we will necessarily have to

go through iterative procedures to test edges, faces or in general hyperfaces of the

parameter hypercube. Finally two examples will be discussed which demonstrate

the above results.

4.2 MAIN RESULTS

4.2.1 Equivalent conditions to check only vertices

We need to check positivity of n functions fi(p) with each parameter included

in the real interval Pi E [ai, bi]; (i = 1, ... , r), with ai = Poi- k8i, bi =Poi+ k8i being

Poi the nominal values. These intervals vary with k > 0, the measure of robustness

to be determined, being easily reduced to the qualitative approach by fixing k = 1.

We will assume that for the nominal set of parameters p = p0 we have fj(p0) > O;

(j = 1, ... , n), i.e. the nominal closed loop system is stable. (l).

In the procedure described in chapter 2 we reduce both the independent and

related parameter cases to testing if the image of a multilinear function intersects

the origin. This allows us to use a theorem by Zadeh and Desoer[37] and prove that

under this condition the mapping of the CLCP will be included in the convex hull

of the mapping of the vertices<2).

In our case, since the functions fj(8) are all real valued, we can relax the con­

straint of multilinearity (or monotonicity) in the parameters. As we only need to

test positivity of each function, we do not need to have the whole mapping of

(l) A necessary condition that is easy to check is the positivity of the coefficients Ci(P), i = 1, ... , n
obtaining an upper bound k,... If k,.. < 1 the system is not robustly stable and there is no need to
continue our search. Otherwise we can use the Lienard-Chipart criteriaf36l which reduces to a half
the number of equations to be tested.
(2) Actually for this to be true we only need monotonicity in each parameter for all values of the

other ones.

49

f;(p) included in the hull of the image of the vertices. The only condition will be to

have the lower bound of the image of f;(p) determined by one of the vertices of the

hypercube. Before we discuss the main result, we will define precisely the above.

Definition 4.1:

We are given the function J;: 'R/ ---t n, the vector of upper and lower bounds

of all parameters a, b E nr and the extreme points { ai, bi} of the parameter Pi· A

triad(!;, a, b) is called extreme low bounded (ELB) in the parameter Pi iff

for allp1 E [a1,bi]; (l = 1, ... ,r).

Definition 4.2:

(4.1)

A triad (J;, a, b) 1s called multi-ELB if it 1s ELB for each parameter Pi

(i=l, ... ,r).

Remarks:

(i) Multilinear and multi-monotonic functions are particular cases of multi-ELB

ones.

(ii) The ELB property will not only depend on the function f but also on the

particular intervals defined by a and ~- This can be seen in figure 4.2 where

f(P1,P2) is ELB in P1 E [a, b] but not in p1 E [x, b].

A characterization of the general requirement to check robustness by a finite

number of tests is given by the following

Theorem 4.1:

For the class of polynomial functions J;(·); positivity of fj(p) for Pi E [ai, bi]; (i =
1, ... , r) can be determined by checking only the extreme values of each parameter

(vertices) if and only if the triad (J;, a, b) is multi-ELB.

50

Proof:

(=>): Assume a parameter Pi is not ELB, then if Ji, a and bare such that fj(p)Jp;=a; >

0 and fi(p)Jp;=b; > 0, it is possible that for the mapping of some intermediate

point f;(p)Jp;=x < 0 ; x E [ai, bi], thus the test of all vertices will not guarantee

positivity of fi(p) Vp.

(-¢::): Take an arbitrary point x1 inside the parameter hypercube and trace through

it a line parallel to one of the axes, determining two new points y 2 and z2

at the opposite hyperfaces. Defining x2 = arg{min[fiCY2), Ji(z2)]} we obtain

fi(x 2) ~ fi(xi) because of the ELB property. Proceeding in the same way

through all the axis we obtain in a finite number of steps fj(v) ~ ... ~ fi(x 1)

where v is a vertex of the hypercube. Since x1 is arbitrary and proceeding in

the same way for any point, we see that only vertices of the hypercube need to

be checked to test positivity.

■

Before we continue we will define on an hypercube in nn the hyperface of the

set of parameters (p1 , .•• , Pl) (l ~ r) as the region defined by all Pi E [ai, bi] ;

(i = 1, ... , l) with all remaining parameters at one of their extreme values. In 'R.,3

it reduces to the usual faces or edges of a cube.

The main result now arises naturally from the above theorem.

Corollary 4.1:

Positivity of fi(p) for all Pi E [ai, bi] ; (i = 1, ... , r) can be determined by

checking at most all the hyperfaces corresponding to all non-ELB parameters.

51

We can proceed in the same way as in the necessary part of the proof of the

above lemma through all the ELB parameters. We will finally arrive to different

regions only defined by non-ELB parameters (hyperfaces). For this reason the low

bound of the mappings of these regions will not be determined by any of their

vertices, but by the whole regions themselves.

■

E.g. For a function fi(p1,p2,p3) being only ELB in P1, we should check the faces

of the cube perpendicular to the Pl axis, as seen in figure 4.3.

Remarks:

(i) An important consequence of theorem 4.1 is the fact that in the most general

case, this is when (fi,a, b) (j = 1, ... ,n) are not ELB in any parameter Pi, we

are forced to check over the whole hypercube of parameters. This can be done

by using the procedure in chapter 3.

(ii) To find the Multivariable Stability margin km we compute

kj def min{k E [O,oo)lfi(81 , ... ,8r) = O}, then km= minjkj, where the search

will be carried out over the regions described by theorem 4.1.

4.2.2 Relation with other works

The conditions given in the main theorem can be easily related to other work

in this areaf24l_ To do this we need to connect the Routh-Hurwitz (R-H)f32•33l sta­

bility criteria with the Hermite-Biehler (H-B)[361 conditions used in the proof of

Kharitonov's theoremf20•38l. Although both are equivalent, being necessary and suf­

ficient conditions for the polynomial in (1.9) to have roots in the left half complex

plane, it will be instructive to see both conditions from a geometric perspective.

52

This is

j = 1, ... , n (Routh-Hurwitz criteria).

¢=? ~ arg[f (j w, p)] = mr w E n increasing.

¢=? ~arg[f(jw,p)] = n1r/2 w > 0 increasing.

¢=} f(jw,p) crosses n consecutive times real and imaginary axis for w ~ 0.

¢=} Interlacing property of roots of Re[f(jw,p)] and Im[f(jw,p)] (Hermite-Biehler

criteria).

The procedure given in [24] evaluates the stability of the class of polynomials

with independent even and odd coefficients both belonging to sets £ and CJ re­

spectively, by checking at most all extreme points of the whole set n = £ x O.

In this paper we will show that the £-sufficiency and CJ-sufficiency(3) of the ex­

treme points of nl24l are equivalent to at least one of the fi(p) obtained through the

Routh-Hurwitz procedure to be multi-ELB. For this we first prove the following,

Lemma 4.1:

If£ and O are polytopes, without loss of generality we can consider all coeffi­

cients in £ and O to be linear functions of two independent sets of parameters pe

andp0 withp'f E [a'f,bni = 1, ... ,re andp1 E [a1,b1];l = l, ... ,r0 • Furthermore

each extreme point of the whole set of coefficients n will be achieved at a vertex of

the hypercube defined by the family of par'ameters pe and p0 and vice versa.

It is easy to see that if a coefficient Cj E £ (E 0) is nonlinear in any parameter

pe (p0
) then £ (CJ) is not a polytope, which contradicts the assumption.

Now assume we are located at an extreme point of£ (0) and some Pi• is strictly

(
3

) For the polynomial in (19) with s = jw, the real and imaginary parts will depend on the even
and odd coefficients c; respectively. Then we define a subset £' C £ (O' C 0) to be £-sufficient
(0-sufficient) when the even (odd) coefficients which determine the maximum and minimum value
of the real (imaginary) part of f(c,jw) belong to£' (O').

53

inside the interval [ai., bi.], then by linearity and the definition of extreme point[24l,

moving Pi• to ai. and bi• the map will be a straight line part inside and part outside

the polytope £ (0), again a contradiction. Being the extreme points of n all possible

combinations of the ones of£ and O the same argument applies. This means that

any extreme point of the coefficient space n will be achieved by a vertex of the

parameters (pe, p0
) hypercube.

Similarly we can prove that any vertex of the hypercube will map to an extreme

point of the coefficient space n.

■

Lemma 4.1 plus the equivalence between R-H and H-B stability theorems will

allow us to prove the following:

Lemma 4.2:

For the class of polynomials with coefficients inn, the extreme points will be

£-sufficient and <?-sufficient iff 3 [fi(p), a, b] obtained by the R-H procedure which

is multi-ELB.

Proof:

Let us define the parameters inside the intervals p'f E [pgi - kof, PZi + kof] and

Pi E [Poi - k8J, Poi+ koJ] so we can vary k c.ontinuosly until we reach the instability

boundary at km. Assuming £ and <?-sufficiency this boundary will be achieved

at one of the extreme points of n and by lemma 4.1 also at a vertex p* of the

parameter hypercube. The equivalence of the R-H and H-B procedures means that

at least one of the fi(p*) will be in the neighborhood of zero which in turn means

that [Ji, a(km), b(km)] is multi-ELB for the intervals a(km) and b(km) defined above.

Being both arguments necessary and sufficient, the equivalence is satisfied.

■

54

As proved in [24] for the particular case when both E and Oare hypercubes we

can consider without loss of generality, n and the parameter space as coincident.

Then by some simplifications it can be shown that the number of extreme points

(now vertices) to be checked are reduced to four, which is the Kharitonov theorem.

These simplifications will mean in our case to determine first which of the JJ(p) 's

are multi-ELB and next find which are the relevant extreme values of some of the

parameters. In the next section we will derive simple sufficient conditions for a triad

(Ji, a, b) to be ELB in a parameter Pi• The same procedure will allow us to find in

certain cases which is the relevant bound of that particular parameter.

4.2.3 Practical considerations

To determine when a function Ji and a set of intervals (a, b) are ELB for a

particular parameter Pi we should go through a two step procedure.

The first step would be to determine if Ji belongs to a class of functions which

are ELB irrespective of the intervals (a, b). For the set of polynomials considered,

certain general classes of such functions are:

(i) If Jj(pi) is of odd degree, the class of monotonic (increasing or decreasing)

functions, i.e.

or

ofi <O
opi -

Vp

Vp

(ii) If fi(Pi) is of even degree, the class of concave functions, i.e.

{J2fi < 0
{) 2 -

Pi
Vp

(4.2)

(4.3)

(4.4)

For a polynomial, first and second derivatives are simple functions of the coefficients

and in many cases these will already determine if the function Ji is ELB. For example

55

take

g(p) = P1P2 + P1 - P~ P1,P2 > 0

then
{)g
-=l+P2>0
8p1
[)2g
-=-1<0
{)p~

then g is multi-ELB.

(monotonically increasing)

(concave)

(4.5)

(4.6)

Conditions (4.2), (4.3) and (4.4) are only sufficient for Ji to be ELB and in

case they fail, the next step would be to test whether they hold for the particular

intervals (a, b) considered. This will again lead us to check positivity (or negativity)

of functions of the parameters. The whole procedure can then be repeated over this

new set of equations until we can determine for which parameters is Ji ELB. Being

all conditions (4.2), (4.3) and (4.4) only sufficient, if some of the positivity (or

negativity) conditions are not met, the analysis will be inconclusive.

Remarks:

(i) An important consequence can be obtained from this analysis. If we can deter­

mine from (4.2) or (4.3) that a parameter Pi is monotonic, then we will only need

to check ai if it is increasing or bi if decreasing. This will reduce the number of

regions to be tested as described by theorem 4.1 and in particular will reduce

the number of vertices if the theorem applies. A simple example follows. Take

the CLCP:

f = s3 + P2 · s2 + P1 · s + Po Pi> 0 (4.7)

By applying the Routh-Hurwitz stability criterion we need to test whether

fi(p) = P1P2 - Po > 0. But f1(P) is multilinear in the parameters and in

particular decreasing in Po and increasing in p1 and p2. Then we only need to

check the vertex p = [b0 a1 a2]t, a particular subset of the four Kharitonov

56

vertices as described in (23].

