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Abstract 

Since the discovery of metallic glass formation by ultra-rapid melt quenching at 

Caltech in 1959, it was thought that metallic glasses can be processed only as very 

thin ribbons or fine powders, due to the required high cooling rate, and that they 

are not stable above the glass transition temperature. This has severely limited 

the technological applications of metallic glasses which combine unique and 

desirable properties. Also, bulk glass forming metallic alloys have long been 

desired to improve our scientific knowledge of nucleation, crystal growth and 

other properties of undercooled metallic melts. 

After the discovery of solid state amorphization in early eighties, there were 

several years of paused research on metallic glass formation by melt quenching. 

At the end of the last decade, a Japanese group in Sendai discovered new metallic 

systems, which require substantially lower cooling rates for glass formation than 

previous systems and which have high thermal stability above their glass 

transition temperature. 

As a major contribution to a new era of metallic glasses, this thesis extended the 

formation and the thermal stability of metallic glasses to the extent that many 

potential uses of metallic glasses have come to the brink of reality. For the first 

time, the art of metallic glass making has become as easy as a single step alloy 

preparation using conventional metallurgical processing. The production of the 



larger bulk metallic glass specimens is limited only by the scale of equipment in 

our laboratory and not by limitations arising from the glass forming ability of the 

particular alloy. These new developments presented throughout this thesis may 

not only extend the applications of metallic glasses but they also allow us to 

study the properties of highly undercooled metallic melts which are very 

important in phenomena such as nucleation and crystal growth. 

The thesis starts with an introductory chapter describing the art and science of 

metallic glasses prior to this work. Then, a critical review of the current 

knowledge of thermodynamics and kinetics of glass formation is given in chapter 

2. In chapter 3, an example of a highly processable metallic glass alloy, 

Zr41.2Til3.8C~12.5Ni10.0Be22.5 , is presented along with its preparation methods. 

Its general characteristics which distinguish it from conventional metallic glasses 

are emphasized. This particular glassy alloy, Zr41.2Til3.8Cul2.5Ni1o.oBe22.5 , 

belongs to an exceptionally large family of excellent glass forming metallic 

systems, which were developed in the course of this thesis research. In chapter 4, 

various forms of heterogeneous nucleation, --an important phenomena in glass 

formation-- are discussed with reference to several glass forming alloys. Finally, 

conditions for bulk glass formation are proposed in view of our current 

theoretical knowledge and experimental observations. Difficulties in attaining 

these conditions are also discussed and suggestions are made for finding other 

bulk glass forming alloys. 
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Chapter 1: 

Introduction 

In this chapter I will introduce and define some of the terminology used in this 

thesis. After introducing glass and the glass transition, I will present a brief 

history of metallic glasses and their characteristics. The early work on bulk 

metallic glasses will then be reviewed. Finally, I will summarize the recent work 

on bulk metallic glasses carried out at Tohoku University, which inspired this 

thesis. 

1.1 What is glass? 

For the purpose of this thesis, I will use the original and the more specific 

definition of glass. A glass is an amorphous solid, lacking any long range order, 

formed by continuous hardening of a cooled liquid. The hardening is 

determined quantitatively by viscosity and it is common to take a viscosity of 

1013 poise1 to distinguish fluid from solid behavior. The amorphous structure 

can be determined by X-ray diffractio:n and transmission electron microscopy 

(TEM). However, the difference between an amorphous and nanocrystalline 

structure becomes vague when long range translational order is limited to a few 

nanometers. A solid will be called amorphous, when no long range order can be 

1 1 poise = 10-1 Ns m-2 



detected down to -2 nm. Further, we can supplement X-ray and TEM by 

calorimetry, which utilizes the thermtal manifestations of the glass transition and 

the crystallization of a glassy phase. 

1.2 The glass transition 

The glass transition can be defined as a transition during which undercooled 

liquid configurationally freezes into a solid in a rather well defined temperature 

range during continuous cooling. Alternatively, an undercooled liquid 

transforms into a glass during the glass transition. This transition is roughly 

reversible (ignoring irreversible relaxation effects in the glass), unless 

crystallization intervenes, and transforms the glass into a highly undercooled 

liquid state during continuous heating. During glass transition the atomic 

mobility, which is correlated to the viscosity, changes by several orders of 

magnitude. In figure 1.1 (a) the temperature dependence of the viscosity of an 

undercooled liquid is shown schematically. Usually the glass transition occurs in 

a relatively small temperature interval though it is somewhat dependent on the 

rate of heating and cooling. The glass transition temperature Tg has been arbitrarily 

defined as the temperature at which viscosity has a value of 1013 poise. The 

reduced glass transition temperature Trg, a crucial factor for glass formation, is 

defined as TTg = 'Tg/Tm, where Tm is the thermodynamic freezing temperature of 

liquid (where the liquid freezes to the equilibrium crystalline phase(s)). 

It has been empirically observed that the heat capacity of undercooled liquid 

increases with decreasing temperature below Tm and frequently exceeds the heat 

capacity of the corresponding crystalline phase. Thus dCp =c; - C; , defined as 

the difference of heat capacity between liquid and crystal, increases with falling 



Tg Tm 

Temperature - 
Figure 1.1: (a) Temperature dependence of the viscosity of an undercooled melt. 

(b) Heat capacity of an undercooled melt as a function of temperature. Also 

shown is the typical heat capacity of the corresponding crystalline solid at the 

same composition. 



temperature as shown in figure 1.1 (b). Alternatively, liquid loses entropy faster 

relative to the corresponding crystal with decreasing temperature. According to 

the "Kauzmann Paradox," this cannot continue indefinitely as entropy of melting 

would fall to zero with decreasing temperature and become negative at some 

temperature below the thermodynamic melting point [I]. This trend must 

therefore be terminated at some low temperature by a solidification process. The 

solidification can be either crystallization or the formation of an amorphous 

solid, glass. When the crystallization is suppressed by the kinetic constraints, the 

formation of an amorphous solid is realized through the glass transition. Figure 

2 shows the heat capacity of undercooled liquid decreasing abruptly during the 

glass transition thus avoiding the "Kauzmann Paradox." This abrupt change in 

heat capacity has been traditionally exploited to determine the glass transition 

temperature of undercooled liquids by the calorimetric techniques. 

1.3 A brief history of metallic glasses 

The history of metallic glasses formed by melt quenching starts in 1959, here at 

Caltech, with an unexpected result of an experimental search for extended solid 

solubility in the immiscible Au-Si binary system by very rapid quenching from 

the molten state [2]. The very rapid quenching of liquid was achieved by a gun 

quenching technique which can give exceptionally high cooling rates of 107 K/s 

for samples having a thickness of a few microns or less [2,3]. Previously it had 

been shown that extended solid solutions and new crystalline metastable phases 

can form in binary systems having solid immiscibility upon rapid quenching 

from the molten state using the same technique. For example, extended solid 

solutions were found in Ag-Cu and Ag-Ge systems, and a new metastable 

hexagonal phase was found in Ag-Ge system [2,3]. As the Au-Si system 



resembles the Ag-Ge system in several respects, extended solid solutions and 

new metastable crystalline phases weire expected in the Au-Si system upon very 

rapid quenching of the liquid alloy. However, at the composition of Au75Si25, a 

new metastable glassy phase was found which was called "non-crystalline phase" 

at that time [4]. The main difference between Au-Si and Ag-Ge is that Au-Si has 

a much deeper eutectic, at 18 atom percent Si, where metallic glass formation was 

observed. This was quickly pointed out by Cohen and Turnbull [5] and they 

proposed subsequently that glass formation is favored near deep eutectics. 

Later, Turnbull used the classical theory of nucleation and growth of crystalline 

phases in undercooled liquids to account for the glass forming ability of 

materials [6]. He concluded that glass formation is favored at high reduced glass 

transition temperatures, Typ defined as Tyg I TX/T,. As glass transition 

temperature slowly varies with composition, deep eutectic compositions have 

higher reduced glass transition temperature, hence better glass forming ability. 

Since then, this has become a very popular guide to finding new metallic glass 

forming systems. 

However, metallic glasses didn't attract the attention of the scientific community 

for a decade and were even referred to as "Pol Duwez' s stupid alloys" by one 

visiting professor 171. After the discovery of strong ferromagnetism in Fe- base 

metallic glasses [B], the level of research in this new field accelerated due, not 

only to scientific interest in ferromagnetism, but also to possible exploitation in 

industrial applications. Since then, numerous new metallic glass forming 

systems have been studied and glass transition has been found in a large number 

of binary systems. Initially, it was thought that glass formation was unique to 

late transition metal-metalloid type eutectic systems such as Au-Si, Pd-Si, Fe-B, 

etc. Here, the composition of metalloid element is typically found to be near 20 



atom percent. The first counter example was reported by Giessen and co- 

workers in 1967 [9]. Nb-Ni and Ta-Ni binary alloys with 60 atom percent Ni 

were quenched into the glassy phase by splat-quenching. Later they reported 

glass formation in Zr-TM (TM=Ni, Co, Cu, Pd) with late transition metal 

concentration ranging from 25 atom percent to 60 atom percent [lo]. By the mid 

eighties, several different types of glass forming metallic systems had been 

discovered by rapid quenching techniques. These included metallic systems 

containing up to 50 atom percent metalloid atoms, e.g., X U ~ ~ Z Y ~ B ~ O  [Ill, metallic 

systems with no transition metal or metalloid, e.g., Mg70Zn30 [12], and transition 

metal-simple metal systems, e.g., Ti50Be40Zr10 [13]. 

In the late sixties Chen and Turnbull successfully carried out the first 

experimental studies of the glass transition in metallic glasses. This was a very 

difficult task for metallic systems, as c:rystallization kinetics in metallic systems 

are much faster than in oxide glasses such as fused silica. Crystallization 

generally intercedes and precludes the glass transition in the time scale of 

laboratory measurements. In the first system they studied, Au~1.4Si18.6 , they 

were not able to observe the glass transition calorimetrically (i.e., abrupt change 

in heat capacity of glass) as crystalliza.tion intervened [14]. However, they found 

that at the melting point, the liquid has a higher heat capacity than the crystal, 

and dCp increases further with increasing liquid undercooling, whereas the heat 

capacity difference between the glass and the crystalline phases from room 

temperature up to the crystallization temperature is less than the heat capacity 

difference of liquid and crystalline phases below the melting point. They 

concluded that there should be a glass transition temperature, between the 

crystallization temperature and melting point of the crystalline alloy, where the 

trend of increasing ACp with falling temperature terminates. This was an indirect 



proof for the existence of a glass transition in metallic glasses. Later, they 

obtained direct thermal evidence that a glassy Au77Gel3.6Si9.4 alloy --a better 

glass former-- exhibits a transition from the glass to a metastable supercooled 

liquid state highlighted by the abrupt change in heat capacity as predicted [15]. 

They further confirmed their thermal results by viscosity measurements around 

the glass transition [16]. In summary, they observed that upon continuous 

heating, metallic glasses go through a glass transition, becoming a highly 

undercooled liquid in a short temperature interval. When the transition is 

complete, the typical force needed to sustain deformation of the undercooled 

liquid is many orders of magnitude less than for the glass. This may have 

practical applications such as easy fabrication of glassy alloys at temperatures far 

below the melting temperature of crystalline alloy. However, the utilization of 

the glass transition in fabrication of m.etallic glasses has never been realized, 

since metallic glasses have not been stable enough against crystallization above 

the glass transition. Since these early experiments, relatively very little 

experimental work has been done on glass transition and related phenomena 

such as viscosity change at the glass transition in metallic glass systems. 

Until the early seventies, the reported studies of metallic glasses have 

concentrated on measurement of physical properties which do not depend on 

sample geometry such as electrical, magnetic, thermodynamic and structural 

properties. At that time, the available rapid quenching techniques could not 

produce metallic glass samples with suitable geometry for large scale mechanical 

testing. Masumoto and Maddin were the first to report on the comprehensive 

mechanical properties of metallic glasses 1171. They adapted the rotating crucible 

technique, which was originally developed for the production of the crystalline 

metal filaments from the melt [I$], to produce uniform and long enough Pd-Si 



glassy ribbons to carry out mechanical tests. They found that metallic glasses 

have exceptional high strength and show limited ductility in tension. However, 

this apparent "brittleness" was completely different from that of oxide glasses as 

there was evidence of plastic flow at failure surfaces. Deformation markings -- 

shear bands-- were observed on the yield surfaces of metallic glass ribbons which 

were pulled above the yield point. The first experiment to show the intrinsic 

ductility of metallic glasses was actually carried out by Pol Duwez et al., though 

not reported [19]. They were able to cold roll 40 micron thick glassy foil down to 

13 micron without any cracking. Another good example of ductility in metallic 

glasses was given by Chen and Polk [20]. They bent a Ni- base metallic glassy 

ribbon around a radius of the order of magnitude of its thickness without any 

breaking and crack formation. However, the ductility of metallic glasses 

depends on the preparation method als well as on the composition. For example, 

no sign of ductility was observed in bending C~60Z~40  glassy alloy [21]. 

As the properties of metallic glasses have been measured and sorted out, it has 

been found that these new glassy alloys have unique features and combine 

several desirable properties which do not exist in their crystalline counterparts. 

For example, metallic glassy alloys have very high elastic limit, high hardness, 

very high strength --close to the theoretical limit--, good bend ductility, better 

soft magnetic properties, increased corrosion resistance, low coefficient of friction 

and other useful properties [22]. Although metallic glasses have very useful 

properties for many technological applications, they were largely ignored by 

industrial researchers for some time. Clearly, the single most important reason 

was the difficulty in production of metallic glasses which requires very high 

cooling rates. Since heat had to be extracted in at least one direction at 105-107 

K/s, metallic glasses should have a thickness of less than 100 micron at least in 



one direction. The early rapid quenching techniques were not convenient for the 

large scale production of metallic glasses. By the mid seventies, the development 

of new rapid quenching techniques for industrial production, such as single 

roller chill-block casting 1231, opened the way for the applications of metallic 

glasses 1247. The first applications utilized the unusual soft magnetic properties 

of Fe-base metallic glasses to produce transformer cores which could be wound 

from thin sheets. This also permitted the researchers to obtain better samples in 

the form of uniform foils for more cornprehensive testing and characterization of 

metallic glasses. The absence of bulk specimens nevertheless continued to hinder 

use in structural applications. 

In the first three decades of metallic glass research, the common wisdom has 

been that metallic glass formation is generally limited to high cooling rates of 105 

K/s or more. In turn, this cannot give glassy samples having a minimum 

dimension greater than a few hundreds microns. There were a few exceptions. 

For example, certain noble metal based alloy systems were found to exhibit glass 

formation at somewhat lower cooling rates. To obtain bulk samples in more 

practical alloys, several methods have been tried to consolidate metallic glasses; 

however, most of them either failed or achieved moderate success at enormous 

effort and cost 1251. One method used by Shingu deserves particular attention 

[26]. This method exploits the homogenous deformation of metallic glasses 

above the glass transition and requires relatively much smaller consolidation 

pressures due to very low viscosity. However, known metallic glasses at the 

time of this work were generally prone to crystallization above the glass 

transition. In fact, most of them were observed to crystallize below the glass 

transition temperature making the Shingu process very tricky and difficult to 

implement and control. Another method which worked well in consolidation of 



metallic glasses is shock wave consolidation [27,28]. However, this method is 

very expensive and its practical applications are very limited. Ironically, until 

the 1990's research efforts to find metallic glasses which do not require high 

cooling rates (thus making bulk glass formation easier), or efforts to find metallic 

glasses with better thermal stability above the glass transition, were relatively 

rare compared to efforts on consolida-tion of metallic glasses. 

The interest in metallic glass formation from the melt diminished quickly with 

the discovery of solid state amorphization by R. B. Schwarz and W. L. Johnson (a 

Ph.D. student of Pol Duwez) in 1983 1291. There has been little work reported on 

melt quenched metallic glasses due to increased research interest in solid state 

amorphization since then. 

Starting in 1989, the group of Masumoto and Inoue, at Tohoku University, 

discovered several novel metallic glass forming systems, which were all reported 

in the journal of "JIM Materials Transactions." These systems are especially 

distinguished from earlier ones by much lower critical cooling rates required to 

produce glass. This enables glass forrnation in thicker samples and better 

thermal stability above the glass transition. Moreover, these systems do not 

contain expensive noble metals unlike earlier "thick glass formers. It is also 

obvious that these alloys are better suited for scientific work, such as viscosity 

and heat capacity measurements, and for possible technological applications. 

Interestingly, there was little response in the scientific community to this 

breakthrough work until 1993 [30]. 



1.4 Previous work on bulk metallic glasses 

For the purpose of this thesis, I will define the terms of "thick glass" and "bulk 

glass." The term "thick glass" refers to glassy samples having a minimum 

dimension of one mm or more, whereas "bulk glass" will refer to glassy samples 

having a minimum size of one cm or more. 

The first thick metallic glass formation was reported by Chen and Turnbull in 

1969 [31]. They added Cu, Ag, and Au to the well known Pd-Si glass forming 

binary system [32]. By dropping liquid droplets onto copper substrates, they 

made 1.0 mm thick glassy samples. A, typical composition was Pd77.5hIbSi16.5 

(M=Ag, Au, Cu). They also found that these metallic glasses have better thermal 

stability than others. For example, they heated a glassy Pd77.5C~6Si16.5 alloy 40 K 

above the glass transition without crystallization at a heating rate of 20 K/min. 

Most other metallic glasses crystallize before the glass transition temperature has 

been reached. 

Later, Chen investigated glass formation in (PdlPXMX )0.835 Si0.165 , 

(Pdl-xTx)l-zPZ, (Ptl-xNix)l-zPz (T = Ni, CO, and Fe and M = Rh, Au, Ag, 

Cu and T) systems [33]. He found that the replacement of Pd and Pt with 

elements of smaller size (e.g., Ni, Co, Fe, and Cu) greatly facilitated the formation 

of metallic glass and lowered the critical cooling rates down to 103 K/s. Ni was 

especially effective; giving the largest replacement of Pd and Pt and thicker glass 

formation. 1-3 mm diameter rods of glassy samples were obtained by quenching 

the melt, sealed in a capillary quartz tube, into water. He attributed this 

enhanced glass formation to the increased reduced glass transition temperature 

TT due to additional alloying. These alloys have been found especially useful for 



more reliable and comprehensive mechanical testing of metallic glasses. Two of 

the well known compositions are Pd40Ni40P20 and Pd77.5Cu6Si16.5. The Pt- base 

alloys were not extensively studied due to their prohibitive cost. 

In 1982, Lee, Kendall and Johnson [34] reported thick glass formation in another 

noble metal based alloy, Au55Pb22.5Sb22.5. 1.5 mm diameter spheres of this alloy 

formed metallic glass upon quenching molten droplets into LN2. They noticed 

heterogeneous nucleation on surfaces of bigger samples. This glassy alloy has 

such good thermal stability that its heat capacity was measured up to 50 K above 

the glass transition temperature [35]. 

In 1982, David Turnbull and his colleagues demonstrated the first cm thick glass 

formation in a Pd40Ni40P20 alloy though with a cumbersome method. Turnbull 

had predicted that when the reduced glass transition temperature Tyg reaches a 

value of 0.67, bulk glass formation should occur provided heterogeneous 

nucleation of crystals is prevented 161. To demonstrate the pronounced effect of 

heterogeneous nucleation on glass formation, they tried to obtain unusually thick 

metallic glass by eliminating the hete:rogeneous surface nucleation. They used 

Pd40Ni40P20, since it had the highest reported Trg =0.66 [36], and is thus favorable 

for bulk glass formation. Initially, they tried to eliminate the surface 

heterogeneities by successive melting, solidification and etching cycles. This 

resulted in a 6 mm diameter spheroid-a1 glassy alloy with marginal crystallization 

[37]. Later, they improved the elimination of heterophase nucleants by using a 

molten surface flux of dehydrated boron oxide [38]. This technique proved to be 

powerful, producing more massive, vlrholly glassy specimens more consistently. 

