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ABSTRACT

A theoretical investigation is made of two types of
distortions, self phase modulation and self-focusing, produced when
an intense optical pulse propagates in a medium whose induced
polarization contains terms cubic in the field strength. The first
analysis indicates that the insertion of such a medium into a laser
cavity can result in the generation of a train of very stable,
reproducible, bandwidth-limited pulses. By using a "circulating
pulse" model, the physical processes involved are clarified, partic-
ularly in the case of high gain in the amplifying medium. Examples
are given of the Q-switched operation of such a laser, for which the
pulse train differs considerably from that of conventional mode-locked
systems. A second analysis deals with the steady-state self-focusing
of non-axisymmetrical beams; several approaches are used to derive the
increase in the threshold power for elliptical-Gaussian beam shapes.
As an alternative to a fully numerical solution, a series of
increasingly accurate approximate results are obtained in the form
of parameterized beam functions. When an Action-Integral minimization
technique is employed to optimize these parameters, the method is

capable of describing the self-focusing process in some detail.
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INTRODUCTION

The development of laser light sources capable of generating
very intense, coherent, narrow bandwidth Tight beams has allowed
the practical observation of many nonlinear optical effects. One
class of effects of great interest involves some exchange of optical
photon energy with other "distinct" fields, usually by coupling dif-

ferent optical beams; this category would include such effects as
Rayleigh(l) (2) (3)

(4)

s Brillouin*®’, and Raman scattering, parametric inter-

actions' "'/, and harmonic generation(5’6). A typical analysis of such

an effect would usually consider the interaction on two or three
"scales"; first, a description of a coupling mechanism would be made on

a "microscopic" (i.e. molecular) scale, possibly using quantum mechanics,
and second, coupling terms (usually involving classical functions)

would be derived on a "macroscopic" scale of a few optical wavelengths.
An extension of the analysis to include interactions over a "propagation"

3 wavelengths or longer) might show significant

length scale (~ 10
modifications to the "energy conversion" formulas, but usually would
not alter the gqualitative explanation of the effect.

A second class of nonlinear optical effects can be considered,
in which only a "single" beam interacts with the material; the resultant
beam behavior can often be viewed as a nonlinear propagation problem.
This category would include many of the "resonant" effects such as

(7) (8)

R superradiance(g),
(10)

saturable absorption*’’, self-induced transparency
and the general propagation of intense pulses in amplifying media

Some aspects of this last example will be discussed in this report,
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to the extent that it applies to the amplification of ultrashort pulses
in Taser material. However, the primary subject of the analyses
presented here concerns the nonlinear propagation characteristics
resulting from "non-resonant" effects such as the Kerr effect(]]), and
other mechanisms producing a macroscopic third order susceptibility
tensor(lz),

In the first chapter, the major origins of such effects are
described on the "microscopic" and "macroscopic" scales, where their
consequences do not appear very dramatic. However, when the non-
linearities act over a sufficiently long "propagation” length,
cumulative effects occur which are not apparent in the smaller length
scales; it is seen that the most appropriate physical model of the
nonlinearity is that it causes an intensity-dependent index of refrac-
tion. These propagation effects play a major role in the subsequent
chapters, where beam distortions are exemplified by analyzing two
distinct physical situations illustrating the phenomena of pulse self-

(13) (14)

modulation . and self-focusing , respectively.

The first analysis considers a laser cavity containing this
nonlinear medium in addition to the usual amplifying element. The
corresponding system employing a saturable absorber has been investi-

y(15”16) and theoretica]]y(17’]8); it 1s well known

w(19)

gated experimentall

that this system can lead to "mode-locking » yielding ultrashort

12

optical pulses with very useful characteristics (v 107'“ seconds

duration, ~ 109 Watts peak power in Ruby or Nd:glass lasers.) A

(

previous theory 20) has shown that the Kerr effect can also be used

to mode-lock a laser, due to the mode-coupling character of its cubic
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polarization; the present propagating-pulse approach extends those
results to more realistic conditions, including the high gain case.
This analysis predicts the form of the "ultrashort" pulses, and shows
the strong stability of the pulsing system; the physical roles played
by the amplifier and by the nonlinear material in producing these
pulses is clarified. In particular, the intensity-dependent index of
refraction is shown qualitatively to produce rapid phase changes within
the pulse envelope, and a plane wave analysis is presented to derive
qguantitative examples.

The second major analysis presented here deals with the steady-
state propagation of a beam with a finite cross-section through a
medium exhibiting a Kerr type nonlinearity; the beam can produce its
own lens and self-focus when its power exceeds a certain threshold
value. Experiments(Z]) have shown that this threshold is increased if
the beam cross section is not symmetrical, and a number of semiquanti-
tative arguments are presented to explain this. In general, however,
the solution of the propagation equations in this situation cannot be
found analytically, and the nonlinearities are too severe to permit
permutation expansions. To complement a fully numerical solution,
therefore, a Lagrangian formulation of the problem is presented and
used to obtain a series of approximate solutions in the form of
parameterized beam shapes. This approach is shown to be highly
successful in predicting the threshold power, and gives a good

approximation to other details of the solution as well.
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Chapter I
ORIGINS OF A CUBIC NONLINEARITY

The microscopic description of the interaction of electro-
magnetic waves with the molecules of a material is clearly a complex
many~body problem with many nonlinearities. Even in an idealized
case, when one type of nonlinear interaction can be treated separately,
a quantitatively accurate analysis is seldom possible for a specific
material. On the other hand, the phenomena of interest here involve
optical beam propagation over large macroscopic distances, with the
material behavior represented primarily through nonlinear “"polarization
source" terms; therefore, microscopic details are not critical,
provided the general form of the macroscopic nonlinearities are preserved.

The lowest order "non-resonant” effects which can contribute
to the "self-distortion"” of a pulse involve polarizations cubic in
the field strengths; this chapter describes some common causes of
such nonlinearities in materials which are homogeneous, jsotropic9 and
(usually)‘]ossiess. The macroscopic equations for beam propagation
are derived, and shown to be consistent in many cases with the concept

of an intensity-dependent refractive index.

I.1 Fundamental Equations

The physical situation underlying these investigations involves
the propagation of intense, coherent, light beams, produced by lasers
which are usually Q-switched and often mode-locked as well. Even

though this latter case may involve repetitive pulses, it will be
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seen in Chapter II that the pertinent analysis involves the propaga-
tion of only a single pulse, which therefore has a continuous, though
narrow, bandwidth centered at the optical frequency, Wy Under these
conditions, the light propagation will be described most conveniently
by using classical fields obeying Maxwell's equations, rather than a
photon scattering or mode coupling appruach(zz). Thus, in e.s.u. units,

the effects of interest will be described by the equations(zs):

By

J
)

|

S
vxE = -2 VX = b+ (1.1.1)

(uad

5

N - 2'* -+
asf=§+4ﬂ)0 = c™E -4umn

We will consider materials in which there are no macroscopic charge
densities or currents (p = a; = 0), and in which magnetic effects are
negligible C§z= 0); all linear and nonlinear material interactions will
then be represented by the net macroscopic polarization "source"

term, %7.

The analyses in later chapters will deal with laser beams (or
pulses) traveling through the material in the +z direction; the field
distortions produced by the nonlinearities will also be shown to be
very small over a distance of a single wavelength. The standard form
for the field will then be in the form of a traveling wave with a

slowly varying amplitude and phase; for example, we will write the

component of the electric field polarized in the x direction as follows:
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> 1 i(koz-—wot) * -i(koz—wot)+

(8)y = 7(Ese + Ege Jey, (1.1.2)

where E, = Ex(x,y,zst) is complex and varies slowly in z and t
compared with the exponential, and ko = wcno(wo)/c with no(wo) the
(13near) iefractive index at Wy Siﬂjlar expressions will hd]d for
(& )y’ (&)Z and the components of ¥. Note that a number of assump-
tions must be implicitly made before the "standard" form in equation
I.1.2 can be used: the nonlinearities must be small over a wavelength,
third and higher harmonics must be negligible, and no large-angle
scattering components (including backward scattered) need to be con-
sidered. We will later show that these approximations are consistent
with the nonlinearities involved in our investigations.

The relationships giving vgk;;t) complete the set of propaga-
tion equations; a description of the microscopic interactions within
the material is needed to find this relationship. Some of the most
important effects causing a "cubic" polarization response will be
analyzed in Section 1.2, based on a molecular model described below.
Since practical examples of these effects occur in a wide variety of
solids, liquids, and, in some cases, gases, our molecular model is too
general to allow, for example, quantitative results in any specific
case. However, the physical principles and qualitative results should
still apply in more detailed analyses, and we will find good order-of-
magnitude agreement with experimentally determined "nonlinearity
coefficients."”

The microscopic interaction is presumed to occur with a set

of "active", discrete polarization sources, termed molecules; in real
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materials, these might also be atoms, ion-pairs, or "clusters of
molecules ", and similar analyses could be used if phonon-waves, spin-
waves, etc., were involved. For simplicity, we will assume that the
entire material is composed of a single "species" of these active
molecules, since, to first order, the polarizations of different
constituents can simply be summed. Each molecule will be governed,
either classically or quantum mechanically, by a Hamiltonian of the

form

pd =‘ﬁ2-+d?'4- ﬁﬁnt = ](m + K (I.1.3)

int °
where J?O is the Hamiltonian for an isolated molecule, # ' includes
the influences of the surrounding medium, and ?(int is the interaction
of the molecule with the fields resulting from the propagation beam.
The coherent local polarization field, discussed below, will be
included in jfint’ so that # ' thus includes only the short range
fields of neighboring molecules. We further assume that the molecule
has a fixed "equilibrium" position, due to #', or at least that
molecular migration does not influence the nonlinear effects discussed
later.

The interaction of the charges, 9 s comprising the molecule
with the electromagnetic fields is given by the Lorentz force,
32; = qs(ég(Fs) + 35 X é;(?s)); when magnetic effects are ignored

(v << ¢), this implies

f(int=-7bm . g" (I.1.4)
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where > .
PN =7 qr
S

S S

The superscript "m" will be used in this chapter to denote micro-
scopic quantities, applying to a single molecule. We make the "dipole
approximation", since spatial variations of ;é over molecular
dimensions are negligible; é}n can then be assigned the constant
(spatially) value taken at the molecule's “"site." %;n] is the
molecular dipole moment; that part which varies at the optical fre-
quency, w s represents the induced moment, and will contribute to

the macroscopic polarization when statistically summed over the mole-

cules in a small "unit" volume:

0 =7 %m(wo) _ (1.1.5)
m

The influence of the medium on the response of a single
molecule is manifested in two ways, in reference to the Hamiltonian
in equation I.1.3. First, in jfint’ the microscopic electric field,
ém, differs from the macroscopic field, é, because of the
polarization of the surrounding molecules, taken as a continuum. We
will account for this by using the Lorentz-Lorenz local field

correction(24),

gn-g+i P, (1.1.6)
The second effect involves the dependence of #£' on ‘é ; thus, even
if ﬁﬁnt weren't significant, the "equilibrium" state of the molecule,
as influenced in part by the short range forces, would change as

neighboring molecules reacted to the field. This indirect interaction



-9

will be ignored, as it would not qualitatively alter the phenomena
discussed in the next section;}(nn defined in equation I1.1.3,
will therefore be assumed to be unperturbed by the optical beam.

We will find that, for isotropic materials, the average induced
molecular dipole moment is given by

> > > > N » M
PU=a"g e PU =P Py s (1.1.7)

..* m
where &" is the (average) molecular polarizability, and fQNL
is the "nonlinear" part of the polarization. Defining N, the

> -5

. . m
number of molecules per unit volume, we can write 2= NP";

equations I.1.6 and I.1.7 then show that

-3

&" = (g + LB, /0 -

By defining the linear dielectric constant, ¢ = ng, in the usual

mannevr,

- > - -
G&LIN=E+ 4W70LINEE:€ R (1.1.8)

+>m > m
we obtain, for IYDNLl << I#QLIN] ,

e = (1+8TNnaM/0 -4y 5m
3 3 (1.1.9)
€—>m - (6+2) é;m

Finally, thislocal field correction will affect the net macroscopic

nonlinear polarization as follows:
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- > -+ > >

E v 4n NP = £+ a(E" + 2] )

eé + 4w(€+2)N70 (1.1.10)

i

Eg + 471' ﬁNL 5

where ;kL = (€+2)N%3 . When the nonlinear polarization is present,
equation I.1.9 is not prgfise1y correct, but the change will be second
order when included in ﬁ&&L. Armstrong, et a1(6) indicate how the

above Tocal field effects can be generalized to more complicated

systems of different polarization sources.

1.2 Microscopic Interactions

The microscopic, motecule-field, interaction given in equation

[.1.4 is the usual energy of a dipole, which can be written:

i ~ -P"(t) ﬁm(?m,t)ccs@PE

where Opg is the angle between '%;n] and ;im’ and ';m is the loca-
tion of the molecule. Each molecule will thus have a tendency to
vary *¥9m9 Opg » and ;m to decrease its energy: a dipole moment,
Ve M, will be induced which is in phase with Eim, the dipole moment

will tend to become aligned with the field + 0), and the

(6pg
molecule will tend to move into a region of higher field strength.
Figure 1 indicates how these three tendencies arise directly from
the Lorentz force; the resultant forces are the physical mechanisms

producing the nonlinear effects of, respectively, nonlinear (and linear)
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electronic polarization, orientational Kerr effect, and electrostric-
tion; each of these is briefly analyzed below.

In order to obtain the proper induced polarization component,
we restrict the quantitative analysis in this section to the "steady
state" Timit, where E, in equation I.1.2 is constant in time; we
will thus use the shortened notation

£, 1)

> ik z -iw. .t 5 % -ik z jw t
‘%(Em(?m)e 0 e 0", Em (;m)e 0 e O )

iH

PO ot
—

Em

-iw t x 1w t
e O 4 Mg O ) .

The function "%-Em“ will therefore represent that part of the field

implicitly varying as e“]th and will presumably be constant over

a volume containing a (statistically) large number of molecules.
The purpose of this section is to calculate the average molecular
—+
polarization, 17m9 as given in equation 1.1.7, so that, for example,

> m
we can find the component, ‘%7NL, where

> ~tw t  Lpe iw.t
m _ 1m ) m 0
P = 7PyLe +Pge ) - (1.2.2)
We will find that, in isotropic media, this average microscopic

polarization obeys the equation

Mo smEm o om, 2m gm

PP =aE + % :E-E (1.2.3)

where a" 1is a scalar and Y" is a tensor. For clarity, we will

usually write actual tensor products using component notation; in



Figure 1.

Polarizable, anisotropic molecules in a non-uniform field.
At the left are two molecules in a field whose magnitude
decreases to the left; an (induced) charge separation is
shown. The forces on the charges are F,, which are re-
%o]ved into components P,, M,, and S . Here, P4+ and
P_ = -P4 cause the linear and nonlinear electronic polari-
zation; M; are torques leading to the orientational Kerr
effect; and S Tleads to the electrostrictive force, since
the net S for the two molecules shown is in the direction
of the field gradient. On the right are shown the same
molecules when the field has reversed sign; the net forces
are seen to be the same, leading to time-averaged torques
and electrostrictive forces.
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these cases, summation over repeated indices will be implied.
According to equations I1.1.9 and 1.1.10, we can then define corres-
ponding macroscopic polarizations analogously to equation 1.2.2, and

-5

N
obtain I = ef + 4-n75NL, where

e =1+ 4y g

- S S
PyL = X i E-EE (1.2.4a)
with
G (BN = - A am
%= (%2-)4N m (1.2.4b)

For multiple species of active molecules, the formulas in I.2.4b
would include sums over each type, with the appropriate N.
Finally we will consider qualitatively the response of the

e
nonlinear polarization when E varies slowly with time, to determine

&G LACALIENY A LR B

a phenomenological "relaxation rate" for each effect.

I.2.1 mnonlinear electronic polarization

An isolated molecule in a constant electric field will have a
polarization induced in it; physically, the shift in the electronic
structure would be expected to be a complicated function of the
electric field strength, linear only for sufficiently small changes.
This "fundamental" source of nonlinearity will be developed here in
some generality, using both quantum mechanical and classical approaches.

(6)

The methods are similar to Armstrong, et al‘™’, except that we will
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deal with the Timiting case where every field has the same frequency.
Quantum mechanically, the molecule is described by the

Hamiltonian given in equation I.1.3, with the perturbation given in

equations I.1.4 and I.2.1; in the more familiar perturbation notation,

these become

with

and

Here K is the dipole operator, s labels the molecular constituents,
with charges dg and position operators ?s‘ The perturbation,

3%3(t) is of course hermitian, since ?s and 7 are real operators.
Between collisions, it will be assumed that 3%2 does not depend on
time, so that the molecular state function, v¥(r,t), can be expanded,
in the usual manner, in terms of an orthogonal set of stationary

states, un:
a (t)e u_(r) (1.2.6a)

where
Hu =Hwu . (1.2.6b)

Here r = {?1,?2,...,75,..,} is the generalized spatial coordinate

for all charges; we will usually consider the molecule to have only

one "perturbable" charge (i.e. a valence electron of charge q = -e),
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in which case r is simply the real space vector. We will also

Tabel one state as the ground state, ug, with energy ﬁwg =0,

and assume that it is fully occupied at t = 0, when the perturbation
is turned on. A more detailed anal ysis would allow for a thermal
distribution of ground states, but this will not be done here.
Applying 3rd order, time-dependent, perturbation ana]ysis(zs)
to the system described by equation 1.2.5 yields formulas for an(t)

and thus w(;,t); the molecular dipole moment is then given by the

formula,

7Z7m(t) = < v|ulys . (1.2.7)

This polarization source contains all orders of nonlinearity up to
cubic and many frequency components. It will be assumed that there
is no resonance involved, so that Wy = O # w, for any n,n';
this allows the "contributing" components of ¥3m(t) (those varying
at in) to be found, in the form

M G B ol L ) (1.2.8)

The Tinear polarization found in this way is given by

ﬁ1 > -> ,
M - 1-2 3( . ) (U)ngr+ )gn< )
n

PLIN (wn + wo) w, ) (1.2.9)

where, for example,

% ~ 3,\

P N QLG GRS

!
A
d

+m=+
(E U)nni n!
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From this we can define the linear molecular polarizability tensor

am, such that

m m . .
(PLindy = “ijE? 1.J = X,¥,2z (1.2.10)

For the case of a single electron, u = -er , and so equation 1.2.9

gives

o = EE.Z (rj)gn(ri)ﬂﬂ‘+<Pi)9”(ri)”9 (1.2.11)

ij B n (wn + mo) (wn = g

where re = % etc. We will call a molecule "lossless” if We << W
for all n # g which contribute to polarization formulas. It can
be seen that o is real (and symmetric) for a "lossless" medium, as

expected. In later analyses, we will also find it useful to define

a set of "principal molecular axes", (x',y',z'), for which o" 9s

(26)

diagonal; this can always be done . In such a frame (in which we

will use primed fields), we can write

m' . m _-m'
with
m o_ m .
0y = o 5i,j (no sum over i)

The gquantities, u? s are called the principal polarizabilities of
the molecule.
The next terms in the perturbation expansion which contribute

to pm are cubic in the fields, as expected. Most of these involve

*
the three factors (Em’gmagm ); however, there also appear to be
terms varying as e 1ot which contain factors (Em,Em,Em) or
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m m* —*m* i
(EV,E™ ,E" ). These can be ignored for two reasons: first, their

spatial variation is seen from equation I.2.1 to contain the respec-

eBikcz -1kgz

tive factors, and e (this Tatter is a backward

scattered wave); their net contribution to B"L which varies as
eikoz, will therefore cancel in a wavelength. Second, the phase of
these polarizations, relative to Em » depends on the time origin

as e¥ 21'L"ot . Physically, this time origin involves either the
leading edge of the pulse or else the most recent relaxation or
collision process; therefore, for pulses whose amplitude varies
slowly in an optical cycle (the case here), or for times longer than
the relaxation rate, these polarizations will average out. This
justifies, on a microscopic scale, the neglect of backward scattered
waves.

The resultant expression for the cubic polarization is further
simplified by assuming that all molecular states, U,s are non-
degenerate; this allows all dipole matrix elements to be taken to be
real. Defining a microscopic nonlinear susceptibility tensor, Xm,
such that

*

L
(PQL)1=XTJ.ME'J‘?EEE’; , (1.2.13)

we obtain, for a "single electron” molecule,

i (") an"Dn s i (7)o ((1 “Sg)_Ont g )
4ﬁ3 n’nl’nn (wn; mo)(mnui wo) wn- wn;wo)

m
Xijke

+

(ry) (e olre)) oaley) o /(1=s 0 ) 26,
jfgnti‘nn' Y e'n'n" k/n"g n',g” " n',g
(wn ;':wo)(mn..¥ wo) ( W 1 (wn..;m0)> (1.2.14)
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. (ri)gn(rj)nn‘(rz)n'n"(rk)dé, (k]‘an:,g) ) 6”‘,9 _ zanu,g )
(wn F wo)(wnu I wo) \ wn. (wnq: wo) (wnu;wo)
+ (r\j)gn(ri)nnl(Y\k)n'n”(rﬂz)n"g‘<(]_6n'39) _ an,h" \)
(o 20o) logu 2,) “n’ Wy = wgrE wg)

(ri)gn(rﬁ)nn' (rj)n'n"(rk)n"g . (Fz)gn(ri )nn'(rj)n'n“(rk)n“g

o gug) (o) 1720,) (o w70 ) o 7o) (ugesg)

§
1 n,n"
- 2 . (1.2.14)
(kwn'¥ 2uq) (wn"“n’iwo> § cont'd.
Here, for example, we have used the notation:

1 - 1 1
(RSN | CRVEIO L RS0 Il YD | CERUECTIO N (FRESTSD R CFRCTH | CRRETIR | RS

Note that "E?", and “Ef" are not uniquely defined by equation
1.2.13 when j # k; only the combination, XTij + XTka’ has
physical significance in this case. Since all matrix elements are
real, X?jkz is real; this would hold, of course, even in the
presence of degenerate levels for "lossless" materials. In this
latter case, it can be seen from equation I1.2.14 that

m m _ A
Xiijj + Xijij = Xijji . (1.2.15)
We will now develop the corresponding classical formulas,

based on a "particle in a potential well" model. Such a model would

apply to the behavior of an ion in the potential of the surrounding
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medium if carried out quantum mechanically, but the classical deriva-
tion retains all of the features necessary here, and even yields
reasonable results in the case of electronic polarization in a
molecule. We will consider the problem in the prinecipal axes
reference frame discussed earlier, and assume a slightly anharmonic

potential well

A =5EE+vm (1.2.16a)

where p is the momentum operator, and

- -> - >
V(r) = VO + VLIN(r) + V](r) + Vz(r) ; (I.2.16b)
where
SN
V() = 57 Vagriry
5 - L
> 1
Vo (r) = 71 Vijig TiT3k"e
with, for example,
3¢ >
Voo = (__E_ELEL_)
ijk ariarjark =0
and, in the principal axes reference frame,
- 2 .
Vij = Moy 8y (no sum on 1). (1.2.16d)

The constants, wys are the unperturbed normal frequencies of

oscillation. The classical behavior of this system is given by
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n L+ wi(F)
dt

+m~klw t
(Eme

i
’G'R)

) .

By assuming that the particle is at rest (¥ = 0) in the absence of
ég, the solution for r(t) can be found in a perturbation series

involving increasing factors of Em, As in the quantum mechanical
case, the "contributing" terms of the resultant polarization,

49 (t) = ? (t) can be found by choosing the terms varying at W -
The principal linear polarizabilities are then given by the terms

Tinear in Em; these are

m_ q
0y = 5 2) . (1.2.17)

N
As before, the cubic field terms also contribute to Pm;

defining the susceptibility tensor, Xm’ as in equation 1.2.13,

we obtain
L - q4 Y + 3 Viﬂnvnjk +
ijke 4, 2 2 2 2 2 2 2 2 ijke 2_ P
8m ( 3 O)( 5 wo)(wk wo)(mz —wo) n m(wn 4w0)
. Vijn"nkz)? (1.2.18)
mwn2 } ¢

Again, equation 1.2.15 is satisfied both in the "lossless" case, and
when V] << V2.

Before the susceptibilities calculated above can be used to
describe the macroscopic polarizations, the isotropy of the material
must be taken into account. Such isotropy can occur in two ways;

either the individual molecules are highly symmetric with isotropic
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polarizabilities, or else the molecules may be oriented at random,
as in fluids or glasses. We will now show that the condition of
isotropy simplifies the susceptibility tensors considerably.

The case of a symmetrical polarization source will be
considered in the classical case; the potential in equation 1.2.16

takes the form

VO
2 ;2,22 2 .2, 2.2
=V(|r]) = Vo * %—mwa (xT+y“+z") + ET"(X +y“+z )2 .
(1.2.19)
The tensor components of equation I.2.18 now reduce to
m _3 m m -.m _m _bom 41
X999 T2 Yoo 0 X4ijj T Xigii C Xiggi c 2 Xo I
where (1.2.20)
o 4
m -Vod
Xo = 120t 2_2y4
a o’
Therefore, for a symmetrical molecule,
2m M =m 2m 1 2m” zm m
Pl = Xo(ET(ETET ) + N G I (1.2.21)

Next the situation of randomly oriented molecules will be

considered. The most direct approach would be to keep the field,

,Em’ constant while rotating the molecule. Classically, this would

mean transforming the apparent V(r), which would manifest itself

in different values of V in the susceptibility tensor elements

ijke

in equation I.2.18. However, since Vij in equation 1.2.16 would

no longer be diagonal, the formulas for “Tj and XTij would
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have to be generalized. Quantum mechanically, a similar approach
would transform the base states, U,s as the molecule rotated in

the surrounding medium; this situation is complicated by the discrete
nature of these states, requiring a more complicated definition of
"random orientation". These difficulties can be avoided, however,

m

as long as the fields, E~ and Em, are considered to behave

classically; the molecule, whether treated classically or quantum
mechanically, can then be treated as a "black box" characterized by
Tinear and cubic susceptibility tensors, such as those of equations
1.2.11, 1.2.14, 1.2.17, and 1.2.18.

We will define two reference frames: first, the lab frame,

N
(x,y>z), with fields E", pP™ and second, the molecular frame,

ET“I

(x',y',2z'), 1in which the fields are pm For example,

Figure 2 shows how these frames might be related by using the Eulerian
angles(27), $50,0. We will denote the matrix, M(%), relating the
field components in the two frames for a given orientation, 5,

of the molecule; it will be unitary (and real). The field components

will therefore transform according to the usual equations

N - Mij(g)Eg‘
(1.2.22)

m -1 m' >y M
Y o ML L (B)ET
E Mu(ﬁ)EJ Mﬁ(n) ;

Appendix 1 gives M(2) for the Euler transformation, and other
needed formulas concerning integrations over (.
We can now find the average polarizability by finding the

polarization produced by a molecule characterized by a2



Figure 2.

Orientation of molecule as described by Euler angles.

The laboratory coordinate frame is labeled (x,y,z),

with the (x,y,z=0) plane Tightly shaged; the molecular
coordinate frame is labeled (x',y',z ), with heavy
shading on the (x',y',z'=0) plane. The transformation
between the two is described by (¢,0,y) corresponding
to: (1) rotation about z by ¢; (2) rotation about the
new x axis by 03 (3) rotation about z' by v.
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m _ m' - >y m Fy\ M
(P ) 5= My YT 40 = My G T D=0 ()T e (E)ET
For randomly oriented molecules, this formula is averaged over &
giving

G R J(PTIN(ﬁ))id}} = oji5 £ f (M5 (8)d o

The integrals are given in Appendix 1; the resulting formula for pr

indicates that the linear response is described by a (scalar) average

polarizability, a" , as given by

Pyl =8

where (1.2.23)
-m_ 1, m m m
o7 §(“xx * Yyy * “zz)

The average nonlinear polarization is similarly employed to derive

the average cubic susceptibility tensor:

) %*

(P @) = My D ER 50 = My GXT g ERERLEL,

= O g g Mpos GOM S QM (M (E))ETEY E

J

This gives
*
M pmemem

il =

where the components of ;m are related to Xm components as follows.
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Define:
Xy =) Xm
J JJJd
_ m m
Xp = Z (ijkk + Xjkjk) (1.2.253)
Jsk#J
= m
X3 = Xjkkj

J-k#J

. .. -m
then we find, as the only nonvanishing components of X »

ﬂﬁ1=gh+%§w+%§&
(G X133 Tjij) = %§'X1 + %ﬁ‘xz - %g’x3 J#1 (1.2.25b)
] 1 2 »
Xijji "T85 %1 T30 % T 15 X3 #i
This shows
Fp= G5t g - 15 6 " EE s - 5 g B B

("
(1.2. 25c)

In the "Tossless" limit, equation I1.2.15 shows that Xo = 2X3, and

so the average polarization formula becomes

_ ~>m —>m —>m~k -] ~
> = S (EMEME™ ) +

m
<P lossless XE

NL

with

The subscript "E" indicates that this applies to the electronic
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polarization mechanism for causing the nonlinearity. These formulas
apply to both the quantum mechanical and the classical cases, by
using the corresponding tensors for oM and Xm. In a more detailed
calculation, a further averaging over the thermal distribution of
"ground states" would also have to be performed, but this would not
affect the form of the results at this point. Finally, we use

equation I.2.4 to obtain the macroscopic polarization, which gives:

> R S 1 >k, >
where
4
- -+ -
e s EAHN P (I.2.26b)

We can now form rough estimates of the physical magnitudes
involved in these nonlinear coefficients in the following way.
First, consider the quantum mechanical results, expressed in equations
[.2.11 and 1.2.14. If the sums over dipole moments are replaced
by one "effective" moment, it is seen that the following approximation
holds:

m (am)Z ( 3 )

XE (o, w (Quantum Mechanical) (I.2.27a)

0

where ﬁwa is an average "effective" energy gap. A similar approach

for the classical formulas yields the approximatidn

V,(r.)
X? E (Um)z( 2 i g Y] 2) 3
8m s ma—mo)

where wy is a typical resonant frequency, and s is some typical
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molecular length. Choose ry to be the distance at which the potential

becomes highly nonlinear; an example would be a periodic potential

¥ _TLYL 22'\, —
such as V(r) - VO(T—cos(ra)) . Then muw_rl * |V2(ra)} =V, s
giving the approximate formula
w4
MY (M2 a ) (Classical) .  (I.2.27b)
E 2 2.2
8(wa—w0) VO

We can now estimate the ionic polarization, relative to the

electronic, and see that the former is generally much smaller in

contributing to " or Xm . Since ions see a potential V(¥) of

about the same magnitude as electrons, equation 1.2.16d indicates
1

that the resonant frequency will be smaller by the ratio (me]ec/mion)ﬁ',
generally leading to resonances in the infrared. Since Wy 77 W50
m
m m m mo, (_elec\d
“jon’%Tec ¥ (Metec/Mion)> M4 Xon/Xerec ¥ () << 1. There-

ion
fore, in the case of molecular polarizations in the optical range,

we can identify with &" and consequently a«. Since we can

m
“elec
thus use the "lossless" limit, wy << w both formulas in

2

a ™~ “elec’
equation 1.2.27 show that /(™) n 1/(typical excited state energy).
Finally, when the results of the local field effects are included,

as indicated in equation I1.2.4b, it can be seen that a rough estimate

of X is found from

Xe % (53392(ﬁ%loz/(4-N-Excited state energy) . (I.2.28)

In a typical transparent material, the (electronic) excited state

resonance, w lies in the ultraviolet. Taking, as an example,

res?



-28-

a "typical" optical glass, we find N 2.7 x 1022cm'3,
2 2 o i
e == (1.52)%, ¥ 2800A; this gives g v 2.9 x 10 (LA
(28) _14

An experimental value for a laser glass is about 1.4 x 10 "‘e.s.u.
When E varies in time, the field contains multiple fre-

quencies, and the specific formulas such as 1.2.14 do not apply. A

general formula which allows for different frequency components,

)

Weiald? such as that given in Armstrong et a1(6 » would have to be

summed over all frequency combinations. However, for Weiald 77 “res’
the response is nearly independent of Weialds this is consistent
with the fact that the electronic distribution can respond to

perturbations in times on the order of w“] and thus the

res?
polarizabilities can be described as following the instantaneous
field adiabatically. This view would suggest simply putting the
instantaneous fields in equations 1.2.13, 1.2.21 and 1.2.26, with the
"monochromatic" values of XE - However, since long propagation
distances will be considered, even the small frequency dependencies
remaining in o and yx might be significant. The largest disper-
sive effect, of course, is the linear frequency dependence in «.
This leads to the usual "group velocity" of pulses, but does not
otherwise affect linear propagation; furthermore, it can be shown
that this order of dispersion does not qualitatively alter the

(13).

nonlinear effects under discussion A1l other higher order
dispersive properties of o and iE will be ignored in the present
investigation, since the cubic polarization itself will "dominate"

the pulse distortions. Therefore, the response time of the electronic

nonlinearity, 1 will be taken to be zero.
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I.2.11 orientational Kerr effect

In the preceding section, an effective molecular polarizability,
a", was found by averaging the individual polarizabilities, R
over all possible molecular orientations, @, according to equations
1.2.22 and 1.2.23. 1In doing this, we implicitly made two related

assumptions : first, that the molecular wave functions, wu or

n’
potentials, V(r), were defined in a fixed molecular reference frame,
unaffected by the field, and second, that all molecular orientations,
relative to the lab frame, were equally likely. As shown in Figure 1,
however, a molecule with an anisotropic polarizability experiences
torques which tend to align the polarization with the applied electric
field direction. In a liquid, this results in molecular reorientations
which can destroy the isotropy and perturb the polarizability tensor
by an amount dependent on the field; this is called the orientational
Kerr effect.