(ii) Another important consequence is that once determined the offending value of

one parameter say Pi= ai as above, the procedure will be repeated over other

parameters p1 but only at the value Pi= ai. This can be seen from the following

example. Take the CLCP

f = s 4 + p3 • s
3 + P2 • s

2 + PI · s + Po Pi> 0 (4.8)

By applying Lienard-Chipart[36l criteria we need to test only

(4.9)

From the analysis we obtain Ji is linearly decreasing in p0 and increasing in

P2 and concave in P1 and p3. This means we should fix Po = bo and p2 = a2

and apply the second step to check if for the particular intervals we have, the

quadratic equations in p1 and p3 are in the increasing or decreasing region. This

simplifies by the fact p0 and p2 are fixed, so we only need to check if

and (4.10)

are positive or negative. This suggests checking at both combinations (a1 , b3)

and (b1 , a3) which means only the vertices

(4.11)

as suggested in [23].

(iii) Although we will reduce the number of vertices to be checked when the situation

in (i) applies for some of the parameters, there can be situations in which we

will unnecessarily check some extra vertices. This is because (4.2), (4.3) and

57

(4.4) are sufficient conditions for a triad to be ELB in a certain parameter, but

not necessary.

4.3 EXAMPLES

4.3.1 Crane model

This example appeared initially in [39] and recently in [29] where some dynamic

uncertainty has been added to the model and treated in the framework of parametric

uncertainty. By using the CLCP of the system in this last paper we have:

being

f(s,µ,m1) = µs 6 + 3µs 5 + (le - 3µm1 + 3.116µ + l0mi)+

+ (2.31e - 4µm1 + 9.47µ + 27.69m1)s3 +

+ (le - 2ml - 8.8e - 3µm1 + 36.06mr + 25)s2+

+ (27.69mr -1.5e - 3µmr)s + 5mr

µ E [O, 13. 7] : a function of cable mass and length.

mr E [50, 2395] : mass load.

(4.12)

By applying the Lienard-Chipart[36l criteria to f (·) we obtain four polynomials

Ji(µ, m1) to f 4(µ, m1) for which we should test positivity. The procedure in this

paper has been applied to all four of them; but for brevity we will just show it for

the first one only. This is,

Ji(µ, m1) = 2.31m1 + 27.69e - 3m1µ - 0.12µ

with {
:~l = 2.31 + 27.69e - 3µ > Q

?f-j; = 27.69e - 3mr - 0.12 > 0

(4.13)

(4.14)

both linear increasing functions, which means we only need to check at µ = 0 and

m1 = 50.

58

Similarly for h, fa and /4 we obtained they where monotonically increasing

functions of m 1 and monotonically decreasing in µ. This implies we should also

check f at µ = 13. 7 and m1 = 50. In fact the worst combination of parameters in

the sense of robust stability is the last one for which the CLCP of the system will

have roots at the imaginary axis.

In this way only two vertices have been checked to determine this result and

the answer is nonconservative. In [29] instead a complete check of all edges of a

polytope containing the coefficient space had to be done. Depending on how the

actual coefficient space fits this polytope, either the answer will be conservative or

a big number of edges will have to be tested.

4.3.2 Combined real parametric and complex dynamic uncertainty

This example consists of an uncertain plant and a controller such that the loop

transfer function L(s) will have an uncertain gain and right half plane pole of the

form:

L
8

_ 3p2 (s + 2)
()- (s+l)(s-3p3) (4.15)

with

P2 E [3, 5] and p3 E [O, 2] (4.16)

We also want to limit the peak of the sensitivity function so we have a complex

unstructured uncertainty IPil < 1. By the method described in next chapter, the

robustness test reduces to check positivity of a function of the parameters but now

also of the frequency w. This function is:

59

with x < 1 and w E [O, oo). The first derivatives at p2 and p3 are

!! = w2(P2 - p3 - 1/3) + 2(2P2 - p3) > 0

8
8! = w2(xp3 - P2) + (xp3 - 2p2) < 0
p3

(4.18)

being in both cases only necessary to check at P2 = 3 and p3 = 2 because f is

linearly increasing in P2 and decreasing in p3 • In this way a single vertex test is

sufficient to determine robust stability.

Im

0

Im

0

I
I

I

I
I

I
I

(a) Re

(c) Re

60

Im

0
(b)

Im

0
(d)

Figure 4.1: Comparison of images of different classes of uncer­

tain polynomials. (a) Independent coefficients. (b) Coefficients

linear in p. (c) Coefficients multilinear in p. (d) Coefficients

polynomic in p.

Re

Re

I
I
I
I
I
I
I
I
I
I
I
I

X a b

Figure 4.2: The ELB property for a function f and two sets

of intervals.

Figure 4.3: Example of regions to be checked for an ELB

function in PI.

P,

62

Chapter 5

Stability margin for combined parametric

and unstructured dynamic uncertainty

5.1 INTRODUCTION

In this chapter we consider the problem of Robust Stability in systems with

simultaneous real uncertain parameters and unmodeled dynamics which is given by

one complex block. In other words in the general uncertainty structure described

by (1.2), any number of real parameters which can be repeated and one complex

block are allowed.

For such uncertainty structure we define the robustness margin rm (w) and char­

acterize robust stability in terms of it. The robustness margin is closely related

to the multivariable stability margin given in [10]. The main contribution here is

the exact computation of rm(w) and thus a nonconservative robustness test for the

uncertainty structure considered. The computation of rm(w) is reduced to a finite

number of multi variable stability margin calculations which can be accomplished by

the algorithm described in Chapter 3. The exact calculation of km(w) andµ(·) for

the uncertainty structure considered is also possible through an iterative procedure.

Although the uncertainty structure of any real parameters and one complex

dynamic block is not the most general possible, there are many important cases that

can be handled through this particular uncertainty structure. We discussed already

the robust stability of systems where model uncertainty is expressed in terms of

unknown real parameters and unmodeled dynamics that are lumped in one location

63

in the feedback path. A second application is testing the robust performance of

systems with real parametric uncertainty by taking the complex block allowed in

(1.2) to be the performance blockf161.

Yet another application of these results is the robustness of systems with real

time varying parameters. A sufficient condition for robust stability can be stated

in terms of the SSV of a certain constant matrix with respect to the uncertainty

structure considered heref401.

Other results that consider real and complex uncertainties simultaneously are

reported in [28,29,30).

In the next section the problem is precisely formulated and the robustness mar­

gin rm is defined and related to the km and µ. In section 5.3 the main results

are presented on the exact computation of rm(w) and km(w) for the uncertainty

structure considered. In section 5.4 we apply these results in two examples.

5.2 PROBLEM FORMULATION

We first define the uncertainty structure that is used throughout the chapter

(see figure 5.1).

A def { diag (b.b, .D.p) I .D.b E ,Ab

Ab def {b. E cmxm I a (b.) < 1}

Ap def { diag (81, ... '8i, ... '8n) I 8i E n

(5.1)

(5.2)

(5.3)

The nominal system is given by the rational transfer matrix M(s) which can be

subdivided into four blocks conformably with the dimensions of b.b and .D.p. Vve

thus obtain figure 5.2. The last step allows us to work with a new system which

depends on the parameters 81 , ••. , 8n in Ap. More specifically the latter is expressed

64

by the following Linear Fractional Transformation:

(5.4)

The following theorem gives necessary and sufficient conditions for robust stability

and it is an easy extension of a result in [3] for the case of unstructured uncertainty.

Theorem 5.1:

The feedback system of figure 5.1 is robustly stable (i.e. it remains closed-loop

stable for all .6.p E .AP and all .6. E .Ab if and only if

(i) M(s, .6.p) is stable for every .6.P E .AP.

Condition (i) in the previous theorem simply states that the closed-loop system

must remain stable for all variations of the real parameters, when there is no complex

uncertainty. It can be checked by evaluating

Evaluation of kr is equivalent with calculating the stability margin for real para­

metric uncertainty and can be done by the results of Chapter 3.

Condition (ii) in theorem 5.1 states that the system resulting by fixing the

real parameters at any combination allowed by (5.3) must be robustly stable for the

model perturbation allowed by (5.2). In particular we obtain the following necessary

conditions for robust stability.

Corollary 5 .1:

The feedback system of figure 5.1 is robustly stable only if:

(i) kr(w) ~ 1 Vw

(ii) a [M11(jw)] :s; 1 Vw

The following theorem gives an alternative expresion for the M ultivariable Sta­

bility Margin with respect to the uncertainty structure of (5.1),(5.2) and (5.3).

65

Theorem 5.2:

Let

~ def { [~] 1 km(w) = inf k E [O,oo) I u M(jw,k.6.p) ~ k for some .6.p E .6.P}

then

We calculate:

[

(l + k.6.bM11)
det(l + k.6.M) = det

(k.6.pM21)

= det(l + k.6.pM22)·

(k.6.bM12)]

(l + k.6.pM22)

(5.6)

(5.7)

det {l + k.6.b [Mn - M12 (l + k.6.pM22)-1 k.6.vM211}
= det(l + k.6.pM22) det [l + k.6.bM(jw, k.6.p)]

Therefore from (1.1)

km(w) = inf{k E [O,oo) I det(l + k.6.pM22) = 0 or

det [1 + k.6.bM(jw, k.6.v)] = 0 for some .6.p E .6.P

But

inf { k E [O, oo) I det [1 + k.6.bM(jw, k.6.v)] = 0 for some

D.p E A.p i .6.b E .6.b}
¢=} inf { k E [O, oo) I ?i [kM(jw, k.6.v)] ~ 1 for some .6.P E .6.P}

(5.9)

¢=} inf { k E [O, oo) I ?i [M(jw, k.6.p)] ~ ¼ for some .6.p E .6.P} = km

by comparison with (5.6). Finally (5.7) is immediate from (5.8) and (5.9).

■

66

Next we define the robustness margin rm(w) with respect to the model uncer­

tainty structure in (5.1), (5.2) and (5.3) by:

(5.10)

where

fm(w) = inf{k E [O,oo) I a [M(jw,k~p)] ~ 1 for some ~PE ~P} (5.11)

and kr(w) was defined in (5.5). The next theorem characterizes robust stability in

terms of rm in much the same way that km does. However, as it will be apparent

in the next section, rm(w) is easier to calculate than km(w).

Theorem 5.3:

The system of figure 5.1 is robustly stable for the model uncertainty structure

defined by (5.1), (5.2) and (5.3) if and only if rm(w) ~ 1 Vw.

Proof:

From the definitions of km(w) and rm(w) observe that if

===} (5.12)

and if

===} (5.13)

Therefore if the system is robustly stable, then km(w) > 1 and (5.12) gives

rm(w) > 1. On the other hand if the system is not robustly stable, then km(w) =::; 1

and (5.13) gives rm(w) =::; 1.

■

5.3 MAIN RESULTS - Computation of rm and km

In this section we compute for the model uncertainty structure of (5.1), (5.2) and

(5.3) the robustness margin rm defined by (5.10) and next the multivariable stability

67

margin km given in (1.1). The calculation of rm(w) is reduced to a finite number of

multivariable stability margin calculations for real parametric uncertainty. Before

stating this as theorem 5.4 we need to go through certain preliminary manipulations.