They obtained a glassy sample having a minimum dimension of 1.0 cm with no 

superficial crystallinity at cooling rates of -1 "C/s. This was the largest metallic 



glass specimen formed by melt cooling until 1993 1301. They also demonstrated 

that glassy alloys with a proper flux, which deactivates heterogeneous crystal 

nucleation sites, have better thermal s'tability. They successfully heated a fluxed 

Pd40Ni40P20 glassy alloy from room temperature to the melting temperature of 

the equilibrium crystal at the rates of -1 "C/s without any crystallization [39]. 

However, this very interesting work did not receive broad attention and in some 

cases was totally ignored. 

Another noteworthy alloy is Ni62Nb38 which was found to be a glass former in 

1967 [lo]. Until the 1990's, it was the only reported alloy with no noble metals, 

having a high reduced glass transition temperature, Tyg =0.66, and an estimated 

critical cooling rate of approximately 103 K/s [36]. We have been able to cast 1.0 

mm thick glassy strip of this alloy which is consistent with the estimated critical 

cooling rate [40]. However, there has been very little reported information on its 

"thick glass formation," and no work has been reported on efforts to improve its 

glass forming ability. 

1.5 Bulk metallic glass work at Tohoku University 

The first extensive and systematic search for bulk glass forming alloys was 

carried out by the group of Masumoto and Inoue at Tohoku University, Japan. 

Recently they published several papers on metallic glasses having exceptional 

glass forming ability and high thermal stability. Their starting point was that 

better thermal stability of a metallic glass above the glass transition leads to a 

lower critical cooling rate for glass formation. This is generally true for the 

earlier thick glass forming alloys such as Pd77.5Cu6Si16.5 and Au55Pb22.5Sb22.5. 

First they tried to form metallic glasses by melt spinning which gives a cooling 

rate of 105-106 K/s. Then, they performed calorimetric measurements on readily 



glass forming alloys to determine their glass transition temperature and 

crystallization temperatures at a typical heating rate of 40 K/min. They looked 

for a wide super cooled liquid region which is quantitatively given by AT=T,-Tg, 

defined as the difference between cry!stallization and glass transition 

temperatures. Assuming higher AT values reflect lower critical cooling rates, 

they tried to find thick metallic glasses from the alloys exhibiting high AT values. 

Various methods were employed to form thick metallic glasses such as water 

quenching and metallic mold casting. They found La-base, Mg-base, and Zr-base 

metallic glasses, which require cooling rates less than 103 K/s and exhibit good 

thermal stability above the glass transition. 

1.5.1 La-base alloys 

The first thick glass forming alloy they reported is La55Ni20A125 having AT=70 K 

[41]. Glassy samples of this alloy having cylindrical shapes with a 1.2 mm 

diameter were prepared by quenching the melt, sealed in a quartz capillary, into 

water. The enhanced glass forming ability was attributed to a high value of the 

reduced glass transition temperature Tub', which was reported to be 0.68. From 

the correlation between reduced glass transition and critical cooling rate, 

proposed by Davies and co-workers [36], they expected a critical cooling rate of 

102 K/s which was in agreement with the water quenching experiment. Later, 

they increased the maximum diameter of glassy cylindrical samples up to 2.5 

mm by metallic mold casting [42]. The detailed study of La-Al-Ni ternary system 

revealed that AT correlates with reduced glass transition temperature Tq, both 

having maximum values around the composition of La55Ni20Al25 [43]. 

Replacement of Ni with Cu gave similar good results, i.e., high AT and Trg with 

maximum values of 59 K and 0.68 respectively at the cornposition of 



L u ~ ~ A Z ~ ~ C U ~ ~  [44]. Water quenching yielded glassy samples with cylindrical 

shapes up to 1.0 mm diameter. 

The mixture of ternary alloys, La55Ni20A125 and La55Cu20A125, resulted in a better 

glass forming alloy, LassNizoCuloAl25. The quaternary alloy can be cast in up to 7 

mm diameter glassy rods by high pressure die casting, whereas ternary alloys 

can be cast only up to 3 mm diameter glassy rods [45]. Even better is a pentiary 

alloy, L~~~Cu~0Ni~Co~Al25 ,  which can be cast into 9 mm diameter glassy rods. 

Similar improvement was reported for AT, which is 60 I(, 90 K and 100 K for 

ternary, quaternary, and pentiary alloys respectively. All the alloys, ternary, 

quaternary and pentiary, have values of Trg around 0.69, although they show a 

significant difference in critical cooling rates. It was proposed that the increase in 

AT is the dominant factor for the drastic decrease in the critical cooling rates. 

This proposal has been further supported by work on Mg-base and Zr-base glass 

forming alloys. 

1.5.2 Mg-base alloys 

The first alloy system reported having a wide supercooled liquid region is the 

ternary Mg- base system, Mg-Ni-La, having a maximum 473358 K at the 

optimum composition of Mg50Ni30La20 [46]. However, no work has been 

reported on the thick glass forming ability of this alloy. In a later work, the 

Tohoku group studied Mg-Cu-Y and Mg-Ni-Y ternary systems 1471. Maximum 

values of AT were reported to be 41 K for Mg-Ni-Y at the composition of 

Mg50Ni30Y20 and 61 K for Mg-Cu-Y at the composition of Mg65Cu25Y10. Thick 

glass formation was demonstrated in the Mg-Cu-Y ternary system by the metallic 

mold casting method 1481. The largest glassy sample was obtained at the 

Mg65C~2~Yzo composition as a 4 mm diameter rod. Surprisingly, the reduced 



glass transition temperature T,s has a relatively low value of 0.60 compared to 

the very low critical cooling rate. Further, TTg values change slowly with respect 

to the composition, whereas AT and critical cooling rates are strongly dependent 

on the composition. This conflicts with the well known correlation between the 

Trg and critical cooling rate proposed by Davies [36]. It was proposed that the 

compositional dependence of the required cooling rates is mainly dominated by 

the AT value. 

1.5.3 Zr-base alloys 

Although Zr-base binary glass forming alloys, Zr-Cu and Zr-Ni, have been 

among the most studied glassy alloys,, very little work has been reported for 

glass formation in Zr-base ternary systems. The group of Masumoto and Inoue 

carried out extensive work on ternary and higher order Zr-base alloys. The 

values of AT were especially well characterized as a function of composition. The 

glass formation in the ternary Zr-TM-,A1 (TM=Mn, Fe, Co, Ni, Cu) system was 

well determined and the highest values of AT were found in Zr-Cu-A1 and Zr-Ni 

-A1 ternaries, e.g., 77 K for Zr60Ni2~Al i~  1491. The reduced glass transition was 

reported to be highest, 0.64, around the vicinity of Zr60Ni20A/20 and gradually 

changing to 0.60 around the composition of Zr60Ni25A115 1501. Usually high AT 

values were reported to be associated with high Trg. Using the empirical relation 

between Trg and critical cooling rate [36], they expected a low cooling rate for the 

composition of Zr60Ni20A/20 which was confirmed by water quenching yielding a 

1.4 mm diameter glassy rod. 

The detailed study of higher order sy:;tems, Zr65A17.5Cu2.5TM25 (TM=Co, Ni, 

Cu), revealed that the quaternary system has improved glass formation 

compared to the ternary systems [51]. The optimization of composition for a 



high value of AT gave rise to a remarkably high AT= 127 K at the composition of 

Zr65Cu17.5Ni10Al7.5. Unexpectedly, no glassy alloy was found with a Trg value 

above 0.60 and no close relation was found between Trg and AT. Metallic mold 

casting yielded glassy rods as large as 7.0 mm diameter at the composition of 

Zr65Cu17.5Ni1oAl7.5, having the largest AT. Although the Trg is almost 

independent of the TM composition, the maximum diameter of glassy rod shows 

a strong dependence on composition, decreasing with the value of AT down to 

1.5 mm at AT=40 K. Later, it was clairned that glassy rods having a diameter as 

large as 16 mm were obtained by water quenching at the composition of 

Zr65Cu17.5Nil~A17.5 [52]. However, we have failed to reproduce this result. 

Further, we couldn't get a glassy rod of 7 mm diameter by water quenching at 

the composition of Zr65Cu17.5NiloA17.5 [53]. 

The effect of adding other metals to the Zr-Cu binary glass forming alloys has 

also been studied. Ternary systems have always been found to have larger AT 

values with a strong dependence on the specific element added, A1 being the 

most effective [54,55]. 
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Chapter 2 

Thermodynamics and kinetics of glass formation 

What is the stable form of solid substances? Is it crystal or glass? Unfortunately 

we don't have any rigorous proofs that can answer these questions as yet. 

However, experience tells us that crystalline phases are thermodynamically more 

stable with respect to the glass in most or all substances we know. Unless we 

meet a big surprise, we might well assume that new materials will behave 

similarly. As such, glass formation in known (and unknown) substances should 

be a kinetic phenomenon. This raises ;mother question. Can we put an arbitrary 

substance into the glassy form? Theoretical and experimental accomplishments 

of the last three decades encourage us to believe that the answer is "yes." The 

single most important factor for glass formation in a given substance has been 

found to be the cooling rate from the liquid state. A higher cooling rate is 

associated with an easier glass formation in all classes of materials. Turnbull and 

Cohen predicted that liquids will form glasses through the glass transition if 

cooled sufficiently fast to bypass crystallization [l]. As new techniques have 

been developed to provide higher cooling rates from the liquid state, more 

materials have been put into the glassy form [2]. Then a more practical question 

is "which materials can be put into glass with available quenching techniques?" 

Alternatively, "what is the required cooling rate to put a given material into 



glassy form?" Answering this question is not an easy task, as the ease of glass 

formation shows enormous variation. When we classify materials according to 

the their bonding nature, there are some glass formers in every category of 

materials. From this we can deduce tlhat the factors that govern the glass 

formation may have universal features. Turnbull used the classical theory of 

nucleation and growth of crystalline phases in an undercooled melt to account 

for the kinetics of glass formation in general and successfully underlined its 

overall features 131. It turned out that glass formation is not a purely kinetic 

process. Rather, thermodynamic properties, such as crystal-liquid interfacial 

energy, free energy difference between the undercooled liquid and the 

corresponding crystalline phase, play important roles in governing kinetics of 

glass formation. 

In this chapter I will give a critical review of kinetic analyses of glass formation 

and its relation to the thermodynamics of a system. First, the derivation of the 

classical theory of nucleation in undercooled melts will be presented without 

attempting any rigorous justification. After discussing the effects of 

thermodynamic parameters appearing in the steady state nucleation rate, I will 

present the well accepted kinetic treatment of glass formation by Davies and 

Uhlmann. Finally, the To criterion of glass formation will be introduced. 

2.1 Classical theory of homogeneous nucleation in undercooled 

liquids 

The liquid becomes thermodynamically unstable with respect to the crystal when 

it is cooled below its equilibrium freezing or crystallization temperature, the 

melting point of the crystal. As shown in figure 2.1, the liquid has higher Gibbs' 
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Figure 2.1: Gibbs' free energy curves for liquid and corresponding crystal with 

respect to the temperature. 



free energy than the crystal below the thermodynamic melting of the crystal. 

This free energy difference gives the driving force for the nucleation of crystals 

from the liquid. In general, the free energy difference per unit volume, AGv, is 

given by 131 

where mf, is the molar heat of fusion, ACp is the molar difference in heat 

capacity between the liquid and the crystal, V, is the molar volume of the 

crystal, T ,  is the reduced temperature, and AT, is reduced undercooling. T,  

and AT, are defined as 

where T, and T are, respectively, the equilibrium melting temperature and 

actual absolute temperature. 

However, the creation of a liquid/crystal interface discourages the homogenous 

nucleation of the crystal. This is the main cause of the resistance of the liquid to 

crystal nucleation. The competition between the interface energy and bulk free 

energy difference depends on the crystal nucleus size which in turn determines 

the stability of a crystalline embryo. For a spherical nucleus with radius r, the 

total Gibbs' free energy change upon nucleation is given by [4]: 

where o (o >O) is the interfacial energy per unit area. In figure 2.2, AG is shown 

as a function of r, where AG, and a are assumed to be independent of r. 



The AG has a maximum at r" which is given as 

and a maximum of AG* is given by 

The r" and AG* are the result of the balancing of two competing factors, one 

increasing with the area due to the interfacial tension, and one decreasing with 

the volume due to the free energy difference between liquid and crystal. As seen 

in figure 2.2, crystalline nuclei larger tlhan r* will grow with decreasing free 

energy and be stabilized. They will be nuclei for further crystal growth. 

Crystalline nuclei having a radius smaller than r" will tend to remelt, as growth 

will increase overall free energy. Thus, AG* is an activation energy for 

homogenous nucleation of crystals from the liquid. 

Then, the classical theory of nucleation developed by Volmer, Becker, and co- 

workers gives the rate of homogenous nucleation as 

where q is the free energy activation for atomic diffusion across the phase 

boundary, k is the Boltzman constant, and K is a constant to be determined [5]. 
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Figure 2.2: Gibbs' free energy change of nucleation of a crystalline embryo as a 

function of its radius. 



Turnbull and Fischer derived the absolute rate of homogenous nucleation, thus 

determining K, based on the previous nucleation theory and the rate of absolute 

reaction rates [6]. According to their analysis, the rate of homogenous 

nucleation, to an order of magnitude, is given as 

in units of the number of nuclei per u.nit volume per unit time. Here, Nv is 

number of atoms per unit volume anti v, is the frequency of attempts by atoms to 

cross the phase boundary. It is a characteristic vibration frequency and is given 

as v, = kT /h  by the classical atomic theory. 

Another alternative expression has been proposed for the rate of homogenous 

nucleation, which is 

where Di is diffusion coefficient for atomic transport across the nucleus matrix 

interface, and a, is the interatomic distance 171. This expression reduces to 

previous equation [8], when atomic transport at the interface is assumed to be an 

activated process: 

Usually, Di is taken to be equal to the liquid diffusivity D, which is in turn 

related to the viscosity by the Stokes-Einstein relation [8]: 



However, equation 2.9 is valid for single component simple liquids and its 

applicability to more complex systems such as good glass formers is 

questionable. 

It should be noted that the above description of homogenous nucleation apply 

only to the limiting conditions in which a quasi-steady distrubution of embryos 

has been established. When the assembly is suddenly changed from a stable to a 

metastable condition, the nucleation rate is then a function of time until the 

quasi-steady state is attained. This effect will be unimportant if the transient is of 

short duration compared with the period of the observation [8,9]. The transient 

nucleation behavior of a condensed system is approximated by 

where It is the nucleation frequency at: time t and z is the transient time [8,9]. z 

is given with order-of-magnitude accuracy by the relation: 

where Ns is the number of atoms on the surface of a critical nucleus, v = is 

the frequency of atomic transport at the nucleus-matrix interface and the n* is 

the number of atoms in the critical nuclei given by equation 2.3. 

The transient effects have been usually neglected in kinetic analyses of glass 

formation and same will be followed j.n this thesis. This can be justified 

whenever the time required to establish the steady-state conditions is small 

relative to the total transformation time and to the time scale of the experiment. 

When transient effects are important, their negligence will usually underestimate 



the glass forming ability and thermal stability of glass above the glass transition 

[101. 

2.2 The effect of thermodynamic parameters on the rate of 

homogenous nucleation 

Turnbull analyzed the rate of homogenous nucleation with respect to the 

thermodynamic parameters such as reduced glass transition Tyg = TB/Tm, 

interfacial tension and entropy of fusion, and presented the overall features of 

their effect [3]. Further, he predicted the glass forming ability for certain values 

of thermodynamic parameters. He assumed that formation of one nucleus 

precludes the glass formation. Thus the total number of appearing nuclei, n, 

should be less than one in the course of cooling of liquid. In this equation V is 

the sample volume, t is the time in which liquid is cooled. This condition of 

bypassing crystallization is valid for h.igh crystal growth velocity (-1 cm/sec.) 

and small sizes of sample (-100 microns). 

To calculate the homogenous nucleation rate, he assumed that the atomic jump 

time scales with the viscosity and no difference between the heat capacity of 

liquid and crystal, i.e., ACp = 0. Putting ACp = 0 into the equation 2.1 gives the 

famous "Turnbull approximation" for free energy difference between the 

undercooled liquid and the corresponding crystal: 

1 1 
AG, = M~,(AT,)- = Asfm(Tm -TI- 

v m  v m  



where  AS^, is the molar entropy of fusion at equilibrium melting point.  AS^, 

corresponds to the difference between the slopes of free energies of liquid and 

crystal. Further, he introduced two new parameters a and /3 which replaces the 

interfacial tension and entropy of fusion respectively. They are defined as: 

where N is Avogadro's number and Ft is the gas constant. Physically, a is the 

number of monolayers of crystal which would be melted at Tm by an enthalpy 

equivalent in magnitude to interfacial energy, and it is the principal resistance of 

the liquid to the nucleation. 

Then, the steady rate of homogenous nucleation becomes 

where N is the Avogadro's number, and kn is a constant to be determined. kn is 

taken from Turnbull and Fischer's kinetic analysis [5], which is set approximately 

to 1032 dyne. cm. (1023 N m). 

To calculate the steady rate of nucleation as a function of viscosity was set 

to a constant value of 10-2 poise, a typical value for liquid metals. This will give 

an upper bound for the nucleation rate as viscosity increases with undercooling. 

Accordingly the computed values of log I, as a function of reduced temperature 

is shown in figure 2.3. The corresponding values of are also indicated. 



Figure 2.3: Variation of the logarithm of the frequency (in cm-3s-1) of 

homogenous nucleation of crystals in undercooled liquid with reduced 

temperature for various assignments of ap1/3 calculated from equation 2.16. 

Viscosity was set to a constant value of 10-2 poise. Reproduced from ref. 3. 



As seen from figure 2.3, the homogenous nucleation rate has a broad peak 

around two thirds of reduced temperature independent of the values of a/31/3. 

The value of the maximum nucleation rate depends strongly on the value of 

, becoming larger at small values. Typically, a nucleation event cannot be 

detected on the laboratory time scale when its rate is below 10-6 nuclei/ cm3 s. 

When a/31/3 = 0.9, the liquid, unless seeded, will freeze to glass since the rate of 

homogenous nucleation is extremely small. Metals have been found to have 

typical values of a = 0.5 and /3 = 1.0 [Ill, so their nucleation rates will be around 

1025 cm-3s-1 at the maximum. The rapid cooling techniques would not be 

sufficient to quench any metallic liquid into a glass unless Tg were much greater 

than 0 K. 

The undercooled liquid has another means to resist nucleation far below melting 

point. This is due to the drastic decrease of atomic mobility which is related to 

viscosity. As undercooled liquid freezes configurationally during the glass 

transition, no nucleation is expected below the glass transition temperature. 

Further, the nucleation frequency should drastically decrease around the glass 

transition in accordance with the atomic mobility. Thus the relative position of 

melting point and glass transition temperature should be very important in 

nucleation kinetics. 

To express the temperature dependence of the viscosity, Turnbull used a Fulcher 

type equation [12], which reasonably describes the viscosities of glass forming 

liquids in the range of 10-2 -107 poise. The viscosity 77 was equated to: 



Figure 2.4: Variation of the logarithm of the frequency (in cm-3s-1) of 

homogenous nucleation of crystals in undercooled liquid with reduced 

temperature calculated from equation 2.16. ap1/3 was set equal to 1/2 and 

viscosity was calculated from equation 2.17 with indicated assignments of Trg. 

Reproduced from ref. 3. 



Notice that the Fulcher equation fails at temperatures very close to Trg, the 

reduced glass transition temperature. 