We can analyze this effect by modifying our approach toward

the linear polarizability in two ways(zg).

We will remain in the
laboratory frame and consider the molecule to be characterized by O
in its response; also, we will assume that a thermal equilibrium
condition is enforced by the neighboring molecules, so that, in the
absence of an applied field, the situation of "random” orientation
results. As before, we can avoid a quantum mechanical description(BO)
of the molecule's response under these conditions by assuming that all
fields and polarizations are classical. In order to conserve the

total (electromagnetic plus internal) energy, we can state that the
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energy of a polarizable molecule in the field is changed by an amount

equal to W, with
W= W@ = - 4 P EM (1.2.29)

When thermal equilibrium is reached, the probability, f(d), that

the molecule will have an orientation, %, will be given by

£(3) = e'W(ﬁ)/kT/(J e WED/KT 430y (1.2.30)

We will use the slowly varying part of W, because the molecular
inertia prevents responses at twg s and because the thermal equili-

brium mechanism (collisions) cannot be effective in times as short as

w;]. Since the dot product is invarient under &, we can find, from

equations 1.2.8, 1.2.12, and [.2.22, the function W)

- | B I* - I* - 1]
W) (" P P LMY

00} vt

¥ I*
m m
- - a1 E‘i. Ejl )

m
(OL.iIJ

]

=

QM. L (B)ETED

-1
B AR R R R AR b

LI

Now, from equation 1.2.30, we can expand f(ﬁ) out to terms

quadratic in Em_

3
1 e

0 (1-w(5)/kT)(} (1-W(8) /kT)d 8]

ft

*
> 1 m mem > 7y 137y -1

il

(1 - WE/KT) (1 + g a(E™T )7
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Thus, - .

m -m > -+
f(§)= 1- 4kT + kT ai“lj"‘Ei"Ej" Mi"ﬁ"(Q)Mj"'j"(Q) E] (102-31)

where &' is defined in equation 1.2.23. To calculate the effective

polarizability of a molecule at &, defined as u?j(ﬁ), we write

m _ FypM' _ m m_om > >y M
P'i(@) - Mi|i(Q)Pi| - Mi'i(a)di'j'Ej' - ail.j'Mi'i(Q)Mj'j(Q)EJ s
which implies that the polarizability in the laboratory frame is given
by

m > _ m > -
qij(ﬂ) = ai'j'Mi‘i(Q)Mj'j(Q) . (I1.2.32)
Finally, the thermally averaged polarizability is given by

weighting a?j(ﬁ) by f(&); using the integral formulas given in

Appendix 1, we obtain:

GIo= [ @ @)%

~M ESE R

- 9_(.____ m._~m m -+3—;

- (] - 4kT (E E ))ailjlf Mili(g)Mjlj(Q)d §

1 * m 3

m -m m - > 5 >

+ 4kT Equj" @iljlainﬁnlj Mi"'i“ (Q)Mj"lj"(Q)Mi'i(Q)Mj'j(Q)d 5

2 s> 2 ¥* ¥

= & "m_A m,-m A m.m m ~m

=%,;0 - Teorr EOE )t moer (BiEy * By Ej)

= =M -m

= o 51 j (aNL)T 9 (1.2.33)

where

2 g, m m 2 m m .2 m m.2
b= (“xx— O‘y_y) * (axx' O‘zz) * (“yy" O‘zz) ‘

When the local field effects, as shown in equation I.2.4, are taken into
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account, the orientational Kerr effect can be described by the

macroscopic polarization, By ) » Where
NL‘KERR

Pyl kerg = gEEE) + 3E(E-E)) (1.2.34)
and

o % e

Xk = 360 kT (557

This result for the Kerr effect corresponds to equation 1.2.26b
for the electronic nonlinearity. The analogous equation for the

magnitude of QK is thus

The factor, A2/(&m)2, ranges from zero (for an isotropic molecule)
to 18 (for an idealized molecule with only one axis of polarizability).
As a numerical example, consider carbon disulfide (T = 293°K,
= 1.0 x 10%em™, ¢ = n? = (1.6255)%) , which gives
XK 1.1 x 10—]2(A /{ m) ) e.s.u.; this is consistent with a measured

"8 e sy, if Az/(&m)zg 0.2. In general,

va]ue( ) Xx % 2 x 10
for a reasonably anisotropic molecule, the Kerr effect nonlinearity is
much larger than the corresponding electronic nonlinear polarizability,
since kT << Tw res
In considering the response of the Kerr effect to time varia-
tions in E (i.e. pulses), the model used above shows that the net
nonlinear polarization results from two distinct effects: first, the
"average" molecule reorients itself and in the process alters its net

polarizability, and second, the normal linear polarization is induced
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in these reoriented molecules by the field. We have previously
concluded that this Tast process is effective]y instantaneous, but
clearly the first response is not, since it involves both a movement
of the (relatively massive) molecular nuclei and also a thermalization
with the surrounding medium.

The most common mode1(32)

for the rotational response of the
molecules is that the surrounding medium produces a viscosity, 7,
which inhibits rapid rotations; in this view, the molecules will
"diffuse", in @ space, toward their equilibrium distribution.
Thus, f(3) will obey a diffusion equat1on, dr1ven by the torques
resulting from the potential, W(&.t) = —-519 é (t) . of
interest here is the resultant “relaxation” equation obeyed by the

distribution, f(3), and in turn by the polarizability tensor elements,

GHTINE

—: &2 (M - &M (1.2.35)

where &g (Em) is the instantaneous equilibrium value of &QL 5

as given by the part of equation 1.2.33 which is quadratic in the
field amplitudes. In reality, the effective Kerr relaxation time,
Ty depends on the polarizations and field magnitudes to some
degree(33), but for the cases analyzed later, equations 1.2.34 and
1.2.35 are sufficiently accurate. In these cases, Tk = £/6kT,
with &, the Stokes constant, given approximately by BHan, and
ro being the effective molecular radius. For carbon disulfide,

-12

using r, v 2A, and n = 0.363 c.p., we obtain T Y3 x 107 “sec;

(34) -12

since the measured value T = 1.9 x 10 "“sec, 1s so close to
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this, we can assume that the "viscous medium" model is qualitatively
accurate for the Kerr effect (on this time scale).

When we later refer to the response time of the nonlinear
polarizability, a, or of the corresponding nonlinear dielectric
constant, e, or refractive index, n, we will assume that an
equation of the relaxation type (I1.2.35) holds, even though other
nonlinear effects, such as electrostriction, may not be accurately
described by a simple relaxation rate, <. Although the steady state

value, « may be relatively large, in equation 1.2.35, the non-

0)
linearity will not be important for optical pulse envelopes much
shorter than +t since the actual values of a(t) will then be

much smaller than &0.

1.2.1i1 electrostrictive nonlinearity

According to Figure 1, a polarizable molecule tends to move
into the region of highest electric field amplitude; such a force,
in a material of uniform unperturbed density, Pys will create
stresses, which are called electrostrictive forces. The resultant

strains will lead to density variations,

p(r,t) = o, + pq(?,t)
which, for O] << Pgs will be governed by the equations for macro-
scopic acoustic wave propagation. An accurate description of this
effect in solids is complicated by the fact that the electrostrictive

stresses and strains are not isotropic, even in an isotropic unperturbed
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materia1< Many Qf the following equations will therefore hold
strictly only for fluids or in the steady state limit.

We have shown that, in an isotropic medium, the linear
polarizability, a«, is a scalar such that ;;= &';9 and that the
polarization energy of the medium, per unit volume, is given by
W(r,t) = - %—&(?,t)ér°ﬁg, By considering the change in this energy
caused by the movement of material from one position to another, we
find that the electrostrictive force per unit volume depends on the

variation of o with density, according to the equation

Only the slowly varying forces, as shown, can drive the acoustic waves.

This force drives the density changes, according to the small-

signal acoustic wave equation(36), in the following way:
sz

= 5 *

Vzpl - —%' % Ty at(V pl) - ;%' - "l?(po %g)v (E-E)
v ot 4v P

s Vs s
- (4 _ 1/2 _
Here, t, = (§-n+A)/K and nyks K, Vo S (K/po) are the coefficient

of viscosity, coefficient of expansive friction, compressibility
modulus and acoustic velocity, respectively. Defining

a(f.t) ¥ 3+ (o B°ﬁ)<—~>~ G+ oy (Ft) o gives

0 9p
2-
2- 1 ®on 2y - 1 )22@»*
VT Z T2t Pon) = o 2P0 5ol v (ETE)
s 9 poVs

(1.2.36)

The steady-state response is thus characterized by aNL proportional
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>

. .
to E-E, leading to a macroscopic nonlinear polarization, PNL’

and nonlinear electrostrictive susceptibility, iES’ given by

- - *
(ﬁNL)ES = O‘NLg = XESE(??) (1.2.37)
and
Yes = — (o bay2
ES 2 ‘Yo 3p
4povs

The value of the coupling constant, (po %%), can be found if
m

the assumption is made that the average molecular polarizability, o ,

does not depend on the density. In this case, from equation I1.2.4,

we have
da _ oy Ba o =y, Am o=y oo (ed2ye-1
Pq 3 o N N - ol + 3 o) ( 3 ) ( ) ) . (1.2.38)
Using, for glass, v =2 x 10°cm sec_], oo = 2.9 gm an”>, e = n§=
(].52)2, we have the estimate ..~ 5 x 10'14 e.s.u., 1in reasonable

agreement with measured va]ues(37).

The electrostrictive response to pulsed fields can be found
from equation 1.2.36, where the acoustical damping constant, Ty
can usually be taken to be negligibly small. The electrostrictive
nonlinearity, however, differs from the two previously considered,
because it is not a "local" response; it is driven by the macroscopic
variations in the field intensity. Coupled with the much slower
acoustic velocity, this difference greatly complicates any analysis

concerning pu1ses(38).

It is clear, however, that these complications
can be ignored in either of the two extreme cases : very long, "steady-

state" pulses, or very short ("ultrashort") pulses. In the latter case,
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of course, the electrostrictive nonlinearity does not have time to
develop, since the effective response time involved, TEg» is
approximately equal to the time it takes for the acoustic wave to
transverse the length of the intensity gradient (i.e. transverse beam

dimension): Ar

Vs

Y
v

TES

Typically, Ar a ]O_Zcm, giving tpg v 1077 sec.

1.2.iv other sources of cubic nonlinearity

In 1iquids and solids, the influence of the surrounding medium
on a molecule, represented by #{' in equation I.1.3, causes correla-
tions between neighboring polarization sources, so that the "single
source" approach in sections I.2.1 and I.2.ii is not quantitatively
accurate. As an example, there are strong short-range fields which
induce polarizations in an "unperturbed" molecule; this form of
correlation will then affect the "incremental" polarization induced
by an applied fie]d(31>. Also, these correlations may depend on the
relative positions of the neighboring molecules, leading to the
"distributional” Kerr effect(39).

Our model of the orientational Kerr effect indicates that the
torques on an anisotropic molecule can lead to other dynamical
molecular behavior, besides an average diffusion toward an equilibrium
orientation. First, only a small shift in the distribution function,

f(ﬁ), is needed; this can occur even if the molecules are held in

very "confining" potentials, such as occur in a solid. This potential
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would have an angular dependence, however, and would therefore have to
be included in our derivation of the susceptibility. Furthermore, the
concept of a microscopic "viscosity" is not accurate for times less
than the collision time; on this more rapid time scale, the torques
on the molecule would lead to responses governed by inertial forces(dO),

Finally, a number of other nonlinearities, or different interpretations
(41,42,43,44)

of the same ones discussed above, have been investigated
Next, there is a class of nonlinear effects of the "resonant”
type which can be termed cubic nonlinearities in some situations;
these are caused by resonances in the denominators in equations
1.2.9 and 1.2.14. These cases cannot be treated by the methods used
in section I.2.i for a number of reasons. First, of course, the
perturbation approach is not valid if excited levels become signifi-
cantly occupied, or if exact resonances occur to cause mathematical

divergences. Even for perturbations which are small and slightly off-

[74)

resonance, however, the formulas would have to be modified to include
terms which produce frequencies very close to w, 3 such polarizations
will be important over short time scales, or if relaxation processes
prevent the polarization from "dephasing" with the applied field. For
similar reasons, the finite bandwidths of excited levels will allow
"exact resonances" to occur in physical situations.

Quantitatively, we will consider the non-degenerate case when
only a single excited state has a frequency near W This resonance
can be heuristically accounted for by assigning the resonant level,

"t', a complex frequency(]z)s leading to a bandwidth (and relaxation
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rate), I, where

w% = Wy - ir = Wy - Aw - 1T . (1.2.39)

Here wy = wytho describes the relation of the applied frequency to
the resonance frequency. Pictorially, the energy level diagram would

appear as follows:

fw fiw
0

Carrying out the perturbation method outlined in section 1.2.1,

we obtain
( m ) e2 (r1)g;(rj)tg (3 ) (1.2.40a)
Os s = = ir - Aw ..40a
ijres (Aw)Z +(r)2
and
ML) =9§ (ri)gt(rj)m(r“;%(rk)tﬂ (dw - i) .
ijke’res A ((Aw)Z + ()%)
(1.2.40b)
The form of the frequency dependence in (Xm)res actually depends
somewhat on the "recipe" used in substituting for m%, indicating

that the heuristic "complex frequency" approach may not be adequate
for higher order resonances.
These tensors can now be averaged over angles according to

equations 1.2.23 and 1.2.25, multiplied by Nres’ the number density
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of resonant molecules, corrected for local field effects as in

equation I.2.4, and averaged over Aw 1if inhomogeneous broadening is
present. The real part of the resultant tensors then can be used to
find the "intensity-dependent refractive index", while the imaginary
parts will lead to (saturable) absorption (since our model was based
on the ground state being occupied initially). It is also seen that

the real part of (x) will be positive when Aw > 0, so that a

res
field "above" resonance will exhibit the same nonlinear effects as
caused by the nonlinearities described in previous sections(45),

Because the material will no Tonger be lossless, and because of
the strong frequency dependence of the resonance nonlinearity, the
effects described by equation I.2.40 cannot realistically be treated
simply by using polarizabilities and susceptibilities if pulses are
involved. We will thus exclude "resonant" interactions from our list
of cubic nonlinearities; if needed, they can be treated with more

(]0). However, if the relevant pulse

general, time-dependent equations
t+i/T
"area", e(ri)gt/ﬁ j E(t)dt, 1is smaller than =, as will hold here,

then equation 1.2.40 describes, at least qualitatively, resonant effects.

1.3 Macroscopic Propagation Equations

The linear and nonlinear polarization sources discussed in the

last section can all be described by the following steady-state equation
=iy t
for the component varying at e °

T . >k > >

B =of + J(E(EE) + C,E (E-E)), (1.3.1)



wf =

where the electric field components are defined in equation I.2.1.
From the quantum mechanical formula, 1.2.11, for a", we can use the
Tocal field correction formula (I1.2.4) and the isotropy condition

(I.2.23) to obtain:

where _ 02 w

We have also found that Co equals 1/2, 3, and 0, for the
electronic nonlinearity, orientational Kerr effect, and electrostric-
tion, respectively; the corresponding susceptibilities, iE’iK’iES’
are given in equations 1.2.26, 1.2.34, and 1.2.37. As shown in
Appendix 1, the form of the nonlinear polarization given in equation
1.3.1 must hold for any cubic polarization in an isctropic medium,

with some Co. We can thus consider this nonlinearity to be formally

equivalent to an intensity-dependent polarizability tensor,

N>
from equation I.3.1, then, we write
[ .= (ay, }asEs
(P oy )55 (1.3.2)
-0 _ = . ¥ - * *
(g )y = x(1 - co)(ﬁﬁ Jog 5+ X Co(E{Ey + E4ES)

n

The superscript "o" on &ﬁL indicates that this is the steady state
value, found by assuming E does not vary in time. The time

dependence of the nonlinearity, to the accuracy required in these
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analyses, will be assumed to be given by equation I.2.35; each element
of &NL(t) thus obeys the relaxation equation:

o
NL _ -0 - .
T —5-:5—'_” O:NL- O'.NL ° (Iu3¢3)

When a combination of effects is present, the form of &ﬁL
must still hold, although CO will differ from the three values listed

ear]ier(46).

However, equation I.3.3 would not in general apply if
the effects had different relaxation rates; we will ignore such
"mixed" effects. For a response time, t, which is short compared to
the pulse envelope, we can of course put &NL = &ﬁL . In our cal-
culations, we will furthermore take o and &NL to be real; we have
seen that this holds when W, is far removed from any resonance.

The macroscopic beam propagations are now found by substituting

>

the above polarization into Maxwell's equations. Eliminating 3

from equation I.1.1 gives

N
2 4
VB TPy
]
3. 24 (1.3.4)
22 0o 78 _ 4 NL 4y ﬂ
VE -5 oy - VIV Ry
¢ ot C ot o
czk2
where 20 = ng =¢g=1+4n o. Using equations 1.2.1 and 1.2.2
“o - >
to express 5: and ka in terms of traveling waves, yields equations

for the complex amplitude functions, compatible with the nonlinear

polarizability definitions:



i > | dn 4 e
E. == VE+ 5 (P,), - v-p
z k 2 V' NLz 2 NL
0 N, nokO (1.3.5)
o, "o o 1(327E‘+92E)_ 201 7 A1 Py
z c 0 Zko axz ay2 ni oNL n.c ot
2
b Bzf _ n azf _ 2mi 9 3NL
2ky 552 2k0c2 22 koc2 312 (1.3.6)
" 2mik .
2m 2 (g 0 A, 2mi B
- Py ), - 5 (VB e, - ——7 (Py ) e S5 WY P
M9 Mo "o noko

The initial conditions of interest here involve beams traveling in the
+z direction, according to 1.2.1; these beams are assumed to enter the
material from free space, and we take &NL(?,t) = 0 before the beam
arrives. We will ignore the small distortions resulting from the

(47)

boundary conditions at the material interface , and take the field

E(0,t) as given at some point (z = 0) within the material. Th

ise L )

o

eam
will have transverse dimensions much larger than a wavelength, and have
an envelope, E, varying slowly in z and t vrelative to

ei(koz"mot) ; the nonlinearities moreover are small over wavelength
distances, so that |Py | << [E[, or ay << 1, can be taken. Under
these conditions, (PNL)z << EZ << Ex’Ey’ and so equation 1.3.5 gives,

to order “V"/ko, the result:

oy 1 SEX _?E_\L
EZ - - T(—O- (-B';(—*’ 5y ) . (1.3.7)

This shows, using equation 1.3.6, that the transverse fields

are essentially decoupled from Ez’ the Tongitudinal field; EZ v 0
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can also be used in calculating ﬁNL‘ To order “v"/ko, we find for

EX the propagation equation

2 2 .
EE§.+ g 3E, ] (a E, . 9 EX)= 2mik oy - ﬂlL.a(PNL)X
3z ¢ ot ZkO ax2 ayz ng NL‘x Ny ot
(1.3.8)

with a similar equation for Ey‘ |

It should be noted that there is a major qualitative difference
between a beam governed by this equation and the true solution to
equation 1.3.6: ﬁNL’ by itself, "preserves" polarizations, to the

extent that, if Ey =0 initially, then (P, ) =0 and Ey =0

NL'y
will result thereafter. Thus, the "decoupled" equation 1.3.8 allows

a linearly polarized solution. However, this is not true in the exact
equation,l.3.6, since the last term on the right produces a source for

2
3¢(Pyy )
E whenever NL"x

y YR is non zero. Our Tater analyses using finite
< TTT

beams will not show this polarization coupling; qualitatively, however,
these effects can be neglected for our purposes, since the "depolarized"
fields produced are smaller by ~ "v"/ko.

In many cases, the initial beam is sufficiently large, spatially,
that it can be approximated by a plane wave, with EZ = (; equation
1.3.6 shows that the plane-wave character of the field is preserved
exactly in this case. The analysis of the plane wave case leads to
the concept of an "intensity-dependent refractive index", which
yields a physical model of the macroscopic effects over small areas of
a finite beam as well. Consider the case of instantaneous response

(t = 0) in the steady-state problem, which is described by the equations :
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X _ 0 /- -0
3z : [(aNL)xxEx ¥ (O‘f\ﬂ.)xyEy:l
0 (1.3.9)
5E 2rik
Zy T o -0
oz 2 E(“NL)yxEx * (“NL)nyy}
o

-0 _ -0 C . .
where oy, = aNL(EX,Ey) is given in equation I.3.3.

In the case of a plane polarized wave, E = Ex(z)éx, setting

Ey = 0 1in equation I.3.9 yields the solution (for real &EL)
2k
1.(“‘"?'Q'(O‘I(\JIL)xe)
e ng

Ex(z) = EX(G)

A comparison with equation I.1.2 shows that the nonlinearity has

manifested itself as a change in the wave vector, with ko > ké =
2n =0

ko (1 + 2 (aNL)

of refraltion, n(r,t), and a nonlinear index coefficient, Ny, as

xx)' We can thus define an intensity-dependent index
follows:

> o
n(r,t) = n, + sn(r,t) = n, * n2<€- g, (1.3.10a)

> =
where <€-E> indicates that only the slowly varying part of the field

intensity is to be taken. Thus, we have,

N, w
n(r,t) = n + - (E'E) . (1.3.10b)

The refractive index is related to the phase velocity of the

W
traveling wave according to %—= EQ-’ which implies n(r,t) =
ﬁ—-k(r,t) =n, fi-. For the steady state (or instantaneous response)
0 0

Tinearly polarized, plane wave case, we thus obtain:



ny =28 —=3X =L 3(1+¢) . (1.3.11)

We can similarly define an intensity-dependent dielectric constant,
o - -
O = e'€ , where ¢' = etde = e+ez<§v€>; this gives, for the

case discussed here,

e, = 2000, = Bux(1+ C) . (1.3.12)

When the plane-wave field is not linearly polarized, equation
1.3.9 indicates that the orthogonal polarizations are coupled; this
can be shown to lead to such phenomena as the rotation of the axes
of elliptically polarized beams(12). Such effects cannot be
characterized simply by a single "nonlinear index", and will not be
considered in our analyses. An exception is the case of circular
polarization, given by Ey =+ iEx, where a single nonlinear index of
the type shown in equation 1.3.10 applies,with

8n - 2

circular g;‘x = (n2)1inear(1 + T, )

(n,)

Note that this circularly polarized beam carries twice the power density
of the linearly polarized beam with equal field amplitudes, so that the
ratio of index changes for beams with the same power density is given

by (6n)circu1ar/(6n)1inear = T—%—E;-e Otherwise, the propagation
equations are identical, even in the presence of temporal or trans-
verse structure (or relaxation effects); the circular polarization will

hold everywhere, and only one component needs to be considered in the

propagation equation.
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In both cases, therefore, &NL reduces to an (intensity-
dependent) scalar, and the beam propagation will be governed by

the following equations, where E(¥,t), and sn(r,t) are scalars:

OE (n ton) oE i (32E . 3ZE) _ ik, (on)
3z c ot 2kD axz ayz o
n . (1.3.13)
Tﬂ%lr-%mz ~ (sn)

This same result is obtained simply by setting Ny~ Mg + 6n in
equation I.3.4 and ignoring ﬁNL’ thus justifying the physical model
of a local "intensity-dependent refractive index" for all of the phenomena
of interest here. Note, however, that, except for linearly or cir-
cularly polarized fields , the tensor aspects of &NL prevent
such a simple view, since the expression for 3NL in equation 1.3.8
does not reduce to the form in equation I.3.13.

We will now consider the consistency of some of our assump-
tions, and indicate the limitations imposed by them. In the absence
of a nonlinearity, the power flow (in the +z direction) per unit area
would be given by the quantity: (optical power/area) = %%E(ﬁ°§*);
if dn<x< n,> We can continue to use this expression in the nonlinear
case. For aNL {(and sn) real, equation 1.3.13 implies that the
total beam power is conserved, and travels with velocity o c/nO;
therefore, the intensity }EIZ can be estimated, as in the linear
case, from the initial power if the beam area is known. A "typical”
laser source for the beams of interest can produce a Q-switched pulse

7

of about 1 Megawatt peak power (0.2 Joules in 2 x 107" sec.), or a
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train of mode-locked pulses of about 1 Gigawatt peak power (‘IO”3

Joules 1in ]O"zzsec.); the peak (vacuum) electric field amplitudes,

|E], if these pulses have a cross section of 0.1 cm23 are then

2.9 x 102 e.s.u. and 9.2 x 103 e.s.u., respectively. According

to equations I1.3.10 and I.3.11, the resultant nonlinear refractive

index changes, for n, = 1.6, are given by §(1+C0) times

3.3 x 105 and 3.3 x 108, respectively. Our previous estimates of

-14 =13

v ranged from about 10 (electronic nonlinearity) to 4 x 10

{Kerr effect), indicating that on for such a beam would be at most

" 10"4. Since, in fact, the Kerr effect for most materials is usually

ineffective for ultrashort pulses, due to = we can con-

K~ Toulse®
clude that &n << o and IPNLl << |E| are good assumptions except
under conditions of extreme amplification and focusing.

Finally, we can now estimate the importance of the production
of third harmonic, since this determines if the "carrier waves",

eiT(kOZ"th)a accurately describe the rapidly varying fields in the

nonlinear materiai(dg},

Of the major nonlinearities discussed in

section 1.2, only the electronic polarization can respond rapidly

enough to produce such a third harmonic, which would then be given by

‘%9§3m0 = 2(5 3u,) 31( oZ-wot), c.c.); in this case, the methods of
(3&@)* “(3w0)

plouo). t

section 1.2.1 can be used to show that oL where
&éﬁw )m %-QE(fe?) . This polarization source, in turn, can be used
in Maxwell's equations to yield a "steady-state" third harmonic field

size given by:
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E(3w0)§

no(Bwo)dn(3w0)
E(u,) |

nZ(3u,)-n(u,)|

. -4 -
with n(3w ) & anle ) < 1077, Here lnD(SmQ) = nglw )tz 10 2
because of dispersion, since this is equivalent to the problem of
non phase-matched third harmonic. This shows that |E(3w )| << [E(w,)]|
will hold in the situations analyzed here, justifying the use of

equation I.1.2 for the field.
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Chapter 11
ULTRASHORT PULSE GENERATION IN LASERS
THROUGH SELF PHASE MODULATION

The use of saturable absorbers within the cavities of pulsed,
solid state lasers has proven to be a very convenient method of

(16)

"mode-Tlocking" these light sources , resulting in the generation

(28,49y 1y this

of ultrashort pulses with many practical applications
chapter, we consider the analogous system in which the saturable
absorber is replaced by a material exhibiting an intensity-dependent
refractive index. For simplicity, we will refer to this material as
the 'Kerr medium", although any of the nonlinearities considered in
Chapter I could be responsible for the effect if the response time is
sufficiently short.

Here, we develop a model of such a Taser system which is
simplified enough to allow analytical solutions; nevertheless, we show
that the physical mechanisms involved are well represented in this
model, so that the pulsing properties of realistic systems can be
predicted. We also examine the "stability" of the pulsing behavior,
and find that the system described here has some advantages over the

more common mode-locking mechanisms.

I1.17 Laser System Model

The laser system under consideration contains three fundamental
elements: an amplifier (gain medium), an oscillator feedback system

(mirrors), and a "Kerr medium" which produces a cubic polarization
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source for the fields in the cavity. The laser model 1is shown in
Figure 3; also shown is a reference plane at which the traveling-wave
fields are to be determined. In analyzing this laser model, we will
assume that the various effects can be treated separately, so that,

for example, the Kerr medium is lossliess, and the gain medium does not
display any nonresonant cubic polarization. These assumptions are not
always valid in real lasers; for example, the refractive index non-
linearity in Nd:glass amplifiers is known to play a role in determining

(50).

the pulsing characteristics However, the artificial "separation”
of effects should not alter the physical principles involved, and may.
in fact, help explain the properties of "compliex" media such as
Nd:glass.

The ability of the laser system shown in Figure 3 to produce
ultrashort pulses can be explained on quite general grounds. The
amp1ifying medium, which is typically Ruby or Nd:glass, has a suf-
ficiently broad amplification bandwidth to produce such pulses, but
normally the laser oscillates only over the frequencies having the
highest gain. On the other hand, the Kerr medium generates a non-
Tinear polarization which couples the frequencies together and can
thus broaden the oscillating spectrum. If the phases of the dif-
ferent frequency components are properly related, the ocutput of the
laser will consist of a train of "mode-Tlocked” pu?ses(19)a The
primary purpose of this chapter is thus to show why such pulses are

the "favored" field configuration when an intensity-dependent refrac-

tive index is present.
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The field in the laser cavity will be taken to be Tinearly
polarized, which is the case for most lasers in a "mode-locking"
configuration. Furthermore, the analysis will be confined to plane-
wave fields; the physical picture discussed later will show that, in
general, any transverse structure on the beam would not affect our

results, beyond altering some of the constants involved.

II.1.1 circulating pulse approach

Because the Kerr medium introduces cubic polarization terms,
as indicated in equation I.3.1, we can see that field components at
frequencies Wy 5o and Was will produce a polarization at
wy = wytuy=ug (as well as other frequencies). This observation
suggests that an appropriate description of the field within the cavity
might be an expansion in terms of resonator "modes", such as those

2 n Tz
based on the spatially complete set of functions, e '™ L , as follows:

N v 0 v
> . im— (z-ct) -im + (z-ct)
E(T.t) =8 ] {am(t)e Le + a;(t)e Le
m (IT.1.1a)
im tl-(z+ct) s =im fl-(z+ct)
+ bm(t)e c + bm(t)e c } :

Here, LC (the cavity length) and 2z are measured in "optical"

lengths, corrected for linear refractive 1ndices, and the "modes" of

interest are those near Wy the Tine center of the gain medium;
wgke 6
%10 .

h m
thus f mC

By substituting equation II.1.1a into the
equations governing the gain medium, Kerr medium, and boundary condi-

tions, and integrating over the cavity length to make use of the
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orthogonality of the modes, we can obtain a set of coupled equations

involving the derivatives of a_ and b, Finally, if we assume that

m
the mode amplitudes vary slowly compared with the intermode frequency,

d m TC
at | <~ T iam]
¢
db (IT.7.1b)
m o
at | °° L. byl
the equations are "decoupled"; the evolution of the field can be
da db
found through a set of equations for —HEE' R ~EEE~ » 1in terms of
an3 bn-

This approach was used in a previous ana1ysis(20), which
concluded that a "mode-locked" pulse, with nearly equal mode ampli-
tudes and phases, was indeed a solution to the problem. However, the
physical processes occurring in the cavity were not clarified by the
analysis, and only very general "energy flow" arguments, similar to
those in the introduction to this section, could be given. Further-
more, a numerical solution to the resultant "field evolution" equations
was attempted, which indicated that there were two other major

drawbacks to the "mode coupling" approach. First, a realistic laser
b )putse | Tround trip 103
(00 ode “pulse

modes in equation II.1.la, to represent the field; this implies that

model would require about Am =

the cubic polarization would involve nearly 109 terms. Computa-
tionally, then, the true ultrashort limit is impossible, and only a
relatively few modes could be considered in our computer programs.

Furthermore, the computer results showed that an even more fundamental



-5

problem existed in the analysis, since they indicated very little
tendency toward mode-locking. This contradicted our experiments(S]),
which had shown that the system shown in Figure 3 was, in fact,
capable of producing ultrashort pulses.

This contradiction arises because of the incorrect assumption
given in equation II.1.1b. Physically, this eguation implies that the
field does not change its form during a round trip transit of the
cavity, which seems consistent with a mode-Tocked pulse with constant
ay and bm. However, we can see from equation II.1.la that a steady-
state pulsing solution is also possible whenever am(t) and bm(t)

are periodic, with period T = E;E~ s this condition includes the
possibility of strong distortions occurring during the beam
propagation, with the pulse reproducing itself after each round trip
transit. The approach used in this chapter is designed specifically
to allow for this situation; we will find that it also overcomes the
other problems associated with the "coupled mode" approach.