First it holds:

(5.14)

where p(M) denotes the spectral radius of a matrix M. Let

(5.15)

be the characteristic polynomial of MT(-jw, .6.p)M(jw, .6.p)- Note that if we express

p(z, w, .6.p) as

(5.16)

the coefficients ai (w, .6.p), i = 0, ... , l are real rational functions of w and the pa­

rameters in .6.p. Condition (5.14) is equivalent with verifying that all the roots of

p(z, w, .6.p) with respect to z for a fixed s = jw and .6.p E aP are inside the unit

disc.

There is a known algorithm that checks if the roots of a polynomial are in­

side the unit disc. This is the J ury[41l test, an application of the more general

Schur-Cohn[42,43] procedure, which is frequently found in digital control analysis. If

68

we apply this procedure to p(z,w,~v) we obtain (l)

1 a1-1 ao

ao a1 1

al 1 al al-I 1

al
1

al
2

al
I

with

Let us define for convenience Ji (w, ~P) = af, i = 1, ... , l - l.

A necessary and sufficient condition for p(z,w,~v) to have all its roots inside

the unit disc is then

i=l, ... ,l-l (5.17)

Next let

()
ni (w, ~v) ·

h w,~p = ~(w,~p) ; i = 1, ... , l - l (5.18)

where ni (w, ~p) and di (w, ~P) are real valued multivariate polynomials in w and

the 8/s.

Define

i = 1, ... , l - l (5.19)

(l) We can assume with no loss of generality that p(z, w, 6.p) is monic by dividing throughout by
a1 without changing the roots of p(z, w, 6.p) in z and the form of the other coefficients.

69

The main result then follows:

Theorem 5.4:

Consider

i = 1, ... , l -1 (5.20)

and

(5.21)

Assume that

if [Mn(jw)] < 1 (5.22)

Then

(5.23)

Proof:

From (5.14) and (5.15), cr (M(jw, k6.p)1 < 1 if and only if the roots of p(z, w, 6.p)

are inside the unit disc and this, by (5.17), is equivalent with Ji (w, k6.p) > 0,

i = 1, ... , l - 1.

From (5.19) we obtain that

i = 1, ... , l -1 (5.24)

This implies that

=inf{kE[0,oo)lgi(w,kll.p)=0; 6.pE.6.p; i=l, ... ,l-1}

= min{ki(w) ; i = 1, ... ,l-1}
(5.25)

70

Where the last equality follows from definitions (5.20) and from the fact that for

k = 0, 9i (w, 0) > 0 as the latter is equivalent with (5.22).

From the definition of rm(w) in (5.10) and (5.25) the result follows inmediately.

■

Theorems 5.3 and 5.4 reduce the problem of robust stability for the feedback

system of figure 5.1 to testing condition (5.22) which by corollary 5.1 is necessary

for robust stability and to a finite number of real stability margin calculations.

The following remarks are in order.

(i) The procedure should be started by first checking the neccessary condition

(5.22). This corresponds to checking robust stability for complex perturbations

without real parametric uncertainty. If this test is positive, one then continues

with the computation of kr(w) in (5.5) and ki(w), i = 1, ... , l - 1 in (5.20).

(ii) The procedure for the computation of ki(w) in (5.20) will produce a frequency w0

for which instability occurs, if this is the case, and also the worst combination of

real parameters and complex perturbations. This information should be useful

for the designer on how to modify the compensator so that robust closed-loop

stability is obtained.

(iii) From (5.15) and also from (5.19) it is apparent that the 9i(w, ~p) are in general

not multilinear in the 8/s even if det. {I+ [~b 1P] M(jw)} originally is.

Therefore the algorithm in [11,12] cannot be applied and the one in [13] must

be used.

(iv) It was noted already that the 9i(w, ~P) are real valued multivariate polynomials

in w and the 8/s in ~p- This greatly simplifies the algorithm in [11-13] and

increases significantly its speed as compared to the general case of Chapter 2.

This has been explained in greater detail in Chapter 3.

(v) For high dimensional problems, obtaining the polynomials 9i(w, ~p),

71

i = 1, ... , l - 1 in (5.19) can be tedious and even risky when done by hand.

The development in the recent years of programs for symbolic manipulations

should resolve this situation.

We now turn to the computation of km for the system of figure 5.1. To this end

we define

(5.26)

The computation of rm(K, w) for a given K is accomplished by applying theorem 5.4.

We next prove the following lemma.

Lemma 5.1:

The function rm(K) : n+ --+ n+ defined in (5.26) (and where dependence on

w is omitted) is nonincreasing.

Let K1 > K2, r1 = rm(K1) and r2 = rm(K2). Assume that r1 > r2. Then there is

no .6P E aP such that

(5.27)

by the definition of rm(K) in (5.26). By a,ssumption ,:
1

< ,:
2

and (5.27) gives a

contradiction since by (5.26) there exists a .6; E aP such that a [M(jw, r 2.6;)] > }
2

•

Therefore K1 > K2 implies r1 ~ r 2 and rm(K) is a nonincreasing function.

■

Lemma 5.1 allows the computation of km(w) by means of a simple iteration.

Theorem 5.5:

Consider the sequence Kn+1 = rm(Kn), where Ko is arbitrary and rm(K) is defined

by (5.26) and with respect to the uncertainty structure for the system of figure 5.1.

72

Then

lim Kn(w) = km(w) n--+oo

the multivariable stability margin at frequency w.

Proof:

(5.28)

By the definition of km(w) in (5.7) and of the function rm(K) in (5.26), we have

that km(w) is the smallest fixed point K* = rm(K*). By lemma 5.1 the function

rm(K) : n+ --+ n+ has a unique fixed point and therefore limn--+oo Kn = K* =

■

A good candidate for Ko, the starting value for the iterative procedure to find

km, is provided by kr given in (5.5).

In summary, we have shown that the robust stability of a system with any

number of real uncertain parameters and a complex perturbation can be checked

by computing the robustness margin rm(w) or the multivariable stability margin

km(w). The calculation of rm(w) is accomplished by a finite number of multi variable

stability margin calculations for real parametric uncertainty and the calculation of

km(w) is done by iterating on the procedure that gives rm(w).

In the introduction we discussed that other robustness problems are also ad­

dressed by these results. This point is further illustrated by the following examples.

5.4 EXAMPLES

5.4.1 Example 1

We consider a feedback system with loop transfer function L(s) given by:

8
_ g 103 (1 + s/30)2

1 L() - (p + s)(l + 10s)(l + s/100)2(1 + s/300) [+ c5i(s)] (5.29)

73

We assume that the pole p and the gain g are uncertain with variations

l82I < o.5
1831 < 0.2

and that 81 (s) represents fast neglected dynamics that satisfies:

(5.30)

(5.31)

The closed loop system is redrawn in figure 5.3 with weights and nominal system

given by
L

8
_ 103 (1 + s/30)2

o() - (1 + s)(1 + 10s)(1 + s/100)2 (1 + s/300)

W1(s) = (1 + s/10)
5

W2(s) = L0 (s)

-1
W3(s) = (s + 1)

(5.32)

This system is next rearranged in the form of figure 1.1 where .6. contains two

real 82 and 83 and one complex parameter 81 . For this example we obtained

rm= 10.52 and km= 1.65

achieved at 81 and 13.5 rad/s respectively. Therefore the system satisfies our per­

formance criteria for all possible parameter variations. The worst combination of

perturbations is 82 = 0.5 and 83 = -0.2 in both cases. For this example we also

checked robustness by calculating the Structured Singular value µ and obtained

km = 1/ µ = 0.64 at 10 rad/s, which would indicate that the system is not ro­

bustly stable. This proves how covering real parameter variations with complex

uncertainty can be arbitrarily conservative.

74

5.4.2 Example 2

We apply the previous procedure on a satellite attitude control design described

in [44].

The plant is modeled as two masses connected by a spring with torque constant

k and viscous damping d. The transfer function is,

10 (ds + k)
p(s) = s2 (s 2 + llds + llk) (5.33)

with nominal values k0 = 0.09 and d0 = 0.003. The controller derived in [44] is

(1.4s + 1) [(s/.9)2 + 1]
c(s) = 2 [(s / 25) + 1] 2 (5.34)

which although improper gives a strictly proper loop transfer function

l(s) = p(s)c(s). We express k and d ask= 8f, d = 8182 where

0.3 :::; 81 :::; 0.63
(5.35)

It can be shown that the closed-loop system remains stable for all parameter varia­

tions in (5.35). The performance objective is to obtain a good compromise between

tracking speed and accuracy of the pointing body.

We formulate this by requiring that the transfer function from command r

to tracking error e is small (in the oo-norm sense). We also want to avoid possible

saturation of the actuators by sensor noise and we require that the transfer function

from n to u is also small (see figure 5.4). The frequency dependent weights are

chosen to reflect our knowledge on the frequency content of the signals r and n.

Here we take Wr = 1/s and Wn = s/(2s + 1).

The feedback system of figure 5.4 is next rearranged as in figure 5.5, and the

robust performance theorem in [16] is applied by considering a complex block .6.b

around M(s, 8) as in figure 5.2.

75

A measure of performance in this framework is given by

77(h) = mJx er [M(jw, h)] (5.36)

Smaller 77(h) reflects better performance. We compute the worst performance for S

allowed by (5.35) by calculating 77* such that

rm(~·) def ie{m [k E [O, 00) I det (J + M(j;., k8)) = 0 for some

h in (5.35)]}=1

(5.37)

(see figure 5.6). We thus obtained 77* = 4.15 at frequency w0 and for a combination

of parameters k* = 0.397 and d* = 0.038. To check performance degradation due

to parametric uncertainty, we also calculate the nominal performance:

The percentage of nominal performance degradation is then:

77 - 770 xlOO = 38%
170

(5.38)

76

[Ab O]
0 Ap ,

- M(s) -

Figure 5.1: General A structure with real parametric and

complex block uncertainty.

.
Ab -

-
I -----------------------,

-

~11 M,J
-

M21 M22

' AP - -I I
I M (s,Ap) t
L--------------------~

Figure 5.2: Separation of parametric and complex uncer­

tainty.

r

77

Figure 5.3: Feedback system with two uncertain parameters

and unstructured dynamic uncertainty.

\ A / 1--___.-.1 + e
VVr C

u

Figure 5.4: Feedback system and performance weights.

n

78

r e-,......,

n M(s,~ u_
- -

Figure 5.5: General structure for robust performance analy­

sis.

! -------------

TJ

Figure 5.6: Robustness margin as function of the performance

measure.

79

Chapter 6

General uncertainty analysis

6.1 INTRODUCTION

In this chapter we extend the results of chapter 5 for the general uncertainty

structure of n real (possibly related) uncertain parameters and simultaneous struc­

tured dynamic uncertainty taking the form of m complex blocks.

More specifically we develop a procedure to compute the robustness margin rm

(see section 5.2) and through it the multivariable stability margin km and structured

singular value µ. The computation of these quantities is exact for the case of three or

less complex blocks and any number of real parameters. This is the same restriction

that applies to µ as explained in subsection 1.3.2 .

As a result, a powerful methodology for analyzing robust stability and perfor­

mance in linear time invariant feedback systems is obtained. Performance can be

defined in terms of the induced norm from certain external input signals to certain

output error signals of the system and it is treated by adding an extra complex "per­

formance" block[16l. Yet another description of performance can be the requirement

that the closed loop poles remain in a certain region of the left half plane for all

model perturbations. The latter can also be checked by this procedure by searching

over the boundary of this region instead of the usual frequency search.

The problem formulation is similar in spirit to the one given in section 5.2 and

is described in section 6.2. In section 6.3 we describe the main results, which are

applied to an example in section 6.4. This chapter is concluded in section 6.5 with

80

some final remarks.