The effect of different values of Trg on the rate of homogenous nucleation is 

calculated from equation 2.16, with 0!p1'3= 0.5 and using equation 2.17 for the 

viscosity. The computed I, -Trg relation with indicated values of Trg is shown in 

figure 2.4. The peak of the nucleation frequency is lowered, sharpened and 

shifted to higher T, at high values of ITrg. Particularly, liquids with Trg = 2/3 can 

crystallize only within a narrow temperature range and very slowly provided 

heterogeneous nucleation is prevented. These liquids have the best potential to 

form bulk glasses easily. Taking an average value of 1, = 10-3 cm-3s-1, a sample 

size of 1 cm, and a temperature range of 100 K to cool, equation 2.12 will predict 

a low critical cooling rate of 0.1 K/s for glass formation when Trg = 2/3 in the 

absence of heterogeneous nucleation. Most of the early-known metallic glass 

formers have Trg -0.5 [13] and can only form glasses in small volume and high 

cooling rates. Taking an average value of 1, = 1012 cm-3s-1, and a temperature 

range of 100 K to cool, the equation 2.12 will predict a critical cooling rate of 106 

K/s for a sample size of 20 microns for metallic glass formation. This is in broad 

agreement with experimental observations. 



2.3 Davies - Uhlmann kinetic analysis 

Uhlmann was first1 to introduce formal transformation theory into the kinetic 

treatment of glass formation 1141. He was concerned with the magnitude of 

cooling rate required to avoid a certain amount of crystallization in the course of 

cooling of liquid. The maximum amount of crystalline fraction for glass 

formation was set to the 10-6 with the justification that this is the limit of the 

routinely used analytical techniques such as X-ray diffraction and TEM. Later 

we shall see that this value can be set somewhat arbitrarily provided it is small, 

as the final results depend on this value very weakly. Using the accepted 

theories of homogenous nucleation and crystal growth, he constructed the TTT 

(Time-Temperature-Transformations) diagrams for a certain fraction of crystal 

formation from the liquid and estimated the critical cooling rates for classical 

glass forming systems. This was an improvement to Turnbull's criteria of glass 

formation in which formation of one nucleus precludes glass formation [3]. 

Then, Davies applied this formalism to the glass formation of metallic systems 

and successfully estimated the critical cooling rates [15-171. Here, I will present 

this formalism as applied to metallic systems by Davies [18]. 

The Johnson-Mehl-Avrami isothermal transformation kinetics gives the volume 

fraction of transformed material, X, as: 

1 D. Turnbull and M. H. Cohen noted the formal transformation theory for glass 
formation in "Modern Aspects of Vitreous State, J. D. Mackenzie (ed.) 
Butterwoths, London 1960." As they found the calculations complicated, they 
haven't used the actual formulation. Instead, they used limiting cases for glass 
formation and took an average value of 10-l2 nuclei/sec. cm3 for I, u j  to 
calculate the critical cooling rate for glass formation. 
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where I, is the nucleation frequency and u, is the crystal growth rate and t is time 

taken to transform X [19]. In the early stages of transformations, or for small 

values of X, the value of X can be approximated as: 

It was assumed that only the homogenous nucleation is occurring and the same 

expression as equation 2.7 has been used for the rate of homogenous nucleation. 

Using the "Hoffman approximation" [20] for AG,, the volume free energy 

difference between the liquid and crystal, 

and following Turnbull [3,11] 

the activation energy for homogenous nucleation is given by the expression: 

AG*/kT has been expressed more appropriately as: 

where the constant A is given by A = 16II a3~sL/3~ .  The constant A can be 

estimated by taking AG*/kT - 50 when AT, = 0.20 [7], which is equivalent to the 

AG*/kT - 60 when AT, = 0.18 1191. Then the rate of homogeneous nucleation 

becomes: 



Following the previous derivation, the crystal growth rate is given by [22] 

where Dg is a diffusion coefficient for atomic motion required for crystal growth, 

AG, is the molar free energy change, and f is the fraction of sites at the interface 

where growth occurs. For rough interfaces, as in the case for closely packed 

crystal structures having low entropy of fusion, 

all sites are considered to be equally available for growth and f = 1. For alloys 

having high entropy of fusion, f = 0.2 AT, was chosen. Using the Turnbull 

approximation (equation 2.13), the crystal growth rate becomes [8]: 

It is interesting to note an inconsistency. The Turnbull approximation has been 

used for free energy difference in the expression of crystal growth rate, whereas 

other approximations, such as the Hoffman approximation, have been used for 

the free energy difference in the expression of homogenous nucleation rate. 

For simplicity, it was assumed that Di = Dg = D where D is the bulk diffusion 

coefficient and it was related to viscosiity by Stokes-Einstein relation: 



After combining and arranging equations 2.28,2.27,2.24 and 2.19, the time t to 

form a small fraction of crystal, XI at temperature T is given by 

Notice that t depends on the 1/4th power of X which gives a relatively weak 

dependence of t on X. In calculation of TTT diagrams, interpolated viscosities 

based on the empirical Fulcher relation 

77 = Aexp i (T mBTn i J 
have been used [13]. The constants A, B and T q  were derived by fitting the 

expression to respective estimated 77 values at the experimentally measured 

liquidus temperature Tl, and assuming 77 = 1013 poise at experimentally 

measured Tg [13]. Where Tg has not been thermally manifested, the 

crystallization temperature was assumed as the lower bound for the value of Tg. 

The viscosity at the liquidus point is estimated from the extrapolation of the 

Arrhenius relation for liquid Ni above its melting point T;, 1171. 

CCT (Continuous - Cooling - Transformations) diagrams have been constructed 

from the TTT diagrams by the method of Grange-Keifer [23]. Thus the critical 

cooling rate T c  was calculated by the cooling curve that just avoids interception 

of the nose of the CCT curve, i.e., T c  = (TI - T,)/t, where T,  and t ,  are the 

temperature and the time at the nose respectively. Accordingly, the estimated 

critical cooling rates of several metallic glass forming alloys are shown against 

the corresponding Tyg in figure 2.5, which is reproduced from ref. 13. The 

predicted cooling rates agree with experimental observations within uncertainty 



Figure 2.5: Calculated critical cooling rates for glass formation (based on CCT 

curves for the formation of a fraction crystal of plotted against reduced glass 

transition temperature T,y for a representative range of elements and alloys. 

Reproduced from ref. 13. 



of calculations and errors in estimating cooling rates in rapid solidification 

techniques. Obviously, TTg appears as a crucial parameter in glass formation. 

The higher Trg corresponds to the lower critical cooling rates. Notice that the 

critical cooling rate decreases much more rapidly as T,g approaches the value of 

0.67. However, the case of Pd40Ni40P20 needs further attention. Initially, the 

observed critical cooling rate of Pd40Ni40P20 was reported to be -103 K/sec. 1241. 

Later, Turnbull and his colleagues successfully undercooled a cm thick 

Pd40Ni40P20 alloy into glass by employing fluxing to eliminate surface 

heterogeneous nucleation at cooling rates of 1-2 K/sec [25]. According to the 

Davies-Uhlmann analyses, the critical cooling rate of Pd40Ni40P2~ was predicted 

- 100 K/sec., thus overestimating it b y  two orders of magnitude. In this case, the 

observed cooling rate is determined much more accurately than with other 

techniques such as splat quenching artd melt spinning [25], and the discrepancy 

can be explained only in the uncertainties in the kinetic analyses. These 

uncertainties and possible improvements will be discussed in the next section. 

Later, several refinements were added to this model by several researchers. 

Saunders and Miodownik used the thermodynamic parameters obtained from 

phase diagram calculations to derive the values of energy barrier for nucleation, 

free energy driving forces, and melting points, and used them in calculation of 

TTT diagrams [27]. This approach makes it possible to calculate the critical 

cooling rates for metastable crystalline phases. Other approximations for AGv 

have been proposed as an improvemeint to the Hoffman approximation [28,29]. 

However, none of them give satisfactory results compared to the extrapolation of 

experimental data for AGv [lo]. 



Ramachandrarao et al. suggested a Doolittle type expression [30] to represent the 

viscosity of undercooled liquid [30]: 

q=Aexp B exp -- . [ I  r :TI1 

They argued that this expression' gives better approximation to experimental 

values of viscosity over the full range of T, to Tg for Au77Ge13.6Si9.4 [32]. 

Tanner and Ray used Davies-Uhlmann analysis to account for the difference 

between the critical cooling rates of Zr65Be35 and Ti63Be37 1331. Their calculations 

did not give satisfactory results and they proposed that the energy barrier for 

homogenous nucleation should be modified. They were able to account for the 

difference in glass forming ability by taking AG*/kT - 55 for Zr65Be35 and AG*/kT 

- 40 for Ti63Be37 at ATr = 0.20. 

2.4 Limitations of Davies - Uhlmann kinetic analysis 

The main limitations of Davies-Uhlmann kinetic analyses stem from the limited 

theoretical understanding of nucleation and crystal growth and inadequate 

experimental data for parameters used in these equations. 

First of all, the expressions used for the homogenous nucleation rate and crystal 

growth velocities are valid only for single component or congruently melting 

multi-components systems, which is usually not the case for metallic glass 

forming systems, i.e., this model is true for partitionless crystallization [8,14]. In 

principle this deficiency can be eliminated by using models for nucleation and 

crystal growth of multi component systems which are not congruently melting. 

For example, Thompson and Spaepen developed a model for homogenous 

crystal nucleation in binary metallic melts 1341. In the light of apparent success of 



their model, Davies argued that 1181 the main competing crystalline phase with 

glass formation is a metastable crystalline phase having the same composition as 

the liquid. This is experimentally evidenced in some cases [33], but cannot be 

generalized. Assuming there is a competing metastable crystalline phase which 

crystallizes polymorphically, then the parameters should be adjusted 

accordingly. The most important of these is the melting point, and thus the 

critical Trg, as the metastable phase will have a lower melting point than the 

equilibrium crystalline phases. Moreover, the free energy difference should be 

modified, as it will be smaller between the liquid and metastable crystalline 

phase. However, these corrections are difficult to install, because of the 

experimental difficulties in obtaining the thermodynamic parameters of 

metastable crystalline phases. 

Further, the existing theories of nucleation and crystal growth rates are solely 

based on experiments at small underc:ooling (AT, I 0.2) of liquid metals. Their 

applicability to the high undercooling; regime is also questionable. Assuming 

these theories are valid for the whole range of T,, to Tg, we need the properties 

of the highly undercooled liquid (ATT > 0.2), such as viscosity, diffusion constants 

and heat capacity. These are important parameters in determining the nucleation 

rate and crystal growth rate. Unfortuinately, we lack a good knowledge of these 

parameters in the highly undercooled regime, which is the most crucial 

temperature region between T, and Tg for glass formation. Moreover, we have 

very little data on viscosity of multi component metallic alloys at the melting 

point. This further lack of knowledge causes pronounced uncertainties in the 

calculations, since it may affect critical cooling rates significantly [I$]. 



Recently it has been shown that heterogeneous nucleation can be an important 

factor for glass formation even at very high cooling rates [35]. The critical 

thickness of glassy NiY5B17Si8 alloy was increased by four times when further 

purification of liquid alloy was employed eliminating heterogeneous nucleation. 

If we assume that all of the observed :metallic glass formation is limited by 

heterogeneous nucleation rather than homogenous nucleation as suggested by 

many experimental observations, then the rate of homogenous nucleation should 

be significantly overestimated in the Davies-Uhlmann kinetic analysis. 

Alternatively, the resistance of a liquid to homogenous nucleation is highly 

underestimated. This was also proposed by Perepezko, based on the 

undercooling studies of fine droplets of liquid metals [36,37]. Similar 

observations was also reported by others [38]. Then, the interfacial energy 

constant a should have a larger value than the -0.5 suggested by Turnbull [9]. 

This may explain the case of Pd40Ni40P20, where the critical cooling rate was 

earlier predicted to be two orders of magnitude less. As we shall see in chapter 4, 

the heterogeneous nucleation rate can be expressed in the same form of equation 

2.7 with an extra parameter appearing; in the energy barrier for nucleation. 

Taking this extra parameter and interfacial energy constant a together as an 

effective interfacial energy constant a,, the formalism of Davies-Uhlmann kinetic 

analyses can be preserved to use in cases where heterogeneous nucleation is the 

rate limiting factor. From the good agreement between the calculations of Davies 

(and others) and experimental observations of metallic glass formation, it seems 

that a, - 0.5 is a good choice for metallic glass formation at high cooling rates. 

Finally, the assumption of Di = Dr = D requires some caution. It was already 

noted by Davies that [16] these diffusion constants can be quite different. For 

example, Dg was found to be substantially greater than the corresponding D in 



the Fe-Ni alloys [39]. For the time being, the lack of experimental data and 

theoretical understanding of diffusion phenomena in highly undercooled liquids 

leaves us no choice. Recently, the group of Inoue and Masumoto reported a 

novel Al-base alloy, which formed nanometer sized crystallites embedded in an 

amorphous matrix upon rapid solidification [40]. Though no valid explanation 

for the formation of this unusual micirostructure has been given, a possible 

mechanism is that the diffusion constants involved in nucleation and crystal 

growth may differ by several orders of magnitude. 

2.5 To criterion of glass formation 

The To temperature is the temperature at which the free energies of the liquid 

and crystalline phases, Gx and GI, are equal. To (c) curve is the locus of To 

temperatures as a function of composition c 1411. The To(c) curve can be 

constructed if Gx and GI are known as a function of temperature and composition 

as shown in figure 2.6. Since the To(c) curve must lie between the solidus and 

liquidus curves (because of the common tangent construction, see fig. 2.6), the 

To(c) curve in a system can be roughly inferred from its equilibrium phase 

diagram. For the purposes of glass formation, the position of To(c) curve can be 

roughly approximated as a curve lying halfway between the solidus and liquidus 

curves. 

We can infer from the definition of To temperature that it becomes 

thermodynamically possible to solidify a liquid completely into a single 

crystalline phase below the To(c) curve (figure 2.7). Alternatively, the To(c) curve 

represents the thermodynamic composition limit for a composition invariant 

crystallization (partitionless crystallization). In the early seventies, the concept of 

To temperatures was proposed for the interpretation of extended solid solubility 



Coimposition 

Figure 2.6: Construction of the f i ( c )  curve from the free energy curves of the 

crystalline and liquid phase. 



Composition 

Figure 2.7: The possibility of partitionless solidification of an undercooled liquid 

at two different compositions. Partitionless solidification is possible at cl (below 

the To(c) curve) and impossible at c2 (beyond the To(c) curve). 



observed during rapid solidification of metallic melts [42]. Later, Massalski used 

the Tote) curve to give a thermodynamic account of metallic glass formation near 

deep eutectics. He proposed that glass formation occurs at compositions beyond 

the intersection of the To(c) curve with the TX(c) curve (the composition 

dependence of the glass transition temperature). This is known as "To criterion 

of glass formation" and is presented in the following paragraph. 

The possibility of a composition-invariant single phase crystallization, in the 

form of a metastable phase, constitutes the main competition to the glass 

formation in the eutectic region [42]. If crystallization of a single phase is not 

possible, a eutectic must form (growtlh may start with dendrite formation, but it 

should end up with eutectic solidification). Since eutectic growth requires solute 

partitioning and simultaneous growth of several phases, the growth velocity of a 

composition invariant single crystalline phase should be much faster than for 

eutectic crystallization. Thus, factors which facilitate single-phase composition 

invariant crystallization into an easy forming crystal structure should sharply 

reduce the glass forming ability. According to the To criterion, the possibility of a 

single-phase metastable crystallization should be excluded for glass formation; 

i.e., no driving force should exist for partitionless solidification. This is 

determined by the relative position of Q(c) curve and Tg(c) curve of the system in 

question, i.e., by the thermodynamics. 

Since the glass transition is taken as the configurational freezing of liquid, no 

nucleation and growth of crystalline phases is allowed below the glass transition 

temperature. The thermodynamic possibility of partionless crystallization 

precludes glass formation according to the To criterion. Thus, glass formation is 

possible only if both To(c) curves of terminal solid solutions (or compounds) 



plunge deep enough to cross the Tg(c) curve and the borders of possible glass 

forming compositions are given by the intersection points of To(c) and Tg(c) 

curves as shown for the third type of binary system where its glass forming 

composition range is given by the shaded area in figure 2.8~. 

Figure 2.8 shows three possible To(c) curves for a simple binary eutectic phase 

diagram. These are: 

(i) A continuous To(c) curve above the Tg(c) curve. This is true for shallow 

eutectics like Ag-Cu. 

(ii) To(c) curves of a and p phases crossing above the Tg(c) curve. 

(iii) To(c) curves of cl and /3 phases not crossing above the Tg(c) curve. This is 

the case for deep eutectics with plunging To(c) curves such as Au-Si. Only this 

type of phase diagram gives a good glass former. The possible glass forming 

range is shown by the shaded area. 

Since diving To(c) curves are invariably associated with deep eutectics, the To 

criterion gives a good account of metallic glass formation since it has been 

primarily observed around deep eutectics. In principle, To criterion can be 

extended to ternary and higher systems, where the To(c) and Tg(c) curves are 

replaced by the Totcl, c2) and Tg(cb c2) surfaces. 

Some apparent violations of the To criterion has been observed experimentally 

143,441. It was found that the To criterion significantly underestimates the glass 

forming range, especially at very high cooling rates of 1010 K/s. These exposed 

two difficulties encountered in applying the To criterion quantitatively. Schwarz 

et al. gave a good description of these difficulties [45,46]. First of all, in the 



calculation of To(c) curves, a good knowledge of the free energies of the phases as 

a function of composition and temperature is needed. However, our knowledge 

of these thermodynamic properties, especially the thermodynamic properties of 

the highly undercooled liquid, is very poor. Though several free energy models 

provide satisfactory fits to the experimentally determined solidus and liquidus 

curves of a binary system, these models give severely conflicting To temperatures 

in the high undercooling regime which is experimentally not accessible. 

The second difficulty arises from the complete neglect of kinetic constraints in 

partionless crystallization, which then underestimates the glass forming ability as 

compared with the experiments. As we have seen in the earlier sections of this 

chapter, a significant undercooling (AT, > 0.2) is required for the onset of copious 

homogenous nucleation. In fact, the Davies -Uhlmann kinetic analysis is exactly 

valid for partionless crystallization. When other kinetic constraints are taken into 

account, a better description of the glass forming range can be obtained as shown 

by Nash and Schwarz [46]. 



Composition 

Figure 2.8: Three possible arraignments of To curves for simple eutectic systems. 
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Chapter 3 

Zr41.~Til3.~Cul2.5Ni10.0Be22.5 : An example of bulk 
metallic glass forming alloys 

We have seen in chapter 2 that the kinetics of crystallization strongly depend on 

the properties of the highly undercooled liquid. The knowledge of viscosity, 

diffusion constants and heat capacity of the highly undercooled liquid is highly 

desirable for understanding the kinetics of nucleation and crystal growth. 

However, the high undercooling regime has not been easily accessible to 

laboratory measurements in metallic systems. This poses severe limitations on 
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formation. The properties of highly undercooled metallic liquids can play 

important roles in understanding of the microstructures developed during 

crystallization and in designing novel materials. Highly processable and bulk 

forming metallic glasses are useful not only for technological applications but for 

the advancement of scientific knowledge as well. Obviously, the highly 

undercooled regime is easier to access in good glass formers since the liquid has 

higher resistance to the crystallization. Until recently, there were not many good 

bulk glass forming alloys on which to measure the properties in the highly 

undercooled regime. 