The rapid variations in am(t) and bm(t) indicate that the
frequencies present in é(?,t) are not confined to the "normal mode"
frequencies, m(%g-); therefore, we can consider the field at a given
reference plane ag consisting of repetitive pulses, each of which has
a continuous frequency spectrum centered at Wy This is consistent
with our analysis of the cubic nonTinearity given in Chapter 1. Such
a view is called the "circulating pulse" approach, and is particularly

suited to the present application, where the pulse physically

occupies only a very small part of the cavity. The circulating pulse
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techniques used here were developed by Cut]er(sz)

in connection with
the microwave regenerative pulse generator, and have been applied to
some other laser systems in the past(49’53).

We will assume that a single pulse of light circulates in the
system, successively passing through the various elements; in a laser,
of course, this is accomplished by the light bouncing back and forth
between the cavity reflectors, as shown in Figure 3. The elements
inside the cavity are characterized by their effect on the pulse; this
temporal "separation" of the pulse shaping process allows approxima-
tions to be made in describing each element without affecting the
fundamental system behavior.

The circulating light pulse can be described by giving its

time dependence as it passes any point, z such as the reference

ref’
plane in Figure 3. In order to obtain closed-form expressions and
analytical solutions, we will assume that this time dependence ,

as a first approximation, always has a Gaussian envelope, and a phase

which may contain terms quadratic in time:

- 1 —1w0t * iw t
& (Zref’t) e —2—(E(t)e + E (t)e )ex
—(a+18)t2
where E(t) =Ae® (11.1.2)
and wy = Wy + Aw.

Here the pulse shape is characterized by four real parameters, A,
« >0, aw, and B8, which depend on Zoafs Yt is the laser

"transition" frequency, shown in equation I1.2.40, and will be discussed
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further in the next section. We will ignore any constant phase in
E. as implied by A being real; furthermore, the time origin at

any z is taken to be the peak of the field envelope, so that a

ref
time shift will be used to eliminate any terms of the type exp[c't],
with c¢' vreal. This involves no loss of information, since we are

not interested in the Toop transit time in these calculations.

The form of the field, as given in equation II.1.2, contains a
parameter, 8, which will be found to be crucial to the pulse
formation process. This parameter determines the "chirp" on the pulse;
a pulse with a positive chirp has an instantaneous frequency which
increases with time, as illustrated in Figure 4. By defining the
generalized amplitude, a(t), and phase, ¢(t), functions according

to

3 -

E(z,t) = HE (2,8) + E(2,8))8

(I1.1.3a)
-fw t .
B (z.t) = E(z.t)e O =Q(z,t)el (28
then w(z.t), the instantaneous frequency, will be given by
= - 99
w(z,t) A (I1.1.3b)

where we use the negative sign so that the "carrier" frequency is tugs

for convenience. For the standard traveling wave field form given in
equation I.1.2, we have, for this plane wave case,
1(koz-wot)

E+(z,t) = Ex(z,t)e (11.1.4)
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Linearly chirped pulse with Gaussian envelope.

(a),(b) Pulse field and frequency; the shading represents
the frequency spread due to envelope modulation. The time
scale can be transformed into a length scale, giving an
instantaneous "snapshot" of a pulse moving to the left.
(c) Compressor group delay vs. frequency.

(d),(e) Compressed pulse characteristics. The frequency
spread is now due entirely to the sharpened envelope,
since the chirp has been removed.
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with an analogous form without any 'z' dependence for the "reference
plane" field of equation II.1.2. We will use the following convention

for the (temporal) Fourier transform, F(w), of a function, f(t):

Fla) = (2n)°]/2f f(eyelot ger (11.1.5a)

which implies the inverse transform as given by:

£(t) = (2n)“1/2j Flo')e 19 gy (11.1.5b)

With these definitions, we will consider the Fourier transform

of E+(z,t) alone as defining the pulse spectrum at 'z', according to

B (zw) = (2n)7 V[ Ey(zt)e e, (11.1.6a)

with the corresponding expansion of E_(z,t) in terms of its frequency

components:

E,(z,t) = (zn)'l/zj E(zyt)e @ . (11.1.6b)

The sign of 'w' in the Fourier transform is thus seen to be
consistent with the interpretation that E_(z,t) contains the positive
frequency components of E(zat), with frequencies centered at Wy
The amplitude and phase definitions in equation II.1.3a are,
in fact, not unique, but the form shown in equation II.1.2 is well

defined if we choose

= A exp[-atZ]

P
o
N
-
o
-—h
ﬁ
o
!

(11.1.7)

t) =t at?
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giving “(Zref’t) = uw, +2gt.  Our model of the laser pulse thus

includes, at most, a "linear" chirp, with the chirp rate given by
"2g". The pulse given in equation II.1.2 has an r.m.s. intensity
pulsewidth, T2 and an r.m.S. power spectrum bandwidth, 6w,

given by

1
L
and (I1.1.8)

o B
o

Thus, even in the absence of any chirp, the envelope modulation

Sw =

causes a frequency uncertainty of (sw) = Vo, S0 that the

pulse

"frequency sweep", as given by (sw) (28) = f% , 1is only

)
a measurable quantity when g ; ao. Even for g < o, however, we

chirp = "p

will refer to the "instantaneous frequency", w(t), given by equation

I1.1.3b, as if it were well-defined.

I.1.1i1 Tlaser cavity elements

The effect of each cavity element on the circulating pulse can
be described in terms of changes in the four parameters, A, a,
Aws B, Since we assume that the field always retains the Gaussian form
in equation IL.1.2. In this section, models will be developed for the
gain and Kerr media which meet this requirement, but which neverthe-
less represent the major physical processes involved. More detailed
analyses of plane-wave pulse propagation in such media can be per-

(10’13); however, the refinements indicated in the higher order

formed
solutions do not appear to significantly affect the mode-locking

model given here.



-6

First, we will discuss the effect of the gain medium on the
circulating pulse. From our previous considerations, we know that
the primary fmode—coup1ing” process occurs in the Kerr medium, so that,
as a first approximation, we can treat only the linear aspects of the
amplification process. The resonant polarizability was discussed in
section I.2.iv; from equation I1.2.40a, then, we can derive the follow-
ing result for the "active" polarization in the gain medium, when a

monochromatic beam is present:

e = g (WE (11.1.9a)
where
2 \
2 2. {Aw=- 1iT
o (w) = (N.-N )E(EFE) ¢5 (I1.1.9b)
res t g'h 3 A 2+r
2 {ﬁ I(X)atlz in crystals

i\%'(l(X)gtlz + I(y)gtl2 + I(z)gtlz) in liquids or glasses
Aw = w = wt

Nt(Ng) = number density of molecules originally in upper

(Tower) transition level .

Here "x" 1is the polarization direction for both %5 and E; ; for
crystal amplifiers, we thus assume cubic symmetry or else alignment
of a principal dielectric axis with the polarjzation. Also, e,
the dielectric constant, includes only non-resonant molecules and

transitions; and local fields effects, due to neighboring resonant
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molecules, are neglected. The quantity, Nt—Ng, in equation II.1.9b
is, of course, the "inversion" density, which is the source of
amplification.

If inhomogenous broadening is present, such that a distribu-
tion of resonant frequencies, g'(wt)s is present, centered on 5t’

we can obtain the net polarizability according to the averaging procedure

o w) = (N (“2)

(w -0 ) - ir
2
res g) h >j

"'*—*;g“”“g 9" (wy)duwy/ J g )doy

(m~wt

As an example, a normalized Lorentzian distribution for the inhomogeneous
broadening would have the form

F]/w

g'(w,) = (1I1.1.10)
B lugby? + (1)

from which we obtain the same formula for ares(w) as in equation
I1.1.9, with w~ Gt and T > I+ Ty; we will therefore assume that
the polarizability given above holds whether or not there is
inhomogeneous broadening.

Equation II.1.9 was derived for a monochromatic source, which
thus cannct have a Gaussian envelope, but this presents no difficulty
in finding the linear polarization since Fourier transforms can be
used. Thus, in equation I1.1.9a, we can consider the field to repre-
sent a single Fourier component at w. Since the resonant polarizability
was not included in defining e (or no), we can consider it to be
a "nonlinear source" and substitute it for Py, in the wave equation;

according to the plane-wave version of equation 1.3.8, the Fourier

component at w propagates according to
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BEagzé,w) - s ZZﬁ ares(w)E(z’w) , (I1.1.11)
0

from which we obtain

E(z,0) = E(O.0)exp[i 22 4

noc reg(w)Z] 1 (II.].]Za)

and the corresponding equation for the net field component:

gkz,w) = %(E(O,w)ei(k‘z'“t) + c.c.)gx

where (11.1.12b)

Finally, then, in terms of the Fourier components defined in equation

11.1.6, we have a "transfer function" for the gain medium, as given by

E,(z,0) = E,(0,0)e K ()2 (11.1.13)

Since ares(w) is complex, this leads to the well-known
exponential amplification (or absorption) law for propagation in a laser
medium. However, in order to keep the analytical form shown in equation
I1.1.2 for the field at any z, we can include only linear and quadratic
terms (in w) in the exponent in equation I1.1.13. Defining g(%,w)
as the transfer function for a propagation length, &, 1in the gain

medium, according to

E+(2,w) = g(l,w)E+(0,w) s (11.1.14)

we find from the above



Q(st)= eik'(w)l o
(r +1F(w—wt)
n w,% . N a_f | ————
ot 10 (w-w.)2 g 2,.2
= o C e C e (w"wt) T , (11.1.15a)

which is approximated for our purposes by

2
(w-vy)  (w-w,)
i Mo%t i Mo a o (1+i t. t
2 — (w-w, )2 “g T 2
- c C t r
g(ew) = e € e (11.1.15b)
We have defined the gain constant
2mte2<r2> n§+2
ag = T (3n0 )(Nt-Ng) , (I1.1.15¢)
with, of course, N, representing the gain medium refractive index
in these equations; we ignore the frequency dependence of ag
(and no).

For frequencies outside the gain linewidth, |w~wt| > T
the true transfer function in equation II.1.15a indicates that the
gain medium is transparent, while our approximate form in equation
IT.1.15b leads to absorption. We will later see, though, that the
presence of losses in the cavity makes the latter form an acceptable
approximation.

We will now consider the distortions of the pulse produced
by its propagation through the Kerr medium. The field obeys the

plane-wave versions of equation 1.3.13:

i(k_ z-y t)
0y c.c,)EX

£(z.,t) = HE(z,t)e

4 (n_+(sn)) iw

_o k.0
= - 2 < (6n)E (11.1.16)
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2(sn) 2

ot

T = ;.Z— {E‘ - (Gn) s

where n, now represents the Kerr medium refractive jndex. If we

define the intensity, d = {E[z, then, since (én) is real, we

. . B C .
can see that & travels with a velocity v = ﬁ;?KEﬁ?T ., which

depends on z and t through &n(z,t). Thus, the “intensity” delay
time for a given "point", p, on the pulse envelope, after propagating
a distance, &, will be given by
2
(*geray’p = In o + J sn(z),t(z}))dz'] = ¢y + (6t)
0
Here t(zé) is the implicitly defined time at which the given

"point" passes zé. Clearly, if (s8t)_ <<

p “pulse’
p, then the intensity envelope will not be distorted by the Kerr

for every point,

effect; this holds if

CToulse . Tpulse
(dn)max N (fg_& ) =%
2 “max

2 <

(11.1.17)

3

where Lo is the "envelope distortion distance”. OQur estimates in

section I.3 for a “"strong" ultrashort pulse in a "strong" Kerr

> ]0*12

-4
Tpu1se 2 sec, (én) < 1077) o2 300 cm.

material give: ( max ~

This shows that we can take the intensity envelope to be undistorted
for our purposes, which shows that (n0+(6n))+ n, in equation

11.1.16, and

* o * N
E(z,t)E (z,t) = E(0,t - E-z)E (0.t - E-—z) . (II.1.18a)

This last result can be inserted into the relaxation equation for
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sn(z,t) to show that this quantity also propagates with velocity
c

"o

n

sn(z,t) = en(0,t - >2) . (I1.1.78b)
Finally, we have an analytic sclution for the field:; from equation
I1.1.16, we find

n w
E(z,t) = E(0,t - Eg-z)exp[i EQ' sn(0,t - %9-2)21 (I1.1.19a)

with t!
o

sn(0,t') = §?~f E(0,tME (0, t")e (8 -t )T g (11.7.19p)

- 00

We have assumed that the Kerr medium relaxes completely between
round trips of the circulating pulse, so that én{z,t » -=) = 0.

A physical interpretation of these results is illustrated in
Figure 5. We can see from the figure that the "instantaneous"

(freespace) wavelength of the output pulse is changed according to

3

.\t .
(o a0 alon) gy 20

ny
Aout(t) =M C ot c

which implies the following change in the "instantaneous frequency":

(t) = X“gE%ET'T wyp (LT - %’agin) 1= wjp(t)+ sult).

w
out out
(I1.7.20a)
Using equation II.1.3, we obtain the following approximate result:
t

E i) = Eqp(t)expl-i j sw(t')dt']
N (I1.7.20b)

= Ein(t)exp[1 . sn(t)e]
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which is equivalent to equation II.1.19a when the time origins are

corrected for the pulse delay.

These results show that the Kerr medium has, to first order,
produced a phase modulation on the propagating pulse, without
affecting the envelope shape. This effect, called self phase
modulation, broadens the frequency spectrum, and will be shown in
the next section to lead to "mode-locking" in the laser system under
discussion. For analytic results, however, we must retain the pulse
shape given in equation I1I1.1.2, which means that the index variations,
sn(t), must be approximated by a quadratic function in time.

For an instantaneous response in the Kerr medium, /o << 1,
we have

n 2 n
sn(t) = 73 pZ gmPot” §§-A2(1 - 20t?) (11.1.21a)

so that the "transfer function" for the Kerr medium is given by

E.(25t) = h{g,t)E (0,t)

(11.1.21b)

where .

Tw. N
02 .

h(2,t) = exp[ 5 A2(1-2ut2)]

When or? << 1, a further expansion leads to the quadratic form:

w_n
h(z,t) ¥ exp[i gcz o A2{(1-80:?) + t(dat)-20t2(1-12072)}].

For our purposes, the instantaneous response case is sufficiently
accurate(Sq), since it displays the physically significant fact

that a "chirp" has been added to the pulse. The quadratic expansion
is also physically reasonable, since the pulse intensity is very

small for atz FRE thus, "nonlinear chirp" terms in the tails
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will be of Tittle significance.

I1.7.111 pulse evolution equations
Equations II.1.15 and I1.1.21 constitute simplified expres-

sions for the effects of the gain and Kerr media on a propagating
pulse. As shown in Figure 3, the circulating pulse in the laser
cavity passes through the various elements in succession; we will
assume that the pulse is short enough so that it does not overlap
with itself in the Kerr medium while being reflected at MZ‘ Under
these conditions, a "round trip" for a pulse, starting at the reference
plane, will consist of six interactions, with the following elements
in turn: gain cell, mirror M], gain cell, Kerr cell, mirror Mz,
and Kerr cell. As shown in Figure 3, we define an initial field,
E](t), a field Ez(t) before entering the Kerr medium, and a field
E3(t) after the complete round trip.

These fields can be related by the transfer functions,
h(e,t), g(2,w), and R1/2, for the Kerr medium, gain medium, and
mirrors, respectively. The following relations hold for these (we

use "operator" algebra, where each operator acts on functions to its

right):

h(zysthh(e,,t) = h(2q%e,,t)

R/2h(Ry,t) = h(g,t)RV/?
(11.1.22)

g(Q]sw)g(lzsw) = 9(£1+£2sw)

r1/2 1/2

Q(Z,w) = g(isw)R

These relations are not dependent on the "quadratic" forms; the only
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restriction is that 2 < 2 (i.e. no enve]ope distortion) must
hold for the Kerr medium, in which case the second relation above
follows directly from equation I1I1.1.19.

Figure 6 shows how the true cavity configuration can be
replaced with an "effective cavity" in which the losses are combined

with the gain medium. From Figure 6a, and equation II.1.22, we can

show the following:

Ey(0) = gLgu)Ry/Zg(Lgau)E, (0)
(11.71.23a)
= Ry (L) alLg )R] %, ()
and similarly,
_ R)/2
Ry *h(R ;/ZLK,t)h(R Yo ory ey (n) (11.1.23b)
R1/2,n-1/2 /212
Ri”h(LK(—-?;—aé—?«——) t)h(L K(—_—??—— —), )Ry e, (1)

These equations show that the true cavity is physically equivalent to
the cavity shown in Figure 6b, in which the mirrors are perfectly
reflecting and absorption cells (losses) have been included. Finally,
by shifting the reference plane and combining losses, we see that
the physical problem can be replaced by that of Figure 6¢c; it is
this "effective cavity" which we will analyze.

The pulse evolution is now described by the net transfer

functions, g(w) and h(t), where
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Figure 6. Derivation of effective cavity.

(a)
(b)

(c)

Actual cavity diagram; the reference plane is dashed.
(Mathematically) equivalent cavity, for pulses which

are sampled at the reference plane.

Effective cavity used in analysis, in which the mir-

ror losses are combined with the gain. The reference
plane has been moved from its position in (b).
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Ex(w) = g(w)E; () (11.1.24a)
5(u) = (R{R,)/%g(2L0)

- (R1R2)]/2exp[2agLG(l - <if%2 )] (11.1.24b)
E5(t) = h(t)E,(t) (I1.1.25a)
A(t) = h(Ly (Ry/ %4517 1)

wnz

expli ~%E—~ 1/2

2

S1/2)A%(1-20t%)] L (11.1.25b)

L (R, ™+ R

k!

We are ignoring pulse delay times and constant phase factors; the

“important" transfer functions can thus be written as follows:

where

Here Aw =

gain in the absence of the Kerr medium, and ™ Z (4aL)

i 2
§(w) = 6 2exp[- i%§l~ ] (11.1.263)
L
) 22
h(t) = exp[—1D0A at”] (II1.1.26b)
4a L
G=RRe 986 (11.1.26¢)
"2
r? |
o = (I11.1.26d)
L T B agl,
_wghy 172, -1/2
D, = = LRy “+ Ry ) (11.1.26e)

W=y - Note that G 1is the line-center round trip power

-1/2

is the pulsewidth obtained if there is perfect mode-locking over the

entire gain profile, g(w).

It was noted, in connection with equation II1.1.15, that the

true gain function has a Lorentzian in the exponent, while we used,
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in deriving the Gaussian form in equation II.1.26a, the quadratic
approximation. However, the important transfer function is g(u),
which also includes the factor (R1R2)1/2, as shown in the definition
of G. Since R]R2 < 1. the cavity will have losses for frequencies
in the tails of the Lorentzian; Figure 7 shows that the Gaussian

approximation used in g(w) will be physically acceptable in that

case.

E,(t) gain E (1) Kerr E5(t)
— : e e
medium medium
9(w) h(t)

The pulse, according to the figure, begins as E](t) before
passing through the gain medium, and has the Gaussian form:
£, (t) = Ajexpl-ayt? - i((uprto)t + 869 . (I1.1.27a)

Its Fourier transform, given by equation II.1.6a, is
_ . -1/2 2 .

where, as usual, Wy = wt+Aw] . Using equations II.1.24a and

11.1.26a, the pulse spectrum after the gain medium is given by
- 1/2 . -1/2 .
Ep(w) = A6 2r2(0+i8,) 17 2exp- (w-ug)2/a(a #iB)) - (w0 ) 2/40 T

Therefore, neglecting a constant phase shift and measuring time from
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Figure 7.

2.0

(.“i"_lf_’.t_)(ZagLG)%-a»

Comparison of power gain lineshapes, showing accuracy of
Gaussian approximation for high loss case. (a) Graph of
true gain function, based on a Lorentzian frequency re-
sponse in the amplifying medium. (b) Gaussian approxi-
mation used in the calculations. Both cyrves are based
on a "high gain" case, with G = |g{wt)|” = 5.0, and
R1Rp = 0.2; 1in each case, frequencies in the "tails"

see a net loss, so that they do not play an important
role in the laser operation.
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the peak of the envelope, we obtain

Ep(t) = Agexpl-upt? - i((u touy)t + sztz)] (I1.1.28a)

where
) A6!/2 = (ay)?
= ex
2 e 12 51-2]7/4 P B
% oL 40LL(T+ m— !
LMY
2
L1+ j.~L-1~+ ’1
(X2 = OL_I 01@] OL]GL
LO1+ E{)Z + 5—31)2]
L
Aw1 (I1.1.28b)
sz = - 62
[']+ -l + ]
OLL OL-)OLL
B
B = 1
2 Oy 7 By 2
[(1+ af—) + <g2—-> ]

After the pulse passes through the Kerr medium, equations

I1.1.25a and I1.71.26b show that the pulse shape is given by:
E,(t) = E,(t)exp[-iD AZu,t%]
3 2 PL=1P6M2%

This affects only the chirp parameter, 8. Therefore, the following

relations show how the pulse parameters have changed during a complete

round trip:
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3

_ 2 .
Ey(t) = Agexpl-agt® - 1((uwgthoy)t + gt%)] (11.1.29a)
where
e -3
N -LL - (8w)?
A3 ) B exp !
5
[(1+ )% (h2g1/4 oy 8
o B 4-OLL(-!+ —t
B R
2
o B
[1+ -1-+ 1
W= ‘2 MM
3 1 o B
2. P12
[(1+ =)+ ()]
% B
AU}]
Bug = ? (11.1.29b)
ap By
e E'I ' “1%
2 o B% r 2
. - B . DoA7Gaq [T+ o + am] | = (8wy)
3 Ot-lz B-I 2 i o o exp l o 62
L( aL) (GL) ] [(1+ aL) + - Y] t?aL(1+ az+ e

These equations will describe the pulse-to-pulse changes in
a train of ultrashort pulses produced by the laser, since we can

th pulse, and

consider (A],a1,Aw138]) to describe the n
(AB,u3sAw3,63) to correspond to the (n+1)th pulse. Note that we
are considering the laser output to be sampled at the reference

plane in Figure 6c; however, the pulse shapes at the mirror loca-

tions or at the reference plane in Figure 6a can be found, if needed,

by applying the proper transfer functions to the fields above.
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II.2 Continuous, Mode-Locked Laser Operation

The evolution qf a pulse circulating in the laser system is
described by equations I1.1.27, I11.1.28, and I1.1.29. These depend
on three parameters, G, o and DOs describing the cavity, as
given in equation II.1.26; in a laser operated continuously, these
will be constants. We can now solve for the "steady-state" pulse
shape which such a laser would produce, by requiring that the pulse

reproduce itself after one round trip. This implies that

ags Aw3 = Aw], 83 = B], (11.2.1)

which, using equation II.1.29, yields solutions determining uniquely
the intensity, duration, center frequency, and chirp of the self-
reproducing pulse. The resulting "steady-state" parameters, A°,

a’, bw®, and g°, for the pulse at E1, are given by

2
2 1 G-~ 1
(A°)° =
IDOI G
a® = a GZ - 1
L6241
(11.2.2)
Aw®= 0
2
G -1
g® = o, G
L GZ + 1

If G <1 there is no steady state solution, and if DO <0, 8°
will change sign. Similarly, the pulse form at EZ’ under these

steady-state conditions, is described by



o 2 -l G - 1 o} 2
oy = o GZ -] o
2 L GZ +q "o
szé = 0 = Aw® (11.2.3)

When the excess Tine-center gain is small, G 1, these
results are similar tb those for active FM mode—]ocking(53), since
the chirp parameter, 8°, 1is equal to the bandwidth parameter, o°,
and the pulsewidth, T = (4&0)-]/2 is longer than that of complete

V2 This small gain case also involves

mode-Tocking, 1y = (4uL)
very little pulse distortion during the round trip transit, as seen

by comparing the fields E1 and E, (equations II.2.2 and I1.2.3,

2
respectively); therefore, it mest closely correspondsto the results

, v < . (20) . ; .
of the "mode-coupling” analysis‘'”™ ’ discussed at the beginning of

section II.1.1.

I1.2.1 stable pulse generation in the high gain limit

We will now examine the laser behavior in the Timit of a
high excess line-center gain, G >> 1; we will find that such a
system has some highly desirable characteristics, which will be the
primary consideration of the remainder of this chapter. In the
limit G >> 1 , equation 11.2.2 shows that the steady-state pulse

leaving the Kerr medium is described by:



(11.2.4)
o G

and similarly, equation II.2.3 indicates that this pulse, after
passing through the gain medium, differs only in its chirp, which is
now B% 2 aL/G. These formulas have a relative accuracy of 1/62,
which shows that the "high gain limit" holds for G > 4. Also,

in this high gain limit, we have

e Aag e

W ¥ (4o)) L (u*§§ﬁ) : (11.2.5)

Since G = R]R2e4agLG, we can see that "2agLG” is on the order
of unity for realistic systems, so that the 1imiting pulsewidth is
approximately equal to the inverse of the laser gain linewidth, T.
The presence of the Kerr medium inside the Taser cavity in combina-
tion with the large, profiled, gain is therefore seen to lead to
ultrashort pulses with a duration characteristic of "fully mode-
locked" pulses.
We can estimate the physical quantities involved, by
)2

considering the steady-state value of (A°)“; this shows that

Pl

K A n0 n
- = , , v A0
G 4n(R1/d+ R”I/Z) n2 o 8r (é&n) eak
2 2 5 |E | p
peak

Since we estimated earlier that powerful ultrashort pulses could have
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§n < =4 G
ny 10 K* 8r

We will Tater consider a specific laser system in more detail, but

» We obtain, for i = 1p = 107%m, L > 0.3 cm.
this shows that ~ centimeter sized Kerr cells would usually be
sufficient, even if the cubic nonlinearity were caused by the (weak)
electronic mechéhism.

In general, the pulse evolution is given by equation 11.1.29;
under constant G, o s Do’ we can show that any initial pulse will
evolve into the steady-state form, and that this.steady-state shape
is particularly stable in the high gain limit. This stability can
be shown by the following arguments. Assume that the pulse shape
is close to the "steady-state" shape, and define the following relative

deviation parameters, which will thus be small:

- 2 0\ 2

(6A )n - (A - (A ) )
(A®) ‘

S /@—uO\
(6a), = =+ (11.2.6)
5'(1)) - Aw
( n (@L)]/Z
(s8),, = {&6°)

Here, the values of A, o, Aw, and B are those characterizing
the field Eq, at the end of the ntln round trip.

By taking partial derivatives of equation II.1.29, evaluated
for A%, 4% an®s and °, the following matrix can be found for

the high gain case, where ¢ = 1/62 << 1
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(cSAAZ)nH 1o2e -k arwae f6RB)

(M)nﬂ | 0 -€ 0 de (<Soc)n (11.2.7)
~ Y ~

((Sw)nﬂ 0 0 £ 0 ((Sw)n

(gB)n+1 1~¢ ~3e -c -1 + 8¢ (SAB)n

The matrix elements have been kept accurate to order «.

If the pulse parameters are thus not equal to the steady-
state values at the nth transit (i.e. if (éﬁ )n, (5&)n, (éQ)n,
and (sé)n are not all zero), then the above matrix shows what the
pulse will look like after the (n+1)th transit. The values of #1
in the matrix are the crucial point, since they lead to a strong
stabilizing tendency; their origin is made clear by the physical
picture described below, and is not dependent on tlesimple cavity
model used in our analyses. This stability can be seen from equation

I1.2.7 by considering the pulse after two transits:

"2 « ] o2
(sA )n+2 S¢ € 7€ -8e (sA )n
5 he 0 0 e (50)
(3)ne2 nl(11.2.8)
~ r\l ~
(60)4p || O 0 0 0 (6w),
~ ] ~
\(‘SB)I’H‘Z 8¢ £ 7€ -1le (6B)n

This shows that all deviations from the steady-state condition are
2
reduced in two round trips by at least a factor ~ e = 1/G".
The general stability in w and o was demonstrated by

Cut]er(sz) when any highly nonlinear element was present in the system,
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but the above additional stability in A and g is a particular
characteristic of the present cavity system which employs a Kerr type
nonlinearity and a high value of G. As an alternative example,

the stability of the low gain case, G 1 can be analyzed in a
similar way as above, leading to the following "double transit"

deviation matrix, where ¢' = GZ -1 << 1:

o4 i 3 g
(sA%) ., 1 e 3 0 (sh%)
(6a)n+2 0 1-2¢! 0 2¢ (éoc)n

N
(6w)n+2 0 0 1-2¢! 0 (Gm)n

P 5 ] t g

(68)n+2 2¢! 0 - 5€ 1-2¢ (6B)n
Gyl

This shows that the Tow gain case is only "neutrally" stable, dis-
playing little tendency toward reaching the steady-state condition;
this agrees with our computer results for the "coupled-mode" approach,
as mentioned in section II.1.i. The general matrix, ﬁ, relating the

th th

deviation parameters for the (n+1)™ pulse to those of the n

pulse, such as that shown in equation II1.2.7 for G >> 1, has
DETI%] = lg-< 1. This shows that any pulse will eventually reach
the steady?state form, for any G > 1.

Physically, the above analysis shows that the nonlinear polari-
zation of the Kerr medium feeds energy into frequencies outside the
gain linewidth, as shown by the equation for g°; this acts as an

effective loss mechanism, reducing the round trip energy gain to

unity. Fiqure 8 shows a qualitative example of the energy balance
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Figure 8.

Circulating pulse power spectra for the "high gain" case.
(a) Spectrum of pulse before entering Kerr medium.

(b) Pulse spectrum after Kerr medium. The total energy has
not changed, but the spectrum is much broader due to chirp.
(c) Output after amplification of the line center fre-
quencies by a factor of G in the gain medium.

In steady-state pulsing, curves (c) and (a) are the same,
since only 1/G of the broadened spectrum in (b) lies with-
in the gain bandwidth. (Curves based on G=5.)
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mechanism for the high gain case. This view shows why a pulsed output
will occur: only a strong, short pulse traveling through the Kerr
medium will generate sufficient new frequencies to create the "Toss"
which balances the gain for the frequencies near Wy«

The pulsed output thus occurs independently of any distortion
or relaxation-time effects in the Kerr medium, although the strength
of the stability for the steady-state pulse depends cn the extent of
the frequency broadening near Wy s which should be proportional to
the pulse intensity. We will also show that it is desirable to have
a "linear" chirp during the peak of the pulse, so that pulse
compression can be achieved.

When the pulse leaving the Kerr cell with a broad frequency
spectrum passes through the profiled gain medium, the output will be
essentially a bandwidth-Timited "ultrashort pulse", regardless of
the detailed features of the input spectrum. As shown in Figure 7
(page 74) a large loss, R]RZ << 1, coupled with the normal
Lorentzian gain curve, yields an acceptably "limited" bandwidth
transfer function, justifying equation I1.1.25. This requires a
very large laser line-center gain, though, so that G >> 1 can still
apply. An alternative would be to introduce an independent, bandwidth-
Timiting device (filter) in the cavity to absorb frequencies outside
the gain linewidth. This would reduce the inherent gain required in
the Taser medium; in addition the value of ap would then be less
dependent on pumping, gain medium temperature, cavity configuration,

etc.

The detailed shape of the profiled gain curve would of course
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result in an effective Tinewidth and an effective gain constant in
equation II.2.2, differing from the definitions in equation I1.1.26,
but the physical interpretation is unaffected. It was also assumed
that the gain mechanism was linear in the sense that the output pulse
amplitude was proportional to the input pulse amplitude; nonlinear
(saturation) effects in the laser medium, such as those described by
equation I.2.40b, were thus not included. However, the physical
picture, as discussed above, of the role played by the gain medium
shows that saturation would not significantly alter the processes
leading to a stable pulsed output.

Finally, in connection with the physical model of pulse
formation, it should be noted that any strongly nonlinear element
in a laser cavity, plus a large excess laser gain, could Tead to a
pulsed output of the type discussed here. The strong stability,
however, occurs only when the amount of frequency broadening (as
compared, for example, to energy redistribution among frequencies
already present) produced by the non]inearity is proportional to
the pulse intensity, as is the case with the cubic polarization

effect.