6.2 PROBLEM FORMULATION

The statement of the problem will be similar to the one in last chapter, although

we are considering now a more general class of plants. The uncertainty structure

used throughout the thesis (see figure 5.1) is defined next:

A def { diag (~b, ~p) I ~b E Ab ~P E Ap} (6.1)

Ab def {diag(~i, .. ,,~m) I ~i E cr,xr; u(~i) :s; 1} (6.2)

Ap def {diag(b'i, .. ,,b'n) I b'i ER ; lh'il :s; 1} (6.3)

The nominal system is given by the rational transfer matrix M(s) which can be

subdivided into four blocks conformably with the dimensions of ~b and ~p• We thus

obtain figure 5.2 in which M (s, ~p) is described by the following Linear Fractional

Transformation:

(6.4)

For the system in figure 5.1 to be robustly stable it is necessary and sufficient to

check:

(i) M(s,.6.p) is stable for every .6.p E Ap,

(ii) µ4 b [M(jw, ~p)] < 1 V .6.p E AP , w E [O, oo).

Condition (i) states that the nominal plant with only real parametric uncertainty

must be robustly stable. It can be checked by evaluating

and verifying that kr(w) > 1 Vw. Condition (ii) is necessary and sufficient[16l for

the robust stability of the nominal plant with the real uncertain parameters fixed

81

at some values allowed by (6.3) and the complex uncertainty structure allowed by

(6.2). Checking condition (ii) is the main objective of this chapter.

From (i) and (ii) we can also derive the following expression for the multivariable

stability margin km (w):

(6.6)

where

Robust stability is equivalently expressed in terms of the robustness margin

rm(w), defined as:

(6.8)

where

It has been shown in last chapter that km and rm are equivalent in the following

sense:

Robust Stability ¢=} km(w) > 1 ¢=} rm(w) > 1 (6.10)

The calculation of µA.b is achieved by computing the upper bound in (1.5),

which is exact for the case of three or fewer blocks (m ::; 3) and tight in more

general cases[16l. This in turn leads to a lower bound rm for rm defined by

(6.11)

with

r m(w) def inf { k E [O, oo) I J~b o' [DM(jw, k.6.)D- 1
] ~ 1 for some .6. E Ap}

(6.12)

82

and 7J is defined in (1.8).

Similarly we can define km and km by changing the bound in (6.12) for the

maximum singular value from unity to 1/k. Since rm(w) is a lower bound on rm(w)

(equal to rm(w) when m < 3), robust stability is assured if rm(w) > 1 for all w. The

computation of fm(w) and by (6.11) of rm(w) is explained in the next section.

We will focus our attention on fm, since km (and thus km) can be computed

from fm by means of an iteration (see theorem 5.5).

6.3 MAIN RESULTS

In this section we derive an equivalent characterization of fm(w) defined in (6.12)

which allows its systematic computation.

We first define:

fm(w,D) def inf{k E [O,oo) I if [DM(jw,k~)n-1
] ~ l for some ~ E Av}

(6.13)

then fm(w) is the minimum k E [O,oo) such that:

for some~* E Ap. Let D* E 7J and such that

Then the following is true,

Theorem 6.1:

(6.14)

For fm(w,D) defined in (6.13) and fm(w) and D* satisfying (6.14) it holds: - -

(6.15)

83

The proof of theorem 6.1 requires a number of results. We first prove the following

characterization of convex functions.

Lemma 6.1:

Given a convex function f: nm--+ n, and Va, b E nm, let X>. def (1-..\)a + ..\b.

Then either

or V>.. E (0, 1) (6.16)

or 3..\ E [O, 1] such that X>. is a global minimum off, i.e.

(6.17)

Proof:

Assume that none of the conditions (6.16) or (6.17) hold. Then 3).* E (0, 1)

such that:

and

From the convexity off and from (6.18):

f(X>.•) ~ (1 - ..*)f(a) + ..* f(b) ~ (1 - ..*)f(X>.•) + ..* f(b)

~ (1 -).*)f(a) +)._* f(X>.•)

and f(X>.•) ~ f(a)

(6.18)

(6.19)

(6.20)

and by (6.18) then f(x>.•) = f(a) = f(b). If X>.• is not a global minimum off,

3 c E nm such that f(X>.•) > f(c). Assuming that X>.• E (a,c) by convexity,

f(X>.•) ~ (1 - p)f(a) + pf(c)
(6.21)

< (1 - p)j(X>.•) + pf(X>.•) = f(X>.•)

for some p E (0, 1), which is clearly a contradiction. The same contradiction is

84

obtained if X>.• E (b, c).

■

We can now prove the following:

Lemma 6.2:

Let D1, D2 E 7J and D>. = (l--\)D1 +-\D2 for A E (0, 1). The function fm(w, D)

defined in (6.13) satisfies (l)

or (6.22)

or

VD E 7J (6.23)

Proof:

Take D.>. E A.p such that:

(6.24)

and define

(6.25)

It is known that f(D) is convex in D[45l __ Then by applying lemma 6.1 we obtain,

or (6.26)

or VD E 7) (6.27)

From (6.24) and (6.26) we obtain

f(D1) > 1 or (6.28)

(l) Variable w has been droped for simplicity.

85

The function fk(D) def a- [DM (jw, kD.>.) n-1] is continuos with respect to k.

Fork= 0 we can assume without loss of generality that fo(Di) < 1 <2
) where i can

be 1 or 2. Since fork = fm(D>.) = l it holds J,(Di) > 1 (see (6.28)), we have that

fr(Di) = 1 for some r < l = fm(D>.). By the definition of fm(D) in (6.13) and from

(6.28) we obtain

(6.29)

Also (6.27) and definition (6.13) readily imply

\/DEV (6.30)

■

We are now in a position to prove theorem 6.1 .

Proof of Theorem 6.1:

Consider any D E 'D and let D' = 2D* - D. Then D*

identifying D 1 = D and D2 = D' in lemma 6.2 we obtain:

½(D + D') and by

(6.31)

From (6.31) and D* defined in (6.14), we obtain the desired result.

■

We next prove the following important property of the function fm(w, D).

Theorem 6.2:

The function f.m_(w, D) is strictly quasiconcave (3
).

(
2

) If fo(Di) ~ 1, then rm(Di) = 0 and it can be shown that rm(D) = 0 for all D. This in turn

implies that inf Dev it [DM (jw, 0 • .l) n- 1] ~ 1. If m ~ 3, then the system with only complex

perturbations (i.e. assuming that there is no real parametric uncertainty) is unstable and no further
testing is necessary. If m > 3, robust stability with only complex perturbations cannot be inferred
by the upper bound on µL!,,.b given in (1.5). Therefore our test which is exact with respect to real
parameter variations can not be conclusive either.
(3) As a reminder, a function f : nm ---+ n is called strictly quasiconcave iff

f(b) > f(a) ==> f[(l - ,\)a+ ,\b] > f(a)

86

Proof:

Assume that rm(D) is not strictly quasiconcave. Then :3.X* E (0, 1) and D1, D2 E

1) such that

(6.32)

But (6.32) contradicts lemma 6.2 and therefore theorem 6.2 is true.

■

The computation of rm(w) has been reduced in view of theorem 6.1 to a search

for the maximum of the quasiconcave function rm(w, D). For a fixed D, rm(w, D)

is computed by a technique explained in section 5.3. Briefly the procedure is the

following,

(i) Transform the condition <i [DM(jw, k.6.)D-1] < 1 to a condition on the roots

of a polynomial with coefficients being polynomic in the real parameters in ..6.p.

(ii) Apply Jury's test[41l to find necessary and sufficient conditions for all roots of

this polynomial to be inside the unit disc.

In this way Tm is obtained as

rm(w,D) = min{k1(w,D), ... ,kz_1(w,D)} (6.33)

where

i = 1, ... , l -1

(6.34)

and the g/s are polynomial functions in ..6.p, obtained from the Jury procedure.

(iii) Calculate ki(w, D), i = 1, ... , l - 1 by the procedure of chapter 3. For details

see chapter 5.

Va, b E nm and A E (0, l)f46l. Strictly quasiconcave functions have the property that any local
maxima are also globa1f47l, Therefore the computation of fm can be achieved by a straightforward
search procedure in view of theorems 6.1 and 6.2.

87

The procedure to compute km is similar to the one described in last chap­

ter and it is based on iterating on the calculation of rm. More specifically let

rm(K) def min{fm(K),kr(w)}, where now

fm(K) def inf { k E [O,oo) l ~~ba-[D.M(jw,k~)D-1
) :2: 1/K for some ~ E Ap}

(6.35)

It can be shown that fm(K) is a nonincreasing function of Kand that the iteration

Kn+1 = rm(Kn) converges to km which is a lower bound on the multi variable stability

margm:

km= lim Kn
- n--+oo

(6.36)

for an arbitrary Ko.

Remarks:

(i) The calculation of rm and km requires the computation of fm as defined in

(6.34) and (6.35). The functions 9i(·) in the last equation are polynomic in

the parameters, therefore the procedure described in [13] rather than the one

in [11,12) should be applied. The fact that these functions are real valued,

simplifies this algorithm and increases significantly the speed as compared to

the general case. This can be found in detail in chapter 3.

(ii) The procedure to compute rm is reduced to a finite number of real stability

margin calculations at each fixed D. The problem in (6.15) can be solved by

means of a nonlinear optimization program.

(iii) A frequency search over the jw-axis is required when analyzing robust stability

as well as performance when the latter is treated by adding an extra "perfor­

mance" complex block to the uncertainty structure[16l. If instead performance

is defined as the inclusion of the closed loop poles in a certain region of the

left-half complex plane, we should search over the boundary of this region.

88

(iv) For high dimensional problems, obtaining the polynomials 9i(w, D, l:l.p),

i = l, ... , l - l in (6.35) can be tedious and even risky when done by hand.

The development in the recent years of programs for symbolic manipulations

should resolve this situation.

6.4 EXAMPLE

We consider a feedback system with loop transfer function L(s) given by:

g 103 (1 + s/30)2

L(s) = (p + s)(l + 10s)(l + s/100)2(1 + s/300) [l + 82 (s)]

We assume that the pole p and the gain g are uncertain with variations

J83J < 0.5
Jo4J < 0.2

and that 82(s) represents fast neglected dynamics that satisfies:

(6.37)

(6.38)

(6.39)

We also require a minimum amount of disturbance rejection, so we add a "perfor­

mance" complex block with weight W1 (s) to meet this specification. The closed

loop system is redrawn in figure 6.1 with weights and nominal system given by

L
8

_ 103 (1 + s/30)2
o() - (1 + s)(l + 10s)(1 + s/100)2(1 + s/300)

(1 + s)
Wi(s) = lO(s + 0.01)

W2(s) = (1 + s/10)
10

(6.40)

W3(s) = 0.5L0 (s)

-0.2
W4(s) = (s + l)

89

This system is next rearranged in the form of figure 1.1 where b. contains two

complex 81 and 82 and two real parameters 83 and 84 • For this example we obtained

being m = 2,

and km= km= 1.70

achieved at low frequencies and 3.88 rad/s respectively, with scalings

Dr = diag[3.1, 1] and Dk = diag[0.98, 1]. Therefore the system satisfies our per­

formance criteria for all possible parameter variations. The worst combination of

real perturbations is (83 , 84) = (-0.5, 0.2) and (-0.5, -0.2) respectively.

For this example we also checked robustness by calculating the Structured sin­

gular valueµ and obtained km= 1/ µ = 0.67 at 10 rad/s. Althoughµ was computed

for m = 4 complex blocks (81 to 84) the upper and lower bounds on µ were tight,

which would indicate that we do not have robust performance. This shows that

treating real parameters as complex can be very conservative.