In this chapter, I will present an example of a highly processable metallic glass: 

Zr41.2Til3.8C~12.5Ni10.0Be22.5 [I]. This metallic alloy is far superior to its 

predecessors for its bulk glass forming ability and high thermal stability above 

the glass transition. The alloy belongs to an exceptionally large family of 

excellent glass forming metallic system, which was found and developed in the 

course of this thesis. The bulk glass forming range of this system will be 

presented in Appendix I. The general characteristics of this alloy will be 

discussed and its properties which distinguish it from conventional metallic glass 

formers will be emphasized. First I will introduce the various preparation 

methods of the glassy alloy. Then a description of the mechanical properties 

will be given. The measured thermal properties will be presented and a 

preliminary attempt will be made to construct a TTT (Time - Temperature - 

Transformations) diagram for this alloy. The TTT diagram will be used to 

account the observed thermal properties of the glassy alloy. Finally the origins of 

exceptional glass forming ability will be discussed. 

3.1 Preparation 

Initial ingots, having the nominal composition Zr41.2Til3.8Cul2.5Ni10.~Be22.5 , 

were prepared by induction melting of the constituent elements in a closed 

system on a water cooled copper or silver boat under a Ti-gettered argon 

atmosphere. Raw elements of two different purities were used according to the 

purpose of work. Raw elements of higher purity have been used for 

characterization of glassy alloys such as thermal analyses. Their purity, form and 

suppliers are shown in table 3.1. 
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Table 3.1: The purity, form and suppliers of raw elements used in 

characterization of glassy alloy. 

Table 3.2: The purity, form and suppliers of raw elements used in production of 

bulky glassy alloy. 

Element 

Zr 

Ti 

Cu 

Ni 

Be 

Form 

crystal bar turnings 

pellets 

rod 

pellets 

pieces 

Element 

Zr 

Ti 

Cu 

Ni 

Be 

Purity 

99.5 % 

99.99 % 

99.999 % 

99.97 % 

99.9 % 

Form 

lump 

pellets 

rod 

rod 

pieces 

Supplier 

Johnson Matthey 

Cerac 

Johnson Matthey 

Cerac 

ESP1 

Purity 

99.2 % 

99.7 % 

99.9 % 

99.5 O/O 

99.9 O/O 

Supplier 

Johnson Matthey 

Johnson Matthey 

Johnson Matthey 

Johnson Matthey 

ESP1 



Raw elements of lower grade were used in the preparation of larger pieces to 

demonstrate the bulk glass forming ability of Zr41.2Til3.8Cu12.5Nil0.0Be22.5 alloy. 

Their purity, form and suppliers are shown in table 3.2. 

Typically, samples of 3-9 grams were used in preparation of preliminary ingots. 

The nominal compositions have been accepted for the rest of the work, as the 

total mass loss during alloying was consistently less than 0.01 percent (actually 

below detectable limits of our electronic balance which is 0.1 mg). The master 

ingots were found to freeze without any significant crystallization upon 

completion of alloying irrespective of the purity of the elements used. Only 

slight traces of crystallinity were observed on the lower surface of the glassy 

ingots, where casual contact with the copper boat occurs during solidification. 

Contact with the boat apparently can induce heterogeneous nucleation of crystals 

with limited growth. The remainder of the ingots were completely amorphous 

as confirmed by TEM, X-ray and DSC analyses. It is worth noting that the upper 
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one direction. The glassy surface can be easily distinguished with its very 

smooth and highly reflective appearance. The largest glassy ingot made weighed 

25 grams, where the size limitation stems from the size of the copper boat used 

and not from the glass forming ability of the alloy. These biggest glassy ingots 

have a typical thickness of 1.0 cm. Recent experiments by Schwarz have 

demonstrated that ingots of 200 grams readily freeze to bulk glass when 

constituent elements are alloyed by plasma melting on an electropolished copper 

hearth [2 ] .  The ingots were further processed into more useful shapes by metallic 

mold casting or water quenching of molten alloy sealed in a silica glass tube. 



The schematic picture of a metallic mold casting unit has been shown in figure 

3.1. The unit consists of a vacuum chamber containing a cold copper block, 

which is used as a quenching media, a silica glass tube containing the sample, 

and rf heating coils surrounding the silica tube. The silica tube has a small 

orificeat the bottom end which is firmly seated into a channel which feeds a hole 

in the copper block. The top end of the silica tube is connected to a pressure 

reservoir. Upon melting of the alloy, the valve connecting the pressure reservoir 

is opened and the flow of inert gas, He or Argon, injects the molten sample into 

the hole of copper block through the orifice of the silica tube. Typically, a 

pressure of 10-20 psi has been used for injection of molten sample. The copper 

block has internal cavities with different shapes and sizes resulting in glassy 

samples in the form of rods and plates. 

Water quenching has been performed after sealing the samples in a silica tube, 

General Electric 99.9 % fused quartz, under an inert atmosphere. The sealed 

sample has been melted by rf heating and plunged into water and stirred until 

solidification is complete. Typically, glass tubes with one mm wall thickness 

have been used. Large fully amorphous rods up to 14 mm in diameter have been 

prepared by this method. We have not as yet established an upper bound on the 

rod diameter which can be quenched to the glassy state. 

Figure 3.2 shows several glassy samples obtained by various processes described 

above. Two rods, 7 mm and 12.6 mm diameter, were prepared by water 

quenching in silica tubes. Figure 3.2 also includes a rectangular bar and a plate 

prepared by casting in copper molds. The figure shows both a top view and 

cross-sectional views of bar, plate and rods. Also shown are top views of three 

glassy ingots, readily frozen into glass on a copper boat. X-ray diffraction 
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Figure 3.1: Schematic picture of metallic mold casting unit. 



Figure 3.2: Samples of glassy alloy prepared by various processes, from left to 

right: 12.6 mm diameter rod and its cross-section, 7.0 mm diameter rod and its 

cross-section, 5x5 rnrn bar and its cross-section, 3x8 mm plate and its cross- 

section, 2 oval shape of ingots of 9 g each, bar-like ingot of 8 g. 



patterns were obtained from the outer surfaces as well as on various cross- 

sectioned surfaces of the samples. No evidence of crystallization has been found 

in any of the X-ray patterns. 

Figure 3.3 shows a typical x-ray pattern of glassy Zr41.2Til3.8Cul2.5Ni10.oBe22.5 

alloy, taken from the cross-sectional surface of the 12.6 mm rod obtained by 

water quenching in a silica tube. This X-ray diffraction pattern was obtained 

with an Inel position sensitive detector using Co Ka radiation (A =0.1790 nm). 

The sample is completely amorphous as evidenced by the absence of any Bragg 

peak. This is further supported by TEM characterization. Several transmission 

electron microscopy samples were prepared and neither electron diffraction 

patterns nor dark field images gave any evidence of crystalline inclusions. 

Figure 3.4 shows typical bright and dark field images of 

Z~41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy taken from a glassy ingot of 6 grams. Figure 

3.5 shows the corresponding electron diffraction. The sample is completely 
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in the electron diffraction pattern. 

Figure 3.6 shows a high resolution TEM image of a similar sample. No lattice 

fringes are observed beyond the range of 1.0 nm. The observed short range 

ordering should be interpreted as ordering of liquid due to entropy loss upon 

cooling rather crystallization. As we have seen in chapter 1, undercooled liquids 

tend to have higher heat capacity than the corresponding crystal. We shall see in 

section 3.3 that the same is true for our Zr alloy and it should therefore lose 

substantial configurational entropy thus becoming more ordered during cooling. 

This kind of short range ordering is generally not as pronounced in conventional 

metallic glasses, since the very high rate of cooling results in entropy trapping 



Two Theta [degrees] 

Figure 3.3: X-ray diffraction pattern (Co Kn radiation) taken from the cross- 

sectional surface of 12.6 mm diameter rod obtained by water quenching in a silica 

tube. 



Figure 3.4: TEM micrographs of Zr41.2Til3.8Cul2.5Ni10.0Be22.5 alloy taken from a 

glassy ingot of 6 grams: (a) bright field and (b) dark field. 



Figure 3.5: The electron diffraction pattern of Zr41.2Til3.8Cul2.5Ni10.0Be22.5 alloy 

taken from a glassy ingot of 6 grams. 

Figure 3.6: The high resolution TEM image of Zr41.2Til3.sCu12.5Nilo.oBe~2.5 alloy 

taken from a glassy ingot of 6 grams. 



during the glass transition from undercooled liquid to the glass. As the atomic 

mobility is drastically reduced around the glass transition, the undercooled 

liquid may not have enough time to sample its configurational phase space 

completely during cooling, thus keeping some of its communal entropy which it 

would otherwise lose. The glassy Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy has been 

cooled slower by several orders of magnitude, - 10 K/s, hence it has had more 

time to come to configurational equilibrium during the glass transition. As such 

it tends to lose more configurational entropy as reflected in a higher heat capacity 

and more ordered structure. 

3.2 Mechanical properties 

The Zr41.2Til3.8Cul2.5Ni10.0Be22.5 bulk glassy alloy preserves the traditional 

ductility and high strength of metallic glasses [I]. Vickers hardness 

measurements on this bulk glassy alloy shows a typical value of H, = 585 

kg/mm2. Using the well known relation H, = 3 oy for metallic glasses [3], the 

yield strength has been estimated to be oy = 1.95 GPa, which is in good 

agreement with the recently reported value of oy = 1.89 GPa obtained from both 

tensile and compression tests of the bulk samples [4]. The density of this glassy 

alloy has been measured as 6.11 g/cm3 using the Archimedes principle. With the 

given values of density and yield strength, the glassy 

Zr41.2Ti13.~Cu12.5Ni10.0Be22.5 alloy has a very high specific strength. The bulk 

glassy alloys are very ductile at ambient temperature when deformed under 

confined geometries. For example, a plate of 1.5 mm thickness was cold rolled at 

ambient temperature down to 15 micron thick ribbon without any crack 

formation. The final ribbon can still sustain a 90' bend as shown in figure 3.7. 

The hardness values of glassy samples before and after cold rolling do not show 



Figure 3.7: Samples of cold-rolled Zr41.2Til3.gCul2.5Ni10.0Be22.5 glassy alloy. 

From left to right: 3mm thick glassy sample failed during cold rolled, 1.5 mm 

thick glassy sample cut from 3mm thick glassy alloy and its final form after 

rolling down to 30 micron thick ribbon, 1.5 mm thick glassy alloy, final form of 

1,5 mm thick glassy alloy after rolling down to 15 micron thick ribbon. 



any significant difference implying the absence of any work (strain) hardening. 

Localized deformation markings --shear bands-- perpendicular to the rolling 

direction have been observed on the rolled samples as reported by previous 

researchers on other metallic glasses [5]. 

The sample aspect ratio is a critical geometric factor, defining the confined 

geometry, in determining the ductility of glassy sample. It is given by lld, where 

1 is the length of the sample in the direction of the applied force, and d is the 

smallest dimension of the sample under stress in the plane perpendicular to the 

applied force. When the aspect ratio is greater than a critical value, the sample 

fails in the direction of maximum resolved shear stress ( at 45" degrees to the 

applied force) without any apparent ductility. For example, a 3mm thick glassy 

plate, which has twice the aspect ratio of 1.5 mm thick glassy plate for the same 

rolling mill arrangement, failed during cold rolling without exhibiting any 

apparent ductility. The fracture surface shows the typical veiny patterns 

evidencing localized plastic dzformatisn 161. It seems that a loca!ized shear 

mechanism causes the sample failure before global deformation can begin. 

Figure 3.7 shows the glassy sample pieces which failed during rolling. The same 

3 mm thick glassy sample was longitudinally cut to reduce the thickness to 1.5 

mm. This eliminated any effect due to cooling rate and exposed the pure 

geometrical effect on the deformation behavior of the glassy alloy. The cut 

sample, 1.5 mm thick, can be cold rolled indefinitely and still keep its bending 

ductility. The initial and final form of the cut sample after rolling has been 

shown in figure 8. Similar results have been obtained in compression testing of 

the glassy Zr41.2Til3.gCul2.5Ni10.0Be22.5 alloy where a critical aspect ratio was 

found to be 1.0 [4,7]. These results can be interpreted as follows. When the 



applied stress on the glassy sample reaches the yield strength, a localized shear 

band forms in the direction of the maximum resolved shear stress (at 45O degrees 

to the applied force). The shear band will propagate (or expand) crossing 

throughout the sample in a rather narrow band shearing the sample in two 

pieces. The two pieces of the sample tend to move relative to each other by 

sliding. When the aspect ratio is less than one, the confined geometry will 

prevent sliding. Then two pieces of glassy sample will rotate rather than sliding 

on each other as shown in figure 3.8 (a). This will result in deformation of the 

glassy sample by a length comparable to the thickness of shear band. As new 

shear bands form, their combined effect will give a significant overall ductility. 

A good example of this is given by the rolling of glassy alloys where deformation 

markings have been observed in the direction perpendicular to the rolling. 

When the aspect ratio is greater than one, two pieces of glassy sample split by the 

shear band will slide freely on each other resulting in failure as illustrated in 

figure 3.8 (b). If there were work hardening in the glassy alloy, the propagation 

of a shear baiid and free sliding of parts of the glassy sample would be 

terminated in favor of new shear band formation. Thus, it is the complete 

absence of work hardening that results in the localization of shear deformation 

into narrow bands. 

The Young's modulus of Zr41.2Til3.8Cul2.5Ni10.0Be22.5 glassy alloy has been 

reported to be 93 GPa, from which we find the ratio of Elc ry  = 50 in close 

agreement with other metallic glasses [3]. However, its constituent elements 

have a weighted average value of 165 GPa for Young Modulus [8] which gives 

the ratio of Eglass /Ecrystal =O.56. This number averages around 0.75 for other 

metallic glasses [3,9]. This extra "softening" may be due to the abnormally high 

Young's modulus of Be, which is 356 GPa, compared to 98 GPa for Zr [B]. 



Figure 3.8: (a) Deformation of glassy alloy when aspect ratio is less than one. 

(b) Failure of glassy alloy when aspect ratio is greater than one. 



Relatively low concentration of Be may substantially reduce its contribution to 

Young's modulus of the glassy alloy. In particular, this may be related to the 

absence of direct Be-Be bonding in the glass. 

As Zv41.2Ti13.8Cu12.5Ni1o.oBe22.5 glassy alloy can be easily produced in bulk 

forms, it is exceptionally well suited for highly reliable mechanical tests which 

were not possible with earlier metallic glass forming systems. Recently, 

comprehensive quasistatic mechanical tests on the Z~41.2Ti13.8Cu12.5Ni10.0Be22.5 

bulk glassy alloy were reported [4]. Further mechanical properties such as 

fracture toughness are under investigation [7]. 

3.3 Thermal analyses 

Thermal analysis of the glassy alloy was carried out using a Perkin-Elmer DSC 4 

scanning calorimeter interfaced to a personal computer for data processing and 

analysis. The samples were contained in aluminum pans and scanned in a 
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Seteram DSC 2000 K high temperature calorimeter was used in the DSC mode. 

Figure 3.9 shows DSC (Differential Scanning Calorimetry) scans of the glassy 

Zr41.2Til3.8Cul2.5Ni10.0Be22.5 alloy using a heating rate of 20 K/min. and 200 

K/min. In the 20 K/min. scan, a heat capacity anomaly characteristic of the glass 

transition can be seen beginning at 625 K with a heat capacity maximum at 

slightly higher temperature. At higher temperatures, two crystallization events 

are seen. The onset of the first occurs at 705 K while the onset of the second is at 

735 K. The location of both peaks depends strongly on the rate of heating as can 

be seen by comparison with the DSC scan at higher heating rate. This relatively 

large supercooled liquid range has been successfully utilized in fabrication and 
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Figure 3.9: DSC scans of Zr41.2Til3,8Cul2.5Nilo.oBe22.5 glassy alloy at heating 

rates of 20 K/min. and 200 K/min. The corresponding glass transition 

temperature and crystallization temperatures are shown for the heating rate of 

K/min. 



shaping of the Zr41.2Ti13.8C~12.5Ni10.~Be22.5 bulk glassy alloys. Thickness 

reductions of 90 percent were easily obtained with small pressures of - 5 MPa at 

50-70 K above the glass transition temperature during a time duration of 10-20 

minutes [lo]. Also, fine details of the mold pattern can be reproduced at the scale 

of less than one micron [lo]. The samples still keep their glassy nature after the 

fabricating and shaping process as would be suggested by the DSC results. 

Figure 3.10 shows a high temperature DSC scan of the crystalline Zr alloy at the 

heating rate of 20 K/min. There are two endothermic peaks, the first one being 

much stronger. The solidus temperature is determined to be 937k3 K taking the 

onset of first endothermic peak. The liquidus temperature is determined by 

taking the offset of second peak and found to be 993k5 K. The heat of fusion was 

measured as AH; = 6.3 50.3 kJ/mole. We believe that the solidus temperature 

should be a eutectic temperature for the five component Zr-Ti-Cu-Ni-Be system. 

From the comparison of relative magnitudes of endothermic signals, we can 

deduce that the alloy is very close to a e~tectic corLposition. Therefme, the 

Zr41.2Til3.8C~l2.5Ni~o.oBe22.5 alloy will be assumed to represent the eutectic alloy 

for the rest of the thesis. The boundaries of the bulk glass forming range include 

a rather large region of the pentiary phase diagram. The 

zr41.2~i13.8Cu12.5Ni1~OoBe22.5 alloy composition lies somewhere near the center of 

this region. The exact eutectic composition should have similar or possibly better 

glass forming ability. Further, the properties of the glassy alloys do not show 

any drastic change with composition, thus our assumption should be valid for 

purposes such as calculation of the TTT diagram. 

The experimentally observed heat capacity difference between the undercooled 

liquid and crystalline phases was approximated with a linear equation. DSC 
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Figure 3.10: High temperature DSC scans of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 

crystalline alloy at heating rates of 20 K/min. The corresponding solidus Ts and 

liquidus Ti temperatures are also shown. 



scans of the glassy alloy and crystalline alloy with a continuous heating rate were 

used to obtain the linear fit to the heat capacity difference in the supercooled 

liquid region. The linear equation is given by 

Accordingly, the calculated molar free energy difference between the liquid and 

corresponding crystal is plotted as a function of reduced temperature in figure 

3.11. Turnbull's approximation is also shown [22]. It is clear that Turnbull's 

approximation diverges significantly from the experimentally extrapolated 

values at high undercooling, whereas it gives satisfactory values at small 

undercooling (AT,<0.15). 

3.4 The critical cooling rate 

A molten sample of typical dimension R and initial temperature T,  (the 

melting point of the material) will require a total cooling time .r: to ambient 

temperature (below glass transition) which is given by 

where K is the thermal diffusivity of the material [ll]. It is given by 

where K is the thermal conductivity and Cp is the heat capacity per unit 

volume. Then we can find an average value of cooling rate from the melting 

point to the ambient temperature by the equation 
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Figure 3.11: The free energy difference between undercooled liquid and 

corresponding crystal for Zr41.2Ti13.~Cu12.5Ni1000Be22.5 which is assumed to 

represent the eutectic alloy. Both the Turnbull approximation and 

experimentally extrapolated values are shown. Here, T,  is taken to be the 

eutectic temperature. 



where we use the average values of K and Cp throughout the temperature 

range of AT. The critical cooling rate for glass formation is evaluated from 

the maximum possible value of R for a glassy sample. 

The thermal conductivity of undercooled liquid can be calculated from the 

"Wiedemann-Franz" law which is stated as: 

T is the absolute temperature, p is the resistivity and L is the Lorenz number 

having a value of 2.45 x 10-8 watt ohm/deg2 1121. This expression should be 

valid for undercooled liquids due to their highly disordered nature. Taking p = 

2.5 x 10-4 ohm cm., the value of glassy Zr~oBedo alloy [13], and T = 780 K we find 

an estimated value of K = 7 x 10-2 watt/cm. deg. The heat capacity of 

undercooled liquid can be calculated by the sum of the Dulong-Petit value of the 

corresponding crystal and using equation 3.1. We will get an average value of 

Cp = 10 cal/mol. or C p  = 4 J/cm3 for the liquid. We can easily get 1.0 cm thick 

glassy ingots where heat is extracted from one direction. Using a value of 400 K 

for AT and plugging other numbers into equation 3.4, we find a average cooling 

rate of - 7 K/sec. for typical glassy ingots. In practice cooling rate changes with 

temperature, being highest around the melting point and decreasing as the glass 

transition is approached. As we have not yet set any upper bound for the 

maximum thickness of ingots which will form glass when cooled on metallic 

crucibles, the critical cooling rate could be substantially smaller. 