II.2.11 compression of chirped pulses
According to equation II1.1.8, the minimum "time-bandwidth"

product obtainable in a pulse is given by

1
5 (11.2.9a)

v Sw

p

v

where the equality holds for a Gaussian pulse with no chirp. On the
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basis of its bandwidth alone, then, a chirped pulse should be capable

of producing a "compressed" pulse with a time duration of

N e By AU S (1+82)“]/2 (11.2.9b)
comp 2(sw) 2 Zeg2 "p’chirp Z . e

It is well known(55)

that such a compressed pulse can be
produced from a chirped pulse by using a dispersive delay line
(i.e. an element whose group delay depends on the frequency); the
physical principle is demonstrated in Figure 4 (on page 58 ) in
section II.1.i. In the case of a linear chirp, such as involved in
the pulses here, this frequency-dependent group delay requires a

quadratic phase shift; we can thus define a "compressor" whose

transfer function is given by

, 2
‘Yg(w“%) . (11.2.10)

gcomp(w) =e -

It can be seen from the Fourier transform in equation II.1.6b that
a linear phase shift simply leads to an overall delay, as expected,
and is thus not significant. Also a true filter might also have a

bandwidth, s and a Toss factor, BC, (as well as higher phase

terms), so that R
(w¢wc)‘
- —_“.é‘m 1'Y (U.)“(D
=Be T e ©
comp c ¢

2
g c)

would be more appropriate, but the constant, B is of no funda-

c’
mental significance, and we will assume that lmtiéw»wcl << Tos

this leads to the form in equation I11.2.10. As an example, a
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"double diffraction grating system" can be arranged with these
characteristics(56).
For an input pulse given by the "standard form":

. 2
’atz —1(wot+ 8t“)

Ein =Ae e . (11.2.11a)

the effect of passage through the compressor characterized by

g (w) s to produce an output pulse characterized by

comp
2 . 2
-0 % -i{w t+ B t7)
- out 0 out
EOut Aoute e . (11.2.11b)
where
- 2,2 2y1-1/4
Ayt ALT + 8gy_ + 16 v (e +87)]
o = &
Wout = Yo (I1.2.11¢)
8+ dy lof + %)
B =
The bptimum compression (i.e. maximum “out) is attained for
e = Yopt® where

=-=8 _ (11.2.12a)

When ‘e Yopt’ we obtain



2..2 1/4
- pfo 18

(Aout)opt = Al S )
(o ) . = 02462 (11.2.12b)

out’opt o
(Bout)opt =0.
1, e M2y o

We see that (rp)Opt = §-(—§:g§~0 =5 o indicating that the

"compressor" has indeed shortened the pulse to its minimum theoretical
width.

In the present application, the pulses of interest are the
steady-state solutions given in equation II.2.2, which can be passed

through a compressor described by

N n =1
4aL(GZ—1) 4o, G

Yo = , (11.2.13)

where the last value holds in the high gain case. The compressed

pulse-width is given by

ML

1
172 ZEQL(GZ~1)11/2 Z(WL)]/Z G 6

) - 1 - 1 " 1
comp ¢ h

(7t
0
%comp
(I1.2.14)

Therefore, in the high gain case, we can use the chirp on the pulses
to compress them by a factor of G, thus generating pulses which are
G times shorter than the "fully mode-locked" case. As an example,
™ML for Nd:glass is about 1O°]3sec, so that a cavity operated with
G =5 will allow the generation of pulses with a width of

14

~ 2 x 107 ""sec. Theoretically, this compression could be performed

inside the laser resonator without substantially affecting our analysis,
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but the most practical system probably would place the compressor
outside the cavity. The high stability against pulse-to-pulse varia-
tions in our laser system makes this approach superior to that in which
a normally mode-locked Taser pulse train is externally passed through

a Kerr medium to introduce a chirp, and then passed through a

compressor(54) .

IT.3 Q-Switched Laser Operation

The desirable characteristics of the laser system being
analyzed are a result of the highly nonlinear pulse propagation in the
Kerr medium; the peak power density required for such operation can
be found from the steady-state intensity, given in equation I1I.2.2.

Thus

_ -2 n_c 2
P(erg sec Vem ) = ——=5— . 77172 (¢
128n )((HCO)LK(R2 +R2 )

As an order of magnitude estimate, we use A = 1y, G =5, i(1+CO) =
2 X ]0—]4, LK = cm,(R;/2+R£T/2) = 2, giving a peak power of
P=1.4x 104 Megawatts/cmz, with the corresponding average power
density in the range of Megawatts/cm2° This implies that the laser
must be Q-switched, so that the steady-state pulsing analysis will not
apply exactly.

Qur idealized model of Q-switched laser operation will be a

(57). After the gain medium inversion is "pumped" to

very common one
a high level, the cavity "Q" is "instantly" switched to a high value,

so that G = Go > 1 holds initially. We next assume that the pumping
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and spontaneous transition in the gain medium are negligible during
the time of the Q-switched output. Therefore, as the initial noise
field is amplified to form the observed output, the gain medium
population inversion is depleted, until G < 1 eventually holds, and
the output "dies out". In the present case, the net result will be
a train of ultrashort pulses modulated by an overall "Q-switched
envelope"; we will here find examples of such pulse trains.

In practice, the usefulness of the ultrashort pulses produced
by conventional Q-switched lasers is severely limited, both by
pulse-to-pulse variations within a given train, and also by the
irreproducibility of the train as a whole. However, the present
system containing the Kerr cell is capable of shaping the pulses
to a "stable" form in only a few round trips, and therefore we expect
improvements in both types of "reproducibility". This section will
demonstrate some of the advantages, and disadvantages, of our laser

system when operated in the Q-switched mode.

IT.3.1i. initial pulse growth

The original "signals" present in the laser oscillator are
the noise fields produced by spontaneous emission in the gain medium;
their spectral distribution will thus have a width, r. The random
temporal fluctuations of such a noise source, at the instant of Q-
switching, can be expected to contain at least one “pulse", which will
then evolve according to equation I1.1.29 to form the "circulating
pulse" in the cavity. Because of the strong stability of our system

in the high gain case, it is apparent that any such noise pulse will
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be shaped to conform to the steady-state form as its intensity becomes
equal to the steady-state intensity; to this extent, the initial pulse
growth is not crucial to the form of the "output" pulse train.

These arguments, however, suggest a major disadvantage to this
laser system, since any noise pulse is amplified and shaped to conform
with the steady-state form. This would lead to a very "dirty" pulse
train, since a large number of circulating pulses would be present
simultaneously; it is far more desirable to obtain an output train
corresponding to only a single circulating pulse.

A comparison of this problem with the behavior of the normal
laser system containing a saturable absorber indicates a fundamental
difference in the roles played by the nonlinearity; the Kerr medium
acts as a “pulse shaper", while the saturable absorber acts primarily
as a "pulse selector'. In the latter case, the strongest (i.e. usually,
shortest) spike in the initial cavity noise is preferentially amplified;
there is only a little "shaping" done by the saturable absorber during

(17)

the majority of the output train This explains why the overall
pulse train reproducibility is poor, since the irreproducible
characteristics of the initial noise pulse are still present to a
large degree in the later output. Furthermore, the experimentally
observed(zg) pulse-to-pulse variations within a single train show that
there remain pulse altering mechanisms (residual Kerr effect, disper-
sion, gain spectral narrowing, resonant nonlinearities, etc.) which do
not stabilize over the time of the Q-switched envelope.

The Kerr medium in our laser will prevent these variations,

but an initial "pulse selection" mechanism appears to be Tacking.
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With this problem in mind, we will examine the evolution equations

during the initial pulse growth. First, the amplitude evolution
equation in I1.1.29 shows that a pulse centered in frequency, bwy= 0,
sees the highest gain; since the noise spectrum itself is centered on
wps We will assume that 4w = 0 for any noise pulse which is ampli-
fied enough to be f‘important”° With this minor simplification, we will

now rewrite the "Taser evolution equations", relating the (n+])th

pulse parameters to those of the nth:
- G
e = €
ntl n B2 172
[+ o0+ ]
OLL OCnOtL
e S0y o
OLL o, O
o - =g nL (1I1.3.1)
n+1 a, 2 .2
[(1+ D)+ (7]
L L
1/2
. ) B . (8D0(21T) el )3/2
n+1 o 2 By 2 C n+1° n+l
L+ —)" + ()]
where “L “L
e = ) 11.3.2
: 8(2ﬂ)1/2 (un)1/2

Here, €n is the energy density (i.e. ergs/cmz) in the nth pulse.
The initial noise pulse will be characterized by the values

€ 50, 5B

0°%0°80° During the early stages of the amplification, the pulse will

be much smaller in energy than the steady-state value, and since

U< o will always hold, the second term in the Bt formula in
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I1.3.7, which represents the Kerr medium nonlinearity, will be

negligible. By also ignoring any depletion of the gain medium inver-
sion during this part of the pulse train, so that G and o do not
change, we can solve equation II.3.1. We find that the pulse spectrum

becomes '"gain narrowed" according to

2.2 .2
(6w2) = “n"Pn = (6o )0
n an (5w2)0 s (11.3.33)
1+n
“L

and that the individual pulse parameters after n transits are given

by
“n - £o ZGnZ
1 nCereyy
()LO(X
u2+ 82
[1+n (=23
oy = 0y * oL (11.3.3b)
%0 Boy2
[(T+n—=) + (ngo)°]
o L
B, = Bo
[(1+ 122 + (n B0y?7

o 7
O

Note that ay EL' » independently of Gy while

Bn/an +~1/n, so that the relative chirp becomes negligible during
this stage of the pulse evolution. Because the spectral width of the

noise is given by (5m2) we can expect that

noise " YL

L2 2 2
(Sw )0 9 + BO x
- oo ~
L oL

o
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for any noise pulse, although % and 8o themse]ves might vary
widely. We thus see, from equation II.3.3b, that there is
essentially no "pulse selection” capability in the early amplifica-
tion stages. To obtain a "clean" pulse train, we must add additional
components to the system (or else consider more effects in those already
present).

A number of methods are possible, by which the Kerr medium
nonlinearity can be utilized to yield an effective intensity-dependent
loss, so that the laser oscillator preferentially amplifies the
strongest noise pulse initially present. One méthod would employ the
ability of the cubic nonlinearity, such as described by equations
1.3.2 and 1.3.9, to rotate the axes of elliptically polarized beams
by an amount proportional to the intensity. This device would act in

the same way as the "mode-Tocking" system of Dah]stram(58’59)

, except
that this aspect of the non]inear%ty would be designed to act primarily
at the Tower power levels achieved in the "buildup" portion of the
Q-switched pulse train. Another approach, illustrated in Figure 9,
would involve placing divergent lenses in the beam before the Kerr
cell, and utilizing the intensity-dependent "focusing" properties of
the cubic nonlinearity to reduce the diffraction Tosses for the
stronger pulses. Such a system would also help prevent the undesirable
effect of complete "self-focusing", as discussed in later chapters.
Probably the simplest method of obtaining a "clean” pulse

train would be to insert a normal mode-locking component into the

cavity; either an active modulator or passive saturable absorber would
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be appropriate. Finally, there are nonlinear processes in the gain
medium itself, which tend to produce mode-locking in many lasers which

do not contain any separate nonlinear component(60).

Any of these
"effective" intensity-dependent losses would also tend to sharpen the
pulse somewhat during the rise of the pulse train; and, as we will
show, even a moderate decrease in pulselength over that predicted by
equation I1.3.3b will greatly improve the overall system operation.

We will now assume that some process occurs to "select" an
initial noise pulse; the evolution of this pulse will then be governed
by equation I1.3.1. We will consider the effects of gain depletion in
the next section, but most of the pertinent conclusions concerning the
leading edge of the (Q-switched pulse train can be seen by keeping G
and «

L
steady-state form, as given by

fixed, and observing the evolution of the pulse towards the

S SRR B UM L
a2 172 D, G(uL)]/Z
2
5= a 55—1—1— (11.3.4)
6% + 1
é = o G Gz = ]
L7 62+

The initial cgnditions, for reasons discussed earlier, will

B
have (6w2)0 = a, + ag-w o s SO that the "spikes" can be expected

0
to have AR and Bo o In the next section, we will find
that e /i o (10712 - 1078); this means that n >> 1  will hold before

the large "output" pulses are reached, and that initial conditions on
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% and B, are not crucial.

‘ Figure 10 shows the evolution of a noise pulse toward the
steady-state Timit for a low gain amplifier, (G = 1.2), based on
equation II1.3.1. The significant conclusions are that on the order of
102 round trip transits are required to reach the "output" portion of
the train; the stabilizing ability of the Kerr effect is also seen to
be very poor, as expected for Tow gain, requiring ~ 102 more transits
to damp out the transients. Furthermore, it can be seen that there is
a significant "overshoot", in which the pulses become much larger than
e, before the Kerr effect can "overcome" the gain.

Figure 11 shows a similar calculation for a typical "high
gain" case. Here the pulse size builds up over ~ 20‘transits, and the
strong stability of the steady-state pulsing condition is apparent.
Although only a few transits are required to damp out the transients,
it is seen that there again exists a strong "overshoot”, during which
the pulse ene
which will still occur when gain depletion is included, is undesirable
in many laser applications, since the relative importance of these
pulses will be increased when nonlinear effects are under investiga-
tion. Also, the pulses in the overshoot are "irreproducible", since
their gharacteristics depend on the initial conditions; only the net
energy of all the pulses in the overshoot is relatively invarient.

An examination of Figure 11 shows that the overshoot occurs
because o has become very small during the initial pulse growth, due
to the spectral gain narrowing predicted by equation 1I1.3.3. These

pulses, which are thus broad in time, must become very intense before

the Kerr medium can produce the strong chirp needed to create the "loss"
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Figure 10. Approach to steady-state pulsing in low gain laser system.
(a? Relative pulse energy, ep, VS. pulse number, n.
(b) Variation of pulsewidth parameter, ag/a = (1 /7).
(c) Relative chirp of pulses. P
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Approach to steady-state pulsing for the high gain case.
(a) Relative pulse energy, eps VS. pulse number, n.,
(b) Variation of pulsewidth parameter, un/& = (1 /)%,
(c) Relative chirp of pulses. P

Note the strong "overshoot" pulses, with extreme chirp.
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which, as shown in Figure 8, balances the gain. An examination of the

evolution equations, I1.3.1, shows that the overshoot would be very

small, if o, were close to o at the time when €, Was approaching

e. Physically, this means that it would be very advantageous to include
in the cavity a "pulse sharpening" device, such as the nonlinear losses
discussed above, which would keep the pulses from broadening too

much during the initial amplification stages. For example, the major
"pulse sharpening" action of a saturable absorber occurs when the peak

pulse intensity is nearly equal to the absorber's saturation intensity,

15(61); the ideal saturable absorber would thus have I_ slightly

S
2
Tower than the steady-state pulse peak intensity, I = %-g—él
0

An accurate description of such a laser system, including both

the self phase modulation and the nonlinear loss, is outside the scope
of the present analysis; however, we can indicate the benefits of
"pulse sharpening" as shown in Figure 12. Here the pulse evolution has

been found

for the same high gain case as shown in Figure 11, except
that the pulse has been "sharpened" when In = ]0'3T, so that, at

that point, 4, = oo It should be noted that this "sharpening"

itself does not directly interfere with the role of the Kerr non-
linearity, since the self phase modulation is negligible at that point;
the residual effect of the sharpening is thus simply to increase "u"
(i.e. decrease the pulsewidth) by a relatively small amount at the
beginning of the overshoot. A comparison of Figures1l and 12, however,
shows that even this small effect has significantly reduced the over-

shoot, thus improving the overall approach to the steady-state limit.

I1.3.i1 Q-switched pulse train

As the amplifying medium adds energy to the circulating
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pulse, the population inversion is depleted, leading to changes in G
(and uL), and causing the true output to "die out". According to
equations II.1.15 and II.1.26, the line-center round trip power gain

for the cavity can be written:

2a E
_ c G
where 1
EG = ?(Nt - Ng)‘hthG (11.3.5)
ya
a = gre’ <> (no +2)
c ﬁzrc 3n0

Here EG equals the inversion energy available (per cm2 cross section)
of the amplifying medium, since the induced emission of one atom/cm3
will extract an energy of (ﬁthG)/cm2 and similarly reduce EG by
this same amount. (We ignore the effects of degeneracy in I1.3.5, as
we did in section I.2.iv.)

We will assume that E,. changes relatively little during any

[ep}

single round trip of the pulse, so that E; = EG(W) can be considered
a constant of the system during the n~ pulse transit. We will then
account for gain depletion by changing EG before the next transit,
in accordance with energy conservation. By transforming the fields

of the "effective cavity" in Figure 6¢ to those of the "true cavity"
in Figure 6a, we find that the energy added to the circulating pulse

th

during the n”" transit is given by

Ae = 2 ex - n R]/Z
n °n i P ? T2
% By 1/2 o B
[+ —+ ] 20, (14 —+ )
OLL OLnOLL oLL o(,naL
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* 2
. Gy Bn ]]/2
1+ +
ZaL 2unaL

exp

S

(Awn)2 .]
- 2 i (11,3.63)
( O‘n Bn g ’
o (14 =— + )
L ZaL ZanaL_A

where G = G(n) and o = aL(n) are the values of G and o during

th

the n transit. To simplify the formulas, we will usually consider

the case where R1 =1, for which we have

-1/2 R'1/2

AS = R2 - En 2

n = Entl (R] = 1 case) (11.3.6b)

This energy will be extracted from the gain inversion, giving the

"evolution equations" for G and «:

G(n+1)

it
X
pre]

1 2exp[ZacEG(nH)]

= G(n)exp[-2a te 1 (I1.3.7a)
and, from equationII.1.26,
I i (11.3.7b)
aL(n+1) aL(n) P2

In order to characterize the gain medium energy, we can form
an estimate of the number of pulses we expect in the Q-switched train
AE

as follows. First, the "useful" energy in the inversion,

GS
can be defined as the amount which is extracted before the gain is

reduced to unity:

(11.3.8a)
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where G, = G(0) is the “undepleted" gain. We similarly define
af = aL(O), and e,0,8 according to equation II.3.4 with G - G, »
>

a aﬁ . From equation II.3.6a, the energy extraction per transit

required in the undepleted steady-state pulsing condition is given by

26 1/2
e (N R (MR UL TS

6o+
(I1.3.8b)
The ratio of these, M, s then gives the number of undepleted steady-
state pulses which would be present in the Q-switched train:

m, = — . (I1.3.8¢c)
vt

In the actual Q-switched train, the presence of gain depletion
and the departure of the pulses from the steady-state form will cause
the actual number of pulses generated to differ from My » but equation
I1.3.8 will still be used to normalize the energy of the gain medium
to that of the "standard pulse energy".

With these definitions, we can write

(he +heq+ - <- +he. ) re Da(G )
6(n+1) = expllal6 ) (1 - —2to )] = Gln)exp [ —- 2]
mt Ae Ae mt
. !@n(ec) be theqt 77 Hhe, ] Ae nln(Go)
1 =0 {1 - G ( - )] = Ot(n)_ — GO
OLLZB’H"” o /&“(R]gz ) my. Ae L Ae m, ,@n(mz) .
(11.3.9)

These equations, along with the pulse parameters equations,

I1.3.1, with G - G(n) and o > aL(n), form a complete set of
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evolution equations for the Q-switched ]aser’systema with  se_, Ze,
and € defined in equations 11.3.6, I1.3.8, and I1I.3.4, respectively.
The behavior of the system can be seen to be characterized entirely
by the dimensionless parameters: GO=R19R2,mt, and by a normalized
set of initial conditions, such as ¢ /2, o/, tuy/(3)"/? and
B,/a -

We will now form an order of magnitude estimate of € the

energy in a typical noise pulse, as follows. The average "resonating"

intensity of the noise field, Iaves is given by
- (Jotal spontaneous energy/sec y (solid angle for feedback, . .
Iave ( beam cross section ) 4y )-(cavity Q)
2
hu,N, ¢ L. @/(2L)
- Et ) 471‘C ).(1—:{R ) (11.3.10)
spontd 172
sl e
2 N,-N_ 7,
8TrLctspont tg

where ({ 1is the beam cross section, and LC is the cavity length.
The "minimum energy noise pulse" would have this peak intensity:

°\1/2 .
(e )n1n = ave(Tp) v I o/ (4o )7, Because of phase fluctuations,
however, the expected noise "spike" would have a higher peak intensity,

ranging up to the "maximum energy noise pulse" which contains the entire

) Y1 (—%) . In a 4-level laser, we can take

cavity power: nax ave' G

(e

NLZ(N,-N ) ~ 1 in I1.3.10, and in a 3-level laser, we can use the
vty N+

rough approximation, Nt/(Nt 2(1 + —~—N9)m 5 g » where



-106-

NO is the total number density of active gain molecules.
As an example of a realistic laser system, we will consider
designing a Ruby laser with G, = 5, Ry = 1, R, =0.2, m, = 40.

The spontaneous lifetime appearing in equation II1.3.10, for an amplifying

medium excited state is given by(62)
2 2.2
1 _ e <rHw
=2 < AT (11.3.11a)
spont he
so that we can write
2
2 n_ o+ 2
a = —2IC (-2 (11.3.1b)
C ar w3t 3nO
t“spont
For Ruby at 20°C, we will use tspont =3x10°3 sec, w, =
2.7166 x 101 °sec™’, 1 = 1.0 x 10'% sec™’, n_ = 1.76.  The following
thus describe the system in this case:
a. Y 1.3 x 10”7cm2/erg
AE 2 0.62 x 107erg/cm2 (Eg 2.2 Jou]e/cmz)
az Y 1.6 x 10%%sec! (o = 1.4 x 10235ec'2; %p 2 1.3 x 10"]25ec)

1e

8.7 x 104erg/cm2

£

The Kerr cell for this example would satisfy the requirement:

ol (+C ) -13
2K X 0 -
g = - LK 5.7 x 10 R
0
which is not a severe restriction. We will take the following parameters
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for the gain medium and cavity: LC = 102cm, LG = 10 cm, NO = number

density of active molecules = 2 x 1019
2E

2 : _ g i , .
0.5 cm™, Setting (Nt"Ng) = el and N +Ng = N,» in equation

en™> (i.e. dilute Ruby), =

t
11.3.10, we find I v 1.2 x 10%rg sec']cm'z; a more accurate calcu-

ave
lation, including degeneracy effects and the presence of other 1eve1s(63)

gives Iave ¥ 1.3 x 1OSerg secqcm"zs an insignificant change. Using

the Tatter value for Iaves we find

1.9 x 10712

(Eo/g)min

8

e

(/) oy = 1:0 % 10

In Figure 13, we show the Q-switched pulse train for the same
“Tow gain", (G=1.2), case considered in Figure 10. Again, the
ineffectiveness of the cubic nonlinearity is apparent; since the curves
for the pulse energies are essentially unchanged when the self
modulation is neglected. The pulsewidths and chirps, as determined
by a_ and B,s are affected to a larger degree, but their response

n

“Tags" behind ¢ so that the main pulses are not strongly chirped

ne
or sharpened.

The high gain (6=5) Q-switched pulse train is depicted in
Figures 14 and 15, which show several important features. First, when
no Kerr effect is present, the entire train lasts for only a few,
very intense, pulses; the Kerr nonlinearity has had the useful effect

of lengthening the train to ~ 100 pulses of lower, but more uniform,

intensity. However, the undesirable "overshoot", discussed in
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connection with Figure 11, still occurs; these overshoot pulses contain
about 40% of the total energy in the train, with another 50% occurring
in the first 90 pulses of the quasi-steady-state "tail". Furthermore,
because of the gain depletion in the overshoot, the "useful" gain for
the “train" is given approximately by G(30) = 2.7; this decreases, but
does not eliminate, the stability of the quasi-steady-state pulsing.
Despite the "overshoot", the major benefits of the laser system remain,
since the pulses in the "tail" are entirely reproducible, and have
uniform enough characteristics to allow the pulse compression shown.

In Figures 16 and 17, we have repeated the high gain calcula-
tions with the addition of the "pulse sharpener" discussed in the last
section. As expected, the "overshoot" and its gain depletion have been
significantly reduced, leading to stronger pulses in the quasi-steady-
state "tail". Here, much more of the total train energy is found in
the useful "tail" pulses, which also have the higher compression factor
shown,

These results indicate that the self phase modulation in the
Kerr medium has led, as desired, to long Q-switched trains of ultra-
short pulses, with stable and reproducible characteristics. By com-
paring these results with those of the normal (Tow gain) laser system,
mode-locked with a saturable absorber, we see that the relative
advantages of our system are a consequence of the "strong" role played
by the nonlinearity; in fact, the entire laser behavior in our case
is 'Hominated" by the stability of the "steady-state pulsing" configura-
tion. MWe therefore expect that the results found here, although

based on a simple mathematical model, will apply semi-quantitatively
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to real laser systems.
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Figure 13. Q-switched pulse train from low gain laser.
' (a) Relative pulse energy, ep, VS. pulﬁe number, n.
(b) Pulsewidth parameter, a,/a = (Ep/x) .
(c) Relative chirp of pulses.
The dashed curves result when no Kerr medium is present.
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Figure 14. Q-switched pulse train from high gain laser.
ag Relative pulse energy, ep, VS. puige number, n.
b) Pulsewidth parameter. op/a = (tp/1)°.
(c) Relative chirp of pulses.

The dashed curves result when no Kerr medium is present.
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High gain-Q-switched laser, mode-locked with a Kerr-type
nonlinearity; further results.

(a) Pulse energies; Figure 14a repeated for reference.
Integrated laser output.
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Figure 16. High gain, Q-switched laser, mode-locked with a Kerr-type
nonlinearity and including a "pulse sharpening" mechanism.

(ag Relative pulse energies, e, vs. pulse number, n.

(b) Pulsewidth parameter. o./6 = (v,/7) The idealized

pulse sharpening occurs at pulse Ro. 13.

(c) Relative chirp of pulses.
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Figure 17. High gain, Q-switched laser system, including a Kerr-type
nonlinearity and "pulse sharpener": further results.
2a§ Pulse energies; Figure 16a repeated for reference.
b) Integrated laser output.

(c) Pulsewidths of uncompressed (dashed) %nd comgressed

train, using gcomp(w) = exp{~1(u-w,)4(0. 1/a)}
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Chapter III

STEADY-STATE SELF-FOCUSING OF NON-AXISYMMETRIC BEAMS

Qur previous considerations of the propagation of intense pulses
in a medium exhibiting a cubic polarization have Ted to a description of
the phenomenon of self phase modulation; these analyses were based on the
assumption that the beam could be approximated with a plane wave. We
now consider the propagation of a beam with a finite cross-section; we
will find that the cubic polarization produces distortions in the trans-
verse structure which, for a sufficiently powerful beam, can ultimately
lead to the phenomenon of "self-focusing".

Because of the highly nonlinear character of the problem, there
are many aspects of self-focusing which are not clearly understood at this
time, despite intensive experimental and theoretical efforts. Our analy-
sis here will be Timited to showing how the focusing process depends on
the shape of the initial béam cross-section; we will consider primarily
the steady-state case, with the simplest form for the nonlinearity. Even
with these simplifications, however, the three dimensional problem is
extremely complex; we will thus be content to consider a number of

analytical approaches, each of which provides only a partial solution.

ITI.1 Description of Self-focusing Problem

In Sec. I.3, we showed that a cubic polarizability manifests itself
physically, to lowest order, as an intensity-dependent refractive index.

As shown in Fig. 18, this view explains the tendency of a beam to focus
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inside such a nonlinear medium: the intense center of the beam
increases the refractive index there, so that the material acts as a
convergent lens. Since any initial focusing will result in a stronger
"lens", the process is unstable, resulting in a "collapse" near some
"focus", at Ze. Furthermore, since the beam would tend to diffract in
the absence of the nonlinearity, this physical model suggests that the
nonlinear "focusing" will dominate only for a sufficiently strong beam.
We shall show that this instability can be characterized by a "critical",

or "threshold", power, P such that self-focusing will occur for

crit’

beam powers, P, exceeding P In analyzing this effect, we will

crit”
obtain P_ .4 and zf(P), and, in particular, we will find how these
parameters depend on the initial shape of the beam cross-section.

To further clarify the physical picture, and form an estimate

of P we will consider a beam "at threshold", using the approach

crit?
that the beam then forms its own “waveguide”(}4). As a first approxima-
tion, shown in Fig. 18, we will assume that the beam has a constant
intensity, IEOIZ, within the waveguide; the index discontinuity then
can cause total internal reflection at the wavequide boundary, which
balances the tendency toward diffraction. This reflection will occur if

the diffraction angle, op1F > shown in the figure, is smaller than the

total internal reflection angle, TR ° which is given by

n n,|E |2 2
o s 0 - 270
brpp = arccos <n0 e ).v ( T )

(64)

Using standard Fraunhofer diffraction theory , we obtain
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diffraction path
when n,=0

nou
= O

T
T

reflected ray™ >
when nz#o

cross section }___,ﬁ, 7 waveguide side view
end view)

cross section waveguide side view

Figure 19.

Approximate self-waveguiding model of beams with
threshold powers, comparing cross-section shapes.

a) Axisymmetric beam. A typical ray tends to diffract
at angle eprp, as shown, but is reflected back into the
wavequide by the index discontinuity, when 6pif < 67IR>
where oTjp s the angle of total internal reflection.
b) Same effect as in ?a), except that the beam is

highly elliptical, with rp > ry; only the diffraction
across the smaller width is important.
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prp @S follows. For the aXTsymmetrica] case, which forms the cylindri-
cal waveguide shown in Fig. 19a, the diffraction is equivalent to that

of a circular aperture of radius, r, so that

3>

OprF =M

where m, = 0.61 satisfies J](Zwmc) = 0. Similarly, for the highly
elliptic cross-section shown in Fig. 19b, the strongest diffraction
occurs across the narrow dimension, so that OpIF is essentially that

of a slit of width, Zw.E

A
Oprr = Mg Yy ’
where mS = 0,5 satisfies sin(Zwms) =, For &n << no, the total

power in these beams is given by

n 2

C
0
P‘g‘““‘:ola 5

where (I is the cross-section area. Self-focusing would occur if

eDIF < eTIR , which implies the following critical powers for these

cases:
..22':. =
Pcrit mm, p 3.67 P0 (R=1) .
(I11.1.1)
_202f2, f
Pcrit = mmg r Po = 2.47 R Po (R >> 1) s
where
3
P = . , (I11.1.2a)
0 2n
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and

-

R=_2 = major ellipse axis
& minor ellipse axis

(I11.1.2b)

These approximations indicate that the highly elliptic beam shape
has a threshold for self-focusing which is larger by the ratio of the
major axis to the minor axis, R. The physical model of the "diffraction-
focusing balance" shows that this will continue to hold, approximately,
for more realistic beam profiles, although the specific numerical
coefficients in Eq. III.1.1 will be modified.

As an example, for Ruby laser radiation (wo = 2.7166 x 1015 sec“])

1 e.s.u.), PO = 1.7 x 1011 e.S.u. =

passing through CS, (nzfz 1.1 x 107
17 kilowatts; this power level is easily surpassed in Q-switched lasers,
even without mode-locking. Experimentally, the threshold for self-
focusing of axisymmetric beams is indeed found to be roughly given by
PO (65), and the increase of Pcrit with R has also been observed(ZT).
On the other hand, the model used above does not provide information
about the beam behavior when P > Pcrit s so that, for example, Ze and
the beam shapes near the focal point are still unknown; such information
is often crucial, since the field intensities near the focal point are
intense enough to produce many interesting nonlinear effects.

The equations for beam propagation are given in Sec. I.3; since
the "slowly varying envelope" approximation implies that
‘EE

TiihA mO!El , Eq. 1.3.13 gives the following "first order" system:




i(k z-w t)
- Fxuy,z,t) = —;—§X<E(x,y,z,t) e tc c)
2.2 n 26 n
B_,E_+ .B_._E_+ 21k .@.E. __.()_QE.): - 0 0 (5H)E
8x2 Byz o\ 3z c ot c2
aen) _ ™ 2
TST T S lE]™ ~ (sn) (111.1.3)
where kO = wOnO/c . The boundary conditions of interest are given by

f et

E(x,y,o,t) given .