6.5 CONCLUSIONS

The problem of robust stability and performance in feedback control systems

with n real (possibly related) uncertain parameters and structured unmodeled dy­

namics, the latter taking the form of m complex blocks dynamic uncertainties has

been considered. We have shown that that the robust stability of a system with any

number of real uncertain parameters which can be related to each other and com­

plex blocks can be checked by computing lower bounds rm and km for the robustness

margin rm or the multivariable stability margin km respectively. The calculation of

rm is accomplished by a finite number of multivariable stability margin computa­

tions for real parametric uncertainty and a nonlinear programming search over the

scaling matrices D. The calculation of km is done by iterating on the procedure

that gives 'T'm,

90

The main contribution of this chapter and of the thesis is the generalization of

the uncertainty structure described in subsection 1.3.2 by introducing any number

of real parameters without adding any conservatism to the problem. In some sense

it combines the procedures in subsections 1.3.1 and 1.3.2 to solve the most general

case of uncertain FDLTI systems.

91

Figure 6.1: Feedback system with two uncertain parameters

and structured dynamic uncertainty.

92

Chapter 7

Program statistics and performance

7.1 INTRODUCTION

This chapter presents the results obtained from the computation of the Multi­

variable stability margin over a great number of random examples using the pro­

grams described in Chapters 2 and 3. Different questions concerning the perfor­

mance of the programs are considered and a comparison of certain characteristics

for the two different implementations of the code are made.

As we have described before, the program to compute the multivariable stability

margin can be implemented in two different ways. One of them is by taking the

mapping function to be the closed loop characteristic polynomial of the system the

robust stability of which is analyzed. The second implementation was described in

Chapter 3 and uses as mapping functions, the polynomials obtained by applying

the Routh-Hurwitz stability criterion to the closed loop characteristic polynomial.

These functions are now real-valued, which simplifies significantly the code, besides

eliminating the required search over frequencies.

Furthermore in both implementations we can find cases of independent and

related parameters which lead to multilinear and polynomial functions of the un­

certain parameters respectively. Although conceptually both situations are handled

in a similar way, the amount of computation in the latter case increases as it should

be expected. This leads to four different situations which should be analyzed and

compared with each other.

93

The implementation of the program with a real valued mapping can arise

either when analyzing robust stability for real parameter variations using the

Routh-Hurwitz criteria or when doing the analysis for a combination of real and

complex perturbations. It is very unlikely that in any of these situations we will

obtain a mapping function which is multilinear in the uncertain parameters, even

when the closed loop characteristic polynomial is so. Furthermore a multilinear real

function will always achieve the origin at the image of a vertex of the hypercube. It

makes sense then to do the analysis only for the real mapping function in the case

of related uncertain parameters.

In summary we consider next the following three cases:

(1) Independent parameter case (multilinear function) with complex mapping.

(2) Related parameter case (polynomial function) with complex mapping.

(3) Related parameter case (polynomial function) with real mapping.

For all of them we have chosen a general polynomial structure whose coefficients

(real or complex) have been selected at random. The criteria to choose a particular

structure (i.e. fix the number of parameters and terms) was a compromise between

having a sufficient number of parameters so that the structure of the mapping

function could be considered generic and on the other hand to keep computational

time for each example reasonable so that an ensemble of good size could be acquired

and many different features could be checked.

Thus a general multilinear function of 5 parameters was choosen to be the map­

ping function for case (1) and a general polynomic function of 3 parameters for cases

(2) and (3) above. In this last structure, the first parameter is cubed, the second

squared and the last is linear, being equivalent to 6 parameters subject to three

equality constraints. More specifically the mapping function in these situations is

94

the following:

5

f (p) = I: Ci Pi + I: Cij PiPj + I: Cijk PiPjPk + L Cijkl PiPiPkPl

in (1) and

i,j
i#j:5,5

which is transformed by doing pf= f51fi2fi3, p~ = j54j55 and p3 = P6 subject to

(7.1)

(7.2)

(7.3)

in (2) and (3). Although most of the examples had the structures shown above,

other structures with different number of parameters have also been tested. The real

parameters vary in the range Pi= 1 ± 0.5 and similarly for p. All coefficients Ci EC

(or 'R) have real and imaginary parts equally distributed inside the interval [-5, 5)

and are obtained as outputs of the F77 random number routine, each example being

generated by a different "seed".

7.2 MULTILINEAR COMPLEX MAPPING

The number of random examples considered in this case was in the or­

der of 2000. The probabilities of occurrence of an event are simply taken as

(No. of ocurrences/Total No. of samples). In the following the data is presented

and comments over the different issues that have been analyzed are made.

95

(i) The combination of parameters that will actually achieve the origin of the com­

plex plane can be either a vertex, an edge or in general an m-dimensional face,

where m ~ 5. The data obtained for all samples is shown in Table VII.1 and

a brief explanation follows. It has been proved in (351 that at most the image

of a 2-dimensional face will map to the origin, a generic result for polynomi­

als that are multilinear in the parameters. If we assume that any point on

the boundary of the image of the hypercube has the same probability of first

reaching the origin, then this probability will be proportional to the amount of

perimeter covered by each type of perturbation. Then we only need to analyze

the perimeter of the image of a 2-dimensional face and relate it to the different

perturbations, as seen in figure 7.1. A subset of the vertices of the hypercube of

parameters will map to the "vertices" of the image, a set of measure zero over

the whole perimeter which would make the probability of vertices to be zero.

There are two reasons why we obtain a small but nonzero probability, one is the

finite precision of the machine that assigns a finite nonzero part of this perime­

ter to the image of the vertices. The second is that by the form we have set the

function in (7.1) it is similar to having a multilinear function in the parameters

at a randomly distributed set of frequencies. We have found that the percentage

of occurrence of vertices increases drastically for particular frequencies as will

be explained in section 7.4. By distributing these high probabilities over the

whole frequency range we will obtain as a result this nonzero percentage in this

case. From the same figure we can see that most of the perimeter is the image

of edges of the hypercube, which is supported by the data. This is important

in the sense that for a first approach we only need to check the images of these

edges, obtaining in that way a good upper bound estimation of km, The image

of the inside of a 2-dimensional face maps to the boundary of the image in cases

96

where there is a "crossing" of edges (figure 7 .1) and gives a small part of the

total perimeter. The fact that there are no higher order faces that will reach

the origin supports the result in [35]. The same percentages have been obtained

when changing the number of parameters to 3, 5 and 9.

(ii) As explained in Chapter 2, when the lower bound has been reached either by

the image of a vertex or an edge, upper and lower bounds coincide and no

partitioning is necessary. The probability of this situation to arise before any

partitioning has been made is 55. 7 %, so in more than half of the samples we

obtain the exact answer at the first stage of the computations. Under the same

assumption we had in (i), this percentage tells us which is the relation between

"exposed" and "hidden" perimeter of the image of the hypercube as seen in

figure 7.1. Of course this does not include all cases where after partitioning

we also obtain an edge, which explains the difference between the 90.5% of

Table VII.I and the percentage given above.

(iii) In the search for the lower bound of km we proceed by selecting with a certain

criteria two possible candidates for the critical vertices and later checking if

they are so. By carrying out a statistics of the number of iterations needed at

this stage to find the actual critical vertices, we can conclude that the selection

strategy is very efficient. This is showIJ. in figure 7 .2 where we can see how in

most of the cases, the actual pair of critical vertices were obtained at the first

choice.

(iv) At a certain partition r of the hypercube, if the lower bound kz; of domain i

is higher than the upper bound of the last partition ku(r-l) we can eliminate

this domain. This avoids the upper bound computation of ku; on this type of

domains, which are called unbounded. Two different statistics have been made

over this issue. The first issue is the probability of having unbounded domains on

97

a partition and is plotted in figure 7.5 as the percentage of cases over the ensem­

ble of samples that contain unbounded domains, as a function of the partition.

We can see that this probability increases to 100 % as we continue partition­

ing. A possible explanation of this fact is that when dividing the hypercube,

the upper and lower bounds of the next partition get tighter, then the domains

not containing the offending perturbation(l) have higher probabilities of being

rejected because the difference between their bounds and the complete parti­

tion bounds will increase. The second issue applies to the partitions that have

unbounded domains and gives the percentage of these over the total number of

domains on that partition. This is also plotted as a function of the partition in

figure 7.3 where we can see that around half of the domains are unbounded at

these partitions, a fact that reduces significantly the amount of computation.

(v) When all the domains of a partition have been evaluated and all unbounded

domains eliminated, we proceed to determine the new upper and lower bounds

of partition r. At this point we can still eliminate domains by comparing their

lower bounds with the upper bound of the new partition kur• The difference

between these, defined as discarded domains and the unbounded ones in (iv) is

that the former are eliminated after computing both upper and lower bounds,

while the latter are eliminated without the need to compute their upper bounds.

Discarded domains can arise when the upper bound of the partition r decreases

with respect to partition (r - 1), otherwise no new domains will be eliminated

other than the unbounded ones. The same statistics as in (iv) are performed

here. In figure 7.4 we can see the percentage of domains that have been elim­

inated at each partition both discarded and unboun.ded. By comparing with

(l) The offending perturbation is defined as the combination of parameters that first reaches the
origin while increasing k.

98

figure 7.3, we can see that actually most of them have been eliminated in the

first stage (i.e. are unbounded). In figure 7.5, we compare the probabilities of

having discarded and unbounded domains as a function of the partition num­

ber. As before the difference among them is very low. From these facts we can

conclude the following. Most of the domains are eliminated when computing

their lower bounds, which saves more than half of the work. Second, as we

continue partitioning we have seen that the number of new discarded domains

are reduced almost to zero. This implies that after several partitions, the upper

bound tends to remain constant while the lower bound will increase, a fact that

has also been observed independently.

(vi) The opposing phenomena of partitioning and elimination of domains at each

stage will result in an increase in the amount of computations as we look for

the convergence of lower and upper bounds of km, so it is important to know

the rate at which the number of domains increase. In figure 7.6 we compare

the average number of domains at each partition with a linear growth at unit

rate. We can see that the whole algorithmic procedure could be computed in

polynomial time if we can find a way to compute both upper and lower bounds

in this way, not being the growth of domains an issue.

(vii) If we only want to compute the lower .bound of the whole hypercube with no

further subdivisions, it would be convenient to know how good an estimate this

is for km. In the average, considering all cases there is a high probability of

having k10 w 2 % below the actual km. This is mainly due to the fact that as

seen in (ii) more than a half of the samples find exactly the stability margin

by computing only the first lower bound. Even when excluding these cases the

average error increases only to 6 % below the actual km. In all cases considered,

the peak error was found to be 38 % below the actual margin.

99

(viii) In terms of the time to compute lower and upper bounds, the first computation

takes 8 seconds while the second one 14.5 in the average over all examples

considered, on a SUN-2/350. Also total computation times have been plotted

as a function of the number of parameters in figure 7 .14, the increase being near

exponential in average, as expected. In this last test special care has been taken

so that the timing differences would not be influenced by the different number

of terms of the mapping function for every different number of parameters. A

constant number of terms where chosen at random in defining the mapping

function for all 3,5, 7 and 9 parameters.

Some final remarks for the multilinear case follow. The testing of a large num­

ber of random samples has stressed the following: the strategy of selecting a priori

critical vertices in the low bound search and eliminating domains before the cal­

culation of the upper and lower bound of the partition proves to be efficient in

terms of computations. The linear growth of the number of domains shows that the

increase in domains is not an issue in the search for a polynomial time algorithm

to compute km. Furthermore in many cases (55.7%) these domains have coincident

upper and lower bounds which means that not only they will not undergo further

partitions, but also that they will not need to be recomputed. Finally an empirical

justification of the statistical results based on the fact that generically only vertices,

edges or 2-dimensional faces can reach the origin[35l was discussed. Some typical

plots of the image of the multilinear complex polynomial function with a vertex, an

edge and a face as the offending perturbation, can be seen in figures 7.7, 7.8 and

7.9 respectively.

100

Vertex Edge Face n-dimensional face (n > 2)

0.9 % 90.5 % 8.6 % None

Table VII.1

7.3 POLYNOMIAL COMPLEX MAPPING

The number of random examples considered in this case was on the order of 250.