3.5 TTT Diagram 

TTT diagram (Time - Temperature - Transformations) and its derivative CCT 

(Continuous - Cooling - Transformations) have been used solely for estimating 

critical cooling rates [14]. These diagrams can be applied more generally to study 

the thermal stability of metallic glasses in the supercooled liquid region. This is 

especially true for very recent exceptional glass forming metallic alloys as they 

are more stable in the supercooled liquid region. The TTT diagram and its 

derivatives can also give us very useful information for fabrication of these hard 

and strong materials above glass transition using small forces. A preliminary 

attempt to construct the TTT diagram will be presented and it will be used to 

account for the observed thermal properties of our recently found excellent 

metallic glass formers [15]. 

The Uhlmann [16] and Davies [17] kinetic formulation was followed to construct 

a TTT diagram for the Zr41,2Ti13.sCu12.5Nilo.oBe22.5 alloy (which is assumed to 

represent the eutectic composition). A Doolittle-type expression was used to 

model the viscosity [18] 

where the constants are determined by taking a viscosity of 1013 poise and 1 

poise at the glass transition temperature and at the eutectic melting point 

respectively. The experimentally determined values of the free energy 

difference between the liquid and corresponding crystal were used. In order 

to get agreement with a critical cooling rate of 5 K/s, AG* was set to 75 kT for 

a reduced undercooling AT, = (T,-T)/T, = 0.2. AG* corresponds to the 



energy barrier for nucleation in the kinetic formulation of Uhlmann and 

Davies. The CHT (Continuous- Heating -Transformations) curve was 

obtained approximately from the TTT curve using the method of Grange- 

Keifer [19]. 

In figure 3.12, TTT and CHT curves are shown together with DSC heating curves 

as well as a 5 K/sec cooling curve appropriate for a 1.0 cm thick glassy ingot. 

Also shown are experimental onset crystallization temperatures on the 

corresponding DSC heating curves. The observed crystallization temperatures 

are below the estimated temperatures from the calculated TTT diagrams. (When 

transient nucleation effects are included, it will push the TTT and CHT curves 

further to the right thus increasing the observed discrepancy.) At a heating rate 

of 200 K/min, no crystallization should be observed according to calculated TTT 

and CHT curves. To explain the differences between calculated and 

experimental crystallization temperatures, it is proposed that heterogeneous 

nucleation has intervened in the DSC experiments. This is supported by further 

experiments. For example, the development of a surface oxide has been 

observed above 675 K in samples scanned in flowing argon. Such oxidation can 

be suppressed by fluxing the sample surface with a layer of borosilicate glass or 

encapsulation in a thin glass ampoule. When this is done, surface oxidation is 

suppressed, and contact with the aluminum DSC pan is also prevented. Under 

these conditions, the experimental crystallization peaks have been found to shift 

to significantly higher temperatures. In fact, heterogeneous nucleation has 

previously been shown to be very important in the determination of critical 

cooling rates for glass formation as well as crystallization temperatures of glassy 

alloys. For example, Turnbull and co-workers undercooled liquid Pd40Ni40P20 



Figure 3.12: Calculated TTT and CHT curves for Zr41.2Ti13.8Cul2.5Ni10.0Be2~.5 are 

shown along with DSC heating curves at different heating rates and estimated 

critical cooling rate for glass formation. Also shown on the DSC heating curves 

are onset crystallization temperatures of the glassy alloy at corresponding 

heating rates (full circles). 



samples with dimensions of one cm to the glassy state after removing 

heterogeneous nucleation catalysts by fluxing [20]. They estimated a critical 

cooling rate of order 1 K/s whereas it was earlier believed to be of order 103 

K/s. They also showed that glassy Pd40Ni40P20 can be heated to its melting 

point without crystallization at a heating rate of 2 K/s [21]. The effects of 

heterogeneous nucleation in glass formation and thermal stability of metallic 

glasses will be discussed in more detail in the next chapter. 

An interesting feature of the TTT and CHT diagrams for this highly processable 

metallic glass is that the crystallization nose is very close to the continuous 

heating curves at the typical heating rates used in DSC experiments. For 

example, the continuous heating curve at the rate of 80 K/m just misses the 

crystallization nose. This will give a relatively wide supercooled liquid region 

above the glass transition as well as a strong dependence of crystallization 

temperatures on heating rates. The crystallization nose is far to the left in the 

TTT diagrams of conventional metallic glasses. In these systems it is necessary to 

use heating rates of 105-106 K/sec to encounter the crystallization nose. This is 

ordinarily not achieved in DSC experiments. Hence, typical DSC experiments 

give heating curves which fall to the far right of the crystallization nose of 

conventional metallic glasses. Here the slope of the TTT curve approaches zero. 

For very good glass forming alloys, the continuous heating curves at the typical 

heating rates used in DSC experiments should fall very close to the 

crystallization nose, where the TTT curve has a steeper slope and a rapidly 

changing value. As a result, crystallization temperatures should be strongly 

dependent on the typical heating rates used in DSC experiments. Thus any 

conclusions regarding the crystallization temperature and glass forming ability 

of these very good glass forming alloys should not be based on a single DSC 



scan. This is illustrated in figure 3.13 where curve "a" represents a conventional 

metallic glass, e.g., Zr65Be35 and FegoB20, curve "b" represents a thick glass 

former, e.g., Pd77.5Cu6si16.5 and Zr60Ni25A115 I and curve "c" represents a bulk 

glass former such as Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Two typical DSC heating rates 

are also shown. Obviously, the crystallization temperatures change more 

dramatically on curve "c" (representing the good glass former) for different 

heating rates. These TTT diagrams also suggest that the metallic glasses which 

require lower critical cooling rates have better stability above glass transition 

temperature, i.e., broader supercooled liquid region before crystallization on 

heating. 

3.6 Origins of exceptional glass forming ability 

We have seen in the previous chapter that the reduced glass transition 

temperature, Trg = Tg/Tm (where Tg is the calorimetrically defined glass 

transition temperature and T, is the alloy melting point) has often been cited in 

l : ~ ~ * ~ * . . * ~  Illr: l i L t - l a L u l r :  [14,2?] as a critical paraneter which determines the glass forming 

ability of metallic alloys. High values of Trg are associated with glass forming 

ability. Taking Tg = 625 K and Tm = 937 K (the eutectic temperature), we obtain 

Trg = 0.67 for the eutectic alloy, which should have comparable glass forming 

ability as Z~41.2Ti13.sCul2.5Ni~o.oBe22.5. This is among the highest values of Trg 

reported for metallic alloys so far [14] and is consistent with the exceptional glass 

forming ability of the material. 

To explain the exceptional glass forming ability of these alloys, both 

thermodynamic and kinetic factors must be taken into account. The large values 

of Trg imply a small relative temperature range over which nucleation and 

growth of crystals can occur. From our DSC studies, we estimated the total 
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Figure 3.13: Schematic TTT diagrams for three different metallic glass formers. 

Curve a, b, c respectively represent a conventional metallic glass former, a 

moderately good glass former and an exceptionally good glass former. Also 

shown schematically are DSC traces at the heating rates of 80 K/min and 5 

K/min. It is assumed that all the glassy alloys have the same value of Tg. 



f entropy of fusion, AS, of these alloys, to be approximately 6.6 J/mole-K. This is 

a very low value compared to well known "Richard's rule" of AS; 2 8.4 J/mole 

K for metallic alloys [23]. Using the Turnbull approximation [22] for the free 

energy difference between the liquid and crystalline phases in the undercooled 

regime, 

AGm =  AS^ IT,,-T) + higher order terms 

gives a very small driving force for crystallization. The higher order terms 

involve the heat capacity difference between the liquid and crystal and 

generally reduce the driving force for crystallization relative to the first term. 

For example, at 780 K, corresponding to a reduced undercooling of 0.18 we 

estimate AGm = 1.1 kJ/mole. When heat capacity corrections are taken into 

account, figure 3.11 gives AG, = 1.0 kJ/mole. This relatively small driving 

force for crystallization will tend to result in a relatively large nucleation 

barrier fcr crystals in the restricted rmdercooled region. At lower 

temperatures, kinetic freezing of the melt sets in rapidly due to the small 

temperature interval between the melting point and glass transition (i.e., 

high value of Trg). As evidenced by the TTT diagram, the undercooled 

liquid has a very small temperature range for crystallization. 

A second factor which may influence crystallization is the "complexity" of 

the five component alloy. We note, for example, that the atomic radii of the 

elemental constituents vary over a large range. The atomic radius of Be is 

0.111 nm, those of Ni and Cu are 0.124 nm, while those of Zr and Ti are 0.160 

and 0.147. These differing sizes are expected to limit the solubilities of these 

elements in crystalline phases having a small number of non-equivalent 



positions in the unit cell, thus requiring large chemical fluctuations to form 

critical nuclei of the crystalline phases. In support of this argument, we note 

that Tanner has studied glass formation by rapid quenching in Zr-Be and Ti- 

Be alloys [24]. In the Ti-Be system, glass formation is preempted by 

formation of a metastable CsC1-type structure near the equiatomic 

composition. Nucleation of this metastable phase is suppressed when Zr is 

substituted for Ti in the alloys. Apparently, the larger atomic diameter of Zr 

limits its solubility in the CsC1-type phase and makes nucleation of this 

phase more difficult in the ternary alloys. Masumoto and Inoue [25,26] have 

suggested that atomic size differences in multicomponent alloys lead to 

efficient packing of atoms in the glassy phase. Recall that the atomic radius 

of elements in Zr41.2Til3.8Cul2.5Ni10.0Be22.5. alloy covers a broad range which 

will help in efficient packing. The packing should be further enhanced by 

isotropic metallic bonding which is characteristic of these metallic elements. 

It should be noted that Be, a crucial element for bulk glass formation, is the 

I1  srnailest" atoiil which bonds meta!!iza!!y in the entire periodic tzble. This in 

turn leads to a smaller ground state energy difference between the 

amorphous and crystalline phases. This small difference together with the 

lowering of the free energy of the liquid due to chemical mixing entropy 

effects can be related to the existence of deep eutectic structures such as 

found in our alloys. The existence of deep eutectic structures will be 

discussed in more detail in chapter 5. 

The crystal growth velocity is also an important factor in glass formation. 

Eutectic and dendritic crystallization may have substantially low growth 

velocities due to extensive solute partitioning [27]. For example, Boettinger 

demonstrated that there is a maximum crystal growth velocity for eutectic 



crystallization of Pd77.5Czh6Si16.5. This leads to glass formation at higher 

solidification velocities [27]. A low crystal growth velocity will be especially 

valuable in suppressing the effects of heterogeneous nucleation. When 

heterogeneous nucleation sites are dilute enough, the limited crystal growth will 

keep the bulk of the undercooled liquid unaffected. A good example of this is 

given by Zr41.2Ti13.8Cul2.5Nilo.oBe22.5. glassy ingots. These samples have 

crystalline traces at the bottom surface. Crystallization does not extend to the 

ingot interior during cooling. This suggests a limited crystal growth velocity. 

This example also shows that there are no active or at least very few 

heterogeneous nucleation sites in the bulk of the Zr41,2Til3.8Cul2.5Ni1o.oBe22.5 

liquid. Comparing this to bulk glass formation in Pd40Ni40P20 by fluxing, we see 

that this alloy is "self fluxing." We have, in fact, found that the liquid 

Zr41.2Ti13.8C~12.5Nilo.oBe22.5 alloy can dissolve up to 1% oxygen and still form 

bulk glass. It seems that the high oxygen solubility in the liquid results in an 

absence of oxide particles in the melt. Such particles would act as a catalyst for 

'neterogeneous nucieatioii. "1 ' - . - : I1  I- -' '-"..""-A ' lnls will vt. U I ~ L U ~ ~ C U  ili mme detail in the next 

chapter. 
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Chapter 4 

Heterogeneous nucleation and glass formation 

In chapter 2, the theory of homogenous nucleation was presented and used in 

accounting for glass formation. However, homogenous nucleation is rarely 

realized in practice, as another mode of nucleation, heterogeneous nucleation, 

preempts homogenous nucleation. There are two sources of heterogeneous 

nucleation: the container and foreign particles (such as oxides). These are hard to 

avoid in routine practice of metallurgy, making heterogeneous nucleation very 

common. In fact, the theory of homogenous nucleation has very limited 

'' -'-' 'A--  d-- ~ 1 ^  ,-- - ---n-* 1- .r F n ~ * r  oacnr. nu nrimer?t2! cQnditionS have appllcavll~~~ lux ~ l ~ e  sallic +caaviL. LIL a lcVV Luobo, L,.pL1llrr 

been achieved such that homogenous nucleation was realized or became 

competitive with heterogeneous nucleation. 

In this chapter, I will discuss the origins of heterogeneous nucleation and its 

pronounced effect on glass formation. First, the theory of heterogeneous 

nucleation will be developed in analogy with that of homogenous nucleation. 

Then examples of heterogeneous nucleation induced by container walls will be 

presented for the bulk glass forming Zr-Ti-Cu-Ni-Be system. Some examples of 

metastable interfaces between the Zr-Ti-Cu-Ni-Be bulk glassy alloy and 

elemental crystalline phases will also be introduced. Later, the effect of 

heterogeneous nucleation induced by foreign particles, mainly oxides, will be 
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discussed in bulk glass formation of several different alloy systems. Finally, I 

will present examples demonstrating how thermal stability of metallic glasses is 

affected by heterogeneous nucleation. 

4.1 Origins of heterogeneous nucleation 

The principal resistance of an undercooled liquid to nucleation is related to the 

creation of an interface between the crystalline nuclei and liquid. Nucleation can 

be enhanced at small undercooling, when this effective interfacial energy is 

reduced. This can be effectively achieved by forming crystalline nuclei on the 

surface of the container or on foreign particles which exist incidentally (or are 

introduced intentionally) in the liquid. The existence of an interface between 

liquid and container (or foreign particles) before formation of a crystalline 

embryo is the primary cause of heterogeneous nucleation. 

Let us consider a crystalline embryo forming on a flat contaii~er surface or 

foreign particle surface as shown in figure 4.1. If we assume the crystal-liquid 

interfacial energy y x ~  is isotropic as we did in the classical theory of homogenous 

nucleation, it can be shown that the total interfacial energy of the system is 

rninimized if the crystalline embryo has the shape of a spherical cap [I]. The 

"wetting angle" 8 can be expressed as 

where YXL, YXM, YML are the interfacial energy (or interfacial tension) between the 

crystal and the liquid, the crystal and the container, and the container and the 

liquid respectively [I]. This expression is derived from the balance of the 

interfacial tensions in the plane of the container (or foreign particle) wall. The 

wetting of container wall by the crystalline embryo can be enhanced 



substantially if two crystals are lattice matched to each other (not necessarily in 

the same crystallographic planes). When their interatomic spacings differ 

significantly, a strain energy due to this mismatch will result in a high interfacial 

energy thus discouraging good wetting between the crystalline embryo and 

container wall [2]. Obviously, the same is true for the case of a foreign particle 

instead of the container. 

The total Gibbs' free energy change upon formation of a crystalline embryo is 

given by [I] 

where r is the radius of spherical cap and S(0) is a shape term given by 

s(0) = (2 + cos 0)(1- C O S ~ ) ~ / ~  

Note that the expression for AGhet is the same as the one obtained for 

horn-ogenous nucleation, equation 2.2, except for factor S(0). The S(0) has a 

numerical value less than 1 as shown in figure 4.2. The value of S(0) approaches 

zero at small values of wetting angle 0; for example, S(0) equals 0.0027 when 0 is 

20". The critical radius r" and activation energy for heterogeneous nucleation, 

G;,~, can be obtained by differentiation of equation 4.2, and they are given as: 
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Figure 4.1: Heterogeneous nucleation of crystalline embryo having a shape of 

spherical cap on a flat container (or foreign particle such as oxide) wall. 
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Wetting Angle 0 (Degrees) 

Figure 4.2: The value of the expression S(0) = (2 + cos0)(1- c0s0)~/4 as a 

function of wetting angle 0. 



Notice that the critical radius of a crystalline embryo has the same value for 

homogenous and heterogeneous nucleation, whereas the activation energy of 

nucleation can be substantially smaller for heterogeneous nucleation depending 

on the value of 0. This is illustrated in figure 4.3, where the total Gibbs free 

energy change of a crystalline embryo is shown as a function of its spherical 

radius for homogenous and heterogeneous nucleation. At small values of 

wetting angle, 0 - 20°, the activation energy, G * ~ , ~  decreases by three orders of 

magnitude. 

Then the volume rate of heterogeneous nucleation is given by a similar 

expression for homogenous nucleation equation 2.6: 

where N, is the number of atoms in contact with heterogeneous nucleation sites 

per unit volume of liquid [I]. 

The heterogeneous nucleation can be further enhanced by the crevices on the 

surfaces of container or foreign particle walls. This type of heterogeneous 

nucleation can be highly effective even at high values of 0. As an example, a 

special case will be presented where 7~/4<0<7~/2. Let us consider a crack with a 

conical shape on the container wall (or foreign particle wall). For simplicity, it 

will be assumed that the base angle of the cone has the same value of the 

"wetting angle" 0 as shown in figure 4.4. It can be shown that the total Gibbs' 

free energy change upon formation of a crystalline embryo at the crack tip is 

given by 



Figure 4.3: The total Gibbs' free energy change of a crystalline embryo for 

heterogeneous and homogenous nucleation as a function of its radius. 
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Figure 4.4: The formation of a crystalline embryo at the crack tip on a container 

wall (left). In this case r',,,,;, is smaller than r'h,, and the crystalline embryo 

can grow out of the crack into the bulk of liquid when the crack has a large 

enough opening radius (right). Also shown is the critical radius for homogenous 

nucleation, r*ho,. 



xr3 tan 0 
AGcmck = 3 AG, + ~ l r ~ ~ ~ ~ ( l - c o t ~ )  

where r is the radius of base of cone. Then, the critical radius for stable crystalline 

embryo at the crack tip, is given by 

2yxL (tang)-1 (tan 0) - 1 
~ * ; m c k = (  A ~v tanO ) = y * b r n [  tan 2 0 1. 

From equation 4.7 we can deduce that 

'crack < *horn & < *horn 

for values of 0 between 7c/4 and x/2.  Thus a stable crystalline embryo with a 

smaller radius than ?horn can form at a crack tip. These embryos will grow from 

the crack tip to the crack opening. If the crack has a large enough opening radius 

(an opening radius of r*hom will suffice), the crystalline embryo can sustain its 

growth out of the crack thus starting crystallization into the bulk of liquid (figure 

4.4). Otherwise the growth of the crystalline embryo will be limited to the inside 

of the crack. Using the general relation 

where V* is the critical volume of crystalline embryo [I], we can deduce the 

heterogeneous nucleation if the crack tip has significantly smaller activation 

energy than heterogeneous nucleation on a flat wall. The above analyses can be 

further generalized to show that crevices on the surfaces of a container and 

foreign particles may greatly facilitate the heterogeneous nucleation. 