The equations with which we w

state limit", where FE = E(x,

pulsed beam can also be handl

considered "instantaneous", a
)

5 |E|2 ; a cha

that (én) =

show that

E(x,y,z,t) = E'(

Ix], |y|———se

(111.1.4)

i1l be concerned are given by the "steady-

y,z). However, the more useful case of a

ed if the response of the nonlinearity can be

s will now be shown. For =t = 0, we see

nge of variables can now be performed to

nz
0

X,¥,zZy t' =t - — )

where E'(x,y,z; t') is the solution of the equations:
o%er | 9% oE “02"0”2 2
5 + -—§-+ Ziko Ev il 5 — |E'|" E
X oy c

E'(x,y,0; t')

E(x,y,0,t")



-122-

Thus, "t" enters only as a parameter indicating the delayed time at
which the boundary condition is to be taken, and, mathematically, the
propagation equation of interest has reduced to the "steady-state 1imit".
Given the steady-state solution corresponding to every instantaneous
value of E(x,y,0,t) , the above transformation yields the fields for
the case of a time-varying input beam. This approach resu1fs in the

concept of a "moving focus" for pulsed beamg(66’ 67, 68)

Our analysis, then, will involve the idealized, three dimensional,
propagation of the complex field envelope, E(x,y,z), governed

mathematically by the equations:

2
§E§_+ §E§.+ 2 ki 2k, Yo o2 [Eiz F=0
3x2 8y2 0 9z C2
E(x,y,o0) given
E—=s0  for Y ] p—— . (111.1.5)

The simplest problem based on these equations involves an axisymmetric

(X2 + y4)"

beam, E = E(r,z) where r = (x" +y ; this two dimensional problem

has been investigated in some detail through analytic and numerical

(69,70)‘

methods Values for P

. b ai it has b
crit have been given, and it has been

found that beams with P > P will self-focus to a mathematical

crit
singularity at Zg However, the "ultimate” goal of accurately

describing self-focusing under realistic conditions requires the introduc-
tion of at least three types of "higher order" effects. First, the
nonlinearity, represented by the last term in the propagation equation,

IIT.1.5, must be altered to include saturation and higher order
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polarizations, dispersion and absorption (linear and nonlinear),
coupled polarizations, nonlinear scattering losses, and mutual inter-
actions between a number of coherent beams (i.e. Raman or Brillouin
components); often, bulk material changes (damage, etc.) can occur near
Zg Second, the steady-state 1imit will not apply because the powers
needed for self-focusing require pulsed beams; for nonzero t , or
when the higher order time derivative terms in the wave equation are
included (see Eq. 1.3.6), the addition of the variable, t, vastly
increases the analytical difficulty. Third, the Tack of cylindrical
symmetry adds another independent variable, which further complicates
the analysis and its interpretation, as we will show.

Because of the fundamental role played by the nonlinearity present
in Eq. II1.1.5, the above three "complications" will be interrelated;
also, the addition of a new effect usually cannot be handled by pertur-
bation methods. As an example, it has been found, through numerical
solutions, that altering the form of the nonlinearity, even slightly,
leads to quantitatively and qualitatively new phenomena, such as the

appearance of multiple focal points(7]’72).

For similar reasons, the
"moving focal point" theory must be considered to represent only an
idealized first-order solution. It appears that many of the uncer-
tainties in the present understanding of symmetrical self-focusing will
only be resolved when detailed solutions in (r, z, t) space are avail-
able. A few of these analyses have been performed for the simplest

(73, 74)

cases , but the lack of accurate solutions for reaiistically

“complicated" media is an indication of the computational difficulties
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involved. In view of these considerations, our analyses of the simplest
nonlinearity in (x, y, z) space will represent only the "first step"
toward obtaining “practical” results, and will certainly not be
physically valid near the focal point; nevertheless, we will be able to

predict such "gross" features as P and Zes which are determined

crit
primarily by the propagation behavior away from the focal point, and we
will be able to suggest some analytical methods which can potentially be
extended to realistic problems.

In order to determine the appropriate boundary condition,

E(x,y,0), we will consider first the linear propagation problem:

2 2

9_%_ + ?._g_ + 2k %%= 0

X oy

P — for x|, |y| e (I11.1.6)

A complete set of solutions can be found in terms of the standard

"Gaussian modes":

i¢0
Emsn(x,y,z) =E e em(x,z; Wx°zx) en(y,z; wy,zy)
2(z-z,) 2 |- <2(Z-Zx)>2 -%
em(x,z; Wx’zx) =11 4-(—]::;7?—> . Hm<;?'x/wx 1+ ~;ﬁ;:7?~ )
0"x 0'X

Z(Zfzx)
arc tan T . (I11.1.7)
K w
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Here Hm(x) is the Hermite polynomial; Wy is the "x waist" (i.e. the

minimum width in the 'x' transverse direction), z, is the position

where this "x waist" is achieved, and wy and zy are similarly defined.
In ideal cases, laser output beams contain primarily the Eo,o

mode; for computational purposes, such an "incident beam" will be

assumed here, so that, by iagnoring overall phase factors, we will take

2 2
. iq ) VA ;
X2(1+16X) y2(1+10y)
E(x,y,0) =E e © e Y
(x.y:0) = £ (111.1.8)
-1
Here, the "x waist" is given by W, = x0(1 + exz) and the position
of the waist by
2
, = Koo Oy
X 2 2 ’
1+0,

in the absence of the nonlinearity; if 2z =z , then this point

X y
would be the well-known "focal point". Equation IIT.1.5, with the
initial condition in III1.1.8, thus constitutes the beam-focusing problem
to be solved.
The power in a beam with the form given in Eq. III .1.8 is given

by

nOc 2 noc 9
P=—% [E(x.y,z)|® dx dy = 6 B0 *o¥o

(I11.1.9)

Although this integral has been carried out for the field at z = 0,
the propagation Eq. IIT .1.5 can be used to show that this power will

be conserved. Ye will now write the propagation problem in
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"dimensionless" form, using the following normalized variables and

functions:
. X
X ford
X0
.
y =
%o
; z
z =
2
ZkOx0
E'(x',y'sz") = E(x.y,2)/E . (I11.1.10)

Our basic problem now takes the (deceptively) simple form:

2 2

e R T A . (111.1.11a)
oX oy

-X2(1 + i0.) - y2(1+ 0 )/R?
E(x,y,0) = e e Y , (II11.1.11b)

where B8, R, o, and Oy now define the problem parameters, and

2
g = 9o Molp Eo %o -
¢? 0

s (I11.1.12a)

=2
I

yo/xO = ellipticity ratio for incident beam

(ITI.1.12b)

PO is defined in Eq. III.1.2. Ue have dropped the primes in Eq. III.1.11,

since we will usually deal with the dimensionless problem in the

remainder of this chapter and the next. Once the dimensionless
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solution E(x,y,z) has been found, the physical field envelope will be

given by

_ x oy
Eppye(Xo¥s2) = EE( 53— X ——) . (III.1.13a)

As a measure of the "success" of the various analyses, we will

attempt to calculate the critical self-focusing power, Pcrit , and,

for P >P .. , the position of the "collapse", (z.) . In our
crit f true

dimensionless system, these will appear as Bcrit(R’Gx’ey) and
z(8, R,Ox,ey), with the physical values given by:

p = B‘B P (I11.1.13b)

crit 8 "crit o > c
and

(7o) =2kx’ 7 (111.1.13c)

true

It is possible to normalize the variables so that there is no
free parameter in the propagation equation (B = 1); this requires
another (scaling) parameter in the initial conditions. We will not do
this, usually, because we prefer to have the free-beam limit (8 === 0)
easily found for comparison, and because the presence of the parameter,
'g', is helpful in recognizing and "ordering" the terms arising from

the nonlinearity.
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II1.2 General Propagation Properties

There are a number of properties common to all solutions of
Eq. IIT.7.11a, which we will find useful in later analyses. It has
already been observed, for example, that the propagating beam power is
conserved; for our specific "Gaussian" initial conditions, in Eq.

I11.1.11b, we have, as a "dimensionless" power,

oo

P(z) = J{}QE(x,y,z) E*(x,y,2) dxdy = P(o) = R

e GO

(I11.2.1)

It can also be seen that any symmetries present in the initial condition
at z = 0 will apply for z > 0 ; thus, an axisymmetrical incident beam
will retain the cylindrical symmetry. In our case E(x,y,z) will
always be an even function of 'x' and 'y', so that, as an example, a

solution need only be considered for x,y > 0 .

I11.2.1 Tlens transformation
Another general property of the propagation is described as
follows: if E(x.,y,z) is any solution of Eq. III.1.1%7a, then the

following function will also satisfy that equation

E(,y,2) = Alz) E(x(xoys2)s y(xy,2)s 2(2)) e T000Y:2) (111 5 2a)

where
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1

A(z) -2

X(X,y,2)

X, + (Ei"?"ET'[(X - xq) cos 8- (y-yq) sin o]

§(XsysZ) =Y, t (E4§:~57-[(x-x]) sin g + (y—y]) cos 6]
0

. 2
z(z) = z, + a
2 e
. (X~x1)2 + (y-y1)2
¢(x,y,2) = ¢, + . (111.2.2b)
4(20-2)

Here a,e,x],y],zo,¢o,x2,y2,22 are any real constants. These functions
are the most general possible form for A,§,§,£,$ , given a transforma-
tion of the type in Eq. II1.2.2a.

An examination of the transformation above shows that it can be
separated into a number of distinct "components", many of which are
trivial: |

(1) transverse translation of origin: (x],y1,x2,y2)

(2) rotation and inversion in transverse plane: (0,'-" sign 1in

~

y)
(3) constant phase shift: (¢O)
(4) transverse scaling, with power conserved: (a)
(5) Tens transformation: (zo,zz)
The first three are inconsequential for our purposes; we will take
X1 Yy 2XnsY050s ¢ equal to zero. Transformation (4) has already been

accounted for, by normalizing E(0,0,0) = 1 in our dimensionless
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problem derivation; as expected, this shows that the absolute beam size,
Xy s does not affect the self-focusing process, except to change the

length scale according to Eq. III.1.13c. To conserve the normalization

~

(E(o,o,o) = E(0,0,0)) and the initial condition location (z(o) = 0)

we use a =z and z, = -2, and obtain the solution generated by

the "lens transformation"(75):

(x% + y?)

e —
~ Z XZ yz ZZ 4(2 "Z)
E(x,y,z) = < ?> E < _0 s __0 s __O e 0
ZO z ZO Y4 ZO z ZO z

(IT1.2.3a)
with the initial condition replaced by
2 2
. (x" +y )
. B z,
E(x,y,0) = E(x,y,0) e . (I11.2.3b)

To see why this represents a "lens" transformation, we can con-

sider an incident beam at z = 0 which is "focused" at z = Ze (in the

~

geometrical sense); the transformed field, E , will focus at zé .

Zg %4 1,
where = z2_. . Thus s~ = — + — _ which is the same result
’ f Z Z Z
zo—zf f f 0

obtained by placing a Tens of focal length +z0 just in front of the beam
at z = 0_ ; the phase shift which is quadratic in v , as shown in

Eq. 1I11.2.3b, is also consistent with a "lens" at z = 0_. (In physical
units, the focal length of the lens under consideration would be
(Zo)true = 2 koxozzo)' Note that the presence of the nonlinearity does

not affect the lens transformation.

Mathematically, the effect of applying Eq.III.2.3 is to reduce
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or expand the propagation distance, z. For example, the original
problem defined by Eq. III.1.11 involved a solution over the range, z:
( 0, ); by simply changing the initial conditions according to

Eq. II1.2.3b, which for the Gaussian function in Eq. III.1.11b,

implies
6x : 6x - 6x * 4z
0
. R2
—> 9 = o 2.
ey y oy 420 s (111.2.4)

we will generate a solution for é(x,y,z) on the range, z: (o,zo)

~

which corresponds to E on ( 0,0 ). The remaining solution for E in
the range ( Z ) will not have any physical significance in the
original problem.

II1.2.1i solutions for beam moments

We will now consider a very powerful "integral" property of the

propagation equation, as first reported by Vlasov, et a1(76),

These
results will be concerned with the evolution, in z, of the beam
“moments", such as the “power" (r ), beam center ( ¥ ), and mean square

radius (rz); here,

.

> B -+
r= (X,y) = e, X+ e,y , (I11.2.5a)

is the two dimensional transverse position vector. The following

(77)

analysis, based on that of Suydam , appears indirect, but the overall
algebra is simplified (and generalizable to higher dimensions, if

desired).



-132-

By defining the usual vector differential operator in two dimen-

sions,

i

+_§0”'_3__~—>-'§__ +L
v o= <8x 5 ay) = eX X + ey 5y s (I11.2.5b)

we can write the field propagation equation, IIT.1.11a, in the form

%%-= i % + plE)2 By . (111.2.6)

where VZE =V - (gE) according to the standard notation. From this

equation, the following can easily be found to hold:

w T
&= -V g , (111.2.7a)
where
Y
W= |E]| . (111.2.7b)
¢ =i (EFEY) - ETFE)) . (111.2.7¢)

= .
Next, we can define a tensor form, T , having four components;

by considering an analogy with matrices, we will define

T-1% : T = A8y
t=0-T7 c, = }J ; J1
F=T-8 Fo= 1T

where 6, B are "row" vectors and f, 6 are "column" yectors. Mith

these conventions, we find that the following holds:
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N
=V o T

s
a7 . (111.2.8a)

where

== * > K = 2
T o 2@ EE 2@ EE) + T 2(E1D) + s(E)D) 3 .

(I11.2.8b)
Here, 7? is the unit tensor (Iij = 6ij)‘ Finally, defining
<T> = XiTjj , the trace of the tensor ‘??, we obtain
T> = 2 {EVPE" + EVOE + 5(1512)2} . (I11.2.9a)
N R . (I11.2.9b)

where

§ = 2i (£ (F(72E))-E(F(v2E™) )+ (v2E Y OE-(v2E)TE "+ 4ip|E|2(E (VE)-E(VE ")}
(I11.2.9c¢)
Note that w, §, 7§ have analogies with the usual vacuum electro-
magnetic energy density, power flow, and stress tensor, as seen in
Egs. I11.2.7a and 111.2.8a. We now assume that we have a beam
"confined" in a cross-sectional region, “g", bounded by a curve "T'";
then Gauss' law, in two dimensions, shows that

ﬁda(% - T) = §dx(h’ )

T

a
jjda(‘ﬁ . 1) =§dv(h’ -1
a

T
In the present case, da = dxdy, and T 1is the curve at "infinity",

where all functions approach zero; thus, all line integrals on T

will vanish.
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th

Defining the "0"" moment", P, as in Eq. II1.2.1, according to

P(z) =ffda W , (I11.2.10a)
j}da W j}da %‘%= mﬁda(g . %) »j;}’(ﬁ . 3

=0 s (III.2.10b)

we have

oo,
N
[
[k oN
N

which implies, as expected, that the beam power is conserved:
P(z) = P(o) . (I11.2.10c)

Next, consider the nst beam moment", R(z), which gives the

“center of gravity" of the beam

B(z) = W%Tfjda o ) (II11.2.11a)

(I11.2.11b)

This result corresponds to conservation of momentum, and implies that

'ﬁ(z) = R(o) + z <§T%7*J6{da g(x,y,o)} . (111.2.11¢)

In the present case, the initial condition is given in Eq. III.1.11b,

implying R(z) = 0 , which was already known through symmetry arguments.
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nd beam moment", <r2(z)>, which, for

Finally, defining the "2

R(z) = 0 , equals the mean square radius of the beam, according to

<r(z)> = J(—Z—T{{da 2y . (111.2.12a)

we obtain

3.2 2
d <r"> _d < 1 }f 2 = >
~ PloT da r v .3
d23 d22 Plo f

i
[aBjel
N
P N e
)
) é\\)
‘I%
e
Y
—
<

0. (I11.2.12b)

?S'j,\,
=
.
5
S,
s
i

Except for the specific definitions of w, §, ?: 6, all of these results
can be applied to similar problems in three or more “transverse" dimen-
sions (i.e. Maxwell's equations or Schroedinger's equations, with z +~ t
and ¥ + x,y,z).

We thus find that the mean square radius is precisely quadratic

in z for any (confined) solution of the propagation equation:

<r (z = }f da Y‘ w(x,y,0)| + z p"(%‘j’ﬁda g(X,)’aO) .4

+ Z 'TT ﬂda (T XsYs 0) . (IIIZ]ZC)
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e note that this Tast integral is a "“constant of the motion", and can

be written:
2 .2 : , 2
1d% <p> !‘ o N 2, 4l _
2 S ) VQ;Aa <T> = P(BT’,}ga ;Z(VE)~(vE )-8(|E]®) { = cons.
(111.2.12d)

For the initial conditions corresponding to a Gaussian-elliptic beam, we

obtain

P(z) = P(o) = F R
and
<«r?(z)> = % (14R?) ~2(ex+ey)z + (4[]+exz+(1+ey2)/R2}B) 2
(111.2.13)

From this last equation, we can find (exactly !) the critical
power and self-focusing distance for the problem specified in Eq. III.1.11;
since a vanishing mean square beam radius implies that self-focusing
has taken place, we obtain:

4(e_ + 6 ;
1 My 73 VARSI
21+ R g

s (111.2.14)

and, for the thfesho]d condition:

[, (+e?)
51 = 4L} + ex + —'”W};ei—* (ex + ey) < 0
Bcrit - -
B = 4]1 + LI —MBE—»~(e - EX—)Z (6. +06.)>0
o~ RZ 1+ R2 X R2 X y! =
) (111.2.15)

9 From Eq. I11.2.4, it can be

seen that placing a lens of focal length Z, in the beam does not affect

Here, 8y = 8, + 4(8, + ey)z/(l +R0) 2 8
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the value of By thus the formula for Zp correctly obeys the "lens

1 1
formula", — = —
Ze Ze

+ El" However, this also shows that the threshold
0 , '
for a converging beam (ex + ey > 0) 1is not decreased by further pre-

focusing the beam with a lens, since 38 is independent of the lens

crit
transformation in this case. On the other hand, a divergent lens

(ZO < 0) can indeed increase the threshold by forming an initially

divergent beam (ex + 0 < 0).

y
Of particular interest as a "test case" is a beam which is

initially collimated, which implies 6, = 0, = 0; we then obtain

R

= B._ = R [ = =
Perit = 8 Perit Po = Pl ’ (Ox ey 0)
(I11.2.16a)
1
k Xy P .. \°
(z.) = 2k x 22 . 070’0 crit . (6 =06 =0)
f True 070 °f 2 p'Pcv"it X J
(I11.2.16b)

The relationship between Pcr t and R for the collimated beam case

Es
i

i{s illustrated in Fig. 20. For an axisymmetric beam, R =1 and

P .. =P _ ; thus, the "self-focusing" threshold, as usually defined, is
crit 0 3

exactly P0 = £ 5 for a Gaussian shaped beam. Similarly, for

2n2w

0
A= Ty Xy =¥y = 0.1 cm , the focus will occur at
PO%.
(z.) = 314 -~ cm ;
f True P Po

in situations where the threshold power is not greatly exceeded, this
usually means that the self-focusing will in practice occur essentially
at the focal point, f, of any lens placed in front of the nonlinear

medium, since f << z. will hold.

f
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Since the derivation of Eq. III.2.12c was based entirely on the
analytic properties of Eq. III.2.6, a comparison with Eq. IIL.1.5 shows

that the following holds for the real field, E, and real variables x,

yYs Z:

2 ‘ 1 2 4 2 -+
<r“(z)> F(BT‘.[}ha r© w(x,y,0)} + z §;§TET.E}.da v - S(x,y,0)

. * W 2
e ..._.;......ﬁdafzﬁawv*a ) -2 (g
4k P (o) ¢

with w, S, and P(0) defined by Egs. I1I.2.7b, II1.2.7c and II1.2.10a,
respectively. For a "collimated" beam at z = 0, we can take E(x,y,0)
as real, so that S(x,y,o0) = 0 ; the general threshold condition for

such a beam is then given by

E = Eof(x,y,z)

/ \
2 2
RS <ﬂda E - TE ffda(iflz)) :

which yields

P &)
PJ-g%ﬁlEizda 2Py T ﬂdajfz}z : fda('v”E)-(“v*E )
ﬁda(!E!z)z L (111.2.37)

This critical power will also hold for an initially "divergent” beam,

for which 5
d <r > s 0
dz z=0
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If we now consider again the initial beam shapes illustrated in
Fig. 19, we see that Pcrit’ as given by Eq. II1.2.17, increases without
1imit as the boundary becomes sharper, since j}ha [$E}2 ~ w3 this
contradicts the physical model leading to Eq. III.1.1. Physically, the
reason is clear; Eq. II1.2.17 forms a sufficient condition for self-
focusing of the entire beam, since it leads to <r2(zf)> = 0 ; however,
it is not necessary to satisfy this condition if the self-focusing
involves only a part of the beam energy. Thus, in reference to our
"uniformly illuminated apertures" part of the energy will always diffract
away, so that <r2> > 0, even though most of the beam will self-focus
with the threshold power estimated (roughly) in Eq. III.1.1. These
arguments indicate that Eq. III.2.17 gives an accurate threshold condition
only when the incident beam is sufficiently "smooth", so that none of
the energy "escapes", via diffraction, from the self-focusing process,
and when all of the beam focuses at a single location; this appears to
be the case (near "threshold") with Gaussian beams, based on the analyses

presented later. Thus, in those applications where only P or

crit

zf(P ~ P ) are important, the above formulas effectively "solve" the

crit
problem, because the onset of the self-focusing instability is
adequately described by Eq. I[II.1.5; the higher-order complexities are
usually significant only near the focus.

In addition to the general properties discussed in these last
sections, there are also a few "analytic" solutions known for

(77,78)

Eq. III.1.11a, either in explicit or implicit form However, we

will not consider these solutions for two reasons: first, the implicit
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solutions often do not correspond to physically meaningful "beams", or
else they apply to special limiting geometries; and secondly, the solu-
tion methods are uniquely matched to the precise propagation Eq. III.1.11a,
so that they are not applicable when any higher order “complications”

are included. Our interests lie, implicitly, in considering methods

of analysis which are "extendable" to the more realistic, and
“complicated", problems, even though we will not deal with them directly.
Thus, for our purposes, the results of Sec. III.2, as well as the
particular solution found later in Sec. III.3.1iii, will be used to
simplify or "test" the more general analyses in Sec. IIT.4 and in

Chap. IV.

ITI.3 Initial Focusing Behavior

As a first approximation to the behavior of the beam during
self-focusing, we will consider the sojution near z = 0, where the
distortion is small enough to allow "expansion" methods. As an
example, the discussion leading to Eq. III.1.1 would fall into this
category, since the local balance between "self-lensing" and diffraction
was used to predict the threshold for self-focusing. Even though such
views can yield only limited information about the overall propagation
behavior, because of the nonlinearity of the problem, we will find
that a number of important characteristics of the "detailed" solutions
can be brought out through relatively simple arguments.

II1.3.1 axial intensity growth

According to Eqs. III.2.7a, I11.2.7b, and III.2.8a, we can write
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the Taylor expansion of the beam intensity as follows:

; . 2
2 oW 2071 3w
w= |E|” ~w(o) +z (e—- > + z (—-——~— ) , (I11.3.1a)
%2220 232|220
where
oW _
Lo g
2 s s =

Eg V(¥ . T) . (II1.3.1h)
9z

Here, S and %? are defined in Eqs. III.2.7c and III.2.8b, respectively.
The present problem involves the Gaussian-elliptic beam function given

in Eq. III.1.11b, so that the beam intensity on the axis is given by

0
w(0,0,2) ~ 1+ 2z [ﬁ(ex + E%-)]+ 2% [%6(1 + E%J - 8(1 + %Z)
PN o 2
+16(8, + + *ﬁzj] . (111.3.2)
R

As a rough guide to the onset of self-focusing, we might expect
that the nonlinearity would cause the quadratic term in this expansion

to be positive:

2
0 6 5]
1 2 . 9% 1
(B ..:1) = {2(1+~—9 40 ° + XL+ ~1—% (1+ =) . (111.3.3)
crit’ vial R A RZ

In the case of an initially collimated beam, this gives:

2 .1
Po (R * gz
R
P ..) = <—~——-—~ > (o, = 8, = 0)
crit axial 4 R+ —%—- % Y

(IT11.3.4)

In Fig. 20, of the preyious section, this result is compared with the
actual self-focusing threshold. It can be seen that there is a consid-

erable range of beam powers in which
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(P ss) s PsP

axial crit

crit

here, the nonlinearity causes the intensity on the beam axis to increase
initially, even though diffraction will eventually preyent self-focusing.
This observation shows that the self-focusing process cannot be analyzed
accurately by methods which consider only the central portion of the
beam, even though the strongest nonlinearity occurs there; the "wings" of

the beam play an important part in the transverse power flow.

111.3.i1 Tlocal instability growth

In Sec. III.1, we indicated that an accurate characterization of
pulse propagation in realistic situations would require equations of
considerably more complexity than that given in Eq. III.1.5. In addition,
of course, the boundary conditions would need to be similarly examined
for "realism"; in particular, the idealized Gaussian beam profile given
in Eq. I11.1.8 is very "smooth", whereas many pulsed lasers produce beams
with cons iderable transverse structure. In any case, the propagation of
the pulse before entering the nonlinear medium is 1ikely to introduce

some imperfections in the beam profile; we will now investigate how

this "noise" on the transverse structure would influence the initial
(79,80)

self-focusing process, using a linearized instability analysis
In order to linearize the problem, we assume that the local beam
form can be approximated to first order as a plane wave; from Eq. III.1.5,

we obtain

E~ eo(z) + e](x,y,z) [c][ << {eol , (I11.3.5a)
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where the plane wave solution has the form:
CAPS
i (5——

2
E ")z
B - 2c 0
eo(z) = E0 e

(I11.3.5b)
We take E0 real for convenience. Substituting this into the propaga-
tion Eq. III.1.5, and neglecting higher order nonlinear terms, we find

that the perturbation field, €15 obeys the eguation:

w. n
& 1("%52_‘ Eoz)Z
e](x,y,z) = e e
82A BZA 2w n BA w Zn n2 2 A *
E + E + 2 0 5§.+ __9*§9__.E (e +¢ ) =0. (I11.3.6)
LD oy ¢

This linear equation can be solved by separation of variables,
where the transverse variables are included in a function, u{(x,y) ,

solving:

32u 2u 2
m+~—§‘+ku=0

ax° 3y
(77)

Following Suydam , we consider a localized, symmetrical, perturbation

for simplicity, so that we use

e(x,y,2) = J (kr)h(z) ,  (I11.3.7a)

where r2 = x2 + yz and the complex function h(z) = h](z) + 1h2(z)

must satisfy:

2w n _dh

oo 1 _ .2

e dz -k ;
2w0n0\§ﬁgﬁ: i k2 , ZwQ L P : 9 )

c dz CZ 0 1

Thus, both h1 and h2 will obey the equation



i 0
= kif——=——E " - k" [ h. = a"h. , (I11.3.7b)
dzz 4 Zn 2 C2 o}

Yo "o
For a2 < 0, the solution is stable, since h(z) is oscillatory.
However, it can be seen that unstable, exponentially increasing

perturbations result if dz >0 ; i.e. for

2 2
0 < k™ < k7| 1 ) (111.3.8)
with 2 2
9 2E "w
k = ___0_.__9__ nn
LIM C2 o2

From Eq. III.3.7b, we see that the fastest growing perturbations
. . 2 1.2 .
have a size characterized by kopt » Where k opt = 2 k LIM for a
beam with "random" perturbations, "hot spots" of dimensions “'El“_' will
opt
occur,
These results are clarified by considering the power contained
in these unstable perturbations; the growing "hot spot" can be taken to
have the area within the central peak of the function Jo(kr) , S0 that
nc 2 n_c
~ 0 2 12.405 0 2
P~ o E0 n< 7 > ~ 0.723 k2 EO

Thus, from Eq. I11.3.8, a perturbation will grow if it contains & power

satisfying
) nOch2
P> (P__. = 0.723 = 0,723 P_ ,
Ot stabiTity k?LIM 0
(I71.3.9a)
with the "most common" hot spots containing
- 145
(Popt) 1.4 P, . (111.3.9b)

instability
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Finally, the exponential growth of the perturbation indicates that the
“"focusing" length will be roughly %- » giving
2k

(z,) - . (111.3.9¢)
instability = k crit

L
2

which compares well with value in Eq. III.2.16b.

This instability is very important when high power (P >> PO)
beams are being considered, both physically, when filamentation occurs,
and mathematica]]y, since idealized results such as Eq. II1.2.12 are
"weakened". Thus, if a beam is initially highly asymmetric (R >> 1),

a "subcritical" power (P < P ) may still produce self-focusing

crit
within portions of the cross-section containing powers - PO.
I11.3.111 shape-preserving solution

As a simple but useful "test" of later analyses involving "full"
self-focusing solutions, we will now find one "exact" solution for
comparison. First, we consider the "self-trapped" solution, which
preserves its shape during propagation; assuming cylindrical symmetry(g]),

and allowing for, at most, a linear phase shift, Eq. III.1.17a reduces

to
inz
E(x,y,z) = f(r)e
2
df e 1afor v alfl®F =0 . (111.3.10)
dr
Since %;' = 0, we can take f(o) to be real and conclude that f(r)
r=20

is a real function for all r (by uniqueness); we can also normalize the

problem by taking:
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u(r) = (8/n)® f(r/n?) . (I11.3.11a)
i@_+l.<ig_u+u3=o (I1I1.3.11b)
drz r dr : o

This "propagation" equation must be solved for "eigenfunctions"
which are well behaved (u(r + «) - Ko(r) ; %% = 0); the “"eigen-
r=20
value" has been shifted from 8 to ul(o) through the transformation in

Eq. IIT1.3.17a. A numerical calculation yields uo(r) , the (Towest

order) solution agreeing with that found by others(]q); it is

characterized by uo(o).: 2.18 and an "area" of

(Y]

a - fuzr dr ~ 1.86

0
We will refer again to this function, and give its shape, in

Chap. IV. In order to correspond with our dimensionless problem state-
ment in Eq. III.1.11, the "power" must equal P(R = 1) = %- (see
Eq. III.2.1). Thus

which shows that 8 = By = 4ao ~7.43. This yields a beam with a

physical power of

) o b o8P (111.3.12)
- 5 P . o . .3.
The subscript "min" is used, since it can be shown that the "shape-

(Pcrit

perserying" profile considered here has the lowest possible threshold
for self-focusing. The value of n is still arbitrary, since any

power-conserving scale change can be made; however, it is convenient
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to normalize E(0,0,0) =1, so that n = Ny = 2? ) ~ 1.56 ; our solu-
“u~(o
tion thus takes the form
| - Loy 2. 2 M2
E(Gy,z) = (ng/8,)7 u (nE (x™+y7)%) e . (111.3.13)

Finally, we can use this constant-profiled function to form an
exact self-focusing solution, by using the lens transformation given
in Sec. IIl.2.i. Applying Eq. IIT.2.13a, we find that the following

function will self-focus precisely at Zg = 2 for g = B

o ilx%+y%)

~ ) 1 7 7 1 1_“ 0 _ *

E(x.y,z) = (no/BO) (Z’%} u0<2“%z‘ T\lo/2 (Xzﬂ’z) >e 02472 ¢ Z!'(Zo z)
0 0

(I11.3.14)

where uo(r) obeys Eq. IIT1.3.11b. This solution is illustrated in

Fig. 21. Note that the equiphase surfaces of E(x,y,z) differ from
ik z
those of the physical field due to the "modulation", e °

, in the
field definition IIL.1.3; thus, ig terms of the normalized, dimensionless
1(2ko‘x0‘)z

variables, a factor of e is always presumed to multiply any

solutions of Eq. IIT.1.11.

The function, E(x,y,z) , actually differs from "typical" self-

focusing solutions (B8 # 8 ) in two ways. The asymptotic behavior,

crit
as r - ® , goes as Kb(r) , which decays as e’ /+F , whereas non-

shape-preserving solutions, either above or below thgesho]g, would be
om0 XS ma,Y
expected to fall off more rapidly (usually as e 1 e 2 according to

Eq. III.1.7). Also, the "relatiye" phase-front curvature of E

1

decreases, since the phase shift from r =0 to r = <r2(z)>“

goes as (1 - z/zo) : for a beam above threshold (g > g ), however,

crit
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1 1
<r2(z)>2 approaches zero as (1 - z/zo)2 , which Teads to strong phase

characteristics for any finite region of interest.

ITT.4 Numerical Approaches

We will now discuss some results obtained for the "full" solution
E(x,y,z) , of Eq. III.1.171 through numerical analysis; this method
appears particularly useful, since the (potential) introduction of
further nonlinearities or other steady-state "complications", as
described in Sec. III.1, should not involve much additional difficulty.
Nevertheless, we have obtained only a few "preliminary" solutions
through numerical analysis for the following reasons: first, the
analyses of Secs. IIl.2.i1, III.3.iii, and Chap. IV provide a reason-
ably complete picture of the properties of self-focusing beams for the

"lowest order" equation, so that further numerical results could add

D
-3
[¢+}
v
et
ot

only minimal new "information". Second, th s described below,
involving partial differential equations in three dimensions, required
a rather extensive use of the computing facilities (and caused a
correspondingly rapid depletion of our computing budget); it thus
seemed prudent to leave "high accuracy runs" to those who require self-
focusing solutions for particular applications (in which case the
Towest order propagation equation would probably not be sufficiently
“detailed" anyway).