The mapping function is the one in equation (7.2) with random complex coefficients

(c1 , ••. , c23). The same issues of section 7 .2 have been analyzed and the results are

presented next.

(i) The combination of parameters that can achieve the origin of the complex plane

can be a vertex, an edge or a face as in the multilinear case, but also in general

any n-dimensional face. We cannot apply the generic result for multilinear

mappingsl35] to this situation although the mapping function is multilinear in

the generalized set of parameters, because we now have the set of constraints

(7.3) that have to be met. For the mapping function (7.2) this means that

the origin can be reached ranging from vertices to 5-dimensional faces. This is

supported by the results shown in Table VII.2.

(ii) The situation in which the first intersection of the origin is by a vertex or an edge

of the constrained set of parameters p, such that lower and upper bounds of the

whole hypercube are coincident arises only in 10.5 % of the cases. This means

that in most of the samples we had to partition to obtain the exact value of km.

This is due to the fact that the set of constraints (7.3) adds a new requirement

in obtaining this kind of situations, reducing its probability of occurrence as

compared with the multilinear case. This is also one of the reasons why, in the

average, the computation of the multivariable stability margin in the related

101

parameter case is slower.

(iii) The search for the lower bound of km is exactly the same as in the multilinear

case. Then the same comment applies to the selection of the critical vertices we

had in section 7.2 (iii).

(iv) The probability of having unbounded domains increases as we continue parti­

tioning although it reaches a high probability at a latter stage. The percentage

of unbounded to total number of domains at a partition is now smaller than in

the multilinear case and goes from 15 % to 40 %, depending on the partition.

Both these facts also contribute to increase the computation time, the reason

being the following. Since there are not as many unbounded domains as in the

multilinear case and if the probability of even having unbounded domains at a

given partition is lower, then the number of domains to be computed will be

larger than in the independent parameter case.

(v) The same as in (iv) can be said concerning the regions discarded after evaluating

upper and lower bounds of all domains in a partition. The only similarity with

the multilinear case is that we still have most of the domains eliminated being

of the unbounded type. This again supports the strategy of eliminating the

domains at the early stage of the lower bound computation.

(vi) For the reasons given in (iv), we have a higher rate of increase in the domains

than in the multilinear case. Although this fact, we can see in figure 7.10 that the

increase in the number of domains is above the linear growth but still well below

the parabolic and exponential increase. Ideally the linear growth of domains is

achieved when (in average) half the domains need further subdivision and no

domains are eliminated. The exponential growth occurs when all domains are

subdivided and kept after each partition. The related parameter case seems to

be in between these two situations.

102

(vii) The discrepancy between km and the lower bound of the whole hypercube is in

the average around 22 % with a peak value of 62 %. This is due to the facts that

only in 10.5 % of the cases we find km = k10 w = kupper at the first computation

of the lower bound and also that a larger variety of perturbations can achieve

the origin (see Table VII.2).

(viii) In terms of the time to compute the lower bound it was found similar to the

multilinear case being both procedures identica1<2). As explained in Chapter 2,

the main difference between the independent and related parameter cases is in

the upper bound computation. In the latter the search is carried out over edges

of the constrained set, but to guarantee that one of these edges has crossed the

origin, we need to check that a particular convex set that contains that edge

(see subsection 2.3.3.2) has crossed completely the point z = 0. This is the

main reason why there is a big difference in the computation time of the upper

bound ku with respect to the independent parameter case.

The main conclusion for the related parameter case is that although the speed

1s slower than in the multilinear one, this is mostly due to the increase in the

number of computations to achieve the upper bound and lesser to the growth in the

number of domains after each partitioning. Also there is a significant difference in

the kind of perturbations that can first reach the origin. This can be appreciated

by looking at the image of a sample function f(p1 ,p2 ,p3) in figure 7.11 as compared

with figures 7.7, 7.8 and 7.9. We can see now that the convex hull determined by

the vertices of this figure no longer contains the complete image off (·).

(2) The different number of parameters in the multilinear and related parameter cases analyzed
was taken into account to draw this conclusion.

Vertex Edge

1.1 % 29.1 %

Face

24.5 %

103

3-D face

36 %

Table VIl.2

7.4 POLYNOMIAL REAL MAPPING

4-D face 5-D face

8.1 % 1.2 %

When the mapping function is real valued (see chapter 3) although the algorithm

remains the same, the implementation changes considerably. The main modification

is that now instead of looking for lines connecting pairs of vertices intersecting

the origin, we check only for individual vertices mapping onto the origin. This

eliminates many troublesome situations (see section 2.3.2 and 2.3.3.2) in the lower

bound search and also the need for an algorithm that generates neighbor vertices in

the upper bound search as the one described in Appendix 2.5. The logic that checks

if the convex hull of a generalized constrained edge goes completely over the origin

is also eliminated, being this the main reason for the difference in computation

time between independent and related parameter cases under a complex mapping,

as explained in section 7.3-(viii). Also the computation time of lower and upper

bounds will now be related by the ratio of all 2n vertices to the subset of these

vertices we check to find kupper, as opposed to the complex mapping cases where the

lower bound is achieved faster than the upper one.

Finally there is a very important reason that establishes the main difference

in computation time for the real mapping case, that is the following. If we take a

general multilinear CLCP as a function of frequency and perform the Routh-Hurwitz

stability test, we obtain general real polynomic functions of the parameters that are

products and sums of general multilinear real functions. The positivity of these

functions is evaluated by the real mapping implementation of the program which

104

will determine the stability margin, i.e. the lowest value of k at all frequencies for

which the complex image of the CLCP reaches the origin. By experimenting with

a general CLCP it was found that the percentage of vertices being the offending

perturbations increased drastically when analyzing the function at the most critical

frequency as compared with the result obtained from Table VII.I which is general

for any frequency. This means that not only we eliminate the frequency search but

also the mapping functions we analyze have a much greater probability of having

a vertex as the offending point. In fact many of them will be real multilinear

functions which will always reach the origin at a vertex. Otherwise we will search

over frequencies with greater probabilities of having to go through partitions or

costful computations.

The number of random examples considered in this case was on the order of 2000.

The mapping function is the one in equation (7.2) with random real coefficients

(c1 , ••• , c23). Other structures and number of parameters have also been tested.

The results are presented next.

(i) The combination of parameters that can first achieve the origin of the complex

plane can be a vertex, an edge, a face or in general any n-dimensional face. It

was found that almost all perturbations where at the vertices of the hypercube,

with a lower percentage of faces and 3-dimensional faces. No edges or higher

order faces where found. The explanation of the difference with the complex

mapping of section 7.3 has been detailed above. The percentages of each type

of perturbation are shown in Table VIl.3. This same test was performed over

other structures and number of parameters. With the same number as in (7.2)

but where each parameter is squared we found that the percentage of vertices

obtained was also around 90%. When the number of parameters was reduced

to two, both squared, this percentage was 66%.

105

(ii) The situation in which we first reach the origin by a vertex of the constrained set

with no further partitions needed, appears in 33. 7 % of the cases. This is better

than in the complex mapping case, although not as good as in the multilinear

complex map case. The reason as before is that the set of constraints (7.3) adds

a requirement which reduces the probability with respect to the multilinear

case of stopping the search at the first stage. This result was the same when we

changed the structure and number of parameters as in (i).

(iii) In the search for the lower bound of km we now only need to find a single critical

vertex. The same strategy has been used in selecting a priori this vertex, and

the results are even better than in both complex mapping situations. There

were no samples in which the selected vertex would have to be changed more

than 4 times, being 83 % of the times the first choice the correct one. The plot

can be seen in figure 7.12.

(iv) The pattern in the analysis of domains that are eliminated at the k10 w search

stage (i.e. unbounded) and the ones eliminated after all domains in a partition

have been evaluated (i.e. discarded), is similar to the one in section 7.3. This

means that this behavior is inherent to related parameter cases, which in general

tends to increase the amount of computations as compared to the multilinear

case. This issue seems not to be an important drawback in this case though.

(v) The same can be said concerning the growth of domains at each partition, being

a direct consequence of the analysis in point (iv). The plot is shown in figure 7.13

compared with the linear, parabolic and exponential growths.

(vi) The difference between km and the lower bound of the whole hypercube is in

average around 10.5 % with a peak value of 56 %. This seems to be much better

than the related parameter case with complex mapping, but this is only because

we now have a higher percentage of cases that obtain the exact km at the first

106

stage of computations, as compared with the percentage in section 7.3.

(vii) Another reason why the speed of computation of the stability margin is dra­

matically increased is because the speed to compute lower and upper bounds is

much higher than in the complex mapping cases. The different implementation

described in Chapter 3 and at the beginning of this section support the results

of 1.13 seconds to compute k10 w and 0.62 seconds for kupper in average. Also due

to the arguments given at the beginning of this section, the upper bound takes

less time than the lower one. The total time for different number of parameters

is plotted in figure 7.15 and can be compared with the computation time in

the multilinear complex case of figure 7 .14. We can appreciate that it is ten

times faster than the computation of a single frequency point of the multilinear

case. The same procedure to allow a constant number of terms in the mapping

function has been taken into account as mentioned in section 7.2-(viii).

The main conclusion for the related parameter case under a real mapping func­

tion is that not only it is much faster than both complex mapping cases, but it

also offers the possibility of obtaining a very good upper bound of km by checking

the vertices of the constrained set. Taking into account that also the computation

of the lower bound k1ow is in average 10.5% below the actual stability margin, an

efficient computation for this case would be to check all vertices of the hypercube

without further subdivisions.

Vertex Face 3-D face Other

90.3 % 1.65 % 8.07 % None

Table VIl.3

V3

v,

400

300

200

100

0

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

107
,Itn

Tu' ' ' ' ' 'fO(f)
V4 ' ' ' ' ' ' ..

M
'\

' '\
'!f

' V2 '

Figure 7.1: Image of a square showing "exposed" perimeter

(in the convex hull boundary), "hidden" perimeter (strictly

inside convex hull) and proper face image over the boundary

(11).

~ I'--_
I I I I I I I I I I I I I I I I

0 5 10 15

Figure 7.2: No. of samples vs. No. of iterations to find

critical vertices.

' Re

20

108
100

-
IO

-

60

·r---_
40

-

20

-

0 .. • I I I o o . , I I ' ' .. . I ' I I • .
1 2 3 4 s 6 ,

Figure 7.3: Unbounded domains/total domains in a parti­

tion(%) vs. Partition.

100

-
80

-
60

·r---. ---~ ~ ----- - - - - ------r------
40

-
20

-
0 I I I I I I I I ' ' ' . I . ' '

1 2 3 4 s 6 ,

Figure 7.4: Thick line: Domains eliminated/total domains in

a partition(%) vs. Partition. Dashed line: same as figure 7.3.

109

125 --.
.

100

'15 /.
r--.. ,----- ----- , ,

~ , . ,

. ------.
I

so

.

/
, , . ,

- ,
--;,' - ,

I - ~

-
25

-
-
--

0 I I I I I I l I

1 2 3 4 s 6 1 8

Figure 7 .5: Thick line: Samples with domains elimi­

nated/total samples (%) vs. Partition. Dashed line: Samples

with unbounded domains/total samples(%) vs. Partition.

10-.---~--~----,-----,-----,------,----,

e-+---+---+---+---+----t----,t.:c....-----1

Figure 7 .6: Thick line: Average increase in domains vs. Par- .

tition. Dashed line: Linear growth vs. Partition.

110

Figure 7.7: Multilinear complex function image, offending

perturbation at a vertex. Upper-left: Image of edges of hyper­

cube.

Figure 7.8: Multilinear complex function image, offending

perturbation at an edge. Lower-left: Image of edges of hyper­

cube.