4.2 Examples of heterogeneous nucleation in preparation of Zr-Ti- 

Cu-Ni-Be bulk glass forming system due to container walls 

Figure 4.5 (a) shows an X-ray diffraction pattern taken from the as-cast surface of 

a 3.0 mm thick plate of Zr41.2Ti13.8Cu12.5Ni10.~Be22.5 alloy produced by metallic 

mold casting. Obviously, there are glassy phases as well as crystalline phases in 

the cast sample. The relative amount of crystalline phases changes significantly 

depending on the composition of the bulk glass forming alloy and other 

parameters involved during processing of the alloy. What is not changing is the 

location of the crystalline phases within the samples. In all cases, the crystalline 

phases were found to be localized within the top few hundred microns of the 

surface layer. Progressively less crystalline phase was observed as one moves 

deeper from the sample surface. Figure 4.5 (b) shows the X-ray diffraction 

pattern of the same 3.0 mm thick Zr41.2Ti13.8Cu12.5Nilo.oBe22.5 sample after it was 

polished to remove the upper 100 microns from the surface. No crystalline 

phases are observed within the resolution of X-ray difiraction, i.e., the sample is 

completely glassy in the interior. The cooling rate is generally higher at the 

surface of the sample as the liquid is in casual contact with the cooling medium 

at the surface. Based on the cooling rate considerations, one would expect 

crystals to form in the interior of the sample rather than at the surface if only 

homogenous nucleation is operational. This example is a vivid illustration of 

heterogeneous nucleation due to container walls in the Zr-Ti-Cu-Ni-Be bulk glass 

forming system. It seems that the crystals nucleate heterogeneously on the 

container walls but cannot grow more than a few hundred microns from the 

surface due to a very low crystal growth velocity. Thus, the rest of the liquid, the 

interior part, is left unaffected by surface heterogeneous nucleation provided no 



Two Theta 

Figure 4.5: X-ray diffraction patterns taken from the surface of 3.0 mm thick 

Zr41.2Ti13.8C~12.5Ni10.~Be22.5 alloy obtained by metallic mold casting: (a) as-cast 

surface and (b) polished surface by 100 microns. Co K a  radiation. 



other heterogeneous nucleation sites, such as oxide particles, exist in the bulk of 

the liquid. 

However, one could argue that the polishing may damage the surface and may 

result in deformation induced amorphization as observed in some systems [3]. 

To clarify this point, two more examples will be presented. One way to avoid 

damaging the surface of the alloy is by using two different X-ray radiations to 

characterize the structure of the sample with respect to the depth from surface. 

A harder X-ray radiation can penetrate further into the bulk, thus giving more 

sampling of the interior compared to a soft X-ray radiation. This will give us a 

non-destructive method to find out the relative amount of crystalline phases at 

the surface and away from the surface. For this purpose Mo K a  and Cu K a  

radiation were used. The linear absorption coefficient of Zr for Mo K a  radiation 

is 105 cm-1 whereas it is 890 cm-1 for Cu K a  radiation [4]. Mo K a  radiation can 

penetrate 8.5 times deeper into a Zr base sample than the Cu K a  radiation. For 

example, we can calcukite fro= tP[e relation [5] 

that the intensity of Mo K a  radiation reduces to one-third of its initial value after 

passing through a Zr sample of - 100 micron thick. The corresponding thickness 

for Cu K a  radiation is - 12 microns. Thus Mo K a  radiation can give us more 

sampling from the interior, whereas Cu K a  radiation will sample mostly the 

volume close to the surface. Since Zr is the best element for this purpose (for the 

case of Mo K a  and Cu K a  radiation) [4], the composition of glass forming alloy is 

optimally set to the Zr70Ni7.5Be22.5 such that all the other elements (Ti, Cu, and 

Ni) are minimized. Be is practically transparent to both radiations [4]. Figure 



4.6(a) shows an X-ray diffraction pattern with Mo K a  radiation taken from the as 

cast surface of a 1.0 mm thick ZryoNi7.5Be22.5 alloy produced by metallic mold 

casting. Obviously there are both amorphous and crystalline phases. Figure 

4.6 (b) shows the X-ray diffraction pattern with Cu K a  radiation taken from 

exactly the same region of the same sample. The amount of amorphous phase is 

drastically reduced. Again the crystalline phases are observed disproportionally 

on the surface. The interior of the sample has more amorphous phase. Figure 4.7 

shows the X-ray diffraction pattern with Cu K a  radiation taken from the 

polished surface of the same sample. Only a trace amount of crystalline phases 

are left. 

As a last example the glassy ingots produced by melting on water cooled metallic 

crucibles (Cu or Ag) are discussed. Figure 4.8 shows X-ray diffraction patterns 

taken from the various surfaces of a Zr41.2Til3.gCul2.5Ni10.0Be22.5 ingot. The 

ingot weighs about 6 grams and it is approximately 7 mm thick. Shown in figure 

4.8 (a) is a typical + - X-ray diffraction pattern taken from the bottom surface of the 

Zr41.2Ti13.gCu12.5Ni10.0Be22.5 ingot where casual contact with the silver (or 

copper) boat occurs. As evidenced by numerous Bragg peaks, the sample is 

crystalline on the bottom surface. Figure 4.8 (b) shows another X-ray diffraction 

pattern taken from a cross sectional surface of the Zr41.2Ti13.8Cul2.5Ni10.0Be22.5 

ingot parallel to the silver boat. The top surface of the ingot gives a similar X-ray 

diffraction pattern. The corresponding electron diffraction pattern as well as 

dark field and high-resolution TEM images taken from the interior of a similar 

ingot were already shown in chapter 3.1. The conclusion is 

Zr41.2Til3.gC~12.5Ni10.0Be22.5 ingot is amorphous everywhere except the surface 

where it has contact with the container. The crystalline phases form a slight trace 

on the bottom of the surface. 
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Figure 4.6: X-ray diffraction patterns with different radiation taken from the as- 

cast surface of 1.0 mm thick Zr70Be22.5Ni7.5 alloy obtained by metallic mold 

casting: (a) Mo K a  radiation and (b) Cu K a  radiation. 
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Figure 4.7: X-ray diffraction pattern taken from the polished surface (by -100 

microns) of a 1.0 mm thick Zr70Be22.5Ni7.5 alloy obtained by metallic mold 

casting. Cu K a  radiation. 
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Figure 4.8: X-ray diffraction patterns taken from various parts of a 6 gram ingot 

of Z~4~.2Ti~3.~Cu~~.~Nil0.0Be22.5 alloy: (a) Bottom surface where contact with the 

silver boat occurs and (b) cross section surface parallel to the plane of the silver 

boat surface. Cu Ka radiation. 



Given the above examples, how can one solve the problem of heterogeneous 

nucleation due to container walls if one has to use a container? The first try is to 

use a container which is not crystalline. When the container is amorphous, we 

expect a higher interfacial energy for the amorphous container-crystal interface 

than of the amorphous container-liquid interface, i.e., the liquid will wet the 

amorphous container better than the crystal. To test this idea we have used a 

fused silica tube as a container. The glassy nature of the fused silica also gives a 

relatively smoother surface compared to the crystalline surfaces, thus making 

heterogeneous nucleation less effective from crevices. The 

Zr41.2Ti13.sCu12.5Ni10.0Be22.5 samples were sealed in glass tubes under an inert 

atmosphere. After the samples were melted, the glass tube was plunged into the 

water and stirred until solidification was complete. The outcome was superb. 

No crystalline phases were observed in any part of the sample. A typical X-ray 

diffraction pattern of this sample is shown in figure 3.3. The wetting angle 

between the fused silica and glassy Zr41.2Til3.8Cu12.5Nilo.oBe22.5 alloy was 

deterrlined to be less tf-lan 290. 113 T JCI  nr - r  1"  TAT V v  T V% TO++; L L L L ~ g  angle evidences a Very ~ Q W  

interfacial energy between the liquid Zr41,2Til3.sCul2.5Ni10.0Be22.5 and fused 

silica as predicted. In fact, the glassy Zr41.2Tis3.sCu12.5Ni10.~Be22.5 alloy and 

fused silica glass container made an extremely strong bond (as strong as the base 

glassy alloy) evidencing good wetting. This is a profound observation when we 

consider the extremely brittle behavior of fused silica. This strong bond could be 

utilized by employing silica as a reinforcing and weight reduction material in the 

metallic glass alloys. 

Another approach to the solve surface nucleation problem is to use a container 

made out of a crystalline phase which can form a metastable interface with a 

molten glass forming alloy. For example, the growing amorphous phase and 



crystalline elemental phases form metastable interfaces in the solid state 

amorphization of Ni-Zr diffusion couples [6,7]. Further, it is found that the 

equilibrium intermetallic phases almost invariably nucleate on the Zr side of the 

growing amorphous phase, i.e., the interface of amorphous phase and crystalline 

Ni seems less likely to induce nucleation [7]. Recently, our experiments reveal 

that similar metastable interfaces can be formed between the liquid 

Zr41.2Ti13.8Cu12.5Ni10.oBe22.5 and crystalline Ti and Zr [B]. Though our work is 

still in progress, we have promising results showing that Ti and Zr can be used 

as containers in processing of Zr-Ti-Ni-Cu-Be metallic glasses. The preparation 

and characterization of these metastable interfaces are described in the following 

paragraphs. 

The ingot of elemental Zr (or Ti) and previously prepared ingot of 

Zr41.2Til3.gCu12.5Ni10.0Be22.5 alloy were put on a water cooled copper boat under 

a Ti-gettered inert atmosphere. Initially they were separated at a distance so that 

each of them can be melted separately. First, the ingot of Zr (or Ti) was melted to 

dissolve any surface oxide so that a clean metallic surface can be exposed. After 

the ingot of Zr was cooled, the ingot of Zr41.2Til3.8Cul2.5Nilo.oBe22.5 alloy was 

melted and driven onto the cold Zr ingot. This formed a strong bond between 

the elemental Zr and the frozen alloy. (When the joined metal piece was torn 

apart, the Zr failed before the interface.) The molten alloy was further frozen to 

the glass as evidenced by a highly reflective surface and the lack of recalescence. 

The glassy nature of the amorphous ingot was further confirmed by TEM and X- 

ray analyses. The interface between elemental Zr and glassy alloy was analyzed 

by a Philips EM 430 300 -keV transmission electron microscope with high 

resolution and analytical capabilities. Figure 4.9 shows a high resolution TEM 

image of this interface. As evidenced by the existence of lattice fringes on one 



side and lack of lattice fringes on the other side, there are obviously both a glassy 

phase and a crystalline phase (which belongs to the elemental Zr) separated by 

an atomically sharp interface. The EDAX analyses (Energy Dispersive X-ray 

Spectroscopy) showed that there is no chemical mixing on the elemental Zr-side 

of the interface. The electron diffraction further confirmed the glassy nature of 

the Zr41.2Til3.gCul2.5Ni10.0Be22.5 alloy side of the interface and the nature of the 

equilibrium crystalline phase of elemental Zr. No other crystalline intermetallic 

phases were observed along the interface separating the original elemental Zr 

from the amorphous alloy. Since the amorphous alloy was solidified from the 

melt at a relatively low cooling rate, we can conclude that the interface with 

elemental Zr is not a favorable site for hetoregeneous nucleation of crystalline 

intermetallic phases from the undercooled alloy melt! The undercooled liquid is 

in metastable equilibrium with crystalline Zr along the interface. 

Figure 4.10 shows a dark field TEM image of the interface of the glassy 

Zr41.2Ti13.gCu12.5Ni1o.oBe22.5 alloy and crystalline elemental Ti prepared with 

the same method described above. The electron diffraction confirmed the glassy 

nature of the Zr41.2Til3.gCul2.5Ni1o.oBe22.5 alloy side of the interface. Further, the 

EDAX analyses detected no chemical mixing on the crystalline elemental Ti-side 

of the interface. Thus, the glassy phase and crystalline elemental Ti are separated 

by a sharp boundary and no nucleated intermetallic phase has been observed 

from the interface. Similarly, Zr41.2Til3.gCul2.5Ni10.0Be22.5 molten alloy can also 

form a metastable interface with elemental Ti. 

If we have to use a crystalline container, removing the crevices on container walls 

should be very useful to prevent heterogeneous nucleation. Crevices are very 

effective in inducing heterogeneous nucleation even at high values of wetting 



Figure 4.9: The high resolution transmission electron image of metastable 

interface of Zr$l.2Til3.8Czi12.5Ni10.oBe22.5 glassy alloy with elemental Zr. Glassy 

alloy is on the left side. 

Figure 4.10: The darkfield TEM image of metastable interface of 

Zr41.2Til3.8Cz~12.5Ni1o.oBe22.5 glassy alloy with elemental Ti. Glassy alloy is on 

the left side. 



angle between the crystalline embryo and container. Recently, Schwarz used an 

electropolished copper hearth as a water cooled metallic crucible to prepare 

glassy Zr41.2Til3.8Cul2.5Ni10.0Be22.5 ingots by plasma arc melting [9]. The 

electropolishing removes all the asperities and crevices on the copper hearth 

making an almost atomically smooth surface. According to the experiments of 

Schwarz, no crystalline phases were observed on the surface of these plasma 

melted amorphous ingots, which weigh as much as 200 grams [9]. 

4.3 Heterogeneous nucleation from foreign particles and its effect 

on bulk glass formation 

We have seen in chapter 2 that the metallic alloys having a reduced glass 

transition temperature, TTg - 2/3 (where Tm, the melting point, can be taken as 

the solidus temperature in the case of a general alloy), should exhibit very low 

rates of homogenous nucleation and should be bulk glass formers as suggested 

by Turnbull [lo]. However, prior to 1982, no metallic glass could be made with a 

thickness of more than a few mm, although there were known metallic alloys 

having TTg =0.66, such as Pd40Ni40P20 and Nb40Ni60 several years earlier [Ill. 

The main obstacle was believed to be heterogeneous nucleation due to container 

walls and foreign particles such as oxides. In the early eighties, Turnbull and his 

co-workers used fluxing to prevent heterogeneous nucleation in Pd40Ni40P20 

melts and obtained the largest bulk metallic glass samples at that time using 

cooling rates of -1-2 K/s [12]. By contrast, no glassy alloy of Nb40Ni60 thicker 

than one mm has yet been obtained. 

The Zr41.2Ti13.gCu12.5Ni10.~Be22.5 alloy, which we have discovered recently, also 

has TTg =0.67 and bulk pieces of this alloy readily undercool to glass unlike any 



other glass forming alloy. Although the alloys, Zr41.2Ti13.gCul2.5Ni1o.oBe22.5 , 

Pd40Ni40P20 and Nb40Ni60, have almost the same TTg, their bulk glass forming 

ability shows drastic differences. For example, the Zr41.2Til3.gCul2.5Ni10.oBe22.5 

alloy is prone to surface heterogeneous nucleation due to container walls, 

whereas no sign of any significant crystallization has been observed in its 

interior. The Pd40Ni40P20 alloy needs a careful and delicate fluxing treatment for 

bulk glass formation. Otherwise, its glass forming ability is very limited. For the 

time being we do not know whether or not we can find a similar fluxing 

treatment for Nb40Ni60. These differences can be accounted for by heterogeneous 

crystal nucleation induced by crystalline debris incidentally existing in the bulk 

of the liquid. These crystalline debris can be various types of refractory particles; 

oxides are possibly the most common form of them. It seems that the flux used 

in the Pd40Ni40P20 experiment, B203 which is also a glass, can dissolve the oxide 

particles thus eliminating heterogeneous nucleation and giving rise to bulk glass 

formation. 

Since no flux has been used in production of Zr41.2Ti13.gCu12.5Ni1o.oBe22.5 bulk 

glasses, there should be another mechanism to eliminate the heterogeneous 

nucleation sites in the bulk of the liquid. This can be achieved if liquid reacts 

with incidentally existing crystalline debris, such as oxides, and dissolves them 

without detrimentally effecting its bulk glass forming ability. We can examine 

this by intentionally introducing crystalline debris into the liquid such as by 

slight oxidization. To test this proposition, Zr41,2Ti13.8Cu12.5Nilo.oBe22.5 bulk 

glassy ingots were oxidized in a controlled atmosphere of oxygen by heating to 

the melting point of the crystalline alloy on a water cooled copper boat with a 

levitation melting system. Upon subsequent cooling, recalescence was observed 

evidencing crystallization. The alloy was visibly oxidized and exhibited a rough 



surface with a dark color rather than a smooth and reflecting surface unique to 

the glassy phase. The oxidizing atmosphere was then replaced with a clean inert 

atmosphere as in the routine preparation of glassy ingots. In the next few 

heating and cooling cycles (from ambient temperature to the melting point), the 

alloy crystallized on cooling. This could be easily detected by the final surface 

luster and recalescence during cooling. Solid particles, most probably oxides, 

were also observed floating on the surface of the liquid. After keeping the alloy 

above the melting point for a few minutes, it was observed that these oxide 

particles gradually dissolved. Following the dissolution of the oxide debris, the 

alloy again froze to glass upon subsequent cooling. We have found that liquid 

samples as large as 9 grams can dissolve up to 1 atom percent oxygen (as 

detected by weight measurements) and still form glass on a water cooled metallic 

crucible as easily as non-oxidized samples, provided that all solid oxide debris is 

dissolved in the melt before cooling. 

It can be said that Zr and Ti have the distinguishing property of forming 

crystalline solid solutions with oxygen content up to 30 atom percent. This large 

oxygen solubility [13] may eliminate the oxide formation which creates the sites 

for heterogeneous nucleation. We believe that what is significant is not the 

oxygen solubility in solid solutions, but rather oxygen solubility in undercooled 

liquid! The maximum oxygen solubility in undercooled liquid Zr can be 

estimated from the metastable liquidus line of ZrO in the Zr-0 phase diagram 

[13]. The metastable liquidus line can be constructed by extending the 

thermodynamic liquidus line of ZvO in the direction of less oxygen in the Zr-0 

phase diagram. This also approximately gives the equilibrium and metastable 

liquidus line of ZvO in a Zr- base alloy which has a very depressed melting point 

such as Zr41.2Ti13.gCu12.5Ni10.~Be22.5 . This is illustrated in figure 4.11. The 
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Figure 4.11: Construction of metastable liquidus line of ZrO2 in a Zr alloy. "A" 

corresponds to an alloying element(s) which depresses the liquidus line of Zr 

base crystalline solid solutions. 



metastable liquidus line suggests a maximum oxygen content of -10 atom 

percent at 350 "C and -20 atom percent at 1100 "C in the undercooled liquid Zr or 

Zr base alloy. (The additional alloying elements may have detrimental effects on 

the oxygen solubility in the liquid Zr-base alloy, thus overestimating the 

maximum oxygen content.) The oxide, ZrO, starts to precipitate from the melt at 

higher oxygen content. These oxide precipitates will serve as heterogeneous 

nucleation sites for further crystallization. 

Let us consider the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy which has a glass 

transition temperature, Tg = 350 "C. When this alloy was kept above its melting 

point for a certain time in a reasonably clean atmosphere, all the incidentally 

existing oxygen should be dissolved in the liquid. As we cool down the liquid, 

no oxides should precipitate down to the glass transition temperature provided 

the oxygen content is low enough. Upon further cooling, the undercooled liquid 

configurationally freezes to glass below the glass transition temperature, 350 "C. 

As the metastable iiquidus line of ZrG suggests, t t~e  ammint of oxygen that can 

be dissolved in the undercooled liquid Zr41.2Ti13.sCu12.5Ni1~.~Be22.5 down to 350 

"C is significantly larger than the amount of oxygen incidentally existing in an 

alloy which is prepared in a reasonably clean atmosphere. This is also 

demonstrated by the experiment presented above. When all the incidentally 

existing oxides are dissolved in the liquid and the precipitation of oxides is 

hindered thermodynamicaly at lower temperatures, there will not be any 

heterogeneous nucleation sites, thus making bulk glass formation much easier. 