Qur discussion of the numerical methods will be very brief,

concentrating on the general approaches used, rather than on the

specific computational schemes. These methods were based directly on
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the propagation Eq. III.1.1%1a, so that, for example, the beam at "z"

J
discrete "transverse grid"; the solution at z' = z + Az was then

was described by E(xi,y.,z) ,» where the points (x%,yj) form a

found by some finite-difference approximation to the equation system:

2 2
L2522 Lhigg®e xx0,y>20
z X ayz - -
(I11.4.1a)
o SF
— = - =0 (IT1.4.1b)
X, o W=
E(x,y,0) given . (I11.4.1¢)

The use of only one quadrant, x,y > 0 , and the boundary conditions
ITI.4.1b are a result of the symmetry in E(x,y,o) as discussed in the
introduction to Sec. III.2. Note that this approach rules out some

alternative problem formulations, such as the "ray tracing" method of

The problem posed in Eq. III.4.1 presents at least three
"unusual" difficuities which complicate any "standard approach": the
presence of complex functions, the infinite transverse domain, and the

potential singularity as z - Ze when g > 8 The last problem is,

crit
of course, unavoidable for the "lowest order" equation in III.4.la, so
that zp can never be reached; even for "higher order" propagation

equations, however, there is a near-focus for z ~Ze s where the beam

becomes highly nonlinear(82’83).

Since any method should be designed
to handle such situations, a Targe number of transverse grid points and

a high degree of stability are required.
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In order to have the important (high amplitude) portion of the
beam well represented in the transyerse grid, the variables (x, y) were

"scaled" as follows:

X =X X'
y=yy'
DE(x',y'sz) _ i % . i p%E g2
W2l - L s+ 15 -+ i8]E| E . (111.4.2)
X© oax')T YT oaly")
%
As the integration proceeded (in z), the r.m.s. moments <(x')2> .

e

<(y')2> were checked, and rescaling was performed to keep these values
approximaté]y constant; this scaling (and variable change) will be pre-
sumed to be present in our later discussions of the numerical

methods.

‘Most of the methods were checked by solving at least two "test"
cases: the free-beam limit (8 = 0), whose solution can be found from
Eq. II1.1.7; and the "shape-preserving" solution described in
Eq. IIT1.3.14. In addition, power conservation, <1> = constant , was
checked, and the results for <r2(z)> were compared with Eq. I111.2.13.
In general, the "test" cases showed only moderate accuracy, but this
fact is consistent with our use of "low accuracy" computational efforts
(single precision arithmetic, low density of transverse grid points,
and local error bounds of ~v10°4).

For comparative purposes, we used the initial conditions corre-
sponding to R = 4 with a collimated beam, and applied the lens trans-

formation with z, = 1
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) -1 (x24y?)
" AR LR
X,¥,0) = e e e . (I11.4.3)

This reduces the range of interest to z = (0,1), and 8 = Bcrit is
indicated by Zg = 1.0 5 in theory, this greatly simplifies the problem of
deciding when to stop integrating and whether or not "self-focusing"

was occurring. In practice, Zp Was never approached very closely, since
the presence of self-focusing led to increased transverse phase varia-

tions and closely spaced scale changes which caused the computations

to quit or run out of time.

ITI.4.1 implicit integration methods

The "stability" of implicit numerical formulas usually makes them
very useful in problems of this type; we applied the ADI method(84’85)
("alternating direction implicit"). This method is "simple" and direct,
but does not allow much flexibility to cover the particular difficulties
mentioned earlier. Thus, to retain the form needed for ADI, the field,
E(x,y,z), was integrated directly in terms of its real and imaginary

components.

E(x,y,z) = ulx,y,z) + iv(x,y,z)

The cubic term was linearized according to(7]): |E|2 E -+ !E(Z)IZE(2+AZ);
and the "outer boundary" conditions were replaced by those of a
conducting wall at a finite distance (i.e. E had odd symmetry across the
outer boundary).

This approach has some severe drawhacks. First, an examination
of the asymptotic form of the field (Eq. III.1.7 or II1.3.14) shows phase

variations of the form
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£ eiaxx e1ayy
for large |x|, |yl . thus implying a highly oscillatory character to u
and v. The ADI method therefore requires a high "transverse grid den-
sity" for accurate field representation; furthermore, the outer boundary
is often placed, by necessity, in regions where |E[2 has not "decayed"
very far, so that the boundary conditions perturbed the solution.
Finally, the fixed location of the outer boundary can cause great
difficulty when a divergent beém is being "scaled down" to fit into the
transverse grid, since some of the new field values must be extrapolated
from points outside the original grid. Fortunately we could avoid such
"scaling down" for the beam given in Eq. III.4.3, which is "prefocused"
so that only “scaling up" is required; in more general cases, however,
this problem would remain.

In Fig. 22, we indicate some results obtained for the ADI method.

The theory in Sec. II1.2.i1 shows that Berit

Crit)ADI ~3.75 £ 0.25. This discrepancy

= 4.25 for this problem,
while our results give ( 8
appears to be (numerically) real, since it remains when the Tocal error
is reduced; it may be caused by the outer boundary conditions, by the
limitations of the transverse grid (the result for g = 4.0 employed the
“maximum sizéd“ grid: 102 x 102), or by some "bias" present in the ADI
method itself. Note also, with regard to all the methods used, that
"scaling up" the beam size to fit the grid involves interpolation; as
the beam focuses, this process is used repeatedly, tending to smooth

out the beam shape and, thus, reduce Bepit according to Eq. III.2.17.
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IIT.4.i1 explicit integration methods

The use of explicit numerical formulas allows a greater flexi-
bility in formulating the propagation problem; we used a number of
techniques to alleviate some of the difficulties mentioned earlier with
regard to the beam-focusing probiem in general. Thus, the field was
written in terms of amplitude and phase, each of which varies relatively
smoothly in the transverse directions. In addition to the scaling
described in Eq. IIT.4.2, a coordinate transformation was used to map
the infinite transverse domain onto a unit square; the field was written

as Tollows:
E(x,y,2) = Als,t,z) el #(s:8:2)

X

§ @ —5———m5—% 0<s<1

™+ %) (111.4.4a)
t = ——?TX*-?-‘% 0<t<l

(Yo +¥°)

The propagation equation now took the form:

Al (1 -s237 35 pa0 p %, 8h ag)
? 22 1-5° s 58 35 35 |
L Q- 23 3t A 2% - p 22y _ 5 8A by
92 Ll_tz at St ot atd
(II1.4.4b)
TR 0 S I S . v )]
Y4 =2 5s2 2 s
.. 0§ 1-s
R0 e - A2 )] 3
yz BtZ 1 t2 Bt
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The transform in III.4.4a was designed to retain any symmetries

present, so that

8{2539 L : 8%_%_@. - 0 (111.4.4c)
= s:

The factors x and y are the scale factors, which are adjusted to
keep the beam size in (s,t) relatively constant; note that scale
changes require only interpolation, because the unit square always
contains the entire beam.

Among the difficulties involved with this approach is the
question of modeling the beam "at infinity", which maps into the Tines
s=1, t=1. Consideration of the free beam expansion, equation III.1.7,
suggests that the dominant behavior would be that of a Gaussian with
quadratic phase, at least locally; by using three neighboring "points”,
the field in the "tails" could be matched to such a function. The
approximate propagation solution is then given by the free-beam propa-
gg}lgn across Az, plus an additional phase shift of:

8 l Az(z')dzl. In our numerical solutions, this approach was applied
to points lying near the outer boundary (the actual lines s=1, t=]
were not used); elsewhere, explicit finite difference formulas were
applied.

Integration of equation IIT.4.4 is seen to be relatively
complex and, therefore, time consuming on the computer. On the other
hand, there are some major benefits to this approach which make it
quite competitive with ADI. First, the functions A,¢ are much less

structured than E = u+iv, so that our use of a grid of size
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(50 x 50) in (s,t) space to represent the field was probably much more
accurate than the use of (102 x 102) grids in (x,y) space for ADI.
Additionally, the explicit schemes could use higher-order transverse
derivative formulas (we used a "9-point" stencil usually, with 5
points in each direction), and required fewer scale changes; overall,
these should lead to a considerable improvement in the "transverse"
accuracy, except in the "tails".

Similarly, the "longitudinal® integration (in z) can be
performed very accurately, and with good stability, through the use of
higher-order methods, several of which were tried; the storage require-
ments for these multiple-z-point formulas were partially offset by
the smaller grid sizes. As an example, the result indicated in Figure
22 employed a 4th order predictor-corrector formula (Hamming's method)(86);
admittedly, this involved considerable "overcomputation", but it was
chosen as the "opposite" extreme, as compared with the ADI.

From our preliminary results, we cannot conclude which of
our approaches is "best” when applied with "high accuracy" to complex
beam-focusing problems; however, it appears that the explicit methods
are potentially capable of achieving accurate results under more
"severe" conditions than the ADI, although the best scheme may not
employ all of the "special" techniques described in this section.
Neither method, though, with the resources (i.e. budget) available to
us, was capable of obtaining the detailed solution needed, for
example, to pass "through" a focus in the higher order equations.
Finally, our numerical experience indicates that the long-range goal
of solving a realistically complex problem in four dimensions

(x,y,z,t) appears remote at best.
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Chapter IV

PARAMETERIZED BEAM REPRESENTATION OF SELF-FOCUSING

In Chapter III, we discussed some of the conceptual and
mathematical diffiéuities associated with any realistically detailed
problem in self-focusing, and presented a number of analyses based
on the lowest order, steady-state propagation equation. Of these,
only the fully numerical approaches showed a potential for handling
the more complicated cases; however, the accuracy attainable in
practice was severely restricted by computer Imitations and by the
(unknown) influence of approximate "outer boundary" conditions.

The analyses presented in this chapter employ a "parameterized
beam" approach; here, the transverse beam shape is approximated,at
each value of z, by a specific analytical form containing a number
of parameters which vary (in z) as the beam propagates(87).
Although these methods are inherently of only moderate accuracy,
they avoid most of the computational difficulties of the numerical
approaches, while retaining the flexibility to handle (potentially)
the more complicated problem formulations. Using this method, we
will show that many characteristics of self-focusing are well

represented by parameterized beam solutions, when an action-integral

minimization technique is used to determine the parameter variations.

IV.1 Near-Axis Parameterized Expansion

The primary differences between various parameterized

beam analyses are in the functional forms used to model the beam, and
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in the method used to "match" this form to the true beam shape. For
reference, we will again state the problem of interest in this
chapter: the lowest order, steady-state, propagation equations

governing self-focusing, as expressed in dimensionless form

2 2

oE _ .,9°E , 3°E 2 >
= = (%5 + = + B8|E|“E) z-0 (Iv.1.1a)
3z ;;?' ayz

I P R [ TR
E(x,y,0) = e * e e e (IV.1.1b)

We will treat this problem abstractly, but the results can be
referred to the physical quantities by using equations III.1.12 and
I11.1.13,

We will use the following functional form, E(x,y,z), to

approximate the true solution, E(x,y,z) , at any given z:

e 2r N
oY /b2 iS x 1Syy :
n=0

N-n

. 2
B(x,y,z) = Ae'®e™ /%

2n 2m x
a?nbzm J :

(Iv.1.2a)

0

=0

where the real parameters, A(z),¢(z),a(z),$x(z),b(z), and Sy(z),
and the complex parameters, Tn,m(z)’ are functions of z only;
0,0 ° 1 holds, to normalize the polynomial in the brackets. Note
that this corresponds to an elliptical-Gaussian profile (with a
quadratic radial phase dependence) multiplied by a (complex) poly-
nomial; the on-axis field is given by E(0,0,2) = A(z)ei¢(z) .

This expansion has the following useful properties: it automatically

satisfies the symmetry and outer boundary conditions; it can be

matched to the initial conditions; it is analytic, square integrable,
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and computationally "manageable"; it satisfies the free-beam limit as

a test case (see equation III.1.7); and, it physically represents

the type of localized beam expected to occur. An alternative expansion,
including a sum of functions of the form in IV.1.2a, would be appro-
priate for highly structured initial conditions or for the higher-

order equations, where parts of the beam may focus while others do

not; this should not be necessary here. We will refer to "N" as the
"order" of the solution; for N -+ « , the parameterized solution

should approach E exactly, but the algebraic complexity of the

problem will prevent using N 2 3.

The initial conditions corresponding to equatimIV.1.1b are:

A(0) =1, $(0) =0

a(0) =1, b(0) = R X
2 (IV.1.2b)

SX(O) = =0, Sy(O) = -ey/R

Tn’m(O) = (nam) f (O:O)

The "evolution" of these parameters with z thus describes the
beam propagation. In the "near axis" method, the equation for E,
equation IV.1.2a, is substituted directly into the propagation
equation, IV.1.la; the parameter derivatives are then found by
equating terms near the "axis", (x,y) ~ (0,0) .
The lowest order parameterized beam shape is obtained from

equation IV.1.2a when N = O: _

2 2 . 2 2 .
) (17a%(2)-15,(2)) -y=(1/b7(2)-iS,(z))

Ny (1v.1.3)

£ (x,y52) = Alz)e'#2
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We will carry out the algebra for this case as an example of the near-

axis method. Substituting éo into equation IV.1.la yields:

ds ds
TdA, . do, 2, 2 da..%x . 2, 2 db __1}
E{Adz*‘dz*"('a:% dz“‘ai‘)”(‘g?af“dz ) |

14

Cn e 28y s 2pmie 202 o iimie 2N w s 2ipcc | 212
= Eo{}(21sx- a2)+ ix (21SX— a2) + 1(21Sy— bz) + iy (21sy- g?) }

N 2,2
+E, {1BA e 2X /a -2y /b }

~

Cancelling the common factor, Eo’ and expanding the nonlinear contri-

bution as a power series about the axis (x=y=0) out to x2 and y2 ,

we @n equate terms to solve for the parameter derivatives:

7}%{%: -25 - 25,
R
£ (1V.1.4)
a2 E%%- = ﬁﬁ-- 4a252 - ZBA2 -
a

ds
b2 — 942— - 4b252 NG

First, it can be seen that these equations are consistent

with power conservation, since



p= J dedy]é|2 = g-AZab (IV.1.5a)
g§=%¥w{%%+%£g+%%}=o. (IV.1.5b)

Using the initial conditions in equation IV.1.2b, we have:

Azab = constant = R. (IV.1.5¢)

Next, we can consider the equation for the mean square radius, which

is given by the expression:

) ) 2,2
ré(z) = ( fjdxdyr2|E|2)/ dequ[E|2 =270 (1v.1.6a)

We now find:
3,2 2 2 2 2
d*¢r) _ d _{a 1day , b5 1 dbyl _d ,{ 2 2
473 472 2 (a z) 3 (5 z)J ;;?-\Za Sy ¥ 2b Sy/
ds ds
_d .26 (1da 2 ©xy , 4p2 (Ldb 2__.)/_}
T odz {4a Sx(a z) +2(a dz) + 4b7S (E'd )+ 2(b dz)
_d 1 1 2.2 2.2 2
—3-2{8(—2"*"‘)—2"'63 + b"S "‘BA)}
=16 {(- L+ a2 (L 88y 4 (2 28 4 Ll
B - a3 0\F3 4z X dz b2 y’'‘b dz
ds
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which shows that the N = 0 near-axis parameterized beam approach

yields:

¢re(z)y = (1+R?)/4 - 2(0,40,)2 + (401402 + (1+e§)/R2] - 4g)2°

(IV.1.6c)
A comparison with the exact formula in equation I1I1.2.13 shows that

the above result has the correct form, but differs by a factor of 4

in the nonlinear contribution. Thus:

(o +6 (4p-8 )

"*—“‘3$L‘ s IvV.1.
f near + 1 + R (1V.1.72)
axis
B,/4 p to., <0

( i _J X7y (1V.1.7b)
Bcmt) (Bcr1t)/4

near 30/4 ex+ey 20

axis

where Bo and By are defined in equation III.2.15. This factor of
4 discrepancy in the threshold is very similar to that found by
examining the axial intensity growth in section III.3.i, and can be

explained in the same way(83)

» since the tails of the beam are poorly
represented by the power series expansion of the nonlinear term.
Nevertheless, this approach (or others equivalent to it) has been
applied to the higher-order beam-focusing problems with some qualitative
success(87).

When an attempt is made to extend this near-axis parameterized
beam approach to any (finite) N 2 1, the method fails. If we consider,

for example, the N = 1 case, it is seen that the propagation equation
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involves (complex) coefficients of terms varying as xoyo,xz,yz,

X4,x2y2, and y4, which leads to 12 equations; on the other hand,

there are only 10 "unknowns", since 1,0 and 70,1 introduce 4

new ones beyond those of N = 0. These 12 equations in 10 unknowns

are redundant (and solvable) only when g=0, or when axial symmetry
applies; otherwise, there is no consistent way of finding a solution.
Furthermore, even for the axially symmetric case, the solutions neither

obey the lens transformation nor conserve beam power; we will therefore

not pursue this approach further.

IV.2 Least-Action Parameterization

As an alternative approach to "matching" E to E, we will
now consider in some detail a method which "optimizes" the match over
the entire beam cross section. This method is analogous to the
use of a variational principle in minimizing a system's energy; here,
the propagation is assumed to be governed by the "principle of least

"(88), and it is the action-integral for E which is minimized

(89)

action
by the parameter evolution equations To clarify the situation,
we will describe the corresponding analysis for the exact solution,

E(x,y,z), to equation IV.1.1; the ®action-integral" for this system,

a, 1is given by:

Z [+2
d= f dz J dx J dy;(ﬂE,E*, %%-,%%3.,.,x,y,z), (1v.2.1)
0 -0 - OO

where the functional,&’, 1is the Lagrangian density. The "equations

of motion" for the dependent functions, fn’ (in this case there are
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*
two, E and E ) are found by assuming that the action-integral is

minimized; the Euler-Lagrange equations then take the form:

? o, 3L _ -r ¥ -
; BY‘_i / 3fn > - an - 0- fn“E,E Y‘_i“‘ X,y,Z (IV-Z-Z)
3(5;20

The Lagrangian corresponding to equation IV.1.la is

* * *
4 *
STTLOTSE ST <1 £ 45 £ TN

*
This can be verified by forming the Euler-Lagrange equation for fn=E

0=2 (- &)y 2 Ey L2 e (el P E

X ax’" By By 2 3z
2 2
. 2
S [1%—5—+—3———g—+3—%+ 8|E|°E] .
ox"  ay

By substituting this equation into the Lagrangian, it can be seen

that the exact solution will have:

2112 21012
Lexact =~ %'(lElz)z - %_(a IE% + 38|g! ) (1v.2.4a)
X y

ay(- 5(1EI%)%)
(IV.2.4b)

O N
(=N
N
Sy
o
x
8§ ~—— 8

Y4 o o
aexact B J dz f dx f dy ‘iexact )
0 © -]

- -

Thus, the action, as we have defined it, will be negative, decreasing
monotonically with z, the propagation distance. A Taylor expansion

of this action, for the initial conditions given in equation IV.1.1b,



-167-
yields the following:

z

Ooyact!?) = [dz{ - 58T + 2 3R (o 40 /R2))

0

6.0 6
+22EBWR(—2(9§+ —57X-+—%) + 1 + lﬂ" §-5(1+ l?))]+,,,}
R R

‘%‘ {1+2(e +o, /R )z+22[~(9 + “zl %)‘ 3 JT

R
+ne(1 + 1)1+, } (1v.2.5)
R J
where n = Naxact - lg— We will later find that the action-integrals

for the parameterized beam functions, EN’ can be similarly expanded,

and differ, to order 23, only in the value of n. At that time,

we will find that ny <n which implies that @ does ,

exact’
in fact, represent the "least" action attainable.

exact

IV.2.1i parameter evolution equations

We will apply tﬁe action minimization technique to the
parameterized beam as follows : the Lagrangian density is evaluated
with E vreplaced by E as given in equation IV.1.2a, and the inte-
grations over x and y are carried out; the "optimum" parameter
values are then those which minimize the action, where only the
integration over 2z vremains. Thus, the three-dimensional function,
E(x,ysz), is computationally replaced by a set of one-dimensional
functions, {a_} (i.e. the parameters). We will write the parameterized

m
beam in the form:
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E(x,y52) = E(xs¥5a.(2)) = {A,9,3,5,,b,S o7k, R,Tk )
(Iv.2.6)
The action-integral takes the form:
z
A R dum
A(z) = j dz L(am’ az-) s (1v.2.7)
)

~

where the effective Lagrangian, L, is given, according to equation

IV.2.3, by

] s o* oE o
- Jf dxdys (E.E, 25, 2, )

>

Ly * L2 + L3 (Iv.2.8)

1H

~ 5 oE* 5E  oE*,
Lylo) = - ”dxdy(-a—x— B LY ey (1V.2.9¢)

Here, for example, the notation "li(a )" means that "21“ is a

m
function of the parameters, {am}, but not of their derivatives.

In the above, we have

]

2q{ay) %”dxdy (JE|H)®

%-Jdedy(é* SE - E aE )

San BOLn

(Iv.2.9d)

Cn(“m)
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The "beam propagation” is determined by the "evolution"

equations for G which result from using the Euler-Lagrange equations

to minimize @:

Bun

d 3L oL N *
dz &z)‘ 0 nrAs¢,...my o, (1V.2.10)
9 (=2
dz 7.

From the form of C given above, these Euler-Lagrange equations

become:
duk
E _HE'dn,k(am) = gn(um) + Bhn(am) (IV.2.11a)
where
9c, 8¢y 5 9E* E oF"
ik * e, " Ba JJdXdY(a 30, _ 30, 3
» k n % %k 9% 9%
_ 384
gn 3an
” (1V.2.11b)
"n 7 o

Formally, then, the problem of finding the "equations of motion" is
solved by inverting the matrix d = (dn k)s giving

dun da dan

@ (@1, kot o) = GG Bl L. (v-2.11¢)

In later sections, we will carry out these operations,
effectively, for E parameterized to order N=0,1,2; however, we can
now prove some useful results valid for all orders. First, it can

be seen that the major objection to the near-axis approach has been
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overcome here, since formula IV.2.10 always generates one equation
for each parameter. Next, we can consider the Euler-Lagrange equations
for A and ¢, by writing equation IV.1.2a as

E(xy,2) = A(z)e 2 e(x,y,2)

We then have

—
—
|

N %—Jdedy(lflz)z}

A K

—
1]

¥
2 of af of of
3= A L= ”dXdy(ax o+ oy sy )}

Setting @ = ¢ in equation IV.2.10 yields

%-Z--(-A2 dexdyifl 32 dexdylEl ) =0,

which shows that the parameterized solutions will conserve power.

Similarly, the Euler-Lagrange equation generated by a, = A shows

2L1 + L2 +la=0=%L = —L1 (1Iv.2.12a)

which corresponds to the exact result obtained in equation IV.2.4b.
By substituting the lens transformation, equation I1.2.3a,

into the parameterized beam shape given in equation IV.1.2a, it can

be shown, after considerable algebra, that the transformed parameters

correctly obey equation IV.2.11a. We will also find that the free-beam
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Timit (B = 0) correctly reduces to the form in equation III.1.7;
thus, our action-integral minimization procedure leads to solutions
which reproduce many important properties of the exact solutions.

We will later find that, for N 2 1, it is essential to
obtain an expansion of the action-integral, é(z), corresponding at
least to the accuracy in equation IV.2.5; we will now derive some
formulas usefiul in such an expansion. Since E(x,y,o) = E(x,y,0)

a comparison of equations IV.2.4, IV.2.9a, and IV.2.12a shows that

the leading term in éi will equal that in . Next, we can derive

the identity:

dl _ TfeL doy N oL d_ (dan) -7 ld oL doy
dz da. dz da z ‘dz dz\  do dz

neen B(E*EJ n 3 (1)

z z (Iv.2.12b)
do. . do.
n Y. d oL %Y - d
g (arz—)}‘aﬁ{ da dz} @ () -
_OLn z n ka(______fl) )
B(EZ—-) 2

The second step follows from the Euler-Lagrange equations, and the
last identity is a result of the linear form of l_2 shown in

equation IV.2.9b. Since ﬁ = L] + L2 + L3, we then have

2

%5 }'= constant, (IV.2.12¢c)

212y2_|dE
L+ Ly = ”dxdy{g-(is; )2. |

which holds for the exact solution as well (see equation I1I.2.12d).

In the present case, however, this constant cannot be related to
d2 <r2>
dz

, so that this conservation law is not of such direct
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usefulness. On the other hand, we can now derive other conservation

Taws by writing %%- in two ways; from equations IV.2.12a and 1V.2.11c,

we obtain

Q.'Q.>

da
d n do d
== (-L,) = -8 ) —=h, _ : 2 o
2 dz 2 % dz 'n =8 {' ; hn(_ag)LIN} te {‘; hn(_ag)N.L.} °

Alternatively, from equation IV.2.12c, we also can write

° da do da
d. _ d _ n _ n n
& " alls) - g dz 9 T ‘{ggn( dz)LIN}’+&{zngn( dz)N.L.}

Since these must hold for all values of the parameters and for any

B, we have the results:

oL
oty da do a2, do 32, da
3 n = E 1 n = 1 n 3; n _
Ise = wtmn, = Ha - e - el = 0
n n n n n n n
~ a0 . dp .
d oy 2% 0
& = L e - (1v.2.124)
do

We will find that (*Bg)LIN is very easily found, so that equation
IV.2.12d greatly simplifies the algebra needed in calculating an expan-

sion for L.

IV.2.11 lowest order solution (N = 0)
For N = 0 the analysis is algebraically simple; from equation

IV.1.2a, the field takes the form:

2,1 . 2,1 .
so ~X (F2- 1SX)e-y (57““ 1Sy).

Eo(x,y,z) = fe e (Iv.2.13)
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According to equation IV.2.9, the Lagrangian density is given by

L = L-l + L2+ L3, with

L1=%BA4ab

L, = S8 [0 + $ [- F A° b:1+—‘49[0‘:1+dS - I %% poge SF [ I a2y
2 dz dz g e dz dz L~ g~ @
L3=%A2ab[-i—2——f)-z 22-bS]. (1V.2.14)

The Euler-Lagrange equations for A.¢,a, Sx, b, and Sy, respectively,

take the form (after cancelling common factors of nAzab, etc.):

ds, ds
d¢ 2 2 Dy _ 4 4 22 .22 2
T+ a® (1) + b° 5 (1) 777 42°Sy- S, + BA%(2)
T8+ 1@ ML L =0

ds ds
do 2 ©x 2 Py 4,22 2.2
-(_E(4)+a —'dfz't'(3)+b a2 (])-a b2 12aS 4bS +BA (1)

S ACRE S ORE T AURES

ds dS 2.2 2.2
d¢ 2 X 2 . _ 4 4 -4@7S_- 12b7S_ + BA (1)
G W+ () 0T (3) = - ey T y
1 db -
148 5) 4+ 1da ) + L2 (3) = 85,

Solving these, we obtain the "propagation" equations:
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= -25. - 25 A(0)

il
—

Ee-G-Geedg #(0) = 0
a b
1 da _ -
1da_ s a(0) =1 (1V.2.15)
ds
2Py 4,22 2, 1 _
@ T4z T 52 ha”s, + BA°(- 5) 5,(0) = -8,
ds
1 X _ _
baz - By b0} = R
b2 By 4. 4b2s? + gpl(- Ny s (0) = -6 _/R?
dz b2 y 2 y - Ty

A comparison with equation IV.1.4 reveals that the formulas
for A, a, SX, b, and Sy are the same as for the near-axis method,
except that each "g" 1is replaced by "g/4". Since the mean square
radius will follow equation IV.1.6c with a similar change, we find that
the N = 0 least-action parameterized beam satisfies the "exact" result

given in equation II1I.2.13; the formulas for zf(N =0) and B (N = 0)

crit
will be precisely those of equations III.2.14 and I11.2.15. This agree-
ment, however, must be considered "coincidental", since E(x,y,z) is
certainly not equal to the Gaussian given by Eg in equation IV.2.13,
and since we will find that solutions for N > 0 produce slightly

different results for Ze and g despite being more accurate in

crit?’
their overall beam representations.

We will now convert the other "general results" of the last
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section into explicit formulas for N = 0. First, the second Euler-

Lagrange equation shows that power is conserved (see equation IV.1.5b):

%-Azab = constant = & R . (1v.2.16a)

N

Next, ZL] + L2 + L

3= 0Z is seen to hold by direct substitution,

A

z
showing that <10 = - %-8£(A4ab)dz = —-% BR £A2dz. From equation

IV.2.12c, we have another conservation law:

4
eAab . p% b(;z- + Lsv o524 bzsf,) = constant = 58 -R(1+ ~:-{-2- + o+ o /R ).
(IV.2.16b)
Equation IV.2.12d reduces to:
~ ~ 2A
L 2 da
%E =5 ah*ab(s K*Sy)= z eRAZ(Sx+Sy)=9%E‘ = > BR(0, %0, /R")= —5 ,
z=0 dz {._n
i IZ=Y
from which we obtain
20 0.0 0 3
d“L 2.°X 1 8 1 _d
=28R{-2( 65+ + )t 1+ -5 (1 + =)= —%
527 z=0 { X R g%' R4 8 ‘EE } dz3 z=0

Therefore, the action-integral expansion for N = 0 takes the form:

2

&0 = RZ {1+2(@ + ;l)z+z [:,!36 ———zay- + %X—) %('H —;I;I %(H- —:i?)] +...}.
(Iv.2.17)

s Showing that the

| ot

This is equivalent to equation IV.2.5 with N, =
N =0 action-integral is 1argef than that of the exact solution, as

expected.
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IV.3 Extension of Method to Higher Order (N = 1)

The formal procedure outlined in section IV.2.i suggests that
there should be Tittle fundamental difficulty in handling additional
parameters present in the higher order beam representation. However,
we will find that there are a number of aspects of the problem for
N = 1 which require extensive analysis and result in substantial new
features in the solutions. Aside from the massive algebraic efforts
required in these higher order solutions, the basic source for concern
is the matrix inversion occurring between equations IV.2.17a and IV.2.11c.
This matrix, &, will be shown to be singular for some values of the
parameters, so that the general formula IV.2.11c cannot be applied in
these cases. The following analysis will illustrate the methods used
to obtain the evolution of the N = 1 parameterized beam; these methods
will apply with only minor changes to higher order solutions as well,

Oniy a few of the specific formuias will be given to illustrate the
approaches used, since the ultimate goal is simply to solve for
an(z)s and, thus, E(x,y,an(z)).

Much of the algebra can be performed in terms of the general
form for é(x,y,z) given in equations IV.1.2a, but some of the solution
details require knowledge of the real and imaginary components of
Tmun® We therefore will use an explicit form for N =1 which results
from setting T],O(Z) z C(z) + iD(z) and T0,1(Z)
2

E(z) + iF(z):

i

272 -yAIb? s x
X~ /a o o X

N 2 2 2
~ . 'lSy . X .
E (x.y.2) = ne'%e e Y {1+(C+‘D) ;§'+(E+1F)§§-},

(1v.3.1)



-177-
where C(0) = D(0) = E(0) = F(0) = 0. The form of the equations below
should make it clear when "E", for example, refers to the parameter in
equation IV.3.1, as compared to the full field in equation IV.1.1;
collectively, we will refer to C, D, E, and F as the "minor" parameters,

and A, ¢, a, Sx’ b, and Sy as the"major" parameters.

IV.3.1 solution for parameter derivatives

Substitution of é], equation IV.3.1, into IV.2.9 yields the
Lagrangian density:
where

Ly = I‘S-BA“ab (C+E)+ ——(3c +uz)+ 1 1(3CE+DF )+ %2-(352+F2)

15 2.2 3 2,2 15 2
t 158 c(Cco+D“)+ Tz’é(E(3C )+2CDF)+ 1—2§(c(3E +F°)+2DEF)+ WS'E(E +F<)

105,.2,12y2, 15 (2,2 9 (0202 (£24r2 2

¥ 4096(C D7) 1024(C +D%) (CE+DF)+ 5048 (C™+D") (E=+F")+2(CE+DF)")
15 105 (12,22

¥ m(E +F2) (CE+DF)+ ggg (E“+F°) (1v.3.2a)

2,2
L, = %%& [0} + ai( 7 A2 ab) {1+ 2—(C+E) §—6-(C2+D2) ——(CE+DF)+ 573—6—(12 +F7) 1
¥ 1_9_.( A b){ D+ (DE—CF)}
a dz ‘2 2

o
[ %

2,2
+ af (- % pPab) {1+ J3e+E)+ FL(CH4D7) + HCEHDF)+ Jg(E2+F))

’E dz (3 A ab){2 F+ Jg-(CF—DE)}

dpr
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+ b2 -d—zg— (- F A%ab) 1 + {Cr3e)+ 3(cBeP)+ J(cErDr)+ 12(e24F2))

+ 8 (2 A2ab) (30+F) + L2 (- T aZab) (1 + Z{3C+E)}

+ 55 (55 Aab) ip+3F) + SH(- T AZab) (1 + c+3E)) (IV.3.2b)
Ly = a®S5(- 3A%b) (1+ {30+ )+ 12(cB0P)+ Jcevnr)+ F(e?4r2))

+ bzsf/(— 7 Aab) {1+ (cran)+ 3o(cB0?)+ Jceror)+ L(e2er?))