111

Figure 7.9: Multilinear complex function image, offending

perturbation at a proper face. Upper-left: Image of edges of
hypercube.

50-r---.....,....--~---,---.,.----,-,----..-----.

I
I I

I I
40-,..-----t-----t------+

I
I /

/

1 2 3 4 5 6 7 8

Figure 7.10: Thick line: Average increase in domains vs. Par­

tition. Small dash line: Linear growth vs. Partition. Medium

dash line: Exponential growth vs. Partition. Large dash line:

Parabolic growth vs. Partition.

112

Figure 7 .11: Polynomial complex function images.

113
800

.

600

-

400

.

200

-

0 I ' I T I I I I I I I I I I I

0 5 10 15 20

Figure 7.12: No. of samples vs. No. of iterations to find

critical vertices.

50
- I

- I I

- I I
- f I

40 I I -
- I V
- I /

30

20

10

- /
- I /
- I /

I/
- //·
- 1/
- y
- / L---'" - ~~ / ---- ---- ...-:::

.,, V -----
- ✓-✓ ~ ----- ----

.,,,,,.;;-::-::' ------ -
c:;;;::c-

0 I I I I I I I I I I I I 1 l I I I I I

1 2 3 4 5 6 7 8

Figure 7.13: Thick line: Average increase in domains vs. Par­

tition. Small dash line: Linear growth vs. Partition. Medium

dash line: Exponential growth vs. Partition. Large dash line:

Parabolic growth vs. Partition.

114
eoo--.----...----.----...-------.----~----,

600-+--------------------------,

Figure 7.14: Average total computation time vs. No. of

parameters. M ultilinear complex case.

so~----.-----.----~---,-----,-----,

3 4 5 6 7 8 g

Figure 7.15: Average total computation time vs. No. of

parameters. Related real case.

115

Chapter 8

X29 aircraft example

8.1 INTRODUCTION

In this chapter the program that computes the Multivariable Stability Margin

has been applied to the analysis of the NASA X29 experimental aircraft. The

lateral-directional control system design has been selected for this analysis because it

represents a true multivariable control loop with coupling between roll and yaw axis.

The longitudinal axis control system instead consists basically of two independent

SISO loop systems.

This aircraft was analyzed in Chapter 2 using a simplified model description

at Mach 0.6 and 15,000 ft. flight condition. Now the complete model of plant

and controller have been taken into account to test for robust stability and will be

detailed in section 8.2. In Section 8.3 we explain the results of this analysis.

8.2 MODEL

Before presenting the equations of plant and controller, the terminology[4s]

throughout this chapter is defined according to figure 8.1.

ay Lateral acceleration (g)

b Reference span (ft)

Coefficients of roll and yaw moments

Coefficient of lateral force

Acceleration of gravity (32.2 ft/s 2
)

H

m

p,q,r

if

s

T

V

(3

116

Roll, pitch and yaw axis moments of inertia (slug-ft2
)

Roll and yaw axis cross inertia (slug-ft2
)

Altitude (feet)

Mass (slugs)

Roll, pitch and yaw rates (rad/s)

Dynamic pressure (lb/ft2
)

Reference area (ft2
)

Sampling period (0.025 s)

Velocity (ft/s)

Angle of attack (rad)

Sideslip angle (rad)

Aileron and rudder deflection (rad)

Pitch and roll attitude (rad)

The lateral-directional model for this aircraft was obtained from NASA[43l and

is described by the following equations:

a ijS C · g · ,1.. 0
/J = m V y + p sm a - r cos a + V sm 'I-' cos

plx - rlxz = qSbCr + rq(Iy - Iz) + pqlxz

r Iz - plxz = qSbCn + pq(Ix - Iy) - rqlxz (8.1)

J = p + q tan 0 sin <p + r tan 0 cos <p

ijS C Zay . + Xay.
a=- y--p -r

Y mg g g

where
Cy= Cy13 {3 + Cy6aba + Cy6rbr

pb rb
C1 = C113 (3 + C16a8a + C16r8r + Crp 2V + Crr 2V (8.2)

pb rb
Cn = Cn13 f3 + Cn6aba + Cn6rbr + Cnp 2V + Cnr 2V

117

are the aerodynamic coefficient equations. The subscripts (3, 8a and 8-r are the

variables with respect to which the derivatives of Cy, C1 and Cn are taken, e.g. Cy
13

represents the derivative of the lateral force coefficient with respect to sideslip angle.

These derivatives are obtained by usual parameter identification methods applied

to the experimental data. From this procedure we will obtain an error bound on

some of the parameters, in particular in the C1 and Cn equations.

The state space form of the above equations considering the input from the

differential flap and aileron as u = [8a 8l and the output as y = [p r </> ay r
· is:

Ex=Ax + Bu

y=Cx + Du
(8.3)

the realization being [E-1 A, E-1 B, C, D]. These matrices contain explicitly the

uncertain parameters C113 , Cn13 , C100 , Cn00 , C16r and Cn6r as follows:

[~
0 0

~] E=
Ix -lxz

-Ixz Iz
0 0

[qmCv,
SlnQ'. - cos Q'. v~f°] A= qsC113 -a22 a23

qsCn13 a32 -a33

0 1 tan0 a44

[qmCY,0 qmCv,; l
iJ = qsC16a qsC16r (8.4)

qsCn6a qsCn6r
0 0

[0
1 0

~] C= 0 0 1

qg~Y/3

0 0
-Zay Xay

g g

D= 0 [0

qgiY6a JJ

118

The state is x = [/3 p r <Pr and the following definitions hold,

q9 = ijS/mg

a44 = q tanB

(8.5)

(8.6)

(8.7)

The four open loop poles we obtain from the above model are the following. The

"dutch roll" is a complex conjugate pair of poles that apply to both the yaw and

roll axis. The "roll mode" is a stable real pole and finally an unstable low frequency

pole, defined as the "spiral mode" .

The controller structure for all flight conditions is the following (see figure 8.2):

with

I<a(s)=

and

'[A1(s)Z(s) [(Xkp3 + Xki3T/2) + xki3/s] 0 l
0 Ar(s)Z(s)Xkp4

(Kb)n = Pi(s) · Sp(s) · [K2 - a· Blend· L(s) · K3]

(Kb)12 = 1{3 · Sr(s) · Fr(s) · P1(s) · L(s)

(I{b)13 = -1{3 · P2(s) · L(s) · g · Blend/V

(Kb)14 = K4 · Fa(s) · Pi(s)

(Kb)21 = Pi(s) · Sp(s) · [K16 - a· Blend· L(s)]

(Kb)22 = I<17 · Sr(s) · Fr(s) · Pi(s) · L(s)

(I<b)23 = -I<17 · P2(s) · L(s) · g · Blend/V

(Kb)24 = K1s · Fa(s) · Pi(s)

(8.8)

(8.9)

(8.10)

119

The elements of each matrix are the following:

A1(s)

Ar(s)

Z(s)

Pi(s)

P1(s)

Sp(s)

Sr(s)

Fr(s)

Fa(s)

L(s)

8.3 RESULTS

4th order differential flap actuator model.

4th order rudder actuator model.

Pade approximation for time delay due to sampler & hold.

Roll, yaw and lateral acceleration channels prefilter.

Roll attitude channel prefilter.

2nd order roll rate sensor model.

2nd order yaw rate sensor model.

2nd order yaw channel notch filter.

2nd order latteral acceleration channel notch filter.

Digital filter L(z) transformed via Tustin to analog model.

The robust stability analysis was made over two different flight conditions. The

first one is the nominal linearization point for designing the controller structure.

The second one is a critical flight situation at sea level and with high angle of

attack. This last condition has only been checked through simulations, but there

has not yet been any flight tests. Both conditions can be seen in Table VIII. 1.

No. 1 No. 2
Mach No.: 0.9 0.4

Altitude: 30,000 feet sea level

a: 3.78° 30°

V: 895 ft/s 447 ft/s

0: 3.81° -60°

q: 0 °/s 24.62 ° /s

q: 357 lb/ft2 237 lb/ft2

Table VIII.1

120

A different linear model is obtained at each flight condition and although the

structure of the plant and controller models does not change, their parameter values

do. In the controller these parameters are K2 through K 18, Xkp3, Xki3, Xkp4 and

Blend. In the plant there are also changes in all aerodynamic coefficients derivatives.

Among them, the uncertain parameters will have different nominal values and error

bounds.

To apply the program computing the stability margin to this example, we find

the closed loop characteristic polynomial f (s, .6..) as a function of the uncertain

parameters mentioned before. This is:

G (s, .6..) = D + C [sE - A (.6..)r
1

iJ (.6..)

f (s, .6..) = det [I+ K(s)G(s, .6..))

.6.. = diag [81 ... On]

(8.11)

were Di are the error bounds of parameter Pi around the nominal value Poi• In this

procedure we need to keep track of the uncertain parameters in a symbolic way,

to follow the exponents of each parameter in the final equation. This is important

in defining the canonical constraints as in equation (2. 7). In this case the function

f (·) is linear in all parameters except the first two ones which are squared. The

generalized set of parameters and equality contraints are:

Pl = P2 = Cz/3 = Pol ± 81 = Po2 ± 82

P3 = P4 = Cn13 = Po3 ± D3 = Po4 ± D4

Ps = C100 = Pos ± 8s

P6 = Cnoa = Po6 ± 06

P7 = Czor = Po7 ± 07

Ps = Cnor = Po8 ± Og

(8.12)

121

The nominal values will be different at each flight condition and the variations

around the nominals will be:

81 = 82 = 33.3%

85 = 12.8% 86 = 58.0% 81 = 18.9% 8s = 14.3%

for the first linearization point and

81 = 62 = 33.3% 83 = 84 = 11.1%

85 = 32.0% 86 = 63.6% 67 = 685% 6s = 22.6%

for the second one.

(8.13)

(8.14)

The multi variable stability margin km(w) was computed in both cases at several

frequency points. The plots of km versus frequency can be seen in figures 8.3 and

8.4. The minimum value was km = 3.15 achieved at w = 3.5 rad/ s in the first case

and km = 2.89 at w = 10 rad/sin the second one, thus obtaining a robustly stable

closed loop system in both situations. The mapping of the closed loop characteristic

polynomial for these two frequencies can be seen in figures 8.5 and 8.6 respectively.

From the program we can also obtain the combination of parameters p* whose

image first reaches the origin of the complex plane. This is a very important infor­

mation in the analysis and redesign (if necessary) of the feedback system. Ideally,

by designing the controller for a nominal plant that has the set of parameters p*,

the achievement of nominal stability will guarantee robust stability as well.

The critical combination of .6. 's in each case is:

.6.1 = diag [81 82 83 84 - (0.86 · 8s) - 86 - 81 8s]
(8.15)

.6.2 = diag [81 82 - 63 - 64 - 6s (0.18 · 86) 61 8s]

The actual design of K(s) was made in both cases for the set of parameters

PN =Po+ .6.N, where .6.N is

(8.16)

122

As we can see this disagrees with the values obtained in (8.15) at both flight condi­

tions. This is due to the fact that it is difficult to develop a physical "intuition" on

how the variation of parameters will influence the stability of the feedback system,

mainly in systems with a large number of parameters like this one. Another impor­

tant reason is that, for simplicity, the design of the controller at each linearization

point is made for a nominal set of parameters of the plant chosen at the same

extreme point of the uncertainty interval.

Some final remarks follow. At both flight conditions the nominal closed loop

transfer function has unstable poles. In the first case, the unstable pole is the usual

"spiral" mode which is slow enough to be controlled by the pilot. In the second lin­

earization point, the closed loop linear system has a fast unstable mode but through

simulations it was found that the nonlinear model around this linearization point

has slow diverging states which again are controllable by the pilot.

123

X
+

• Rall rate (p)

• l.angitudln,,1-.11on (•·)

z

Figure 8.1: General aircraft body axis system and control

surfaces.