We have found that the Zr-Ti-Cu-Ni-Be system has an exceptionally large bulk 

glass forming range [14]. Further, the bulk glass forming alloys are extremely 

forgiving to impurities in the constituent raw elements [15]. In fact, a substantial 



amounts of elements other than Zr, Ti, Cu, Ni and Be can be added to this system 

without damaging the bulk glass formation 1141. All of these observations 

suggest that the Zr-Ti-Cu-Ni-Be bulk glass forming alloy will tend to react with 

any crystalline debris incidentally existing in the liquid state provided necessary 

time and temperature are provided. The dissolving of the crystalline debris will 

not affect the bulk glass formation as the alloy system has a large bulk glass 

formation range including elements other than its constituents. 

In the case of Nb40Ni60 and Pd40Ni40P20, the maximum solubility of oxygen in 

the undercooled liquid should be extremely low. This can be shown from the 

phase diagrams of Ni-0 and Nb-0 [12]. The liquidus lines of NbO and NiO 

exhibit a shallow depression with lowering oxygen content, i.e., the oxygen 

content of the liquidus lines of oxides of Nb and Ni decreases very rapidly with 

respect to temperature. We can roughly construct the metastable liquidus lines 

for these systems as described above. The case of Nb-A-0 has been illustrated in 

figure 4.12, where A stands for an element depressing the liquidus line of a Nb 

alloy (such as Ni). As seen in figure 4.12, the metastable liquidus line of NbO 

reaches -0.0 percent oxygen content at temperatures - 1000 "C. At higher 

temperatures the Nb-base liquid has some increasing solubility of oxygen with 

increasing temperature (e.g., a few percent at 1300 " C). The case of Ni also shows 

very similar behavior. For liquid alloys having an oxygen content > 0, oxides 

will precipitate at lower temperatures (below 1000 "C), whereas all the oxygen 

can be dissolved in the liquid at high temperatures. This is possibly the cause of 

heterogeneous nucleation in Nb40Ni60 and Pd40Ni40P20 alloys. The liquid alloys 

can pick up and dissolve some small amount of oxygen at high temperatures 

employed in the alloy preparation (or its constituent elements). However, 

crystalline oxides will precipitate in the undercooled liquid thus inducing 
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Figure 4.12: Construction of metastable liquidus line of NbO in a Nb alloy. "A" 

corresponds to an alloying elementts) which depresses the liquidus line of P\Tb 

base crystalline solid solutions. 



heterogeneous nucleation sites even at the very small oxygen concentrations 

suggested by the phase diagrams. 

We can further elaborate our discussion to account for the success of fluxing in 

Pd40Ni40P20 bulk glass formation and for predicting whether or not we can have 

similar success for Nb40Ni60. It was found that the equilibrium crystalline 

compounds of Nb40Ni60 can dissolve a significant amounts of oxygen such as r\ 

phase, NbsoNisoO, (W3Fe3C type) [16]. Thus the oxygen (or oxide particles) will 

be dissolved in crystalline compounds upon crystallization of Nb40Ni60. As the 

liquid state can also dissolve a significant amount of oxygen above the melting 

point, the fluxing medium will not have any chance to dissolve any oxide 

particles and will not be effective. Alternatively, the oxygen (oxide particles) 

should not be dissolved by crystalline compounds for fluxing techniques to be 

effective. It seems that the oxides of Pd40Ni40P20 precipitate and stay separate 

from the equilibrium compounds. This will allow the oxide particles to be 

dissoived by the fluxirig medium (Bz03) allowing bulk glass famation. 

Finally, I would like to point out that the Zr41.2Til3,gCul2.5Ni10.0Be22.5 alloy is 

ideally suited for containerless undercooling experiments in view of the 

experimental observations presented in the last two sections of this chapter. That 

is, there are no effective heterogeneous nucleation sites in the interior of the 

molten alloy. Further, surface nucleation is caused by container walls. The 

earlier undercooling experiments in undercooled metallic melts were severely 

limited by heterogeneous nucleation and high critical cooling rates for glass 

formation. In our experiments the critical cooling rate of 

Zr41.2Ti13.gCu12.5Ni10.0Be22.5 was estimated to be less than 5 K/s. This number 

has been estimated for the conditions where effective heterogeneous nucleation 



sites, such as container walls, exist. We believe that the critical cooling rate of 

this system may be several orders of magnitude less when the condition of 

homogenous nucleation is achieved. This extremely low cooling rate for glass 

formation is good enough for any conceived undercooling experiment to cover 

the whole temperature range from the glass transition to the melting point. This 

allows us to perform a true test of the homogenous nucleation theory in the high 

undercooling regime of this alloy in a containerless experiment, such as in the 

TEMPUS facility in the Space Shuttle. For example, undercooling of 3 mm 

diameter liquid balls of Zr41.2Til3.8Cul2.5Ni1o.oBe22.5 alloy down to the glass 

transition has recently been realized in containerless undercooling experiments 

made possible by the high vacuum electrostatic levitation unit at the Jet 

Propulsion Laboratory [16]. In the experiments, the sample cools only by 

radiation. The estimated cooling rates are about 5 K/s. 

4.4 Heterogeneous nucleation and thermal stability of metallic 

glasses 

We have seen in the previous chapter that the TTT diagrams suggest a higher 

thermal stability above glass transition for metallic glasses requiring lower 

cooling rates provided there exists a single mode of crystallization at all 

temperatures. In practice, this may not be achieved as different crystallization 

modes may become effective at high temperatures (around melting point) and 

low temperature (around glass transition). For example, there is a significant 

difference between observed thermal stability of glassy 

Zr41.2Ti13,gCu12.5Ni10.~Be22.5 alloy above the glass transition and the predicted 

thermal stability from the TTT diagram (which is constructed according to the 

observed critical cooling rate). This was attributed to a more effective nucleation 



of crystals induced by oxidation of glassy alloy around the glass transition 

temperature. However, it was just demonstrated that there is a significant 

oxygen solubility in undercooled liquid Zr41.2Ti13.8Cu12.5Nilo.oBe22.5 , and this 

plays an important role in its bulk glass formation by melt quenching through 

elimination of heterogeneous nucleation from oxide particles. These two 

apparently conflicting observations can be explained easily when we consider the 

temperature dependence of the diffusion of oxygen into the bulk of the 

undercooled liquid. Recall that it takes some time to dissolve the oxide particles 

at the melting point in the oxidation experiment presented above. When we 

quench the Zr41.2Til3.8Cu12.5Ni10.0Be22.5 alloy from the melt, it is always sealed in 

a closed container under a reasonably clean inert atmosphere. Since the liquid 

can dissolve all the incidentally existing oxygen (not more than a few ppm) in a 

reasonably short time, the diffusion of oxygen at the melting temperature is 

expected to be relatively fast. Meanwhile, the DSC (Differential Scanning 

Calorimetry) and other annealing experiments suggest that the 
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temperatures (around the glass transition). For example, we have observed that 

an oxide layer grows on Zr41.2Til3.8Cu12.5Ni10.0Be22.5 glassy samples above 

400 "C during our thermal analyses which is carried under a nominally pure 

flowing argon atmosphere. As the glassy alloy has no means to dissolve this 

oxide layer (unless heated to the elevated temperatures), this growing oxide layer 

may induce nucleation of crystals. Such oxidation can be suppressed by fluxing 

the sample surface with a layer of borosilicate-glass or encapsulation in a thin 

glass ampoule. A small sample of Zr41.2Til3.8Cul2.5Ni10.0Be22.5 alloy (-40 mg) 

was sealed in borosilicate-glass tube and heated. Since borosilicate glass softens 

around the melting temperature of Zr41.2Til3.8Cul2.5Ni10.0Be22.5 alloy, the 
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Figure 4.13: DSC scans of two Zr41.2Ti13.8Cu12.5Nilo.oBe22.5 glassy alloys at a 

heating rate of 20 K/min. The dashed curve corresponds to a plain glassy 

sample whereas the solid curve is for a glassy sample sealed in a borosilicate- 

glass ball. 



sample can be completely covered with a thin shell of glass. The molten sample 

was then water quenched resulting in a glassy sample sealed in a borosilicate- 

glass ball. When this is done, surface oxidation is suppressed and contact with 

the aluminum DSC pan is prevented. The crystallization peaks of the amorphous 

alloy as observed by DSC shift to significantly higher temperatures under these 

conditions. Figure 4.13 shows DSC scans of two Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 

glassy alloy samples at a heating rate of 20 K/min. One of the samples is sealed 

in a borosilicate-glass ball as described above, and the other is a plain glassy 

sample used in routine thermal analyses experiments. Obviously, the sealed 

glassy sample crystallizes at temperatures 20-30 "C higher than the plain glassy 

sample. However, this sealing technique has limitations at higher temperatures 

as the borosilicate-glass layer cracks due to thermal expansion and 

accompanying thermal stresses. 

The mechanism of nucleation of crystals induced by oxidation requires further 
-. expianation. 1 here is increasing e~periniei~ta: evideilce which mggcsts that the 

nucleation of crystals may occur as a result of a composition shift at the surface 

driven by selective oxidation. This is not the same as the heterogeneous 

nucleation described in the beginning of this chapter in which the nucleation of 

crystals is eased by the reduced effective interfacial energy rather than by a 

composition shift in undercooled liquid. For example, the study of the surface of 

the glassy Z~41.~Ti~3.8Cul~.5Ni10.0Be~2.5 alloy by XPS (X-ray photoemission 

spectroscopy) technique has shown that the surface oxide contains only elements 

of Zr, Ti, Be. As the oxide layer grows, other elements, Ni and Cu, are expelled 

into the interior from surface oxide layer [18]. Zr, Ti and Be have high negative 

free energy for the formation of oxides [19]. It seems that the growing oxide 



layer cannot accommodate any elements with low negative free energy of oxide 

formation. Quite possibly, there exists a quaternary oxide of Zr-Ti-Be-0 with a 

still higher negative free energy for formation as suggested by the Ti-Be-0 

system [20]. This will further encourage the rejection of Ni and Cu from the 

oxide layer. The depletion of Ni and Cu in the surface layer (and Ni and Cu 

enrichment in the layer beneath the oxide surface) will drive this region out of 

the good glass forming range. Then the nucleation of crystals may occur much 

more easily in these compositionally altered regions. Crystallization may occur 

either homogeneously or heterogeneously (provided the growing oxide layer is 

crystalline). 

Schneider et al. also observed that the growing native oxide layer on 

Zr55Ni25Al20 glassy alloys does not contain Ni [21]. The oxide of the glassy alloy 

contains only Zr and A1 which have comparable heat of formation of oxides 

(both much higher than Ni). Their observations further suggest that the oxide 

growth is in fact limited by the uphill diffusion of Ni into the amorphous matrix. 

As the growing oxide was found to be amorphous in the early stages, they 

proposed that the crystallization of the glassy alloy is started by an unfavorable 

glass forming composition shift beneath the oxide layer. 

This type of crystallization was previously observed in other systems such as in 

glassy FegoZvlo alloys [22]. Selective oxidation of Zr occurs as it has a high 

affinity for oxygen. Then a Zr depleted region forms locally at the surface of 

glassy ribbons which results in crystallization of a-Fe at temperatures much 

lower than otherwise required for primary crystallization. 

The effect of oxidation on thermal stability of glassy alloys depends on the 

temperature at which the oxidation starts. If oxidation starts below the glass 



transition temperature, its detrimental effect on the thermal stability of the glassy 

alloy can be quite significant. As different elements in the glassy alloy will have 

different affinities for oxygen, we expect a strong temperature dependence of 

oxidation on composition. For example, Altonian eta1 observed that severe 

oxidation of Zr50Cu50 starts around 500 "C in DSC experiments 1231. In fact, they 

observed that this oxidation starts after crystallization of the glassy alloy. In this 

case the thermal stability of Zr5oCu5o glassy alloy is least affected by oxidation as 

the glass transition of this alloy is around 400 "C. When we introduce another 

element which has a higher oxygen affinity to these glassy alloys, the thermal 

stability of the new glassy alloy may change unfavorably even though it may 

become a better glass former. To illustrate this, I will give three good glass 

forming alloys as examples. Their compositions, estimated critical cooling rates 

Tc, reduced glass transition temperatures Trp and thermal stabilities above glass 

transition as quantified by AT = T,-Tg are given table 4.1. The corresponding 

DSC scans of the glassy alloys are also shown in figure 4.14. The replacement of 

Zr by Ti effectively reduces the critical cooiing rate for glass formation. Biir 

previous analyses of the TTT diagrams suggest that the thermal stability of 

glassy alloy should favorably increase in parallel with the lower critical cooling 

rate provided the same mode of crystallization remains effective from the glass 

transition temperature to the melting point. The initial increase in thermal 

stability of glassy alloys with Ti addition is in good agreement with this 

prediction. However, the further replacement of Zr by Ti deteriorates the 

thermal stability of glass alloys while it still lowers the critical cooling rate. The 

(Zro.65Tio.3s)55Cu7.5Nilo.oBe27.5 glassy alloy has a critical cooling rate at least two 

orders of magnitude less than the Zr55Cu7.5Nilo.oBe27.5 glassy alloy, though it 

has a relatively poor thermal stability above glass transition. These observations 



can be explained by oxidation above the glass transition as seen in the thermal 

stability of Zr41.2Til3.8Cul2.sNi10.0Be22.5 metallic glass. It seems that Ti has a 

higher affinity for oxygen than that of Zr at lower temperatures, i.e., around the 

glass transition temperature. This will result in oxidation of 

(Zrl-,TiX)55Cu7.5Nil0.oBe27.5 glassy alloy at lower temperatures, when the Ti 

concentration is high enough to govern the oxidation of the glassy alloy. This 

oxidation may induce crystallization by heterogenous nucleation on forming 

oxide or by the selective oxidation mechanism described above. All these 

observations suggest that the thermal stability and glass forming ability of glassy 

alloys cannot generally be correlated from our routine DSC experiments. 

Table 4.1: Various properties of three highly processable metallic glasses. 

I 
Alloy composition 

Zr55Nil~Cu7.5Be27.5 

(Zr0.85Ti~.15)55Ni10Cu7.5Be27.5 

(Zr0.65Ti0.35)55Ni10Cu7.5Be27.5 
: 

'P 
1 

I 
18 AT 

- 0.60 - 110 K 

- - 125K 

- 0.67 -70K 

Tc 

- 500 K/s 

- 50K/s 

-5K/s  
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Figure 4.14: DSC scans of three bulk glassy alloys at a heating rate of 20 K/min. 
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Chapter 5 

Conclusion: How to find bulk metallic glasses 

Crystallization from the liquid state involves two processes: nucleation and 

growth of crystalline nuclei. Obviously, glass will form easily when there is no 

detectable nucleation of crystals as the liquid cools from its thermodynamic 

freezing point to the glass transition. Slow crystal growth kinetics will also result 

in glass formation in the case that crystals nucleate, provided that nucleation is 

not copious. (Slow crystal growth velocities are especially favored when 

heterogeneous nucleation is effective.) As such, bulk glass forming systems 

should have slow kinetics for either nucleation or crystal growth, compared to 

conventional metallic glass forming alloys. To design bulk glass forming 

systems, we must then determine the thermodynamic parameters governing the 

kinetics of nucleation and crystal growth and their critical values required for 

slow kinetics. This was the subject of chapter 2, and here it will be revisited 

briefly. Accordingly, we can use this knowledge in engineering (or explaining) 

bulk glass forming systems. 

First consider the kinetics of homogenous nucleation. The rate of homogenous 

nucleation is given by [I] 



Here, the atomic mobility is assumed to be inversely proportional to viscosity. 

Metallic liquids have viscosity values typically 0.01 -10 poise around the melting 

point. This corresponds to adequately high atomic mobility for nucleation of 

crystals provided the thermal activation barrier is small. However, the 

homogenous nucleation rate is generally too small to detect at low undercooling 
2 3 (AT, < 0.2) for metallic systems. This is due to the fact that AG, JYXL is very 

small and positive definite just below T,, the thermodynamic melting point. On 

the other hand, the liquid is assumed to be frozen (i.e., no atomic mobility) just 

below glass transition where the viscosity is assumed to be 1013 poise. Thus, no 

homogenous nucleation is expected below the glass transition temperature. The 

viscosity therefore becomes the governing factor for the homogenous nucleation 

rate at large values of undercooling. As the rate of homogenous nucleation is 

inversely proportional to the viscosity, a steeply rising viscosity from the melting 

point down to the glass transition will give rise to a suppressed homogenous 

nucleation rate. A narrower region between the melting point and glass 

transition will yield a relative* more steeply rising viscesity fron?. the meltinc. 0 

point downward for a given form of viscosity-temperature relation. Turnbull 

quantified this by introducing the reduced glass transition temperature [Z]. 

Assuming a Fulcher type viscosity-temperature relation, he showed that the 

homogenous nucleation rate becomes too small to detect, thus allowing bulk 

glass formation, when reduced glass transition TT approaches 0.67. It should be 

kept in mind that these numbers strongly depend on the assumed functional 

form of viscosity with respect to the temperature (or undercooling). However, a 

higher reduced glass transition temperature is always favorable for lower 

homogenous nucleation rates, whatever the functional form of viscosity. 



The crystal growth velocity is also inversely related to viscosity. The 

corresponding equation for partitionless growth is given by [1,3] 

Other types of crystal growth velocities (eutectic and dendritic) should have a 

similar dependence on viscosity. Again, a high reduced glass transition 

temperature (a steeply rising viscosity from the melting point) is favorable for 

better glass formation. 

The glass transition temperature has generally been found to be slowly varying 

with composition. Thus, deep eutectic systems are invariably associated with a 

high reduced glass transition temperature and in turn with good glass formation. 

Deep eutectic systems possess other benefits for glass formation besides high 

reduced glass transition. For example, relatively large values of viscosity and 

relatively low values of the entropy of fusion have been found in deep eutectic 

sy-stenis around the melting paint (possibly due t~ ordering of licpld). These will 

favor better glass formation through low nucleation rates and low crystal growth 

velocities as suggested by equations 5.1 and 5.2. In addition to these, the eutectic 

type of growth itself may favor glass formation substantially since its kinetics are 

much slower compared to other growth types (e.g., partionless growth). 

Boettinger, for instance, has demonstrated that there is a maximum crystal 

growth velocity for eutectic crystallization of Pd77.5Cu6Si16.5 [4]. This results in 

glass formation at higher solidification velocities. Again, his analysis for glass 

formation requires a high reduced glass transition temperature. Near deep 

eutectics, the proximity of glass transition results in a drastic decrease of the 

diffusion coefficient which in turn gives an upper bound for the eutectic growth 



rate into the viscous liquid. This analysis predicts an extended range of glass 

formation at a given cooling rate around the eutectic composition, unlike the 

Davies-Uhlmann kinetic analysis. 

Thus, the first condition for bulk glass formation can be summarized as deep 

eutectic systems where "deep eutectic" is quantified by reduced glass transition 

temperature TW I will take Trg - 0.67 as a necessary condition for bulk glass 

formation (requiring a critical cooling rate of 1-10 K/s) as it is in good agreement 

with the earlier and recently found bulk glass formers. For thick glass formation 

(requiring a critical cooling rate of 100-1000 K/s), a corresponding value of T,.8 - 
0.60 seems to be supported by experimental data. Table 5.1 lists some glass 

forming alloys with their reduced glass transition temperatures and critical 

cooling rates. 

Table 5.1: Some bulk and thick glass forming alloy compositions, their reduced 

glass transition temperature Trg, and critical cooling rates Tc.  