2 1, 1
+ Sx(-2ﬂA ab){§D+ §(DE-CF)}

2 1, 1
+ Sy(—ZnA ab){§F+ @(CF-DE)}

(- %-Azab){]+ %{-C+E)+ %—(C2+D2) %{CE+DF)+ %E(E2+F2)}

T e O =t
N ™~

(- 3A%ab) {1+ H(C-E)+ 35(C24D%)- H(CE+OF)+ To(£%4F%))  (1v.3.2¢)

The Euler-Lagrange equations governing beam propagation are then found
by applying equation IV.2.10 to the Lagrangian. As expected, the

equation generated by "A" gives

L, =Ly - 2 , (1v.3.3a)

3

and the "¢" equation shows %§-= 0 where the power, P, 1is given by

-
it

: 1 3
7 A%ab(1+ (C+E)+ Fe(cZepd) + o{ CE+DF)+ 3E24E2))  (1v.3.30)

constant .
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As examples of further equations, consider oF'@ in equation
IV.2.10; this shows

1 dA 1, 1 dé 1, 1
10 gOE-CF)} + 0z + {CHE)+ Jo(CP+0P)+ To(CE+DF)+ S(EP4FP))

N
POf et

G+ 2:(304E )+ To5(CP40%)+ Tr(cErDR)+ 2(EB4FE))

z 128 64 128

ds
db T eve Linel 2 Ty (1.1 3 208y 3
- {4(0 F)+ 8(DE CF)} +b = g+ ]6(C+3E)+ 128(c +D°)+ 64(CE+DF)

3.3 dE 1 dF ;.1 1
b+t §§(C+E)} + a?'{§7(D“3F)} tIe 37(-C+3E)}

. 22,_3_3 45,2 20 9 9 2.2
= a°s2{- 5 - 3 (3C+E)- FHCT+D7)- Tp(CE+DF)- S5(E+F))

+ b Le+3E)- S5(c%4D%) - Z{CE+DF)- ~{E%+F2)
5y (= 7 = {C+3E)- 35(CT4D%) - Jo(CEvDF)- (ET+FT))

xS
< Mo
O} et

(DE-CF)} + S, {-F - %(CF-DE)}

b4
L

2y 1_

2
16 )

(CE+DF)+ %§(E2+F }

1 1.1 7 1 n2
+ —a—é' {z' + Z(_C+E)+ ﬁ(c +D

1 ] 1 3 1,2, n2y, | 7 (2.2
+ B?’{- 5 - Z(C“E)‘ 32{0 +D)+ TE(CE+DF)' 32(E +F7)}

1 3 (ac2,n2)y ] 3 (ap2,c2
ﬁ+ S(C+E)+ 35(3C7+D%)+ 3(3CE+DF)+ S5{3E°+F7)

+ 1350(C2402)+ S(E(302+07) +2C0F)+ 135(C(3E2+F2)+2DEF )+ 13 g (E2+F2)
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4

105 2. ~2\2 15 2. .2 9 2. .2 2. .2 2
4096(C +D°) “+ TG'Z'E(C +D“) (CE+DF)+ 5048 ((C5+D") (E“+F“)+2(CE+DF) ")

1024(1—: 24 F2) (CE+DF) + 4582 (E2+52)2 } ) (1V.3.4)

The Euler-lLagrange equation generated by the parameter ”SX" is:

1 dA 2 2,02y 3, 3 e, 2 dyo
#gz {0+ + 3C+E)+ (c +D%)+ (CE+DF)+ Te(EFO)} + 52 {0)
ds,,
1da 3. 3 45 9 9 , .2 2 2
t Y4 5+ 1—(3C+E) 32(6 +D )+ T'G'(CE+DF)+ §2—(E +F)} + a dz {0}
s L1db 1 —-(3C+E) 1506202y L cerpp)+ S(E%4FD)) + b2 Egl {0}
bdz 2 32 T6 37 z
d¢ .3 . 3 dD 3 dE.1 . 3 df .3
t gz {7+ 780N} + o (3g(BD+F)} + g + §g(C+E)} + g (3g(D+F)}
= 5 {4 + 2(30+E)+ %El(czwz)dr —g—(CE+DF)+ %(E2+F2)}
1 . .
+ ?{40 + (DE-CF)} (1vV.3.5)

The Euler-Lagrange equation generated by "C" is:

54,
1dA ;1 d4> 1 da, 3 3
T dz {Z( 3D+F) ) + Fr {1+ ——(3C+E) T a 8(D+F)} + a __[YI T3 (5C+E)}
ds
1db 1/a5p. 2 "y 1.3 dc dDB
tp gz (a(30F)1 + bY — g+ TR(CHE)} + g (0} + {4}+
dE dF .1
+ oz {0} + iz {4}

2

x (- -3 - —{5C+E)} + b282 (-1 - Z(C+E)} + SX{F} + Sy {-F}

A

1 1 1
;7-{1 - ZI,(7C--E)} + g?-{-l - E(BC-E)}
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2
BA { 3 15,2, .2y, 3 3 2.2
t T 1+ 8(3C+E) + -—64(30 +D)+ ~3—2—(3CE+DF)+ m-(3£ +F°)
105.,.2. 2. 15 2 2
+ 2950(CP4D?)+ £2(E(30%+D%)+ 20DF)+ —5—%—2—(0(3E2+F2)+ 2DEF)+

b (EF) | (1V.3.6)

Finally, the parameter "D" generates an Euler-Lagrange equation

which gives:

1 dA 1 do 1 1da 3,3
£ qz (7 g(3C+E) I g (- (3D+F)} + = o (5 + FCHE)} +
ds
a? —% (- 3(5D+F))

ot

dS
Tdb 1, Tyan. 2 By 3 dc .3, . db
bdz 7 ¥ gl3e-B)l + b7 g (- )+ 7 g (004

dE .1, . dF
+ —E'{E} + az-{O}
= aZS,Z( (3(5D+F)} + bzsf, {%(Dﬂf)} + S BE} + S (-E)

1,1 1,1
+ Wi {'4‘(7D-F}} + —2—{ E(BD-F)}

a b
B Tanery - 15 o - 3 (opech) - 3k

8 2 32 32

1057, 2,02y 15 (c( 2, an2 9 nyr2, a2 15 22}.

- EP(CHD%)- g5 (F(CE+3D%)+2CDE) - gym(D(E“+3F")+2CEF) - gy (E°+FT)

(1v.3.7)

The equations corresponding to "b", "Sy", “E", and "F" can be found
from IV.3.4 through IV.3.7 respectively, by using the symmetry

operation:



/—-\ oy "/\E
& b S, S, C E D F. (1v.3.8)
e Y S e

Equations IV.3.3 through IV.3.8 represent 10 linear equations in the

1dA do 1da 2%x 1 dc dp dE

ds
it 1] ..l 3 2= 2 _. il 2
10 "unknowns®, ¥ 0 7@ @ gz ° b dz’ P fo * dz° dz°>dz°
and -%g; there appears to be little need for further analysis, since

the (10 x 10) matrix of derivative coefficients can, in theory, be
inverted by the computer to produce a set of Ist order, ordinary
differential equations. In this case, however, such an approach fails
to yield reasonable results for two reasons. First, the matrix
inversion process is computationally inaccurate, since there will be
strong algebraic cancellation in forming the determinant, DET[&{,
for any values of C, D, E, and F. Second, a more fundamental
problem occurs at particular values of C, D, E, and F where

DETlal = 0; the matrix, of course, cannot be inverted under these
conditions. We will refer to "points" (i.e. particular sets of
parameter values) where DET]&] = 0 as "degenerate points", since,
in the next section, we will show that they actually lead to multiple
solutions.

To illustrate both the significance and the unusual nature of
this "degeneracy" situation, we can observe that the N = 0 solution
defined by equation IV.2.16 satisfies the N = 1 equations above with
C(z) = D(z) = E(z) = F(z) = 0, z = 03 the initial conditions are also
met by such a solution. Since the above equations are first order ang
Tinear (in the derivatives), it would be "natural" to assume that this

represents "the unique N = 1 solution". However, the matrix of

L]

derivative coefficients when C =D =E =F =0 is singular (for
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example, equations IV.3.5 and IV.3.7 have the same coefficients and
are, in fact, redundant in that limit); we therefore cannot exclude
the possibility of other solutions for N =1 without further
examination of the behavior of the parameters when DET|d| - 0 .

To simplify the investigation of the "degenerate point solu-
tions", and to provide general formulas for the parameter derivatives
which are computationally accurate, we will now algebraically invert
the matrix d. As a preliminary step, the form of equation IV.2.11c
and of the Euler-Lagrange equations for N = 1 indicates that the
"linear" and "nonlinear" contributions to the derivatives can be
separated. The linear terms can be found by considering the exact
solutions in equation ITI.1.7, by solving the "near-axis" equations
for N = 1 (with 8 = 0), or by carrying out the analysis described

below for the nonlinear terms; in any case, we find that the

T8 s -zs-_z_g-.sl;. - o,
% = 'LZ‘{'Z*ZC} + i?g {-2+2E} eAzwq)

R + oAl (1v.3.9)

kT By + A%,
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ds
2 4 22 2
b 7 = bz 4b Sy + BA wb
dc _1_ 1 2
a7 a2 {8D+4CD} + b2 {2CF+2DE} + BA wc
P - L c-sc-2ctan?y + Ly qoor-2cey + 8l (1v.3.9)
a : b cont'd.
dE _ 1 1 2
r e a2 {2CF+2DE} + 37'{8F+4EF} + BA wE
dF _ 1 one 1 2,052 2
1z az {2DF-2CE} + b2 {-8E-2E"+2F"} + BA wF
Here, WA’ w¢, wa, etc. are algebraic functions of C, D, E, F only.
With these substitutions, the Euler-Lagrange equations reduce to 10

equations in the 10 unknowns, %%-+ wa, with only the nonlinear

parts of the right hand side remaining.

Equations IV.3.6, IV.3.7, and their symmetry counterparts,
contain the four minor derivatives with constant coefficients; thus,
they can be easily combined to "solve" for the minor derivatives in
terms of the six "major" derivatives. For example, using equation
IV.3.9 and forming the combination: {3/2 x [equation IV.3.7]-1/2 «x

[symmetrical counterpart to IV.3.7]} yields the solution for wc,

= 1 3
NC = NA{-l—C} +W, {D} +Wa{—2- 8(SC+3E)}+WSX{TE(7D+F)}

3

W (- 8(C-E)} + W {—3-—(D—F)} (1v.3.10a)
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1. 21 3
+ {- gP- 7250 - 1og(DE+CF)+ 128 EF
75 K 2
2 D(c2+p?)- 1024(F(c +3D2)+2CDE) - Té—E{D(E +3F2)+2CEF)
15 2.2 (1V.3.10a)
* Jogg FET+FT)] ‘cont'd.

Similarly, from equation IV.3.6 we can obtain:

WD= WA{~D} + W

1 3
6 {-1-C} +Wa{— §(5D+3F)} +WSX{-1— TE(7C+E)}

S RCE (D F)} + wsy{ Tg‘(c -E)}

+ LI %%3-(3c2+02) o5 (3CE+DF)- ol 3E2+F 2y

1024 L3 c(c2+p%)+ T5§Z(E(3C2+D2)+2CDF)+ T%EE(C(3E2+F2)+ZDEF)

1
- 107 E(E

+F2))

(Iv.3.10b)

Application of equation IV.3.8 then yields the corresponding solutions

for W. and W

E F*
Using these expressions to eliminate WC, WD’ wE, and WF
from equations IV.3.3b and IV.3.3a leads to similar formulas for

wA and w¢, respectively:
_ 1 ] )
Wy = W, {§(3C+E)} + wsx{~ 73(30+F)} +Hy { (C+3E)} + W y{ ] (D+3F)}

]
+ (* Tg (D+F) - 135 CD - oo(DEFCF)- 135 EF) (1V.3.11a)
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and

A e 1 1
w¢ = Wa{8(3D+F)} + NS {16(3C+E)} + Wb{s(D+3F)} + WS {5=(C+3E)}

x y 16
3,3 3 2.2 1 3 2, -2
+ {?1' + Tg(C+E) + 53—6—(36 +D%) + 1+2£§(3(:E*-1)F)+ 2—5—6-(3E +F9) 1.

(IV.3.11b)
Next, the use of equations IV.3.10 and IV.3.11 in equations
IV.3.4 and IV.3.5 yields four equations in the four remaining unknowns,

wa, w5 R wb, and ws s which we will write symbolically as:

X y
1 1 .
wa{O} + wsx{g-m]} + wb{mz} + wsy{i-m3} 81
1 -
(1v.3.12)
] 1 _
RURE wsx{%-mz} P ng) + W 0} =B,
where direct calculation shows:
my = 6(C2+D2) + (E2+F2)
mg = (DE-CF) (1V.3.13)
m3 = (CE+DF)

(c%+D%) + 6(E2+F?)
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Here,
By = H(3C+E)- 2:(3¢%+D%)+ L (3CE+DF)- Lo(3£2+F2)
1773 2 16 32
17,.,.2..2, 27 2 2 1 2. 2
- SEEC(CH4D%) - SLL(E(3C54D%)+2CDF)+ sae(C(3E5+F) +2DEF)- %%EE(E2+F2)
135 ,.2..2.2 3 ,.2
- Jaaa(C54D?) %= 2 CE+DACE+DF) -yl (€54D%) (E%+F2)+2(CE+DF)?)
9, 2 2 75 , 2. 2.2
+ 5eg(ET+F®) (CE+DF) - 5g7a(E“+F°) (1V.3.14a)
and
B, = H(30+F)- 2. D+ d-(5DE-3CF)- 1~ EF
2 14 16 16 16
39 202y 9 [y 2 an? 1 2. ...2
- B0(cP4D?)- ag(F(C5+3D?)+2CDE)+ whs(D(25E°+11F7)-14CEF)
- §%§F(E2+F2)- 3%7((c2+02)-2(CE+DF)+(EZ+F2))(CF-DE) . (1V.3.14b)
83 and 84 are found from symmetry from B.l and B2= respectively.

The inverse of the matrix in equation IV.3.12 1is easily
found. First, the determinant, which differs from the determinant
of the original 10 x 10 matrix by only a constant factor, is given

by DET = di, where

d

2 2
(mym, -ms-m5)/2
%7273 (1V.3.15)

= 3(c2+0%) %+ 18(cP+D?) (E2+F%)+ 3(E%+F5)2 .
Note that this determinant contains only eighth "net powers" of the

minor variables, (i.e. CS,CBDZ,etc.) whereas an examination of the

ten original Euler-Lagrange equations suggests that the determinant
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could contain powers ranging from zero (i.e. constants) through 12th;
this "cancellation" of many "orders of terms" shows why the direct
computational inversion of the original matrix would be very inaccurate,
particularly if the minor variables were either very small or very
large.
Solving equation IV.3.14, we obtain formulas for computing

W_We 5 W, and W ¢

a SX b Sy

_ 1
Wy = (mgBy + myBy - mgBy)/d,

Wg = (myBy - mgBy - mBy)/dy
X (1V.3.16)

R
Wy = 2{-myBy - m3By + myB,)/dg

Wsy = (-m3By + myB, + myBy)/d,

The following "recipe" thus yields a concise computational
scheme for calculating the parameter derivatives: first, form
wa, ws s wb, and ws from equations IV.3.13, through IV.3.16; next,

X

y
find wA and W, from IV.3.11; then form wc, wD, wE, and wF

¢
from equation IV.3.10 and its symmetrical counterpart; finally,

form the derivatives by using equation IV.3.9. Of course, explicit
formulas could be obtained by carrying out these steps algebraically;
however, the results obtained in this way are so complex, and show so

little tendency toward "simplification", that the "recipe" method

must be considered equally accurate and far more efficient.
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IV.3.i1 multiple solutions near degenerate point

The form of the determinant in equation IV.3.15 indicates
that the "recipe" fails only at the "degenerate point" given by
C=D=E=F-=0; i.e. the propagation of the parameterized beam
(for N = 1) follows a well defined formula except when the
"instantaneous" (in z) shape is exactly a "Eo,o Gaussian". As noted
earlier, this "degenerate point" includes the initial conditions at
z = 0; from our numerical experience, it also occurs at later points
for most initial conditions of interest. Therefore, we will now
examine in some detail the solution (s) near such a "degenerate

point", as defined by

Alz) > A, o(2) > ¢
a(z) ~ a, b(z) - b,
s, (z) ~ sz 5,(2) » s§ as z > 0 . (1v.3.17)
C(z) ~ 0 E(z) ~ 0
D(z) >0 F(z) >0
We have taken Zdegenerate = 0 for simplicity, since the

).

results can always be generalized by setting z » (Z"Zdegenerate
A consideration of the "recipe" in the previous section

indicates that the parameter derivatives may diverge as z -~ O,

even though the limiting values given above are all finite; such

behavior occurs for functions behaving as z', with 0 <y < 1.
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This is the motivation for the following analysis.
To obtain the parameter behavior near z = 0, we assume
that C, D, E, and F can all be expanded in powers (perhaps frac-

tional) of z; we then consider the lowest leading power, called y
= Y ) = Y o a s = Y L = Y P

c(z) Cuz'+ > D(z) Dyz'* ., E(2) E '+ . F(z) Fz'*
0 <y (1v.3.18)

By definition, at least one of Co’ D Eo’ or F0 is nhonzero; we

09

thus exclude the N
C(z) = D(z) = E(z)

0 solution mentioned earlier, in which

F(z) = 0, and concentrate on finding any new
solutions generated by the N = 1 equations. By substituting these
expressions into the "recipe", we can determine the leading terms
of each parameter derivative. (The actual leading term may have
a zero coefficient, but it cannot have a lower power of z). Thus,

from equations IV.3.13 through IV.3.15, we obtain, in turn:

_ L2y 2 .2 2, .2 .
m1(z) =z {6(CO+DO) £ (E0+Fo)}+ .
m,(z) = zzY{D E -CF }t°-
2 00 00D
A v
m3(z) =z {COEO+DOFO}+
2y 2,02 2 ...
my(z) =z Te(CrDg) + 6(E0+F0)}+
w1 .
B](z) = zY{4(3C0+EO)}+
B,(2) = zY{%(3£O+FO)}+ e
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vl e
83(2) z {4(C0+3E0)}+

v, 1
84(2) z {EfDO+3FO)}+ ..

2 2

o,
—
N
—
!

by oy 02,02 2, 2\ 02, 2 3,02 .
= 27(3(C5+DE)  + 18(CI+D]) (ESHFL) + 3(ES+FE) )+

Hi

z4Yao Foaee (1V.3.19)

Since Ho must be nonzero, we have, from equation 1V.3.16,
-y, 3 2, .2 2,2 2, .2 2™V e
Walz)= z {g{Do(CO+DO)+2F0(EO+F0)+DO(7E0+5F0)—ZCOEOFO)/86}h.°:z W+
_ Y3 2,12 2, .2 2,962y _ B}
wsx(z) z {z(CO(CO+DO)+2EO(EO+FO)+CO(5E0+7F0) ZDOEOFO)/30}+... z

= Z“’YWS +oeee
X

Y3 (£2.p2 2,02 2,12y Iy
wb(z) z {8(FO(E0+FO)+200(CO+DO)+FO(7CO+5DO) ZCODOEO)/30}+...,2 W, +...

i

2)

2, .2 2,2 2
(EO+F0)+ZCO(C0+DO)+E0(5C0+7D0 —ZCCDOFG)/36}+...

11l

s T (1v.3.20)

Next, from equations IV.3.11, we obtain the leading terms:

iy = 2°0}
_ 0,53, 9 12,0202, 2 ) 2
W, =2z {gg* TEL(CoDGHEGHF) (CLE D F ) + (D Egm CoFg) IH- ..

Finally, equation IV.3.10 yields

=
n

—'Y_ - =— -
z wC+ v where wc zwa
(1v.3.21)

-

~Yi W =e
z HD+ voo where ND wS

=
H

X
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W = z'YﬁE +... where W = -2W
(1v.3.21)
= 77 YY 0= W cont'd.
WF z wF ... where WF wsy
Here ﬁa’ QS » etc. are defined in equation IV.3.20.
X

Equation IV.3.9 can now be employed to yield a set of self-

consistent relations which CO, D,E,F (and y) must obey: thus,

0’ 0’ o
for example, the "C" derivative implies

y-1 Y (o n2U
z {Coy} +... Z {BAQNC}+"° .

with similar formulas for Do’ Eo’ F It can easily be shown that

- o -

wc,wD,wE,wF cannot all vanish (unless C, =D =E = FO=O),so that

there will be at least one term on the right hand sides with the

oo

minimum power, z7Y; Tikewise, there will be at least one left hand
side with terms starting at zY‘1. A moment's reflection shows that
this can only hold if y-1 = -y so that vy = %— must apply. We
can now write down the algebraic equations which must be satisfied

by (real) Co’Do’Eo and F_:

2. pel 2,2 2,2
ZCOEOFO-DO(7E0+5FO)-2F0(EO+FO)—DO(CO+DO)

(1) Co5d,/(8A2)3

iy 2 2y, o 2, 92 2,2 2,02
(1) D, t5d,/(BAZ)} = 2D E F -Co(BE +7F)-2E (E +F )-Co(Co+Dg)
o 2 2y, - 2, cn2 2,12 2, .2
(i11) E 58,/ (BAZ)Y = 2C D E -F (7€ +5D )-2D (Co+D)-F(E +F )

. 2 2 2,912 o rland 2, .2
(iv) Fo{gao/(BAo)} ZCODOFO—EO(5C0+7DO)-ZCO(CO+DO)—E0(E0+FO)

(1v.3.22)

where E; is defined in equation IV.3.19.

The following steps will indicate how these four simultaneous
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equations in four unknowns can be solved. First, the combination:

{Eo-(i)—FO‘(ii)—Co'(iii)+DO~(iv)} reduces to the result:

_ 2,02, 2,2 =
0= 8(CO+DO+E0+F0)(COFO-DOEO)==9 COFO = DOEO (1v.3.23)

With the help of this relation, it is easy to show that none of the

values, CO,DO,EO, or F0 can be zero, unless they all are.

Next, forming the combinations {Cg(DO-(i)—C +(i1))} and

0

{Cg(FO'(iii)—Eo-(iv))} yields, after using equation IV.3.23 to

eliminate Fo:

N 2.m2\ e 2 3 2,03
0= (C0+Do)(CO—DO){CO+5COEO+2E0}
; 202\ 2_n2y roe3seclr 4p3
0 EO(C0+DO)(C0 DO){ZCO+5C0EO+EO} .

If Cg # Dg, these can hold only if each bracketed expression
. . . _ 2 2
vanishes; adding them shows that 0 = (CO+EO)(3EO+2COEO+3CO) s 3

E = -C_, which cannot be reconciled with either bracket vanishing

0 0
2 2 2_g2

(for nonzero CO). Thus CO = DO must hold, and, similarly E0=F0.

The combination, {CO(EO-(i)—CO(iii))} , can now be shown to be

equivalent to

_ 3
0 = 4D (C+E ) (C,-E,) s

from which we draw the conclusion:

It is now a simple matter to test the possible cases in

equationIv.3.22 with 30 = 96C§, and conclude that there are precisely



-194-
four solutions:

C: (1, -1, 1, 1) HeaD) 2

(ID: (-1, 1,-1, 1) Herd)/2

c.,D,E,F) = < IV.3.24
Co+Poo*Fo (1T1): ( 1,-1,-1, 1)-—(gnl) /2 ( )
2/“‘

Coav): (=1, 1, 1, 1) ——(g AZ)”2
2/2

By substituting values for CO,DO,EO and FOs into equations
IV.3.18 through IV.3.21, with vy = 1/2, we can find the leading
1/2)

terms of the power series expansions (in z of the parameters near
the degenerate point; further terms can be found in the usual way,
although the algebra becomes very tedious. Each set of values for
(C0 DysEqs Fo) generates a solution; we will label them 1;,1;;,1 ;>
and 1IV corresponding to the four N = 1 cases in equation 1V.3.24,
respectively. As an example, it can be shown that the following

parameter expansions are produced by solution 11.

2
BA
Mz) = A[1-2(s24s0)z + 2 (59324
5 2
o(z) = o, + 2(- -57 & Land) + A2 (2 2)¥ 5
¢ -0 BA2 (1v.3.25)
a(z) = ao[l - Zﬁ (——é—o--z)]/2 + z(4s° + —5%)+ 1
2 2
BA g
S (z) + 12;—(__9.2)1/2 + z(3¥-— 4(S°)2 __9.) +
X 5.2 772 4 X 2
a, a, 4a



b(z) = by[1 - -‘g (i};—"z— 2)1/2 4 2(45) + -Bgé T
5,(2) = 59+ -é—i-g (E;\é 2)!/% + z(;‘O 4(s9)°- %gg—ﬁ
2
c(z) = ?Z_(SAO Z)1/2 ) Egg_z N
oty - - £ ey, (1,329
Ez) = 22 _8_;\_(212)1/2 --B-gg-u .
F(z) = - %?5 Egg-z)]/z - Egé-z +

Actually, it can be seen that no overall factors of Y2 are needed,
but the above form has the advantage of producing solution 111

by replacing "v2" + "-/2" . When the action integral is expanded
according to the methods discussed in section IV.2.i, we obtain,

for solution 11:

5 _ T ,pl 0,0 2r16/c0v2, 000, (042
a(z) = - 5 BAoa0b02{1—2(Sx+Sy)z +z [-3—~((SX) +SxSy+(sy) )-
2 2 5/2
8,1 1 . 1 /78R, 3/2(~1——-+ l~)z +...}
3ttt T gl T Tl bl
4] 4] 0 0 °
(1v.3.26)

This has the general form given in equation IV.2.5 (for the initial

conditions in IV.1.2b) with np.o= o0y = 1/2; from the last term

1 II
in IV.3.26, we can see that solution 11 has a smaller action integral
than solution ]II’ and is thus the "preferred" solution.

Similar expansions can be found for solutions 1111 and

]IV; in particular, the action integral expansion again has the
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standard form with u = = %u Thus, out of all the N = 1

III IV :
solutions, (including the N = 0 limit where Np = 1/3), solution 11

has the minimum action.

IV.4 Parameterized Solutions

In the last section, we concluded that the N = 1 "solution",
1 (and, in fact 111 etc.) represented an improvement over that for
N = 0, because it led to an action integral which was closer to
the exact value. However, these higher order solutions involved
some unusual properties, such as singular matrices, divergent
derivatives, multiple solutions, etc., which are rather surprising
in a problem which is physically "well-behaved" (away from the focal
point). To further confirm that these new solutions are, indeed,
significant, the parameterization has been extended to N = 2, leading
to the results summarized in Appendix 2. Although the algebra
required to derive these N = 2 formulas is far more complex than
needed for N = 1, the analysis is seen to follow precisely the same
general steps; furthermore, most of the qualitative results are very
similar for both orders, so that many of the following comments can
be expected to apply to higher order cases as well.

As shown in equation IV.1.2a, the extension from N = 1 to
N = 2 requires six new parameters, represented by the real and
imaginary parts of 12,00 11,1° and 0,2° the "recipe" and the
"degenerate point" expansions given in Appendix 2 involve solutions

in which at least one of these six "N = 2 parameters" is nonzero.
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In addition to these solutions, it can be shown that the "N-1

recipe" (and the resultant expansions) provide another solution to the
N=2 Euler-lLagrange equations under the condition that Tz,Q(Z) =
r]’](z) = TO’Z(Z) = 0; however, the N=0 solution is no longer consistent
with the N=2 Euler-lLagrange equations, even if Tm,n(Z) =0 for all
(mon) # (0,0). Thus, even if the "action-integral minimization"
arguments in section IV.3 were not sufficient proof that the N=1
solution was an improvement over the N=0 result, we would be forcedto
admit that this was true, as soon as the N=2 parameterization was
attempted.

As described in Appendix 2, the "degenerate point" for N=2
occurs when 2.0 "1, =702 T 0; if,at such a point, we also
have 0= %01 " 0 (which occurs at the initial conditions),
then there are precisely 9 "solutions": 21’211""’21X' The leading
powers in the expansions are: 21/3 for 1,0 and 0,1 and
22/3 for 2,0°71,1 and 9,29 for each solution, the action-
integral expansion takes the form in equation IV.2.5, with
Yoy T oy T Moy TN M Ty T Ty T T ey
As shown in Figure 23, we can "order" the solutions according to

= 41/80.

their action-integrals (ignoring the leading terms which are always
the same), and also "classify" the solutions into subsets according
to n and certain symmetries.

Before considering quantitative properties of the beam
propagation as governed by the parameterized solutions, we can
further demonstrate that the higher order solutions display a number

of useful properties. First, the field, E(x,y,z), given in

equation IV.1.2a, is bounded, continuous, well-defined, and other-
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z3 coefficient in

Action-Integral

L 2 5V2
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Figure 23. Degenerate "parameterized beam" solutions.
(a) Ordering of solutions through the Action-Integral;
the mutual ordering within some subgroups is variable.
(b),(c) Subgroup symmetries as shown by plotting the
leading terms of "C" wvs. "D".
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wise "reasonable", as long as the parameters evolve smoothly;
examination of the "recipes" in section IV.3.1 and Appendix 2 shows
that the only problems occur at the "degenerate points" or when the
beam focuses (az,b2 + 0, A2 + «)., This latter problem, however,
simply reflects the fact that equation IV.1.1 can produce singularities
in E(X,y,z); this difficulty, therefore, lies not in the parameterized
beam approach, but in the basic problem formulation. The degeneracy
point difficulty appears, at first, to be more fundamental, since
the parameter derivatives can diverge, and the evolution is not
uniquely determined (unless the "least action" criteria is employed).

Nevertheless, the following can be shown to hold for a z, including

any degenerate points, and for all solutions of a given order: the

3l

field intensity, f(x,y,z) = lé(x,y,z)l2 and its derivative, ==,

are bounded and .continuous, with a bounded derivative. Thus,

the mathematical problems associated with the evolution of the
individual parameters are not reflected in the physically "measurable"
beam, E(x,y,z).

Finally, if we consider a beam which is initially symmetrical:

_ 0 _ <0
a, = bo, ,SX Sy s

we see that the N=1 solutions ]I and 111 will continue to be

symmetrical, while solutions 1 will "break" the

rp and Iy
symmetry; similarly, for N=2, solutions 21°211’ and ZIII are

"symmetrical" while 21V through 21X are not. Since, for each
order, every symmetrical solution has a lower action-integral than

any non-symmetrical solution, we can conclude (by extrapolating
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N -~ «) that a symmetrical beam is a stable configuration, on the

basis of an "action-minimization" criterion.

IV.4.i self-trapped solutions

A further test of the least-action approach to determining
the "best" beam parameters is given by attempting to match the
shape-preserving solution discussed in section III.3.iii. Since the
Tens transformation is satisfied by our sclutions, we will consider

the "self-trapped" solutions to be defined by parameter values for

which

~

Qé.:‘_d_(ﬁ
5 1(dZ)E . (Iv.4.7a)

Thus, a self-trapped solution occurs when all parameter derivatives
are zero, except for %% . Furthermore, to be consistent with the

solutions generated by equation III.3.11b, we will take E to be
symmetrical and real {except for e1¢), with %§-= T and B = 1,

so that E = e'“u(r), with rz = x2+y2. From the derivation of

equation I1I11.3.12, we then have

=23

21 2

Puode/Po = 7 | uZ(rirdr . (1v.4.1b)
0

Under these conditions, equation IV.2.16 then yields the

unique solution for N =0

A=2.0

2
a?(=b%) = 2.0 [ug(r)lyog = 27" /2 (1v.4.2)
(s, =5, =0)
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In Fiéure 24, this shape preserving "mode" is compared with the
exact solution, uy(r), as defined in section I1I.3.iii.

Next, if we set -%% = 5a,¢ and g8 =1 in equation IV.3.9,
with .wa given by the "recipe" in section IV.3.i, we obtain a set
of equations for the parameters describing the N = 1 self-trapped
modes. One solution to these is given, as expected, by the N = 0

result with C =D =E = F = 0; in addition, there is one other

solution, which was found numerically to be described by

Ay = 2.62536

a(=b%) = 5.20196 s e,
[U](Y‘)]N=1" A]e {1+ ‘a—2’ r}

C](zE-]) = "‘2.42423 1

BAs shown in Figure 24, this solution corresponds to an approximation
of u](r), the next higher order mode found by Haus(go).