(lO!P3,XKl3fjD:fXKP3
(Z-1

Figure 8.2: Control system block diagram.

X-29A
LATERAL­

DIRECTIONAL
EQUATIONS

OF
MOTION

•

124
s.s-,-,-----,,-----..------.----......... -----.

0 1 2 3 4 5

Figure 8.3: First linearization point. Multivariable stability

margin vs. frequency.

3.025
--

3.000

- \ -
- \ -

2.975

2.950

\ --
- \ -
--
- \ -

2.925

2.900

- ;\ -
- _ I --- I'-._

-____
I'----_ V - -----

2.875 I I I 1 I I '
0 2 4 6 B 10 12 14

Figure 8.4: Second linearization point. M ultivariable stabil­

ity margin vs. frequency.

125

Figure 8.5: First linearization point. Above: Image of Closed

loop characteristic polynomial at minimum km(jw). Below:

Detailed version.

126

Figure 8.6: Second linearization point. Above: Image of

Closed loop characteristic polynomial at minimum km(jw). Be­

low: Detailed version.

127

Chapter 9

Future research

The main objective of this thesis is to develop the theoretical and computer

implementation aspects of the analysis of FDLTI systems with general uncertainty

structures. A general algorithm that computes the multivariable stability margin

has been implemented and an alternative version has been developed which com­

putes the same margin at a lower computational cost. This increase in the speed is

obtained not only by eliminating the frequency search, but also because the compu­

tation over the particular real functions obtained from the Routh-Hurwitz procedure

will have a high probability of obtaining vertices of the parameter hypercube as the

offending perturbations.

Through a statistical analysis on the performance of the algorithm in both im­

plementations it has also been determined that the partition of domains is not the

main factor responsible for having an exponential time procedure in the parame­

ters. Although we obtain a significant improvement in the computational speed, the

problem of obtaining a polynomial time algorithm that could perform the same task

still remains unsolved. This seems to be a nontrivial problem because even eliminat­

ing the upper bound search, we remain with the compµtation of all vertices which

by itself makes the overall time exponential in the parameters. An open research

problem would be to find a method that would eliminate part of these vertices by

a judicious analysis (in polynomial time) of the function to be mapped. This is the

main objective of chapter 4 where a method is developed to determine a smaller

number of variables over the whole hypercube among which we can find the actual

128

offending parameter combination. Although a great simplification can be obtained

in many cases through that analysis, practical necessary and sufficient conditions

that could determine when a set of parameters are ELB (see definition 4.1) and

which among them are the relevant ones to determine robust stability has not yet

been solved.

In terms of general uncertainty structures involving not only parametric, but

also dynamic structured uncertainty, a search method is proposed that uses the

improved algorithm mentioned before as the main tool for computations. Although

the method gives the exact result for three or less dynamic blocks, the statement and

computation of the problem for high order systems can be tedious. An automated

procedure should be developed that would use symbolic manipulation programs as

a means to improve this situation.

Finally, the problem of synthesis is yet unsolved for these general uncertainty

structures which seems to be also a nontrivial question.

129

References

[l] J. C. Doyle, "Robustness of multiloop feedback systems", Proceedings of the

CDC, San Diego, 1978.

[2] M. G. Safonov, M. Athans, "Gain and phase margins for multiloop LQG regu­

lators", IEEE Transactions on Automatic Control, vol. AC-22, 1977.

[3] J. C. Doyle, G. Stein, "Multivariable Feedback Design: Concepts for a Classi­

cal/Modern Synthesis", IEEE Transactions on Automatic Control, vol. AC-26,

1981.

[4] M. G. Safonov, A. J. Laub, G. L. Hartmann, "Feedback Properties of Multi­

variable Systems: The Role and Use of the Return Difference Matrix", IEEE

Transactions on Automatic Control, vol. AC-26, 1981.

[5] G. Zames, "Feedback and optimal sensitivity: Model reference transformations,

multiplicative seminorms and approximate inverses", IEEE Transactions on Au­

tomatic Control, vol. AC-26, 1981.

[6] M. G. Safonov, M. S. Verma, "Multivariable L00 sensitivity optimization and

Hankel approximation", Proceedings of the ACC, 1983.

[7] K. Glover, "All optimal Hankel norm approximations of linear multivariable sys­

tems and their 1 00 error bounds", International Journal of Control, vol. 39, 1984.

[8] J. C. Doyle, "Lecture Notes on Advances in M ultivariable Control", ONR Hon­

eywell Workshop, Minneapolis, 1984.

[9] J. C. Doyle, K. Glover, P. Khargonekar, B. A. Francis, "State-space solutions

to standard 1{,2 and 1{,00 control problems", Proceedings of the ACC, Georgia,

1988.

[10] M. G. Safonov, "Tight Bounds on the Respons'e of Multivariable Systems with

130

Component Uncertainty" ,Proceedings of the. 16th Allerton Conference, Illinois,

1978.

[11] R. R .. de Gaston, Nonconservative Calculation of the Multiloop Stability Margin,

Ph.D. Dissertation, University of Southern California, 1985.

[12] R. R. de Gaston, M. G. Safonov, "Exact Calculation of the Multiloop Stability

Margin", IEEE Transactions on Automatic Control, vol. AC-33, 1988.

[13] A. Sideris, R. R. de Gaston, "Multivariable Stability Margin Calculation with

Uncertain Correlated Parameters", Proceedings of the CDC, Greece, 1986.

[14] R. S. Sanchez Pena, A. Sideris, "A general program to compute the Multivariable

Stability Margin for systems with real parametric uncertainty", Proceedings of

the ACC, Georgia, 1988.

[15] R. M. Biernacki, H. Hwang, S. P. Bhattacharyya, "Robust Stability with Struc­

tured Real Parameter Perturbations", IEEE Transanctions on Automatic Con­

trol, vol. AC-32, 1987.

[16] J. C. Doyle, "Analysis of Feedback Systems with Structured Uncertainty", IEE

Proc., Vol. 129, pt. D, No. 6, 1982.

[17] M. K. H. Fan, A. L. Tits, "Characterization and efficient computation of the

Structured Singular Value", IEEE Transactions on Automatic Control, vol. AC-

31, 1986.

[18] M. K. H. Fan, A. L. Tits, "m-Form numerical range and the computation of

the Structured Singular Value", IEEE Transactions on Automatic Control, vol.

AC-33, 1988.

[19] A. Packard, What's new withµ: Structured uncertainty in multivariable control,

Ph.D. Dissertation, University of California at Berkeley, 1988.

[20] V. L. Kharitonov, "Asymptotic stability of an equilibrium position of a family

of linear differential equations", Differencialnye Uravneniya, vol. 14, 1978.

131

[21] B. R. Barmish, "Invariance of the strict Hurwitz property for polynomials with

perturbed coefficients", IEEE Transactions on Automatic Control, vol. AC-29,

1984.

[22] S. Bialas, J. Garloff, "Stability of polynomials under coefficient perturbations",

IEEE Transactions on Automatic Control, vol. AC-30, 1985.

(23] B. D. 0. Anderson, E. I. Jury and M. Mansour, "On robust Hurwitz polynomi­

als", IEEE Transactions on Automatic Control, vol. AC-32, 1987.

[24] E. R. Panier, M. K. H. Fan, A. L. Tits, "On the stability of polynomials with

uncoupled perturbations in the coefficients of even and odd powers", submitted

to Systems and Control Letters, 1987.

(25] A. C. Bartlett, C. V. Hollot, H. Lin, "Root locations of an entire polytope of

polynomials: It suffices to check the edges", Mathematics of Control, Signals

and Systems, Springer-Verlag 1988.

[26] M. Fu, B. R. Barmish, "A generalization of Kharitonov's interval polynomial

framework to handle linearly dependent uncertainties", submitted for publica­

tion, 1987.

[27] B. R. Barmish, "Kharitonov's theorem and its extensions and applications: An

introduction", Proceedings of the CDC, Los Angeles, 1987.

(28] K. H. Wei, R. K. Yedavalli, "Robust stabilizability for linear systems with both

parameter variation and unstructured uncertainty", Proceedings of the CDC,

Los Angeles, 1987.

[29] C. V. Hollot, D. P. Looze, A. C. Bartlett, "Unmodelled dynamics: Performance

and stability via parameter space methods", Proceedings of the CDC, Los An­

geles, 1987.

[30] M. Fan, A. Tits, J. C. Doyle, "On Robustness under parametric and dynamic

uncertainties", Proceedings of the ACC, Georgia, 1988.

132

[31] J. R. Rice, The Approximation of Functions, Reading, MA: Addison-Wesley,

1969.

[32] E. J. Routh, Dynamics of a System of Rigid Bodies, McMillan, New York, 1892.

[33] A. Hurwitz, "On the conditions under which an equation has only roots with

negative real parts", Matematische Annalen, vol. 46, 1895.

(34] A. Sideris, "An efficient procedure to check the robust stability of polynomials

with coefficients in a polytope", in preparation.

(35] M. Fan, A. Sideris, R. Sanchez Pena, J. C. Doyle, "Generic property of uncertain

polynomials multilinear in the parameters", in preparation.

(36] F. R. Gantmacher, Matrix Theory - vol. II, N.Y. Chelsea, 1959.

[37] L. Zadeh, C. A. Desoer, Linear System Theory, N.Y. McGraw-Hill, 1963.

[38] K. S. Yeung, S. S. Wang, "A simple proof of Kharitonov's Theorem", IEEE

Transactions on Automatic Control, vol. AC-32, 1987.

[39] J. Ackermann, "Parameter design of robust control systems", IEEE Transac­

tions on Automatic Control, vol. AC-25, 1980.

[40] J. C. Doyle, A. Packard, "Uncertain Multivariable Systems from a State Space

perspective", Proceedings of the ACC, Minnesota, 1987.

[41] E. I. Jury, J. Blanchard, "A Stability test for linear discrete time systems in

table form", Proceedings of the IRE, vol. 49, 1961.

[42] J. Schur, "Uber Potenzreihen, die im Inneren des Einheitskreises beschankt sind,

II", Zeitschrift fiir di4e reine angewandte Matematik, vol. 148, 1918.

[43] A. Cohn, Uber die Anzahl der Wurzeln einer algebraischen Gleichung in einem

Kreise", Matematische Zeitschrift, vol. 14, 1922.

[44] Franklin, Powell, Emami-Naeini, "Feedback Control of Dynamic Systems",

Addison-Wesley, 1986.

[45] M. G. Safonov, J,,. C. Doyle, "Minimizing conservativeness of robustness sin-

133

gular values", in Multivariable Control, D. Reidel Publishing Company, 1984.

[46] J. Jahn, E. Sachs, "Generalized quasiconvex mappings and vector optimization",

SIAM J. Control & Optimization, vol. 24, 1986.

[47] 0. L. Mangasarian, Nonlinear Programming, McGraw-Hill, N.Y., 1969.

[48] R. E. Maine, K. W. Iliff, "Application of Parameter Estimation to Aircraft Sta­

bility and Control: The Output error approach", NASA Reference Publication

1168, 1986.

[49] A. Sideris, R. S. Sanchez Pena, "Fast computation of the Multivariable Stability

Margin for real interrelated uncertain parameters", Proceedings of the ACC,

Georgia, 1988 and submitted to the IEEE Transactions on Automatic Control,

1987.

[50] A. Sideris, R. S. Sanchez Pena, "Robustness margin calculation with dynamic

and real parametric uncertainty", Proceedings of the ACC, Georgia, 1988 and

submitted to the IEEE Transactions on Automatic Control, 1988.

[51] R. S. Sanchez Pena, A. Sideris, "Robustness with real parametric and structured

complex uncertainty", submitted to the 27th CDC, Texas, 1988 and to the IEEE

Transactions on Automatic Control, 1988.