The second criteria for bulk glass formation will be taken as avoidance of 

heterogeneous nucleation sites introduced through "impurity phases." As we 

have seen in chapter 4, heterogeneous nucleation can be a devastating factor for 

glass formation even at high values of reduced glass transition temperature. A 

relatively small crystal growth velocity may lessen this effect. Unfortunately, the 

kinetics of homogenous nucleation rates usually correlate with those of crystal 

growth rate, thus still making the heterogeneous nucleation effective at high 

reduced glass transition temperatures and near eutectic systems (i.e., at relatively 

small crystal growth velocities). Thus more effective measures of suppressing 

heterogenous nuclation are required. Two previously described methods are 

fluxing and utilizing melt chemistry to dissolve the impurity phases. The latter 

can be incorporated into alloy design along with the first criteria (high reduced 

glass transition temperature). As the liquid states of Zr-base and Ti-base alloys 

have relatively high reactivity for dissolving impurity phases, they offer a better 

opportunity to avoid heterogeneous nucleation sites in the bulk of liquid 

compared to the other alloy systems. The former technique, fluxing, can be 

practiced after an alloy which satisfies the first criteria of bulk glass formation is 

found. Obviously, our tools to suppress the heterogeneous nucleation are 

relatively new and more work is needed in this area. 

We need to know the glass transition temperature and melting point of an alloy 

to decide its potential to form bulk glass. The glass transition temperature of 

metallic alloys tends to increase with alloying though its dependence on 

composition and alloying elements is relatively weak compared to the liquidus 

temperature of the alloy. We can obtain a rough estimate for the glass transition 

temperature of a new alloy based on our knowledge of currently known metallic 



glasses. For example, we expect a glass transition temperature of 350 "C-400 "C 

for Zr-base metallic glasses, 700 "C - 750 "C for Ta-base metallic glasses, etc. [9]. 

From these numbers, we can estimate the required melting point of these alloys 

to have a T,g -0.67. As the melting point of metallic systems can change 

drastically with alloying, knowledge of liquidus temperature becomes a highly 

desirable thermodynamic parameter for estimating the glass forming ability. 

If we knew all the thermodynamic phase diagrams of binary, ternary, 

quaternary, pentiary and higher order systems, we could locate abnormally deep 

eutectics which would be potentially good bulk glass formers. We already have 

satisfactory knowledge of thermodynamic phase diagrams for binary systems for 

the purpose of glass formation, and almost all promising binary glass formers 

have been worked out throughout the first 30 years of metallic glass research. 

However, most of the known good metallic glass formers have turned out to be 

ternary or higher order systems. Obviously, we have to look for good glass 

formation in ternary and higher order systems. Unfortunately, our knowledge is 

rather limited concerning phase diagrams of ternary systems, and almost non 

existent on higher order systems. For the time being, the wide availability of 

experimental ternary and higher order phase diagrams is far from complete. It 

will take thousands of years to experimentally determine all ternary phase 

diagrams at our current tempo. Quite possibly, a very selective approach for 

ternary and quaternary phase diagram determination will pay off in the long 

run, though this will not be available in the near future. As phase diagram 

calculations and computer modeling are in early stages, this will not be a good 

option in the near future. A rigorous ternary phase diagram calculation is still 

considered to be a formidable task. Further, extensive experimental data will be 

needed as input for a good phase diagram calculation. 



As we are deprived of all rigorous techniques to determine higher order deep 

eutectic systems in the near future, we have to devise more simple approaches 

which will be useful in locating deep eutectics in ternary and higher order 

systems. Massalski et al. proposed an experimental method coupled with 

analytical techniques to determine the eutectic composition (if it exists) in a 

limited range of a given system [lo]. However, this method has its limitations 

and will not be practical without some guidelines which suggest possible eutectic 

compositions. 

One proven method is to start with a binary alloy which already has a deep 

eutectic and make these eutectics deeper by alloying. Hard work, intuition and 

some luck are necessary, as this technique requires trial and error. A first 

approach to alloying is to prepare combinations of these deep eutectic binary 

alloys. The currently known good metallic glass formers are combinations of two 

or more deep eutectic binary alloys such as Pd-Ni-P, Mg-Cu-Y, and Zr-Ti-Ni-Cu- 

Be good glass forming systems. 

A more systematic approach would be to search for suitable eutectic systems 

such that the elements of one eutectic system will suppress the stability of the 

crystalline phases of the other eutectic system. Usually, elements with different 

atomic radius have proven useful as in the cases of recently found exceptionally 

good glass forming Zr-Cu-Ni-A1 and Zr-Ti-Ni-Cu-Be-X systems (X stands for all 

other elements in periodic table and can be a significant part of the alloy content). 

Here, this approach will be exercised in the example of Zr-Ti-Ni-Cu-Be bulk glass 

forming system. 



Figures 5.1,5.2,5.3, and 5.5 show the binary phase diagrams of Ti-Ni, Zr-Cu, Zr- 

Ni, and Ti-Cu [ll]. These systems show generally similar features with low lying 

eutectics over the central portions of the phase diagrams. The existence of 

intermetallic compounds, which are usually size compounds (Laves phases), 

prevent the binary systems from exhibiting much deeper eutectic features. 

Figures 5.4 and 5.6 show the hypothetical phase diagrams of Zr-Ni and Ti-Cu, in 

which the intermetallic compounds are assumed to be non-existent. Obviously, 

the hypothetical eutectics are much deeper than existing in the real binary 

systems and would be easy bulk glass formers. Our objective is to attain these 

hypothetical phase diagrams by the help of additional alloying elements 

Figures 5.7 and 5.8 show the binary phase diagrams of Zr-Be and Ti-Be systems 

[ll]. The Zr-Be and Ti-Be systems differ from the above binary systems in that 

crystalline intermetallic phases are confined to the Be-rich portion of the phase 

diagram. For example, in Zr-Be shown in figure 5.7, the most Zr-rich crystalline 

intermetaliic is ZrBe2, a Laves phase which forms peritectica!l.y. at 1508 K. This is 

separated from the Zr-base terminal solutions by a broad and deep eutectic 

feature with a eutectic temperature of 1238 K at 35 at. % Be. 

The essential motivation in developing bulk glass forming alloys is to find the 

deepest eutectic features obtainable in the pseudo-ternary phase diagrams. The 

absence of Zr-rich (Ti-rich) phases in the Zr-Be and Ti-Be systems provides a key. 

It suggests, for instance, that Be will have limited solubility in crystalline binary 

phases such as Zr2Cu, ZrCu, Zr2Ni, and ZrNi, since analogous phases are absent 

in the Zr-Be system. As further support for this conjecture, the metallic radius of 

Be is substantially smaller than that of Cu and Ni (RB,= 0.112 nm, while 

Rc,=0.128 nm, and R~izO.124 nm), and much smaller than that of Zr, Rz,=0.160 
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Figure 5.1: Phase Diagram of the Ti-Ni system. Reproduced from ref. 11. 
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Figure 5.2: Phase Diagram of the Zr-Cu system. Reproduced from ref. 11. 
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Figure 5.3: Phase Diagram of the Zr-Ni system. Reproduced from ref. 11. 
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Figure 5.4: Hypothetical phase diagram of the Zr-Ni system. 
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Figure 5.5: Phase Diagram of the Ti-Cu system. Reproduced from ref. 11. 

Liquid 

T i  Atomic Percent Cu C u 

Figure 5.6: Hypothetical phase diagram of the Ti-Cu system. 
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Figure 5.7: Phase Diagram of the Zr-Be system. Reproduced from ref. 11. 
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Figure 5.8: Phase Diagram of the Ti-Be system. Reproduced from ref. 11. 



nm) [12]. In compounds such as Zr2Ni (A12Cu-type), substitution of Be on the Ni- 

site in the crystal should be accompanied by substantial lattice strain. This in 

turn should reduce the stability of the compound as Be is substituted in the form 

Zr2(Nil-xBex). A similar argument applies to crystalline compound 

Zr(Nil-xBex). Such compounds should have limited solubility for Be. In the 

absence of a new ternary Zr-rich Zr-Ni-Be phase, one would expect to find a 

ternary eutectic feature in the Zr-rich portion of the ternary diagram. This 

eutectic should lie at Be concentrations exceeding the solubility limits of the 

above crystalline phases. Further, this ternary eutectic should lie lower at 

temperature than the binary eutectics or the corresponding liquidus features in 

the binary Zr-Cu and Zr-Ni systems. Such a deep eutectic region in fact exists in 

the ternary and pseudo-ternary phase diagrams. For example, high temperature 

DSC scans of the melting curves of several ternary Zr-Cu-Be alloys are shown in 

figure 5.9. The alloys have compositions varying over a substantial region of the 

Zr-rich part of the ternary diagram. All four alloys have a solidus temperature of 

about Ts .= 1070 K while the liquidus curves vary from 1080 to 1125 K. These 

temperatures lie well below the corresponding binary eutectic temperatures in 

the Zr-Be Diagram (eutectic at 35 at. O/O Be with T,= 1238 K), or the Zr-Cu system 

(eutectics at 28 and 46 at. % Cu with T,= 1273 K, and 1201 K respectively). In 

higher order alloys, this broad region of low lying solidus and liquidus features 

becomes even more pronounced. Figure 3.10 shows the high temperature DSC 

scan of the melting transition for the pentiary alloy Zr41.2Ti13.gCu12.5Ni10Be22.5. 

Here, Ts= 937 K while TI .= 985 K. This pseudo-ternary alloy exhibits an 

exceedingly low melting region. In this region, one finds Trg .= 0.67. 



Figure 5.9: High temperature DSC scans of the melting endotherms for a series of 

ternary Zr-Cu-Be alloys. 



The Zr-Ti-Ni-Cu-Be alloys of interest here can best be viewed as pseudo-ternary 

alloys of the type (Zr-Ti)l-x-y(Ni,Cu)xBey, or more generally as: 

where ETM is an early transition metal (e.g. Ti, Zr, Nb, V, etc.) and LTM is a late 

transition metal (e.g., Cu, Ni, Co, Fe) [13-151. Figure 5.10 shows the region where 

bulk glass forming alloys were found. An extremely large region of this pseudo- 

ternary system was found to exhibit glass formation at cooling rates as low as 

1 K/s. Obviously Be is a very effective alloying element to improve bulk glass 

formation. We have not yet found such an effective alloying element to improve 

glass formation. Thus, there should be something unique with Be! 

Figure 5.11 shows a plot of metallic radii of selected elements (most common 

elements in metallic glass research). Obviously, Be stands out with its metallic 

radius. This may explain the unique effectiveness of Be for bulk glass formation 

in (ET~)~-~-y(LTivijxBey systern. Be is i-isitELer small enmgh to fit into interstitial 

sites nor big enough for substitutional solutions without causing substantial 

strain energy in crystalline phases. The unique size of Be makes crystalline 

solution phases highly unstable due to strain energy, whereas liquid can sustain 

larger atomic size differences. This small atom will also increase the packing 

efficiency and the entropy of mixing of the liquid state. By contrast, Be cannot be 

replaced by other metalloid atoms (e.g., B, C, Si) which form strong covalent 

bonds. Such covalent bonding results in highly refractory and easy nucleating 

crystalline compounds. Figures 5.12,5.13,5.14, and 5.15 show the binary phase 

diagrams of Zr-Si, Ti-C, Ti-B, and Zr-B [Ill. 
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Hf, Ti,Nb) 

Figure 5.10: Schematic ternary phase diagram showing the region in which bulk 

glass forming alloys were found in ETM-LTM-Be alloys. 



Figure 5.11: Metallic radii of selected elements. The data is taken from ref. 12. 
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Figure 5.12: Phase Diagram of the Zr-Si system. Reproduced from ref. 11. 
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Figure 5.13: Phase Diagram of the Ti-C system. Reproduced from ref. 11. 
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Figure 5.14: Phase Diagram of the Ti-B system. Reproduced from ref. 11. 
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Figure 5.15: Phase Diagram of the Zr-B system. Reproduced from ref. 11. 



We can increase the reduced glass transition temperature T,X to the limit of 0.67 

by increasing the glass transition temperature and/or reducing the melting point 

of the alloy. Pure metals have Trg much smaller than 0.5 and most of the deep 

eutectic binary alloys have T,h, from 0.5 to 0.6. In earlier research aimed at 

developing metallic glasses, attention was devoted to the reduction in melting 

point through alloying, as the glass transition temperature was found to be 

slowly changing with composition. However, increasing of Trgr by increasing Tg, 

should not be overlooked as an efficient method. To increase Trg from 0.6 to 0.65, 

the reduction of melting point should be 1.6 times the increase in glass transition 

temperature. An increase of glass transition temperature by 40-50 "C can be very 

critical as it becomes harder to increase T, after it reaches a value of 0.60. 

As a final comment, I include the following quotations from two currently 

known experts in the field of materials science 1161. 

D. DeFontaine: I would like to raise a point regarding the size of the task ahead of us if 

we are to meet the needs of the industrial world. Tfwe take 80 elements as being 

important, there are 3,000 possible binary systems. In the last 50 years, it appears on the 

average that we have completed work on one binary per week. There are approximately 

50,000 ternaries. Assuming conservatively that at the same tempo of work it takesfive 

times as long to complete a study on a ternary system as it does on a binary, it would be 

possible to complete ten a year. This takes us forward 5,000 years. If we go to quaternary 

systems and assume that by that time our techniques have advanced suficiently so that 

we can do a complete quaternary system in about the same time it now takes us to do a 

ternary system, it would appear that an additional 100,000 years would be required. 

This overly simplified statement brings out the enormity of the task before us. It seems 



to me that we must ask ourselves what are the realistic goals and where do we stop. We 

must be honest with the industrialists and say that we never really are going to be able to 

develop all the information that is needed in the next hundred thousand years. 

J .  F. Elliot: I feel that the question is highly pertinent. One of the answers is that we 

must be highly selective as to the systems on which we work because of limitations of 

funding and of the available manpower. It seems to me that the latter is the more 

important constraint. We must also be aware that there are limits to the patience of those 

who ultimately must pay the bills --the public. We must provide the industrial researcher 

with background information to assist him to get started in his work even though he may 

have to develop detailed information on the system that is of immediate interest to him. 
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APPENDIX I 

The bulk glass forming Zr-Ti-Cu-Ni-Be alloys can be viewed as pseudo-ternary 

alloys of the type 

where x and Y are atomic fractions and a, b and c are atomic percentages [I-31. 

Generally, a is in the range of from 30 to 75%, b is in the range of from 2 to 6O%, c 

is in the range of 2 to 52%, and x and Y are in the range of from 0 to 1 for good 

glass formation by rapid quenching technique (T-104-106 K/s). Table A. 1 lists 

glassy alloys of this type obtained by rapid quenching (T-104-106 K/s). Thick 

glass formation (T-102-103 K/s) is generally observed when a is in the range of 

from 38 to 72%, b is in the range of from 5 to 52%, c is in the rar;ge of 5 to 42% 

and x and Y are in the range of from 0 to 1. Table A. 2 lists glassy alloys prepared 

in the form of 1.0 mm thick strips. Bulk glass formation (T-1-10 K/s) is 

generally observed when a is in the range of from 42 to 68%, b is in the range of 

from 10 to 45%, c is in the range of 12 to 35%, and x is in the range of from 0.15 to 

0.65. Table A. 3 lists glassy alloys prepared in the form of at least 5.0 mm thick 

ingots. The molten alloys listed in table A. 3 usually freeze to glassy ingots on a 

water cooled copper (or silver) boat under a clean inert atmosphere. When the 

value of (by) --which gives the Ni content in atom percent-- is in the range of 

from 5 to 15%, the largest ranges of a, b, c and x are obtained for bulk glass 

formation. Figure A.l shows glass formation at two different cooling rates 



(T -10 K/s and T -500 K/s) for (Zro.7sTio.25)100-b-c(Cul-yNiy)bBec alloy system, 

where Ni content (the value of by) is from 5 to 15 atom percent. Table A.4 lists 

thermal properties of 1.0 mm thick ZrlOO-b-cCubNi~~Bec glassy alloys. Listed are 

the onset glass transition temperature Tg, the onset crystallization temperature 

Tx, and supercooled liquid region AT, which is defined as AT = Tx.-Tg. 

The (Zrl-xTix)lOO-b-c(Cul-yNiy)b(Be)c glass forming alloy system can also 

accommodate substantial amount of other elements without damaging its glass 

forming ability. Generally, this alloy system can comprise any transition metal 

from 0 to 30 atom percent, metalloids from 0 to 10 atom percent, any metal from 

lanthanides and actinides from 0 to 15 atom percent, and a few atom percent of 

any other element (including Oxygen) for thick and bulk glass formation. For 

example, the Zr-Ti moiety can contain additional metals selected from the group 

of from 0 to 20 atom percent Nb, from 0 to 20 atom percent V, from 0 to 15 atom 

percent Y ,  from 0 to 10 atom percent Cr, and up to 10 atom percent of any other 

early transition metal for thick glass formtion (T-102-103 K/s). When Zr-Ti 

moiety contains additional metals selected from the group of from 0 to 10 atom 

percent Nb, from 0 to 10 atom percent V, from 0 to 5 atom percent Y ,  from 0 to 5 

atom percent Cr, and up to 5 atom percent of any other early transition metal, 

bulk glass formation at cooling rates as low as 10 K/s can still be obtained. Zr 

can be completely replaced by Hf in any of these alloys without damaging the 

glass forming ability. Further, the Cu-Ni moiety can contain additional metals 

selected from the group of from 0 to 25 atom percent Co, from 0 to 15 atom 

percent Fe, from 0 to 10 atom percent Mn and up to 10 atom percent of any other 

late transition metal for thick glass formation (T-102-103 K/s). When Cu-Ni 

moiety contains additional metals selected from the group of from 0 to 15 atom 



percent Co, from 0 to 10 atom percent Fe, and up to 5 atom percent of any other 

transition metal, bulk glass formation at cooling rates as low as 10 K/s can still be 

obtained. 

When other transition metals are included, the (Zrl-xTix)100-b-~(Cu1-yNiy)b(Be)~ 

system can be generalized to 

where ETM is a combination of early transition metals (e.g. Zr, Hf, Ti, Nb, V, Cr, 

etc.) and LTM is a combination of late transition metals (e.g. Cu, Ni, Co, Fe etc.). 

Generally, the values of a, b, and c are still valid as described above for glass 

formation at different cooling rates. Table A. 5, A.6, and A.7 list alloys of 

E T M ~ ~ O - ~ - ~ L T M ~ B ~ ~  type prepared at different cooling rates. Listed in table A. 8 

are glassy alloys of Zr-Ti-Ni-Cu-Be-M prepared in the form of 1.0 mm strips, 

where M stands for a metalloid atom (Si, B, Al). 

It should be noted that the above boundaries are only approximate$ givert. A 

variation of glass forming ability is observed slightly inside and/or outside of the 

these given boundaries. Also, the given cooling rates, T, are approximately 

estimated cooling rates effective in the preparation of glassy alloys and they are 

not necessarily the critical cooling rates, T,, for glass formation. 



TABLE A.l: Readily glass forming (?< 104-106 K/s) Zr-Ti-Ni-Cu-Be alloys. 



TABLE A.2: Thick glass forming (?< 102-103 K/s) Zr-Ti-Ni-Cu-Be alloys. 



TABLE A.3: Bulk glass forming (T< 10 K/s) Zr-Ti-Ni-Cu-Be alloys. 



Figure A.l: Glass forming range for (Zro.75Tio.25)100-b-c(Cul-~Niy)bBec alloys for 

two different cooling rates. Ni content (the value of by) is from 5 to 15 atom 

percent. 



TABLE A.4: Thermal properties of ZrlOO-b-cCubNil~Bec glassy alloys prepared in 

the form of 1.0 mm strips. 

Composition Tg("c) &("c) - AT("C) 



TABLE A.5: Bulk glass forming ( T <  10 K/s) ETM-LTM-Be type alloys. 

TABLE A.6: Thick glass forming (?< 102-103 K/s) ETM-LTM-Be type alloys. 

7.- 

1 ABLE A.7: Readily glass forniring ( T <  104-106 K/s) ETM-LTM-Be type alloys, 

TABLE A.8: Thick glass forming ( ~ c  102-103 K/s) Zr-Ti-Ni-Cu-Be-M type alloys. 
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