Finally, the N = 2 level of parameterization generates three
possible self-trapped solutions, again found numerically. One of
these reproduces the same approximation to u](r) as found for
N = 1, but the other two generate an improved approximation to uo(r)

and a first approximation to uz(r); these are given by, respectively:

Lug(r) Jy=n Luy(r)Jyao
A = 2.12639 2.85401
a2 (=b?) = 1.84341 8.87033
(1V.4.4)
N EASE ~0.34250 -5.21044
t, ol %11 ) 0.22593 2.77823
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20 - mode
UO(r) 4£ O(r)N.—Ol Pmode/% UO ul Us
(r) exact(0.93]|6.13[15.63
Yo\ TNy=2

N=01100| — | —

40 —

u(r)_|

20 —

Figure 24. Self-trapped beams; comparison of exact (numerical) modes
with Least-Action parameterized solutions. The data on
the exact solutions is taken from Haus (reference 90).
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where, for Ton real, we have the N = 2 form given by
2,2 T T
u(r) = Ae™" 731w L0y 204y (1v.4.5)
a a

As shown in Figure 24, these self-trapped "modes" approximate quite
well the exact solutions, further verifying that the N = 2 level of

parameterization can approximate the true field in some detail.

IV.4.11 self-focusing examples
The great computational advantage of the parameterized beam
method lies in replacing the partial differential equations for the
field with a set of first order ordinary differential equations for
the parameters, as represented by equation IV.2.16 for N = 0, by
equation IV.3.9 and the subsequent "recipe" for N = 1, and by the
N = 2 recipe given in Appendix 2. Such equation systems can be
integrated with very low errors, primarily limited in this case by
the accuracy with which the derivatives can be calculated; however,
by using the "recipe" approach to avoid any need for matrix inversions,
as well as double precision accuracy in evaluating the resultant
formulas, such derivative inaccuracies could be effectively eliminated.
The numerical integration was performed with modified forms
of standard routines, employing a fourth-order predictor-corrector
formula (Adams-Moulton method); "startup" was achieved with the use

of a fourth-order Runge-Kutta method (Runge—Kutta-Gil])(SG). At

the initial conditions, or when other "degenerate points" were
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encountered (for N > 0), the singularities in the derivatives
were avoided. by "matching" the solution to the known degenerate point
expansions. With these methods, the programs were capable of very

6 to 1077

precise integrations (probably much better than the 10
relative error tests we imposed), so that our results correctly
portray the parameterized beam solutions over the entire propagation
range. Thus, the discrepancies between E(xsy,z) and the true solu-
tions, E(x,y,z), should be fully attributable to the inherent
limitations of the parameterized beam approach itself, and should
thus decrease rapidly with increasing N. On the other hand, the
fully numerical calculations discussed in section II1.4 suffer from
error sources (local instabilities, imperfect boundary conditions,
possible numerical instabilities from the nonlinearity, roundoff
accumulation, etc.) which cannot be easily "identified" or alleviated.
The initial conditions used in our parameterized beam solu-
tions corresponded to a collimated beam (@x = g, = 0) passed through

y

a "unit lens" (z_ = 1); thus, we have, according to equations

0
1Iv.2.4 and IV.1.2b,

A(0) = 1 $(0) =0
a(0) =1 b(0) = R
(IV.4.6a)
SX(O) = ~0.25 Sy(O) = 0,25
(0 = 0 (m.n) # (0,0)

The resulting solution yields the field parameters as functions of

Zeocused the "collimated" result of interest actually involves

N
i

= "Zco111mated s where, from equation III.2.3a,
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z
focused
" Zfocused

Zcollimated ~ 1 (1V.4.6b)

The threshold for self-focusing thus occurs at the smallest 8
for which (Zf)focused : 1; Figure 25 shows the threshold powers thus
obtained, as the ellipticity, R, is varied.

In the remaining figures we show further details of some of
the solutions obtained with the parameterized beam approach. These
results were obtained by using the least-action degenerate point
solutions (i.e. at the initial conditions); however, the "integral
properties" of the beam, such as (r2(1)>, <x2(z)7, <x4(z)> , etc.,
varied only by a few percent, for a given order, when the other
degenerate point solutions were employed, even though the individual
minor parameters differed in magnitude and sign, in some cases.
Thus, the careful use of the correct degenerate point solution seems
to be important only when "local" details of the beam are desired
(such as field values, E(x,y,z)), and even then, only if the
solution is to be carried for some distance away from the degenerate

point.
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Appendix 1
ANGULAR INTEGRATION FORMULAS AND SUSCEPTIBILITY
TENSOR ELEMENTS IN ISOTROPIC MEDIA

In Chapter I, we considered the representation of fields,
such as E, in two reference frames; the first, (X,y,z), is the lab
frame, where E has components Ei’ and the second, (x',y',z') is
the molecular frame, in which the field components are E% . The
transformation matrix, M(ﬁ), connecting the field components is most

(27)

often given in terms of the Eulerian angles » which are pictured

in Figure 2, page 23, of Chapter I; in this notation, we have

)
E;

H

Mij(ﬁ)Ej
(A1.1)
E

N Vo
; Mij(ﬁ)Ej = Mji(ﬁ)Ej ;

where § = (¢,6,9) describes the orientation of the mulecule, and

cosy cos¢-siny cosd sing cosy singtsiny cosé cosd siny sing
M(§)= -siny cos¢-cosy cos6 sing -siny singtcosy cosd cos cosy sind
sind sing -$ing cos¢ cose

(A1.2)

Here, we will give tensor products in component form, with a typical
subscript, "i", representing x,y, or z; repeated indices in tensor
or vector products are assumed to be summed.

We require integrals of functions depending on &y for example,

if g(ﬁ) is some quantity (for example a polarization component)
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corresponding to molecules characterized by %, and f(ﬁ) is the
probability of a molecule being oriented at &, then symbolically
we can write

{9y = J a(B)F(8)d% .

If we consider the case of a "uniform" distribution f(2) = 1,
we can see from Figure 2 that quantitative evaluation of such integrals,

for & expressed in Euler angles, involves the substitution:
2t 2m

it
jd3§ - -l§-j v J do J sin odo . (A1.3)
CL 0 0

The necessary integrals involve products of matrix elements, Mij(ﬁ),
in the integrand; we will now list these. The results must physically
be independent of the specific representation of the rotation transfor-

mation, but they can be checked by using equations Al1.2 and A1l.3.

The case of no factors of M is equivalent to the normalization:

4 b ln @

J] d3§ = ] (0 Mij factors) (A1.4)
Next, we have
>y a3
JMij(Q)d 5 =0 (1 M factor) (A1.5)

For two transformation elements, we have:

-+ >3 1
jmﬁ.(g)mjj.(g)d Gx oy oy (2 My factors) (A1.6)

1]

i'sd

The case of three elements is covered by:
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> > +3+_l
fMii(Q)ij(Q)Mkk(ﬂ)d & =4

> > >y 3 l
fMﬁ(sz)Mjk(n)Mkj(g)d G =-z (3 M factors) (A1.7)
: (no sums)
- - Ty 43 1
hﬁmmﬂmmhmmg-6

Here, (i,j.k) 1is any permutation of (x,y.z); thus i#j # k # i is
needed. A1l other integrals of three elements of the transformation
matrix will vanish.

The enumeration of all nonvanishing integrals involving four
matrix elements is more complicated. First, out of the 81 possible
distinct combinations of four indices (i,j.k,t) , we will form four

groups, Gn’ each containing certain of these combinations:

(1,1,1,1)— G}
(1319393)’"‘+62
(A1.8)
(i,j,i,j)——-—»G3
(TaJstT)"""‘G4
Here, j # i must hold; 61 thus contains 3 elements, while each

of the other groups contains 6 elements. With these conditions, we

find:

Mg Gy B B @ e (D

when

(1.d.ks2) = G (4 Mij factors) (A1.9)

1
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(1lsj|:k'sﬁl)"——) Gn

2
A11 other four-factor integrals vanish. The values, (I)n . are
1°°2
given by the matrix
1 L 1 5L
5 15 15 15
N 2 - .
15 15 30 30
1= 1 1 2 1 (A1.10)
5 30 15 30
1 _ 1 b 2
15 30 30 15

We will now consider the limitations imposed on susceptibility
tensors by the isotropy of the medium. Consider expanding the
polarization in powers of the electric field components; we will take,
as a pertinent example, the cubic polarization at Wy which must

have the form:

*
P EjEkE2 . (A1.11)

i Xijke
Now consider reorienting the material using rotations characterized

by ®; in the lab system, the medium will appear to have a new

susceptibility tensor, x'(%), such that

[] e *
P_i = Xijkx(Q>EjEkEz . (A1.12)
By transforming into the material system, however, and denoting with

primes the fields seen in this frame, we have
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U
fl

Zypt
Mili(Q)Pil

- *
Mili(Q)(XiljlklglEleklEzl)

-+ -+ &> *
Mi'i(Q) Xi'j'kllijlj(Q)Mk'k(Q)MZ'Q(a)EjEkEQ .

Comparison with equation A1.12 shows how the susceptibility tensor

transforms as the material is rotated:

Kk (@) = Mgy @ GM @M, @)y, (A1.13)

i'i J'k'e!

Next, consider the class of symmetry operations, {55}, under
which the material is invariant; these operations might include inver-
sions as well, but these are not needed for our purpose. It must

then hold, for each 55, that
Xi5ke (%) = Xijkq - (A1.14)

For each crystal symmetry class, a set of {35} is known;
equations A1.13 and Al1.14 can then be used to reduce the number of
possible independent tensor components. The same methods can be used
to generalize equations A1.11, A1.13, and A1.14 to any other "order"
of nonlinearity; the extension to other harmonics is also obvious,
since, for example, the same equations as above must apply to third
harmonic, with EE £y in A1.11.

In the particular case of isotropic media, the set {55}
contains all @; this allows the following simple derivation of the
general tensor form. Consider averaging yx'(%) over all &; from

equation Al.14, we must then have
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1 3 = =
<Xijk2(ﬂ)> X’ijkk Xi‘j'klﬂ,' fM1l1(§)Mle(5)M 5)M (Q)d3§
(A1.15)
From equations Al1.8 and Al1.9, we can immediéte]y see that the only
nonzero components of x are those belonging to the groups, G ,

n
and that all elements within each group are equal. We can set

Xiiii ~ X
Xiijj = *2
(A1.16)
Xijij = X3
Xijj'i = Xq R

Using equation Al1.10, we then obtain, as an example,

with other equations for

alent, giving
0= -x3txo*x3*txg - (A1.17)
By employing equations A1.16 and A1.17 in the definition of

x, equation A1.11, we obtain the general form of the cubic polariza-

tion in an isotropic medium:
Bz + xg)B(EE) + (x)E (EE) . (A1.18)

This equation is equivalent to the nonlinear polarization terms in
equation 1.3.1; it follows directly from equation A1.15 and is thus a

necessary condition on the form of P. It is also sufficient, since



-216-
both sides of equation A1.18 transform as simple vectors upon rotation,
for any (X2+x3) and (x4)- We can immediately see that the third
harmonic polarization will have the form: ﬁ'(3wo) = (x2+x3+x4)§(§'f) .
Further use of this approach for other orders of nonlinearity gives,

for isotropic media,

x: = 0 (no permanent polarization)

Xij = &si 3 (isotropic Tinear susceptibility)

Xijk = 0 (no second harmonic or rectified field)

Most of these results can be found quite easily through physical

arguments, but the methods used here are analytical and generalizable

to other orders of nonlinearity.
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Appendix 2

EVOLUTION OF SIXTEEN PARAMETER (N=2) BEAM
FORM IN SELF-FOCUSING MEDIA

The action-minimization techniques, described in section IV.2
for determining the evolution of a parameterized beam in a medium with
a cubic nonlinearity, have been carried out for the case where the
parameterization is extended to N=2. The representation of such a
beam is given in equation IV.1.2, and contains sixteen parametefs,
which vary with z; in analogy with equation IV.3.1, we will write this

function in the form

. 2 .c 2
~ e 2,2 2,2 S x7 iS 2 2
E(xoy»z) = Ael®e ™ /3 7V /b7g TX" ¢ Y s (C+iD) %y +(E+iF) L5
a b
A 2,2 4
+ (P+1Q)~1-+(R+1T)—?¥2-+ (U+iv)dy . (A2.1)
a a’b b~

The six "major" parameters (A,¢,a,Sx,b, and Sy) , and the ten "minor"
parameters, (C,D.E,F,P,Q,R,T,U, and V) are all functions of z; the
form of the equations in this appendix should prevent confusion
regarding previous uses of these same symbols in other contexts.

The evolution of the parameters (in z) can be found in terms
of first order ordinary differential equations. The procedure is
exactly analogous to that used for the N=1 case, described in section
1V.3, and the resultant equations have the same general form. However,
because of their complexity, we will simply reproduce those results

needed for actual computation, expressed in a highly “condensed"
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algebraic form; while this condensed form may hinder interpretation,
it forms the basis of a very efficient computer routine and also brings
out symmetries which are not discernible in the "expanded" formulas.

We will first present a general "recipe" for finding the
derivatives, corresponding to the N=1 formulas, IV.3.9 through
1V.3.16; we present them in the sequence of use in the "recipe",
although their derivation occurs in the opposite order. In general,

any formula has a "symmetry counterpart", found by substituting:

A-> A, a b, C E, P U, R - R,
& R L
.2
%, 0 R Qv T-T e
¢'*¢’ 3 [ H >
X
~‘~/,y </ .

In forming the derivative functions, it is necessary to
compute a number of lengthy polynomials involving only the minor
parameters; the following preliminary definitions allow certain sub-
groups of these functions to be calculated in a recursive manner.

First, define the following "Tists":

1 1 1T 1
Enon Eg,0 = | Ey o= C/8 E, o = P/64
1T |
e = E/8  Ej = R/64 (A2.3a)
el - u/64
0,2
ol . ol =9 1 1
m,n° 0,0 0130 = D/8 02%0 = Q/64
1 1 (A2.3b)
0 1 = F/8 0y q = T/64
1 _
0g p = V/64 .
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i . _ el il v, o3(mEn)
Note that, according to equation IV.1.2a, T o (Em,n+10m,n) 2 5

the superscript "“1" implies that the "Tist" involves only single

1

factors of the minor parameters, including the "parameter" 0.0

1 + i0; the subscript pair (m,n) implies that the list element is
2m. 2m
associated with transverse variations behaving as (52),(¥?) .
a

Finally, we have assigned an “even parity" toc the elements in "E_ ",
and an "odd parity" to those elements in "Om n"'
We can now recursively define the following lists

1 1

- 1 1 < <
Em,n = z z (Emu’nl m-m¢,n-n! Om',n‘om-m',n-n') O-m,nemn = 4
m' nt
3. ! 2 < <
Eman = ) z'Em',n'Em-ml,n-n' 0%m,n,mn = 6
m' n
3 12 . )
Om,n = 2 2 Om',n'Em—m',n—nl O-m’n;nﬁ'n 6
ml nl
(A2.4)

Here, of course, only terms with "allowed" subscripts can contribute

to each sum; for example, E1 and 0]

{ [
me.n Y must have m ,n

and m'+n‘ all lying in the range (0,2). Under the symmetry operation
defined in equation A2.2, each "list" element, (m.,n), is replaced by
the element (n,m) in the same "list".

We can now return to the basic problem of forming a "recipe”

for N=2. Define

1 3 1 3 g
= 8 z z Z (Em/ 9z_rnl Em,n + Om’ ’2_m/ Om,n)gm’n (Az.Sa)
mnm'

5 1 1
-gP-gR-gUu+ -

o
aed
{
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1 3 i 3
811 2,(0m’52-m’ Em,n - Em',2-m’ 0m
mnm

[on)
N
it

(A2.5b)

S2Q-gT-gV+ ..

These are analogous to the N=1 formulas in equation IV.3.14: B3 and
B4 are given by the symmetrical counterparts to B] and BZ’

respectively (with U ﬁzmm/ ). The numerical constants Bm‘
m,n n,m °° > “m,n’®

aregiven in Table 1; they also obey the relation
- Q

—1
B = Bn

man (A2.5¢)

s

The recipe begins by computing the following four values:

(m4B2 tmyBy - m384)/d

o
P |t

0

We = (m4B] - m3B3 - m284)/d

X 0
] (A2.6)

Wy = 7 (-myBy - mgBy + myB,)/dy
WS = (-m3B.i + m282 + m‘] 83)/d0 ®

y

where, for N=2,
m = 15(p2+0%) + (R%+72) + (U+v?)
my = (QR-PT) + (TU-RV)
my = (PRQT) + (RUTV) (A2.7a)
n = (P2+q2) + (R%+T2) + 15(U2+v2)
d = (mm,- m2 - me)/2 (A2.7b)
M= My - M3 ' -



myn Ei,n B;,n Ann m,n m,n m,n

0 0 -5 -1 -7 3 -4/3 -8/3
110 25 3 -3 10 -4 -4
01! 1 -5 1 -3 0 0 -4
210 45 13 0 42 -13 -18
111 25 -3 6 -3 2
0} 2 -15 9 -6 3 -18
310 -285 45 30 225 -35 -130
24 1 45 -13 27 -11 22
11 2 75 -27 6 9 -7 22
0] 3 ~75 75 30 -45 25 ~-130
410 -6405 -105 315 1365 210 -1260
311 -285 -45 45 135 -30 180
2| 2 135 -117 27 45 -30 180
11 3 375 -225 45 15 -30 180
0| 4 -525 735 315 -315 210 ~1260
510 -89775 -7245 2835 7560 8190 -15120
41 1 -6405 105 315 630 210 1680
3| 2 ~-855 -405 135 180 -90 1440
2] 3 675 -975 135 90 -150 1440
1] 4 2675 -2205 315 0 -210 1680
0] 5 ~4725 8505 2835 -1890 1890 -15120
61 0 -1091475 -176715 20790 0 183645 -214830
5] 1 -89775 7245 1890 0 7875 18270
41 2 -19215 945 630 0 525 13650
3 3 ~4275 -3375 450 0 -525 11550
21 4 4725 -9555 630 0 -1155 13650
115 23625 -25515 1890 0 -2205 18270
0 6 -51975 114345 20790 0 17325 -214830

Table 1. Numerical constants used in N=2 recipe evaluation.
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Next, the values, WA and w¢s are found from the formulas

iy = W, {- —-—(5P+R+U}+ w {eG—A:(SQ+T+V)}+ W {- 2(P+R+5U)}

L1 3 (A2.8a)
+ g {T(Q+T+5v 5L 0L 00 phon
m n 8 b
_ 3 3 3
w¢ = wa{- 32(5Q+T+V)} + WSX{_ 64(5P+R+U)}+ wb{ §§(Q+T+5V)}
3 1 ,
W {- EI(P+R+5U)}- —8—% g mn m . (A2.8b)

Y

where the coefficients, Am ne  are listed in Table 1. Using these,

the remaining "nonlinear" derivative contributions can be found as

follows:
e = WUp{-2-C) + U (D) + W, {-2¢2C+ 3(25p+3R+0)}
g (- 3250+3T4V) ) + Wy ((3P+R-5U)} + wsy{- 3 (30+1-5v))
- %'% goi,ncm,n (A2.92)
- 3

wA{—D} + wq){-z—(:} + wa{2D+ 7—6-(25Q+3T+v)}

3
WSX{~!+ 3 25P+3R+U)} + W {—E(3Q+T -5V)} + W {—§(3P+R -5U)}

+

+
_pi_l
=~

e oo (A2.9b)
n $ %
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o f2o : : 1
NP = WA{§ P} + W¢{Q} + Wa{—2C+4P- 73(115P+7R-U)}

1 i 1 1
+ g (or gp(115Q+7T-V) I+ W (35(-TPHRE5U)} +U L~ 5,(-7Q+T+5V))

y

] 3
-7 ,% g om,npmsn (A2.9¢)

= 2 1
WQ = WA{-Q} + W¢{§-~P} + W, {-2D+4Q- TE(]]5Q+7T-V)}

1

] .
+ WS {-C- §§-(115P+7R'U)} + wb{TE("7Q+T+5V)} + Wsy{%ﬁ(«7P+R+5U)}

X

1 3 =
t g % g Em,an,n (A2.9d)

4 1
WR = WA{§ - R} + W¢{T} + Na{—2E+2R--§(—5P+23R+23U)}

1

+ N {F+ ( 5Q+23T+23V)} + W {- -2C+2R- 3(23P+23R 5U) }

1 3 7
+ Wg {D+ Te—(230+23T—5V)} ) ZOm’n mn (a2 .9e)
y mn
Y 4 1
wT = WA{—T} + W¢{3 -R} + wa{—2F+2T~ g(-50+23T+23V)}
] 1
+ wsx{=E— TE('5P+23R+23U)} + wb{a2D+2T- 3(23Q+23T-5V)}
+ w {-C- ﬁ—{23P+23R -5U)} + -Z ZEm nRm,n (A2.9F)
y
The coefficients, C_ , P , and R are given in Table 1;

msn m,n msn
NE,NF,NU, and wv are found by using the symmetrical counterparts to

the formulas for wc wD wP, and wq, respectively.
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The last step in the recipe adds the "linear" contributions

to the parameter derivatives, as follows:

B = 25,25+ 17020 + i§-{-2F} v nli,

ds -ifz— {-242C} + i‘g {-2+2E ) + 8A%u,
%”%% = 45y * BAZWa
a g;ﬁ-= ~4a%s2s i§{4} + BAZWSX

‘

1 1 2
s -;§{8D+4CD—12Q} + EZ{ZCF+2DE—2T} + BA wc ( |
A2.10

%‘2 = 1 gc-2c242D%412P 1+ 1{2DF-2CE42R }  + sA%W
Z a2 b2 D
dP - .! = SN T L T i ] £ 75 e -2--
& ;§i|bu+4cq+gup} + E?{AtQ+ékPJ + BATW,
49 _ 1 ( yeprang-2cP}  + Lx2FQ-2EP) e
dz a2 b Q
dR _ 1 1 2

dR _ 1 (8T+2CT+2DR} + L (8T+2ET+2FR}  + pA%W
dz a2 b2 R
AU _ 1 (_gre2DT-2CR}  + s{-8RF2FT-2ER}  + A%M

dZ a2 bz T

b 28y & aF dv

Again, expressions for %-823 b TR R T ] and =
can be found by using symmetry on the proper formulas in equation

A2.10.

As with the N=1 case discussed in section IV.3.ii, the above
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formulas for the N=2 parameter derivatives will fail at certain
“degenerate points". From equations A2.6 and A2.7, these occur when

d0 = 0, where dO can be expanded in the form:
24, = 15(PP+Q7+UPVE)2 + 13(RP+T?) (P24Q2UPH0%) + (RE4TZ)?
+196(P%+Q2) (U2+V?) + (PR-TV)Z + (PT-RV)?
+ (QR-TU)Z  + (QT-RU)Z + RE((P-U)Z + (Q+V)2) + T2((P+U)%+ (Q-V)?).

This expression shows that a degenerate point can only occur when,

at some z = we have P=Q=R=T=U=V=0; we will now discuss

Zdegenerate’
the possible solutions near such points. We can identify two “classes"

of the degenerate point solutions; in the first, one or more of

C,D.E, or F 1is nonzero at Zdegenerate’ while in the second, all of

b & n e - L 3 3
the minor parameters approach zero as z We will begin

7 Zdegenerate”
by discussing this latter class of solutions in some detail, since it
includes the initial conditions given in equation IV.1.2b.

The following expansions will be assumed to hold near

IIZH = Z - 0:

Y]
Zdegenerate v
1

C(z).0(z).E(z).F(z) ~ 2 Yp2vg » 0

y
P(2),0(2) R(2),T(2) V() V(z) ¥ 2 2,
where at least one function in each group has a nonzero leading term

with the power shown, but no Tower powers occur. Applying the "recipe",

we obtain, in turn, the leading terms of the expansions of the following

functions:
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NS ,WbsWS v Z—YZ 3 WA,W¢ ~ Zo
X Y

C’WD’WE’WF N2

wa,

Y
w 2

Yoty 0
wp,wq,wR,wT,wU,wv Nz or z°.
Finally, from equation A2.10, we have a "balance of powers" for

c,b,E,F, and P,Q,R,T,U,V:

. 17, T2

dz’ vz
=Yoty
%;: 227V 2T g 0

These equations are consistent only if Y1© %3 Yo© %3 so that we can

write

Mz) = Agt ; 3(2) = g5t

a(z) = at : 5,(2) = S

b(z) = b _+ Sy(Z) = S;+ (2]
Cz) = ¢ 23 , D(z) = 0021/3+

E(z) = Eoz1/3+ : Fz) = Foz]/3+

P(z) = P022/3+ . Q(z) = Q022/3+
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R(z) T(z)

it
=
N

i
-
N

0 (A2.11)

cont'd.

i
al
N

N

S

W
-

U{z)

i
=
N

o vee s V(z)

From the previous expansions, we have

- 2/3
wa(z) r

- 2/3
We (2) = We + ...
SX SX

< ,=2/3
wb(Z) = 2 wb+ c e a

We (2) = z=2/3U. + ...
S ]
y Sy

where W wS ,wb, and NS are functions of Co’Do""’Uo’ and Vo'
With these def1n1t1ons, we can obtain, as “self-consistency" equations,

formulas such as

dC _ -2/3 1 _ 2 -2/3

r i 3 C MHo... = BA wc+ . {BA ( zw )}+ cee

g‘i ~2/3] TD M .= z‘2/3{eA§(-f«S Vit ... (A2.12)
-1/3

dp . ,-1/3.2 Zp i+ ... = z {BA (-2C wa+D )}+ e

These, and similar equations for the other minor derivatives, show

that 3 - 1
P0=5A(3CW 'tisx)“"z"( )
Q, = b, (A2.13)
R =CE-DF

o ‘00 00O
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To = Co D+DoEo
1,.2 .2
U = 5(E=-F%) (A2.13)
° 2*70 o cont'd.
Vo = EoFo .

With these substitutions, the leading coefficients in the

expressions can be written in terms of Co’Do’Eo and FO:

= ,2/3;_ 5 (r2 2y 1 1 (2 (2
By(2) = 2730 25(C2-D%)- F(C E -D F )~ 1o(EE-FE))+ ...

= ,2/3;_ 5 1 1,
B,(2) = 22/%(- 3(C D)) - HCF DE,) - HlEF I ...
| _B3.15,:2, 0202 12, 2y o2, 02y L 1,02, 2
m(2) = 2322022 + (cBen?) (E2eF2) + HEZ+FZfoe .
_ 43,1 2,2, .2, .2
my(2) = 2" “{z{DE ~C F ) (Co+DI+E+F) 1+ ...
dolz) = 2233 ¢ . where 3 = 35 (s(cBroPeelerl) trag(c2inf) B(e2erd)2).

Finally, the permissible values of Co’Do’Eo’

satisfy the "self-consistency" relations resulting from equation A2.12:

and F0 are those which

a -
0y . 1 02,0202 ) 2,02y 122, 2
co(3g£§) = =20 d = 55{(C D7) “(5C, D -3 F )+ (Co+D ) (E+F ) (20C D +8C F +
0

2 2.2
8DOEO)+ (E0+Fo) (756090+2000F0+20D0E0+15E0Fo)-ZOEOFO(DOF0+COE0)-
(c2+p2+E2+F2)) (A2.14)

0 0 0 O
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]

0oy _ 1 2.225,.2 2 3,2 .2 2,2y r2, 2 2 2

Do(—25) = 35 (CS+DE)*(F(CE-D5)~ F(EL-FE))+ (C+DE)(EC+FS) (10(C2-D2)+
0

0 3pA

2,:2v2,75,.2 .2 15,.2 .2
* 2(DoFo'CoEo))+(E0+F0) ('ZZ'(CO’DO)MO(CDEO”DOFO)+ ?"(Eo'Fo))'
2. e, -2, 2
- 20E F (D E -C F_)(Co+Do+ES+FS) . (A2.14)
00070 "00' 70 "0 "0 0 cont'd.

The two relations in equation A2,14, with their symmetrical counter-
parts, form four (nonlinear) algebraic equations in four unknowns.
After considerable analysis, they can be shown to yield the following

nine sets of vaTue% for CO,DO,EO, and FO:

. 2 21 2.1 2.1
Solution CO/(BAO)3' DO/(BAO)B Eo/ (BA,)3 FO/(BAO)3
> 3 1 <N 1
| 7 77 A7 7
2 2
11 ° AT ° L
2 V3 1 /3 ]
111 - 7473 J473 VK3 473
2 Z P4 Z
) 4 2 4 2
v (20)2/3 (20)2/3 (20)/3 (20)%/3
) 4 2 4 2
v (20)2/3 (20)%/3 (20)%/3 (20)%/3
5 ~2+/3 -1-2/3 2+/3 -1+2/3
VI (20)273 (20)273 (20)273 (20)273
2+ /3 -1+2/3 -2+/3 -1-2/3
2
Vil (20)273 (20)273 (20)273 (20)2/3
) 2-v3 -1-2/3 -2-43 142,73
Vil (20)% (20)73 (20)273 (20)
-2- 5 -1+2 2- -1-2/3
2 —--§3§ -¥3§we
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With the use of equations A2.11 and A2.13, the leading terms in each
of the solutions can be found; further expansions in powers of z]/3
can then be made in the usual way. An expansion of the Action-
Integral shows that the solutions above are listed in order of
increasing Action, except that the mutual ordering of the last six
may depend on the values of ao,bo,Sg and 53.

The solution 21 is particularly important because it

generates the least-action beam propagation near the initial condi-

tions; a further expansion yields

2
BA
Alz) = A[1-(25%250)z - (=2 )% L.
2
gA
$(2) = o, - (3—2-+-§—2——%-§BA§) - 93 o M
a0 0
8A2 BAZ
a(Z) = 30[1 + ? (——'2-9' Z)]/a‘l‘ -9372-(—2-9 2)2/3+ ]
o 1 A 13 /3 A 2/3
SX(Z) =S, - *“5*(—5—'2) 5 ( 5 z)¢  +
2a0 4aO
/3 BA«% 173 . 9 A 2/3
b(Z) = bo[] + T (T Z) + ‘73?('-*2——)2) + ...] (A2.16)
2
BA BA
S (Z) _SO___-LZ__(__Z_O_ )1/3 _@:2_( 02)2/3+
Y Yoot 4b?
2 2
BA BA
C(z) = - B (SR V33 (023 [ L)
7 (2 7\ |
2 2
A gA
o(2) = M2 P+ B (R L =)
A 72
2
BA gA
p() = Hg2 070 P (2 2) ¢ - 1 R2) = u(2)
gA RA
Q(z) = 3 (-59-2)2/3 + %—(~§9-2)+ = %—T(z) = V(z) .
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(The symmetry conditions: E(z) = C(z), etc. will fail in higher order

expansions, unless a_=b_, S_ = S°.) Solution ZIII can be found

- )
) 0 X y
from equation A2.16 by setting "v/3" - "-/3" .

As mentioned earlier, another class of degenerate point
solutions can occur, in which one or more of C,D,E, or F is nonzero
at Zdegenerate‘ By using techniques similar to those above, we
find that the minor parameters will behave as

C(z) = Cy + C1z”2+ cee s D(z) = D  + Dz /% L.,
E(z) = E, * E1z]/2+ cee s F(z) = Fo t F]z]/2+ cer s
Pz) = pB L s oA
(A2.17)
R(z) = R121/2+ , T(z) = T]z]/2+ ;
U(z) = U]Z1/2+ , V(z) = v]z]/2+

Self=consistency equations for P1,Q1,R1,T],U1, and V1 can

be found as usual, except that all coefficients are polynomial
functions of Co’Do’Eo and F0 (which are presumed known). In
practice, this set of nonlinear (algebraic) equations was solved
computationally, on a case-to-case basis, since the algebraic
complexity of the problem prevented analytic results. Furthermore,
this class of degenerate point solutions could usually be "avoided"
entirely by altering slightly the initial conditions (i.e. a
"physically equivalent" problem could be found for which no degenerate

point of this class would occur at any later value of z).

To "order" the degenerate point solutions corresponding to
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equation A2.17, when needed, or to verify the analytical results for
the degenerate point solutions listed in equation A2.15, the action-
integral was calculated along with our numerical solutions. For

N=2, equations IV.2.7, IV.2.12a, and IV.2.9a reduce to

A(z): = L(2) a) = o
L(z) = - § ”dx dy(|E|%)?
. _ xbhab PT O NE., LB, b, 03 L L
8 nonlmn m',n'm=m'n=-n' "m'n' m-m',n-n mn
here L =1 and [.. = (2n-1)L_ ; the functions E' .0 E3
wnere 0 = an M = M= m * e tunctions m,n, m,n, m,n,

and Og , are defined in equations A2.3 and A2.4.
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